
http://cs.swan.ac.uk/~csbob/

Verification of
Visualization: A Software
Engineering Perspective

Robert S. Laramee
Visual and Interactive Computing Group
Computer Science Department
Swansea University, UK
r.s.laramee “at” swansea.ac.uk

2
http://cs.swan.ac.uk/~csbob/

Robert S. Laramee
r.s.laramee@swansea.ac.uk

Verification: Motivation
“Speed is irrelevant if you are traveling

in the wrong direction.”
-Mahandas Gandhi

 intelligence, speed vs accuracy,
(in)correctness

How do we know if what we see is
correct?

3
http://cs.swan.ac.uk/~csbob/

Robert S. Laramee
r.s.laramee@swansea.ac.uk

Examples from the UK
August 2011: Riots in the UK -many photos

4
http://cs.swan.ac.uk/~csbob/

Robert S. Laramee
r.s.laramee@swansea.ac.uk

Examples from the UK
August 2011: Riots in the UK -many photos

5
http://cs.swan.ac.uk/~csbob/

Robert S. Laramee
r.s.laramee@swansea.ac.uk

Examples from the UK
August 2011: Riots in the UK -many photos

6
http://cs.swan.ac.uk/~csbob/

Robert S. Laramee
r.s.laramee@swansea.ac.uk

Examples from the UK
The “Pillage People”

7
http://cs.swan.ac.uk/~csbob/

Robert S. Laramee
r.s.laramee@swansea.ac.uk

Verification: Motivation
How do we know if what we are seeing is real, i.e., the truth?

 Verification and Validation (V&V) is vital but often neglected

 We advocate software engineering approach to V&V in visualization

 There are several software engineering related guidelines to V&V

1. Visualize Tests and Comparisons
2. Visualize Data Structure Traversal and Evolution
3. Classify and Color Map
4. Incorporate Algorithm Parameters into GUI
5. Run Simple Error Checks

6. Introduce a Step Function
7. Make Use of Still-Image Driven Animation
8. Test on a Variety of Data Sets
9. And more

8
http://cs.swan.ac.uk/~csbob/

Robert S. Laramee
r.s.laramee@swansea.ac.uk

Verification in Visualization Challenges

V&V in visualization software is difficult! Why?

 Challenging algorithms

 Large amounts of data, iterations, comparisons etc.

 Complex data structures

 Traditional software engineering tools de-couple information they
report with spatio-temporal domain in which unexpected problems
occur, e.g. printf(), setting breakpoints

Guidelines inspired by development experience in both industry
and academia

Key: (1) exploit strengths of visualization itself + (2) combine
with traditional good software engineering practices

9
http://cs.swan.ac.uk/~csbob/

Robert S. Laramee
r.s.laramee@swansea.ac.uk

1. Visualize Tests and Comparisons

 Vast majority of algorithms involve tests or comparisons
between visualization primitives: points, line segments,
polygons, voxels, texels, tetrahedra etc.

 Visualize tests between two or more of these primitives by
highlighting focus object, a, and another object, b, at run time.

 This :

– (1) informs the developer if a and b are expected
primitives to test and

– (2) can verify results of comparison

10
http://cs.swan.ac.uk/~csbob/

Robert S. Laramee
r.s.laramee@swansea.ac.uk

1. Visualize Tests and Comparisons,
Example

 Example, streamline tracing
on unstructured grid.

 Involves three basic
computations: (1) point
location, (2) integration, (3)
interpolation.

 Point location can be source
of bugs.

 Test and visualize: (1) current
line segment and (2) current
mesh edge at run time

11
http://cs.swan.ac.uk/~csbob/

Robert S. Laramee
r.s.laramee@swansea.ac.uk

2. Visualize Data Structure Traversal and
Evolution

Almost all algorithms involve one or more data structures

 Visualize data structure traversal and evolution, i.e., as it's being built

 Examples: binary tree for clustering, quadtree for AR height map data

12
http://cs.swan.ac.uk/~csbob/

Robert S. Laramee
r.s.laramee@swansea.ac.uk

3. Classify and Color Map

 Classify and color map
geometric primitives in
visualization

 Data has different
attributes and values, can
be used for debugging.

 Example, quads in stream
surface

 Example: Particle color to
(1) energy level, (2) type,
(3) amount of repulsion,
etc. [Crossno and Angel
'99]

13
http://cs.swan.ac.uk/~csbob/

Robert S. Laramee
r.s.laramee@swansea.ac.uk

4. Incorporate Algorithm Parameters into User
Interface

 New algorithms introduce new
parameters: e.g., threshold
values, min and max values, alpha
values, special distances, etc.

 Identify, discuss, and visualize
these new parameters over range
of values.

 Best value of parameter is
generally unknown a priori, thus
they are incorporated into user
interface.

 Example, d_sep (Jobard and Lefer
'97)

14
http://cs.swan.ac.uk/~csbob/

Robert S. Laramee
r.s.laramee@swansea.ac.uk

5. Run Simple Error Checks

Don’t forget to run simple, sanity checks on visualization primitives
and data structures.

 A simple, generic error checking procedure can run through data
objects and check basic properties, e.g., point locations, edge
lengths, minimum, average, and maximum data values, and
boundary conditions

 Testing to see if all of object’s attributes are within reasonable,
expected bounds.

 A general error checking function can be invoked at any time
throughout vis pipeline to catch updates that cause unexpected
changes.

15
http://cs.swan.ac.uk/~csbob/

Robert S. Laramee
r.s.laramee@swansea.ac.uk

5. Run Simple Error Checks, Example

Example 1: an isosurfacing algorithm for adaptive resolution data:

Cracks appeared (only) at 128^3 resolution data or greater.

 To track down error, we implemented simple, generic, error-checking
procedure that examined:

– (1) locations of triangle vertices–testing to see if they fell outside
of their associated cube and

– (2) maximum and minimum data values of each node in octree
to ensure that all child values fell within this range.

 Values were re-computed and compared to stored values.

 This function traversed entire octree and could be called at any time.

Example 2: Render normals, discover lighting and shading bugs

16
http://cs.swan.ac.uk/~csbob/

Robert S. Laramee
r.s.laramee@swansea.ac.uk

6. Introduce a Step Function

Algorithms involve computation that iterates several times, perhaps
over each data item, and again over each pass over data
structure.

 Incorporate feature in user-interface that interrupts (or pause)
execution between each iteration of algorithm processing.

 User can pause current scene and look in more detail. Pressing
pause button again then executes exactly one loop of algorithm.

 User may then step through program execution at run time, one
iteration (or loop) at a time.

Example: while developing a flow visualization algorithm we
introduced step function that can stop program execution after
each time-step.

17
http://cs.swan.ac.uk/~csbob/

Robert S. Laramee
r.s.laramee@swansea.ac.uk

7. Make Use of Still-Image Driven Animation

Some bugs occur very infrequently, e.g., only after several time-steps
have been processed and visualized.

You may be watching an animation of your visualization in action and
notice bug(s) only after several seconds (or even minutes).

 Point in time at which the error is recognized may come too late
in order to slow down or interrupt algorithm, e.g., by invoking step
function.

 Stopping process and starting all over is painful and time-
consuming.

Use feature that saves still images of the visualization each time
frame buffer is updated.

18
http://cs.swan.ac.uk/~csbob/

Robert S. Laramee
r.s.laramee@swansea.ac.uk

7. Make Use of Still-Image Driven Animation,
Example

We recommend a user option to your software or system that
automatically:

(1) re-sizes the viewer to 5122 pixels and

(2) saves each frame as a still image in JPEG (or PNG) format.

The still images are used as input to an application which can play
them back. We use Adobe Premiere or Video-Mach

(http://www.gromada.com/videomach.html).

 We consider this as a standard feature: also used to make
movies.

http://www.gromada.com/videomach.html

19
http://cs.swan.ac.uk/~csbob/

Robert S. Laramee
r.s.laramee@swansea.ac.uk

8. Test Algorithms on a Variety of Data Sets

 Test algorithm on small, familiar data sets first

 If possible, create synthetic data with known characteristics

 Find smallest data set that creates problem

 Test algorithm on big, complex data sets second.

 Test on a variety of data sets.

Obvious, but still not carried out.

20
http://cs.swan.ac.uk/~csbob/

Robert S. Laramee
r.s.laramee@swansea.ac.uk

9. Exploit and Compare with Previous Literature

Chances are, you are not first person to visualize a given data set.

 Compare visualizations you create with your predecessors.

 Simple and obvious, however, we witness colleagues overlook
this strategy fairly regularly.

 Communicate with those who have already worked with a given
data set.

 Colleagues are happy to share their experiences and share

important information that was not published.

21
http://cs.swan.ac.uk/~csbob/

Robert S. Laramee
r.s.laramee@swansea.ac.uk

10. Make Exclusive Use of Accessor Methods

All class member variables are accessed through accessor methods,
i.e. Get() and Set() methods, e.g., GetClassVariable(),
SetClassVariable(int newValue) .

We advocate no exceptions to this rule. The use of accessor methods:

 Enforces encapsulation, makes implementation easy to change,

 If class variable assignment is performed exclusively through
Set() methods, then objects are always in valid state.

 Set() methods perform error and bounds tests and sanity
checking on parameters passed to the procedure.

Following this convention leads to very robust code.

22
http://cs.swan.ac.uk/~csbob/

Robert S. Laramee
r.s.laramee@swansea.ac.uk

11. Follow Coding Conventions

Big projects require multiple, coordinated developers over years. And,
applications should not generally be started from scratch.

 But, we in software development start projects from scratch over
and over again–repeatedly re-inventing wheel.

 Source code that does not follow any conventions and is not very
legible. → Quickly turns into legacy code.

 Writing illegible code is easy and is generally default.

 We have encountered numerous instances of programmers who
cannot read their own code.

23
http://cs.swan.ac.uk/~csbob/

Robert S. Laramee
r.s.laramee@swansea.ac.uk

11. Follow Coding Conventions, Example

Bob's Concise Coding Conventions (available online) are:

 Influenced by and drawn from other coding standards and
guidelines including VTK, Sun Microsystems, Meyers, and
Dickheiser.

 Concise so they can be printed out and hung up for ease of use.

 Basic philosophy: code legibility should be maximized.

 Maximum legibility leads to minimum number of bugs.

 Maximizing legibility also helps maximize code re-use, good
design, and flexibility.

24
http://cs.swan.ac.uk/~csbob/

Robert S. Laramee
r.s.laramee@swansea.ac.uk

V&V in visualization is vital but often neglected

Traditional debugging tools de-couple information from spatio-
temporal domain in which unexpected problems occur.

We discuss a software engineering approach to V&V inspired
by development experience in both industry and academia

For more information, please see:

R. S. Laramee, Using Visualization to Debug Visualization
Software, in IEEE Computer Graphics and Applications
(IEEE CG&A), Vol. 20, No. 6, Nov/Dec 2010, pages 67-73
(available online)

Summary and Conclusions

25
http://cs.swan.ac.uk/~csbob/

Robert S. Laramee
r.s.laramee@swansea.ac.uk

Acknowledgements
We thank the following people for their contributions:

 Eugene Zhang of Oregon State University for valuable
discussions.

 Dan Lipsa of Armstrong Atlantic State University for
valuable proof reading.

 Zhenmin Peng, Tony McLouglin, and Edward Grundy of
Swansea University for images.

 Research supported partly by EPSRC Grant
EP/F002335/1

Thank you for your attention.
Any questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

