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Verification: Motivation
“Speed is irrelevant if you are traveling 

in the wrong direction.”
-Mahandas Gandhi 

  intelligence, speed vs accuracy, 
(in)correctness

How do we know if what we see is 
correct?
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Examples from the UK
August 2011: Riots in the UK -many photos
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Examples from the UK
The “Pillage People”
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Verification: Motivation
How do we know if what we are seeing is real, i.e., the truth?

 Verification and Validation (V&V) is vital but often neglected

 We advocate software engineering approach to V&V in visualization

 There are several software engineering related guidelines to V&V

1. Visualize Tests and Comparisons
2. Visualize Data Structure Traversal and Evolution
3. Classify and Color Map
4. Incorporate Algorithm Parameters into GUI
5. Run Simple Error Checks

6. Introduce a Step Function
7. Make Use of Still-Image Driven Animation
8. Test on a Variety of Data Sets
9. And more
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Verification in Visualization Challenges

V&V in visualization software is difficult!  Why?

 Challenging algorithms

 Large amounts of data, iterations, comparisons etc.

 Complex data structures

 Traditional software engineering tools de-couple information they 
report with  spatio-temporal domain in which unexpected problems 
occur, e.g. printf(), setting breakpoints

Guidelines inspired by development experience in both industry 
and academia

Key: (1) exploit strengths of visualization itself + (2) combine 
with traditional good software engineering practices
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1. Visualize Tests and Comparisons

 Vast majority of algorithms involve tests or comparisons 
between visualization primitives: points, line segments, 
polygons, voxels,  texels, tetrahedra etc.

 Visualize tests between two or more of these primitives by 
highlighting focus object, a, and another object, b, at run time.

 This :

– (1) informs the developer if a and b are expected 
primitives to test and 

– (2) can verify results of comparison
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1. Visualize Tests and Comparisons, 
Example

 Example, streamline tracing 
on unstructured grid.

 Involves three basic 
computations: (1) point 
location, (2) integration, (3) 
interpolation.

 Point location can be source 
of bugs.

 Test and visualize: (1) current 
line segment and (2) current 
mesh edge at run time
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2. Visualize Data Structure Traversal and 
Evolution

Almost all algorithms involve one or more data structures

 Visualize data structure traversal and evolution, i.e., as it's being built

 Examples: binary tree for clustering, quadtree for AR height map data
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3. Classify and Color Map

 Classify and color map 
geometric primitives in 
visualization

 Data has different 
attributes and values, can 
be used for debugging.

 Example, quads in stream 
surface

 Example: Particle color to 
(1) energy level, (2) type, 
(3) amount of repulsion, 
etc. [Crossno and Angel 
'99]



13  
http://cs.swan.ac.uk/~csbob/

Robert S. Laramee
r.s.laramee@swansea.ac.uk

4. Incorporate Algorithm Parameters into User 
Interface

 New algorithms introduce new 
parameters: e.g., threshold 
values, min and max values, alpha 
values, special distances, etc.

 Identify, discuss, and visualize 
these new parameters over range 
of values.

 Best value of parameter is 
generally unknown a priori, thus 
they are incorporated into user 
interface.

 Example, d_sep (Jobard and Lefer 
'97)
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5. Run Simple Error Checks

Don’t forget to run simple, sanity checks on visualization primitives 
and data structures. 

 A simple, generic error checking procedure can run through data 
objects and check basic properties, e.g., point locations, edge 
lengths, minimum, average, and maximum data values, and 
boundary conditions

 Testing to see if all of object’s attributes are within reasonable, 
expected bounds. 

 A general error checking function can be invoked at any time 
throughout vis pipeline to catch updates that cause unexpected 
changes.
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5. Run Simple Error Checks, Example

Example 1: an isosurfacing algorithm for adaptive resolution data:

Cracks appeared (only) at 128^3 resolution data or greater. 

 To track down error, we implemented simple, generic, error-checking 
procedure that examined: 

– (1) locations of triangle vertices–testing to see if they fell outside 
of their associated cube and 

– (2) maximum and minimum data values of each node in  octree 
to ensure that all child values fell within this range. 

 Values were re-computed and compared to stored values. 

 This function traversed entire octree and could be called at any time.

Example 2: Render normals, discover lighting and shading bugs 
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6. Introduce a Step Function

Algorithms involve computation that iterates several times, perhaps 
over each data item, and again over each pass over data 
structure. 

 Incorporate feature in user-interface that interrupts (or pause) 
execution between each iteration of algorithm processing. 

 User can pause current scene and look in more detail. Pressing 
pause button again then executes exactly one loop of algorithm. 

 User may then step through program execution at run time, one 
iteration (or loop) at a time.

Example: while developing a flow visualization algorithm we 
introduced step function that can stop program execution after 
each time-step. 
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7. Make Use of Still-Image Driven Animation

Some bugs occur very infrequently, e.g., only after several time-steps 
have been processed and visualized. 

You may be watching an animation of your visualization in action and 
notice bug(s) only after several seconds (or even minutes). 

 Point in time at which the error is recognized may come too late 
in order to slow down or interrupt algorithm, e.g., by invoking step 
function. 

 Stopping process and starting all over is painful and time-
consuming.

Use feature that saves still images of the visualization each time  
frame buffer is updated. 
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7. Make Use of Still-Image Driven Animation, 
Example

We recommend a user option to your software or system that 
automatically: 

(1) re-sizes the viewer to 5122 pixels and

(2) saves each frame as a still image in JPEG (or PNG) format. 

The still images are used as input to an application which can play 
them back. We use Adobe Premiere or Video-Mach 

(http://www.gromada.com/videomach.html).

 We consider this as a standard feature: also used to make 
movies.

http://www.gromada.com/videomach.html
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8. Test Algorithms on a Variety of Data Sets

 Test algorithm on small, familiar data sets first

 If possible, create synthetic data with known characteristics

 Find smallest data set that creates problem

 Test algorithm on big, complex data sets second.

 Test on a variety of data sets.

Obvious, but still not carried out.
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9. Exploit and Compare with Previous Literature

Chances are, you are not first person to visualize a given data set. 

 Compare visualizations you create with your predecessors. 

 Simple and obvious, however, we witness colleagues overlook 
this strategy fairly regularly. 

 Communicate with those who have already worked with a given 
data set.

 Colleagues are happy to share their experiences and share

important information that was not published.
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10. Make Exclusive Use of Accessor Methods

All class member variables are accessed through accessor methods, 
i.e. Get() and Set() methods, e.g., GetClassVariable(), 
SetClassVariable(int newValue) . 

We advocate no exceptions to this rule. The use of accessor methods:

 Enforces encapsulation, makes implementation easy to change, 

 If class variable assignment is performed exclusively through 
Set() methods, then objects are always in valid state. 

 Set() methods perform error and bounds tests and sanity 
checking on parameters passed to the procedure. 

Following this convention leads to very robust code.
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11. Follow Coding Conventions

Big projects require multiple, coordinated developers over years. And, 
applications should not generally be started from scratch. 

 But, we in software development start projects from scratch over 
and over again–repeatedly re-inventing wheel. 

 Source code that does not follow any conventions and is not very 
legible. → Quickly turns into legacy code. 

 Writing illegible code is easy and is generally default. 

 We have encountered numerous instances of programmers who 
cannot read their own code.
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11. Follow Coding Conventions, Example

Bob's Concise Coding Conventions (available online) are:

 Influenced by and drawn from other coding standards and 
guidelines including VTK, Sun Microsystems, Meyers, and 
Dickheiser. 

 Concise so they can be printed out and hung up for ease of use. 

 Basic philosophy: code legibility should be maximized. 

 Maximum legibility leads to minimum number of bugs. 

 Maximizing legibility also helps maximize code re-use, good 
design, and flexibility.
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V&V in visualization is vital but often neglected

Traditional debugging tools de-couple information from spatio-
temporal domain in which unexpected problems occur.

We discuss a software engineering approach to V&V inspired 
by development experience in both industry and academia

For more information, please see:

R. S. Laramee, Using Visualization to Debug Visualization 
Software, in IEEE Computer Graphics and Applications 
(IEEE CG&A), Vol. 20, No. 6, Nov/Dec 2010, pages 67-73 
(available online)

Summary and Conclusions
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Thank you for your attention. 
Any questions?
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