
R.S.Laramee@swansea.ac.uk 1

Bob's Concise Coding
Conventions

Robert S. Laramee
Visual and Interactive Computing Group

Computer Science Department
Swansea University, UK

r.s.laramee “at” swansea.ac.uk

 2

Introduction and Motivation

Writing a useful software application is difficult.

• For some, this may be first time
implementing larger, long-term project.

• Developing large software application
requires more knowledge than
implementing small one.

• Following guidelines, combined with
good practices, facilitates success

Bob's Concise Coding Conventions, Robert S. Laramee 3

Why Coding Conventions?

A Tool to Combat Problem Described By Bob's Theory of Software
Redevelopment

• Illegible code is default-quickly turns into legacy code

• In “reality” most software projects fail [Ellis 2008, Krigsman 2008]

• Basic philosophy behind conventions is to maximize legibility

• Legible software is better software

• Legible software contains fewer bugs, more stable

• Legible software is more flexible, encourages re-use

• Two other key ingredients: Software Design and Comment
Conventions

Bob's Concise Coding Conventions, Robert S. Laramee 4

Overview

Part 1: Bob's Concise Coding Conventions
• Influences
• General set of guidelines for C++
• Applicable to imperative, object-oriented languages
• Concise, fit on one page
• Background (and references) behind each rule provided

Part 2: Bob's Theory of Software Re-Development
• Motivation behind the conventions
• Describes a frequently occurring development cycle

 Conventions intend to combat problems

Bob's Concise Coding Conventions, Robert S. Laramee 5

Some Important Influences

• The Visualization Toolkit (VTK) Coding Conventions

• Java Coding Conventions from Sun Microsystems

• S. Meyers. More Effective C++, 35 New Ways to Improve Your
Programs and Design, Addison-Wesley, 1996 (336 pages)

• S. Meyers. Effective C++, 55 Specific Ways to Improve Your
Programs and Designs, Addison-Wesley, 2005 (320 pages)

• H. Sutter and A. Alexandrescu, C++ Coding Standards, 101
Rules, Guidelines, and Best Practices, Addison-Wesley, 2005 (220
pages)

• B. Stroustrup, The C++ Programming Language, Special Edition,
Addison-Wesley, 2000 (1018 pages)

• Personal industry development experience

Bob's Concise Coding Conventions, Robert S. Laramee 6

Rule 1: Method Length

1. Methods are 75 lines or less

• Method is visible on a single screen/page.

• Possible to see whole method from start to finish (without scrolling).

Exception(s): Methods with case tables (switch statements) and perhaps main
method.

Motivation

• The longer a method is, the less re-usable andmore difficult it is to modify.

• The longer a procedure is, more likely it is to contain bugs and more difficult
it is to debug.

• By confining method to one screen, it gives programmer (at least)

a chance to keep track of variables from beginning to end.

• Conformance to this rule facilitates code optimization with profiler [Meyers '96]

Bob's Concise Coding Conventions, Robert S. Laramee 7

Rule 2: Indentation

2. No methods shall use more than five levels of
indentation.

Exception(s): none

Motivation

Too many levels of indentation quickly renders code
illegible.

Bob's Concise Coding Conventions, Robert S. Laramee 8

Rule 3: Line Length

3. No line of code exceeds 80 characters.

It should not be necessary to expand code editor to entire screen width in order
to read single line of code.

Exception(s): none

Motivation

• Lines that are too long are less legible and more difficult to debug.

• The longer a line is, the more difficult it is for eyes to move from end of one line to
next.

• Good publishers use a guideline of approximately 66 characters per line of text (so 80
is generally too much) [Oetiker et al, 2008].

• Reason why most newspapers and magazines are multi-column

• Object-oriented programming requires multiple windows to be open simultaneously.

 Having one window open occupying entire screen makes the mechanics of
programmer’s job much more difficult [Sun Microsystems, 1999].

Bob's Concise Coding Conventions, Robert S. Laramee 9

Rule 4: Class Variable
Names
4. All class variables start with the two character
sequence “m_”

(as in “member” variable) e.g., m_ClassVariable.

Exception(s): symbolic constants. Symbolic constants are
written in ALL_CAPITALS.

Motivation

Class variables should be easily distinguishable from
local variables or other types of variables.

Bob's Concise Coding Conventions, Robert S. Laramee 10

Rule 5: Accessor Methods

5. All class variables are accessed with accessor methods,

i.e. Get() and Set() methods, e.g.,

GetClassVariable(), SetClassVariable(int newValue) .

Exceptions: none

Motivation

• Enforces encapsulation: extremely important concept in object-
oriented methodology. (Wirfs-Brock et al. '90)

• Accessing member variables with methods makes
implementation easy to change, e.g., a float to an int.

• Prevents unwieldy (or even impossible) search-and-replace
operations [VTK Coding Standards '09, Sun Microsystems '99].

Bob's Concise Coding Conventions, Robert S. Laramee 11

Rule 6: Accessor Methods

6. Accessor methods come at top of both header
files and implementation files.
Exception(s): none

Motivation
• Accessor methods are most common to use, as
such, it is most convenient when defined at the “top” of
the file or class definition.

Bob's Concise Coding Conventions, Robert S. Laramee 12

Rule 7: Class Variables

7. All member class variables are private.

Exception(s): symbolic constants

Motivation

• Keeping class variables private enforces encapsulation.

• Only the class itself should know about the specific
implementation details of its own data [Meyers 2005].

Bob's Concise Coding Conventions, Robert S. Laramee 13

Rule 8: Method Naming

8. Private methods begin with a lower-case letter.

Public methods begin with an upper-case letter.

Exception(s): none

Motivation

• It is very nice to tell whether method is private or public
simply by looking at it (without having to look it up) [Sun

Microsystems 1999].

• Even in presence of tools.

Bob's Concise Coding Conventions, Robert S. Laramee 14

Rule 9: Method Parameters

9. In general, methods do not require more than 5 parameters.

Exception(s): very rare

Motivation

• The more parameters a method takes, the less re-usable it is.

• Have different implementations of same method taking different (but
only a few)

parameters.

• Too many method parameters, say six or more, may indicate
problem(s) with software design.

• A long list of parameters may indicate that changes to design are
necessary, e.g., the introduction of a new class(es) or re-
arrangement of existing classes [Sun Microsystems 1999].

Bob's Concise Coding Conventions, Robert S. Laramee 15

Rule 10: Symbolic Constants

10. Do not use numbers in your code, but rather symbolic
constants.

Exception(s): 0 and 1.

Motivation

• One 6 may not be same as another 6. [Sutter and Alexandrescu 2005]

• Using symbolic constants instead of typing numbers makes code much more
legible.

• Even original author eventually forgets what number is.

• Values of symbolic constants are easy to change.

• Changing values of numbers directly in the code causes bugs, especially
when the number appears in multiple places [Sun Microsystems 1999].

• Horstmann articulates rule as “Do Not Use Magic Numbers” [Horstmann 2003].

Bob's Concise Coding Conventions, Robert S. Laramee 16

Rule 10: Symbolic Constants
Example with Magic Numbers
void RSL_OglTexture::CopyImageData(FXuchar* textureData) {

 bool debug = false;
 int currentRow, currentCol, textureOffset, dataOffset;
 int lengthOfOneRow = this->GetWidth();
 int heightOfOneColumn = this->GetHeight();

 if (debug) {
 cerr << "RSL_OglTexture::CopyImageData() name: " << this->GetName() << endl;
 cerr << " width: " << this->GetWidth() << ", height: " << this->GetHeight() << endl;
 }
 for (currentRow = 0; currentRow < heightOfOneColumn; currentRow++) {
 for (currentCol = 0; currentCol < lengthOfOneRow; currentCol++) {

 textureOffset = currentRow * lengthOfOneRow * 4 + currentCol * 4;

 dataOffset = currentRow * lengthOfOneRow * 3 + currentCol *3;

 this->GetBufferDataPtr()[textureOffset + 0] = textureData[dataOffset + 0];
 this->GetBufferDataPtr()[textureOffset + 1] = textureData[dataOffset + 1];
 this->GetBufferDataPtr()[textureOffset + 2] = textureData[dataOffset + 2];
 this->GetBufferDataPtr()[textureOffset + 3] = 255;
 }
 }
 if (debug) cerr << "RSL_OglTexture::CopyImageData() END" << endl;

Bob's Concise Coding Conventions, Robert S. Laramee 17

Rule 10: Symbolic Constants
Example with Symbolic Constants
void RSL_OglTexture::CopyImageData(FXuchar* textureData) {

 bool debug = false;
 int currentRow, currentCol, textureOffset, dataOffset;
 int lengthOfOneRow = this->GetWidth();
 int heightOfOneColumn = this->GetHeight();

 if (debug) {
 cerr << "RSL_OglTexture::CopyImageData() name: " << this->GetName() << endl;
 cerr << " width: " << this->GetWidth() << ", height: " << this->GetHeight() << endl;
 }
 for (currentRow = 0; currentRow < heightOfOneColumn; currentRow++) {
 for (currentCol = 0; currentCol < lengthOfOneRow; currentCol++) {

 textureOffset = currentRow * lengthOfOneRow * NUM_RGBA_COMPONENTS +
 currentCol * NUM_RGBA_COMPONENTS;
 dataOffset = currentRow * lengthOfOneRow * NUM_RGB_COMPONENTS +
 currentCol * NUM_RGB_COMPONENTS;

 this->GetBufferDataPtr()[textureOffset + 0] = textureData[dataOffset + 0];
 this->GetBufferDataPtr()[textureOffset + 1] = textureData[dataOffset + 1];
 this->GetBufferDataPtr()[textureOffset + 2] = textureData[dataOffset + 2];
 this->GetBufferDataPtr()[textureOffset + 3] = MAX_ALPHA;
 }
 }
 if (debug) cerr << "RSL_OglTexture::CopyImageData() END" << endl;

Bob's Concise Coding Conventions, Robert S. Laramee 18

Bob's Theory of Software
Redevelopment

(left) The software development cycle presented in a typical
object-oriented software engineering course at university [Wirfs-

Brock et al. 1990],
(right) an often-used software development cycle.

Bob's Concise Coding Conventions, Robert S. Laramee 19

Bob's Theory of Software
Redevelopment: Stages 1-2

Stage 1-The Start

• Idea for a new product

• Idea is expressed verbally

• Pitched by an enthusiastic salesperson

Stage 2-The Implementation

• Starts immediately

• Core development carried out by 1-2 lead developers

• Lead developers work hard for v1.0 release in 1 year

Bob's Concise Coding Conventions, Robert S. Laramee 20

Bob's Theory of Software
Redevelopment: Stages 3-4

Stage 3-One Year Later v1.0

• Version 1.0 due, however, program has become large

• Implementation is more difficult than anticipated

• Large size is causing many problems: bugs, broken features, code
needs organization, not all features are in place

• Therefore, release date needs to be delayed.

Stage 4-Two Years Later, v1.0

• V1.0 is released two years after start (one year delay)

• Product must be released after so much delay

• Delivery is not quite the success as imagined originally

• Bugs will be fixed for next version + lots of new features

• Additional engineers are assigned to the project to give it a push

Bob's Concise Coding Conventions, Robert S. Laramee 21

Bob's Theory of Software
Redevelopment: Stages 5-6

Stage 5-Three Years Later, v2.0, and Decline

• Many bugs need to be fixed, software should stabilize, should be nice new features

• But engineers experience problems, code base grows rapidly, little coordination amongst
engineers, no software design, no coding conventions

• Software seems like a leaky barrel

• Engineers and mangers are frustrated.

Stage 6-The Departure

• Original lead engineers are frustrated: project is not success as anticipated

• Code base has grown out of control, introducing more bugs and problems

• Serious efforts invested have not brought anticipated reward

• Conflict between engineers and mangers: reward versus product delivery

• Original lead engineers quit.

Bob's Concise Coding Conventions, Robert S. Laramee 22

Bob's Theory of Software
Redevelopment: Stages 7-8

Stage 7-The Rescue Attempt

• No documentation

• Management will not let 3+ years of effort go to waste

• Replacement engineers, 2nd generation, are hired to save product

• 6 month grace period (for learning) follows

Stage 8-A Slow Death

• Bugs are fixed, but fixes and new features introduce new problems

• 2nd generation of engineers will eventually reach same conclusion as 1st

• Product cannot be rescued

• They either (1) quit-bringing in 3rd generation or (2) try starting a new project

GOTO Stage 1

Bob's Concise Coding Conventions, Robert S. Laramee 23

Summary and Conclusions

We have introduced Bob's Concise Coding Conventions

• General set of guidelines for imperative, object-oriented
languages

• Very easy to follow, concise, fit on 1 page
• Background (references) behind each rule provided

Bob's Theory of Software Re-Development

Motivation behind conventions

Describes a frequently occurring, failing, development
cycle

Conventions combat perpetual re-invention of wheel

The more legible code is, the better it is.

Bob's Concise Coding Conventions, Robert S. Laramee 24

Acknowledgements

Thanks to:

Tony McLoughlin and Ed Grundy of Swansea
University

Further recommended reading:

Robert S. Laramee, Bob's Concise Coding
Conventions (C3) , in Advances in Computer
Science and Engineering (ACSE), Vol. 4, No. 1,
February 2010, pages 23-36 (available online)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

