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ABSTRACT

This work proposes to analyze the time-dependent characteristics
of the physical attributes measured along pathlines derived from
unsteady flows, which can be represented as a series of time activity
curves (TAC). A new TAC-based unsteady flow visualization and
analysis framework is proposed. The center of this framework is a
new event-based distance metric (EDM) that compares the similar-
ity of two TACs, from which a new spatio-temporal, hierarchical
clustering of pathlines based on their physical attributes and an
attribute-based pathline exploration are proposed. These techniques
are integrated into a visual analytics system, which has been applied
to a number of unsteady flow in 2D and 3D to demonstrate its utility.
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1 INTRODUCTION

Vector field visualization is a ubiquitous technique that is em-
ployed to study a wide range of dynamical systems. Many effec-
tive approaches have been developed to visualize such complex
data [6, 11, 17, 19]. Among these techniques, the geometric-based
approaches [6, 14] are commonly applied due to their intuitive repre-
sentation of flow behavior. Examples of geometric-based techniques
include various integral curve/surface based representations and
integral curve clustering that concentrate on the geometric character-
istics of the flow (e.g., the shape or curvature of integral curves).
Previous work and limitations. However, the geometric repre-
sentation of the flow need not provide sufficient representation of
the underlying physical characteristics. For example, vector field
topology [10], an abstract representation of the geometric charac-
teristics of steady flow, only encodes hyperbolic features, such as
fixed points [18, 23] and hyperbolic periodic orbits [3, 22, 27] in
the flow. Other physically relevant information, such as vortices,
shearing, etc., are not always captured [31]. Similarly, clustering
methods that select integral curves to ensure sufficient spatial cov-
erage and to reduce cluttering typically do not consider physical
importance. Second, a geometric representation may not intuitively
reveal the physical behavior of the flow, as shown by Zhang et
al. [32]. In Figure 1(a), the red and purple pathlines are both flat
but have rather different physical characteristics (Figure 1(b)). To
incorporate physics into the visualization of unsteady flow, Zhang et
al. [32] introduced a Lagrangian accumulation framework that can
be used to characterize integral curves by inspecting their respective
overall attribute behaviors (i.e., each integral curve is assigned a
value by accumulating the values of an attribute of interest along
the curve). That technique was inspired by the pathline attributes
introduced by Shi et al. [20]. In the meantime, Lee et al. proposed
a visualization framework to analyze time-varying data sets with a
time activity curve (TAC) based distance field [12], which is used to
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TAC 3: Outside center region
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Figure 1: Clustering result of the 2D cylinder flow using attribute Q
reveals a three-layered configuration of the vortex system (pc = 100).
Pathlines sampled along a line passing the center of a vortex (a) and
their corresponding TACs (b). The TAC (red) of the pathline seeded
in the vortex center decreases monotonically over time, indicating
the diffusion of the concentrated vorticity, which gradually increases
the vorticity in the outer regions of the shedded vortices (TACs 2-4).
TAC 5 corresponds to the pathline seeded outside of vortex region,
which exhibits stable characteristic. (c) The two iso-contours (blue and
green) with Q values of 17 and 24, respectively, cannot fully capture
the vortex configuration. (d) TAC profiles of our clustering results.

highlight features. TACs have also been studied in other scientific
visualization problems [7, 9, 25, 28–30]. The existing research looks
at the overall (or global) characteristics of attributes, which may
not capture all of the relevant characteristics, e.g., the diffusion of
Q during the advection of vortices over time (Figure 1), due to the
suppression of local information.

Our contributions. To incorporate more detailed physics into
the analysis and visualization of unsteady flow, we propose a novel
visual analysis framework based on the temporal behavior of local,
physical attributes of interest measured along individual pathlines.
Similar to Lee et al. [12], we refer to the temporal profile of the
attribute along a pathline as time activity curve (TAC), specifically a
Lagrangian TAC. Unlike Shi et al. [20] and other similar methods
that also compute the pathline attributes, our framework takes into
account the arbitrary movement of the observer. That is, the physical
properties are computed from the new instantaneous vector fields
after applying the optimal reference frames, which achieves a better
alignment between physical features and the geometric representa-
tion of the flow, as demonstrated in [8]. The benefits of analyzing the
flow behavior based on TACs are two-fold. First, they are 1D plots
that are independent of the flow dimension (i.e., applicable to both
2D and 3D data). Second, the geometric characteristics of TACs
(e.g., ascending, descending, peaks, valleys, etc.) reveal the interac-
tion of flow particles with physical features over time. This enables
us to explain the geometric characteristics of the corresponding
pathlines and vice versa.

By utilizing the advantages of analyzing TACs, We introduce
a new spatio-temporal, hierarchical clustering of pathlines based
on their respective TACs and a TAC-based pathline selection and
exploration. Central to these operations is a comprehensive dis-
tance metric for the comparison of two TACs, which we refer to
as an Event-based Distance Metric (EDM) that incorporates the
correlation of pair-wise TACs and the spatio-temporal Euclidean
distances between events (Section 3.1). We develop a visual explo-
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Figure 2: (a) An example TAC with three events. ts1 and ts2 are two
extrema. (b) An example of identifying temporal cuts for temporal
clustering. Cuts are selected at the maxima of the density curve.

ration system that integrates the aforementioned TAC-based analysis
and exploration techniques with a modified edge-bundling visualiza-
tion of TAC clusters. We have applied our TAC-based exploration
system to a number of 2D and 3D unsteady flows. Our framework
effectively reveals the two-layer configuration of a vortex and its
decay over time in vortex shedding (Figure 1), which is difficult to
reveal via conventional methods. We also facilitate interpretation of
the temporal behavior of a 2D vortex ring, including its interaction
with a wall and its breakdown.

2 VECTOR FIELD AND TAC BACKGROUND

Consider a spatio-temporal domain D =M×T where M ⊂ Rd is
a d-manifold (d = 2,3) and T ⊂ R, a general vector field can be
expressed as an ordinary differential equation (ODE) ẋ=V (x, t). For
an unsteady (or time-dependent) vector field V (x, t), the trajectory
of a particle starting at x0 and at time t0 is called a pathline, denoted
by xx0,t0(t) = x0 +

∫ t
0 V (xx0,t0(τ), t0 + τ)dτ . Given a steady vector

field v, its spatial gradient ∇xv is referred to as its Jacobian, denoted
by J. From V and J, a number of local physical attributes of the flow
can be derived [2], including kinetic energy, vorticity, λ2, Q, and
local shear rate, which are used in this work.
Definition of TAC. Given a local attribute A, a Lagrangian TAC
along a pathline C of a particle, seeded at x at time t, can be ex-
pressed as ΓA,C [i] =A(C (x, ti), ti)|i= 1,2 . . .n, where t1, t2 . . . tn are
the sample times within the time window T ⊂ T and C (x, ti) is the
location of x on the pathline C at time ti.

For simplicity, we denote a time activity curve as Γ = {Γ[i]|i =
1,2 . . .n} where Γ[i] is the local attribute value at time ti. Figure 2(a)
illustrates a TAC where the x axis indicates time indexes and the y
axis shows the local attribute values at the corresponding times. The
length of a TAC is the number of values in the TAC, indicating the
lifespan of the corresponding particle.
TAC Decomposition. To better describe the behavior of a TAC and
measure the difference between TACs (Section 3.1), we perform a
decomposition. Given a TAC Γ (Figure 2(a)), the decomposition sub-
divides Γ into a sequence of contiguous, non-overlapping sub-TACs,
Γ′i, i.e., Γ = 〈Γ′1,Γ′2, ...,Γ′z〉 (e.g., Γ = 〈Γ′1,Γ′2,Γ′3〉 in Figure 2(b)).
Each sub-TAC consists of exactly one primitive trend, which can be
either stable, ascending or descending, and each pair of two neigh-
boring sub-TACs have differing primitive trends. The position that
splits two neighboring sub-TACs is called a split point ts (e.g., the
extrema ts1 and ts2 in Figure 2(b)). These split points will be used for
the later temporal clustering (Figure 2(b)). In our implementation,
we simply apply 1D Morse decomposition [5] to generate a number
of sub-TACs for each TAC.

3 TAC-BASED FLOW EXPLORATION FRAMEWORK

Our framework starts with computing densely placed pathlines in
the flow. Depending on the attributes of interest, the corresponding
TACs are derived from the obtained pathlines and segmented into
multiple time intervals. Next, a hierarchical clustering is performed
based on the characteristics of the entire TACs (Section 3.2). Based
on the global clustering result, a hierarchical temporal clustering of
TACs is performed to capture the level-of-detail characterization of
their temporal behavior (Section 3.2.1).

3.1 TAC-based Distance Metrics
To assist the spatio-temporal clustering of TACs, we first describe
our distance metric for TACs. To accurately compare the difference

in the characteristics of two TACs, the distance metric must take both
the temporal trends and the magnitude of TACs into account. The
traditional distance metrics, such as the Euclidean distance and the
Pearson correlation coefficient, concentrate on either the trend or the
magnitude of the TACs and cannot satisfy our needs. Another metric
for measuring the similarity of two time series is Dynamic Time
Warping (DTW) [12]. DTW considers both shift and deformation
of the time series. However, the time stamp for each sample in the
TACs has specific meaning, which requires us to align the TACs
based on the time stamps, making DTW not suitable in our cases.

To address the limitations of the existing metrics, we introduce
a new distance metric, called the Event-based Distance Metric
(EDM). Based on the TAC decomposition discussed earlier, we
define the distance between two TACs Γ1 and Γ2 as the simi-
larity of the corresponding events detected from Γ1 and Γ2, i.e.,
Γ1 = 〈Γ1

′
1,Γ1

′
2, ...,Γ1

′
k〉 and Γ2 = 〈Γ2

′
1,Γ2

′
2, ...,Γ2

′
k〉. Our Event-

based Distance Metric (EDM) distance is defined as follows:

Dedm(Γ1,Γ2) =
k

∑
i=1

(1+Pc×Dcorr(Γ1
′
i,Γ2

′
i))×De(Γ1

′
i,Γ2

′
i) (1)

Dcorr(Γ1,Γ2) = 0.5− cov(Γ1,Γ2)

2σΓ1 σΓ2

(2)

where cov is the covariance and σΓ is the standard deviation of Γ.

De(Γ1,Γ2) =

√
n

∑
i=1

(Γ1[i]−Γ2[i])2 (3)

In the above definition, De(Γ1,Γ2) represents the Euclidean
spatial distance between sub-TACs Γ1

′
i and Γ2

′
i. De(Γ1,Γ2) ad-

dresses the challenges where TACs exhibit similar trends but
with different magnitudes. Dcorr(Γ1,Γ2) measures the global cor-
relation between TACs Γ1 and Γ2. If Dcorr(Γ1,Γ2) = 1, then
(1+Pc ×Dcorr(Γ1

′
i,Γ2

′
i)) = 2, which means Γ1 and Γ2 have op-

posite trends. In contrast, if Dcorr(Γ1,Γ2) = 0, Γ1 and Γ2 have the
same trend and the value of the first term is 1. Dcorr(Γ1,Γ2) aims
to resolve the ambiguity where Γ1 and Γ2 have similar Euclidean
distance, but different correlation distance relative to Γbase. Pc rep-
resents a user-assigned importance for the spatial difference and the
global correlation. The higher value of Pc, the more weight given to
the global correlation. By default, we set Pc = 1.

We use multiplication instead of addition to combine De and
Dcorr in Eq. (1) due to the relation between the two terms, and their
value range difference. The first term is equal to 1 when the two
TACs contain similar trends. In this case, the distance between
two TACs is completely based on the second term (i.e, Euclidean
distance). If the two TACs have opposite trends, then the distance
between the TACs is expected to be large. By multiplying, we
magnify the second term by a maximum of two when the TACs have
inverse trends. EDM requires linear time to compute, and thus, can
be applied to large data sets.

Note that EDM requires that Γ1 and Γ2 have the same num-
ber of sub-TACs, and the lengths of two corresponding sub-TACs
Γ1
′
i, Γ2

′
i are equal. Consider Γ1 = 〈Γ1

′
1,Γ1

′
2, ...,Γ1

′
z〉 and Γ2 =

〈Γ2
′
1,Γ2

′
2, ...,Γ2

′
k〉, z > k. To ensure Γ1 and Γ2 have equal length,

we apply the split points of Γ1 to Γ2 as it enables to capture the
detailed correlation of the two TACs in a finer temporal partitioning.

3.2 TAC-based Clustering

Global clustering. In order to provide different levels of detail for
flow behavior w.r.t. the local attributes, we perform the clustering of
TACs using the new distance metric over all temporal samples, cou-
pled with the popular agglomerative hierarchical clustering (AHC).
The linkage type used in this work is the complete linkage since
it is better for finding compact clusters of approximately equal di-
ameter [4]. To reduce the traditional cubic time complexity, we
implement the parallel, locally-ordered AHC proposed by Walter et
al. [1], which runs in sub-quadratic time.

3.2.1 TAC-based Temporal AHC
Two TACs that belong to two clusters globally may possess local
segments having similar behavior. See Figure 2(b) for an example.



To capture this detail, we propose a hierarchical clustering algorithm
in the temporal dimension, i.e., a temporal AHC.
Time interval segmentation of TACs. To study TACs in a level-of-
detail fashion, we apply time interval segmentation to a group of
TACs. The time intervals that segment TACs should preserve TAC
characteristics. In other words, one primitive trend of a TAC should
not be segmented into two time intervals, which causes fragmen-
tation. As described in Section 2, each TAC can be decomposed
into a number of sub-TACs, corresponding to a number of tempo-
ral segments, as shown in Figure 2(b). However, for a group of
TACs, it is not guaranteed that the segment split points are identical
at time. To address this, we utilize a 1D Gaussian kernel density
estimation (KDE). Specifically, we first identify the split points for
each TAC. Let x1,x2, ...,xN be the numbers of split points at the
time location i = 1,2...N. We estimate a density curve (Figure 2 (b))
using the univariate fixed bandwidth kernel estimator [21] defined
as: f (x) = 1

NH ∑
N
i=1 K( x−xi

H ), where K(x) = 1√
2π

e−x2/2 is the Gaus-
sian kernel, and H is the width of the kernel. The optimal cuts are
selected as the local maxima of the estimated density curve (Figure 2
(b)). Selection of the value of H is important in KDE as it can make
the density estimate smoother or noisier. In our experiment, we
found that setting H to 1 enables us to capture a reasonable number
of cuts for the later temporal clustering.

The temporal cuts obtained from the above KDE segment the
entire time period T into a number of intervals of varying length,
referred to as T = 〈T1,T2, ...,Tm〉. In this way, all TACs are seg-
mented by these cuts which attempt to preserve the most common
characteristics of all TACs (Figure 2(b)).
Temporal hierarchical clustering After performing the temporal
partitioning and obtaining the local time intervals, we now perform
AHC within each interval. We apply the distance metric proposed in
Eq. (1) for temporal clustering.

Assigning the cluster number for each time interval is difficult be-
cause, on one hand, the number of time intervals in time-hierarchical
clustering varies, while on the other hand, the cluster distances in
different time intervals may be different. To show the consistent
changes across time intervals, the same treatment needs to be applied
uniformly. Therefore, we use the distance threshold ε for the global
clustering to guide the clustering within individual time intervals.
Specifically, the distance threshold εi for time interval Ti is deter-
mined by the time range of the interval, i.e., εi =

|Ti|
|T | ε . In this way,

it is foreseeable that there are more clusters generated in the time
intervals where the TACs behave more diversely, i.e., when TACs
have larger dissimilarities.

The goal of temporal clustering is to build up a hierarchical tree
of the input m time intervals obtained in the previous temporal par-
titioning, i.e., m leaf nodes of the tree, so that the level-of-detail
of a TAC’s behavior can be observed in the temporal dimension.
In contrast to the spatial hierarchical clustering, in which any two
clusters can be selected for a merging operation, in temporal hierar-
chical clustering only two clusters that are contiguous in time can
be merged together, which makes the merging operation simpler. In
our implementation, starting from the initial m leaf nodes, a distance
array D ∈ R(m−1) is created. Each entry indicates the dissimilarity
after a pair of consecutive time intervals are merged into one. D[i]
can be computed as follows.

D[i] = η(Ti)+η(Ti+1)−η(Ti∪Ti+1) (4)
where η(Tk) is the average pairwise dissimilarity within a time
interval Tk, Ti∪Ti+1 is the new time interval obtained by merging Ti
and Ti+1.

η(Tk) =

√√√√∑
|Tk |
i=1 ∑

|Tk |
j=i(Dedm(Γi,Γ j))2

|Tk|(|Tk|−1)
(5)

η(Tk) reflects the compactness of the TACs in the time interval Tk.
The larger the value of η(Tk), the further the TACs in Tk are located
from the centroid.

In spatial AHC, the two clusters with the smallest distance are
selected for merging. Similarly, in temporal hierarchical cluster-

(a) (b)
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Figure 3: Visualization of transition between time intervals. (a) Original
edge-bundling visualization (b) Our modified version. Magnified views
show the transition between two time intervals.

ing, the two time intervals with the smallest dissimilarity changes
are merged together first. In other words, time interval Tk and its
neighboring time interval Tk+1 that satisfies D[k]≤D[i],∀1≤ i≤M,
are first merged together to generate a new time interval Tk +Tk+1
and then removed from the node list. Consequently, a new m− 2
dimension distance array D(m−2) is generated with the remaining
m− 1 nodes. The above merge process is iterated until only one
time interval, i.e., the entire time period, remains as the root of the
temporal hierarchical tree. The height of the temporal hierarchical
tree built on m time intervals is m−1. On the ith level of the tree,
i.e., the height is i, there are m− i time intervals.

3.3 TAC-based Flow Visualization System
We integrate the above clustering technique for TACs and their
exploration into a visualization system. Our system consists of a
number of linked views, including (1) a spatial view for the user to
select region of interest in the space for exploration and to visualize
the analysis result in the flow domain, (2) a TAC view that shows the
clustering result of TACs and supports the user interaction, and (3) an
abstract view that shows the hierarchical tree of the clusters obtained
using AHC. We recommend the readers to watch the accompanying
video for more details about the interface and user interactions of
our system.
Visualize TAC clusters. To visualize TAC clusters, we adapt the
edge bundling technique for parallel coordinate plot visualization
by Palmas et al. [16] with the adjustment at the tail and head of
each cluster (Figure 3(a)) to reduce visual clutter and achieve color
consistency across different time intervals.

To address the visual overlap at two ends of edge bundles (Fig-
ure 3(a)), we offset proportionally to clusters’ size, whose heads
or tails are overlapping. As illustrated by the red arrow in Fig-
ure 3(b), the minimum value of C2 at the tail end is increased and
the maximum value of C3 at the tail end is decreased, eliminating
the overlapping between C2 and C3 while preserving the relative
range size simultaneously. Removing overlapping at the tail of Tk−1
makes the boundaries of source clusters clear. To fully resolve the
connections among time intervals, we visualize both main and minor
sources at the head of a cluster. From Figure 3(b), we can easily
ascertain the transition of clusters between two time intervals.

4 APPLICATIONS OF TAC-BASED EXPLORATION

2D flow behind a cylinder. We first apply our clustering to a 2D
simulation of the flow behind a cylinder with a Reynolds number of
160 [26]. The simulation covers a subset of the spatio-temporal do-
main, [−0.5,7.5]× [−0.5,0.5]× [15,23], where the vortex shedding
is fully formed. According to the domain experts, the core region of
a vortex in this flow has a motion close to that of a rigid body rota-
tion, which helps to preserve the shape of the vortex. However, the
concentrated vorticity in the vortex cores will diffuse due to viscosity
(i.e., friction) and the absence of an external forces to maintain the
rotation [13]. The diffused vorticity will reach the outer layer of
vortices where it will interact with vorticity from other vortices, thus
losing the coherent character. The overall structure of the vortices is
stable due to interleaving and somewhat symmetric configuration of
the counter-rotating vortices.

We choose the first 250 time steps of this simulation and use
uniform sampling in a spatial resolution of 1200×150 to compute
pathlines and measure the attributes along them. As demonstrated
in Figure 1(a), our framework identifies three regions using the
TACs of the Q attribute without significant user intervention: the
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Figure 4: Clustering result of the 3D Cylinder flow based on attribute Q
(pc = 1). (a) Global clustering result. The TAC profiles corresponding
to the two pathline groups at the center location show a shifting,
indicating particles in these two regions exhibit vortex shedding at
different times. (b) Temporal clustering result. The pathlines sampled
at shearing layers (Q < 0) exhibit different behaviors in the second
time interval (i.e., splitting into three clusters)

viscous vortex core where the vorticity is concentrated, the outer
layer of the vortices where vorticity diffuses and grows and the
region outside of the vortices where the flow is almost irrotational.
In addition, the TACs’ visualization in Figure 1(d) informatively
characterizes the attribute behaviors within different flow regions.
Specifically, the decay of the rotational momentum of the vortex core
is clearly depicted by the monotonic decrease of the orange TAC.
In contrast, the traditional iso-contouring (or iso-surfacing in the
space-time domain) has a difficult time depicting this configuration.
For instance, Figure 1 (c) shows two iso-surfaces computed with
two different Q values. Due to the decrease of the Q value from left
to right in space, the selected thresholds may not lead to iso-surfaces
that depict the behavior of vortices in the far right of the flow, whose
Q values may be similar to other regions without a vortex.

To study the detailed behavior of vortices, we sample 5 pathlines
along a line passing through the center of a vortex (Figure 1 (a-b).
Clearly, we see three different types of TAC behaviors: (1) the decay-
ing of the Q value over time along the core (the red TAC/pathline);
(2) the increasing and shifting of the peak Q values of the TACs
corresponding to the pathlines seeded at locations gradually moving
away from the vortex core (blue, green, and orange TACs/pathlines);
and (3) a flat TAC/pathline (purple). Among these TACs, the be-
havior of the TACs in group (2) is interesting. On the one hand,
one can see the correlation of the peak locations of these TACs with
the changing direction (or turning) of their respective pathlines. On
the other hand, the shifting of the peaks indicates the propagation
of the rotational momentum outwardly from the vortex core. The
increase from negative Q values to positive Q values for the green
and orange TACs also associate the shearing layer (Q < 0) with its
corresponding vortex region. Such an integrated exploration cannot
be easily achieved with other methods alone.

2D vortex ring. The second 2D data set simulates a vortex ring
hitting a wall with a Reynolds number of 2000. During the inter-
action, the vortex ring approaches the wall and causes a boundary
layer to appear. As the vortex slides against the wall, the boundary
layer becomes unstable and is lifted up as a secondary vortex, which
in turns lifts up the primary vortex. Our temporal segmentation

T2T1

(a) (b) (c)

Figure 5: Temporal clustering of the vortex ring (pc = 1) using the
vorticity attribute. (a) Pathline clusters in two time intervals. (b)
TAC clusters. The two insets show the spatial segmentation at two
representative times within the two time intervals. (c) One group of
pathlines (green) involved in two vortices (purple) after hitting the wall.

Table 1: Performance of AHC clustering on four datasets

Simulations The Number
of TAC

Time
steps

Running
Time

Flow behind Cylinder 2D [26] 20000 500 48.6s
Vortex Ring [15] 16384 80 12.4s
Flow behind Cylinder 3D [24] 30720 102 30.5s

results using the vorticity attribute are shown in Figure 5. It shows
that our method can detect the moment when the vortex impacts
the wall, and automatically generates a temporal cut at that time.
The clustering results reveal a small curly region (colored in orange)
whose attributes along the pathlines are large at the temporal cut.
These pathlines represent particles that either enter one of the two
vortices or move to the outermost layer and exhibit a decrease in
velocity to zero.
3D flow behind a cylinder. Figure 4 shows the clustering results
using TACs of attribute Q for the 3D flow behind a cylinder [24].
Considering the transitional nature of this flow, we select a seeding
plane near the left boundary (i.e., X =−11) with 64×48 uniform
samples. Pathlines that leave the domain earlier are discarded. The
result with our method (Figure 4 (a)) reveals a temporal shifting in
the Q profiles of the two groups of pathlines that possess similar
geometry characteristics, which is not known before. The detailed
view of the particle advection over time in (a.2) indicates that the
two groups of particles travel in different speed, which explains
the shifting. Figure 4 (b) show the temporal behavior of pathlines
seeded at the shearing layer (Q < 0) of the flow.
Clustering performance: All numerical experiments are carried
out on a PC with an Intel Core i7-3537U CPU and 128GB RAM with
a NVIDIA Quadro 4000 graphic card. The most time consuming
task in the system is the AHC clustering. The detailed average
running time of AHC clustering on three unsteady flow simulations
is reported in Table 1.

5 CONCLUSION

We propose an interactive visualization framework for the analysis
and exploration of unsteady flow based on TACs measured along
individual pathlines. To compare TACs behaviors for clustering, we
introduce the Event-based Distance metric (EDM) to calculate the
dissimilarity of TACs based on their events. This distance metric
enables the development of a hierarchical, spatio-temporal clustering
of pathlines based on their TAC behaviors. We integrate this cluster-
ing framework along with an improved edge-bundling visualization
into an interactive visual exploration system to aid the understanding
of unsteady flows. Our framework has been evaluated on multiple
unsteady flow simulations, and helps domain experts analyze vortex
structure.

There are a few limitations of this work. First, our temporal cut
estimation strategy applies the same cut for all TACs, which may
not be ideal. Second, we have yet to study the dependency of the
temporal clustering on the quality of the global spatial clustering, and
how the noise in the data affects the clustering quality. Finally, our
AHC computation is not optimal and cannot handle large datasets.
In the future, we plan to address these limitations.
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