Demers Cartogram with Rivers

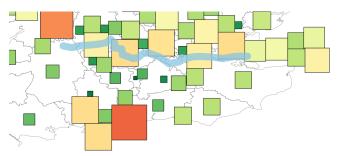
Journal Title
XX(X):1-17
©The Author(s) 0000
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Qiru Wang¹, Kai Xu¹ and Robert S. Laramee¹

Abstract

Cartograms serve as representations of geographical and abstract data, employing a value-by-area mapping technique. As a variant of the Dorling cartogram, the Demers cartogram utilizes squares instead of circles to represent regions. This alternative approach allows for a more intuitive comparison of regions, utilizing screen space more efficiently. However, a drawback of the Dorling cartogram and its variants lies in the potential displacement of regions from their original positions, ultimately compromising legibility, readability, and accuracy. To tackle this limitation, we propose a novel hybrid cartogram layout algorithm that incorporates topological elements, such as rivers, into Demers cartograms. The presence of rivers significantly impacts both the layout and visual appearance of the cartograms. Through a user study conducted on an Electronic Health Records (EHR) dataset, we evaluate the efficacy of the proposed hybrid layout algorithm. The obtained results illustrate that this approach successfully retains key aspects of the original cartogram while enhancing legibility, readability, and overall accuracy.


Keywords

Cartogram, Demers Cartogram, EHR Visualization, Visual Analytics

1 Introduction and Motivation

Cartograms are representations of geographical and abstract data based on a value-by-area mapping combining statistical and geographical information ^{10,18}. Various styles of cartograms have been proposed and implemented for applications such as urban planning ^{3,16}, natural hazard forecasting ^{30,31}, conservation and environmental planning ^{13,34}, political and social demographics ^{2,6}, and decision-making for public health ^{15,35}.

Among the four types of cartogram categorized in a survey by Nusrat and Kobourov ²⁵ (See Section 2 for definitions of contiguous, non-contiguous, rectangular, and Dorling), a trade-off is made between types of accuracy (See Table 2). For this project, we focus on non-contiguous cartograms like Demers cartograms because they facilitate statistical comparison between regions, they can make good use of screen space, and comparison of regions is useful when studying Electronic Health Records (EHR) data. Demers cartograms offer the advantage in cases where the data

Figure 1. The River Thames passing through a cartographic representation of the NHS CCGs in London and surrounding areas.

is not directly correlated to region sizes. In other words, Demers cartograms are useful when a data dimension is not describing the geography of the region it represents but is tied to something else, for example the health of its population. Also, the comparison of magnitudes becomes an area estimation task, which is effective for a numeric data encoding²¹. See Nickel et al.²⁴ for a more complete description of the advantages that Demers cartograms offer. One of the drawbacks of Demers cartograms is that they may become more difficult to read when a region becomes displaced from its geospatial origin through the node layout process. The layout of these more abstract shapes may simultaneously reduce the map's legibility and increase error. See Tong et al. 41 for a more detailed explanation. Building on Demers cartograms 17, we introduce and develop novel features, such as rivers, aiming to improve the readability and geographical accuracy without sacrificing statistical accuracy. Standard Demers cartograms are composed of square nodes that represent geographic enumeration units. As such, this can reduce their legibility. We implement a new hybrid cartographic layout algorithm that combines rivers with the placement of the nodes representing geographic enumeration units, in this case, a Clinical Commissioning Group (CCG). We hypothesize that introducing rivers improves the overall legibility of a cartogram. By *legibility* we mean readability and ability to interpret the cartogram. To assess this hypothesis, we designed an experimental setup where participants engaged in correspondence and location tasks as part of a user study. To reduce error and make efficient use of screen space, the algorithm also updates the

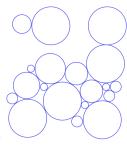
¹University of Nottingham, UK Email: qiru.wang1@nottingham.ac.uk

position of rivers to accommodate the node layout. We then apply the algorithm to a real-world case study using EHR data to evaluate the result. We present a user study that demonstrates its effectiveness.

Our contributions include:

- A new variant of Demers cartograms that incorporates rivers to improve readability and recognizability,
- A novel hybrid layout algorithm that combines node positions with features such as rivers,
- A user study evaluation of the technique with an application to EHRs.

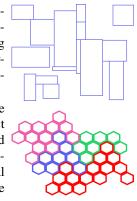
The results of the user study indicate that rivers can improve the legibility of cartograms. One of the major challenges involved is developing a layout algorithm that handles different shapes. In other words, the hybrid layout algorithm is novel because it handles different types of elements: square node representing regions and polylines representing rivers. Another challenge we overcome in developing the algorithm is to resolve stalemate situations where nodes become congested due to constraints imposed by rivers, while ensuring error minimization.


2 Related Work

This section introduces the characteristics of various cartogram styles, describes relevant applications of cartograms, and provides a brief overview of some real-world implementations of cartogram-based visualizations.

Definitions: While we focus on rectangular cartogram variants, we start with brief definitions of contiguous and non-contiguous cartograms: Contiguous cartograms preserve topology, maintain connectivity with their adjacent neighbors, but are also subject to distortion in shape. Noncontiguous cartograms sacrifice topological connectivity with neighbors to enable expansion or reduction in size while maintaining their polygonal shape ¹⁰.

Nusrat and Kobourov ²⁵ define and summarize three major accuracy dimensions for cartograms: statistical, geographical, and topological. Each cartogram design may make various types of accuracy trade-offs between dimensions. We provide a comparison of these trade-offs as introduced by Nusrat and Kobourov ²⁵ in Table 2. In addition, we include the Demers as it is the focus of our work.


Dorling cartograms, as a variant of non-contiguous cartograms, generally do not preserve geography and topology. A Dorling cartogram is statistically accurate, regions are represented by circles and the data dimensions of interest are represented by the circle area ¹¹. In a Demers cartogram, a variant of Dorling, squares are used instead to

capture a certain level of topology, as described by Cano et al. ⁷ in their related work section. Dorling cartograms are unable to maintain topological accuracy as circles are often repositioned to remove overlap. Here we focus on Demers cartograms as we use squares to depict regions. This style of cartogram offers the advantages that the comparisons between regions are intuitive and screen space utilization is more efficient. This is important in our use case scenario involving EHRs. Demers cartograms, where regions are represented by squares, often have the advantage of preserving a higher level of topology at the cost of geographical accuracy ¹⁷.

Rectangular cartograms are contiguous and do not preserve geographical accuracy ^{33,43}. Depending on the variant, a rectangular cartogram may trade-off between statistical and topological accuracy.

Mosaic cartograms usually use square or hexagonal tiles to depict regions, and are contiguous and sacrifice statistical accuracy to preserve some level of geographical accuracy. Some variants are able to preserve topological accuracy as well.

Peer-reviewed Applications: There has been a substantial amount of research done in this area, here we review some of the important work that has inspired our work. Warf and Winsberg 45 use a Dorling cartogram to represent religious diversity in the US. Sun and Li³⁸ depict 1996 US election data and 2005 Chinese population data using Dorling, Mosaic, and contiguous cartograms. Gao et al. 15 present a Dorling cartogram to illustrate COVID-19 infections in China. Tong et al. 41 use a Demers cartogram to visualize health-related data by CCG regions in England, the work introduces a novel technique to remove the overlap of squares based on topological features, aiming to improve both geographical and topological accuracy. Nusrat et al. 26 investigate the memorability of contiguous and Dorling cartograms using multiple data sets that include demographic, agriculture, and retail data in the US. See Table 1 for a list of literature that adopts cartograms for visualization with corresponding geographical regions and node counts.

Our work extends the algorithm described by Tong et al. ⁴¹ which incorporates a static topological feature into Demers cartograms. Our work enhances that of Tong et al. ⁴¹ in multiple ways. First, we introduce multiple features (rivers) into the layout, as opposed to a single river. Second, we make topological features dynamic and further improve

Literature	Cartogram Type(s)	Geographic Region(s)	Number of Nodes	Year
Warf and Winsberg 45	Dorling	US	3,142	2008
Sun and Li 38	Dorling, Mosaic, Neighbor-preserving	US, China	34 - 49	2010
Cruz 9	Dorling, Non-contiguous, Neighbor-preserving	Portugal	2,882	2017
Tong et al. 41	Demers	England	209	2018
Gao et al. 15	Dorling	China	34	2020
Nusrat et al. ²⁶	Contiguous, Dorling	US	49	2020
Nickel et al. ²⁴	Non-contiguous, Demers	US, Netherlands, World	49 - 342	2022

Table 1. Related work with non-contiguous cartogram-based visualizations. **Cartogram type** is the type of cartogram used. **Geographic region** is the geographic region depicted by the cartogram. **Number of nodes** is the number of nodes (representing geographic enumeration units) depicted in the cartogram.

legibility and geographical accuracy. By the term dynamic, we mean that the position of the rivers is updated as part of the layout algorithm. In previous work, the river is static and serves merely as a boundary. To illustrate this more clearly, we refer to the video demonstration published by Tong et al. 41. Because the behavior of the layout algorithm is dynamic, a video is more appropriate to convey the motivation of dynamic features of interest. We can observe the cartographic layout algorithm at 1:30 and 2:40 of the video by Tong et al. 41. During the update process, we can clearly observe nodes cross the River Thames as the size expands. As the size of all the nodes expands, some nodes are pushed south to make more use of screen space. If we want to make the most efficient use of screen space, we need to translate the River Thames further south during the layout process to prevent nodes from crossing it. This is one of the main motivations for introducing dynamic rivers. By introducing river translations, our implementation prevents nodes from crossing rivers, thereby improving screen space efficiency and cartogram legibility. For comparison, see our video demonstration (from 0:28 to 0:32 and from 1:49 to 1:56)*.

Third, we improve the algorithm to resolve stalemates. Finally, the way we evaluate the cartograms is also different. Tong et al. 41 count river crossings to evaluate error (a statistical metric). Here our focus is on readability, and thus we include a user study.

Cartograms in Media: Cartograms are an engaging visual representation and therefore they are a popular choice of representation in covering various topics by the media. The Washington Post uses cartograms to visualize the US overseas economic assistance, in arms sales (Mosaic)⁴, the 2016 US Election (contiguous)¹⁴, and the Brexit Referendum (Mosaic)³⁹. National Geographic uses

	Accuracy			
Cartogram Variant	Statistical	Geographical	Topological	Contiguity
Contiguous	Variable	Variable	Accurate	Yes
Non-contiguous	Accurate	Shape is accurate	Inaccurate	No
Rectangular	Variable	Shape is inaccurate	Variable	Yes
Dorling	Accurate	Inaccurate	Variable	No
Demers	Accurate	Inaccurate	Variable	No

Table 2. ■ Trade-off between dimensions. ■ Dimension sacrificed in order to improve ■ target dimension's accuracy.

Figure 2. A map of 135 CCGs in England as of 2020, obtained from the Open Geography Portalx²⁷ with EPSG:4326 (WGS84 - World Geodetic System) as the Coordinate Reference System (CRS).

contiguous and Mosaic cartograms to analyze the 2016 US Election results ²⁰, the same topic is also covered by the Financial Times with a Dorling cartogram ³⁷. Cruz ⁹ adapts a Dorling cartogram with both contiguous and noncontiguous cartograms to represent the gender pay gap in Portugal. Sandberg ³⁶ reports the 2018 US midterm Election with a Mosaic cartogram, the same approach is used to cover the 2020 US Election by the New York Times ⁴⁰ and Bloomberg ¹⁹.

One of the disadvantages of Dorling and Demers cartograms is legibility. The layout algorithms may displace regions far from their original position and make the maps more difficult to interpret. Nickel et al. ²⁴ present a method to compute stable Demers cartograms with multiple constraints to maintain adjacencies with no overlapping nodes.

In this paper, we introduce a new type of topological feature, a river, as a constraint to compute the final layout, with the aim of improving the interpretation, readability, and accuracy of this class of cartograms.

3 Data Description

Processing heterogeneous data can be challenging, especially when an EHR dataset is involved, because the data

^{*}Demonstration of our layout algorithm's implementation at https://youtu.be/PRNEF3J1hl0.

comes from multiple sources ⁴⁴. The first step is to obtain both geospatial boundaries and EHR data. The second step is to preprocess the EHR data to remove empty and erroneous values. The final step is to transform the data into a format that is suitable for cartograms. Geospatial boundaries, or shapefiles, were obtained from the sources described here.

Choropleth Shapefile: Clinical Commissioning Groups (CCGs) are the primary administrative and geographic unit of the National Health Service (NHS) in the UK²². The number of CCGs changes over time due to NHS reorganization. The most up-to-date shapefile is available from the Open Geography Portalx²⁷. We decided to use the CCG shapefile from 2020 at the time of writing, due to the absence of published public EHR data based on the latest CCG reorganizations that took place in 2021 and 2022.

River Shapefiles: We used OpenStreetMap²⁸ as our data source to obtain shapefiles for the River Thames, the Trent River, and the Great Ouse River in England. These rivers were chosen as they are well-known rivers, pass through regions with dense populations, and provide informative geographical and topological cues. Although including smaller rivers is technically feasible, it may not increase the legibility of the cartogram. This is an open question for future work.

We first obtain a relation ID by searching for a river, e.g. River Thames, on OpenStreetMap. The relation ID is used to construct a query (See Appendix B) which enables the user to download the entire river shapefile using Overpass Turbo²⁹.

After acquiring the shapefiles, we used QGIS ³² to manually adjust the projections and convert them into GeoJSON files. Finally, mapshaper ⁵ is used to merge and convert the GeoJSON files into a TopoJSON file ⁴². TopoJSON eliminates redundant coordinates in the data, improving the rendering speed of our implementation. See Table 3 on page 15 for the preprocessing result. We describe the one-time preprocessing steps in more detail in Appendix C.

EHR Data: We obtained the Clinical Commissioning Group Outcomes Indicator Set (CCG OIS) from NHS Digital ²³. See A for a detailed description of the datasets used. The OIS is a set of indicators that are used to measure the quality of care and the associated health outcomes in the NHS. Each CCG has a unique ONS code, which is used to link the CCG shapefile with the statistical data.

4 Demers Cartogram with Rivers

Algorithm 3 and Figure 3 provide an overview of the hybrid cartogram layout process that includes rivers.

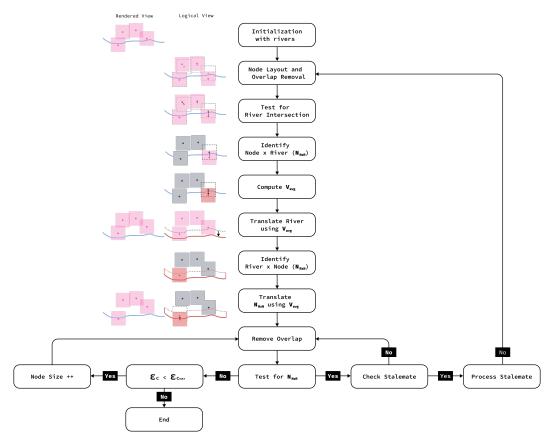
Initialization with Rivers: We first load and (optionally) render the CCG geospatial boundaries. For each CCG we compute the centroid and represent it using a square node, n, with the initial size, s=1 pixel. We then load the river shapefiles and render the rivers. Since the vertices of the river in the shapefiles are not in sequential order, we first render the starting vertex, followed by the next nearest vertex. We do not need the original river resolution to incorporate them into cartograms. We reduce their resolution to match that of the cartogram nodes in order to facilitate node-river intersection tests. This rendering approach enables us to adjust the river resolution as shown in Figure 4. We further

apply simplification by removing vertices that are too close to each other. The initialization procedure is a one-time process that can be saved for reuse.

Node Lavout and Overlap Removal: We first apply the Fast Node Overlap Removal (FNOR) algorithm that solves the Variable Placement with Separation Constraints (VPSC) problem 12 in order to remove overlap between square nodes. We chose FNOR over other node overlap removal algorithms because FNOR is capable of minimizing spread and node movement while maintaining a good level of global shape preservation⁸. Initialized with a pixel size of unity, we gradually increase the node size by one unit at a time to ensure smooth transitions. An increase in s can cause the nodes to overlap. During overlap removal, we compute node trajectories (See Algorithm 2) and translate nodes to their new position. Nodes that cross a river, denoted $n_{n_x r}$, are translated back to their previous position. If a node oscillates across a river, we identify this as a stalemate. One iteration of the layout ends when 1) no node overlap is present; AND 2) no nodes cross a river. We then increase s by one unit and repeat the algorithm until the average cartographic error, ϵ_c , a measure set by the user, reaches its maximum value $\epsilon_{C_{max}}$. The gradual size increase process provides stability to the layout, as can be seen in the accompanying video.

4.1 River Intersection Testing

The logic for translating the position of a node is detailed in Algorithm 2. When a node's position changes, we test if the node's trajectory intersects any segment of a river. See Algorithm 7. A bounding box intersection test between the edge defined by node translation and river edges can be performed to reduce the number of edge intersection tests required. Using the intersection test, we identify all nodes that cross the river as a result of the initial FNOR algorithm. We label these nodes, n_{n_T} .


4.2 Translating Rivers

For all nodes n_{n_xr} that cross a river, r, we compute an average vector v_{avg} used to translate r. Whenever a node, n, crosses a river, we store a vector $\overrightarrow{nn_t}$ that points in the direction of the translation. We then use a heuristic to translate r using the average vector of node intersection

$$oldsymbol{v}_{avg} = \sum_{i=1}^{\epsilon_t} rac{\overline{oldsymbol{n}_i oldsymbol{n}_{i_t}}}{\epsilon_t}$$

, where ϵ_t is the number of nodes intersecting the river. This step intends to create space for the next iteration of node translation without crossing a river. The detailed procedure for translating rivers is provided by Algorithm 4.

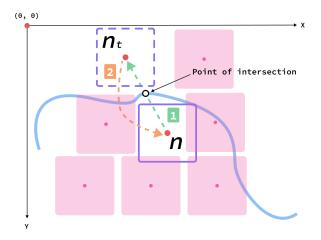
When a river, r, is translated by v_{avg} , this can trigger a scenario where nodes are crossed by a translated river, denoted n_{r_xn} . As a heuristic, we also translate these nodes by v_{avg} . The reasoning behind this is that v_{avg} indicates which direction the river needs to be translated to create space for the nodes that are too crowded together. In practice, v_{avg} is multiplied by a scaling factor v_{avg} . Thus, we can influence how far v_{avg} is translated in each iteration of the layout algorithm. We can use this to ensure smooth transitions between iterations.

Figure 3. An overview of our hybrid layout algorithm incorporating rivers. See also Algorithm 3 in Section 4 for more detail. See Figure 5 for the logic of processing a stalemate. For illustration purposes, we show the rendered views alongside the logical views representing the actual computation, and use the same size for all squares for clarity.

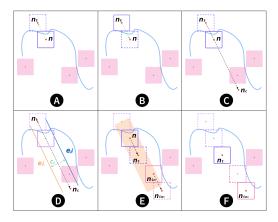
Figure 4. The resolution of rivers can be dynamically adjusted by the user. (A) shows River Thames at its original resolution with 10,170 edges. (B) shows the river at a reduced resolution of 49 edges. We further smooth the river by removing 19 vertices in dense areas, as shown in (C). The reduced resolution preserves the majority of River Thames' original shape and improves the performance of our river intersection tests.

4.3 Process Stalemates

As the FNOR always attempts to produce an optimal node layout where node distribution and translation are minimized, a node's translation path can repeatedly intersect a river due to congestion, creating a stalemate situation,


Figure 5. A flowchart illustration of stalemate processing. See Section 4.3, Figure 6, and Figure 7 for more detail. Refer to our video demonstration (from 1:27 to 1:46)[†] for details.

as shown in Figure 6. If a node is translated between two positions, n and n_t , for w iterations (a user-adjustable parameter), we introduce a heuristic solution: constructing a corridor to alleviate congestion. A corridor, c, is a rectangle with a width of c_w and a length of c_l , formed by deriving two edges $\overline{e_{p^1}}$ and $\overline{e_{p^2}}$ such that $\overline{e_{p^1}} \parallel \overline{e_{p^2}} \parallel \overline{n_t n_c}$ (See Figure 7C and D). All nodes enclosed by c are then translated by $\overline{n_t n}$ to alleviate the congestion (See Figure 7E). The procedure for constructing corridors is provided by Algorithm 6.


4.4 Terminating the Algorithm

The algorithm terminates when ϵ_c reaches $\epsilon_{c_{max}}$, the error tolerance set by the user. We adopt the maximum

[†]Demonstration for Demers Cartogram with Rivers at https://www.youtube.com/watch?v=DgCwCkyfGKk.

Figure 6. A stalemate: when a node's translation path $\overrightarrow{nn_t}$ (iteration 1) intersects a river w times. The node is translated back to its previous position (iteration 2). A stalemate can occur when the area is congested and the node cannot translate to a new position without intersecting a river.

Figure 7. A stalemate occurs when a node's translation path $\overrightarrow{nn_t}$ intersects a river for w times, as shown in (A). To address this, we derive a corridor (orange rectangle in (E)) based on n and n_t . All nodes within the corridor are translated based on \overrightarrow{ntn} , such that $\overrightarrow{nn_t} = \overrightarrow{n_{in}n_{in_t}}$. For clarity in the illustration, we place nodes sparsely in this figure.

cartographic error from Alam et al. 1, namely:

$$\epsilon_{c_{max}} = \max_{\boldsymbol{n} \in L} \frac{|\boldsymbol{n}_i - \boldsymbol{n}_{i_t}|}{\max\{\boldsymbol{n}_i, \boldsymbol{n}_{i_t}\}}$$

where n_i and n_{i_t} are the initial and translated regions in the cartogram, L represent the list of regions, and $\epsilon_{c_{max}}$ is a normalized value that we express as a percentage. For a detailed derivation of the formula, refer to the work by Alam et al. 1 . Because the algorithm processes node-river intersections, we can measure a novel kind of error, namely, topological error ϵ_t . We maintain $\epsilon_t=0$, however, we can count how many nodes would have crossed a river if we did not test for this and simply let nodes cross rivers. We express ϵ_t in the normalized range $\epsilon_t \in [0,1]$, where $\epsilon_{t_{max}}$ is the case where all nodes cross a river.

When the algorithm terminates, the node layout is considered optimal where no nodes have crossed or crossed a river (denoted $\epsilon_t = 0$ and $\epsilon_c < \epsilon_{c_{max}}$). Every node remains on the same side of the river as its centroid.

4.5 User Options

Figure 8 presents an overview of the application, including user options. The user can adjust the following parameters:

Rendering Visibility: The rendering visibility of various elements, including the choropleth shapefile, rivers, nodes, and node centroids, can be toggled on and off.

Node Mapping: Both size and color of the nodes can be mapped to different EHR attributes or set to uniform.

Overlap Removal Speed: The overlap removal process can be observed in a step-by-step manner, or the algorithm can be run automatically.

Maximum Cartographic Error: The user can adjust the maximum cartographic error, $\epsilon_{c_{max}}$, which is used to terminate the algorithm.

River Translation: The behavior of rivers during the process can also be adjusted by the user: 1) Enable river crossing: this option allows nodes to cross rivers. Nodes cannot cross rivers by default; 2) Disable river translation: this option disables the translation of rivers, rivers are translated by default. Both options are useful for generating different layouts and to observe the behavior of the hybrid layout algorithm.

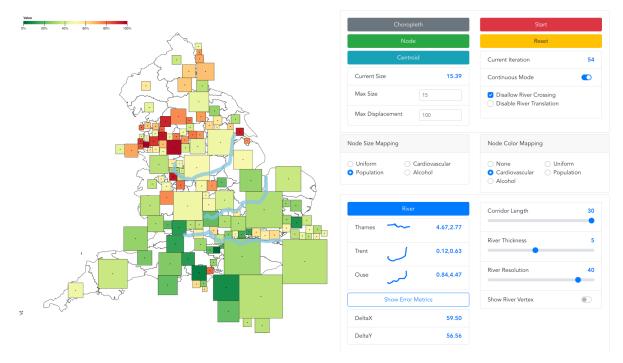
Corridor Length: The user can define the length of a corridor that is used to resolve stalemate situations. A longer corridor length allows more nodes to translate during a stalemate. The default corridor length is three times the max node size.

River Thickness and Resolution: Increasing the thickness of rivers may improve the recognizability of the cartogram. Similarly, increasing the resolution of rivers, at the expense of the speed of node-river intersection test, may produce a layout with higher legibility.

5 User-Centered Evaluation

We conduct a within-subject user study to evaluate the effectiveness of our approach. We chose this type of evaluation because legibility is a human-centred characteristic. Many different types of statistical error metrics have been evaluated in previous work ²⁵, however, our focus is more user-centric in nature.

5.1 Study Hypothesis


We formulate the following hypotheses to motivate our user study:

H1: The introduction of rivers can improve the legibility and recognizability of cartograms.

H1.1: The introduction of rivers can increase the accuracy of the target location.

H1.2: The introduction of rivers can reduce the time required to locate a target region in a cartogram.

We test these hypotheses using location-based tasks. Given a standard choropleth on the left side of the screen and the corresponding cartogram on the right side, we ask user study participants to locate the given region in the choropleth (on the left) in the cartogram (on the right). See Figure 9.

Figure 8. A screenshot of the user interface. User options are provided to adjust the terminating conditions (size and error), color mapping, and visibility of nodes and rivers. Other options include the ability to control the overlap removal behavior: rivers can be static or dynamic. See Section 4.5 for more on user options. In this figure, $\epsilon_{c_{max}} = 1.875\%$, and an ϵ_t of 9.63% is eliminated.

5.2 User Study Variables

In this section, we discuss the variables of our user study.

Independent Variables: The primary independent variable is the presence of rivers in the cartograms, which directly impacts the final layout of the cartogram. The identical set of rivers is either rendered or hidden collectively.

Dependent Variables: Accuracy: Given a CCG location in the choropleth on the left, we ask the participant to locate the corresponding node in the cartogram. Accuracy as the primary dependent variable is measured by the number of correct CCGs located and chosen by the participants. Response time: Another dependent variable is the time it takes the participants to complete each task.

Control Variables: Choice of color map: We use D3's built-in interpolateRdYlGn color map, a color scheme of red, yellow, and green, to depict the data in our cartograms. Communicating the target CCG to the user: We inform the participant about the target CCG they need to find. The target CCG is shown in the form of a nonstop blinking (between its original color and black) area on the screen, each blink is given a duration of 2 seconds.

5.3 User Study Design

In this section we describe the user study participants, datasets, and the experimental procedure. The study was approved by the University of Nottingham's Research Ethics Committee (Ref: 2021-2022-001).

Participants: We recruited 24 participants.

• Gender: 10 females and 14 males

• Age Group: 18-24 (16), 25-29 (8)

• Education: 1 PhD, 11 Master's, 8 Bachelor's, 4 Others

Figure 9. A sample location task for participants. The left shows the choropleth map, and the right shows the corresponding cartogram. Both images show the three longest rivers in England, with the size and color of nodes representing the prevalence of the selected disease. The target CCG blinks on the choropleth (shown in black), and participants are asked to identify this CCG on the cartogram. In this figure, $\epsilon_{c_{max}}$ = 1.875%, and an ϵ_t of 6.67% is eliminated.

Datasets: We used the following EHR datasets for our evaluation:

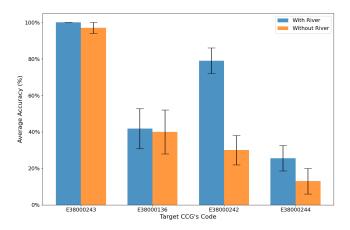
- Population
- Under 75 mortality from cardiovascular disease
- Emergency admissions for alcohol-related liver disease
- Alcohol-specific admission and readmission

135 CCGs are rendered on the screen as a choropleth on the left. We then generated another view on the right using cartograms. The color of both visual designs is mapped to a data dimension. No cartograms were used more than once per participant. See Figure 9 for an example.

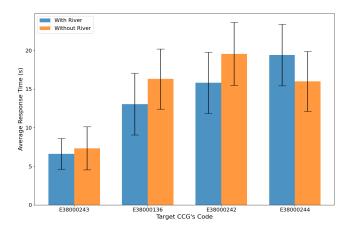
5.4 Procedure

Due to pandemic restrictions, we designed the user study to be carried out online. Participants are expected to use their retail hardware for the tasks. However, devices with small screens are not recommended because of the large size of the cartograms that are rendered. The within-subject user study includes four parts:

P1: The participants are asked to listen to instructions and training provided as both text and videos. The instructions are designed to help participants understand the concepts used in the tasks. Instructional videos are available at https://tinyurl.com/demerscartogram.


P2: The participants are given three practice tasks to familiarize themselves with the user study design. A sample task is shown in Figure 9, and accessible at https://ghr.wangqiru.com/#/P1 and included in the online materials[‡]. The practice tasks are identical to the actual tasks, accompanied by instructions provided before the actual tasks commence. The results from these practice tasks are not included in the final analysis. These tasks also serve as a quality test to see whether users are taking the study seriously. A demonstration of three sample tasks is also included in the instructional video.

P3: The participants are asked to complete 16 location tasks that involve 4 target CCGs. See the online materials for exact locations of target CCGs. Response and reaction time are recorded. These 4 CCGs are selected to avoid extreme cases (thus bias the result), in terms of size, color, and location.


P4: The participants are asked to complete a questionnaire that consists of 5-Point Likert Scale questions and openended questions.

5.5 User Study Results

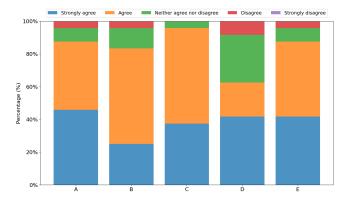
In this section, we delve into the analysis of the preliminary user study conducted. Our study involved the recruitment of 24 participants, each tasked with completing 16 location-related tasks. As a result, we collected a total of 384 responses. However, we excluded 24 responses from our analysis as they took over 60 seconds to complete. We hypothesize that these prolonged response times indicate

Figure 10. In the bar chart, the y-axis shows the average accuracy rate of locating CCGs with and without rivers for user study participants. The x-axis shows the four target CCGs, as described in Procedure P3.

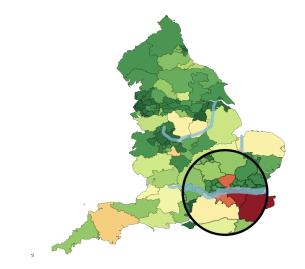
Figure 11. In the bar chart, the y-axis shows the average response time for locating CCGs with and without rivers for user study participants. The x-axis shows the four target CCGs, as described in Procedure P3.

potential distractions experienced by participants during the study.

Accuracy: Figure 10 shows the accuracy measured by the number of correct CCGs chosen by the participants. The chart shows that the introduction of rivers has improved the accuracy of two CCGs. The accuracy for the two groups differs significantly according to the two-sample unequal variance t-test performed, t(262.98) = 3.76, p = 0.0002. This supports our hypothesis H1.1 that the introduction of rivers increases target location accuracy.


Response Time: Figure 11 shows the average time to locate a CCG measured for four CCGs. The chart indicates that the introduction of rivers has slightly reduced the time needed to locate CCGs. The two groups show no statistically significant differences according to the two-sample unequal variance t-test performed, t(356.03) = 0.87, p = 0.38. However, the average time to locate a given CCG is reduced for 3 out of the 4 CCGs in the study.

Participant Feedback: Figure 12 shows the results of the following Likert Scale questions:


- (A) 87.5% of participants agree that including rivers is useful.
- (B) 83.3% of participants agree that rivers increase the legibility of a cartogram.
- (C) 95.8% of participants agree that including rivers makes cartograms easier to understand.
- (D) 62.5% of participants agree that including rivers makes CCGs easier to locate.
- (E) 87.5% of participants agree that including rivers adds value to the standard cartogram.

The qualitative results clearly support our hypothesis H1 that rivers generally increase the legibility of cartograms.

[‡]The materials for P1-P4 are available on the Open Science Foundation website at https://osf.io/q39w7 and https://github.com/thevisgroup/Demers-Cartogram-with-Rivers.

Figure 12. The stacked bar chart shows the user study participant responses of Likert Scale questions.

Figure 13. Due to color and relative location, we believe the CCGs in the black circle are easier to locate.

6 Limitations and Future Work

In this section, we discuss some limitations of our work and future research directions. Because this is a new concept, it opens the door for many future research directions.

Color map choice: The first limitation is the color map that we use to depict the data in our cartograms. We use D3's built-in interpolateRdYlGn color map, a diverging color scheme of red, yellow, and green. However, we believe that the choice of color map can have a significant impact on the legibility of cartograms. In the user study, we carefully avoid extreme values where the location or color of the CCG makes it easier to locate the target. See Figure 13 for an example. We plan to explore the impact of different color maps on the legibility of cartograms in future work.

Overlap removal algorithm choice: Another limitation is the algorithm (FNOR) we use. We believe that developing a new algorithm with built-in constraint support can significantly reduce the time required to generate cartograms with rivers. Currently, the runtime of our layout algorithm is approximately 30 milliseconds for each iteration. When the quantity of nodes and features increases, generating the optimal layout demands several hundred iterations.

Generalizability: Future work also includes generalizations and extensions of the algorithm, e.g., the use of other features in the cartogram layout such as additional rivers, major highways, lakes, and coastlines, etc. We also consider

whether increasing the length of the rivers as the size of the nodes increases would be a useful option. We would like to explore the case of river-river intersections (or confluence) and test out more geographies such as the U.S. and Europe, which have more complex rivers. We also considered the idea of deforming the rivers as part of the layout algorithm, however, this idea is open to future work.

Improved User Study: Due to pandemic restrictions, the user study did not take place in a controlled environment. In the future, we aim to execute a more controlled laboratory study, ensuring a controlled environment and standardized hardware for participants.

7 Conclusions

In this paper, we present a novel hybrid layout approach to generate non-contiguous cartograms with rivers. We first propose a new algorithm to generate cartograms with rivers, and then we present a prototype to support the exploration of cartograms with rivers. We evaluate our approach with a preliminary user study, and the results support our hypotheses: the introduction of rivers improves the legibility and recognizability of cartograms, although a deeper analysis is necessary to reach more confident conclusions. We also discuss the limitations of our work and future research directions.

8 Acknowledgments

This work is funded by the grant EP/S010238/2 from the Engineering and Physical Sciences Research Council (EPSRC). EPSRC is a British Research Council that provides government funding for grants to undertake research and postgraduate degrees in engineering and the physical sciences.

References

- Md. Jawaherul Alam, Stephen G. Kobourov, and Sankar Veeramoni. Quantitative Measures for Cartogram Generation Techniques. *Computer Graphics Forum*, 34(3):351–360, June 2015. ISSN 01677055. doi: 10.1111/cgf.12647.
- Iuliia Alieva. How American Media Framed 2016 Presidential Election Using Data Visualization: The Case Study of the New York Times and the Washington Post. *Journalism Practice*, pages 1–27, May 2021. ISSN 1751-2786, 1751-2794. doi: 10.1080/17512786.2021.1930573.
- Aldo Arranz-López, Julio A Soria-Lara, and Amor Ariza-Álvarez. An end-user evaluation to analyze the effectiveness of cartograms for mapping relative non-motorized accessibility. *Environment and Planning B: Urban Analytics and City Science*, 48(9):2880–2897, November 2021. ISSN 2399-8083, 2399-8091. doi: 10.1177/2399808321991541.
- Max Bearak and Lazaro Gamio. Everything you ever wanted to know about the U.S. foreign assistance budget. Washington Post, October 2016. URL https://www.washingtonpost.com/ graphics/world/which-countries-get-the-most-foreign-aid/.
- Matthew Bloch. Mapshaper, 2022. URL https://mapshaper. org/.
- Anthony Breitzman. Using Cartograms to Visualize Population Normalized Big-Data Sets. In 2018 IEEE International Conference on Big Data (Big Data), pages 3575–3580, Seattle,

WA, USA, December 2018. IEEE. ISBN 978-1-5386-5035-6. doi: 10.1109/BigData.2018.8622217.

- R. G. Cano, K. Buchin, T. Castermans, A. Pieterse, W. Sonke, and B. Speckmann. Mosaic Drawings and Cartograms. Computer Graphics Forum, 34(3):361–370, June 2015. ISSN 01677055. doi: 10.1111/cgf.12648.
- Fati Chen, Laurent Piccinini, Pascal Poncelet, and Arnaud Sallaberry. Node Overlap Removal Algorithms: An Extended Comparative Study. *Journal of Graph Algorithms and Applications*, 24(4):683–706, 2020. ISSN 1526-1719. doi: 10.7155/jgaa.00532.
- Pedro Cruz. Adapted dorling cartogram on wage inequality in Portugal. In 2017 IEEE VIS Arts Program (VISAP), pages 1–5, Phoenix, AZ, October 2017. IEEE. ISBN 978-1-5386-3490-5. doi: 10.1109/VISAP.2017.8282365.
- Borden D. Dent, Jeffrey Torguson, and T. W. Hodler. Cartography: Thematic Map Design. McGraw-Hill Higher Education, New York, 6th ed edition, 2009. ISBN 978-0-07-294382-5.
- Daniel Dorling. Area Cartograms: Their Use and Creation. In Martin Dodge, Rob Kitchin, and Chris Perkins, editors, The Map Reader, pages 252–260. John Wiley & Sons, Ltd, Chichester, UK, April 2011. ISBN 978-0-470-97958-7 978-0-470-74283-9. doi: 10.1002/9780470979587.ch33.
- Tim Dwyer, Kim Marriott, and Peter J. Stuckey. Fast Node Overlap Removal. In David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Dough Tygar, Moshe Y. Vardi, Gerhard Weikum, Patrick Healy, and Nikola S. Nikolov, editors, *Graph Drawing*, volume 3843, pages 153–164. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006. ISBN 978-3-540-31425-7 978-3-540-31667-1. doi: 10.1007/11618058_15.
- Marta Galluzzi, Duccio Rocchini, Roberto Canullo, Ronald E. McRoberts, and Gherardo Chirici. Mapping uncertainty of ICP-Forest biodiversity data: From standard treatment of diffusion to density-equalizing cartograms. *Ecological Informatics*, 48:281–289, November 2018. ISSN 15749541. doi: 10.1016/j.ecoinf.2018.06.005.
- Lazaro Gamio. Election maps are telling you big lies about small things. Washington Post, November 2016. URL https://www.washingtonpost.com/graphics/ politics/2016-election/how-election-maps-lie/.
- Peichao Gao, Hong Zhang, Zhiwei Wu, and Jicheng Wang. Visualising the expansion and spread of coronavirus disease 2019 by cartograms. *Environment and Planning A: Economy and Space*, 52(4):698–701, June 2020. ISSN 0308-518X, 1472-3409. doi: 10.1177/0308518X20910162.
- Richard Harris, Martin Charlton, and Chris Brunsdon. Mapping the changing residential geography of White British secondary school children in England using visually balanced cartograms and hexograms. *Journal of Maps*, 14(1):65–72, January 2018. ISSN 1744-5647. doi: 10.1080/17445647.2018. 1478753.
- Bortins Ian, Demers Steve, and Clarke Keith. Cartogram home,
 URL http://www.ncgia.ucsb.edu/projects/Cartogram_Central/index.html.
- Ryo Inoue. A New Construction Method for Circle Cartograms. Cartography and Geographic Information Science, 38(2):146–152, January 2011. ISSN 1523-0406,

- 1545-0465. doi: 10.1559/15230406382146.
- Allison McCartney, Brittany Harris, Mira Rojanasakul, Julian Burgess, Paul Murray, Alyssa Vann, Demetrios Pogkas, Brad Benhamou, Aaron Kessler, and Alex Tribou. 2020 Presidential Election Results: Live Updates. *Bloomberg*, 2020. URL https: //www.bloomberg.com/graphics/2020-us-election-results.
- Greg Miller. Election Maps Can Be Misleading—Here's a Solution. National Geographic, October 2016. URL https://www.nationalgeographic.com/culture/article/ improved-election-map-cartograms.
- Tamara Munzner. Visualization Analysis and Design. A K Peters/CRC Press, 0 edition, December 2014. ISBN 978-0-429-08890-2. doi: 10.1201/b17511.
- NHS. NHS Clinical commissioning groups (CCGs),
 URL https://www.england.nhs.uk/commissioning/who-commissions-nhs-services/.
- NHS Digital. Clinical Commissioning Group Outcomes Indicator Set (CCG OIS), 2022. URL https://digital.nhs.uk/data-and-information/publications/ statistical/ccg-outcomes-indicator-set.
- Soeren Nickel, Max Sondag, Wouter Meulemans, Stephen G. Kobourov, Jaakko Peltonen, and Martin Nollenburg. Multicriteria Optimization for Dynamic Demers Cartograms. *IEEE Transactions on Visualization and Computer Graphics*, pages 1–1, 2022. ISSN 1077-2626, 1941-0506, 2160-9306. doi: 10.1109/TVCG.2022.3151227.
- 25. Sabrina Nusrat and Stephen Kobourov. The State of the Art in Cartograms. *Computer Graphics Forum*, 35(3):619–642, June 2016. ISSN 01677055. doi: 10.1111/cgf.12932.
- Sabrina Nusrat, Jawaherul Alam, and Stephen Kobourov. Recognition and Recall of Geographic Data In Cartograms. In *Proceedings of the International Conference on Advanced Visual Interfaces*, pages 1–9, Salerno Italy, September 2020. ACM. ISBN 978-1-4503-7535-1. doi: 10.1145/3399715. 3399873.
- Open Geography portalx. Open Geography portalx,
 URL https://geoportal.statistics.gov.uk/datasets/d6acd30ad71f4e14b4de808e58d9bc4c.
- OpenStreetMap. Relation: Thames (2263653), 2022. URL https://www.openstreetmap.org/relation/2263653.
- Overpass Turbo. Overpass turbo, 2022. URL https:// overpass-turbo.eu/.
- Florian Pappenberger, Hannah L. Cloke, and Calum A. Baugh. Cartograms for Use in Forecasting Weather-Driven Natural Hazards. *The Cartographic Journal*, 56(2):134–145, April 2019. ISSN 0008-7041, 1743-2774. doi: 10.1080/00087041. 2018.1534358.
- 31. Seula Park, Gunhak Lee, and Jung Ok Kim. Flood Evacuation Mapping Using a Time–Distance cartogram. *ISPRS International Journal of Geo-Information*, 9(4):207, March 2020. ISSN 2220-9964. doi: 10.3390/ijgi9040207.
- 32. QGIS. Welcome to the QGIS project!, 2022. URL https://qgis.org/en/site/.
- 33. Erwin Raisz. The Rectangular Statistical Cartogram. *Geographical Review*, 24(2):292, April 1934. ISSN 00167428. doi: 10.2307/208794.
- Duccio Rocchini, Matteo Marcantonio, George Arhonditsis, Alessandro Lo Cacciato, Heidi C. Hauffe, and Kate S. He. Cartogramming uncertainty in species distribution models: A Bayesian approach. *Ecological Complexity*, 38:146–155, April 2019. ISSN 1476945X. doi: 10.1016/j.ecocom.2019.04.002.

- Daniel E. Sack, Stephen J. Gange, Keri N. Althoff, April C. Pettit, Asghar N. Kheshti, Imani S. Ransby, Jeff J. Nelson, Megan M. Turner, Timothy R. Sterling, and Peter F. Rebeiro. Visualizing the geography of HIV observational cohorts with density-adjusted cartograms. *JAIDS Journal of Acquired Immune Deficiency Syndromes*, Publish Ahead of Print, December 2021. ISSN 1525-4135. doi: 10.1097/QAI. 00000000000002903.
- 36. Michael Sandberg. Cartogram: House Election Results: Democrats Take Control (The New York Times), November 2018. URL https://datavizblog.com/2018/11/14/ cartogram-house-election-results-democrats-take-control-the-new-york-times/.
- 37. Martin Stabe. The search for a better US election map. *Financial Times*, November 2016. URL https://www.ft.com/content/3685bf9e-a4cc-11e6-8b69-02899e8bd9d1.
- 38. Hui Sun and Zhilin Li. Effectiveness of Cartogram for the Representation of Spatial Data. *The Cartographic Journal*, 47 (1):12–21, January 2010. ISSN 0008-7041, 1743-2774. doi: 10.1179/000870409X12525737905169.
- 39. Adam Taylor. What a real 'Brexit Britain' would look like. *Washington Post*, June 2016. URL https://www.washingtonpost.com/news/worldviews/wp/2016/06/29/what-a-real-brexit-britain-would-look-like/.
- 40. The Learning Network. What's Going On in This Graph? 2020 Presidential Election Maps. The New York Times, November 2020. ISSN 0362-4331. URL https://www.nytimes.com/2020/11/19/learning/whats-going-on-in-this-graph-2020-presidential-election-maps. html.
- 41. Chao Tong, Liam Mcnabb, and Robert S Laramee. Cartograms with Topological Features. In *Computer Graphics & Visual Computing*, 2018.
- 42. TopoJSON. The TopoJSON Format Specification, 2022. URL https://github.com/topojson/topojson-specification.
- 43. Marc van Kreveld and Bettina Speckmann. On Rectangular Cartograms. In David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Dough Tygar, Moshe Y. Vardi, Gerhard Weikum, Susanne Albers, and Tomasz Radzik, editors, *Algorithms − ESA 2004*, volume 3221, pages 724–735. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. ISBN 978-3-540-23025-0 978-3-540-30140-0. doi: 10.1007/978-3-540-30140-0_64.
- Q. Wang and R.S. Laramee. EHR STAR: The State-Of-the-Art in Interactive EHR Visualization. *Computer Graphics Forum*, page cgf.14424, December 2021. ISSN 0167-7055, 1467-8659. doi: 10.1111/cgf.14424.
- Barney Warf and Mort Winsberg. The Geography of Religious Diversity in the United States. *The Professional Geographer*, 60(3):413–424, August 2008. ISSN 0033-0124. doi: 10.1080/ 00330120802046786.

9 Appendix

A Dataset Description

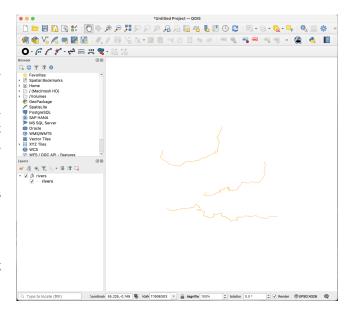
- Under 75 mortality: cardiovascular disease, respiratory disease, liver disease, and cancer
- Emergency hospital admission: stroke, alcoholspecific admission and readmission, coronary heart disease, re-admissions within 30 days of discharge, children with lower respiratory tract infections

For all datasets, a spreadsheet including the following is provided:

- Reporting period: Calendar year of registration
- Period of coverage: Start and end date or reporting period
- Breakdown: Organization type
- ONS code: UK Office for National Statistics CCG code
- Level: CCG Code
- Level description: CCG Name
- Gender
- Indicator value: Directly standardized mortality rate
- CI lower: lower 95% confidence interval
- CI upper: upper 95% confidence interval
- Denominator: The count of registered patients
- Numerator: Number of deaths

B Obtaining Shapefiles

```
relation(2263653);>>;
// River Great Ouse: 2798097
// River Trent: 2863468
out skel;
```


Listing 1: The query that downloads the shapefile of River Thames from OpenStreetMap via the Overpass Turbo API.

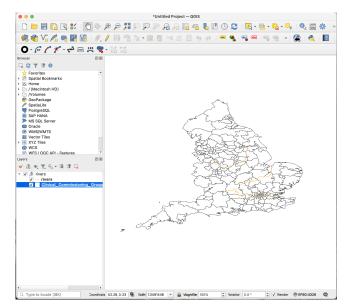
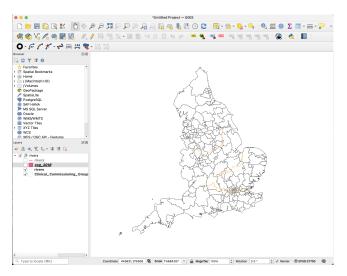
C Pre-processing Shapefiles

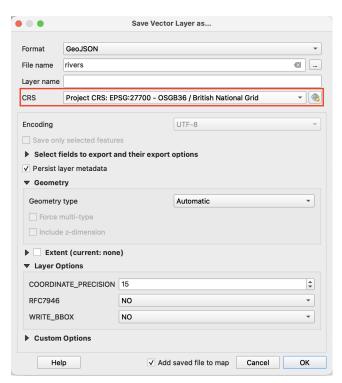
Shapefiles from different sources are likely to be incompatible. In our case, the NHS CCG shapefile is incompatible with the river shapefiles. The major reason for the incompatibility is the coordinate reference system (CRS). The CRS of the CCG shapefile is EPSG:27700 (OSGB36 - British National Grid). The CRS of the river shapefiles is EPSG:4326 (WGS84 - World Geodetic System). Here, we provide some pre-processing steps using QGIS (version: 3.26.0-Buenos Aires)³² to handle the incompatibility and reduce shapefile size to improve performance.

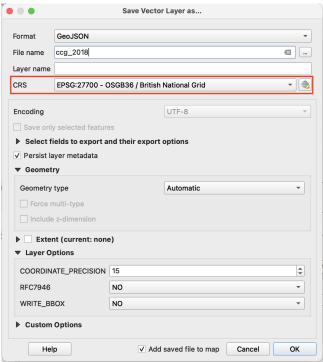
C.1 Import Shapefiles into QGIS

We first load all three river shapefiles into QGIS Figure 14, followed by the CCG shapefile Figure 15.

Figure 14. QGIS interface, with River Trent, River Great Ouse, and River Thames (from top to bottom) imported.


Figure 15. QGIS interface, with all NHS CCGs imported.


Figure 16. QGIS interface, showing the unified CRS (OSGB36) for both layers.

C.2 Export Shapefiles in GeoJSON and Unify the Coordinate Reference System (CRS)

We then use QGIS to unify the CRS, and export both layers in GeoJSON format. See Figure 17 and Figure 18. The unified layer is shown in Figure 16.

Figure 17. QGIS interface, exporting all rivers using the OSGB36 CRS in GeoJSON.

Figure 18. QGIS interface, exporting all NHS CCGs using the OSGB36 CRS in GeoJSON.

C.3 Merge Shapefiles and Reduce File Size

We then merge two layers into one layer, and export it in the TopoJSON format using Mapshaper⁵. Mapshaper also supports the simplification of GeoJSON shapefiles. See Figure 19.

Figure 19. Mapshaper interface, merging all rivers with NHS CCGs into one layer, and export the merged layer in TopoJSON.

C.4 Pre-processing Result

Table 3 shows the preprocessing result. The reduction in file size is significant and greatly reduces the initialization time of our implementation.

Shapefile	Original	GeoJSON	TopoJSON
Rivers	2.0 MB (GeoJSON)	1.4 MB	-
NHS CCGs	46.6 MB (.shp, Esri vector shapefile)	140.2 MB	-
Merged	-	-	16.3 MB

Table 3. The file size is reduced by 88.5% from the original

Procedure: DeriveParallelEdge

Algorithm 1 Procedure to derive an edge, $\overline{e_p}$, that is parallel to \overline{e} with a distance of d.

Input:

 $\overline{e} \leftarrow$ the edge used to derive the parallel edge $\overline{e_p}$ $d \leftarrow$ the shortest distance between \overline{e} and $\overline{e_p}$

An edge, $\overline{e_p}$, that is parallel to \overline{e} with a distance of d.

Local variables:

 $\Delta x, \Delta y \leftarrow$ the differences in x, y for $\overline{e}.start$ and $\overline{e}.end$ $scale \leftarrow \text{the scale of } \frac{d}{\sqrt{\Delta x^2 + \Delta y^2}}$

```
1: procedure DeriveParallelEdge(\overline{e}, d)
```

```
\Delta x \leftarrow \overline{e}.start.x - \overline{e}.end.x
2:
```

3:
$$\Delta y \leftarrow \overline{e}.start.y - \overline{e}.end.y$$

4: $scale \leftarrow \frac{d}{\sqrt{\Delta x^2 + \Delta y^2}}$

4:
$$scale \leftarrow \frac{a}{\sqrt{\Delta x^2 + \Delta y^2}}$$

5:
$$\overline{e_p}.start.x \leftarrow scale \cdot (-\Delta y) + \overline{e}.start.x$$

6:
$$\overline{e_p}.start.y \leftarrow scale \cdot \Delta x + \overline{e}.start.y$$

7:
$$\overline{e_p}.end.x \leftarrow scale \cdot (-\Delta y) + \overline{e}.end.x$$

return $\overline{e_p}$ 9:

10: end procedure

Procedure: TranslateNode

Algorithm 2 Procedure to translate node positions.

Input:

 $L \leftarrow$ a list of n representing regions

Output:

 $\epsilon_t \leftarrow$ the number of nodes crossing the river in the input

Global variables:

 $w \leftarrow$ the maximum number of iterations indicating a stalemate

Local variables:

```
n \leftarrow a node is an object with the following properties:
    n.x, n.y, \text{ or } n(x,y) \leftarrow \text{ the x and y coordinates of } n
    n.cross \leftarrow the number of times that n crosses a river
    n_p \leftarrow the previous position of n
    n_t \leftarrow the translated position of n
```

```
1: procedure TranslateNode(L)
 2:
         \epsilon_t \leftarrow 0
         for each n \in L do
 3:
 4:
             if n(x,y) \neq n_t(x,y) then
                  \boldsymbol{n}(x,y) \leftarrow \boldsymbol{n}_t(x,y)
 5:
                  if TestIntersection(\overline{nn_t}) = True then
 6:
                      n.cross + +
 7:
                      \epsilon_t + +
 8:
 9:
                      if n.cross < w then
                           10:
                           \boldsymbol{n}(x,y) \leftarrow \boldsymbol{n}_p(x,y)
11:
                      else
12:
                           PROCESSSTALEMATE(n, n_t)
13:
                           \boldsymbol{n}.cross \leftarrow 0
                                                    ▶ Reset counter
14:
                      end if
15:
                  end if
16:
             end if
17:
         end for
18:
19:
         return \epsilon_t
20: end procedure
```

 $[\]overline{e_p}.end.y \leftarrow scale \cdot \Delta x + \overline{e}.end.y$ 8:

F Procedure: UpdateLayout

Algorithm 3 Procedure to adjust river positions, remove node overlap and prevent nodes from crossing rivers. See Section 4.

Global variables:

 $L \leftarrow$ a list of n representing regions with the following properties:

 $L.cross \leftarrow$ the number of n in L that crosses a river

```
\begin{array}{l} s \leftarrow \text{the initial size of all nodes} \\ \epsilon_c \leftarrow \text{the average cartographic error of all nodes} \\ \epsilon_{c_{max}} \leftarrow \text{the maximum cartographic error of all nodes} \\ w \leftarrow \text{ the maximum number of iterations indicating a stalemate} \end{array}
```

Local variables:

```
m{n} \leftarrow a node is an object with the following properties: m{n}.x, m{n}.y, or m{n}(x,y) \leftarrow the x and y coordinates of m{n} m{n}.cross \leftarrow the number of times that m{n} crosses a river m{n}_p \leftarrow the previous position of m{n} m{n}_t \leftarrow the translated position of m{n}
```

```
1: procedure UPDATELAYOUT
        s \leftarrow 1
 2:
        while \epsilon_c < \epsilon_{c_{max}} do
 3:
            L.cross \leftarrow 1
                                      4:
 5:
            while L.cross > 0 do
                L.cross \leftarrow 0
 6:
                L \leftarrow \text{RemoveOverlap}(L)
 7:
                TranslateRiver(L)
 8:
                L.cross \leftarrow TranslateNode(L)
 9:
            end while
10:
            s++
11:
        end while
12:
13: end procedure
```

G Procedure: TranslateRiver

```
Algorithm 4 Procedure to translate rivers.
```

Input:

 $L \leftarrow$ a list of n representing regions

Local variables:

```
m{R} \leftarrow a list of m{r} representing river features m{n} \leftarrow a node is an object with the following properties: m{n}.x, m{n}.y, or m{n}(x,y) \leftarrow the x and y coordinates of m{n} m{n}_p \leftarrow the previous position of m{n} m{n}_t \leftarrow the translated position of m{n} m{\epsilon}_t \leftarrow the number of nodes intersecting m{r} 1: procedure TRANSLATERIVER(m{L})
```

```
2:
           for each r \in R do
                  \epsilon_t \leftarrow 0
 3:
                  \overrightarrow{v_r} \leftarrow (0,0)
                                               \triangleright Hold the sum of vectors \overrightarrow{nn_t}
 4:
 5:
                  for each n \in L do
 6:
                        if n(x,y) \neq n_t(x,y) then
                                      TestIntersection(\overline{nn_t}, r) =
      True then
                                    \overrightarrow{v_r} \leftarrow \overrightarrow{v_r} + \overrightarrow{nn_t}
 8:
 9:
                                    \epsilon_t + +
                              end if
10:
                        end if
11:
12:
                  Translate river r by the average vector \frac{\overrightarrow{v_r}}{\epsilon_1}
13.
           end for
14:
15: end procedure
```

H Procedure: DerivePoint

Algorithm 5 Procedure to derive a point based on an edge and a distance.

Input:

 $\overline{e} \leftarrow$ the edge used to derive the new point $d \leftarrow$ the distance between n_c and $\overline{e}.start$

Outnut

A point, n_c , that is distance d away from $\overline{e}.start$.

Local variables:

 $\Delta x, \Delta y \leftarrow$ the differences in x, y for $\overline{e}.start$ and $\overline{e}.end$

```
1: procedure DERIVEPOINT(\overline{e}, d)
2: \Delta x \leftarrow \overline{e}.start.x - \overline{e}.end.x
3: \Delta y \leftarrow \overline{e}.start.y - \overline{e}.end.y
4: n_c.x \leftarrow \frac{\Delta x}{\sqrt{\Delta x^2 + \Delta y^2}} \cdot d
5: n_c.y \leftarrow \frac{\Delta y}{\sqrt{\Delta x^2 + \Delta y^2}} \cdot d
6: return n_c
7: end procedure
```

I Procedure: ProcessStalemate

Algorithm 6 Procedure to derive a corridor to resolve stalemates. We use an SVG canvas, where the point of origin (0,0) is located at the top left corner, with the x-axis extending to the right and the y-axis extending downwards (See Figure 6).

Input:

 $n \leftarrow$ the node used to derive the corridor

Global variables:

```
c_l \leftarrow the length of a corridor c_w \leftarrow the width of a corridor
```

Local variables:

```
\begin{array}{l} c \leftarrow \text{the corridor} \\ \boldsymbol{n_c} \leftarrow \text{the point extending } \overrightarrow{\boldsymbol{n_t}\boldsymbol{n}} \text{ such that } |\boldsymbol{n_t}\boldsymbol{n_c}| = c_l \\ \overline{e_{p^1}}, \overline{e_{p^2}} \leftarrow \text{the edges parallel to } \overline{\boldsymbol{n_t}\boldsymbol{n_c}} \\ corridor \leftarrow \text{a rectangle formed by } \overline{e_{p^1}} \text{ and } \overline{e_{p^2}} \end{array}
```

```
1: procedure PROCESSSTALEMATE(n)
               \boldsymbol{n}(x,y) \leftarrow \boldsymbol{n}_p(x,y)
 2:
               n_c \leftarrow \text{DERIVEPOINT}(\overrightarrow{n_t n}, c_l)
 3:
               \overline{e_{p^1}} \leftarrow \mathsf{DERIVEPARALLELEDGE}(\overrightarrow{n_t n_c}, \frac{c_w}{2})
 4:
 5:
               \overline{e_{p^2}} \leftarrow \mathsf{DERIVEPARALLELEDGE}(\overrightarrow{n_t n_c}, -\frac{c_w}{2})
               c \leftarrow \begin{bmatrix} \overline{e_{p^1}}.start & \overline{e_{p^1}}.end \\ \overline{e_{p^2}}.start & \overline{e_{p^2}}.end \end{bmatrix}
 6:
               for each n_{in} inside c do
 7:
                       \overrightarrow{m{n}_{in} \ m{n}_{in_t}} = \overrightarrow{m{n}_t m{n}}
 8:
                       \boldsymbol{n}_{in}(x,y) \leftarrow \boldsymbol{n}_{in_t}(x,y)
 9.
               end for
10:
11: end procedure
```

J Procedure: TestIntersection

Algorithm 7 Procedure to test if a node's translation path, $\overline{nn_t}$ intersects a river.

Input:

```
\overline{m{n}m{n}_t} \leftarrow the node's translation path m{r} \leftarrow a river feature
```

Output:

Returns True if the node crosses a river.

Local variables:

```
b_{\overline{n}}, b_{\overline{e}} \leftarrow the bounding boxes for \overline{nn_t} and \overline{e} \overline{e} \leftarrow an edge of r
```

```
1: procedure TESTINTERSECTION(\overline{nn_t}, r)
2:
           for each \overline{e} \in r do
3:
                 b_{\overline{n}} \leftarrow \text{GetBoundingBox}(\overline{n}\overline{n_t})
                 b_{\overline{e}} \leftarrow \text{GetBoundingBox}(\overline{e})
4:
                 if b_{\overline{n}} intersect b_{\overline{e}} = True then
5:
                       return \overline{nn_t} intersect \overline{e}
6:
                 end if
 7:
8:
           end for
           return False
9:
10: end procedure
```