
EG UK Computer Graphics & Visual Computing (2018)
G. Tam and F. Vidal (Editors)

Spectrum: A C++ Header Library for Colour Map Management

Richard C. Roberts1, Liam McNabb1, Naif AlHarbi1, Robert S. Laramee1

1Visual and Interactive Computer Group, Swansea University, Swansea, Wales

Figure 1: Here are some example images taken from publications that have utilised the Spectrum library at various stages of its development.
The library has been used in many fields of visualisation. Here we show a) scientific visualisation [NA18], b) information visualisation
[RLS∗18], and c) geospatial visualisation [MLF18].

Abstract

The use of colour mapping is fundamental to visualisation research. It acts as an additional layer beyond rendering in the spatial
dimensions and provides a link between values in any dataset. When designing and building visualisation research software,
the process of creating and managing a colour mapping system can be time-consuming and complex. Existing alternatives
offer niche features and require complex dependencies or installations. We present Spectrum; an open source colour map
management library that is developer friendly with no installation required, and that offers a wide variety of features for the
majority of use cases. We demonstrate the utility of the library through simple snippets of code and a number of examples which
illustrate its ease of use and functionality, as well as a video demonstrating the installation and use of the library in under two
minutes. It is a very valuable jump-start tool for developers and researchers who need to focus on other tasks.

CCS Concepts
•Software and its engineering → Software libraries and repositories; Software design engineering; Open source model;

1. Introduction and Motivation

“Colour is a power which directly influences the soul.” -
Kandinsky [Kan12]

Whilst the selection of a good colour map is a contested sub-
ject [ZH16], the implementation of these colour maps is rarely
discussed. When developing both previous and novel visualisa-
tions, the beginning of each project forces the developer to either
write a colour map manager from scratch or to recycle and mod-
ify old code written for the purpose of a different project. Our
colour-map library has been developed over the past four years,
serving as the colour manager for multiple visualisation projects
and has been used by a number of Data Visualisation PhD stu-

dents [RLS∗18, NA18, MLF18, RTL∗16]. See Figure 1. We imple-
ment a broad range of features, accommodating for the majority of
use cases, and release the software in the form of an open source
C++ header-only library available to the public.

Abstracting away from the implementation of a colour map man-
ager enables the developers to focus on other important design deci-
sions, such as the choice of colour map. We provide default colour
maps bundled into the library but accommodate for the addition of
new maps through a simple coding interface. The developer can
switch freely between a selection of colour maps without modify-
ing their own code by simply updating a static index value asso-
ciated with the colour manager. We have implemented this library
with simplicity in mind. Our goal is to create a library that can be

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

Roberts et al. / Spectrum: A C++ Header Library for Colour Map Management

included in a project and used in a very short amount of time. We
demonstrate the speed by which this library can be utilised in the
accompanying video – showing the process of importing the library
into the project, to extracting and utilising colour values in under
two minutes. To view this tutorial, please see the attached video or
go to:

https://vimeo.com/273322682

Our contribution is to provide an open source maturely devel-
oped header-only library that can be used by any C++ developer
working with colours. Whilst the application has been developed
for OpenGL, support for hex colour conversion is included and so
can be used for an even wider range of projects.

We choose C++ Qt to develop our visualisation research appli-
cations because it enables us to utilise the powerful C++ language
alongside the feature-rich framework of Qt. Qt is a fast, cross-
platform, open source and well documented. It enables us to build
analytics tools with the visual component of OpenGL quickly and
easily. For these reasons, we choose to create a C++ library that can
easily be used alongside our chosen framework and save us time in
our future projects.

The next section briefly covers related work in the area. The
following section describes the features of the library and demon-
strates how it can be used for varying types of data. We provide
pseudocode for the main colour interpolation algorithm - and code
snippets demonstrating how the library works, examples of the
colour map used in practice, and a supplementary tutorial video.
The video demonstrates that the library can be incorporated and
used in under two minutes.

2. Related Work

Colour Map Theory: Silva et al. present a survey of colour us-
age in visualisation [SSM11]. This paper presents an overview of
the theory behind colour scales and the guidelines laid out for the
efficient use of colour maps.

Zhou and Hansen also present a survey of colour maps in visual-
isation [ZH16], with the intention of it being a reference of colour
map choices for readers based on the data and tasks they may face.

A body of research looks at the common mistakes made in colour
mapping, [RT98, SMS07, BI07, PRS∗15]. The most common mis-
take when choosing a colour map is the use of the rainbow map,
which looks aesthetically pleasing, but fails to convey a correct
linear scale that the user can accurately perceive. Some research
focuses on how colour maps can be used efficiently [Mac99], by
task [Rhe00], or by data [Hea96]. Even a number of visualisation
books discuss colour map theory [Tel14, Kir16, Rhy16].

Wang et al. create an algorithm that selects appropriate colour
maps [WGM∗08] whilst overcoming the challenge of transparency
issues in colour mapping. More colour selection guidelines have
also been published since, [LFK∗13, FWD∗17, LSS12]

Meyer and Greenberg also explored the challenges associated
with colour blind individuals [MG88], which was more recently
explored by Kuhn et al. [KOF08]. Studies on the class intervals
have also been completed [Tob73, BP02], which is largely used on
choropleth maps.

Figure 2: This image exemplifies the different classifications of
colour map. These colour maps are taken from ColorBrewer
[HB03].

The literature covers both univariate mapping [War88], and mul-
tivariate mapping [Mon99]. The scope of the colour map theory re-
search is extensive – looking closely at many aspects of the colours
within the maps. We abstract away from this and focus on the im-
plementation of mapping colour in a range.

Colour Map Resources: Color Brewer is a popular online re-
source for selecting colour maps [BP02, Bre94], where colour map
suggestions are made based on the type of data being presented.
More recently, Colorgorical is an online tool that helps generate
new maps which are highly customisable [GLS17].

Whilst most of this research identifies the theory behind the dif-
ferent types of colour maps, rarely does the research provide imple-
mentation details. Moreland provides some information on this, but
only on the interpolation between colours [Mor09]. This library en-
ables the user to focus on selecting the correct colour map without
having to invest time into the implementation of a software spe-
cific colour map manager. Our library is generalisable for most use
cases and can be downloaded (see section 6), and implemented in
a matter of minutes.

3. Colour Mapping Background

In this section, we discuss the scope of this library and provide
an overview of how different data types have varying requirements
when mapping them to colour. We briefly discuss the theory behind
colour maps and what differentiates them, then we demonstrate the
broad spectrum of features implemented in our library.

3.1. Colour Map Classifications

The first important distinction to make is between the different
types of colour maps. The most popular academic colour mapping
resource, ColorBrewer divides maps into three different classifica-
tions [HB03, Bre94].

Diverging: The diverging colour scheme emphasises two ends of a
spectrum with a middle divider [Bre94]. Two colours diverge from
a centre lighter colour value. For example, this can be used when
visualising a divergence from an average, where the upper colour
represents higher than the average, and the lower colour represents
worse than the average. See Figure 2 a).

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

https://vimeo.com/273322682

Roberts et al. / Spectrum: A C++ Header Library for Colour Map Management

Figure 3: This figure shows the difference between an interpo-
lated and non-interpolated colour map. If the colour map returns
an interpolated colour, then a new colour is generated represent-
ing a floating point along the spectrum of the colour map. A non-
interpolated map returns the specific colour class from within the
map.

Sequential: This colour classification implies an order to the scale
of data that range from low to high [Bre94]. Low range values
are typically mapped to lighter colours and high range values are
mapped to darker colours. Sequential maps can either be single hue
– where one dominant colour is mapped from light to dark (See
Figure 2 b)), or multi-hue – where a light colour transitions to a
differing dark colour. See Figure 2 c).

Qualitative: This colour map is made up of categorical colours
that do not imply order [Bre94]. The variance in colour hue enables
nominal data to be represented without confusion. See Figure 2 d).

3.2. Colour Map Operating Modes

Colour maps have two main components; the colour class list and
the range values. Each colour in the map list is known as a ‘class’.
In diverging and sequential colour maps, these classes are ordered
using a gradient such that their neighbouring classes vary slightly
in hue or shade. In qualitative colour maps class colours are unre-
lated and typically do not resemble any order. The upper and lower
range values of a colour map represent the scale of the data being
depicted. When retrieving a colour from a colour map, there are
two operating modes;

Interpolated: When depicting a specific value within the data
range of the colour map, a colour is generated at the precise point
along the colour spectrum according to its value in the range. The
correct value is interpolated between the class colours of the colour
map. See Figure 3 a).

Non-Interpolated An alternative to the above method is to simply
return the class colour that the value along the range falls into where
no interpolation between class colours is necessary. See Figure 3 b).

3.3. Data Types

Data can be broken down into four basic categories; nominal, or-
dinal, interval, and ratio [Ste46]. Our library accommodates for
each of these data types and their different requirements for colour
mapping. Depending on what data is being rendered and the type
of colour the developer is interested in accessing, different library
functions should be used to return the values.

Nominal Data Nominal data exists in discrete groups which are
independent of one another. These groups cannot generally be
placed into a meaningful order and are typically identified by a
name as opposed to a number. e.g. categories of food. This datatype
is often dealt with according to frequency. We note that a count
value of nominal data becomes ratio data.

Ordinal Data Ordinal data can be sorted, but the distance between
groups is unspecified. e.g. the grading system (A-F).

Interval & Ratio Interval data can be ordered and the distance be-
tween the groups has meaning. Additionally a value of zero is not
meaningful. For example, the measurements Celsius & Fahrenheit
– 20 degrees Celsius is not twice as hot as 10 degrees Celsius be-
cause the base of zero degrees is not an absence of heat.

Ratio data can be ordered with a meaningful distance between
values where a zero value has meaning and a fraction or ratio can
be taken. For example, measurements of height and distance. One
mile is half of two miles, and zero miles is a meaningful measure.

4. Spectrum Outline

Contained within the .h file ColourManager are four different
classes; ColourManager, Colour, ColourMap, and CMList. We
chose to build this open source library as a header-only file so
that it can easily be used by anyone, without any dependencies
and complicated build requirements. Whilst header files have to be
compiled at build time, the code base of the library is lightweight
enough for it to have virtually no effect on compilation time. In
this section, we explain the roles of each class and provide some
example code to demonstrate how they work.

4.1. Colour

The colour class is a simple container object for colour channel val-
ues. Each colour has a name value which can be used when map-
ping nominal data. The three class constructors instantiate the class
through different methods. The first has three arguments, each be-
ing the RGB values of the colour, either a float 0.0-1.0 range or
an int 0-255 range. The function automatically calculates which is
being used. The second takes in a string hex value as the argument
and the colour is derived from that. The third constructor is empty
so that the developer can manually set the values later.

1 / / Method 1
2 Colour c1 (7 6 , 196 , 150) ;
3

4 / / Method 2
5 Colour c2 (‘ ‘#4 cc496 ’ ’) ;
6

7 / / Method 3
8 Colour c3 () ;
9 c3 . s e tR (7 6) ;

10 c3 . se tG (1 9 6) ;
11 c3 . s e tB (1 5 0) ;
12

When retrieving the correct values from the colour object, the
developer can either individually retrieve the red, green, and blue

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

Roberts et al. / Spectrum: A C++ Header Library for Colour Map Management

colour channels through accessor functions, or they can return a
string of the hex colour value.

1 / / R e t u r n s c h a n n e l v a l u e s between 0−255
2 GLint iR = c . g e t I n t R () ;
3 GLint iG = c . g e t I n t G () ;
4 GLint iB = c . g e t I n t B () ;
5

6 / / R e t u r n s c h a n n e l v a l u e s between 0.0 −1.0
7 f l o a t fR = c . getR () ;
8 f l o a t rG = c . getG () ;
9 f l o a t fB = c . g e t () ;

10

11 / / Re tu rn hex c o l o u r v a l u e
12 s t d : : s t r i n g hexCol = ge tHexColour () ;
13

14

The OpenGL colour can now be set using;

1 g l C o l o u r 3 i (iR , iG , iB) ;
2 / / o r
3 g l C o l o u r 3 f (fR , fG , fB) ;
4

If required, the colour class also has an alpha value that can be
accessed or set through similar methods.

4.2. Colour Map

The colour map class contains a vector of Colour objects which act
as the colour classes of the map. In order to create a colour map, it
is given a name, a classification, and a list of colours.

The CMClassification is an enum representing the type of colour
map being created. These include Sequential, Diverging, and Qual-
itative.

1 / / Th i s i s an example c o l o u r map c r e a t i o n
2 ColourMap redSeq (" Red S e q u e n t i a l ") ;
3 r edSeq . s e t C l a s s i f i c a t i o n (C M C l a s s i f i c a t i o n : :

SEQUENTIAL) ;
4 f l o a t DEFAULT_OPACITY=1.0 f
5 r edSeq . addColour (2 5 5 , 2 5 5 , 2 0 4 ,DEFAULT_OPACITY) ;
6 r edSeq . addColour (2 5 5 , 2 3 7 , 1 6 0 ,DEFAULT_OPACITY) ;
7 r edSeq . addColour (2 5 4 , 2 1 7 , 1 1 8 ,DEFAULT_OPACITY) ;
8 r edSeq . addColour (2 5 4 , 1 7 8 , 7 6 ,DEFAULT_OPACITY) ;
9 r edSeq . addColour (2 5 3 , 1 4 1 , 6 0 ,DEFAULT_OPACITY) ;

10 r edSeq . addColour (2 5 2 , 7 8 , 4 2 ,DEFAULT_OPACITY) ;
11 r edSeq . addColour (2 2 7 , 2 6 , 2 8 ,DEFAULT_OPACITY) ;
12 r edSeq . addColour (1 8 9 , 0 , 3 8 ,DEFAULT_OPACITY) ;
13 r edSeq . addColour (1 2 8 , 0 , 3 8 ,DEFAULT_OPACITY) ;
14

The colours can also be given names when being added to the map.

1 r edSeq . addColour (2 5 5 , 0 , 0 , 1 . 0 f , " Red ") ;
2

The colours can be accessed in the colour map through square
bracket operators by both the index of the colour or the name of
the colour.

Figure 4: This image shows the different data types and their rela-
tionship to each library feature the developer may want to use.

1 / / By i n d e x
2 r edSeq [4] ;
3 / / By name
4 r edSeq [" Red "] ;
5

4.3. CMList

The colour map list class is a simple container class that holds all
the different colour maps loaded into the software. Adding a colour
map to the list is done through the addColourMap() function.

1 CMList : : addColourMap (redSeq) ;
2

Returning a subset of the colour maps is done using the CMClas-
sification enum;

1 / / R e t u r n s t h e c o m p l e t e l i s t o f c o l o u r s
2 s t d : : v e c t o r <Colour > l i s t
3 = CMList : : g e t M a p L i s t () ;
4

5 / / R e t u r n s on ly SEQUENTIAL maps
6 s t d : : v e c t o r <Colour > l i s t
7 = g e t M a p L i s t (C M C l a s s i f i c a t i o n : : SEQUENTIAL) ;
8

Using the returned list, the developer can select their desired
colour map and set it as the current map in the ColourManager
class.

4.4. ColourManager

This is the main class of the Spectrum library. It contains the cur-
rently selected colour map and handles the responsibility surround-
ing the colour return values. Five functions return colour values for
various use cases. Figure 4 describes the function purpose accord-
ing to the data type being displayed. Each of these functions returns
a Colour object. These functions are;

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

Roberts et al. / Spectrum: A C++ Header Library for Colour Map Management

1. getClassColour(float val) – Returns the closest colour ‘class’ in
the current colour list.

2. getInterpolatedColour(float val) – Returns the interpolated
colour between the ‘class’ colour list.

3. getColourFromSeed(int seed) – Returns a random colour based
off the seed value argument. This seed value ensures that the
same colour can be recreated at any time in the future.

4. getColourFromIndex(int index) – Returns the class colour based
on the index in the current colour map.

5. getColourFromName(std::string name) – Returns the colour in
the current colour map with the same name as the function ar-
gument. If no match is found, a black colour is returned with the
name ‘NoColour’.

Flipping the bool value InvertColourMapFlag() will reverse
the current colour map order, and the function returnRandom-
ColourMap(int seed, int listSize) returns a brand new qualitative
colour map that can then be added to the CMList. In this func-
tion, the seed value ensures the colour map can be replicated at any
point in the future, and the listSize function argument determines
the class size within the colour map.

5. Spectrum: Examples in Practice

In this section, we demonstrate how to use the Spectrum library
using example code. Installation of the library is simple and re-
quires no compilation. The developer simply adds the .h file to their
project and includes the file in their rendering classes. The supple-
mentary video demonstrates using the Spectrum library in only two
minutes.

5.1. Basic Use

The first step is to initialise the colour manager in the main function
– ColourManager::Init_ColourManager();. This sets up the colour
lists and loads them into memory. It is important to remember to
include the header in each file the library is used in.

1 # i n c l u d e " c o l o u r m a n a g e r . h "
2

3 i n t main (i n t a rgc , c h a r ∗ a rgv [])
4 {
5 ColourManager : : I n i t _ C o l o u r M a n a g e r () ;
6 Q A p p l i c a t i o n a (a rgc , a rgv) ;
7 MainWindow w;
8 w. showMaximized () ;
9 r e t u r n a . exec () ;

10 }
11

Once the setup is complete, the developer can instantiate a
ColourManager object using an upper and lower range for the map.
Throughout the lifetime of the object, the ranges can be adjusted
using accessor functions.

1 f l o a t lowerRange = 0 ;
2 f l o a t upperRange = 100 ;
3 ColourManager manager (lowerRange , upperRange) ;
4

When returning a colour value, the developer can choose from
a selection of functions, depending on their data and requirements.
In this example, we choose the interpolated colour value.

1 f l o a t v a l = 2 7 . 0 f ;
2 Colour c = manager . g e t I n t e r p o l a t e d C o l o u r (v a l) ;
3

This Colour object ‘c’ now contains the interpolated colour be-
tween the upper and lower range of the colour map.

This demonstrates the complete pipeline of the Spectrum Li-
brary. In order to make this software valuable to developers, it needs
to save time in development. Every aspect of the implementation
ensures that the most work is done with the smallest amount of
code, with the quickest setup. We demonstrate the speed at which
the library can be used in under two minutes.

5.2. Changing Current Colour Map

The developer can select the desired colour map using the functions
outlined in section 4.3. Once the correct colour map has been cho-
sen, it can be selected as the current map in a number of different
ways:

1

2 / / Get t h e f i r s t d i v e r g i n g c o l o u r map .
3 ColourMap M = CMList : : g e t M a p L i s t (

C M C l a s s i f i c a t i o n : : DIVERGING) [0] ;
4

5 / / D i r e c t l y from a c o l o u r map
6 ColourManager : : s e t C u r r e n t C o l o u r M a p (M) ;
7

8 / / Or t h r o u g h c h a n g i n g t h e i n d e x v a l u e
9 ColourManager : : s e tCo lou rMapIndex (M. g e t I n d e x ()) ;

10

The map can be changed at any time – whereby every instance of
a ColourManager class will use the same colour map. This univer-
sal map prevents confusion with duplicated instances of different
colour schemes across the developer’s code base.

5.3. Adding Colours

The Spectrum library is pre-bundled with a range of different
colour maps. These can easily be removed or supplemented by
modifying the ColourManager::Init_ColourManager() function.
The function requires at least one colour map to be added, and then
setupIndexesInList() to be called at the end of the function to assign
index values to each map in the list.

1 I n i t _ C o l o u r M a n a g e r () {
2 / / Add c o l o u r
3 ColourMap r e d B l u e ;
4 r e d B l u e . setMapName (" Red t o Blue ") ;
5 r e d B l u e . s e t C l a s s i f i c a t i o n (DIVERGING) ;
6 r e d B l u e . addColour (1 6 5 , 0 , 3 8 , 1 . 0 f) ;
7 r e d B l u e . addColour (2 1 5 , 4 8 , 3 9 , 1 . 0 f) ;
8 r e d B l u e . addColour (2 4 4 , 1 0 9 , 6 7 , 1 . 0 f) ;
9 r e d B l u e . addColour (2 5 3 , 1 7 4 , 9 7 , 1 . 0 f) ;

10 r e d B l u e . addColour (2 5 4 , 2 2 4 , 1 4 4 , 1 . 0 f) ;
11 r e d B l u e . addColour (2 5 5 , 2 5 5 , 1 9 1 , 1 . 0 f) ;

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

Roberts et al. / Spectrum: A C++ Header Library for Colour Map Management

12 r e d B l u e . addColour (2 2 4 , 2 4 3 , 2 4 8 , 1 . 0 f) ;
13 r e d B l u e . addColour (1 7 1 , 2 1 7 , 2 3 3 , 1 . 0 f) ;
14 r e d B l u e . addColour (1 1 6 , 1 7 3 , 2 0 9 , 1 . 0 f) ;
15 r e d B l u e . addColour (6 9 , 1 1 7 , 1 8 0 , 1 . 0 f) ;
16 r e d B l u e . addColour (4 9 , 5 4 , 1 4 9 , 1 . 0 f) ;
17 ColourMapLis t () . addColourMap (r e d B l u e) ;
18

19 / / Add as many c o l o u r s a s r e q u i r e d . . .
20

21 / / Se tup t h e c o l o u r l i s t i n d e x e s .
22 ColourMapLis t () . s e t u p I n d e x e s I n L i s t () ;
23 }
24

These colour maps are compiled and added to the CMList once
ColourManager::Init_ColourManager() is called. This function is
called as early as possible in the program to ensure the map list is
set up before accessing the ColourManager.

In Figure 1, we show three published papers which utilise past
implementations of the Spectrum Library. Image a) demonstrates
a novel visualisation of lipid-protein interaction [NA18]. Image b)
presents a parallel coordinates plot of call centre interaction data
where the colour can be mapped to any of the axis values [RLS∗18].
Image c) shows a choropleth map where colour depicts value accu-
mulation of area amalgamation [MLF18].

6. Downloading Spectrum

The open source Spectrum library can be downloaded from github:

https://github.com/richardroberts1992/Spectrum

The use of Spectrum simply requires the developer to add the
ColourManager.h file to their project. A test program is available
within the project which exemplifies different use cases of the soft-
ware. It should be noted that this library is implemented as a sin-
gleton, and should be used carefully to avoid memory leaks. The
license allows free use of the library to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the software,
and to permit persons to whom the software is furnished to do so
(MIT License).

7. Conclusion and Future Work

We develop an open source library that can be used by any C++
developer to quickly build visual applications whilst abstracting
away from the implementation of a colour map manager. We pro-
vide clear documentation for its use and a video demonstration to
showcase the speed and ease by which the library can be used.

Whilst the code is not complex or unique, the design makes its
application universal to most fields of visualisation and so can be
used to get projects quickly up and running without additional man-
hours wasted on implementing the same functionality over and over
across different projects. The Spectrum library has been used by a
number of PhD candidates in our visualisation research team, who
have found the code to be a valuable resource in their research and
software development. We have packaged and documented this li-
brary so that others may also benefit from its features and ease of
use.

In the future we aim to improve the features of the Spectrum
library, incorporating class intervals of differing sizes so that the
developer is able to depict customised ranges of data – similar to
colour gradient tools used in graphics applications such as Photo-
shop. We will continue work on ensuring the thread-safe nature of
the singleton implementation of the library. We also plan to im-
plement features that allow loading input files of colour values to
create new colour maps and to get feedback from the library’s users
to incorporate their ideas for new features.

8. Acknowledgements
We would like to thank all who have contributed to this research.
We thank QPC Ltd. for their financial support and their supply
of the call centre data, and we thank KESSII who have been the
primary funding body for this research. KESS is part-funded by
the Welsh Government’s European Social Fund (ESF) convergence
programme for West Wales and the Valleys. In addition to this,
would like to thank Dylan Rees and Liam McNabb for providing
valuable feedback on this work.

References

[BI07] BORLAND D., II R. M. T.: Rainbow color map (still) consid-
ered harmful. IEEE Computer Graphics and Applications 27, 2 (March
2007), 14–17. doi:10.1109/MCG.2007.323435. 2

[BP02] BREWER C. A., PICKLE L.: Evaluation of methods for classi-
fying epidemiological data on choropleth maps in series. Annals of the
Association of American Geographers 92, 4 (2002), 662–681. 2

[Bre94] BREWER C. A.: Color use guidelines for mapping. Visualization
in modern cartography (1994), 123–148. 2, 3

[FWD∗17] FANG H., WALTON S., DELAHAYE E., HARRIS J., STOR-
CHAK D. A., CHEN M.: Categorical colormap optimization with visual-
ization case studies. IEEE Transactions on Visualization and Computer
Graphics 23, 1 (Jan 2017), 871–880. doi:10.1109/TVCG.2016.
2599214. 2

[GLS17] GRAMAZIO C. C., LAIDLAW D. H., SCHLOSS K. B.: Col-
orgorical: Creating discriminable and preferable color palettes for infor-
mation visualization. IEEE transactions on visualization and computer
graphics 23, 1 (2017), 521–530. 2

[HB03] HARROWER M., BREWER C. A.: Colorbrewer. org: an online
tool for selecting colour schemes for maps. The Cartographic Journal
40, 1 (2003), 27–37. 2

[Hea96] HEALEY C. G.: Choosing effective colours for data visualiza-
tion. In Proceedings of the 7th Conference on Visualization’96 (1996),
IEEE Computer Society Press, pp. 263–ff. 2

[Kan12] KANDINSKY W.: Concerning the spiritual in art. Courier Cor-
poration, 2012. 1

[Kir16] KIRK A.: Data visualisation: a handbook for data driven design.
Sage, 2016. 2

[KOF08] KUHN G. R., OLIVEIRA M. M., FERNANDES L. A. F.: An ef-
ficient naturalness-preserving image-recoloring method for dichromats.
IEEE Transactions on Visualization and Computer Graphics 14, 6 (Nov
2008), 1747–1754. doi:10.1109/TVCG.2008.112. 2

[LFK∗13] LIN S., FORTUNA J., KULKARNI C., STONE M., HEER J.:
Selecting semantically-resonant colors for data visualization. In Pro-
ceedings of the 15th Eurographics Conference on Visualization (Chich-
ester, UK, 2013), EuroVis ’13, The Eurographs Association & John
Wiley & Sons, Ltd., pp. 401–410. URL: http://dx.doi.org/
10.1111/cgf.12127, doi:10.1111/cgf.12127. 2

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

https://github.com/richardroberts1992/Spectrum
http://dx.doi.org/10.1109/MCG.2007.323435
http://dx.doi.org/10.1109/TVCG.2016.2599214
http://dx.doi.org/10.1109/TVCG.2016.2599214
http://dx.doi.org/10.1109/TVCG.2008.112
http://dx.doi.org/10.1111/cgf.12127
http://dx.doi.org/10.1111/cgf.12127
http://dx.doi.org/10.1111/cgf.12127

Roberts et al. / Spectrum: A C++ Header Library for Colour Map Management

[LSS12] LEE S., SIPS M., SEIDEL H.-P.: Perceptually-driven visibility
optimization for categorical data visualization. IEEE Transactions on
visualization and computer graphics (2012), 1. 2

[Mac99] MACDONALD L. W.: Using color effectively in computer
graphics. IEEE Computer Graphics and Applications 19, 4 (1999), 20–
35. 2

[MG88] MEYER G. W., GREENBERG D. P.: Color-defective vision and
computer graphics displays. IEEE Computer Graphics and Applications
8, 5 (1988), 28–40. 2

[MLF18] MCNABB L., LARAMEE R. S., FRY R.: Dynamic choropleth
maps - using amalgamation to increase area perceivability. In Inter-
national Journal of Computer Vision and Image Processing (2018). –
forthcoming. 1, 6

[Mon99] MONTAG E. D.: The use of color in multidimensional graphical
information display. In Color and Imaging Conference (1999), vol. 1999,
Society for Imaging Science and Technology, pp. 222–226. 2

[Mor09] MORELAND K.: Diverging color maps for scientific
visualization. In Proceedings of the 5th International Sympo-
sium on Advances in Visual Computing: Part II (Berlin, Hei-
delberg, 2009), ISVC ’09, Springer-Verlag, pp. 92–103. URL:
http://dx.doi.org/10.1007/978-3-642-10520-3_9,
doi:10.1007/978-3-642-10520-3_9. 2

[NA18] NAIF ALHARBI MATTHIEU CHAVENT M. K. R. S. L.: Lpiv: A
novel abstraction for time-dependent lipid-protein interaction. 1, 6

[PRS∗15] PANDEY A. V., RALL K., SATTERTHWAITE M. L., NOV O.,
BERTINI E.: How deceptive are deceptive visualizations?: An empirical
analysis of common distortion techniques. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems (New
York, NY, USA, 2015), CHI ’15, ACM, pp. 1469–1478. URL: http://
doi.acm.org/10.1145/2702123.2702608, doi:10.1145/
2702123.2702608. 2

[Rhe00] RHEINGANS P. L.: Task-based color scale design. In 28th AIPR
Workshop: 3D Visualization for Data Exploration and Decision Mak-
ing (2000), vol. 3905, International Society for Optics and Photonics,
pp. 35–44. 2

[Rhy16] RHYNE T.-M.: Applying color theory to digital media and vi-
sualization. 2

[RLS∗18] ROBERTS R., LARAMEE R. S., SMITH G. A., BROOKES P.,
D’CRUZE T.: Smart brushing for parallel coordinates. IEEE Trans-
actions on Visualization and Computer Graphics (2018), 1–1. doi:
10.1109/TVCG.2018.2808969. 1, 6

[RT98] ROGOWITZ B. E., TREINISH L. A.: Data visualization: the end
of the rainbow. IEEE spectrum 35, 12 (1998), 52–59. 2

[RTL∗16] ROBERTS R. C., TONG C., LARAMEE R. S., SMITH G. A.,
BROOKES P., D’CRUZE T.: Interactive analytical treemaps for vi-
sualisation of call centre data. In Proceedings of the Conference
on Smart Tools and Applications in Computer Graphics (Goslar Ger-
many, Germany, 2016), STAG ’16, Eurographics Association, pp. 109–
117. URL: https://doi.org/10.2312/stag.20161370,
doi:10.2312/stag.20161370. 1

[SMS07] SILVA S., MADEIRA J., SANTOS B. S.: There is more to color
scales than meets the eye: a review on the use of color in visualization.
In Information Visualization, 2007. IV’07. 11th International Conference
(2007), IEEE, pp. 943–950. 2

[SSM11] SILVA S., SANTOS B. S., MADEIRA J.: Using color in visual-
ization: A survey. Computers & Graphics 35, 2 (2011), 320–333. 2

[Ste46] STEVENS S. S.: On the theory of scales of measurement.
Science 103, 2684 (1946), 677–680. URL: http://science.
sciencemag.org/content/103/2684/677, arXiv:http:
//science.sciencemag.org/content/103/2684/677.
full.pdf, doi:10.1126/science.103.2684.677. 3

[Tel14] TELEA A. C.: Data visualization: principles and practice. CRC
Press, 2014. 2

[Tob73] TOBLER W. R.: Choropleth maps without class intervals? Geo-
graphical analysis 5, 3 (1973), 262–265. 2

[War88] WARE C.: Color sequences for univariate maps: Theory, exper-
iments and principles. IEEE Computer Graphics and Applications 8, 5
(1988), 41–49. 2

[WGM∗08] WANG L., GIESEN J., MCDONNELL K. T., ZOLLIKER P.,
MUELLER K.: Color design for illustrative visualization. IEEE Transac-
tions on Visualization and Computer Graphics 14, 6 (2008), 1739–1754.
2

[ZH16] ZHOU L., HANSEN C. D.: A survey of colormaps in visualiza-
tion. IEEE transactions on visualization and computer graphics 22, 8
(2016), 2051–2069. 1, 2

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

http://dx.doi.org/10.1007/978-3-642-10520-3_9
http://dx.doi.org/10.1007/978-3-642-10520-3_9
http://doi.acm.org/10.1145/2702123.2702608
http://doi.acm.org/10.1145/2702123.2702608
http://dx.doi.org/10.1145/2702123.2702608
http://dx.doi.org/10.1145/2702123.2702608
http://dx.doi.org/10.1109/TVCG.2018.2808969
http://dx.doi.org/10.1109/TVCG.2018.2808969
https://doi.org/10.2312/stag.20161370
http://dx.doi.org/10.2312/stag.20161370
http://science.sciencemag.org/content/103/2684/677
http://science.sciencemag.org/content/103/2684/677
http://arxiv.org/abs/http://science.sciencemag.org/content/103/2684/677.full.pdf
http://arxiv.org/abs/http://science.sciencemag.org/content/103/2684/677.full.pdf
http://arxiv.org/abs/http://science.sciencemag.org/content/103/2684/677.full.pdf
http://dx.doi.org/10.1126/science.103.2684.677

