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Abstract

We present a novel approach for the evaluation of 2D flow visualizations based on the visual reconstructability
of the input vector fields. According to this metric, a visualization has high quality if the underlying data can be
reliably reconstructed from the image. This approach provides visualization creators with a cost-effective means to
assess the quality of visualization results objectively. We present a vision-based reconstruction system for the three
most commonly-used visual representations of vector fields, namely streamlines, arrow glyphs, and line integral
convolution. To demonstrate the use of visual reconstructability as a quality metric, we consider a selection of
vector fields obtained from numerical simulations, containing typical flow features. We apply the three types of
visualization to each dataset, and compare the visualization results based on their visual reconstructability of the

original vector field.

1. Introduction

The gerund “visualizing” refers to a process that extracts
meaningful information from data, and constructs a vi-
sual representation of the information. This process con-
sists of three stages, namely (i) making data displayable by
a computer, (ii) transmitting visual representations to hu-
man viewers, and (iii) forming a mental picture about the
data [BBC*05]. It is thus important to know whether or not
the mental picture of the data established by a human viewer
is consistent with the original data, and whether or not one
specific visualization technique or parameter setting is more
effective than another.

Traditionally, we compare visualization techniques or pa-
rameter settings by carrying out user studies. As the cur-
rent state of the art in cognitive science does not allow us
to model human perception and cognition algorithmically,
user studies are no doubt the most scientific approach for
such a comparative evaluation. However, it is not practical
to conduct a user study for every individual task. Hence, in
the majority of cases, we rely on the visualization creator’s
judgment, which often reflects personal preference and can
be subjective. It is highly desirable to support a visualiza-
tion process by enabling visualization creators to conduct an
objective evaluation using quantitative measurements.

In this work, we propose to make visual reconstructability
as such a quantitative measurement. When a viewer attempts
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to make sense of the data being depicted in a visual repre-
sentation, a variety of perceptual and cognitive actions take
place to reconstruct the data. Such actions include but are
not limited to the initial reception of the visual representa-
tion at the retina, the transfer and reconstruction of visual
information when it passes through the visual hierarchy, fea-
ture extraction and object identification, the formation of an
abstract representation in the memory, and semantic reason-
ing based on one’s knowledge and experience. However, if
the visual representation arriving at one’s eye already loses
information or contains errors, further actions for data recon-
struction in one’s brain will no doubt suffer. Hence it is im-
portant to first measure the quality of a visual representation
in terms of visual reconstructability before any perceptual
and cognitive processes.

It is unlikely that any single quality metric can determine
the overall quality of a visualization. Over-emphasizing
aesthetics [FB09] may undermine visual salience [JC10],
and vice versa. Over-emphasizing entropy maximization
[XLS10] may undermine abstraction quality [CYWRO06],
and vice versa. However, using a combination of quality
metrics will likely help users to arrive a balanced quality
judgement. Visual reconstructability is a new addition to the
currently-rather-small collection of quality metrics for visu-
alization.

A visual representation of a dataset is said to facilitate a
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full visual reconstruction if the original dataset can be de-
rived from the visual representation accurately by using a
machine-vision system. We utilized commonly-used com-
puter vision algorithms in our implementation, while recog-
nizing that the continuing advances in computer vision will
bring better reconstruction results.

We use 2D vector field visualization as an example to
demonstrate the concept of visual reconstructability. A 2D
vector field can be depicted by several types of visual rep-
resentations, such as streamlines, arrow glyphs, and line in-
tegral convolution (LIC). As illustrated in Fig. 2, errors in
reconstruction, regardless by human viewers or machine vi-
sion, may be caused by a number of factors, including but
not limited to: (a) information loss due to a sparse visual rep-
resentation of the original vector field, (b) noise introduced
by visualization techniques such as LIC, (c) geometric ap-
proximation between discrete samples, (d) aliasing due to
display resolution. In order to accommodate a broad range
of error sources, we carefully selected a number of vector
fields obtained from numerical simulation under the guid-
ance of a CFD domain expert. We apply three commonly-
used 2D techniques, streamlines, arrow glyphs, and LIC, to
these datasets. We develop a reconstruction system for each
type of visualization based on established algorithms in the
computer vision literature. We then compute the errors be-
tween the original and reconstructed datasets, and use the
error metric to evaluate the three visualization techniques
considered in this work. Our contributions of this work are:

e We propose a new objective approach to evaluate different
visualizations, and assess its feasibility using 2D vector
field visualization as a test case.

e We develop three quality metrics for streamline, glyph
and LIC visualization based on their reconstructability.

e For testing reconstructability quality metrics, we carefully
prepared simulation results that exhibit different common
features, allowing an objective comparison between dif-
ferent visualization methods and their parameter spaces.

2. Related Work

The traditional way to assess quality information about a vi-
sualization technique is to conduct a user study [KHI*03].
Commonly, users have to perform domain specific tasks in
these experiments and the results are compared with re-
spect to accuracy and time. In the area of flow visualiza-
tion, several studies that investigate interaction, object iden-
tification and perception have been conducted. Laidlaw et
al. [LDM*01, LKJ*05] compare a range of 2D flow visual-
ization methods (vector glyphs, LIC, streamlines). They con-
clude that visualization methods that show both downstream
direction and integral curves are most effective. Forsberg
et at. [FCL09] investigate 3D vector field techniques. They
conclude that methods which minimize occlusion, clearly
depict downstream direction and velocity magnitude, and
provided fewer 3D cues were most effective. Ware [War06]

confirmed the importance of 3D cues. Joshi and Rhein-
gans [JROS] found that illustratively augmented techniques
provide a noticeable improvement in accuracy and speed for
time-varying data.

Another way to assess visualization quality is with au-
tomatic comparison techniques. Shen et al. [SPU98] distin-
guish three levels of comparison, namely data level, feature
level, and image level comparisons. The data level compar-
ison techniques compare data values, e.g., Pagendarm and
Post [PP97], who investigate characteristics of streamlines
and streamribbons, e.g., position, to evaluate flow visualiza-
tions. Feature level techniques compare extracted features in
the data. Verma and Pang [VP04] compare linetype features
visualized using streamlines and streamribbons. Image level
comparison techniques compare the data as depicted on im-
ages. In [SWMJ99] a composite metric for comparing grid-
based datasets is proposed. Zhou et al. [ZCWO02] evaluate
several metrics for image-level comparison between videos
of experiments and visualization results.

General quality metrics for visualization cover a wide
scope. Cui et al. [CYWRO6] consider data abstraction qual-
ity. Van Wijk [vWO05] suggests to measure the value of vi-
sualization based on the notion of profit. Filonik and Baud
[FB09] propose a quality metric for measuring aesthetics
in information visualization. Jinicke and Chen [JC10] de-
velop a quality metric based on visual salience. Bertini and
Santucci [BS06] proposed three generic metrics, size, visual
effectiveness and features preservation, and discussed how
they might be implemented.

There are very few reports on reconstructing vector fields
from flow visualizations, except that Risquet [PR02] recon-
structs directional information from texture-based flow vi-
sualizations to guide the correction of the underlying vec-
tor field. Chen et al. [CCKO7] reconstructed a vector field
from sampled points on the streamlines in a visualization
by interpolating values of these points via Delaunay trian-
gulation. Pineo and Ware [PWO08] reconstructed and eval-
uated glyph-based and texture-based flow visualization us-
ing Gabor filters. We enhance the previous works by inte-
grating reconstruction methods for streamlines, glyph-based
and texture-based visualization under the same framework
for quality evaluation. This enables a qualitative compari-
son of three widely-used forms of flow visualization based
on reconstructability, whilst only two forms were consid-
ered in [PWO08,LDM™*01, LKJ*05]. Instead of artificial vec-
tor fields, we employ real CFD simulations.

Pineo and Ware [PWO0S8] first made a case that Gabor
filters can represent some functions of the human vision
system. While we are cautious about the limitation of ma-
chine vision algorithms, we also appreciate the existing ad-
vances. Image-based data reconstruction is extensively re-
searched in digital image processing and computer vision.
The most fundamental approaches for directional recon-
struction are the Marr-Hildreth-operator [MH80], Canny-
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Figure 1: Comparative visualization models based on (a) differences on the data level, (b) differences in extracted features, (c)
different visualizations, (d) user studies, and (e) the reconstructability of the underlying data.

operator [Can86], Sobel-operator [J02], and Hough trans-
form [DH72]. In texture-based images, directional informa-
tion can be obtained from spatial frequencies using Gabor
filters. Marr and Hildreth described how convolution can be
implemented in neural hardware and Palmer [Pal99] details
the relationship between human vision and the Gabor func-
tion making the Gabor filter a good model for human vision.
In our applications we will focus on the directional informa-
tion conveyed by flow visualizations, and evaluate how well
the reconstructed direction matches the underlying data.

3. Motivation

Fig. 1 shows several approaches to comparative evaluation.
Figs. 1(a-c) represent the category of automatic compari-
son methods, including data-level, feature-level and image-
level comparison. For comparative evaluation of visualiza-
tion methods, the image-level methods are the most relevant.
The main difficulty of using image-level comparison is that
most difference metrics cannot express the difference be-
tween two distinct visual representations from the perspec-
tive of human perception. For example, a simple image dif-
ference between a streamline visualization and a LIC visu-
alization cannot convey anything about the relative merits of
the two visualization. Even using those more advanced im-
age difference metrics in [ZCW02] and [SWMJ99] would
not provide an adequate solution to this problem.

Meanwhile, as illustrated in Fig. 1(d), user studies inher-
ently account for the human perception of a visualization,
but are not applicable in a large scale or on a daily basis.
In addition, the results of user studies are difficult to dis-
seminate to application users. Despite that a number of user
studies were conducted for different flow visualization tech-
niques as mentioned in Section 2, it is rather uncommon for
an ordinary user to make a selective decision about visualiza-
tion techniques and parameter spaces based on the findings
of a specific user study. In everyday practice, the decision
is normally made based on a qualitative evaluation or per-
sonal experience in the best case scenario, or a subjective or
circumstantial judgment in the worst.
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Figure 2: Sources of error in flow vis. (left to right): missing
information, interpolation, quantization, noise

This problem motivates us to explore a new approach by
combining the concept of quality metrics (e.g., [CYWRO6,
JC10]) with that of automatic comparison (e.g., [SPU9S,
VP04,ZCWO02]. Fig. 1(e) shows a schematic illustration of
our new approach. To compare two visualization methods,
a data reconstruction algorithm is applied to the visualiza-
tion results, with the intention of estimating how much a hu-
man observer can see. For example, given two different vi-
sual representations image A and image B for the same vec-
tor field data, the reconstruction algorithm will result in two
vector fields data A and data B from image A and image B
respectively. A data-level comparison metric can then be ap-
plied to the pair of /data, data A], and that of [data, data B],
resulting in two error indicators, error A and error B. From
error A and error B, a user can tell the potential visual recon-
structability of the two visualization methods. Coupled with
a qualitative judgment and if available other quality metrics,
the user can make an informed objective decision about the
two methods.

4. Case Study Design

Ift D, and Dy, be the two 2D vector fields, and 7x‘y and
b xy be the two specific vectors at position (x,y) in Dqg
and Dy, respectively. The difference between @y and 7%),
can be decomposed into two aspects, magnitude and direc-
tion. It is common for some flow visualization techniques
to omit one aspect. For instance, a LIC-based visualization
may choose not to depict magnitude, while a streamline vi-
sualization may choose not to distinguish between @,y and
— @y, relying on the users to work out the flow direction
of each streamline based on their semantic understanding of
the application.
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Figure 3: Simulated CFD datasets

When viewing visualization results, especially with the
intention of comparing D, and Dy, a user would typically
like to determine if there are differences in terms of:

e major features, such as the number of vortices, saddle
points, sources and sinks, and their positions;

e overall flow characteristics, such as velocity, linearity,
convergence or divergence;

e detailed local quantities, such as the velocity and direction
of the flow at a specific location, and the size of a vortex.

It is generally agreed that the user’s cognitive judgement of
these differences is based on the user’s perception and esti-
mation of the magnitude and direction at the relevant points
of the vector fields concerned. As illustrated in Fig. 2, the
errors in perception and estimation can be caused by sev-
eral reasons. It is thus essential for us to test the proposed
reconstructability-based quality metrics using vector fields
that reflect different levels of these errors, while capturing
some typical features and characteristics of a flow. In addi-
tion to synthetic vector fields, we also decided to use vector
fields resulting from computational fluid dynamics (CFD)
simulations, in the hope that they are more representative of
real applications than synthetic vector fields.

4.1. Models

Together with a CFD expert, we simulated 5 time-dependent
datasets at different levels of complexity using the IcoFoam
solver in the OpenFOAM®toolbox [Opel0]. Fig. 3 depicts
four examples of increasing complexity. Fig. 3(a) models a
flow inside a cavity. Fig. 3(b) represents a lid-driven cav-
ity, which is modeled by a closed block with fixed walls on
both sides and at the bottom. The lid is specified with an
edge moving uniformly and horizontally. With the lid driv-
ing across, the flow inside circulates due to the static bound-
aries, forming a clearly observable vortex. In Fig. 3(c), there
are two channels with flow going in opposing directions and
a space that connects them together. The field exhibits two
vortices and a saddle point. In Fig. 3(d), the flow was sim-
ulated in a way such that it would contain 3 different sized

vortices. As a vortex may occur when a flow passes over a
wall, we constructed a channel that included three walls of
different heights. By altering the height of each wall, we can
change the size of the vortex forming behind it.

4.2. Visualization Techniques

Flow visualization techniques are commonly divided into
four major categories [PVH"02]: direct, geometric, texture-
based, and feature-based techniques. The division is based
on the type of preprocessing and the graphical primitives that
are used to depict the data. In the following we will use char-
acteristic examples from the first three groups, which pro-
vide a holistic depiction of the dataset.

Direct Visualization — Hedgehogs Hedgehogs are a very
basic, fast, and easy to implement technique. A large num-
ber of variations of these icons exist based on their shape
and positioning. We used an algorithm that draws classical
vector icons at the grid position of the vector field.
Geometric Visualization — Streamlines Integral structures,
such as streamlines, are computationally more expensive
than the direct techniques, but give a better description of
large structures and the spatial evolution of the flow. The
many varieties of the streamline algorithms differ in the type
of line primitive, the integration length, the seed points, and
the spacing between the integral structures. We use an adap-
tive seeding strategy and adaptive distance control.
Texture-based Visualization — LIC The LIC algorithm
[CL93, SK98] starts with a texture that is initialized with
white noise. In an iterative process the texture is filtered
along streamlines using a local kernel. Due to the large num-
ber of streamlines that have to be computed, LIC is the com-
putationally most expensive technique, but provides infor-
mation for each pixel of the displayed texture.

5. Vector Field Reconstruction

For all types of visualization, the reconstruction of the vector
field data consists of two steps. First, local information about
the direction is extracted from the visualization. Based on the
visual metaphor, we use either a reconstruction algorithm for
line-based representations, or an algorithm that recovers di-
rectional information from a texture. Analogous to findings
in computer vision, we rely on two pipelines for these vi-
sually very different types of input. Both algorithms do not
provide information for all pixels in the image. For line-type
features there simply is no information available for some
pixels, and in the case of texture-based representations there
are pixels where the reconstruction quality is too low. In both
cases, a second reconstruction step is necessary that interpo-
lates between existing values. Fig. 4 provides an overview
over the two pipelines for line-based and texture-based re-
construction.

5.1. Reconstruction of Texture-based Representations

In texture-based visualizations, such as LIC images, the di-
rection of the vector field is encoded in the local orientation
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Figure 4: Reconstruction pipelines: (top) The reconstruction of texture-based visualizations uses Gabor filters to quantify local
orientations of the texture. (bottom) The reconstruction of line-type structures is based on the Hough transform.

of the image texture (see pipeline in Fig. 4). A common tech-
nique to extract directional information of textures are Gabor
filters from image processing:

g 332.8,0) =exp (- (7 +37)/(20%) ) cos (2mx /M)
Xr =xcos0+ysin® y,= xsin@+ycos6, (1)

where (x,y) are pixel coordinates, A represents the wave-
length of the cosine factor, 0 is the orientation of the Ga-

bor function, and ¢ the sigma of the Gaussian envelope. The
phase shift was set to 0 and the spatial aspect ratio to 1. Ga-
bor filters feature a striped pattern on a small spatial sup-
port, and when convolved with a local patch of the textured
image, the resulting value tells how well the local structure
of the texture agrees with the Gabor filter at a given angle.
The frequency and orientation representations of Gabor fil-
ters are very similar to the human receptive field [Pal99],
and are hence, well suited to model the human perception of
texture-based encodings of directed data.

The Gabor filter with given parameter (A,0,0) quantifies
the local orientation of the texture in the direction 8  90°.
To derive a measure for all possible orientations, the filter
has to be applied with multiple angles 6. This is commonly
done in a filter bank consisting of Gabor filters with various
scales and rotations. To reduce computation costs, we use
a single scale that best captures the texture size. The angle
0 of the Gabor filter varies between 0° and 180° with an
increment of 1°. For our datasets we used A = 0.066 and 6 =
0.05, which could capture the data best. Filtering in Fourier
space [J02] is used to decrease computational costs.

To derive an estimate of local orientations, the filter image
with the highest score has to be found for each pixel. De-
pending on the local structure of the texture, this can be very
difficult as in some areas the filter results are very low for all
possible angles. Hence, we apply a threshold to store only
high-confidence results. As a rule of thumb, 0.5 - maxval can
be used, where maxval is the highest value in any of the fil-
tered images. In our analysis we found that roughly 50%
of the data can be reliably reconstructed. To derive values
in-between the reconstructed data, we use the interpolation
method presented in the next section.
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5.2. Reconstruction of Line-based Representations

To reconstruct directional information from a line-based vi-
sualization, one has to determine the direction of the lines
in the image and assign the derived value to the correspond-
ing pixels. The pipeline of the reconstruction procedure is
depicted in Fig. 4(bottom). While vector glyphs feature sim-
ple straight lines, streamlines are more challenging to re-
construct since they feature curved lines. In order to han-
dle a large variety of line-based visualizations and local de-
fects in their representation, we employ the Hough transform
[DH72] to reconstruct directional information from lines.

Unlike many other line reconstruction techniques, the
Hough transform does not operate in image space, but in pa-
rameter space, which makes it more robust and able to detect
many different line types. The parameter space is spanned by
the line parameters r and 0, where r is the line’s shortest dis-
tance to the origin and 0 represents the angle between this
connecting line and the x-axis. After a pixel-based voting
process edges can be reconstructed from local maxima in
the parameter space. Further improvements of the original
Hough algorithm can be found in [SSO1].

To ensure an optimal reconstruction of line segments, the
input image is assumed to feature thin, black lines on a white
background. To ensure these properties, we apply several
preprocessing steps to the input image: 1) First the image
is converted to black and white using thresholding. In gray-
scale images with luminance range [0;255] we commonly
use 240 as threshold to account for small variations in the
background. 2) Due to anti-aliasing and parameter settings
of the different line-based algorithms, the line representa-
tions are often a few pixels wide and have to be thinned. The
morphological operator erosion is used for this task, which
computes the “skeleton” of the structures in the image. We
also use morphological operators to derive the direction of
the vector glyphs, while filtering the arrow head. In the lit-
erature, the standard approach to generate line-based input
for the Hough transform is an edge detection, e.g., Canny or
Sobel filter, which can easily operate on natural scene im-
ages. In our application, however, it is less suited, as edge
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detectors give two edges for each line and we would have
to estimate the core of the line from the two reconstructed
boundaries. Hence, we chose erosion which provides the re-
quired information directly. 3) To improve the results of the
Hough transform, the original image is separated into con-
nected components that are analyzed separately by storing
each connected component in a new image which is Hough
transformed. After the preprocessing, the lines in each con-
nected component are reconstructed using the Hough trans-
form. In a final step, all line segments from the individual
connected components are stored in a single image. To de-
rive values in-between the reconstructed data, we use the in-
terpolation method presented in Section 5.3.

5.3. Interpolation

The reconstructed data obtained from the algorithms ex-
plained in the last two sections features many gaps. In
the case of line-based visualizations, data cannot be recon-
structed in areas, where there is no line information. Textures
on the other side theoretically provide information for each
pixel in the image, but in some areas there is high uncertainty
in the reconstruction as several directions are equally likely.

Analogous to the processing of visual stimuli in the hu-
man visual system [NL82], our algorithm interpolates in-
between reconstructed data. Additionally, interpolation en-
sures that the derived quality metric is meaningful. If data
was not interpolated, areas that are difficult to represent,
e.g., areas of very turbulent flow, could simply be left out
in the visualization and would result in better error values.
In our model, we use bilinear interpolation from neighbor-
ing reconstructed data points. Therefore, a Delaunay triangu-
lation [dBCvKOO8] of the reconstructed data is computed.
The input positions P to the algorithm are the set of pixel
positions, where directional data could be reconstructed. A
triangulation subdivides the plane into triangles such that the
positions in P are the vertices of the triangles. In the case of
the line-based reconstruction additional constraints for the
triangulation have to be added. To ensure correct interpola-
tion along reconstructed lines, these lines have to correspond
to edges in the triangulation. In our implementation, we use
the Delaunay algorithm of the cgal-library [CgalO], which
provides a method to set constraints on certain edges that
have to be included in the triangulation. We use this feature
to retain reconstructed lines as edges in the triangulation.

Techniques commonly used for the interpolation of vi-
sual data are nearest neighbor, bilinear and cubic interpo-
lation, which can be either performed on a Delaunay tri-
angulation or a regular grid for spline-based interpolation.
We evaluated Delaunay and nearest-neighbor interpolation
and found Delaunay interpolation to be superior. Kadyrov
and Petrou [KP04] conducted a more extensive study on the
different interpolation strategies and found that cubic inter-
polation performed slightly better than linear interpolation,
and both of them much better than nearest neighbor interpo-
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lation. Hence, we chose bilinear Delaunay interpolation to
estimate values inside the triangles of the triangulation.

6. Error Calculation

In the previous section, the reconstruction of directional in-
formation from flow visualizations is detailed. The result
of this process is a triangulation of the domain with recon-
structed values at the vertices of the grid (Fig. 5(b) and 5(e)).
To quantify the error between the original and the recon-
structed data, the two datasets have to be compared. There-
fore, we compute a triangulation of the domain whose set of
vertices is the union of the vertices of the original dataset and
of the reconstructed positions. The constraints defined in the
Delaunay triangulation are carried forward to the new point
set. Additional constraints to include the edges in the orig-
inal field are added as well. The new set of positions along
with the combined constraints is triangulated using the De-
launay algorithm (Fig. 5(f)). The values at each vertex of the
new triangulation are the normalized dot product of the vec-
tors in the original and the reconstructed dataset (Fig. 5(c)).

In our evaluation we use two different methods to inspect
the difference field:
A visual inspection of the colormap representation of the dif-
ference field helps to identify areas that feature strong de-
viation between the original and the reconstructed data. In
this representation we depict the angle in degree between
the original vector and the reconstructed one, which is com-
puted by the arc cosine of the difference field.
To enable an easy-to-compare quantitative quality measure
of a vector field visualization, we integrate the difference
over the entire field. This can be done by summing up the
integrated error of all triangles in the triangulation. The final
error is the mean error of the entire flow domain.

(© 2011 The Author(s)
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Both error metrics are complementary to one another. While
the numeric measure is easy to compare between multiple
visualizations and parameter settings, the visual error repre-
sentation provides an intuitive depiction of areas with strong
deviation.

7. Results and Analysis

In the results section we will focus on two aspects of quanti-
tative evaluation of visualization algorithms. In the first part,
we will investigate three techniques and their performance
when depicting two different datasets. In the second part, we
will compare the individual algorithms with respect to differ-
ent parameter settings and see how the visualization quality
changes with modified parameters.

7.1. Cavity

The first dataset, the simulation of flow inside a cavity, con-
tains a single feature (the central vortex) and a rather uni-
form structure in the surrounding medium. The grid along
with the normalized vector data is depicted in Fig. 6(a). The
colormap in Fig. 6(b) shows the orientation of the vectors
and is the ground truth to be achieved by the directions re-
constructed from the flow visualizations. In Fig. 6(f,i,1) we
see this data being visualized using hedgehogs, streamlines
and LIC. The basic structure is correctly represented by all
three algorithms.

Comparing the colormap depictions of the reconstructed
angles in Fig.s 6(g,j,m) to the ground truth in Fig. 6(b), all
three visualizations appear quite good. A few outliers are
visible in the LIC reconstruction, where the threshold was
locally not good enough to filter the defects. The only area
of major differences is the center of the vortex. While the
color pattern of the hedgehog reconstruction is very simi-
lar to the ground truth, the reconstructions for streamlines
and LIC look quite different. The error plots in Fig. 6(h.k,n)
show the differences more clearly. Major errors in the recon-
struction process of the hedgehog image occur in areas of
strong curvature, where the error is often above 20°. In con-
trast, the error induced by streamlines is commonly much
lower (< 15°) in turbulent areas, which is due to the shape
of the streamlines, which follow the direction of the input
field closely. Large errors are visible in the lower corners of
the image, which is probably due to the sparse sampling in
this area. The largest overall error is found in the LIC visu-
alization. Though Gabor filters with a resolution of 1° were
used, most areas feature errors around 10°.

In summary, we found that concerning the average error
hedgehogs and streamlines perform better than LIC. Stream-
lines have an advantage in areas of turbulent flow and hedge-
hogs perform slightly better in areas where the flow direction
is constant or very uniform.

7.2. H-block flow
The H-block dataset consists of two linked tubes as depicted
in Fig. 7. The fluid in the upper part flows from left to right,
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Figure 6: Reconstruction of the cavity dataset: Fig. (a)
shows the original grid along with the normalized vector
data. A colormap of the direction of the vector field is given
in (b). (f;i,l) Three visualization techniques and (g,j,m) the
reconstructed directions. (h,k,n) The difference of the direc-
tions of the original and the reconstructed field in degrees.

the one in the lower part in the opposite direction. These cur-
rents in opposite directions result in three features in the cen-
tral part of the domain: two vortices close to the boundaries
and a saddle in the center. Overall the structure of the flow is
much more turbulent than the one in the previous example.

The three images in the second column of Fig. 7 depict
the reconstructed data. The red triangles in Fig. 7(b) for vec-
tor glyphs and streamlines depict the location and direction
of reconstructed data and they seem to agree in general very
well with the original data. The error plot reveals that hedge-
hogs do not well represent the data around the saddle point.
The third image in the second column represents the data
reconstructed from a LIC image. Similar to the previous ex-
ample, the reconstruction of LIC features highest errors with
approximately 10°. Nevertheless, LIC has a very uniform er-
ror profile and depicts all features correctly.
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Figure 7: Reconstruction of the H-block dataset: For each
technique (glyphs, streamlines, LIC), column (a) gives the
flow visualization, column (b) the reconstructed data, and
column (d) the reconstruction error in degree.

Summarizing, the second example confirms the findings
of the first one. Hedgehogs perform best when depicting ar-
eas of straight flow and has major difficulties in represent-
ing turbulent areas. This more complex example plays to the
strengths of streamlines, that are superior to hedgehogs when
it comes to the depiction of turbulent flow. Like in the previ-
ous example, LIC features the highest average error, but has
a consistent error profile in the entire domain and is hence
able to consistently depict a large variety of structures. While
vector glyphs and streamlines exhibit largest errors around
the saddle point, errors are more widely distributed in the
LIC images.

7.3. Comparison of Parameter Settings

In the last section of the results, we want to have a look at the
error variability within one technique as induced by different
parameter settings. Therefore we use a synthetic dataset that
comprises many common flow features in a small area.

Vector Glyphs. Fig. 8(left) depicts the mean error for differ-
ent parameter settings of the hedgehog algorithm. In this ex-
ample we varied the density and the size of the vector glyphs.
The density is modified by the number of sampling positions
in x- and y-direction 9(top). We used four different grid sizes
n x n and 6 scaling factors s, a fraction of the edge length of
a grid cell. The mean error varies between 6.4° and 16.9°.
The best size of the glyph is s = 0.4 regardless of the scale.
For smaller glyphs the reliability of the reconstruction algo-
rithm dropped, causing errors due to imprecise reconstruc-
tion. When using large glyphs, the error source is two-fold.
First, large symbols are not well suited to depict turbulent
areas as the direction of the flow changes very quickly and

large glyphs do not reflect this property. Second, the finer
the grid resolution, the closer the vectors get and the higher
the probability that they intersect, especially in dynamic ar-
eas, which leads to wrong estimations of the local direction.
Comparing the measurements for grid resolution and glyph
size separately, we see that the maximum difference between
errors within a given grid resolution is commonly around 4°.
For different sizes of the glyphs within the same grid, the
average error can change by up to 6.4°. While the individ-
ual parameter can improve the average error only by a few
degrees, their combination can result in 10.5° better perfor-
mance. Hence, it is important to adequately control the den-
sity and the size of vector glyphs in a hedgehog presentation
to obtain optimal results.

Streamlines. Fig. 8(center) depicts the results of different
parameter settings of the streamline algorithm. The user
specified parameter in this algorithm is the distance between
streamlines, and an additional parameter that cannot be con-
trolled is the seeding process which includes a random seed-
ing of starting positions. For distances d in the range [1;15]
with step size 2, we computed the mean reconstruction er-
ror of eight visualizations each with different start configura-
tions based on the random seeding. Hence, for each distance,
we resolve an average error over the eight trials and the cor-
responding standard deviation ¢ (Fig. 8(center)). Streamline
visualizations with a distance of 1 (Fig. 9(center)) feature
a mean error of 4.64° and standard deviation 0.01°. When
the distance is set to 15, the mean error increases to 12.14°
with standard deviation 0.8°. The error increases steadily
with increasing distance of the streamlines, and so does the
variance. This means that the larger the distance between
streamlines, the larger the error and the more the result de-
pends on a good initial seeding.

LIC. In the LIC visualization two parameters can be modi-
fied, the length of the filter kernel k£ and maximum number
of hits per pixel n, which indicate how many convolutions
per cell are allowed. While a long filter kernel results in long
lines in the visualization, the second parameter controls the
smoothness of the image but also results in more blurred
structures. The length of the filter kernel k was varied be-
tween 13 and 100 pixels, and the number of hits per pixel
was in the set [1,3,9] (Fig. 9(bottom)). Worst results with re-
spect to reconstructability were achieved with a short kernel
and few convolutions per pixel (error = 28.9°) as depicted in
Fig. 8(bottom). The smallest error was achieved with long
filter kernels and many hits per pixel (error = 9.12°). In
general, we can observe a decreasing mean error with in-
creased computational costs, i.e., longer kernels and/or more
hits per pixel (Fig. 8(right)). The changes for parameter set-
tings above (k = 50,n = 3), however, were only minor and
have to be traded against the computational costs.

7.4. General Findings and Comparisons

All results were computed on a desktop PC on a single Intel
core (3.07GHz) with 8GB RAM. In general, the reconstruc-
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Figure 8: Errors for the three techniques (left to right: vector glyphs, streamlines, and LIC) and different parameter settings.

tion of texture-based data is faster than the reconstruction of
line-based data, but all images could be reconstructed within
less than 30 sec.

The analysis of different flow datasets with different fea-
ture settings showed that streamlines perform best when it
comes to reconstruction quality. The error of vector glyphs
depends a lot on the structure of the flow. LIC visualizations
feature a consistent moderate average error. Streamline visu-
alizations proved to be well suited for intricate and very dy-
namic flow structures, where vector glyphs performed worst.
Although LIC features a quite large mean error, this error is
very consistent over the entire domain and does not increase
when it comes to the depiction of turbulent structures.

The techniques and datasets that we researched are similar
to the ones used by Laidlaw et al. [LKJ*05]. Comparing the
results of their user study and our automatically evaluated
results, we find that the major findings do well agree.

8. Conclusion

In this paper we described an objective quality metric for vi-
sualizations based on visual reconstructability. This metric
favors visualizations that allow for a precise reconstruction
of the underlying data. We developed two pipelines for the
reconstruction of line-based and texture-based directional
information from flow visualization images. The metric was
computed for three common visualization techniques (vec-
tor glyphs, streamlines and LIC) and a variety of flow sim-
ulations with characteristic features. In two test cases and a
comparison of different parameter settings for the same al-
gorithm, we compared and evaluated the different visualiza-
tions and settings.

It is a common understanding that the quality of a visu-
alization should be determined by a combination of metrics,
while research projects tend to focus on an individual met-
ric. It is also a common understanding that a computational
quality metric is not the same as a human vision system, at
least for the time being. In many ways, this is similar to mea-
suring the quality of apples, which requires a combination of
quality metrics. While the ultimate evaluation is to look, feel
and taste apples by humans, we cannot perform this form of
evaluation on every apple.

One also need to aware that the accuracy of a recon-
structability metric depends on the implementation of the
reconstruction algorithm used. At the moment, there is no
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Figure 9: Visualizations with different parameters.

obvious mean to determine the ground truth of an “ideal”
reconstruction algorithm for analysing the errors of the re-
construction algorithm.

As suggested in [JC10], the development of different
quality metrics can enrich future visualization systems
by providing users with a collection of metrics for self-
evaluation. Together, these metrics can be used on a large-
scale and daily basis for quick and intuitive access to visu-
alization quality, and help creators of visualizations under-
stand why certain visualizations are better than others and
get ideas on how to improve existing techniques. Of course,
the metrics cannot replace user studies, and the development
and improvement of such metrics will continue to benefit
from user studies.

An interesting direction for future research is to develop
an appropriate metric that can reflect human viewers’ abil-
ity to infer continuity from typical flow visualization. The
reconstruction pipeline is suitable for parallelization, which
may be interesting in future development. One urgent chal-
lenge, which requires a collective effort from the visualiza-
tion community, is to introduce quality metrics to practical
software systems.
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