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Abstract We propose a segmentation method for vector fields that employs the accumulated geometric and
physical attributes along integral curves to classify their behavior. In particular, we assign to a given spatio-
temporal position the attribute value associated with the integral curve initiated at that point. With this
attribute information, our segmentation strategy first performs a region classification. Then, connected
components are constructed from the derived classification to obtain an initial segmentation. After merging
and filtering small segments, we extract and refine the boundaries of the segments. Because points that are
correlated by the same integral curve have the same or similar attribute values, the proposed segmentation
method naturally generates segments whose boundaries are better aligned with the flow direction. Therefore,
additional processing is not required to generate other geometric descriptors within the segmented regions to
illustrate the flow behaviors. We apply our method to a number of synthetic and CFD simulation data sets
and compare their results with existing methods to demonstrate its effectiveness.

Keywords Vector field data � Integral curves � Flow visualization � Segmentation

1 Introduction

Vector field analysis is a ubiquitous tool employed to study a wide range of dynamical systems involved in
numerous applications, such as automobile and aircraft engineering, climate study, combustion dynamics,
earthquake engineering, and medicine, among others. As the size and complexity of generated vector filed
data sets increase continuously, many partition-based techniques have been developed to generate a reduced
representation for the description of the behavior of vector fields.

Existing techniques typically partition the flow domain based on either certain local flow characteristics,
such as vector magnitude and orientation, or its topological structure (Salzbrunn et al. 2008). Specifically,
segmentation techniques that are based on local flow information usually perform vector field clustering in a
hierarchical fashion, i.e., either top-down (Heckel et al. 1999) or bottom-up (Peng et al. 2012; Telea and
van Wijk 1999). Since this clustering is based on the local flow information, the segments and their
boundaries need not be aligned with the flow direction (see Fig. 7b for an example). Therefore, additional
computation is needed in order to generate other visual primitives, such as stream-lets or glyphs (Peng et al.
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2012), to convey information about the flow behavior within each segment. On the other hand, vector field
topology (Laramee et al. 2007; Pobitzer et al. 2011) reveals the essential flow structure and partitions the
flow domain into regions with homogeneous behaviors. However, it has yet to be applied to unsteady flow
and its visual representation in high dimensional space can be too complex to be useful to domain experts.

Integral curve attributes have been recently applied to cluster (Lu et al. 2013) and select (Yu et al. 2012)
integral curves to generate an overview of the vector fields. However, depending on the dissimilarity metric
used for integral curve comparison, some important features may be overlooked due to an inadequate spatial
sampling by the integral curves. To remedy this, very dense integral curves can be computed as input, which
will significantly increase the memory and storage requirements during computation. In the meantime,
integral surfaces may be better descriptors than integral curves for depicting important flow dynamics in
higher-dimensional spaces, although integral surface placement is a much harder problem than integral
curve placement (Edmunds et al. 2012).

In this paper, we introduce a segmentation framework based on integral curve attributes applicable to
both 2D and 3D vector fields. Our method combines the advantages of vector field clustering and integral
curve attribute approaches and attempts to achieve an intuitive and expressive segmentation of the flow
domain whose resulting segment boundaries are aligned with the flow. Our framework consists of two major
components (Fig. 1). First, we derive several attribute fields from the integral curve attributes. The attribute
field value, i.e., a scalar data, at each spatio-temporal position is set equal to the attribute value of the
integral curve that is seeded at this position. The attribute value of an integral curve is computed by
integrating local properties along the curve (Pobitzer et al. 2012; Shi et al. 2009). If the integral curve is
computed over a long time window, the attribute field will encode the global behaviors of the vector
field (Zhang et al. 2015).

Using the derived attribute fields, the vector field segmentation problem is converted into a scalar field
partitioning problem. In fact, a similar idea has been described in Kuhn et al. (2011). Compared to Kuhn
et al. (2011), where the goal was to generate implicit clusters produced by semantic dependencies, our
method generates a segmentation based on flow information only. With the aid of the derived attribute
fields, we first classify the sampled spatial positions according to their attribute values. Then, the connected
components of this classification are extracted to provide an initial segmentation. This initial segmentation
may contain some small segments due to the numerical error present in the attribute field computation. We
then perform dilation operations to remove those small segments. After filtering the initial segmentation, the
boundaries of the obtained segmented regions may still be non-smooth. To remedy this, we further smooth
these boundaries. Unlike the boundary refinement strategy applied in Li et al. (2006) our method does not
require computing many contours and comparing them to the coarse segmentation curves.

In summary, our contributions are as follows:

– We introduce an integral curve attribute based flow segmentation framework, which generates segments
that are better aligned with the flow direction than those produced by existing local methods. In addition,
our framework is flexible and efficient in that various attribute fields can be used to guide the
segmentation and help users investigate different flow behaviors.

– We present a complete pipeline for generating the initial segmentation and filtering for both 2D and 3D
vector fields. This includes a dilation operation for removing small segments and an effective boundary
refinement algorithm for removing noise at segment boundaries. Our framework is simple to implement
and computationally efficient. We demonstrate the effectiveness of the method by applying it to a
number of synthetic and CFD simulation data. In particular, we wish to point out that our segmentation

Fig. 1 The pipeline of our method
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approach can aid the visualization of high dimensional vector fields without explicitly placing stream
surfaces (see Figs. 11, 12).

The rest of the paper is structured as follows. Section 2 reviews the previous work related to the proposed
method. Section 3 briefly reviews the important concepts of vector fields and the attribute fields as well as
their computation. Section 4 describes the segmentation algorithm based on the integral curve attributes and
the refinement of the segment boundaries. The applications of the segmentation algorithm to a number of
steady and unsteady flows are reported in Sect. 5, followed by a discussion of the limitations of our work in
Sect. 6.

2 Related work

There is a large body of literature on the analysis and visualization of flow data. Interested readers are
encouraged to refer to recent surveys (Edmunds et al. 2012; Jiang et al. 2005; Laramee et al. 2007; Pobitzer
et al. 2011) that provide systematic classifications of various analysis and visualization techniques for vector
field data. In this section, we focus on the most relevant work on integral curve attributes and partition-based
flow visualization.

Vector field topological analysis Vector field topology provides a streamline classification strategy based
on the origin and destination of individual streamlines. Since its introduction to the visualization commu-
nity (Helman and Hesselink 1989), vector field topology has received extensive attention. A large body of
work has been introduced to identify different topological features, including fixed points (Polthier and
Preuß 2003; Tricoche et al. 2001) and periodic orbits (Chen et al. 2007; Theisel et al. 2004; Wischgoll and
Scheuermann 2001). Recently, Chen et al. (2008) studied the instability of trajectory-based vector field
topology and, for the first time, proposed Morse decomposition for vector field topology computation, which
leads to a more reliable interpretation of the resulting topological representation of the vector field.

The success of vector field topology for the analysis of steady vector fields has inspired efforts to extend
it to the analysis of unsteady vector fields. The most successful strategies are based on the Lyapunov
exponent. Specifically, Lagrangian coherent structures (LCS) were introduced to identify separation
structure in time-dependent flows, by computing the finite time Lyapunov exponent (FTLE) of the flow-
s (Haller 2001; Lekien et al. 2007; Shadden et al. 2005). Since its introduction, FTLE has been compared
with the separatrices for steady cases (Sadlo and Peikert 2007), and its computational efficiency has been
improved substantially (Garth et al. 2008).

Streamline and pathline attributes Sadarjoen and Post introduced the winding angle concept for
streamlines and utilized it to classify streamlines within vortical regions (Sadarjoen and Post 1999). Sal-
zbrunn et al. (2008) introduced streamline predicates, which classifies streamlines by interrogating them as
they pass through certain features, e.g., vortices (Salzbrunn and Scheuermann 2006). Later, this approach
was extended to the classification of pathlines. At the same time, Shi et al. (2009) presented a data
exploration system to study the different characteristics of pathlines based on their various attributes,
including winding angle. Recently, a statistics-based method was proposed to help select the proper set of
pathline attributes to improve the interactive flow analysis (Pobitzer et al. 2012). Different from the
approaches of the pathline predicate and clustering based on pathline attributes, our approach segments the
flow domain in regions where pathlines are located. There are other techniques for classifying streamlines
that are constrained to flow separation and vortex structures, such as the streamline bundling technique (Yu
et al. 2012). More recently, McLoughlin et al. (2013) introduced the idea of a streamline signature based on
a set of curve-based attributes including curvature and torsion. This streamline signature is used to compute
the similarity between streamlines and help domain experts place and filter streamlines to create an
informative and uncluttered visualizations of 3D flow.

Flow segmentation A top-down method and a bottom-up approach were proposed by Heckel et al.
(1999) and Telea and van Wijk (1999), respectively. An image-space, mesh-driven vector field clustering
algorithm was introduced by Peng et al. (2012). They provided a bottom-up approach to generate a hier-
archical clustering of vector fields defined on 2-manifolds. However, these hierarchical methods only
consider local flow behavior; therefore, global flow behavior may not be revealed. McKenzie et al. (2005)
implemented an error-driven approach for variational clustering. Li et al. (2006) proposed a 2D vector field
segmentation based on the Hodge decomposition and the normalized cut algorithm. The green function
method (GFM) was used to approximate the curl-free and the divergence-free components to segment the
vector field. Guan et al. (2014) introduced a feature-emphasized clustering method for 2D vector fields. A
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3D vector field clustering approach based on integral curvature was proposed by Kuhn et al. (2011). The
authors detected regions of similar geometric properties, such as integral curvature and visualized them by
means of compact cluster boundaries. More partition-based techniques for flow segmentation are described
in the survey by Salzbrunn et al. (2008).

3 Vector field background and trajectory attributes

Consider a d-manifold M � Rd(d ¼ 2; 3), a vector field can be expressed as an ordinary differential
equation (ODE) _x ¼ Vðx; tÞ or a map u : R�M ! Rd. There are a number of curve descriptors that reveal
different aspects of the translational property of vector fields. In this work, we focus on only streamlines and
pathlines derived from vector fields.

– A streamline is a solution to the initial value problem of the ODE system confined to a given time t0:
xt0ðtÞ ¼ p0 þ

R t

t0
VðxðgÞ; t0Þdg.

– Pathlines are the trajectories of massless particles released in the flow domain at a given time t0:
xðtÞ ¼ p0 þ

R t

t0
VðxðgÞ; gÞdg.

3.1 Attribute fields

Various attributes can be extracted for the analysis and classification of integral curves (Pobitzer et al. 2012;
Shi et al. 2009). Among these attributes, many can be obtained by accumulating local flow properties
measured at the integration points, such as the arc-length and the winding angle of an integral curve. We
adopt the Eulerian representation from texture-based methods and store the accumulated values at the
sampled spatial positions. The value at each sample position is determined by the integral curve initiated at
it. This Eulerian representation gives rise to a derived attribute field.

Considering an integral curve C that starts from a given spatio-temporal point ðx; t0Þ, the attribute field
value at this point is computed as (Zhang et al. 2015):

Fðx; t0Þ ¼ F CðxÞjt0þT
t0

� �
ð1Þ

where CðxÞjt0þT
t0

denotes an integral curve, i.e., either a streamline or a pathline initiated at x and computed
within an integral time window ½t0; t0 þ T�. Fð�Þ represents an attribute of interest of C.

The attribute fields that we use to segment the vector fields include: (1) rotation field U—the winding
angles of C; (2) non-straight velocity field nsV—an attribute field encoding the characteristics of
straightness of C; (3) arc-length field arc—the length of C; (4) curl and determinant field—the integration of
the curl magnitude and the determinant of Jacobian along C. Figure 2 shows a number of attribute fields in
2D and 3D. We refer the interested readers to Zhang et al. (2015) for more details about attribute fields and
their visualization.

In our implementation, we employ a regular sampling strategy to compute the attribute fields and the
subsequent segmentation. That is, for the 2D steady flow, we partition the flow domain into Nx � Ny cells,
and for 2D unsteady and 3D steady flows, we partition the domain into Nx � Ny � Nz cubes. Here, Nx;Ny;Nz

are the sampling resolutions along the X, Y, Z (or t for the unsteady flows) axes, respectively. From each
seed x (at the center of each cell or cube), an integral curve is computed using a 4th-order Runge-Kutta
integrator. A linear interpolation scheme is applied in both space and time during integration. In our
experiments, Nx, Ny and Nz match the resolution of the data set unless stated otherwise. Using the integral
curves, the attribute fields are computed and stored at each sampled spatial position. We illustrate the
storage of the 2D attribute fields in Fig. 3a, where each cell, whose center is a sample position, stores the
derived attribute field. The cells are labeled with the classification information discussed in Sect. 4.1.

4 Segmentation algorithm

Based on the attribute fields described in Sect. 3.1, we convert the flow segmentation problem into a scalar
field partitioning problem. Figure 3 illustrates the output segmented regions of the vector fields and their
boundaries. Our algorithm can be divided into two steps. As illustrated in Fig. 4, the first step is to extract
the segments from the region classification (top row of Fig. 4) based on the attribute field values. The second
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step is to extract and clean the boundaries of the segments (bottom row of Fig. 4). The details are described
in Sects. 4.1 and 4.2, respectively.

4.1 Segment extraction and cleaning

Given a specific attribute field (e.g., the rotation field U), our method consists of the following steps.
Region classification We first classify different flow regions based on their attribute field values. A

simple strategy is to evenly partition the data range of the attribute field, i.e., the ith bin (i 2 ½0;m� 1�)

Fig. 3 The illustration of the representation of attribute values and segments. a An input attribute field with labels of bin IDs.
b The segments based on the attribute field. c The boundaries of the segments

Fig. 2 The visualization of some attribute fields. a The rotation field U of a steady flow. b curl, determinant and nsv fields
(from top to bottom) of a 2D unsteady flow behind a square cylinder. c The arc-length field of a Tornado data. A blue-white-red
color coding is used for 2D attribute fields with blue for negative values and red for positive ones (a, b). Rainbow color coding
is used to render a 3D volumetric attribute fields with non-negative values (c)

Fig. 4 The pipeline of our segmentation algorithm
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corresponds to the range ½Umin þ ði� 1Þ Umax�Umin

m
;Umin þ i Umax�Umin

m
�. The data points are labeled as in the ith

cluster based on the attribute field value defined on it (e.g., Fig. 3a). However, this simple strategy may
result in initial region classification with largely different sizes, as shown in Fig. 5a. An alternative way to
generate m clusters is to equalize the size of bins. That is, the number of data points falling into each bin is
the same. This generally yields better initial partitioning (Fig. 5b). Without further specification, most 2D
segmentation results shown in this paper adopt the second initial partitioning strategy. For the 3D flow data
sets, we perform the region classification manually based on the data distribution histogram to avoid
generating very large bins (i.e., clusters with too many points). However, we do not enforce equal size
requirement in 3D. We provide the actual partitioning strategy via the legends aside the results of 3D data
sets.

Segment extraction After the preceding step each sample point is labeled with the ID of the corre-
sponding bin (i.e., cluster ID). Next, we extract the segments from these clusters. This can be achieved by
computing the connected components of those sample points based on their labeled IDs obtained in the
previous step. A standard breadth first search algorithm can be used to accomplish this task. The connected
components are identified using 4-connectivity in 2D and 6-connectivity in 3D, respectively. After iden-
tifying the connected components, the sampled points are re-labeled based on the index of the connected
components to which they belong. This provides us the initial segmentation of the domain. Figure 4b
illustrates the result of this step.

Segment cleaning via dilation Due to the numerical error in the attribute fields, the above initial
segmentation may contain small segments with only a small number of sampled points. These small
segments will increase the complexity of the segmentation and lead to visual distraction. Therefore, we need
to remove these small or noise segments.

In order to determine whether a small segment is noise or not, we introduce a noise segment threshold c,
which is a percentage of the size of the bins. A noise segment is a segment that satisfies both of the
following conditions: (1) Its size, i.e., the number of sample points in this segment, is smaller than the
product of c and the size of the bins in the initial clustering; (2) The attribute value in this segment is close to
that in its neighboring segments. In implementation, this can be identified by the differences in the corre-
sponding bin IDs. Figure 6a shows a number of noise segments highlighted by arrows. We apply the dilation
operation, which is one of the basic morphological operations in image processing (Gonzalez 2009), to
remove these segments. Specifically, we first convert the flow domain into a gray scale image. The intensity
of each sample point is determined by the size of the segment to which it belongs. That is, the larger the size
of the region, the larger the intensity of the sample. Then, the standard dilation operation is applied to this
gray scale image. After the dilation operation, the segment ID of each point in the noise segment is changed
to the ID of its neighboring segments with the largest size, i.e., with the largest number of sampled points.
We also extend the dilation to 3D to remove the noise segments in 3D vector fields. Here, we assume a 3D
uniform sampling strategy. Given a 3D noise segment, the spatio-temporal points in this segment are
relabeled with the ID of one of its six neighboring segments whose segment size is the largest. Figure 6b
illustrates the segmentation result after applying dilation to Fig. 6a, where the noise segments are removed.

Fig. 5 Region classification based on different methods. a Uniformly distributed on data range. b Equal-sizes bins. The
histograms show the data distribution with each method. The bin number m ¼ 5
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Note that when equal-size bin partitioning strategy is applied to generate the region classifications, the
above noise segmentation threshold is equivalent to using the data size (e.g., the diameter of the bounding box
of the data domain) multiplied by c. Nonetheless, we opt for the local strategy described above, as the initial
partitioning need not be equal size (e.g., in 3D cases). Using a global threshold to remove noise segments may
lose detailed information in those smaller segments (i.e., initial clusters that have less sample points).

4.2 Boundary extraction

After filtering noise segments, the boundaries of the remaining segments may not be smooth and aligned
with the flow direction. A similar issue has been reported by Li et al. (2006). They proposed a boundary
refinement method via contours computed from various derived scalar fields or streamlines from the original
discrete vector field. However, their method requires to compute a large number of contours or streamlines
and select an optimal one with additional computation. Based on the output of our segmentation algorithm,
we propose a boundary extraction algorithm that consists of two steps. In the following we first describe our
method to handle 2D segmentation, followed by a discussion of the processing of 3D cases.

Extracting initial segment boundaries In 2D cases, given the unique label for each sample point based on
the above segmentation, the well-known normal cut technique (Chen et al. 2003) can be applied to identify
the boundaries between segments. In practice, we estimate the boundary curves between segments using the
boundary points of one of the two neighboring segments. In order to smooth the boundary curve, we need to
connect these boundary pixels in the correct order.

To extract boundary curves, we first store the boundary points into an array. Starting from any point in
the array, we trace in two directions along which the boundary is constructed. The tracing is stopped when
the next point is on the boundary of the flow domain or when the point has two or more neighboring
segments. If the boundary point that already belongs to a segment is also next to other two segments, it
indicates that one boundary curve of the segment is generated. The four points highlighted in the circle in
Fig. 3a are the ends of several boundary curves (Fig. 3c). All the boundary curves of a segment have been
identified when all the points in the array are traced. However, since the boundary curves of each segment
are generated independently, two neighboring segments may share two boundary curves rather than one. So
we need to refine the initial segment boundaries.

Boundary refinement A Laplacian smoothing algorithm is applied to refine the boundaries. Each point x
on the two boundary curves is replaced with the average position of x and its adjacent boundary neighbors.
Thus two neighboring boundary curves can be merged into one. In addition, dilation only removes the noise
inside a segment, while there may be noise at or near the boundary of the segment, which is caused by the
initial clustering based on the simple range classification of the attribute fields. This can be adjusted
according to the flow direction. Figure 6c, d illustrate the extracted boundaries of Fig. 6b before c and after
b refinement, respectively. With this adjustment, the extracted boundaries are smoother as highlighted with
the red arrows.

For a 3D vector field, we utilize an iso-surface to estimate the boundaries of the 3D segments.
Specifically, we first re-assign the ID of a selected 3D segment as 1, and the rest as 0. Therefore, an iso-
surface of the value 0.99 would be a close estimation of the boundary of the segment. Some estimated
boundaries of the 3D segments are shown in Figs. 11 and 12. The Laplacian smoothing strategy for the
refinement of boundaries can be extended to 3D to smooth the extracted iso-surfaces that correspond to the
boundaries of different segments.

Fig. 6 The illustration of the effect of dilation operation and boundary refinement. a The segmentation before dilation
operation. b The segmentation after dilation operation. c The extracted boundaries of b without refinement. d The extracted
boundaries of b with refinement
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5 Results

We have applied our method to a number of synthetic and real-world vector field data sets, including steady
and unsteady flows for both 2D and 3D. With the pre-computed attribute fields, the speed of our seg-
mentation algorithm depends on the resolution of the spatio-temporal domain. It typically takes 2.5 s for a
2D steady vector field with 600� 600 resolution. For the 3D steady data sets considered, 4.25 seconds are
required to compute a segmentation. For the 3D unsteady ABC flow, it takes 14 min. All numerical
experiments are carried out on a PC with an Intel Core i7-3537U CPU and 8 GB RAM.

5.1 2D steady vector fields

Figures 1 (right), 7c and 8 (column a) show our segmentation results for a number of synthetic and real-
world 2Ds steady flows, respectively.

As a comparison, we compute the segmentation using the image-space vector field clustering technique
introduced by Peng et al. (2012). It adopts a bottom-up strategy and aggregates the two most similar clusters
each time until only one cluster is left. Figure 7b shows the result of the image-space clustering of a 2D
synthetic steady vector field with an error threshold of 0.081. However, only showing these segments cannot
provide insights into the flow behavior. In comparison, our result as shown in Fig. 7c generates segments
whose boundaries are better aligned with the flow. By looking at the segments or the boundaries of the
segments (Fig. 7d), one can easily understand the flow behavior. In order to quantify how well the
boundaries of the obtained segments are aligned with the input flow, one can adapt the work by Matvienko
and Kruger (2013), which is beyond the scope of this work. Additional comparisons can be found in the
supplemental document.

Effects of the number of bins m Figure 8a shows the effects of using different numbers of bins for the
initial region classification for the Atlantic Ocean data set, which is taken from the top layer of a 350-day 3D
simulation of global oceanic eddies for the year 2002 (Skraba et al. 2014). Each time step corresponds to 1
day. We select the first time step of the data set, i.e., slice #20106, to generate the 2D steady vector field. As
we can see, with a larger m, more details of the flow are revealed. For example, as highlighted in the dashed
area, there are more segments when m is larger and the flow direction, including the sharp turn in the flow, is
gradually revealed.

Fig. 7 Comparison between the bottom–up algorithm and our method with a synthetic flow. a The LIC of the flow; b The
segmentation result for the bottom–up algorithm based on the direction of the flow. c The segmentation result for our algorithm
based on the rotation field. d The boundaries of the segments in (c)
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Extracted boundaries v.s. seeded streamlines Figure 8b shows the extracted boundaries of the corre-
sponding segments shown in Fig. 8a. These boundaries are similar to the streamlines seeded on the
boundaries, as shown in Fig. 8c. The points on a streamline have the same or similar attribute field value,
while those on a boundary of one segment have the same range rather than a specific attribute field value.
Therefore, the streamlines seeded on the boundaries need not exactly match the boundaries of the segments,
as indicated by the arrows in Fig. 8b, c, but they are sufficiently close to each other.

5.2 2D unsteady vector fields

The second example of a real-world data set is a simulation of a 2D unsteady flow behind a square cylinder
with a Reynolds number of 160 (Weinkauf and Theisel 2010). This simulation covers a subset of the spatio-
temporal domain, ½�0:5; 7:5� � ½�0:5; 0:5� �½15; 23�. The resolution of the dataset is 400� 50� 1001
(number of grid points in x, y, t-direction ). We choose the first 200 time steps and use a resolution of
400� 50� 200 to compute the attribute fields based on pathlines. The time window for the pathline
computation is 3. Figure 9 shows the segmentation results of this data set based on different attribute fields,
i.e., determinant field, non-straight velocity field nsV, and curl field, respectively. The bin number m is 6,
and the noise segment threshold c is 0.01. The segments from the curl field (Fig. 9c) encode the LCS
information of the flow and those from the non straight velocity field nsV (Fig. 9b) reveal the Von Karman
vortex street.

Noise segment threshold c Figure 10 shows the segmentation of the Double Gyre flow (Shadden et al.
2005) based on the rotation field. When c increases from 0.01 to 0.05, the four segments, highlighted in

Fig. 8 The effect of the number of bins m for the initial region classification. Column a shows the segmentation results based
on the rotation field with m as 5, 8 and 15 from top to bottom, respectively. Column b are the extracted boundaries of the
corresponding segmentation in (a). Column c shows the streamlines seeded on the extracted boundaries
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black in Fig. 10a, merge with their neighboring segments after dilation (Fig. 10b). Interestingly, these four
long thin segments have rather different attribute values compared to their neighboring segments. They
reveal a symmetric, helical configuration of the pathlines in the Double Gyre flow that are not easy to see
with other methods. As shown in Fig. 10d, the pathlines seeded in those regions display similar behaviors in
each region.

5.3 3D steady vector fields

To test our method in a steady 3D flow framework we take an instance from a 3D time-dependent flow
behind a square cylinder with a Reynolds number of 160 (Weinkauf and Theisel 2010). It covers the spatial
domain ½�12; 20� � ½�4; 4� � ½0; 6�. The spatial resolution of this data set is 192� 64� 48. We compute the
attribute fields based on 3D streamlines. Figure 11a shows the segmentation of this data set based on the curl
field. Eight segments are generated with the bin number m ¼ 3. Figure 11b shows the estimated boundaries
of two segments by iso-surfaces. The left image shows a segment inside the flow domain, where the curl

Fig. 9 Segmentation of a 2D unsteady flow behind a square cylinder based on different attribute fields: determinant field (a),
nsV field (b) and curl field (c), respectively. The bin number m ¼ 6

Fig. 10 The segmentation result of an unsteady Double Gyre flow with different noise segment threshold c. a c ¼ 0:01; b
c ¼ 0:05; c The four c-sensitive segments; d The estimated boundaries of the four c-sensitive segments with sampled pathlines
(red). The bin number m ¼ 6
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field has large values. The right image shows a segment near the flow domain boundaries, where the curl
field has small values.

Figure 12 shows the segmentation and estimated boundaries of the Bernard flow (Weiskopf et al. 2007),
whose domain is ½�16; 16� � ½�4; 4� � ½�8; 8�. From the eighteen segments generated with bin number
m ¼ 5, we select eight whose average rotation field value is above 525.6. The estimated boundaries of the
eight segments shown in Fig. 12a highlight the eight vortex regions of the Bernard flow. There are also some

Fig. 12 Segmentation and estimated boundaries of the Bernard flow. a Eight segmentation boundaries generated from the iso-
surfaces. b one of the generated segments. The bin number m ¼ 5. The legend aside shows the partitioning strategy for initial
region classification

Fig. 11 Segmentation and estimated boundaries of a 3D steady flow behind a square cylinder. a The segmentation result based
on the curl field. b Several segmentation boundaries generated using the iso-surfaces. The bin number m ¼ 3. The legend aside
shows the partitioning strategy for initial region classification
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segmented regions covering the whole flow domain rather than a specific vortex region. Figure 12b shows
such a segment.

As discussed earlier, the boundaries of the segments generated by our method are closely aligned with
the flow. This is also true for the 3D segmentation results. Even though a comprehensive comparison is
beyond the scope of this work, we believe that our 3D segmentation results can potentially be utilized to
describe the complex 3D flow behavior in a similar way to stream-surfaces without explicitly placing stream
surfaces. We plan to assess this in an extended work.

5.4 3D unsteady vector fields

We also applied our framework to a 3D unsteady flow, i.e., the unsteady ABC vector field (Kundu and
Cohen 2008). We set the parameters to be A ¼

ffiffiffi
3

p
þ 0:5tsinðptÞ, B ¼

ffiffiffi
2

p
and C ¼ 1. The spatial domain

we consider is ½0; 2p�3. The attribute fields of the 3D unsteady flow are defined in a 4D space and are based
on pathlines. The time window for pathlines computation is 10. Figure 13a is the visualization of the
rotation field projected into the time slice t ¼ 0. With the bin number m ¼ 2, four segments are generated
(Fig. 13b). Three of them highlight the vortex regions of the flow, whose boundaries are estimated with the
iso-surfaces shown in Fig. 13c.

6 Conclusion

In this work, we propose a vector field segmentation algorithm based on derived attribute fields. A number
of attribute fields are computed based on the accumulation of local properties along the integral curves. We
then extract the connected components based on the classification of the attribute values and apply dilation
to filter the noise segments in the segmentation results. Finally we extract and smooth the boundaries of the
segments in order to obtain a cleaner segmentation for visualization. The segments generated by our
algorithm are better aligned with the flow than those obtained from existing local methods. Domain experts
can employ various attribute fields to explore different flow behaviors. Our segmentation can be applied to
3D steady flows, where we use iso-surfaces to estimate the boundaries of the segments. We show that these
iso-surfaces could potentially be used to visualize high dimensional flows in a similar fashion to integral
surfaces.

Limitations The initial region classification used in our pipeline is rather simple and may require user
adjustment. A more heuristic strategy needs to be developed. Also, the boundaries of 3D vector field
segments are currently some estimated iso-surfaces rather than the real boundaries of the segments. In
addition, the criteria employed to identify noise components should also consider the shape of a component
in addition to its size. Take a small segment around the center point of a vortex as an example, if we only
consider the size of this segment and ignore its shape, it may be classified as a noise segment and be filtered
out, which is not desired. In fact, the shape information of the segments can be described by their 1D
skeletons. Furthermore, the current segmentation framework does not consider the well-known flow fea-
tures, such as topology. However, we believe that the gradient of the attribute fields, which has been shown
relevant to a number of flow features (Zhang et al. 2015), can be employed to guide the segmentation

Fig. 13 Results of the unsteady ABC flow projected into t ¼ 0. a Visualization of the rotation field. b Four segments of the
rotation field with bin number m ¼ 2. c Three segmentation boundaries generated from the iso-surfaces. The bin number
m ¼ 2. The legend aside shows the partitioning strategy for initial region classification
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process. Finally, the current framework does not apply to large scale 3D unsteady vector fields because of
memory limitations (due to the attribute field computation). We plan to address these limitations in the
future.
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