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Abstract
The design of effective glyphs for visualisation involves a number of different visual encodings. Since spatial
position is usually already specified in advance, we must rely on other visual channels to convey additional re-
lationships for multivariate analysis. One such relationship is the apparent order present in the data. This paper
presents two crowdsourcing empirical studies that focus on the perceptual evaluation of orderability for visual
channels, namely Bertin’s retinal variables. The first study investigates the perception of order in a sequence of
elements encoded with different visual channels. We found evidence that certain visual channels are perceived as
more ordered (for example, value) while others are perceived as less ordered (for example, hue) than the measured
order present in the data. As a result, certain visual channels are more/less sensitive to disorder. The second study
evaluates how visual orderability affects min and max judgements of elements in the sequence. We found that
visual channels that tend to be perceived as ordered, improve the accuracy of identifying these values.

1. Introduction

Given a set of visual objects in a spatial layout, determin-
ing how well they are ordered is an elementary visual task.
Such tasks may be featured in more complex tasks, for in-
stance, visual search (e.g., minima and maxima), anomaly
detection (e.g., an ordered subset among mostly unordered
objects), change detection (e.g., swapping order), correla-
tion identification (e.g., among different visual channels of
glyphs), and others. Chung et al. [CLP∗15] presented a real-
world example where analysts used a visualisation system
to sort multivariate glyphs that encoded a number of event
attributes according to one or two of them, while observing
the other attributes. The authors observed that some visual
channels appeared to give a more ordered impression than
others. This became the main motivation of our work.

Bertin made a connection between orderability of a vari-
able and the orderability of a visual channel used to encode
the variable [Ber83]. While we all agree that there may be
binary grouping of visual channels according to their order-
ability, there has not been any quantitative measure to grade,
or indeed to “order”, the orderability of visual channels. We
anticipate that the orderability of visual channels may likely
be a multi-criteria problem. This work is the first step to-
wards a comprehensive answer to this challenging problem.
In this paper, we present two empirical studies to investigate
two of such criteria. We focus on two research questions in
conjunction with a set of commonly used visual channels:

1. How does red disorder affect the perception of ordered-
ness with different visual channels?

2. How do visual channels affect the judgement of min and
max values for ordered and unordered sequences?

The first research question is concerned with detecting
structural patterns in a visualisation. Orderedness is one of
such patterns, and we investigate this in a sequence of ele-
ments encoded using different visual channels. The second
research question explores how such sequences impact the
judgement of minimal and maximal values. This is a typical
task in many visualisation processes, for example, in dis-
covering preferable options or filtering out undesirables. We
conducted two empirical studies formulated around these
two research questions. Our results show that the choice of
visual channels affects the performance of both tasks.

2. Related Work

Perceptual Studies in Visualisation. A great deal of re-
search has studied the perception of visual channels such
as position, length, and colour, and their impact on effec-
tive data visualisation [CM84,War08b]. Healey et al. [HS12]
investigate the perceptible boundary of visual elements
based on pixel resolution and viewing distance. MacKin-
lay [Mac86] provides a technical framework to automat-
ically design effective visualisation of data encodings of
quantitative, ordinal, and categorical information. House et
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Figure 1: The same sequence using value and size.

al. [HBW06] describe an experimental framework to opti-
mise visualisation designs using human-in-the-loop interac-
tion. Their approach is adopted to select optimal textures for
layered surfaces [BHW05]. Our work focuses on quantify-
ing the orderability of visual channels when encoding a se-
quence of data values, an aspect not covered by the literature.

Crowdsourcing Graphical Perception. Online crowd-
sourcing experiments present an attractive option for eval-
uating the perceptual challenges in visualisation design due
to its low cost and increased scalability [HB10]. Stud-
ies deployed on these platforms include semantic colour-
ing [LFK∗13], treemap design [KHA10], and human compu-
tation algorithms [GSCO12]. The perception of correlation
when displayed using spatial position has also been exten-
sively studied [HYFC14, KH16] in this way. Our study also
uses a crowdsourcing platform to collect this data to test the
perception of order in a sequence.

Glyph-based Visualisation. Glyphs are visual objects that
map multiple data values to visual features such as size,
shape and position [War08a]. They are an effective approach
to visualise multi-dimensional data [BKC∗13] in many
disciplines such as biological experiments [MPRSDC12],
sports [LCP∗12], and flow visualisation [HLNW11]. The po-
sitioning of glyphs is typically used to encode spatial infor-
mation [dLvW93] or emphasise an ordering according to key
attributes. As a result, glyph-based visual designs must rely
on other visual mappings, such as size, in order to convey ad-
ditional orderings. Our work closely follows the research by
Chung et al. [CLP∗15], who describe a framework to design
visually sortable glyphs for interactive visualisation. We ex-
tend this contribution by evaluating the orderability of visual
channels through a formal empirical study.

3. Orderability of Visual Channels

Figure 1 illustrates two unordered sequences using value and
size, both perceptually orderable channels [Ber83]. Both im-
pose a universal ordering where we can estimate the magni-
tude of each element to estimate the order of the sequence.
However, it is not clear that both sequence encode the ex-
act same values, leading us to believe that different visual
channels have different levels of perceived orderedness.

3.1. Data Generation

To produce our visual stimuli, we first create synthetic data
sets that model ordered and unordered sequences. We use the

Body Mass Index (BMI) as a base because of its known lin-
ear correlation between the weight and height of a person. To
generate our data sets, we take points along the BMI curve
and map them to the visual channels shown in Figure 2.
Next, we create unordered sequences using a noise-based
approach adopted from signal processing theory [JJS93] to
model sequences with varying levels of disorder.

3.2. Defintion of Disorder

A sequence can be characterised by different degrees of or-
der, ranging from very unordered to completely ordered. We
define unordered sequences as a sequence with a non-zero
amount of disorder. Disorder can be introduced in many
forms. One intuitive method is to swap elements in an or-
dered sequence.

Let xi,x j be two randomly selected data points. The swap
function is defined as:

f (xi,x j,d) =
{

swap(xi,x j) if ||i− j|| ≤ d
null else

(1)

where d ∈ R is the distance between a pair of data points.

Swapping can be translated to noise in a sequence. For
example, consider an ordered sequence of S = [1,3,5,7,9].
When we swap 3 and 7, we create an unordered sequence
S′ = [1,7,5,3,9]. We can rewrite the 2nd and 4th number as
an expected value plus noise, i.e., 7 = 3+4 and 3 = 7−4. S′

is thereby the result after introducing two noise components
+4 and −4 into S.

We control disorder using two parameters: (1) the number
of swaps, and (2) the swap distance between two points. The
level of disorder is measured by applying Pearson’s correla-
tion coefficient η ∈ [−1,1] to S and S′. In this work, we use
only the non-negative range of η . To create a data sequence
with a specific η , we first determine the number of swaps
based on a predefined mapping. We then adjust the swap-
ping distances to obtain the desired η . Through observation
and pilot experiments, we noticed that the perceived ordered-
ness was sometimes indistinct. Therefore, we selected disor-
der levels with a measured perceptible difference: η1 = 1.0,
η2 = 0.97, η3 = 0.95, η4 = 0.90, η5 = 0.78, η6 = 0.71,
η7 = 0.54, and η8 = 0.12.

3.3. Visual Mapping of Elements

Figure 2 shows the visual stimuli used in our experiments.
Given that position is the most effective representation for
conveying an ordering [CM84, War02], our goal is to in-
vestigate the visual channel which is next most orderable.
We analyse this using 1D plot visualisations. Points (or
elements) along the 1D plot are mapped using the visual
channels described by Bertin [Ber83]. In addition to this,
we compare their performance against raw numerical val-
ues representations, which is common practice when reading
data within a table or spreadsheet view.
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(a) Value

(b) Size

(c) Hue

(d) Texture

(e) Orientation

(f) Shape

37.2 38.9 40.3 41.9 43.5 45.1 46.7 48.4 50.1 51.8 53.6 55.4 57.2 59.0 60.6

(g) Numeric

Figure 2: The visual stimuli used in our experiments. Each
1D plot is mapped using the visual channels taken from semi-
ology of graphics [Ber83].

Since perceptual differences along a visual spectrum can
be non-uniform [War08b], we carefully divide each visual
mapping into bins equal to the number of sample points (e.g.,
n = 15) shown in the plot. We choose the maximum num-
ber of samples to be displayed such that the just noticeable
difference (JND) [Ber83] in each visual channel is main-
tained. In the following section, we present our visual map-
ping methods and JND considerations to ensure that each
element within a sequence is visually discriminable.

3.4. Just Noticeable Difference

For each of our encodings, we describe how they are gen-
erated and demonstrate how consecutive elements are above
their respective JND.

Value is mapped to greyscale intensity of each element (see
Figure 2(a)). In order to realise increments of value with a
perceptible difference, we follow previous work on visual
discrimination of intensity [Hei24,War08b]. They show that
human perception can distinguish a 0.5% change in lumi-
nance. The difference in luminance measured in our map-
ping is 7%, which is significantly larger than the JND.

Size is mapped to circle radius (see Figure 2(b)). Previous
work in psychophysics demonstrates that the perception of
size (e.g., area) is logarithmic, and can be effectively mod-
elled using Weber-Fechner’s Law [AR08]:

p = k ln
ri

r j
(2)

where p is the perception between two radii ri and r j. To
control for the JND, we estimate the parameter k = 0.23 by
incrementing the radius until a significantly large difference
is perceived, giving a value of p = 0.048. Vision research
shows that a Weber fraction for circle radius discrimination
is p = 0.025 [WWH98] and therefore above the JND.

Hue is mapped to the colour (from red to blue) of each
element (see Figure 2(c)). To control for hue, we measure
the colour difference between two steps of hue values in
CIE-L∗uv colour space. The distance between two colours
(L1,u∗1,v

∗
1) and (L2,u∗2,v

∗
2) is measured by:

∆E∗Luv =
√

(L2−L1)2 +(u∗2−u∗1)
2 +(v∗2− v∗1)

2 (3)

where ∆E∗Luv = 1 is an approximation to a JND [War08b].
We set a distance of ∆E∗Luv = 10 in our encoding which is
conservatively larger than the JND.

Texture is mapped to grain (or frequency) of the texture
(see Figure 2(d)). Ware and Knight [WK92] refer to this
as contrast, and is one of the dimensions of texture along
with size and orientation. While there has been previous
work on generating visually discriminable textures (e.g.,
[BHW05, CR68, HBW06]), they do not explicitly measure
a perceptible difference. Since texture is perceived as the ra-
tio of white (e.g., the gap separating two marks) and black,
we can use these features to determine a texture difference.
First, we use connected component analysis [HZ04] to de-
tect the amount of black b∈ [0,−1], and the amount of white
w ∈ [0,+1] between each gap. We then calculate the differ-
ence between two textures ti = (bi,wi) and t j = (b j,w j) as:

|ti− t j|= |(b j +w j)− (bi +wi)| (4)

To test for this JND, we performed a pilot test with five par-
ticipants. We showed each participant 54 randomly selected
texture pairs side-by-side on a fifteen inch laptop display,
and asked whether they were equal, or not equal. Participants
could only respond using the keyboard to eliminate move-
ment delays, and we recorded their error rate and response
time. During pilot testing, we found a distance |ti−t j|> 0.01
as an approximate to a JND.

Orientation is mapped to a line rotated between [5◦,175◦]
to avoid ambiguous orientations (Figure 2(e)). A number
of experiments indicate that line orientation discrimination
ranges between [1.06◦,6.44◦] as a factor of length [VVO86].
Our vision is particularly sensitive to changes in orientation
from lines that are vertical and horizontal where a JND is
as small as 0.71◦ [OVV84, VO85]. The orientation between
consecutive elements used in our mapping changes by 11.3◦,
which is significantly greater than this JND.

Shape is mapped to the number of spikes of a star-shaped
glyph (see Figure 2(f)). For our studies, it is important that
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participants can extract the underlying values from our cho-
sen shape encoding. From a restricted shape set, we consid-
ered two designs: (1) elementary shapes (number of sides),
and (2) star shape glyphs (number of spikes).

To measure shape difference, we use image moment
statistics [Hu62] and found that star-shaped glyphs, accord-
ing to this metric, converge to a greater JND. We then per-
formed a second pilot study, which did not find a clear dif-
ference in performance. Participants were slightly more ac-
curate with star-shaped glyphs (Error = 11.11%) when com-
pared to elementary shapes (Error = 12.04%). Therefore, we
chose star-shaped glyphs for our encoding.

4. Experimental Overview

In order to compare the perceptual orderability of visual
channels, we performed a within subject experiment design
to analyse orderability based on two criteria:

• How ordered is it? — we measure the perceived ordered-
ness in a sequence of elements from 1 (unordered) to 5
(ordered).

• Which is smallest? Which is largest? — we assess the
ability to identify whether a target element has the small-
est value, largest value, or neither. Both accuracy and re-
sponse time are measured.

We therefore developed two experiments, one for each
question, which we conducted using Amazon’s Mechani-
cal Turk [HB10,KZ10,LFK∗13] online crowdsourcing plat-
form. Each study followed a similar experimental procedure.
Participants were first introduced to the experiment inter-
face through a video tutorial embedded on the experiment
web page. These demonstration allowed participants to gain
familiarity with the interface prior to the experiment, and
to understand the required task. For each experiment, we
recorded the following details: gender, age group, whether
they were colour blind, and the device they were using. After
the study, each participant completed a qualitative survey:

1. When the sequence of elements are ordered, how difficult
did you find the task? (Easy) 1 - 5 (Hard)

2. When the sequence of elements are unordered, how diffi-
cult did you find the task? (Easy) 1 - 5 (Hard)

3. When the sequence of elements are unordered, how diffi-
cult did you find the task? (Easy) 1 - 5 (Hard)

Participants could provide free form comments as well.

4.1. Interface

We developed the web-based interface using HTML,
Javascript and PHP. The experiment interface consists of a
single view of the visual stimuli, and the question at the top
of the screen as shown in Figure 3. A series of radio buttons
appears at the bottom of the interface indicating the possible
answers. Once a radio button is selected, participants then

confirm their response by clicking the large submit button at
the bottom of the screen, and the next stimuli is presented
in the view. A progress bar is also provided on the top right
corner of the screen. Due to the repetitive nature of the task,
such a visual cue helps participants monitor progress, and re-
duce the risk of a participant rushing to complete the study.

4.2. Pilot Studies

Lab-Based Pilot We conducted a pilot study using five par-
ticipants with the following focus: (1) evaluate interface us-
ability, (2) estimate completion time, and (3) evaluate the ex-
perimental design. For each experiment, there were 168 tri-
als for each condition: 7 visual channels × 8 disorder levels
× 3 repetitions. Repetitions in Experiment 2 corresponded
to the three possible answers of: smallest, largest, neither.
Each trial was randomised for every participant. After each
experiment, the participants gave feedback individually.

Most participants found the interface intuitive to use.
However, some mentioned that the radio buttons were too
small, comment which we addressed by enlarging the but-
tons in the final interface (see Figure 3 for an example).
Since we cannot control the environment of online contribu-
tors (e.g., preventing remote participants, also referred to as
“workers”, from taking long breaks), we designed our exper-
iments with a strong emphasis on objective (2) to minimise
fatigue, and encourage workers continuity towards comple-
tion of the study. During pilot testing, participants felt Ex-
periment 1 was too long (∼45 minutes). On the other hand,
participants felt comfortable with Experiment 2 (∼15 min-
utes). We therefore modified the conditions in Experiment 1
by reducing the levels of disorder from 8 (η1, . . . ,η8)→ 5
(N1, . . . ,N5). To avoid confusion between different disorder
sets we use ηi to refer to the set of 8 disorder levels and Ni
to refer to the set of 5 disorder levels. The new Ni disorder
set includes only those ηi for which the variation was found
significant in our pilot study, meaning: η1 = 1.0, η2 = 0.97,
η4 = 0.90, η6 = 0.71, and η8 = 0.12 .

Mechanical Turk Pilot In order to verify the experimental
updates derived from our initial pilot, as well as gauge the
behaviour of online contributors, we ran a second pilot of 20
participants using Mechanical Turk. This data is not included
in our overall analyses.

Many online platforms such as Mechanical Turk provide
an option to target jobs to skilled contributors only as an
approach to improve the quality of the crowdsourcing data.
We apply this feature in our studies. Each participant can
only perform the study once. The maximum time allowed
for each session is one hour. We found that all participants
finished within time and no further issues are reported.

4.3. Crowdsourcing Consistency

When running crowdsourcing studies, we need to ensure the
worker is engaged with the task. In our pilot, we observed
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Figure 3: Interface for Experiment 1: How ordered is it? Shape is tested in this example.

that this was not always the case and some participants se-
lected the same answer for all stimuli. Previous crowdsourc-
ing studies [CSD∗09] propose the use of consistency checks
to filter out non-invested participants and we propose a set
of checks based on our Mechanical Turk pilot:

• C1. Errors are close to chance (e.g., µ > 0.66).
• C2. The distribution of answers in an experimental task

is close to zero (σ < 0.2). Participants are choosing the
same answer for most questions.

• C3. We check how reliable a user’s answer is for a known
data condition (e.g., an ordered sequence for each visual
channel ) by looking at answer variance.

We use checks C2 and C3 for How ordered is it?. As we
have a range of error values (difference between entered and
correct answer), C1 is not appropriate. For Which is small-
est? Which is largest?, we use C1 and C2 since there is a
right/wrong answer to the task. Approximately 95% of the
data collected passes all our criteria and is included.

5. Experiment 1: How ordered is it?

The goal of our first experiment is to investigate whether
different visual channels affect the perceptual order of a se-
quence of elements. In addition, we hypothesise that the per-
ceived order of different visual channels are more/less sensi-
tive to disorder than others. Such a property can be informa-
tive in improving the performance of various analytics tasks.
We test this hypothesis through an experiment conducted on
Amazon Mechanical Turk. Participants were asked to rate
how ordered a sequence of elements is using 1D plot graphs.
Each 1D plot showed 15 data samples which we mapped us-
ing each visual channel (Section 3.3).

Participants 115 contributors on Mechanical Turk (paid
$1.00) participated in the experiment. Two participants re-
ported they were colour-blind, and their data was discarded.
Another three participants failed our consistency checks, and
were also removed. Therefore, 110 participants (62 male and

48 female) were included in our final analysis. The devices
used were: 49 desktop, 54 laptop, 6 tablet, and 1 phone.

Experimental Design The experiment followed a within
subject design and consisted of seven visual channels, five
disorder levels, and three repetitions (105 trials). At the start
of the experiment, participants completed a training block
of 14 sample questions showing an ordered and unordered
sequence for each visual channel, making a total of 119 tri-
als. To limit any confounding effects of fatigue and learn-
ing, the two blocks of trials were randomised per participant.
To counteract memory, the data set used for each repetition
of a disorder level was generated independently with equal
correlation coefficients to two significant figures. The cor-
relation coefficient measured at each disorder is: N1 = 1.0,
N2 = 0.97, N3 = 0.90, N4 = 0.71, and N5 = 0.12.

For a single trial, we showed participants a 1D plot and
asked them to rate how ordered the elements are using a 5-
point Likert scale that corresponds to 1 (unordered) through
to 5 (ordered) respectively (see Figure 3). After observing
the sequence of elements, participants provided their rating
by clicking on one of the radio buttons below the image fol-
lowed by the submit button. We measured both answer and
response time after each trial, before the next stimuli was
automatically displayed. In order to overcome change blind-
ness, we use an Inter-Stimulus-Interval (ISI) [BBK09] in be-
tween each stimuli. This served for two purposes: 1) to indi-
cate that the stimulus has actually changed, and 2) to ‘reset’
the visual system and remove any possibilities of a previous
stimuli influencing the following one.

5.1. Results

We perform our analysis in two stages. First, we consider
the effect of perceptual orderability based on visual channel
overall, as this is our primary research question. To check for
normality, we ran a Shapiro-Wilk test on each distribution.
We find that the data is not always normally distributed, and
therefore use a non-parametric Friedman’s test with standard
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Figure 4: Correctness (top) and response time (bottom) of
each visual channel in Experiment 1. Significant differences
are listed above each bar, with (mean, median) values indi-
cated below. Error bars show 95% confidence intervals.

statistical level α = 0.05 to determine the statistical signifi-
cance between conditions. Post-hoc analysis was conducted
using Nemenyi-Damico-Wolfe-Dunn test.

We then analyse how visual channel affects perceptual or-
derability under the condition of disorder. When dividing the
data by disorder, we apply a Bonferroni correction, reducing
the significance level to α = 0.01 for this second second-
level analysis. Post-hoc analysis was conducted as above.

5.1.1. Orderability of Visual Channel Overall

Figure 4 shows the mean correctness and response time
results with significant pairwise differences indicated over
each bar. We measure correctness by taking the difference
between the expected orderability rating for a sequence with
disorder Ni and a user’s actual response. Given a disorder
level Ni with i = 1 . . .5, visual channel v, and user’s corre-
sponding response ui,v, we derive correctness as δp = (5−
i+1)−ui,v according to our 5-point Likert scale. We find a
significant difference in both correctness (χ2(6) = 149.05,
p� 0.05) and response time (χ2(6) = 289.61, p� 0.05).

5.1.2. Disorder Sensitivity of Visual Channels

Figure 5 compares the effects of disorder (i.e., measured or-
deredness) to the perceived orderedness under different vi-
sual channels. Our results show that disorder has a signifi-
cant effect on the perceived order (p� 0.01). The significant
differences are shown in Table 1.

5.2. Discussion

Overall Our results show significant evidence that different
visual channels affect the perception of order in sequences.

For example, participants tend to rate a sequence as being
more ordered using value, while other visual channels (e.g.,
hue) are often judged as being less ordered. This suggests
that if a visualisation task involves detecting ordered or un-
ordered patterns, mappings to different visual channels will
lead to different judgements.

Overall, value and texture lead to higher degree of per-
ceived orderedness. Given the encoding for texture we used,
this makes sense as both channels can be viewed as a form of
grayscale. Surprisingly, we find shape to be orderable. How-
ever, using shape also led to increased response time overall
by 1.23s compared to value and texture. Looking at our error
measure, we see that size has a mean and median very close
to zero, meaning that it closely approximates the disorder
present in the data.

If the goal is to detect an ordered pattern, participants re-
spond at least three seconds faster per task with visual chan-
nels of a higher degree of perceived orderedness (e.g., value
and texture) when compared to hue and numeric. However,
if the task is to detect an unordered pattern, participants re-
spond faster using orientation. Since visualisation users of-
ten engage in many trend extracting tasks both within and
across charts, this may improve both performance (e.g., de-
tecting an ordering), and reduce cognitive load depending on
the choice of visual channel used.

Sensitivity to Disorder Looking at the effect sizes of dis-
order (see Figure 5), we observe that the perceived or-
deredness of different visual channels decreases at different
rates. This behaviour is consistent across all visual chan-
nels tested, and that the relationship between measured or-
deredness (i.e., disorder level), and perceived orderedness is
non-linear. There is a common trend in the middle where the
perceived orderedness dips between the measured ordered-
ness N2 = 0.97 and N4 = 0.71 illustrated by the slope of the
curves. For example, shape decreased in perceived ordered-
ness by 1.55 in this range. Comparing this to a visual chan-
nel such as hue, we see a greater difference of 1.74. This
difference indicates that some visual channels (e.g., shape)
are less sensitive to disorder such that viewers may perceive
an ordered pattern that does not exist in the data. Similarly,
other visual channels (e.g., hue) are more sensitive to disor-
der such that viewers are less likely to see an ordered pattern.

We present further comparative analyses by plotting vi-
sual channels against an average curve (dashed line) as
shown in Figure 5. There are two observable clusters above
and below the curve. Our results show that value, texture,
and shape seem to lead to participants to estimate a higher
degree of orderedness than orientation, size, hue, and nu-
meric. We also find that this gap is significant as shown
in Table 1. Notice that for N4, the visual channels that lie
above the average (e.g., value, shape and texture) are signif-
icantly different to those below (e.g., size, orientation, hue
and numeric) indicated by the p-values highlighted in red.
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Figure 5: Measured orderedness (correlation coefficient)
versus perceived orderedness. Points are the perceived or-
deredness for each visual channel given its measured or-
deredness (power scale). Average plotted as dashed line.

The same differences can mostly be seen in N3. At this con-
dition, size and orientation perform closer to the average,
and thus we find this gap becomes less distinct. One inter-
esting observation is that size starts and finishes above and
below the average as measured orderedness decreases. This
result shows that the orderability of size is less sensitive to
low levels of disorder, but more sensitive to high levels of
disorder, which makes size a good visual channel for detect-
ing both ordered and unordered patterns.

For very ordered and very unordered sequences (e.g., N5
and N1), different visual channels lead to almost the same
judgement. Participants mostly rate the order of such se-
quences to be 1 (unordered) and 5 (ordered) respectively,
independent of the visual channel used. We therefore found
fewer significant differences. At such levels of measured or-
deredness, the decision becomes a binary process (e.g., or-
dered, or not ordered). Hence, we expected such results to
appear in our data. Based on our findings, we conclude that
human’s judgement of orderedness is sensitive to the choice
of visual channel. The amount of difference depends on the
level of orderedness. We look at how this may affect the per-
formance of a visual task in Experiment 2.

6. Experiment 2: Which is smallest? Which is largest?

The goal of our second experiment is to investigate how dif-
ferent visual channels affects the judgement of min and max
values in a sequence of elements. In particular, we hypothe-

Table 1: Experiment 1 results. Post-hoc p-values of disorder
vs perceived orderedness for different visual channels. Sig-
nificant differences are highlighted in red using a Bonferroni
corrected α = 0.01.

Pair-wise test Disorder
N5 N4 N3 N2 N1

Value - Shape 0.86 0.97 0.53 0.99 0.00
Value - Texture 0.76 0.83 0.96 0.49 0.77
Value - Size 0.98 0.00 0.00 0.84 0.98
Value - Orientation 0.40 0.00 0.00 0.05 0.00
Value - Hue 0.07 0.00 0.00 0.00 0.00
Value - Numeric 0.00 0.00 0.00 0.00 0.00
Shape - Texture 1.00 0.99 0.97 0.89 0.00
Shape - Size 0.99 0.00 0.30 0.99 0.00
Shape - Orientation 0.98 0.00 0.03 0.26 0.35
Shape - Hue 0.73 0.00 0.00 0.02 0.40
Shape - Numeric 0.25 0.00 0.00 0.00 1.00
Texture - Size 0.99 0.00 0.03 0.99 0.99
Texture - Orientation 0.99 0.00 0.00 0.94 0.30
Texture - Hue 0.84 0.00 0.00 0.45 0.26
Texture - Numeric 0.36 0.00 0.00 0.00 0.00
Size - Orientation 0.90 0.98 0.97 0.67 0.06
Size - Hue 0.45 0.99 0.00 0.16 0.05
Size - Numeric 0.09 0.35 0.00 0.00 0.00
Orientation - Hue 0.98 0.99 0.06 0.97 1.00
Orientation - Numeric 0.72 0.84 0.08 0.00 0.38
Hue - Numeric 0.98 0.59 1.00 0.00 0.43

sise that visual channels that are perceptually orderable may
improve a user’s performance. To test our hypothesis, we
adopt the method proposed by Bertin [Ber83] on ordered
perception, which follows a similar design to Experiment 1.

Participants 88 Mechanical Turk participants (paid $1.00)
took part in the experiment. One participant failed our con-
sistency checks and was removed. Therefore, 87 participants
(42 male and 45 female) were included in our final analysis.
The devices used were: 40 desktop, 42 laptop and 5 tablet.

Experimental Design The experiment followed a within
subject design. Participants saw a series of 1D plots con-
taining a sequence of elements with one target element
highlighted in a red bounding box as shown in Figure 6.
For each trial, we asked participants to identify whether
the highlighted element has: (1) the smallest value, (2) the
largest value, or (3) neither. The experiment required par-
ticipants to answer all three question types under the follow-
ing conditions: seven visual channels and eight disorder lev-
els η1, . . . ,η8 (see Section 3.2) resulting in 168 trials. Where
question type (3) is tested, we choose the median value to
represent the neither condition. Similar to Experiment 1, we
first showed a training block of 16 sample questions unre-
lated to later trials. Each participant therefore completed a
total of 184 trials which were randomised in both blocks.
We used a similar interface to Experiment 1, with a list of
answers presented below the stimuli. Participants respond
by selecting one of these answers. The keywords of each
question type is highlighted in bold text to enable easy iden-
tification. We measured both error rate and response time.

6.1. Results

Figure 7 shows mean error and response time results with
significant pairwise differences indicated above each bar.
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Figure 6: Interface for Experiment 2: Which is smallest? Which is largest?

Since the data we collected is not normally distributed, we
once again apply non-parametric statistics. A Friedman’s
test shows significant differences in error rate (χ2(6) =
276.15, p� 0.05) and response time (χ2(6) = 121.46, p�
0.05) under the effects of visual channel. Post-hoc analysis
was conducted similar to Experiment 1 with α = 0.05.

6.2. Discussion

Overall Given a sequence of elements, we find that differ-
ent visual channels have a significant effect on the error rate
of min-max judgements. Participants produced fewest errors
with numeric. This is what we expected, since the value is
explicitly given and the number of samples shown is rela-
tively small. Despite the numerical values observed being
not very complex (e.g., 3 digits) which meant that the cog-
nitive load on short term memory is relatively low, we find
participant’s spending a significant amount of time searching
numbers as shown in their response data (see Figure 7(bot-
tom)). Thus visual encodings seem to help in this task.

Judgements using size also produced fewer errors which
cannot be explained in our data. To investigate potential rea-
sons, we refer back to Bertin’s classification of visual prop-
erties and find that size is the only channel which is quantita-
tive [Ber83]. A quantitative variable means we can perceive
the numerical ratio between two sizes, for example, this cir-
cle is twice the size of that circle. This may explain why size
performed so well in our tests. However, further experimen-
tation is needed to fully understand the exact causes.

Conversely, error rate significantly increased when using
hue and orientation. It is easy to see that such encodings can
be misleading (e.g., they do not impose a universal perceived
order) and would therefore produce more errors in such a
task. This is consistent with previous claims, for example,
the error-prone use of rainbow colour-mapping within the
visualisation community [BT07].

We find few significant effects in our response time data.
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Figure 7: Comparing the effects of visual channel against
error rate (top) and response time (bottom) in Experiment
2. Significant differences are listed above each bar, with
(mean,median) values indicated below. Error bars show
95% confidence intervals.

However, shape and numeric were again the slowest as found
in Experiment 1, which supports that both encodings are
cognitively demanding, and thus, increases response times.

7. General Discussion

Perceptual Orderability and Min/Max Judgement Over-
all, we noticed that visual channels that are perceived as or-
dered in Experiment 1, perform well in Experiment 2. A
summary of this combined performance is shown by the
two middle axes in Figure 8(top). With the exception of nu-
meric, the ranking is fairly consistent across both experi-
ments. Scaling our tests to a larger number of samples may
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Figure 8: Ranking of visual channels from worst (7th) to best
(1st) for each experiment based on performance (top) and
response time (bottom). These measurements are compared
to the participants’ perceived ranking.

provide a more accurate ranking that reflects our results,
since we predict that numeric will be greatly affected due
to its high cognitive demand (see response time). Surpris-
ingly, we find value to perform worse than expected for min
and max judgements, considering that participants perceived
this visual channel as most orderable. However, it is still sig-
nificantly better than less orderable channels such as hue and
orientation. Our results suggest that in practice, visual order-
ability can improve the accuracy of visual tasks such as the
one presented in our study.

Measured vs. Perceived Difficulty At the end of each ex-
periment, we collected survey data as outlined in Section 4
to understand what participants felt was least and most dif-
ficult about the task. Most participants found both experi-
ments to be easier when the sequence of elements are or-
dered, compared to unordered. In addition, we asked par-
ticipants to rank the visual channels in terms of their per-
ceived difficulty. Figure 8 compares this feedback against
their measured rankings based on average performance and
response time. There were no clear overall trends between
perceived and actual performance (see Figure 8(top)). How-
ever, one observation is there is a negative correlation be-
tween hue’s performance, and its perceived difficulty. This
tells us that participants tend to perceive hue to be less dif-
ficult than their actual results. Similarly, shape performed
better than what they expected, but not in response time.

Across both studies, we find that the perceived ranking is
generally well correlated to participants response times. For

example, the ranking of shape, texture, and value remain rel-
atively constant (straight line) as shown in Figure 8(bottom).
It suggests that the higher the preference of a visual channel,
the faster their response for that task.

Bertin’s Categorisation on Ordered Perception In this
paper, we investigated the perceptual orderability of differ-
ent visual channels for ordered and unordered sequences.
The original concept described by Bertin show that shape,
hue, and orientation are not ordered. However, our crowd-
sourced results indicate that shape can be orderable. Of
course, any arbitrary encoding of shapes will not be order-
able as argued by Bertin [Ber83]. The reason behind our re-
sults is that our shapes can be considered as using two types
of channels. While shape itself is not ordered, we find that
counting (e.g., the number of spikes or edges) is. This raises
another interesting research question: “How does the com-
bination of visual channels affect the perceived order?”. For
example, in Experiment 2, by combining value (fastest re-
sponse time) with numeric (most accurate), do we gain the
performance advantage from both in the resulting composi-
tion? Further experiments might therefore explore the trade-
offs between such combinations.

8. Conclusion

We have presented two experiments to measure the percep-
tual orderability of visual channels and how they impact the
performance of min and max judgements. Our results indi-
cate that, depending on the visual channel selected, an en-
coded sequence can appear more ordered (value and tex-
ture) or more disordered (hue, orientation, and numeric) than
the underlying data. Overall, we find that visual channels
that appear more ordered improve the performance of min
and max judgements. In order to meet the dynamic envi-
ronment of online contributors, we developed visual designs
that maximise the encoding each visual channel has to offer
by sampling points significantly above a JND, since we did
not want to disadvantage visual channels from each other.
A limitation of this design is that perceptual differences be-
tween two elements across visual channels may not be equal.
Normalising these JND gaps is therefore interesting future
work, but will require significant research towards percep-
tually uniform models, of which only hue and value have
confirmed studies. Other areas we would like to investigate
include tasks such as categorical search, which is often per-
formed with this type of data.
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