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ABSTRACT

Developing visualization applications is non-trivial and
poses special challenges. This is due to the fact that typi-
cal visualization software processes a large amount of data
resulting in large and sometimes very complex data struc-
tures. Traditional tools for debugging are of limited use be-
cause they de-couple the information they report from the
spatio-temporal domain in which unexpected problems oc-
cur. We present a set of guidelines targeted specifically at de-
bugging visualization software. The guidelines are inspired
by experience in developing applications in both industry
and research. Specific examples where the guidelines are ap-
plied are given throughout. In general, the key is to exploit
the strengths of computer graphics and visualization itself in
combination with some more well–known good practices.

Index Terms: I.3.6 [Computing Methodologies]: Com-
puter Graphics—Methodology and Techniques I.3.8 [Com-
puting Methodologies]: Computer Graphics—Applications

1 INTRODUCTION

An experienced software engineer knows that developing
visualization software can be very difficult. One of the
first challenges lies simply in the understanding of the algo-
rithm(s) itself. The implementation of visualization software
poses special challenges due to both algorithm complexity
and the large size of the data sets processed. Oftentimes, a
bug(s) will arise during the development of a visualization
algorithm. Finding and resolving an error in visualization
software can be especially difficult if the bug only appears
when large data sets are investigated or a large number of
iterations are involved in the computation.

Since visualization software usually involves a very large
number of loops, e.g., thousands, millions, or billions of
computations for gigabyte size data sets, then traditional
methods for finding bugs become much less useful. For ex-
ample, attempting to print out (and read) the state of mil-
lions of visualization primitives is not feasible. More ad-
vanced IDEs (Integrated Development Environment) offer
better support for debugging, such as setting break points
and reporting the state of user-specified variables at run time.
But again, these tools might not be very useful when of
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the order of processing iterations involved is in the thou-
sands, millions, or more. Programmers would like to see
precisely where and when in the space-time domain errors
occur–features that IDEs cannot offer.

We offer a set of general guidelines for resolving errors
during the development of visualization algorithms and soft-
ware. The guidelines are based on experience gained during
several years of implementing scientific (volume and flow)
visualization software as well as helping others resolve their
bugs. In general, the key to resolving bugs in visualization
software is to use the computer graphics and visualization
itself. In other words, the very value of visualization [22],
namely, the ability to summarize and convey large amounts
of information to the viewer quickly, is exploited to find and
fix problems that arise during the implementation of visu-
alization techniques. This is coupled with traditional good
development practices.

2 RELATED WORK

To our knowledge, no general guidelines exist for debugging
visualization software.

Wong et al. [25] present an interesting tool that uses vi-
sualization in order to debug mobile object-based distributed
programs. Laffra and Ashok describe a generic visual ap-
proach to debugging C++ programs which incorporates the
use of bar charts [6]. Guidelines on debugging vertex and
fragment shaders are given by Rost [20] (Chapter 8.3 of the
“Orange Book”).

Crossno and Angel [1] describe some debugging tools in-
corporated in their particle visualization system. Although
there are previous papers on the topic of algorithm visual-
ization and animation itself, this is the only previous work
we found directly on the subject of debugging visualization.
Crossno and Angel describe how they map different proper-
ties of dynamic particles to color. However, their description
is system specific and they do not provide general guidelines.
What they describe is covered here by Guideline 3.3: Clas-
sify and Color-map.

This manuscript, together with three others: (1) How to
Write a Visualization Research Paper [10, 11] (1) How to
Read a Visualization Research Paper [12] and (2) Bob’s Con-
cise Coding Conventions [8] form what we call, Bob’s PhD
in Visualization Starter Kit. They are intended to be useful
tools targeted at Phd students in visualization and the visual-
ization scientist in general.



Figure 1: An example from Guideline 3.1 Visualize Test and Comparisons:
Streamlines traced on an unstructured, adaptive resolution grid. Color is
mapped to velocity magnitude [19]. Image courtesy of Zhenmin Peng.

3 DEBUGGING VISUALIZATION SOFTWARE GUIDE-
LINES

Here we offer our general guidelines on searching, finding,
and resolving errors during the development of visualization
software.

3.1 Visualize Tests and Comparisons
The vast majority of visualization algorithms involve tests
and comparisons between two or more visualization prim-
itives. By visualization primitives, we mean the basic ele-
ments to which data is mapped, e.g., points, lines, polygons,
voxels, texels, tetrahedra, etc. A general technique for find-
ing errors in visualization software is to visualize a test or a
comparison made between two or more primitive objects at
run time. This often involves highlighting a given object, oa
(the current primitive) in one color whilst highlighting an-
other object, ob against which oa is compared (in an iterative
process). This strategy informs the developer of two things:
(1) if oa and ob are, in fact, the expected primitives to test
and compare and (2) if the test yields the correct result.

For example, we implemented a streamline tracing algo-
rithm on boundary meshes from CFD [3, 9] (as in Figure 1).
This type of algorithm poses challenges because the meshes
are unstructured and adaptive resolution. Streamline trac-
ing involves three basic computations: (1) point location,
(2) interpolation, and (3) integration, evaluated for each point
along the curve. The more difficult step is point location be-
cause the meshes are unstructured and streamlines can inter-
sect vertices in the mesh. During point location, it is useful
to track where a streamline exits one polygon and enters the
next. This involves a line segment intersection test.

The bug we encountered was that some of the streamlines

terminated too early, at what appeared to be random times.
So we implemented a debugging feature that highlighted
both (1) the newly computed (current) streamline segment,
sa, and (2) the triangle segment, sb against which sa was
tested for intersection. An efficient line segment intersec-
tion test will first test if the line segments are parallel to one
another (in which case they do not intersect) [18]. As soon
as we added our highlighting feature it became clear that our
test for parallelism was not stringent enough. In other words,
when sa and sb were very close to parallel but not quite, some
streamlines terminated too early (since no intersection was
found).

3.2 Visualize Data Structure Traversal and Evolu-
tion

Almost all visualization techniques use at least one data
structure in their implementation. One guideline we recom-
mend when debugging visualization software is to visualize
both the (1) traversal of and (2) evolution of the data struc-
ture as it evolves over time, in other words, as it’s being built.
Visualization of traversal should also include identifying and
showing neighbors, either implicit or explicit.

Figure 2: An example of Guideline 3.2 Visualizing data structure traversal and
evolution: The current cluster (middle of image) is highlighted bright green
while current neighbors are highlighted in a shade of red. Previously processed
clusters are also shown. Image courtesy of Zhenmin Peng.

For example, we implemented a vector field clustering al-
gorithm which builds a binary-tree hierarchy from the bot-
tom up. Each leaf of the tree represents a cluster, which at
the finest resolution maps to a single pixel in image space. In
order to debug the algorithm, we added a feature that visu-
alizes the clustering algorithm as it evolves at run time. The
visualization highlights: (1) the current cluster, ca (2) the
northern, southern, east, and west neighbors of ca, (3) the
neighbor chosen to merge with ca and (4) the previous clus-
ters formed. A snapshot is shown in Figure 2. This is very
informative in terms of verifying that the algorithm behaves
as expected, e.g., the data structure is traversed in the correct
order, neighbors are located and compared properly, and new
clusters form as expected.

Another example in Figure 3 visualizes the quadtree used
to store adaptive resolution data from a height field together
with a coastal land map.



Figure 3: Another example of Guideline 3.2 Visualizing data structure traversal
and evolution: This image shows the quadtree and coastline used to store
adaptive resolution height map data. Image courtesy of Edward Grundy.

3.3 Classify and Color Map

Classify and color map the visualization primitives in your
visualization. Data objects fall into different categories and
have different values and attributes. Their characteristics can
be color mapped and provide useful debugging information.

For example, we used this strategy while implementing an
integral surface construction algorithm [14] (Figure 4). The
surfaces are composed of dynamic quad meshes. During
surface construction, quads can split due to divergent flow,
merge in convergent flow, and warp in shear flow. Thus one
option we implemented was to color code the quads accord-
ing to divergence, convergence, and shear. This proved not
only to be a useful debugging tool, but also a nice visualiza-
tion of surface characteristics.

Another example, given in detail by Crossno and An-
gel [1], describes debugging strategies for a particle visu-
alization system. Their debugging options include mapping
particle color to: (1) energy level, (2) type, (3) amount of
repulsion, (4) number of neighboring links, and (5) age.

Figure 4: An example of Guideline 3.3 Classify and Color Map: Each quad in
the stream surface mesh is classified and color-mapped to reflect the charac-
teristics of the flow field. This helps us to visualize the behavior of the individual
mesh elements. Image courtesy of Tony McLoughlin.

3.4 Incorporate Algorithm Parameters into User
Interface

Any new algorithm inevitably introduces new parameters,
e.g., threshold values, alpha values, special distances, mini-
mum and maximum values, etc. Identifying, discussing, and
visualizing these new parameters is an effective debugging
strategy. Not only that, illustrating the effect of setting these
parameters to a range of different values is instructive and
helps the reader gain an understanding of the algorithm or
method being presented. During any implementation, the
best value of any new parameter is generally unknown. Thus
it is best to implement them as user options since their value
may change depending on the data set being evaluated. After
a thorough testing phase, the new parameter may be given an
optimal default value.

Jobard et al. [5] introduce two new algorithm parame-
ters: (1) dsep–the separating distance between streamlines
and (2) dtest–the distance that determines when a streamline
is terminated. They’re both presented as user options. The
effects of each are illustrated.

See Jobard et al. [5, 4], and Van Wijk [23], for further good
example discussions of new algorithm parameters and their
effects.

3.5 Run Simple Error Checks

Don’t forget to run simple, sanity checks on your visualiza-
tion primitives and data structures. A simple, generic error
checking procedure, e.g., checkState(), can run through
your data objects and check for very basic properties, e.g.,
point locations, edge lengths, minimum, average, and maxi-
mum data values, and boundary conditions–testing to see if
all of an object’s attributes are within reasonable, expected
bounds. A general error checking function can then be in-
voked at any time through the visualization pipeline in an
effort to catch updates that cause unexpected changes.

For example, while working on an isosurfacing algo-
rithm for adaptive resolution data [13] we encountered a bug
that caused cracks in the surfaces. The algorithm uses an
adaptive resolution space-partitioning octree where internal
nodes store the minimum and maximum data values of their
children. The difficult aspect of this error was that it only oc-
curred at data resolutions of 1283 or greater (and not at 643 or
smaller). To track down the error, we implemented a simple,
generic, error-checking procedure that examined: (1) loca-
tions of triangle vertices–testing to see if they fell outside
of their associated cube and (2) the maximum and minimum
data values of each node in the octree to ensure that all child
values fell within this range. Values were re-computed and
compared to stored values. This function traversed the en-
tire octree and could be called at any time. By invoking the
function at every stage of our visualization algorithm, we
were able to quickly track down the procedures in our code
that were causing surface discontinuities.



Figure 5: An example from Guideline 3.5 Run Simple Error Checks: A shad-
ing bug appears around the edges of this surface. In this case, the bug was
caused by reversing the calls to glNormal() and glVertex(). Rendering
the surface normals makes this bug apparent immediately. Image courtesy of
Matthew Edmunds.

Another common example involves surface shading. We
have witnessed many programmers run into simple bugs in-
volving shading of polygons, e.g., Figure 5. A standard user-
option for fixing shading bugs is to render the normal vec-
tors of each polygon or surface vertex as a small glyph. The
glyphs depict the orientation of each normal vector at the
surface. We regularly resolve bugs with this approach.

3.6 Introduce a Step Function
Most visualization algorithms involve computation that iter-
ates several times, perhaps over each data item, and again
over each pass through the data or data structure. Incorpo-
rate a feature in the user-interface that lets you interrupt (or
pause) the execution in between each iteration of algorithm
processing. This lets the user pause the current scene and
look at it in more detail. Pressing the pause button again
then executes exactly one loop of the algorithm. With this
feature, the user may then step through program execution at
run time, one iteration (or loop) at a time.

For example, while developing a streaksurface algorithm
we introduced a step function that can stop program execu-
tion after each time-step. When the user hits the space bar,
the next time step of the simulation data is visualized and the
processing stops again. This lets us examine the properties
of the surface after each pass through the mesh data struc-
ture used to represent it. This helped us to quickly identify
operations on the mesh that reduced its quality.

3.7 Make Use of Still Image–Driven Animation
Some types of bugs occur infrequently, for example, only
after several time-steps of data have been processed and vi-
sualized. You may be watching an animation of your visual-
ization in action, for example, as a data structure is traversed
(as in Guideline 3.2) and notice a bug(s) only after several

seconds (or even minutes) of observation. The point in time
at which the error is recognized may arrive too late in or-
der to slow down or interrupt the algorithm, say, by invoking
the step function described in Guideline 3.6. Stopping the
process and starting all over is painful and time-consuming.

In this case, it is very useful to use a feature that saves
still images of the visualization each time the frame buffer
is updated. We recommend adding a user option to your
software or system that automatically: (1) re-sizes the
viewer to 5122 pixels (Old MPEG players can only han-
dle movie resolutions which are a power of two.) and
(2) saves each frame as a still image in JPEG (or PNG)
format. The still images are used as input to an appli-
cation which can play them back. We use Adobe Pre-
miere (http://www.adobe.com/products/premiere/) because
of its rich set of features. Adobe Premiere is ex-
pensive so there are free, alternatives such as Video-
Mach (http://www.gromada.com/videomach.html). How-
ever VideoMach is not so feature-rich. Most built-in file
browsers of modern operating systems also support scrolling
through still images.

The still images can then be re-played, paused, re-wound,
as needed in order to study when and under which cir-
cumstances the bug occurred. Uninteresting frames can be
skipped or deleted. Saving and replaying still images can
save a tremendous amount of time and be very valuable for
tracking down infrequent bugs or studying the behavior of
an algorithm. The images can be supplemented with use-
ful meta-data such as time step etc. that aid in locating and
reproducing the error. This approach is also very good for
showing the error to others.

We consider this a standard feature for visualization ap-
plications. It is also used to generate supplementary movie
material for research paper submissions. More on this topic
is discussed by Laramee [10].

3.8 Test Algorithms on a Variety of Data Sets
There are various approaches to consider when choosing test
data sets.

• When developing a visualization algorithm for the first
time, test it on simpler data sets you are very familiar
with. In this way, the developer knows what to expect.

• If possible, create your own data generator for small
synthetic data sets with known characteristics.

• Also, when debugging, find the smallest data set that
produces the problem. Test on larger, more complex,
and less familiar data sets after the visualization ex-
hibits the expected behavior on the smaller, more fa-
miliar ones.

• Test your visualization algorithm on a variety of data
sets.

Believing that a algorithm works after only having tested a
few small, simple data sets is a common mistake.



3.9 Exploit and Compare with Previous Literature

Chances are, you are not the first person to visualize a given
data set. Compare the visualizations you create with your
predecessors. This is a simple and obvious guideline, how-
ever, we witness colleagues overlook this strategy fairly reg-
ularly. Also, don’t hesitate to communicate with those who
have already worked with a given data set. Normally, col-
leagues will be happy to share their experiences and share
important information that was not published.

3.10 Make Exclusive Use of Accessor Methods

All class variables are accessed through accessor methods,
i.e. Get() and Set() methods, e.g., GetClassVariable(),
SetClassVariable(int newValue) . We advocate no
exceptions to this rule. The use of accessor methods en-
forces encapsulation. (See Wirfs-Brock et al. for more on
this topic [24].) Accessing member variables with methods
makes the implementation easy to change, e.g., a float to
an int. This methodology also prevents unwieldy (or even
impossible) search-and-replace operations [17].

Another advantage of using accessor methods concerns
object state. If class variable assignment is performed ex-
clusively through Set() methods, then you can ensure that
your objects are always in a valid state. This is due to the
fact that Set() methods perform error and bounds checking
on the parameters passed to the procedure. Following this
convention leads to very robust code.

3.11 Follow Coding Conventions

We claim that following coding conventions helps pave the
way to a successful software application. Why? Because
software that is very legible is better. It has fewer bugs, is
more stable, and makes developers happier. The other two
key ingredients are code comment conventions, e.g., Doxy-
gen (www.doxygen.org) and design [24]. The comment-
ing, design, and modification of design is facilitated by cod-
ing conventions.

Big projects require multiple, coordinated developers over
several years. And, applications should not generally be
started from scratch [7]. But yet, we in software devel-
opment start projects from scratch over and over again–
repeatedly re-inventing the wheel. One of the major prob-
lems stems from source code that does not follow any con-
ventions and is not very legible. As such it quickly turns
into legacy code. Writing illegible code is easy and is gen-
erally the default. We have encountered numerous instances
of programmers who cannot even read their own code.

We offer coding conventions [8] influenced by other cod-
ing standards and guidelines including the VTK [21], Sun
Microsystems [17], Meyers [15, 16] and Dickheiser [2].
They are meant to be concise so they can be printed out
and hung up for ease of use. The basic philosophy behind
the conventions is that code legibility should be maximized.
Code with maximum legibility leads to a minimum number

of bugs. Maximizing legibility helps maximize code re-use,
good design, and flexibility.

3.12 Describe the Problem to Others

If you run into an implementation error, be sure to de-
scribe the problem to someone else. Describe the problem
in enough detail such that the listener actually understands
what it is. Often, the speaker will realize the possible sources
of the problem as it’s being described. This is a phenomenon
that every programmer has experienced at one time or an-
other. It may be effective because it encourages the speaker
to describe the algorithm step-by-step to an audience. Break-
ing the process down into smaller steps may help identify
missteps.

4 CONCLUSION

Implementing a visualization system poses special chal-
lenges due to the large problem space a typical application
encounters. We offer a set of general guidelines for finding
and resolving errors while developing a visualization appli-
cation. The guidelines are based on experience with devel-
oping both research prototypes and commercial visualization
systems. The key to debugging visualization software is to
exploit the power of visualization and computer graphics it-
self in combination with well-known practices. We believe
the guidelines can be of use for novice and experienced vi-
sualization application developers alike.
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