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A B S T R A C T

In this paper, we revisit the Lagrangian accumulation process that aggregates the local
attribute information along integral curves for vector field visualization. Similar to the
previous work, we adopt the notation of the Lagrangian accumulation field or A field
for the representation of the accumulation results. In contrast to the previous work,
we provide a more in-depth discussion on the properties of A fields and the meaning
of the patterns exhibiting in A fields. In particular, we revisit the discontinuity in the
A fields and provide a thorough explanation of its relation to the flow structure and
the additional information of the flow that it may reveal. In addition, other remaining
questions about the A field, such as its sensitivity to the selection of integration time,
are also addressed. Based on these new insights, we demonstrate a number of enhanced
flow visualizations aided by the accumulation framework and the A fields, including a
new A field guided ribbon placement, a A field guided stream surface seeding and the
visualization of particle-based flow data. To further demonstrate the generality of the
accumulation framework, we extend it to the non-integral geometric curves (i.e. streak
lines), which enables us to reveal information of the flow behavior other than those
revealed by the integral curves. Finally, we introduce the Eulerian accumulation, which
can reveal different flow behavior information from those revealed by the Lagrangian
accumulation. In summary, we believe the Lagrangian accumulation and the resulting
A fields offer a valuable way for the exploration of flow behaviors in addition to the
current state-of-the-art techniques.

c© 2017 Elsevier B. V. All rights reserved.

1. Introduction1

Vector field visualization is a ubiquitous technique that is em-2

ployed to study a wide range of dynamical systems involved in3

applications, such as automobile and aircraft engineering, cli-4

mate study, combustion dynamics, earthquake engineering, and5

medicine, among others. Many effective approaches have been6

developed to visualize these complex data [1, 2, 3, 4]. There7

are in general two goals for flow visualization: (1) achieve8

sufficient spatial coverage and (2) reveal salient flow patterns9

of interest. The former goal aims to display flow information10

in possibly every spatial (or spatio-temporal) location to avoid11

missing any important flow behaviors. The latter seeks to iden-12

tify and display (or highlight) certain important (or salient) flow13

patterns, in order to reduce the information overloading (i.e. 14

clutter) and occlusion issue. These two goals are some time 15

conflicting with each other, especially when visualizing high 16

dimensional flows. 17

Geometric-based visualization is often applied to achieve a 18

tradeoff of the above two conflicting goals. On the one hand, 19

continuous and smooth geometric representations (e.g. integral 20

curves/surfaces) effectively depict the spatio-temporal coher- 21

ence nature of vector fields. On the other hand, these geometric 22

representations enable the encoding of other flow characteris- 23

tics than the directional information via color, transparency and 24

texture. To the extreme, full spatial coverage (Goal 1) may be 25

achieved via densely placed integral curves – the intrinsic geo- 26

metric descriptor of flows, which will certainly result in severe 27
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occlusion and clutter issue. To alleviate that, texture-based vi-1

sualization techniques [5, 6] convolve randomly assigned col-2

ors along the integral curves (e.g. streamlines) to introduce3

enough variance between neighboring streamlines in terms of4

color to depict the flow patterns in a dense fashion. In a sim-5

ilar spirit, certain accumulated attributes along integral curves6

have been used to help classify and select integral curves of7

interest from the densely placed integral curves to reduce the8

occlusion and clutter in visualization [7, 8, 9, 10, 11]. One9

example of these techniques is the accumulation of the wind-10

ing angles along streamlines for the identification of vortex re-11

gions [12]. In fact, both the above convolution processes used12

in the texture-based visualization and the attribute accumulation13

in integral curve exploration are essentially an accumulation (or14

aggregation) of quantities along integral curves, which we refer15

to as the Lagrangian accumulation.16

17

Problem description.18

Zhang et al. [13, 14] recently extended the above Lagrangian19

accumulation to define a derived field based on the accumulated20

values along integral curves. Briefly, the information – usually21

some local flow characteristics, along each integral curve is ag-22

gregated onto its starting point, allowing the representation of23

this Lagrangian information (i.e. along integral curves) in an24

Eulerian fashion (i.e. at their starting points). The derived field,25

also referred to as the attribute field, denoted by A , is used to26

help identify the discontinuity in the behaviors of the neighbor-27

ing integral curves [13] and perform segmentation of the flow28

domain [15], respectively. However, there are still a number of29

unsolved problems with this original Lagrangian accumulation.30

First, the characteristics and behaviors of A are not well un-31

derstood. There still lacks a thorough discussion on what is32

actually shown or encoded in A . Although there is limited dis-33

cussion on the potential connection between the discontinuity34

in A and the vector field topology [13], their relation is yet to35

be clarified. In addition, the computation of A requires to set36

the length of the integration. How does this parameter affect the37

behaviors of A is unclear. Addressing all the above questions38

is crucial to determine under what circumstances that A can39

be useful to assist the tasks of vector field analysis and explo-40

ration and how to appropriately utilize A without introducing41

mis-leading information.42

Second, it has also been mentioned in [13, 14] that different43

A s computed based on different flow characteristics may ex-44

hibit different behaviors (or patterns). However, there is no a45

thorough discussion on what characteristics of the vector field46

the A computed from a selected attribute can reveal. Under-47

standing this is important to instruct the user in the considera-48

tion of the appropriate attribute for the computation of A . Fur-49

thermore, a better understanding to the similarity/dissimilarity50

between A s computed using different attributes will provide51

additional information to the study of the possible causal rela-52

tions among attributes.53

54

Our contributions.55

To address the above remaining and critical issues, this work 56

makes the following contributions: 57

• We provide a more in-depth discussion on the properties 58

of A fields and the meaning of the patterns exhibiting in 59

A fields. In particular, we revisit the discontinuity in the 60

A fields and provide a thorough explanation of its rela- 61

tion with the flow structure and the additional information 62

that it may reveal. Other remaining questions about the A 63

fields, such as its sensitivity to the selection of integration 64

time, are also discussed. 65

• We propose a number of enhanced flow visualizations 66

aided by A fields, including a new A field guided ribbon 67

placement, a A field guided stream surface seeding and 68

the visualization of particle-based flow data. We have ap- 69

plied these enhanced visualizations to a number of 2D/3D 70

steady/unsteady flow data. 71

• We provide an informal study of the relation among differ- 72

ent attributes, which we hope may enlighten the selection 73

of the appropriate attributes for the accumulation to meet 74

different needs. 75

• We extend the previous accumulation along integral curves 76

to the non-integral geometric curves (i.e. streak lines), 77

which enables us to reveal information of the flow behav- 78

ior different from those revealed by accumulating along 79

integral curves. 80

• Finally, we introduce the Eulerian accumulation for un- 81

steady flow data, which aggregates the local attribute in- 82

formation at fixed spatial location over time. This enables 83

us to inspect the flow behavior from a different angle than 84

the Lagrangian accumulation. 85

In summary, we believe the Lagrangian accumulation (or the 86

general accumulation) and the resulting A fields offer a valu- 87

able way to support the exploration of flow behaviors in addi- 88

tion to the current state-of-the-art techniques. 89

2. Related Work 90

There is a large body of literature on the analysis and visual- 91

ization of flow data. Interested readers are encouraged to refer 92

to recent surveys on the dense and texture-based visualization 93

techniques [5], geometric-based methods [16], illustrative visu- 94

alization [17] , topology-based methods [2, 3], and partition- 95

based techniques [4], respectively. In this section, we focus on 96

the most relevant work. 97

98

Dense and texture-based techniques Dense and texture-based 99

flow visualization techniques have been one of the most popu- 100

lar methods that aim to reveal the flow directional information, 101

while achieving full spatial coverage at the same time. Based on 102

the survey [5], texture-based techniques can be classified into 103

LIC techniques [18, 19, 20, 21, 22] and advection (or warp- 104

ing) based techniques [23, 24, 25]. The goal of both groups is 105

to make the output image having similar color along integral 106

curves, while with sufficiently different colors along the direc- 107

tion that is perpendicular to the flow direction. Matvienko and 108
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Kruger [6] utilized this observation to study the inequality prop-1

erty of the generated texture images to evaluate their quality. In2

this work, we study a similar inequality property of the result-3

ing A fields computed by accumulating along integral curves.4

In the meantime, dense visualization can be generated by mea-5

suring the density of the integral curves within any spatial unit,6

such as the structure-accentuating dense flow visualization [26].7

The obtained salient flow structure is typically around separa-8

tion structure due to the strong convergence of flow there. In9

this work, we discuss how this varying density of the integral10

curves in the flow domain may influence the salient structure11

encoded in the A field.12

13

Lagrangian framework for flow analysis In fluid dynam-14

ics, there are two different views for the study of flow be-15

haviors, i.e., observing the flow at fixed location–Eulerian16

point of view, or observing it on a moving particle–Lagrangian17

point of view. In this work, we specifically focus on the18

Lagrangian framework, which studies the behavior of parti-19

cles along their individual paths, i.e., integral curves computed20

from the seeded positions. According to this characteristic,21

the Finite-Time Lyapunov Exponent (FTLE) [27], the stream-22

line [9] and pathline [10] predicates, the pathline attribute ap-23

proaches [28, 8, 11], and the streamline and pathline dissimilar-24

ity for streamline clustering [29], selection [30], and the ensem-25

ble analysis [31] are all examples of Lagrangian approaches.26

Among them, the FTLE approach aims to measure the rate of27

flow separation at individual spatial sampling points. Its flow28

map computation is essentially a special case of Lagrangian29

accumulation (Section 3.2) that sums up all the vector values30

scaled by the integration step size along the path of the particle,31

which leads to the end position of a particle given its starting32

position. This accumulation neglects all intermediate position33

as well as other information of the particle that is not relevant34

to the flow separation. The computed rate of separation at each35

point is encoded as a scalar field, which facilitates the identifi-36

cation of its ridges–known as the Lagrangian Coherent Struc-37

ture (LCS). This Eulerian representation of the FTLE fields is38

similar to our derived A fields. Nonetheless, the Lagrangian39

accumulation and the resulting A fields are more general than40

the FTLE approach, and can be used to encode attributes of the41

particles along their paths rather than just at their starting and42

ending positions.43

The idea of accumulating local characteristics along the particle44

trajectories and assigning the accumulated values to the corre-45

sponding integral curves has been applied by the pathline at-46

tribute approaches. Specifically, Shi et al. [11] presented a data47

exploration system to study the different characteristics of path-48

lines based on their various attributes. Pobitzer et al. [8] applied49

a statistics-based method to select a proper subset of pathline50

attributes to improve the interactive flow analysis. While not51

directly accumulating the local attributes, Guo et al. [28] pro-52

posed to accumulate the square difference between the local at-53

tributes along pairs of integral curves to define the distance be-54

tween them. Recently, Zhang et al. [13, 14] extended the above55

Lagrangian accumulation to define an attribute field based on56

the accumulated values along integral curves. This attribute 57

field adopts the Eulerian representation of the Lagrangian in- 58

formation, in a similar fashion to the texture-based technique, 59

which enables a continuous representation of the variation of 60

the integral curve behaviors to some extent. In contrast to the 61

previous work by Zhang et al., we provide a deeper discus- 62

sion on the behaviors of the obtained attribute fields and extend 63

the Lagrangian accumulation to the accumulation along non- 64

integral curves (i.e. streak lines). Furthermore, we introduce an 65

Eulerian accumulation framework. 66

More recently, Lagrangian representation has been introduced 67

to address the scalability issue of the visualization of large scale 68

unsteady flows [28, 32]. 69

3. The Lagrangian Accumulation 70

In this section, we describe the Lagrangian accumulation and 71

provide an in-depth discussion on its behavior under different 72

selections of parameters. We also offer a thorough discussion 73

on what can be revealed in the derived attribute fields from the 74

accumulation. In the following, we start with a brief review of 75

some important concepts of vector fields. 76

3.1. Vector Field Background 77

Consider a spatial domain D = M×R ⊂ R3, a general vector 78

field can be expressed as an ordinary different equation (ODE) 79

ẋ = v(x; t). An integral curve (or trajectory) that is everywhere 80

tangent to v is a solution to the initial value problem of the 81

above ODE system, denoted by x(t)= x0+
∫ t

0 v(x(τ); t0 + τ)dτ . 82

In the unsteady vector fields, an integral curve is also referred 83

to as a pathline, while in the steady case, it is called streamline. 84

There are a few special streamlines in the steady flows. Stream- 85

lines that degenerate to points are fixed points. They correspond 86

to places where v = 0. Streamlines that form closed curves are 87

referred to as periodic orbits, together with fixed points, they 88

define the vector field topology [33]. 89

90

Flow Attributes. Given a vector field v, its spatial gradient ∇xv 91

is referred to as its Jacobian, denoted by J. J can be decom- 92

posed as J = S+R, where S = 1
2 [J+(J)>] and R = 1

2 [J−(J)>] 93

are the symmetric and antisymmetric components of J, respec- 94

tively. A number of flow attributes can be derived from v, J, S 95

and R [8]. In this work, we utilize the following local attributes, 96

al , for various experiments. 97

• a1: vorticity, ||∇×v||. 98

• a2: divergence, tr(J), i.e. trace of J. 99

• a3: helicity, ∇×v ·v. 100

• a4: λ2, the second largest eigenvalue of the tensor S2 + 101

R2 [34]. 102

• a5: Q = 1
2 (‖R‖

2−‖S‖2) [35]. 103

• a6: local shear rate, the Frobenius norm of S. 104

• a7: determinant of J. 105
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• a8: change of flow direction (also known as winding an-1

gle), ∠(v(pi),v(pi+1)) where pi denotes a point on an in-2

tegral curve. This geometric attribute essentially measures3

the curvature of the integral curve at pi.4

• a9: velocity vector v.5

• a10, acceleration, a(x, t) = Dv
Dt = ∂v(x,t)

∂ t + (v(x, t) ·6

∇)v(x, t).7

3.2. Lagrangian Accumulation of Local Attributes8

Consider an integral curve, C , starting from a given point
(x, t0), the Lagrangian accumulation can be formulated as the
following convolution process.

Ag((x, t0), t) =
∫ t

0
k(τ)al(C (τ), t0 + τ)dτ (1)

where k(τ) is a filter kernel following the integral curves [18,9

25]. For simplicity, in this work we assume a simple box fil-10

ter [21], for all examples. al(C (τ), t0 + τ) is the value of the11

selected local flow property al measured at location C (τ) and at12

time t0 + τ , which can be either scalar, vector, or tensor values.13

For the later discussion, we mainly consider scalar properties.14

In most cases, al is continuous in D except at some special loca-15

tions, such as fixed points in the steady cases. Ag((x, t0), t) rep-16

resents the accumulated value. t ∈ R is the integration window17

size. Note that t can be negative to account for the backward in-18

tegration. In addition, considering both forward and backward19

integration starting at (x, t0) is also possible. Nonetheless, we20

will concentrate on the forward integration at this moment.21

The above formulation works for the accumulation under the
time-dependent settings. In the steady cases, the local attribute
values are not dependent on the current integration time but only
the location, i.e. denoted by al(C (τ)). More often, in the steady
cases, the accumulation is performed with a specified length s
along the streamlines.

Ag(x,s) =
∫ s

0
k(η)al(C (η))dη (2)

Again, this accumulation along streamline can also be per-22

formed in both forward and backward directions. To simplify23

the subsequent discussion, we will refer to the Lagrangian ac-24

cumulation as the L-accumulation for the rest of the paper.25

Given a spatio-temporal domain D = M×T, a derived scalar26

field can be obtained (assuming al is scalar) from the above27

convolution, where the value at each sample position is deter-28

mined by Eq.(1) or (2). We refer to this field as a Lagrangian29

Accumulation field or an A field. The scalar fields discussed30

in [36] are essentially the examples of A fields. Given dif-31

ferent local characteristics of interest to accumulate, one can32

obtain various A fields. A discussion on the relations of some33

of these A fields is provided in the later section. Given an A34

field, its gradient, ∇A , and the gradient magnitude can be com-35

puted, which will be used to identify places where the A field36

has large changes.37

Source

Saddle
ci

A(c )i
ca

ca+3

ca+3ca ... ci

A(c )i

ca+3ca ...

case (a)

case (b)

Approximate curve

Fig. 1: Discontinuity of the A field at a separatrix connecting a saddle (blue
dot) and a source (green dot). The A field is sampled along the line segment
traversing through the separatrix. ci indicate the samples along this segment.
Case (a) shows a scenario of the discontinuity that the discrete sampling may
miss (illustrated by the orange curve), while the discontinuity in case (b) could
be captured with sufficient samples.

4. Properties of A Fields 38

It has been discussed before that there are a number of impor- 39

tant properties of A that make it suitable for a number of flow 40

exploration tasks. However, among these properties, the dis- 41

continuity in A still lacks a thorough and informative discus- 42

sion, leading to the concern about the possible artificial infor- 43

mation provided by this discontinuity. In this section, we at- 44

tempt to resolve this concern. 45

Uniqueness Given the above definition of the A field, it is ap- 46

parent that given any point (x, t) ∈ D (except at fixed points in 47

steady flows), there is exactly one A value with the specified 48

integration time or length. This is due to the uniqueness of inte- 49

gral curves, i.e., in theory there exists exactly one integral curve 50

passing through any give point except at fixed points. This prop- 51

erty allows A field to achieve full spatial coverage without am- 52

biguity except at fixed points. 53

Inequality Since the neighboring points that are correlated by
the same integral curves may have similar values, the following
inequality is expected to hold for the accumulation, as pointed
out by Matvienko and Kruger [6].

|〈∇A ,v⊥〉|> |〈∇A ,v〉|

However, due to the influence of different integration times (or
lengths), as discussed later, we observe a weaker inequality in
practice as below

|∇A |> |〈∇A ,
V
||V ||
〉|

This inequality property shows that the patterns observed in A 54

fields are mostly aligned with the flow direction except at places 55

where A exhibits certain discontinuous behaviors. 56

4.1. Revisit Discontinuity in A 57

In mathematics, a function f (x) defined in M is said continu- 58

ous at c if for every ε > 0, there exists a δ > 0 such that for all 59

x∈M |x−c|< δ ⇒| f (x)− f (c)|< ε . However, this condition 60

may not be satisfied everywhere in D by a A field. Specifically, 61

for a steady vector field that consists of fixed points, the integral 62

curves (or streamlines) passing through them reduce to points. 63
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Therefore, the obtained A field is not well-defined (i.e. discon-1

tinuous) there.2

The second place where A may exhibit discontinuous behav-3

ior is usually at the separation structures of the flow. Consider4

a smooth vector field, the transition of the (geometric) behav-5

iors of neighboring integral curves is smooth. However, this6

smooth transition is violated at places where the integral curves7

have structural changes (e.g. end at different fixed points or two8

far away locations). Those places correspond to the separation9

structures in the flow. In many cases, especially in the unsteady10

vector fields, these separation structures are not unique and sen-11

sitive to the selection of the integration time (see the later dis-12

cussion on this). In contrast, vector field topology is a rigorous13

notion of the separation structures of steady vector fields, which14

is defined in infinite long time. In either case, this geometric15

discontinuous behavior of integral curves may or may not be re-16

flected by the A fields that accumulate the local characteristics17

along integral curves. Figure 1 shows two possible cases where18

the A field misses (a) or captures (b) the topological disconti-19

nuity across a separatrix. In case (a), the accumulation values20

on both sides of the separatrix are similar despite different geo-21

metric behaviors of their associated streamlines. Depending on22

the seeding location and possibly the numerical error, this dis-23

continuity may be missed. In case (b), the accumulation values24

on both sides are sufficiently different, capturing the discontin-25

uous geometric behavior across the separatrix.26

cusps

Does this mean that the discontinu-27

ity exhibiting in A is always a sub-28

set of the separation structures of the29

vector fields? To answer this ques-30

tion, let us look at another exam-31

ple shown in the inset to the right.32

This example shows an A com-33

puted by accumulating the change of34

the flow direction along the densely35

placed pathlines for the Double Gyre36

flow. Beside the well-known sepa-37

ration structure defined as the ridges38

of the so-called FTLE field, there39

exists additional discontinuity in the40

obtained A as highlighted by the arrows. By a close inspection,41

this cusp like discontinuity is caused by the abrupt directional42

change in the integration of the involved pathlines due to the43

two oscillating centers. This behavior has already been reported44

in a previous work [37]. This example indicates that the discon-45

tinuity in A may correspond to the discontinuous behaviors of46

neighboring pathlines other than their geometric characteristics.47

Based on the above discussion and analysis, we can conclude48

that under the numerical error free assumption the discontinuity49

exhibiting in A indeed corresponds to the discontinuous geo-50

metric and/or physical behaviors of neighboring integral curves.51

However, not all this discontinuity can be captured by A in52

practice due to the selection of integration times and seeding53

strategy. With this observation, we argue that the accumulation54

framework and the resulting A fields are a simple and effective55

means to have an approximate overview on the potential dis-56

continuity in integral curve behaviors, which is known relevant 57

to a number of important flow features. 58

59

Remark: The highlighted discontinuity in A may not provide 60

the precise locations and times where and when it happens. Re- 61

call the example shown in the above inset. Although the sharp 62

direction change occurs in a later time in the flow, the discon- 63

tinuity exhibits in the first time step where those pathlines are 64

seeded. Although this looks like a disadvantage of the accumu- 65

lation framework and A fields, it indeed provides a robust way 66

for the seeding and selection of integral curves that may possess 67

interesting behaviors (i.e. the abrupt change of direction) with- 68

out extracting those features precisely. Nonetheless, there are 69

still cases that knowing the exact local spatio-temporal regions 70

where those features/events occur is necessary. In that case, 71

additional information needs to be utilized in addition to the ac- 72

cumulated value. One possible solution is to study the variation 73

and distribution of the local attributes along integral curves to 74

provide more detailed information about integral curve behav- 75

iors, which should be a valuable future direction. 76

77

Sensitivity to integration time/length Based on the definition 78

of A , it is unfortunately sensitive to the specified integration 79

time/length. That means different A s computed with different 80

integration times/lengths may exhibit different patterns (i.e. dif- 81

ferent discontinuity structures). Figure 2 provides an example 82

showing the A fields based on the accumulation of the change 83

of flow direction (aka. signed curvature) of a simple separation 84

flow with different integration times/length. From the results, 85

we see that with a smaller integration length (Figure 2 a), the 86

A field tends to capture the local and short-term flow behav- 87

iors. Interestingly, it captures places with large flow curvature. 88

In contrast, a larger integration length may reveal the global and 89

long-term flow behaviors (Figure 2 b), and produce smoother 90

A fields at the same time. This effect is similar to the observa- 91

tion in the convolution process used by the texture-based tech- 92

niques [6]. Figure 2 (c) shows the plots of the A values along 93

two line segments (shown in Figure 2 (b)). As can be seen, the 94

ranges of the A values on these two sampled segments are not 95

identical. This again can be attributed to the sensitivity of the 96

sampling location on the separation structure and the smeared 97

effect of long integration. In practice, the selection of the inte- 98

gration times/lengths depends on the needs of the applications. 99

If the local characteristic of the flow is of interest, a small in- 100

tegration time can be selected, while if the global and structure 101

information of the flow is the focus, a long integration may be 102

used. A similar consideration on the selection of integration 103

time can be seen in the FTLE computation. 104

105

Average of the accumulated value To avoid the possible arti- 106

facts introduced by the number of integration steps, especially 107

when the integral curves are getting closer to fixed points, we 108

also computed A′g(x, t) = 1
t Ag((x, t0), t) for unsteady flow and 109

A′g(x,s) = 1
s Ag(x,s) for steady flow, which essentially describes 110

the average behavior of the particle along its path. We compare 111

the resulting A fields with and without this average computa- 112
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(a) (b)

ci

A(c )i

ca+3ca ...

ca

ca+3

ca

ca+3

ci

A(c )i

ca+3ca ...

(c)

Fig. 2: The influence of the accumulation window size (i.e integration length).
(a) shows the A field computed with the integration length equal 10% of the
size of the bounding box of the flow domain, while (b) shows the A field with
the length equal twice of the size of the bounding box. (c) shows the plots of the
A values sampled along two seeding line segments. As can be seen, even they
have the same length, the two segments encode different amount of information
quantified by the range of the A values along the segments.

9.95

-7.24

0.11

-0.03

0 0

Fig. 3: The A fields computed without (left) and with average (right).

tion and observe that they in general have similar behavior with1

the difference of some scalar factor (Figure 3). The benefit of2

using the average value is to enable us to inspect the overall3

attribute behavior along the integral curves. This can be use-4

ful when studying the behaviors of particles in unsteady flows.5

However, the difference between the A values near the discon-6

tinuity tends to become smaller (Figure 3(right)), which may7

make the identification of these places challenging. Therefore,8

in most of our experiments, we use the non-average version of9

the A fields.10

5. A Field Enabled Flow Exploration and Discussion11

Based on the above discussions on the properties of A fields,12

we now describe how to utilize this simple accumulation to sup-13

port a number of flow visualization and exploration tasks. Pre-14

vious work has demonstrated that the obtained A fields can be15

used to assist the seeding and selection of integral curves and16

perform flow segmentation. In this section, we demonstrate17

how to use A fields and other information derived from the18

local attributes to perform ribbon and stream surface placement19

for 3D flow visualization. In addition, we show a new applica-20

tion of A fields in the visualization of particle-based flow data.21

Furthermore, we will provide an informal discussion on the re- 22

lations of certain attributes in terms of the behaviors of their 23

corresponding A fields, followed by a couple of extensions of 24

the accumulation framework. 25

26

Compute A in practice The general computation framework 27

for A has been described in [13]. For self-contained purpose, 28

we briefly describe this framework. We use a uniform dense 29

sampling strategy to avoid any bias under the assumption of no 30

priori knowledge of the data is known. Given any sample point, 31

an integral curve (i.e. a streamline for a steady vector field 32

or a pathline for an unsteady vector field) is computed using 33

the standard Runge-Kutta fourth order integrator (RK4) with a 34

fixed step size. The local attribute values are interpolated at the 35

integration points based on the pre-computed values at the uni- 36

form dense samples. It is worth noting that due to the uniform 37

sampling strategy and an axis dependent order, the computed 38

A may possess certain artifacts or numerical errors. To address 39

this, we introduce two additional processes to the original ac- 40

cumulation framework. First, we construct a dual grid with the 41

uniform samples as the centers of the grid cells. For each grid 42

cell, a list of the computed integral curves passing through it is 43

recorded. As long as a cell is traversed by an integral curve, 44

this cell is marked visited, and its A value is computed as the 45

weighted sum of the A values of the integral curves passing it. 46

The weights are selected based on their distance to the center 47

of the cell. Second, after obtaining the initial A field, we fur- 48

ther smooth it along the flow direction in a similar fashion of 49

the enhanced-LIC approach [38]. That is, we perform another 50

low-pass filtering process along the short integral curves seeded 51

at the sampling points with the A field as the input. This addi- 52

tional smoothing can be very usefully in cases the samples are 53

irregular (i.e. the vertices of the triangle mesh), which is typ- 54

ical for surface flows. Figure 4 provide a few examples of the 55

A fields computed on triangle meshes. In these examples, the 56

streamlines are seeded at the individual vertices of the triangle 57

meshes and integrated sufficiently long (e.g. twice the size of 58

the bounding box of the geometry). Figure 4(a, left) shows the 59

initial accumulated A , which is not smooth. After performing 60

the aforementioned smoothing, the A is better aligned with the 61

flow (Figure 4(a, right)). The computation times for A fields 62

depend on the size of the data, the resolution of the samples and 63

the integration time, which can range from a few seconds (e.g. 64

the 2D steady flow) to 2 hours (e.g. the surface flows) on a PC 65

with an Intel Xeron 1.6GHz CPU and 8GB RAM without any 66

parallelization. 67

5.1. Enhanced Flow Visualization with the Aid of A 68

In this section, we demonstrate how to utilize the computed A 69

and its properties to achieve a number of enhanced visualization 70

for the exploration of various flow data. 71

5.1.1. Directly Visualizing A and |∇A | 72

Figure 5 illustrates how to utilize the A and |∇A | fields com- 73

puted with different accumulation window sizes for the creation 74
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(a) (b) (c)
before smoothing after smoothing

Fig. 4: A fields of a synthetic surface flow (a), a cooling jacket simulation (b) and a gas engine simulation (c), respectively.

(a) (b) (c) (d)

Fig. 5: A (top) and |∇A | (bottom) fields of a tile of the ocean simulation with different window sizes for accumulation. (a)10% of the size of the bounding box of
the data domain; (b) 50%; (c) 2,000%. (d) shows the A field by accumulating the divergence along streamlines.

(a) (b)

Fig. 6: Ribbon placement results for the Bernard data (a) and the tornado data (b), respectively. The left image of each group shows the ribbon placement guided by
local helicity information, while the right image shows the placement guided by the derived A field based on helicity.

of visualizations with different styles. A tile at a specific time1

from the surface layer of an ocean simulation data [39] is used.2

We accumulate the curl of the flow to compute the A fields3

shown in Figure 5 (a-c). A 512× 512 uniform sampling strat-4

egy is used. From the results, we see that with a small accumu-5

lation window size, e.g., 10% of the size of the bounding box of6

the domain, the resulting A field is not smooth and possesses7

patterns that are short but are aligned with the flow, when com-8

pared to the background LIC(a, top). Its discontinuity estimated9

by the |∇A | field generates a visualization similar to LIC but 10

also highlighting places that have stronger local rotation. With 11

a sufficiently large window, e.g., twenty times the size of the 12

bounding box, the resulting A is smoother, and its discontinu- 13

ity tends to be located around a few vortices in the flow. Fig- 14

ure 5(d) shows an A field computed by accumulating the diver- 15

gence along the streamlines of the same flow. The window size 16

for accumulation is twenty times the size of the bounding box. 17

Compared to the result shown in (c), the divergence-based A 18
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field tends to highlight the places with strong separation behav-1

ior as expected. Additional results can be found in the supple-2

mental document.3

4

Pseudo segmentation via discrete5

color coding With the spatial cover-6

age property and the inequality prop-7

erty that makes the patterns in the A8

field aligned with flow direction, one9

can easily create a visualization us-10

ing discrete color coding to achieve11

an effect similar to a flow domain12

segmentation. The inset provides an13

example of discrete color visualization. Note that there is no ac-14

tual segmentation is performed in this visualization. However,15

a true segmentation may be obtained with this discrete color16

assignment as the input [15].17

18

Remarks: We wish to emphasize that it is because the patterns19

of the A fields are aligned with the flow except at fixed points,20

the direct visualization of A and ∇A fields often provide us21

an overview of the flow behavior. However, one should also22

realize that the sensitivity of the A fields w.r.t the integration23

times, which may reveal local or global behaviors of the flow in24

different scales.25

5.1.2. An A Field Guided Ribbon Placement26

3D ribbons are known good at representing flow characteristics27

that neither integral curves nor integral surfaces can effectively28

convey. One example of such flow characteristics is the helicity29

of the flow that characterizes the rotational behavior around an30

integral curve. To utilize this information to guide the seeding31

and placement of ribbons, in addition to aggregating the helic-32

ity along the individual streamlines to obtain an A , we further33

derive the standard deviation of the helicity values along each34

streamlines, denoted by σ . For each candidate seed p, we as-35

sign a value of A (p)+σ(p). Based on this value, we rank all36

candidate seeds that are uniformly distributed in D. From the37

top-ranked seeds, we construct a series of ribbons as the initial38

set of ribbons. Then, we iteratively insert new ribbons that fill39

the blank region of D while keeping a minimum user-specified40

distance away from other existing ribbons. The similarity met-41

ric introduced by Chen et al. [40] is used to further remove re-42

dundant ribbons that are too similar to the existing ones. Fig-43

ure 6 shows the ribbon placement results using the proposed44

A field guided framework. Compared to the ones that are pro-45

duced using only the local attributes (i.e. the initial ribbons are46

placed at locations with maximum local attribute values), our47

results tend to generate ribbons with longer length that can pro-48

vide more coherent information about the flow behaviors (i.e.49

the tornado and the four vortices of the Bernard data are easily50

identifiable), which is expected.51

5.1.3. An A Field Guided Surface Seeding 52

An integral surface is the integration of a 1D curve (i.e. seed- 53

ing curve) through 3D flows. Compared with the individual 54

integral curves, integral surfaces can more effectively convey 55

3D flow information with the additional visual cues (e.g. light- 56

ing, transparency and textures). However, not all integral sur- 57

faces are intrinsic. They highly depends on the selection of the 58

seeding position and the shape and orientation of the seeding 59

curve. Generating good seeding curves that can lead to expres- 60

sive surface representation of the flow is still a challenging task. 61

With the computed A and its gradient information, we develop 62

a simple yet effective seeding curve generation strategy. In par- 63

ticular, we select a candidate seed pc that has the smallest |∇A | 64

value. Let us denote the A value at pc by g. Next, we gener- 65

ate a seeding curve starting from pc and guided by the curva- 66

ture field [41], whose points have A values falling in the range 67

[g−δ ,g+δ ]. The obtained seeding curve encodes streamlines, 68

the variation of whose A values is not larger than δ . Thus, the 69

computed stream surface from this seeding curve is expected to 70

have small variation. In the meantime, we can select a candidate 71

seed p′c that has the largest |∇A | value, from which we generate 72

a seeding curve guided by the ∇A field. The computed stream 73

surface from this seeding curve is expected to have large varia- 74

tion according to the meaning of the ∇A field (i.e. it highlights 75

the places where A has large changes). Figure 7 shows two sur- 76

faces computed from the two seeding curves constructed using 77

the above two strategies for the flow behind the cylinder data, 78

respectively. The blue surface was generated from a seeding 79

curve with small variation of A values along it, which high- 80

lights the boundary of a small vortex bundle next to the cylin- 81

der object. In contrast, the red surface was generated from a 82

seeding curve with large variation of A values. This surface 83

exhibits rich and varying flow behaviors around the boundaries 84

of various vortices. 85

Fig. 7: Comparison of two strategies of seeding curve generation. The red
surface is constructed from a seeding curve derived using the small variation
strategy, while the yellow is from a seeding curve derived using the large vari-
ation strategy. The seed of seeding curve for the blue surface is located inside
the bundle, where its |∇A | value is small, i.e., the A values along this seeding
curve are almost constant. In contrast, the seed position of the seeding curve
for the red surface is located near the boundary of the domain, where the |∇A |
value is large, and the variation of the A values on this seeding curve is also
large.

5.1.4. Visualizing Particle-based Data Aided by A 86

In addition to applying the accumulation framework to the 87

mesh-based vector field data, we also utilize it to aid the vi- 88

sual exploration of the particle-based flow data. Different from 89

the previous examples where the integral curves are computed 90
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to depict the trajectories of mass-less particles. The particles1

in the particle-based data have mass and their trajectories need2

not be the integral curves of the corresponding velocity field.3

Nonetheless, the accumulation framework still applies. In this4

case, the accumulated value of a particle indeed describes the5

overall attribute behavior of the particle. Figure 8 shows an6

A field computed based on the change of the moving direc-7

tion (i.e. a8) of the particles produced by a dam-breaking sim-8

ulations computed using the position-based fluid method [42].9

From the result we see that particles that hit the boundary have10

larger change of moving direction, as highlighted by the arrows11

Fig. 8: Visualization of an A field derived from a dam-breaking particle based
simulation. Blue means the change of particle moving direction is small, while
red mean large. It shows that the particles that hit the boundary have larger
change of moving direction, as highlighted by the arrows.

5.2. An Informal Study of Relation Among Attributes12

In this section, we conduct an informal study of the relation13

among a number of selected geometric characteristics of the14

integral curves and their corresponding flow properties.15

16

Arc-length vs. velocity magnitude It is not surprising that17

these two properties are directly related, as the arc-length of18

each segment of an integral curve is determined by the length19

of the vector value at the starting point of this segment scaled20

by the integration step size, i.e., scaled velocity magnitude.21

22

Winding angle vs. curl Figure 9(a-c) shows a comparison of23

two A fields computed by accumulating the change of the flow24

direction, i.e., winding angle (top) and curl (bottom) for some25

2D flows, respectively. As can be seen, they exhibit almost26

identical patterns in the steady case (a-b). This is because curl27

quantifies the amount of rotation of the flow, i.e., twice the an-28

gular velocity in 2D, at a point in the flow domain, while the an-29

gle difference of the two vectors at two consecutive points along30

integral curve measures the amount of turning of this curve. If31

these two points are infinitely close, this angle change will tend32

to be the curl with the difference of a scale factor. Nonetheless,33

in general the curl-based A fields tend to be smoother than the34

winding angle based A fields. This is because the curl at any35

given integration point is obtained via interpolation during the36

accumulation, while the angle difference between flow vectors37

is estimated via the angle change of the orientation of the two38

consecutive line segments of the integral curve, which is subject39

to numerical error. However, curl-based A fields may not be 40

able to capture some discontinuity of the geometric behaviors 41

of the integral curves. As shown in Figure 9(c), the cusp-like 42

behavior of pathlines (highlighted by the arrows) is not captured 43

by the curl-based A field. This is because this cusp-like behav- 44

ior corresponds to sharp angle (i.e., π) change which makes 45

the flow directions before and after the cusp pointing to almost 46

opposite directions, i.e., they are almost co-linear. Thus, the 47

discrete curl computation that is perform while cross product 48

computation will return zero or a very small value. Nonethe- 49

less, the relation between curl and the change of flow direction, 50

as well as relation among other vortex identification criteria, 51

such as λ2 and Q, should be systematically studied to solve the 52

problem of the current lack of a unified definition of vortices. 53

(a) (b) (c)

Fig. 9: Comparison of the A fields computed by accumulating the curl (bottom)
and the change of the flow direction (top), i.e., winding angle, respectively. (a)
shows the A fields of a synthetic 2D steady flow. Their corresponding edges
are in (b). (c) shows the A fields of a 2D force duffing system.

FTLE approach vs. accumulating flow vectors along path-
lines In addition to accumulating the scalar quantities along
the integral curves, we can accumulate vector-valued proper-
ties. The resulting A field is then a vector field. We use this
vector-valued accumulation to study the relation of the FTLE
computation and a derived scalar field computed from an A
field by accumulating the flow vectors scaled by the integration
step size along integral curves. Assume a forward accumula-
tion is considered, i.e., t > 0 in Eq.(1), the resulted vector is
an orientation vector that points from the starting point to the
end point of the integral curve [11] based on vector calculus,
denoted by VSE(x) = ϕ

t0+t
t0 (x)−ϕ

t0
t0 (x) based on the notion of

flow map [27]. We store this accumulated vector to the cor-
responding seeding point of the integral curve, resulting in a
vector-valued version of the A field. It is not difficult to verify
that

F =
dVSE(x)

dx
=

dϕ
t0+t
t0 (x)
dx

− I2 (3)

where dVSE (x)
dx denotes the gradient of the vector-valued A field, 54

dϕ
t0+t
t0

(x)
dx denotes the flow map deformation, and I2 is an 2× 2 55

identity matrix. We then compute st
t0(x) =

1
t ln

√
λmax(G), 56

where G = FT F–a Cauchy tensor and λmax is the maximum 57

eigen-value of G. This gives rise to a scalar field that seems to 58
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-0.02

0.56

-0.41

0.56

-1.132

0.787

-0.153

0.784

(a) (b)

Fig. 10: Comparison of the FTLE fields (top) and a derived fields (bottom) from
the A fields–vector fields defined by VSE for the double gyre flow (a) and the
force duffing system (b).

have similar patterns to the corresponding FTLE field comput-1

ing using the same time window according to Eq.(3). Figure 102

provides the comparison of the original FTLE fields (top) and3

the derived scalar fields (bottom) from VSE for a number of 2D4

unsteady flows. This indicates that the attribute that quantifies5

the difference from the starting point to the end point of an inte-6

gral curve encodes the information of flow separation. Nonethe-7

less, the accumulation of vectors using direct vector summation8

may lead to degeneracy. For instance, accumulating tangent9

vectors along a closed integral curve results in a zero vector.10

Therefore, a more appropriate accumulation may be to separate11

the accumulation of the direction and magnitude components,12

which may require further investigation.13

Similarly, one can use this above accumulation to verify the re-14

lation among other vector quantities, such as the difference vec-15

tor between two consecutive flow vectors along integral curves16

and the acceleration of the flow. In addition, the Jacobian of17

the vector field–an asymmetric tensor [43], may be accumu-18

lated along the integral curves, which could provide additional19

insights into the general deformation of the flow particles along20

their paths. We will leave the detailed discussion of these accu-21

mulations to a future work.22

23

What attribute(s) to accumulate? Based on the existing re-24

sults in the literature, we observe that if the goal is to study25

the transportation behavior of the flow or the variation of the26

state of the particles along their paths, then the physical proper-27

ties are typically selected [36]. On the other hand, for the inte-28

gral curve dissimilarity computation, their geometric character-29

istics are usually considered over their physical properties [30].30

However, this should not be treated as a general rule, as demon-31

strated by a recent work [28] that the physical properties can32

also be used to define the distance between integral curves.33

In addition, different local characteristics may be related to each34

other by physical principles [8]. Nonetheless, we admit that35

given certain flow behaviors of interest, there could have more36

than one characteristic to measure it, and the A fields that are37

computed from different characteristics may encode overlap-38

ping flow information. For the specific applications, selection39

of the appropriate characteristics deserves a detailed and com-40

prehensive discussion as provided in [8], which is beyond the41

scope of this work.42

(e) Combination of a dynamic center, source, and saddle

previous positions

previous positions

previous positions

(a) A dynamic center (b) A dynamic saddle

(c) A dynamic attractin focus (d) Pair of dynamic source and saddle

Fig. 11: The |∇Φ| fields based on streaklines for a number of synthetic unsteady
flows.

5.3. Extension to Non-integral Curves – Streak Lines 43

Our accumulation framework for in- 44

tegral curves can be extended to 45

other geometric curves derived from 46

the vector fields, such as streak lines. 47

A streak line, s̃(t), is the connection 48

of the current positions of the par- 49

ticles, pti(t), that are released from 50

position p0 at consecutive time ti. 51

Since the meaning of accumulating 52

physical attributes along a streak line 53

is yet to be clarified, we concentrate on the local geometric char- 54

acteristics, such as the curvature or the change of the streak line 55

direction. To reduce the memory overload, we limited the num- 56

ber of particles released for each streak line to 200. This may 57

affect the smoothness of streak lines depending on the time win- 58

dow for the computation. To handle boundaries, we simply ter- 59

minate the computation of a streak line once any of its particles 60

hit a boundary. The inset shows the result for the Double Gyre 61

flow. From this result, we notice two edge segments in both the 62

A field (top) and the |∇A | field (bottom) (highlighted by the 63

arrows). With a closer look, we find that these two edge seg- 64

ments correspond to the paths of the two oscillating centers. To 65

further verify our conjecture, we perform accumulation along 66

streak lines derived from a number of synthetic unsteady vec- 67

tor fields that possess various moving singularities. Figure 11 68

shows the results. Not surprisingly, the highlighted ridges in the 69

|∇A | fields of these examples indeed correspond to the paths 70

of the singularities. 71

Why the A field computed based on streak links reveal the sin- 72

gularity paths, while the one based on the pathlines cannot? To 73

explain this, let us consider a pathline starting at position x0 74

at time ti, which defines a flow map φ t
ti(x0). Once it moves 75

away from x0, information about what happens at x0 after ti is 76

not encoded in that pathline. In contrast, a streak line starting 77
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from x0 and perceived at time t j(> ti) is a collection of parti-1

cles that are released at x0 from ti to t j. Therefore, it naturally2

encodes the temporal variation of flow maps passing x0 after ti.3

As we already showed before, the moving of the singularities4

will cause the sharp change in the direction of integral curves.5

This abrupt geometry change is captured by the accumulation6

of streak line. Nonetheless, we believe additional effort should7

be made to provide a more rigorous interpretation of the pat-8

terns revealed in the streak line based A fields.9

5.4. Comparison with the Eulerian Accumulation10

To some extent, the above Lagrangian accumulation framework11

allows us to inspect the aggregated (or overall) behaviors of12

particles during their advection (especially in the unsteady set-13

ting). In the meantime, we can accumulate (or aggregate) the14

attribute values measured at the fixed locations but over time15

to obtain the overall information of the flow at those locations.16

This scenario shares some similarity with the way of how differ-17

ent weather measurements are collected at those fixed stations.18

We refer to this accumulation the Eulerian accumulation.19

Figure 12 (a) shows the Eulerian accumulation results of a num-20

ber of attributes for the 2D flow behind cylinder data. Most of21

these attributes are relevant to the vortical behaviors of the flow.22

As the vortex street pattern behind the cylinder in this flow is23

well known (which is also depicted by the texture image of the24

original flow minus the ambient component), we can clearly ob-25

serve that the obtain A fields all highlight the regions where the26

vortices sweep through. In particular, the regions highlighted27

by the accumulation of acceleration magnitude, λ2 and the de-28

terminant of the Jacobian clearly highlight the places that the29

vortex centers go through, which induce two tails in the later30

part of the domain (highlighted by the arrows). In contrast, the31

Lagrangian accumulation of the same attributes (Figure 12 (b))32

does not provide this overall aggregated information of vortex33

regions but rather it highlights the oscillating behaviors of the34

individual vortices.35

6. Conclusion36

In this work, we revisit the Lagrangian accumulation frame-37

work for the vector field data exploration. Especially, we pro-38

vide an in-depth and thorough discussion on the properties of39

the derived A fields based on the accumulated attributes along40

integral curves. In particular, we study the discontinuity ex-41

hibiting in the A fields and analyze its relation to the flow42

structure. We conclude that the discontinuity structure in the43

A fields is aligned with the flow direction and can reveal ad-44

ditional discontinuous behaviors in the flow characteristics that45

cannot be represented by the conventional flow structure. We46

also point out that the selection of the integration time in the47

computation of A may have great influence to the patterns in48

A , which is similar to the computation of the FTLE field of the49

flow. Properly choosing the integration time can reveal different50

local (or short-term) and global (or long-term) flow behaviors,51

respectively. Based on these new insights, we further demon- 52

strate how to apply A fields to achieve a number of enhanced 53

flow data visualizations and explorations. To demonstrate the 54

flexibility of the accumulation framework, we extend it to the 55

study of streak line behaviors, which enables us to discovery in- 56

teresting relation between the geometric discontinuous behav- 57

iors of streak lines and the paths of moving singularities. Fi- 58

nally, we introduce the Eulerian accumulation that aggregates 59

information at fixed locations over time, which enables us to 60

study the aggregated behaviors of the flow in a different way 61

from the Lagrangian accumulation. 62

We believe the accumulation framework and the obtained A 63

fields representation provide a valuable means to derive aggre- 64

gated information to provide an overview of the flow behavior 65

and to support various flow exploration tasks. As noted by an 66

expert, the accumulation framework “is relatively straightfor- 67

ward; it is conceivable that application scientists would adopt 68

this technique. I make a point of stating this, since some tech- 69

niques are so convoluted that it seems inconceivable that end 70

users would adopt them; this work is not in this camp.” 71

Limitations and future work However, there are a number 72

of limitations that the user should be aware of. First, even 73

though we have shown that choosing different window sizes 74

for the accumulation may be employed to generate various vi- 75

sualizations, the selection of an appropriate window is highly 76

application-dependent, which may influence both the computa- 77

tional cost and the revealed patterns. Similarly, the sampling 78

strategy could affect the information that can be captured by 79

the A fields. Second, during the accumulation, the character- 80

istic values may cancel each other. For instance, if one accu- 81

mulates the change of the flow direction along a symmetric in- 82

tegral curve that has the behavior similar to a sine function, the 83

resulted value can be zero. Third, the discussed accumulation 84

is also a dimensionality reduction process (i.e. reducing the 1D 85

information into a single value), which will surely result in in- 86

formation loss. However, this information loss and a solution 87

to reducing it have not been carefully discussed, which we plan 88

to investigate in the future. 89
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