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Abstract
Despite the clear benefits that stream and path surfaces bring when visualizing 3D vector fields, their use in both
industry and for research has not proliferated. This is due, in part, to the complexity of previous construction
algorithms. We introduce a novel algorithm for the construction of stream and path surfaces that is fast, simple
and does not rely on any complicated data structures or surface parameterization, thus making it suitable for
inclusion into any visualization application. We demonstrate the technique on a series of simulation data sets
and show that a number of benefits stem naturally from this approach including: easy timelines and timeribbons,
easy stream arrows and easy evenly-spaced flow lines. We also introduce a novel interaction tool called a surface
painter in order to address the perceptual challenges associated with visualizing 3D flow. The key to our integral
surface generation algorithm’s simplicity is performing local computations on quad primitives.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling—

1. Introduction

Streamlines and pathlines are ubiquitous in flow visualiza-
tion applications. They are well understood and intuitive
tools that produce insightful visualizations. However, these
curve-based primitives can suffer greatly from visual com-
plexity, and finding an optimal seeding strategy that pro-
duces an uncluttered but detailed visualization is non-trivial.
They are also restricted in the characteristics that they repre-
sent. For example, a simple tangent line does not exhibit the
downstream direction of the underlying vector field.

Stream surfaces are an extension of the streamline. Stream
surfaces, surfaces everywhere tangent to the flow, are a vi-
able solution for the visualization of 3D vector fields. Firstly
they do not suffer from the visual complexity the same way
seeding many streamlines can. Secondly, depth cues can be
easily added using shading. The 3D orientation of the sur-
face can clearly be perceived. Path surfaces are the extension

of stream surfaces to unsteady flow. They are integral sur-
faces (computed from integration) everywhere tangent to a
time-dependent vector field. Path surfaces provide the same
benefits over pathlines as stream surfaces over streamlines.

However, despite the aforementioned benefits integral sur-
faces provide for the visualization of 3D vector fields, they
are seldom used in commercial applications or for research
purposes. We hypothesize that this is due to the implemen-
tation complexity, and thus inaccessibility, of previous ap-
proaches to surface construction.

Simplicity of an algorithm often directly affects its pop-
ularity and impact. For example, we believe that much of
the success behind the Marching Cubes Algorithm [LC87]
stems from the fact that the technique is based on simple,
local analysis of cube primitives, thus making the technique
highly accessible. This means it can easily be incorporated
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into commercial software and it can handle large data sets.
It is this kind of accessibility that we strive for here.

In general, previous algorithms are based upon com-
plex data structures and an elaborate mesh triangulation,
that rely on several sets of co-ordinates (physical-space,
computational-space and parametric-space). This, coupled
with the cost of maintaining an optimal triangulation strat-
egy depreciates the attraction of using stream and path sur-
faces. A re-triangulation may also be necessary, if a global
tiling strategy is used, whenever the surface is extended. In
contrast, our approach is based on a small set of simple, lo-
cal operations performed on quad primitives and requires
no global re-meshing strategy. Quad-based meshes have be-
come increasingly popular in recent years, and their appli-
cation to stream and path surfaces seems natural when we
consider the anisotropy of flow fields. Quad-based meshes
allow for easy extension. When the mesh is extended the
previous connectivity remains unchanged and new quads are
appended onto the front of the surface. Using a global trian-
gulation would result in the connectivity of the entire mesh
having to be recomputed.

The main contribution of this paper is the introduction of
a novel algorithm that is significantly easier to model and
implement than existing methods with the following bene-
fits:

• An algorithm that is fast because it is based on only a few
local operations applied to quad primitives. It requires a
simple 2D array and no surface parameterization.
• An algorithm that is suitable for large data sets because of

the local nature of the processing.
• An algorithm that supports a number of enhancements

that stem naturally from the technique’s simplicity includ-
ing: easy timelines, easy timeribbons, easy stream arrows
and easy evenly-spaced streamlines.
• An algorithm that is platform independent and thus widely

accessible to researchers and engineers wishing to incor-
porate it into their vector field visualization application.
The algorithm is platform independent because it does not
rely on any special graphics hardware. Our implementa-
tion utilizes OpenGL 1.2.
• We introduce a novel interaction tool called a stream sur-

face painter designed specifically to address the percep-
tual problems associated with visualizing 3D flow.

However, in order to achieve these benefits, the same chal-
lenges must be addressed as with previous solutions, namely
how to construct a smooth and accurate surface in flow char-
acterized by high convergence, divergence and curvature.
Although tangent surface construction is fundamentally a
vector field sampling problem, this is the first algorithm that
formulates the construction of such surfaces explicitly as a
sampling problem.

The choice of quad-based meshes is partially inspired by
the increase in their popularity within the meshing commu-

Figure 1: A quad-based path surface color coded according
to velocity magnitude along the core of the tornado from the
tornado simulation. This figure shows our algorithm is capa-
ble of visualizing a field of high local rotation and twisting
behavior. The surface also demonstrates a unique property
of path surfaces – the ability to intersect themselves.

nity [ACSD∗03] [TACSD06], and by the following observa-
tions:

• A quad-based mesh contains edges aligned with the direc-
tions of the flow. This results in a more natural placement
of the primitives and allows a user to distinguish the flow
behavior from the mesh itself, without the need for addi-
tional processing. This cannot be said about their triangu-
lar counterparts. We draw attention to Figure F in [Hul92]
to highlight this.

• Quad meshes make for a high-quality representation of
the flow.

• The lines, to some extent, mimic lines that artists them-
selves might draw when creating depictions of the flow.

• Quads can provide a more compact representation of sur-
face geometry in terms of both space and processing time,
e.g., the topology of the mesh does not require explicit
storage.

The rest of the paper is organized as follows: Section 2
provides a discussion of the previous work related to stream
and path surfaces in the context of our algorithm. Section 3
describes the computational model and the local tests that are
performed on the quad primitives. Section 4 shows that sev-
eral known enhancements to integral surface-based visual-
izations stem naturally from the quad-based model described
in Section 3, namely, easy timelines, easy timeribbons, easy
stream arrows, easy evenly-spaced flow lines and the stream
surface painter. Section 5 presents some results of the algo-
rithm including its application to a large hurricane simula-
tion. Section 6 concludes the paper and identifies potential
directions of future work.

2. Related Work

There have been relatively few proposed solutions to stream
and path surface construction, especially when compared to
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the volume of effort concentrated on texture-based flow vi-
sualization [LHD∗04]. A recent survey of integration tech-
niques by McLoughlin et al. provides an overview of most
integral surface methods [MLP∗09]. Well known work is
presented by Hultquist [Hul90,Hul92]. Hultquist’s algorithm
first involves advancing a front in order to generate stream-
ribbons. During streamribbon front advancement, candidate
triangles are generated at each iteration. The goal of this ap-
proach is to create a globally-minimal tiling. One disadvan-
tage of creating a globally-minimal tiling is that no triangles
can be created until all of the integration of the curves has
been completed. Van Wijk [vW93] introduced a method for
implicitly generating stream surfaces. This is achieved by
defining a continuous function, f (x,y,z), on the boundaries
of a flow data set. This function is then extended to the inte-
rior of the domain. The iso-contour of the function f (x,y,z)
is then used to generate the stream surface. Scheuermann et
al. [SBH∗01] present a method for the construction of stream
surfaces on tetrahedral grids.

Garth et al. [GTS∗04] presented an improved method
for stream surface construction in areas of intricate flow
based on an extension of Hultquist’s algorithm. The im-
proved triangulation results from using higher order integra-
tion schemes combined with arc length parameterization.

More recently, Schafhitzel et al. introduce an alterna-
tive stream surface construction algorithm based on points
[STWE07]. However, this approach introduces the new com-
plication of how to generate a smooth and continuous sur-
face from a set of discrete point primitives. Their GPU im-
plementation also places limits on the size of the data sets
that can be visualized. With the exception of Schafhitzel et
al.’s approach, all previous algorithms are based on com-
plex data structures and surface mesh triangulations. Conse-
quently, they are difficult to implement and use in practice.
In contrast, our approach is based on simple, local operations
on quad primitives.

Enhancements to stream surfaces are also a fruitful area
of research. Laramee et al. [LGSH06] presented an applica-
tion in which texture advection was applied to stream sur-
faces to increase the number of characteristics of the flow
that could be visualized simultaneously. Stream surfaces are
also used to segment a vector field into regions of similar
behavior [MBS∗04]. This is achieved by growing the sur-
faces starting near critical points in the vector field. Löffel-
mann et al. presented stream arrows [LMG97,LMGP97], an
enhancement to stream surfaces that removes arrow-shaped
holes out of the surface in order to reduce occlusion when the
stream surface(s) overlap by allowing the user to see through
the displaced sections. This method also serves the purposes
of indicating the downstream flow direction by means of the
orientation of the arrow. We demonstrate a range of enhance-
ments on top of our core algorithm in Section 4.

The problem of quad-dominant remeshing, i.e., construct-
ing a quad-dominant mesh from an input mesh, has been a

Seed Streamlines/Pathlines

Advance Front

Update Sampling Rate

Divergence Convergence Rotation

Does Termination Condition Arise?

No

Yes

Stop Advancement

Optional Enhancements

Rendering

Iterate

Figure 2: An overview of the easy integral surfaces algo-
rithm.

well-studied problem in computer graphics. A key observa-
tion is that a nice quad-mesh can be generated if the ori-
entations of the mesh elements follow the principle curva-
ture directions [ACSD∗03]. This observation has led to a
number of efficient remeshing algorithms that are based on
streamline tracing [ACSD∗03, MK04, DKG05]. Ray et al.
[RLL∗06] note that better meshes can be generated if the el-
ements are guided by a 4-RoSy field. Dong et al. [DBG∗06]
perform quad remeshing using spectral analysis, which pro-
duces quad meshes that in general do not align with the
curvature directions [PZ07]. Felix et al. [KNP07] present
a quad-remeshing technique that guarantees no T-junctions.
However, this method requires the generation of a surface
parameterization on the input mesh, which is not suited for
our interactive approach.

3. Easy Stream and Path Surfaces

Our algorithm consists of a series of operations illustrated in
Figure 2:

1. We start out by seeding a curve using an interactive seed-
ing rake (Section 3.1).

2. Then the stream (or path) surface front is advanced ac-
cording to the vector field (Section 3.1).

3. The next step is to update the sampling rate of the advanc-
ing surface front in order to handle divergent, convergent,
and rotational flow (Sections 3.2 and 3.3).

4. Terminating conditions such as leaving the domain are
tested before returning to step 2 (Section 3.4).

5. User-controlled optional enhancements are enabled and
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the scene is rendered according to the current rendering
parameters (Section 4).

What follows is a description of each stage of our algorithm
along with a description of the technical challenges at each
point.

3.1. Seeding and Advancing the Front

We use an interactive seeding curve so that the user can gen-
erate a variety of integral surfaces at run time. This also
allows the user to quickly investigate any areas of interest
within the flow domain. The seeding curve can be placed at
any position and the user is able to adjust the length in order
to create wider surfaces and analyze more of the vector field
in a single visualization. The initial distance between seeds
is 1

2 dsample i.e., 1
2 the distance between data sample points.

However the sampling rate can be adjusted, determining the
number of flow lines that are initially seeded along the curve.
By flow lines we mean streamlines and pathlines.

We construct an integral surface from quad primitives.
There are two important distances to consider when con-
structing a new quad: (1) dsep - the distance between neigh-
boring flow line points that correspond to the same integra-
tion time t and (2) da - the advancement distance. Our goal
is to generate quads that result in smooth and accurate sur-
faces. In practice, this is obtained by determining the appro-
priate lengths of dsep and da so that we maintain an appro-
priate sampling rate of the underlying vector field. The sam-
pling rate we choose in all cases throughout our algorithm
is guided by the Nyquist Limit, namely, the sampling fre-
quency must be (at least) twice that of the underlying data
frequency for accurate reconstruction. Thus we choose an
initial dsep: dsep < 1

2 dsample. Similarly for da, we start a new
quad when the flow line integration distance exceeds 1

2 the
between data samples. We use a second order Runge-Kutta
integrator in our implementation, which provides a good bal-
ance between accuracy and computational speed.

Using quads, the advancement of the front is simplified. If
triangles are used [Hul90, Hul92, GTS∗04] then an optimal
tiling strategy should be included in order to prevent long,
thin triangles. The approach of Hultquist [Hul90, Hul92] re-
quires three data structures, two tracer structures and a rib-
bon structure. The two tracer structures are used to generate
the sequence of points that define two flow lines S0 and S1.
Each tracer stores the context required by Hultquist’s algo-
rithm to advance a particle through a sampled vector field.
The ribbon structure is necessary to connect S0 and S1. The
position of each point is recorded in physical space, com-
putational space, and the surface parametric space. In con-
trast our algorithm requires a 2D array of points in physi-
cal space only. The two dimensions of the array correlate to
the S and t parameters of the surface, thus the mesh topol-
ogy is stored implicitly within the data structure and does
not require explicit computation and storage. To find a quad
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Figure 3: Divergence is monitored by the testing the value
of dsep. When dsep > 1

2 dsample and α > 90◦ and β > 90◦ the
quad is divided. A new flow line seedpoint S j

0 is introduced
as a result of the subdivision.

from a given point, we access it’s neighboring points in the
2D array. When we encounter four valid points we have a
quad. We use the term valid point due to the fact that we
provide flags indicating the state of a particular vertex for
which some cases may be skipped during this search pro-
cess. These flags and how they are used are discussed later.

3.2. Divergence and Convergence

Divergence is a common phenomenon of flow. When flow
diverges the distance between points of neighboring flow
lines, dsep, increases. As dsep increases the data sampling
rate is reduced. If we were to construct a surface just using
these points, the surface could potentially miss critical fea-
tures of the flow and thus be an inaccurate representation
of the underlying field. To overcome this a new flow line is
seeded whenever the distance between a pair of flow lines
exceeds a threshold. At each stage of the front advancement,
the separating edge length between corresponding flow lines
is monitored for accurate sampling frequency. As soon as
dsep > 1

2 dsample and α > 90◦ and β > 90◦ we simply di-
vide the quad as in Figure 3. This results in two quad primi-
tives and a new streamline seeding point. The seed point for
the new streamline is calculated by interpolating between the

(a) (b)

Figure 4: A comparison between the divergence operations
of (a) Hultquist’s algorithm and (b) Easy Stream Surfaces
divergence operation. The grey colored sections indicate the
mesh transition.
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α βS i S i+1 S i+2 S i S i+2
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dsep + dsep
i i+1
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Figure 5: Convergence is detected when di
sep + di+1

sep <
1
2 dsample and α < 90◦ and β < 90◦. It is handled by termi-
nating the middle flow line. Two quad primitives are merged
into a single quad.

distance halfway between Si
n and Si+1

n . Using quads results
in a much simpler mesh, see Figure 4.

In contrast, the approach of Hultquist [Hul90, Hul92] re-
quires new tracer and ribbon structures to be stored in the
linked list which represents the front. Also previous methods
describe how new particles are inserted in order to handle
convergence (and divergence) but not when. By formulating
the algorithm as a sampling problem explicitly, the answer as
to when new particles should be inserted (or removed) from
the flow becomes clear.

In order to add new streamlines into our 2D array
and maintain the topology information, we have to move
columns over in order to accommodate the new streamline.
However, this results in elements within these newly inserted
columns that don’t contain a mesh vertex. We handle this by
having a flag that indicates whether a point exists at a par-
ticular array element or whether it contains no vertex infor-
mation. Elements flagged as empty are simply skipped over
during the rendering process and by the sampling rate op-
erations. Instead, their next valid neighbor is used (as these
are the correct neighbors in physical-space). Note that there

(a) (b)

Figure 6: A comparison between the merging operations
of (a) Hultquist’s algorithm and (b) Easy Stream Surfaces
merging operation. The grey colored sections indicate the
transition using the convergence operation. In (a) three new
triangles must be created, while in (b) no extra primitives
have to be inserted in order to create a smooth transition
between the strip widths.

are more flags defined for the elements, these are discussed
where they are appropriate in future sections.

A vector field may also locally converge. Adjacent flow
lines begin to approach each other causing the distance be-
tween the corresponding points of S0 and S1 to decrease.
This can lead to many points being generated in a small
vicinity on the stream surface. This results in an area be-
ing oversampled and, very small quads being produced for
the surface mesh. We monitor for cases of flow convergence
at each stage of the surface front advancement. As soon as
di

sep +di+1
sep < 1

2 dsample and α < 90◦ and β < 90◦ we simply
terminate streamline Si+1, the flow line between Si and Si+2.
The result is a quad merging (Figure 5). Hultquist’s algo-
rithm [Hul90, Hul92] requires the insertion of three new tri-
angles which make the transition between the leading edges
of two ribbons and the single leading edge of a new replace-
ment. We point out that, once again, quad meshes result in
a simpler mesh, see Figure 6. Note, no description of when
adjoining ribbons are merged into one is given (only how).

Quad meshes can introduce T-junctions which may cause
gaps. For divergence, no gaps are produced as S j

0 is chosen
to lie on the edge from S j

n to S j+1
n . However, during conver-

gence, gaps may occur. This can be handled in two different
ways. One is by dragging Si+1 onto edge Si− Si+2 for the
adjacent quads. Another solution is to simply patch the gap
with a triangle. Our framework supports both solutions. We
also point out that the vast majority of cases are divergent.

3.3. Curvature

After advancing the front by one quad, we monitor the flow
for high curvature. Under curving flow we want the edges of
our quad primitive to maintain their basic shape. One of the
elements of our algorithm is ensuring that after each inte-
gration step the local advancing front remains generally or-
thogonal to the downstream direction. This maintains a quad
mesh with desirable properties. Curvature within the flow
field challenges the goal of maintaining edge shape. When
flow lines are integrated through curving flow, the flow lines

α β
α di( )
90

Sn
i Sn

i+1

Sn+1
i Sn+1

i+1

Sn
i Sn

i+1

Sn+1
i

Sn+1
i+1

Right
Rotation

d i

di+1 di βα

Figure 7: Given a vector field under local right rotation,
where α < 90◦ and β > 90◦ the integration step-size be-
tween Si+1

n and Si+1
n+1 is decreased by a factor proportional

to the amount of rotation. Likewise for the case of left rota-
tional flow.
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s i s i+1 s i+2 s i+3 s i+4

Figure 8: Curvature in the flow field deforms the orthogonal
tangent surface front and results in sheared quad primitives
for the underlying surface mesh.
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Figure 9: In order to generate a smooth front of quads under
rotation we group them and process them from left-to-right
for the case of right rotation. Similarly for the case of left
rotation.

on the inside of the curvature follow a shorter path and the
flow line front does not remain orthogonal to the flow direc-
tion, see Figure 8. This results in the underlying quads be-
coming sheared and warped. This gets progressively worse.
Also the more rapid the curvature the more severe the shear-
ing of the quad primitives.

To overcome this we apply a method suggested by Dar-
mofal and Haimes [DH92] and presented in detail by Ken-
wright and Lane [KL95]. We use an adaptive step size inte-
grator that measures the angle between velocity vectors and
the quad base at each stage of the front advancement in ar-
eas of flow curvature. To produce an optimal result, the in-
tegration step size must be a function of the length on the
adjacent streamline. We look at the interior angles of the
quads in order to adjust the quads edge lengths as in Fig-
ure 7, which shows the case of a quad under right-rotational
flow (α < 90◦ and β > 90◦). We adjust the step-size between
Si+1

n and Si+1
n+1 such that the quad can maintain its shape (and

accuracy) under rotational flow. In this case di+1 is shortened
proportional to the angle α using the relation di+1 = α

90 di,
where di is the step-size between Si+1

n and Si+1
n+1, di+1 is the

step-size between Si+1
n and Si+1

n+1. In order to avoid a jagged
surface front under flow rotation we process rows of quads

successively as a unit with common flow behavior. We need
to ensure that the flow lines are adjusted in the correct or-
der. Our stream and path surface front advancement uses
two passes as shown in Figure 9. In the first pass we pro-
cess the divergent and convergent quads and simply identify
the quads under rotation. This results in a grouping of quads
according to common flow behavior, e.g, a region of right-
rotating flow.

For a strip of right-rotating quads we process them by
marching from left-to-right order adjusting the edge lengths
as shown in Figure 9. For left-rotating flow we perform the
mirror opposite. We then iterate along each group adjusting
the step-size of the latest segment. If flow starts to diverge
we get two major groupings of flow lines: one group curv-
ing in each direction. The grouping method produces rea-
sonable results with two fronts that expand out, one for each
direction of rotation. In the extreme case of coinciding con-
vergent and rotating quads, e.g. α << 90◦ , β > 90◦ and
di

sep + di+1
sep < 1

2 dsample under right rotational flow, we first
perform a merge followed by a rotation operation. Similarly
for extreme cases of coinciding divergent and rotating quads.
We note that no description of how to handle rotating flow is
provided in previous literature [Hul90, Hul92, GTS∗04].

3.4. Splitting and Termination

If an object is encountered in the flow field, the surface can
split into two sections that advance in separate directions.

Figure 10: When an object boundary is encountered the sur-
face splits. The surface is torn and the separate portions are
advanced independently of each other. Color is mapped to
velocity magnitude.

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



Tony McLoughlin & Robert S. Laramee & Eugene Zhang / Easy Integral Surfaces

Figure 11: Our algorithm handles widely diverging flow
while maintaining the desired organized advancing front.
This surface is colored according to the underlying flow
characteristics: left rotation is mapped to yellow, right rota-
tion is mapped to orange, laminar flow is mapped to green,
divergence is mapped to blue, convergence is mapped to red.

This is handled by terminating the flow lines contained in
the surface that encounters a boundary (or other terminating
condition). The sections on either side of terminated flow
lines are then calculated independently. This prevents the
whole surface advancement being halted unnecessarily and
ensures that the separating portions maintain their accuracy
and a well structured mesh. Figure 10 shows a stream surface
splitting and the two sections advancing independently.

To handle splitting we introduce a new flag for the ver-
tices. This indicates that a split has occurred. If we encounter
a split flag while searching for the neighboring vertices, we
simply halt the search for the vertices as we are on the edge
of the surface. We then move onto the next valid point and
search for it’s neighbors that comprise a quad. This allows
multiple sections of the surface to be computed indepen-
dently of each other.

Surface advancement is terminated when one of a series
of termination conditions is met. The termination conditions
are: the entire surface front leaves the vector field domain,
the distance that the surface has traveled exceeds a preset
geodesic length, or an area of zero velocity is encountered,
i.e a solid object within the flow field or a critical point.

4. Enhancements

A simpler surface generation scheme is not the only benefit
of our algorithm. In this section we demonstrate that several
enhancements stem naturally from its quad-centric point of
view.

4.1. Surface Painter

The first enhancement we discuss is called the surface
painter. The surface painter is used to adjust the geodesic

Figure 12: The stream surface painter shows the evolution
of the construction of the stream surface. Starting from the
top-left image and commencing clockwise the stream surface
painter has been set to render 25%, 50%, 75% and 100% of
the stream surface respectively. The stream surface is col-
ored according to the vector field magnitude.

length of the surface (from the seeding rake to the surface
front). Using a slider the user is able to interactively “paint”
the surface in the downstream (or upstream) direction of the
flow. This allows the user to easily observe how the surface
evolves. It also addresses the challenge of occlusion result-
ing from overlapping portions of the surface, see Figure 12.
With the interactive surface painter control the viewer can
“rewind” the surface thereby revealing what would other-
wise be occluded portions of the surface. The user can sim-
ply paint the surface automatically and view an animation of
the surface front evolving step-by-step. A video demonstra-
tion of the surface painter is provided [MLZ].

Although such an interaction would be possible with pre-
vious methods [GTS∗04, Hul90, Hul92] it would require a
mesh parameterization. Previous methods require a param-
eterization of both the displacement of points along the
streamlines (s ∈ [0,1]) and the advected images of the seed
rake along the downstream displacements (t ∈ [0,N]). A
parametric description of the surface is unnecessary with our
method.

4.2. Easy Timelines and Easy Timeribbons

A timeline is the line formed by connecting a series of mass-
less particles in the flow seeded at the same instant of time
(but at different locations). Although they are often men-
tioned as a very useful vector field visualization technique
(because they show the convergent and divergent behavior
of the flow), they are not commonly featured in a visual-
ization software application. This may be due to complex
implementation challenges. Timelines can easily be imple-
mented from our algorithm by using the stream surface front
at each integration stage and simply connecting these points.

Two minor adjustments have to be made to the surface
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Figure 13: This image shows timeribbons rendered as
shaded strips of quads to visualize a smoke plume simula-
tion. Color is mapped to local velocity magnitude.

construction algorithm in order to accommodate timelines.
We use a flow line integrator whose step-size is proportional
to velocity magnitude (as opposed to using an integrator with
a uniform step-size). We also need to disable the rotation
operations, described in Section 3.3.

The result are timelines that show the range of speed at
which different regions of the flow travel. The advancing
timelines benefit from the changes in sampling frequency
in accordance with the divergence and convergence opera-
tions. Animating the timelines is a simple process that may
produce insightful visualizations of the evolution of the flow
[MLZ]. We extend timelines using quads as opposed to us-
ing line primitives, the result are a novel geometric visu-
alization called timeribbons. Just as streamribbons extend
streamlines to show curling flow behavior, timeribbons ex-
tend timelines to show oscillating (or wave-like) flow behav-
ior, see Figure 13. We simply use a row of quads and render
every nth row. This forms ribbons that are easier to observe
in a 3D scene by providing the perceptual benefits of us-
ing polygonal primitives over lines, e.g. shading. A video
demonstration of animated timelines and timeribbons cre-
ated by our application is provided [MLZ]. Timelines and
timeribbons would be possible to incorporate into previous
algorithms [GTS∗04, Hul90, Hul92]. A surface parameteri-
zation, S ∈ [0,1], t ∈ [0,Tmax], is required whereas timelines
and timeribbons are a natural byproduct of our approach.

4.3. Easy Stream and Path Arrows

Stream arrows are arrow-separated portions of a stream sur-
face. They enhance the basic stream surface visualization
in (a minimum of) three ways: (1) The direction of the ar-
rows shows the downstream direction of the flow. (2) The

Figure 14: An arrow texture can simply be mapped to the
quad primitives to show the downstream direction of flow.
The arrows can then be animated by scrolling the tex-
ture [MLZ].

arrows (or their complement with respect to the stream sur-
face) can be made transparent thus allowing the viewer to
see through portions of the surface. This alleviates the occlu-
sion problems caused by overlapping portions of the geome-
try. (3) They enrich wide stream surfaces with internal visual
structure. Löffellmann et al. [LMG97,LMGP97] present two
algorithms for the placement of stream arrows on stream sur-
faces. They involve the use of surface data structures that en-
able fast searching of the geometry in order to find a suitable
place to map texture-based arrows.

Our mesh construction algorithm allows us to readily map
an arrow texture onto the surface. The regular pattern gener-
ated by the quad primitives is ideal for tiling a texture: it
requires no additional data structures and no search process
as in previous approaches. It is also straight forward to add
a user option that allows for the textures to cover several
quads, thus increasing the size of the textured arrows in line
with user preference and suitability of the current rendering.
See Figure 14 for example results.

Animation of the arrows, can be added. This provides an-
other insightful enhancement in which to visualize the flow
characteristics of the surface. A video demonstration of ani-
mated stream arrows is provided [MLZ]. Stream and path ar-
rows are more difficult to place if a triangular mesh is used.

4.4. Easy Evenly-Spaced Flow Lines

A range of algorithms have been proposed for the creation
of evenly-spaced streamlines [JL97, LS07, LM06, TB96].
Evenly-spaced streamlines or pathlines clearly capture the
features of the flow field by distributing the streamlines or
pathlines evenly on the surface. They also produce illustra-
tive visualizations similar to those found in textbook depic-
tions of hand-drawn flow. Note that evenly-spaced seeds do
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Figure 15: We can create a hybrid visualization of surfaces
and evenly-spaced flow lines. Color is mapped to velocity
magnitude.

not necessarily result in evenly-spaced streamlines. Evenly-
spaced flow lines are a simple by-product of our surface
construction. The merge and divide operations ensure that
dsep ≈ 1

2 dsample. In fact, the dsep parameter used through-
out this paper is very similar to the dsep parameter used by
Jobard and Lefer [JL97]. Figure 15 shows how our easy in-
tegral surface algorithm can be used for the depiction of
evenly-spaced streamlines. Evenly-spaced streamlines are
not such an obvious by-product with triangular meshes.

5. Results

In practice our criterion for right rotation, α > 90◦ and
β > 90◦, proves too rigid. In the implementation we use
a more relaxed constraint: (α > 90◦ + εrotation) and (β <
90◦ − εrotation) where εrotation is a user-defined threshold.
We found a value of εrotation = 3◦ yields good results. In ex-
treme cases of divergence, if dsep >> 1

2 dsample, i.e dsep =
n · dsample after advancing the front we can divide the quad
and insert multiple new seeding points at a rate of 2n, where
n = dsep

dsample
.

We also note the potential wasted memory in the 2D ar-
ray. Elements marked as empty or split contain no explicit
information with respect to the surface geometry. However,
a mesh containing 1,000,000 vertices uses less then 16MB
of memory. Compared to the large amounts of RAM in a
typical PC nowadays (usually in the order of GB) that this is
a minor issue in order to pursue an much simpler implemen-
tation.

Figure 16 shows stream surfaces used to visualize the
Hurricane Isabel data set. One seeding curve has been placed
in order to depict the eye of the storm. The algorithm was
run on the original 5002 × 100 resolution simulation. The
local processing nature of our algorithm enables fast pro-
cessing with large data sets. Figure 1 shows a path surface
generated on the tornado data set of size 1283. This stream

Figure 16: A stream surface depicting the eye of Hurricane
Isabel.

surface was seeded close to the core of the tornado. The
easy integral surface algorithm was implemented in C++ on
a PC with a 2.66Ghz Intel Core 2 Duo processor with 4GB
RAM and a 256MB nVidia GeForce 8600GT graphics card.
We tested 3 different sizes of stream surface, consisting of
10,000, 50,000 and 100,000 quads. Two different integra-
tors were compared for each size of stream surface, namely
an Euler integrator and a second-order Runge Kutta inte-
grator. The results of these tests are presented in Table 5,
three different size surfaces were created for each integrator,
consisting of 10,000, 50,000 and 100,000 quads. The algo-
rithm is fast even though it does not rely on any special-
purpose GPU programming. In our review of the previous
literature, the last report of performance times for polygonal
stream surface construction was Hultquist [Hul90] in 1992,
thus making performance time comparisons with previous
work non-trivial. We note that the quad mesh lends itself to
easy mesh simplification as a post-processing step for large
meshes with smooth regions. See Daniels et al [DSSC08] for
examples.

Stream surface size
10k quads 50k quads 100k quads

Euler 0.01s 0.04s 0.08s
RK2 0.02s 0.06s 0.12s

Table 1: This table shows a range of stream surface con-
struction times measured in seconds using our algorithm.
Both an Euler and a second order Runge Kutta integrator
are compared.
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6. Conclusion

We present a novel integral surface construction algorithm
whose simplicity readily allows for implementation and in-
corporation into visualization applications. The techniques
benefits from the advances that quad-based approaches. The
algorithm is fast and handles large high-resolution datasets
due to the local nature of its processing. The algorithm com-
prises of operations that monitor local flow for characteris-
tics such as rotation, convergence and divergence and does
not require a parameterization of the surface. Our formula-
tion is given explicitly in terms of data sampling thus mak-
ing decisions regarding when and where to insert or delete
new flow lines clear. The enhancements presented are easy
stream and path arrows, easy timelines, easy timeribbons and
easy evenly-spaced flow lines. We also presented the surface
painter. All enhancements stem more naturally from quad
meshes as opposed to triangular meshes. The implementa-
tion is CPU-based and uses OpenGL 1.2, thus making it
widely portable. The availability of an efficient, simple-to-
implement integral surface construction algorithm, which is
immediately open to useful enhancements could, we believe,
have a significant impact on the adoption of tangent surfaces
as a visualization tool.

Future work includes a GPU-based version of the algo-
rithm.
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