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Abstract In many data acquisition tasks, the place-
ment of a real camera can vary significantly in com-
plexity from one scene to another. Optimal camera po-
sitioning should be governed not only by least error
sensitivity, but in addition to real-world practicalities
given by various physical, financial and other types of
constraints. It would be a laborious and costly task to
model all these constraints if one were to rely solely on
fully automatic algorithms to make the decision. In this
work, we present a study using 2D and 3D visualization
methods to assist in single camera positioning based on
error sensitivity of reconstruction and other physical
and financial constraints. We develop a collection of vi-
sual mappings that depict the composition of multiple
error sensitivity fields that occur for a given camera po-
sition. Each camera position is then mapped to a 3D
visualization that enables visual assessment of the cam-
era configuration. We find that the combined 2D and
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3D visualization effectively aids the estimation of cam-
era placement without the need for extensive manual
configuration through trial and error. Importantly, it
still provides the user with sufficient flexibility to make
dynamic decisions based on physical and financial con-
straints that can not be encoded easily in an algorithm.
We demonstrate the utility of our system on two real-
world applications namely snooker analysis and camera
surveillance.

Keywords Multi-field Visualization - Glyph-based
Techniques - Uncertainty Visualization

1 Introduction

Multi-field visualization is concerned with the depiction
of data that encodes information about multiple fields
(e.g., scalar, vector and tensor fields) that are co-located
in the same domain. These are usually obtained from
different sampling sources or computational processes.
In this work, we address the needs for visualizing error
sensitivity associated in 3D scene reconstruction, which
is a common modelling method in computer graphics
(e.g., [31]). Error-sensitivity analysis is one approach
for selecting an optimal camera position within a given
scene. There are two main types of camera position-
ing problems. On one hand, we have the selection of
virtual cameras for conveying the most information to
the user. On the other, there is the task of positioning
a real camera for optimizing vision-based applications.
This paper focuses on the latter. In 3D reconstruction,
errors in estimating camera extrinsic parameters are
the most fundamental errors, which may be caused by
a variety of reasons, including errors in image process-
ing (e.g., edge detection), feature analysis (e.g., corner
recognition) and geometric correlation. This leads to
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Fig. 1 Constraint maps of a sample snooker room wall (Left) and a construction scene (Center) with dynamic constraints
(Right). The green region highlights valid camera mounting positions with invalid positions mapped to red. The construction
scene images correspond to the right wall of the camera surveillance scene in Fig. 7.The focus region must be fully in view of

the camera for a position to be considered as valid.

multiple error sensitivity fields which need to be visu-
alized together.

Statistical analyses on one or more error sensitiv-
ity fields is often used to analyze complex parameter
spaces, for example, by computing an average error
field, or identifying the camera with least error sensitiv-
ity based on magnitude. However, it is difficult for such
statistics to convey the detailed information such as er-
ror distribution and orientation in different fields and
in different parts of a field. In many real-world applica-
tions, error analysis must also be combined with other
observations and practical constraints. For example, in
3D reconstruction, the best camera position is not al-
ways determined by the lowest error sensitivity. Addi-
tional knowledge such as feasibility of the camera posi-
tion (i.e., windows, picture frames, scaffolding), mount-
ing equipment cost, and impact on the environment
(e.g., spectators, pedestrian and players) will heavily
influence a user’s decision as shown in Fig. 1. Such
factors are fundamental to the planning process espe-
cially when constraints are dynamic, and when a sys-
tem needs to meet the specific demands of a practi-
cal framework (e.g., portable camera systems versus a
permanent setup). This is often desirable since many
venues, coaching rooms, and outdoor environments are
multi-purpose and require a flexible solution. Therefore,
we need to investigate camera placement and their as-
sociated sensitivity in a three-dimensional search space.

Given a set of camera positions and error sensitivity
fields, a typical approach for finding an optimal solution
would be to use Machine Learning [1,27]. The process of
machine learning involves modeling the problem (e.g.,
the requirements for camera placement) as formal pa-
rameters which are optimized. Due to the range of pos-
sible camera configurations in addition to the practical
requirements of a user, encoding such semantic knowl-
edge with attached weighting parameters into an algo-
rithm is highly impractical due to costs in labor. This
problem motivates us to explore a novel solution by in-

troducing visualization as an effective planning tool for
optimal placement of a camera. A visualization solu-
tion is desirable for informing the user of the error sen-
sitivity in both a comparative and summative manner,
while empowering the user to bring additional informa-
tion and knowledge into the analysis.

We present a study using 2D and 3D visualization
methods to assist in single camera positioning based
on the error sensitivity of reconstruction. The goal of
our visualization is to visually compare candidate cam-
era positions through their associated error sensitivity,
and to provide visual suggestions for estimating an op-
timal camera position. We find that visualization pro-
vides a faster, and cost-effective alternative over other
viewpoint selection methods for real cameras and en-
ables the user to make dynamic decisions that integrate
trade-offs between reconstruction quality and feasabil-
ity. In particular, the main contributions of this paper
are:

— We develop a novel collection of glyph-based vi-
sualizations which depict multiple error sensitivity
fields. These visual mappings can be used to evalu-
ate prospective camera positions.

— We provide a visual summary of camera positions
in a given 3D context visualization. This effectively
aids the estimation of the best single camera posi-
tion by enabling the user to incorporate physical,
financial and other types of constraints into the de-
cision process.

— We demonstrate the usefulness of our visualization
method on two real-world applications with feed-
back from end-users. We note that for the applica-
tion we present, financial constraints limit the user
to positioning a single camera and prevent the user
from incorporating sophisticated 3D scanning or sen-
sor technology.

The remainder of the paper is organized as follows:
Section 2 provides an overview of related work. Sec-
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tion 3 outlines the system pipeline of our visualization
system. Section 4 briefly describes the reconstruction
technique we follow, and detail our method for extract-
ing error sensitivity from single camera. Section 5 gives
the design process for visualizing multiple error sensi-
tivity and the steps for generating both 2D and 3D er-
ror visualization. Section 6 and 7 gives an evaluation of
our proposed visualization scheme and how this meets
our requirements. Feedback from end-users and domain
experts is used to evaluate our visual mappings of mul-
tiple error sensitivity and to discuss the usability of the
system. Finally, Section 8 concludes the work.

2 Related Work

The key themes from the literature that this paper
concentrates on are: multi-field visualization and un-
certainty visualization. The following section discusses
the related work from each of these topics.

Multi-field Visualization: Geometric shapes are
often used to represent multiple data attributes. Barr [3]
presents such an approach by introducing primitives
(superquadrics) used for creating and simulating three-
dimensional scenes. Shaw et al. [33] describe an interac-

tive glyph-based framework to visualize multi-dimensional

data using superquadrics which then Kindlmann [17]
extends further to visualize tensor fields.

An alternate approach for representing multi-field
data is to overlay multiple visualizations onto a sin-
gle image. Crawfis and Allison [11] introduce a novel
approach to achieve this using texture mapping and
raster operations. Kirby et al. [18] stochastically ar-
range multiple visualization layers to minimize overlap,
to provide greater emphasis to higher layers. Taylor [34]
provides an overview of techniques for overlaying scalar
fields onto the same surface, and evaluates their per-
formance. More recently, Kehrer et. al. [16] describes
the importance of visualizing data with multiple parts
in scientific simulation, and demonstrate this using an
interactive brushing application.

Uncertainty Visualization: Many approaches have
been used to quantify and visualize uncertainty. In par-
ticular, glyphs [40,22] are well suited for illustrating
uncertainty in vector fields where data properties such
as direction, magnitude can be mapped to length, area,
color and /or angles. Botchen et al. [5] introduce a method
to visualize uncertainty in texture-based flow fields, by
using a convolution filter to smear out probability-based
particle traces.

Other methods include procedural annotations [8]
to show uncertainty information simultaneously with

the data while minimizing visual distraction. Pang et
al. [28] and Verma and Pang [38] present comparative
visualization tools to analyze differences between vec-
tor datasets represented as polylines. Brown [7] demon-
strates the use of vibrations to visualize data uncer-
tainty, by investigating oscillations in vertex displace-
ment and changes in luminance and hue. Sanyal et al. [32]
illustrate uncertainty in numerical weather models us-
ing glyphs, ribbons and spaghetti plots.

3D Reconstruction: A comprehensive overview for
performing 3D reconstruction is described by Hartley
and Zisserman [15]. Our technique is based on the work
by Legg et al. [21] for single-camera reconstruction of
a snooker scene using projective transformation given
any arbitrary table view.

For evaluating 3D reconstruction errors, various meth-
ods have been proposed in the past decade. The work
of Weng et al. [39] is one of the earliest instances of es-
timating the standard deviation of reconstruction error
using first order perturbations in the input. Broida and
Chellappa [6] derived the Cramer-Rao lower bounds
(CRLB) on the estimation error variance of the struc-
ture and motion parameters from a sequence of monoc-
ular images. Zhang [42] presents an important contribu-
tion on determining the uncertainty in the estimation
of the fundamental matrix. Finally, Morris, Kanatani
and Kanade [25] extend the covariance-based uncer-
tainty analysis for the geometric indeterminacies like
scale change.

Sensor Planning: Sensor planning typically oper-
ates on a pre-defined selection of sampling points cen-
tered around the object of interest. Cowan and Kovesi [10]
present automatic sensor placement based on optimiz-
ing the sensor resolution, focus, field of view and visibil-
ity to reduce the cost of vision applications. Examples
may include planning of the Next Best Pose (NBP) [41]
and object reconstruction [2]. MacKinnon et al. [23] in-
troduce quality metrics to improve laser range scanning
by minimizing data acquisition. The authors recognise
that quality metrics often ignore physical properties
and sensor limitations. To the best of our knowledge,
this is the first paper to address uncertainty associated
with multiple error-sensitivity fields as a result of cam-
era positioning for 3D scene reconstruction in conjunc-
tion with other constraints (e.g., physical, financial) for
optimal camera placement.

Viewpoint Selection: Previous work has been car-
ried out for addressing different types of viewpoint se-
lection problems. In visualization and computer graph-
ics, several methods have been proposed towards se-
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Fig. 2 An overview of the combined visualization pipeline
for depicting error sensitivity in single camera positioning.
There are three main stages: Extracting the error sensitivity
data from sample camera positions, generating the 2D error
map and generating the 3D environment visualization.

lecting a (virtual) camera for obtaining the most infor-
mation viewable to a user for scene understanding [37],
volume visualization [4] and image-based modelling [19,
12]. Other types of camera positioning problems in-
clude vision-based approaches [10] for achieving a (non-
restricted) viewpoint that reduces the cost of vision ap-
plications. Our problem follows the latter. However, the
application in our case differs in that we include addi-
tional physical and financial constraints. Not all view-
points are possible. We also emphasize that the con-
straints in our applications are dynamic, making direct
encoding non-feasible.

3 System Overview

The system comprises of three key aspects: extracting
the error sensitivity data, generating the 2D error map
and generating the 3D environment visualization. An
overview of the system is shown in Fig. 2. The first
stage involves taking a set of sample images from given
camera positions around the scene as shown in Fig. 3.
We extract the associated error-sensitivity fields which
is detailed in Section 4. Following this, we estimate the
camera pose from each image which is necessary for
mapping the camera position to the 3D environment.
The second stage maps the corresponding error sen-
sitivity fields using visual designs we propose in Sec-
tion 5. This aids the user in analyzing the uncertainty
at given positions and allows a visual comparison of
multiple cameras. In the final stage, a 3D visualization
is generated to summarize multiple error sensitivity as-
sociated with each camera and to incorporate contex-

Fig. 3 A 3D reconstruction of the camera environment in the
snooker scene. A set of sampled camera positions are shown
using grey spherical markers around the region of interest.

tual information about the scene. Each visualization is
displayed simultaneously or on a dual-screen, allowing
the user to interact with the 3D visualization whilst
analyzing the error sensitivity in detail. Sample camera
positions can be selected within the environment which
update the error map visualization accordingly. In addi-
tion, users can filter cameras based on error-sensitivity
to highlight potential camera suggestions.

4 Camera Sensitivity and Error Derivation

Three-dimensional reconstruction and object tracking
are highly sensitive to camera placement. Many sys-
tems (e.g., Hawk-eye [26]) adopt multiple cameras to
overcome problems such as object occlusion and sam-
pling errors. The Hawk-eye ball tracking system is com-
mercially used in sports such as Tennis, Snooker and
Cricket to accurately reconstruct shots for television
broadcasting. It is vital that the images captured from
each camera contain sufficient information about the
scene. There are many factors in camera sensitivity that
will affect the image quality used for reconstruction:

— Resolution — the physical size of the image cap-
tured by the camera determines the amount of sam-
pling error of the image data.

— Viewing Angle — the maximum angle in which a
display can be viewed. This highly affects the avail-
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Fig. 4 (Top) Reconstruction pipeline for extracting ball positions in a snooker scene using a single camera. The 3D recon-
struction is based on a 2D homography. (Bottom) Camera sensitivity analysis of the projective transform. Error sensitivity
fields (or vector fields) are derived to quantify the impact of image distortion from inaccurate feature correspondence.

ability and selection of camera poses (see below)
that fully capture the entire scene.

— Camera Pose — is a combination of position and
orientation of the camera with respect to a static
object in the scene.

— Lighting Condition — lighting variance can affect
processing steps such as color classification.

— Camera Vibration — the stability of the camera
should be minimized to reduce errors in feature de-
tection.

In our case study, we focus on using 3D reconstruc-
tion as part of a coaching tool [20], where only an ap-
proximate estimation of the balls is required. Whilst
there are key advantages to a multi-camera system, it
also presents several practical drawbacks. For instance,
such a system needs to be manually calibrated before
use. This step can often be overwhelming and time con-
suming to a novice user such as snooker coaches and
players. More significantly, snooker clubs and academies
have yet to benefit from such technology due to the cost
of installation (e.g., around £200,000 for Hawk-eye).
To facilitate our target users, we propose error analysis
on a more flexible system using a single camera [21].
One desirable ability is to review a sequence of train-
ing shots [29] to support performance analysis. In order
to perform ball tracking, we use a high-speed ethernet
camera capturing at 200 frames per second. Since the
camera has a fixed resolution, viewing angle, and focal
length, our focus is to assess the quality of an image
at various camera positions that give the most reliable
reconstruction.

4.1 Snooker Reconstruction

The goal of snooker reconstruction is to estimate the
spatial position of the snooker balls. As the balls lie
along a planar surface, this simplifies the problem to
extracting the 2D position (x,y) of the ball object,
which can then be mapped onto its 3D model. Guo and
Namee [14] were the first to introduce ball reconstruc-
tion based on a single, top-down view of the table. We
follow the method presented by Legg et al. [21], which
extends the previous technique [14] to an arbitrary cam-
era position. Fig. 4 (top) outlines this process. The first
step involves transforming the image into a top-down
view using 2D homography. The next step involves ap-
plying a threshold filter to extract the specular high-
light on the ball, and approximate the location of each
ball. We then identify a full or partial set of balls (e.g.,
for training shots) using connected component analysis
and color classification in the resulting image. In the
final step, the extracted balls are mapped to their cor-
responding position in the 3D model.

Fundamentally, the reconstruction accuracy of the
balls is determined by the camera position that gives
the least amount of projective error. In an ideal sce-
nario, a camera would be placed directly top-down above
the table. However, in snooker and many other sporting
facilities (e.g., table tennis and pool), constraints such
as lighting fixtures, the cost of mounting the camera
and the practicalities of the camera position (see Fig. 1
for an example) means this is not possible. Therefore,
we need to find alternative solutions. We determine the
quality of an image by evaluating the error sensitivity of
the 2D homography associated with each camera pose.



David H. S. Chung et al.

7

o 0

1.

Fig. 5 Example camera positions around the (First row) snooker table scene and (Third row) security scene. Below each
image is the associated inverse transformation of the camera position to obtain a top-down table view. It can be seen that the
quality of the inverse transformation is greatly influenced by the camera position.

4.2 Homography Sensitivity Analysis

Homography in vision-based applications [15] is used
to describe the projective mapping of a set of coplanar
feature points a; € R? in the observed scene onto an-
other set of coplanar points b; € R? in the model. Alge-
braically, corresponding tuples of points are related to
each other by b; = Ha; where the 2D homography H is
a 3x3 matrix. Errors in the transformation are typically
introduced in the detection of feature points a;, as well
as in the correspondence procedure. The impact of noise
in the image, visual artifacts and even camera vibration
can lead to false detection. In addition, we find that the
stability of homography parameters are greatly affected
depending on the camera pose (see Fig. 5 for examples).
Therefore, to investigate the quality of different camera
positions, we assess the sensitivity of feature points for
homography estimation. This is illustrated graphically
in Fig. 4 (bottom).

Suppose for an image I, we have a set of known
ground truth positions of feature points a; that are
mapped onto a set of coplanar points b; in the model
fori =1,..., N. The solution to H will give an accurate
projective mapping from one plane to the other. Now let
da; € R? be a noisy feature point imposed by some fixed

deviation within a sensitivity region dist(a;,da;) < r,
for r € R. Analytically, errors under the new homogra-
phy mapping H’ can be shown using the displacement
vector db = Ha — H’a, where b = {db;} represents
the projective error when a set of points a = {a;} is
mapped onto the new plane. In image space, we de-
scribe the error in 2D homography as a set of 2D vector
fields D@ : R? s R2:

where H(®) denotes the set of erroneous homographies
corresponding to the sensitivity of each feature point
da;,...,0ay. Any inaccuracies in feature point corre-
spondence will greatly affect the visual quality of the
projective transformation. The 2D vector fields are used
to effectively depict the amount of distortion as shown
in Fig. 4 (bottom). Typically, one may combine multi-
ple error sensitivity fields to illustrate the uncertainty
associated with one or several feature points. Hence,
we can generalize planar error sensitivity using m 2D
error fields, where m > N. The resultant error field
v : R?  R? caused by each field is one example used
to provide a statistical overview. This can be computed
explicitly by Eq 1, or implicitly using the summation:
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Ya,y) => DY (z,y) (2)

1

Due to the non-uniform distribution of errors, we
find that the compositional effects of multiple error
fields can lead to the negation of uncertainty. We re-
fer to this as wvector cancellation. This can be shown
using the subadditivity property inherent in our func-
tion. Let d; = (dy.i,d,.:)T € D® be the displacement
vectors for each field and A = (A, ;, Ay ;)T € 7 denote
the resultant vector at a fixed point, it holds that:

M= fldi + ... +dnl[ < lda]| + ... + [|dn]] 3)

Hence, the worst case of cancellation occurs when
[[A]| = 0 whilst 3d; € D® such that ||d;|| > 0 for
i = 1,2,...,N. It is possible to take this error into
account using absolute vectors or sum of vector mag-
nitudes. However, as a result we lose other information
(e.g., direction) that is critical in the analysis of planar
error sensitivity. This includes identifying sensitive pa-
rameters and using the distribution of errors to guide
optimization algorithms. Hence, we find it becomes ad-
vantageous to visualize multiple error fields.

In our applications, we rely on detecting four fea-
ture points. For snooker, these points are defined by
the table boundaries, where the focus is to obtain abso-
lute ball positions for 3D scene reconstruction. In video
surveillance, we use the corners of a marked rectangular
region in which the position of pedestrians is of impor-
tance for vision-based applications. Using a sensitivity
region of r = 20, we develop visual methods for de-
picting the four error sensitivity fields as a means for
assessing camera sensitivity.

5 Error Sensitivity Visualization

We propose an interactive visualization system for plan-
ning the optimal positioning of a single camera based
on error sensitivity and various physical and semantic
constraints by allowing the user to incorporate their
knowledge into the decision process. The visualization
consists of two components: 1) a 2D visual map for de-
picting the compositional effects of multiple error sensi-
tivity fields for each camera, and 2) a 3D visualization
scene to illustrate the environment in which the cam-
era configuration is to be arranged, adding context to
the user. The 3D visualization allows the user to in-
vestigate the feasibility of camera positions based on
environmental constraints and gives an overview of the

error sensitivity associated with each camera. We sup-
port user exploration through an interactively linked
2D error mapping, and provide user options for filtering
and displaying specific camera samples (e.g., with low-
est error sensitivity) in a focus+context manner. In this
Section, we outline some design considerations largely
based on [35] in order to deliver effective visualization.
We then detail our design process for the visualization
of multiple error sensitivity fields extracted from cam-
era sensitivity analysis (see Section 4), and describe a
method for estimating the camera pose for mapping
sample camera points to a 3D environment. Finally, we
present our method for integrating error sensitivity into
the 3D environment using a spherical visualization.

5.1 General Design Principles

We shall concentrate primarily on multi-field data visu-
alization, however these design principles are applicable
to other areas of visualization also. To ensure suitability
of the sensitivity visualization, we outline the essential
requirements that the visualization must conform to:

— R1. Detail — the visualization needs to clearly
depict multiple error fields, each of which is a 2D
vector field obtained from a single camera or from
multiple cameras.

— R2. Overview — the visualization needs to show
a summary overview that illustrates the combina-
tion of error sensitivity fields in a given contextual
geometry.

— R3. Cancellation — the visualization needs to
represent uncertainty cancellation that may be present
as a result of error field composition.

In addition to this, we want to ensure that the vi-
sualizations proposed are simple and intuitive in their
formation. We consider a number of design principles
that aim to enhance the quality of the visualization for
conveying useful information to the user.

Visual Stmplicity The focus of the visualization should
be to convey the contents of data and to allow for user
exploration, as opposed to the visualization technique
itself. For higher-dimensional scenarios this can often be
conceptually difficult and hence a more complex repre-
sentation is required. We present a range of visual de-
signs with varying degrees of complexity ranging from
simple color-maps to multi-attribute glyphs. Addition-
ally, we combine and make use of existing techniques
(e.g., heat maps, vector glyphs and streamlines) that
are familiar in the domain to support learnability of
our visualization.
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Fig. 6 Development of the 2D error visualization using different approaches is shown. (a) presents a stacked vector glyph
design, where magnitude is mapped to the length of the vector. This is extended in (b) to a Co-Planar Star glyph which
normalizes the vectors and uses a heat map to depict the resultant error. (c) incorporates stacked ribbons (center) and
streamlines (right) into the error visualization. Streamline thickness is mapped to vector magnitude. (d) generates a closed
Beziér curve based on the vector field. The glyph size is mapped to the resultant error.

Visual Comparison In order to promote effective de-
cision making, it is essential that visualizations can be
perceptually evaluated and that comparisons can be
made between two representations. By making visu-
alization more comparative, a user should be able to
visually rank two given data sets based on their visual
representations. We have designed visualizations that
allow the observer to compare camera positions and
their associated error (e.g., Fig. 9).

Relationships Between Data Attributes One of
the main advantages of visualization is that it pro-
vides greater insight into the underlying phenomena. In
the case of multivariate data, we are particularly inter-
ested in how different attributes affect one another and
these relationships should be conveyed to the viewer.
Our multi-attribute glyphs enable the user to exam-
ine the relationships between multiple error-fields. For
example, our Bézier glyph integrates multiple vector
attributes into a single shape that allows the user to
perceive the distribution of error more easily.

Integrity Misleading visualizations are common [13].
Principles tuned towards statistical graphics can pro-
vide suggestions that help limit unintentional visualiza-
tion lies. For instance, clear labelling should be used to
help users overcome graphical ambiguity (e.g., Fig. 8).

The aim of multi-field visualization is the depiction
of multiple fields that are co-located in the same do-

main for revealing complex interactions that occur be-
tween fields. Simulation data is one example where sev-
eral fields (e.g., pressure and temperature) and associ-
ated uncertainties are studied together to make accu-
rate predictions. Thus, the challenge is to make a co-
herent visualization that is meaningful given the high-
dimensionality of the data. It is possible using statisti-
cal functions such as vector magnitude to simplify the
input data and encapsulate the phenomena into a sin-
gle field. However, as a result we lose information (i.e.,
vector direction) which may be necessary in the anal-
ysis. Therefore, we strive towards visualizing multiple
fields to provide greater insight.

5.2 Visual Mapping of Multiple Error Sensitivity

The visualization of multiple error sensitivity fields is
important for making comparative assessment between
different camera positions. Understanding the distri-
bution of error is an important task to support vari-
ous user-specific needs. For example, the action from a
snooker training shot may typically cover a small region
of the table. Therefore, camera positions that minimize
the error in this area should be considered in addition
to camera positions that has least, overall error sensitiv-
ity. The knowledge gained from each field can be used
to minimize the reconstruction error further (e.g., as a
optional post-calibration step) by optimizing sensitive
feature points that impact this region. It would be a
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huge challenge, if not an impossible one, to provide a
visual design for an arbitrarily large number of fields.
Here we consider a collection of visual designs for four
error sensitivity fields which is minimal for solving pla-
nar homography matrix, addressing the requirements of
our case studies. Fig. 6 shows five example approaches
that have been considered for the design of the visual-
ization: Vector Glyphs, Co-Planar Star Glyphs, Stacked
Ribbon and Streamlines, and Bézier Glyphs.

Vector Glyphs: Arrow primitives is the most com-
mon method for depicting vector quantities. As a naive
approach, we use four color-coded arrows for represent-
ing each of the vector fields at a given point (Fig. 6(a)).
The length of the arrow is mapped according to the
error magnitude with respect to each field. For visual-
ization, the vector glyphs can be rendered either on the
same plane (i.e., for d = 0), or separated so that each
individual vector field is rendered on an independent
plane, resulting in four layers in 3D space. This aims to
overcome overlapping issues that may arise.

Co-Planar Star Glyphs: Due to inevitable over-
lapping problems with vector glyph representation in
dense sampling, the directional information can often
be lost. To reduce glyph occlusion and preserve vec-
tor direction, the star glyph uses four normalized color-
coded arrows. However, rather than using arrow length
to indicate vector strength we now use colored transpar-
ent ellipses (Fig. 6(b)). The four points on the ellipse
e1,€e2,€e3,e4 are used to map a gradient to the circle
based on error magnitude for each vector. This creates
a heat map which is effective for highlighting regions of
large error.

Stacked Ribbons / Streamlines: Streamlines
are an effective and well-known technique for visualiz-
ing vector fields [24]. Urness et al. [36] present several
strategies for visualising two vector fields. We adopt
their streamline approach for our error visualization by
mapping curve thickness to error magnitude (Fig. 6(c)).
Just as was found using vector glyphs, there are in-
stances where occlusion can occur meaning that the
vector fields can not be displayed clearly. For a more
continuous representation, we extend streamlines to 3D
space by rendering each vector field on a seperate plane.
A surface is used to connect streamlines on adjacent
planes, resulting in a stacked ribbon.

Bézier Glyphs: Our approach considers the vec-
tors as a series of points that form a closed Bézier curve
(Fig. 6(d)). This preserves the directional information
that the vector glyphs offer, whilst giving greater vi-
sual clarity to the extreme directions of the four vector
fields. The parametrized Bézier curves are divided into
regions using distribution points o; centered at the mid-

point of each spline, which adaptively move along the
curve based on the difference in vector strength:

,1(1+ |[vil| = |[Visal] ) @)

o; =
to2V D max((fvill, [Iviall)

where v; and v;41 are two adjacent vectors. This allows
the user to identify which error source (i.e., vector field)
is of dominant influence to the resulting geometrical
shape of the Bézier glyph.

5.3 Sample points in 3D visualization

To introduce camera positions into the 3D scene vi-
sualization, we determine the geometry of the table to
obtain a camera pose estimate. Given that we have four
feature points and their corresponding positions in a 3D
model, it is possible to estimate the viewing angles from
a single image. Here we use the four corner points of the
snooker table. The basic scheme is detailed by Putz and
Zagar [30], where a planar homographic transformation
matrix is computed and an SVD-based approach is ap-
plied to extract the rotation and incline angles. A map-
ping function is applied to render the cameras in 3D
space using the camera pose and the measured camera
distance. In addition, filtering can be applied to high-
light the k-least error camera positions. We use a sim-
ilarity metric d based on euclidean distance to provide
k spatially different solutions to the user.

5.4 Spherical Mapping

Now that we can map our camera points to the scene,
we use a spherical model to give an overview of the
error sensitivity of such positions (see Fig. 7). We vi-
sualize camera positions using spherical markers and a
connecting cylinder with length being mapped to the
distance between the camera, and the sphere that en-
closes the focus region. A spherical geometry was cho-
sen due to its uniform characteristics and its potential
to be generalizable to other domains. Here, we use a
partial spherical mesh to emphasize the boundary of
camera positions. To quantify each camera, we propose
two visual options: multi-field glyphs and color-coded
sphere. For our glyph-based method, an average Bézier
glyph representing the multiple error sensitivity fields
are placed tangental to the sphere. For a color-coded
sphere, we depict the summation of the resultant error
sensitivity field normalized by —— using a red-to-blue
color mapping. The vectors (01;” “error magnitude) are
splatted onto the sphere using a gaussian weighted Ra-
dial Basis Function (RBF) [9] forming an interpolated
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Fig. 7 Visualization showing the 3D camera positioning around the snooker scene (Top row) and security scene (Bottom Row).
The cameras are modelled using spheres which are color mapped to error magnitude. The sample points are then projected
onto spherical co-ordinates centered at the focus region, giving users a uniform overview of the statistical error. (Left) shows a
glyph-based approach for depicting the average vector error and (Right) uses a color-mapped sphere for illustrating the overall

error magnitude.

surface that gives visual estimates of local regions. We
uniformly position the glyphs along the surface of the
spherical mesh. Each point on the sphere is modeled as:

n

v() = 3 w(a.pir)o(pi) (5)

%

where v(q) is the camera error at position ¢, and w(q, p;, )

is the RBF weight function given by:

—Bu?
w(q7 Pi, T) =€ pu (6)

where u; = ||q — p;||/r is the relative distance from
q to p; normalized by the radius of influence r, for some
B > 0.

Naturally, the RBF tends towards zero as the distance
tends to infinity and hence a restriction is placed on the
kernel based on the radius of influence. The user option
B, is a coefficient that can be altered in order to adjust
the slope of the blending function.

6 User Consultation - 2D

We have proposed 2D and 3D visualization methods to
depict the error sensitivity in 3D scene reconstruction
for estimating optimal camera placement. It is essential
that the visualizations can effectively convey to the user
the presence of error and to allow visual and compara-
tive analysis of different camera positions. To evaluate
the effectiveness of our designs, we perform a qualtita-
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Fig. 8 Comparative evaluation of error visualization designs. (a) uses stacked vector glyphs. (b) co-planar star glyphs. (c)
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Visual Designs (Fig. 8)
(i) (E) (i) d) (¢

Design criteria:

Independent vector direction *

Independent vector magnitude
Overall error

Error distribution

Visual separation of fields
Vector cancellation

*

* ¥ ¥ ¥ X

Table 1 Comparison of visual mappings shown in Fig. 8.
Each design is assessed against a number of set criteria which
ideally should be achieved. An asterisk in the table indicates
the design satisfies that particular criteria.

tive user-evaluation involving six computer scientists,
three of whom are experts in computer vision. Fig. 8
shows the collection of error-sensitivity mappings of the
same camera position using the five visual designs in
Section 5.2. Each study was carried out independently
from one another, whereby participants were presented
with a set of questions (see Appendix A) which we clas-
sify into three groups: Detail, Overview and Cancella-
tion derived from Section 5.1. The remaining questions
provide more general observations in order to evalu-
ate whether our visualization approach is useful for the
given task.

R1. Detail: It is important that multiple error-
sensitivity fields can be visualized within a single image.
To start with, we asked the users whether they can iden-
tify the independent vector magnitude and directions at
a given point for each of the visual designs. Whilst four
of the five designs succeed to perform the basic func-
tionality of conveying detail, some designs have limi-
tations. It is clear from the evaluation study that the

use of stream ribbons (Fig. 8(d)) for depicting multi-
ple error fields over several planes created too much vi-
sual clutter and occlusion. As a result, the users found
the information to be lost. Viewpoint adjustment may
overcome this, however it cannot be guaranteed. Whilst
not quite so severe, we found that Figures 8(a) and 8(b)
may also suffer from occlusion issues should two vectors
have the same direction and magnitude. Although both
magnitude and direction are visible in our streamline
approach as shown in Fig. 8(c), there were questions
raised over the accuracy of comparing thicknesses be-
tween two streamlines in a quantitative manner. All the
users found the Bézier glyphs (Fig. 8(e)) to be most ef-
fective in conveying both attributes but revealed that
independent vector direction became difficult to per-
ceive for elongated glyphs (i.e., when vectors are in the
same direction).

R2. Overview: In many focus and context visual-
izations, it is necessary to show the overall sensitivity
for multiple fields, whether this be introduced by one
or multiple cameras. The overall sensitivity can be as-
sessed based on two uncertainty components, the over-
all error (resultant magnitude) and the distribution of
error from each error sensitivity field. In Fig. 8(a), al-
though the overall error is not explicitly mapped, users
were able to estimate the error given by the four vec-
tors. However, the presence of visual clutter likewise in
Fig. 8(c) and 8(d) made this difficult to deduce easily.
Fig. 8(b) performed significantly better by mapping the
overall error from multiple fields using intensity. The
heat map behind the glyph is effective for estimating



12

David H. S. Chung et al.

N

%

-

s

rea w4

r v

Ve

AN ||

o e e %

-

o o O e % | N

<o

= | o

QDO D O OO O N

<o

AL\ A A | |

Qo
Qo

NhAalolo ooloa ol n
_J‘__f__/.._)'-./v’ o | |V | W

M AN A[A D bbb al &
AN
N

I
/

|- | = | %

. Top Left Corner

I:‘ Top Right Corner D Bottom Right Corner

- oo o

=

A BV B |
. Bottom Left Corner

Fig. 9 Comparison of error sensitivity between camera posi-
tions B (left) and position C (right) from Fig. 11 using color-
coded Bézier glyphs.

local regions of uncertainty. One limitation with the
design is that visual interference were found to occur
between the vector fields and the heat map. Fig. 8(e)
also shows the overall error from multiple fields, this
time by size. The larger the Bézier glyph appears de-
termines the amount of error at the location. Most of
the users acknowledged this design to be the most intu-
itive and descriptive when displaying error, stating that
the glyph shape provides a visual cue that is clearer for
error analysis.

One of the goals of multi-field visualization is to be
able to observe each field independently, whilst provid-
ing additional insight on how multiple fields interact.
We found that vector-glyph based designs performed
weakly at this task due to visual clutter, with users
stating it was difficult to visually integrate between
fields. On the otherhand, the streamline visualization
performed particularly well due to its continuous rep-
resentation. The color segments in the Bézier glyphs
were also effective for visually seperating error fields,
but these became lost for highly elongated glyphs.

R3. Cancellation: Fig. 8(e) is the only visualiza-
tion to truly incorporate this requirement. This is deter-
mined based on the shape of the Bézier glyph. A circular
glyph would indicate a high level of vector cancellation
from multiple fields. However, any skew or elongation
would represent dominant vector direction that is in-
fluencing the error for that position. It is possible to

sesercin

Stacked Ribbons
Streamlines
Co-Planar Star Glyph

Vector Glyph

T T T
0% 20% 40% 60% 80% 100%

Fig. 10 Graph showing the result of users ranking the visual
designs from worst-to-best as a measure from 1-5.

estimate cancellation from Figures 8(a) and 8(b) if two
vectors are recognized to be in opposing direction, how-
ever only the Bézier design actually incorporates this.
Table 1 provides an overview of the performance for
each visual design.

In the study, we asked the participants whether the
visualization approach would assist in visually quanti-
fying a camera position based on uncertainty. The feed-
back was positive and the users expressed the distribu-
tion of error shown by the visualization would help at-
tach a weighting to a particular position. One computer-
vision expert in the study revealed that the depicted
error distribution could be used for optimizing vision-
based tasks such as correcting more sensitive feature
points. Another participant noted the visualization is
useful for revealing camera positions with symmetric
reprojection error.

Fig. 9 gives the error mapping for two different cam-
era positions. This provides visual comparison of the
error senstivity that is present from each camera view-
point. By analyzing the changes between the Bézier
glyph representation based on size, shape and color,
the user can determine the viewpoint that reduces the
impact of error. Following the study, all users found
the visualization approach to significantly help evalu-
ate viewpoints based on error-sensitivity in a compar-
ative manner. From this example, camera position C
experiences large error that is significantly reduced in
camera position B. Lastly, Fig. 10 shows the results of
the users preference by ranking the visual designs from
worst-to-best. Results from the study show that users
felt the Bézier design to be the most intuitive and ef-
fective in conveying error sensitivity. In the remainder
of this paper, we use the Bézier design during the user
evaluation of the software which combines both 2D and
3D visualizations for finding an optimal camera posi-
tion.
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Fig. 11 3D visualization showing the 3 candidate camera
positions labelled A, B and C, after filtering. These camera
positions are highlighted using opacity.

7 User Consultation - 3D

To evaluate our combined visualization system for se-
lecting an optimal camera position, we conducted a
study using two sets of users: three sport scientists,
and three computer vision experts. We use this study
to compare and contrast the decision process between
end-users with minimal reconstruction knowledge us-
ing our visualization approach, and domain experts in
the field of computer vision without error analysis sup-
port. Each study was conducted in isolation from other
participants so not to influence the given opinions.
Our first study involved three sport domain experts:
A snooker coach and former world champion, a snooker
hardware engineer and a sports scientist. We started by
explaining the motivation behind the work to each par-
ticipant. It was made clear that given a single camera
to configure, we wanted the position that would achieve
accurate reconstruction and is most feasible for instal-
lation (i.e., taking into account physical, financial and
other types of constraints). We note that the users have
some prior knowledge of the scene such as structural in-
formation of the room and cost of mounting equipment
which they can incorporate into the decision. Fig. 7 was
presented where they were asked to give their feedback
on the usability of such a visualization. The initial re-
action was very positive by all three participants. In
particular, they were able to quickly identify potential
camera positions, namely above the left and right hand
side of the snooker table. We explained to each partici-
pant how a user can filter the number of cameras based
on error sensitivity to highlight candidate positioning.
Fig. 11 shows the result of the user filtering down the

Fig. 12 3D visualization showing the 3 candidate camera
positions in the surveillance scene labelled D, E and F after
filtering. These camera positions are highlighted using opac-
ity.

data to just three prospective camera positions. This
helped validate the users’ understanding of the visu-
alization as two of the three positions matched their
initial observations.

The next objective was to assess how well the visual-
ization integrates contextual geometry to influence the
decision process. By navigating in the virtual environ-
ment, the feedback received suggested that the camera
should be positioned to the right of the table. Partici-
pants recognized that both this and the position left of
table were the two best choices. Through inspection of
their error sensitivity maps, the users identified the left
camera position (Camera A) to be marginally more ac-
curate. However, due to mounting impracticalities on
the left wall such as picture frames and scoreboards,
the users realized that camera placement here was not
a viable option. The participants found the error vi-
sualization to be clear when comparing cameras with
significant error variance (see Fig. 9). As a result, the
visualization approach proved useful for clarifying the
error associated with each camera position. Prior to
using the visualization, the hardware engineer assumed
that the best camera position would be near the bot-
tom end of the table giving a typical TV broadcasting
view. The participant was surprised by the visual re-
sults to find that the cameras either side of the snooker
table were the least error prone positions, and appre-
ciated that the visualization showed greater insight to
the setup procedure for 3D scene reconstruction.

The second study involved the computer vision ex-
perts q, r and m. Initially, each participant was asked to
nominate the 5 best positions for single camera recon-
struction given there were no constraints. A uniform
decision was observed, where the camera position di-
rectly top-down was identified as optimal. This is to
be expected, however the selection is not viable since
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the camera position is unable to provide full coverage
of the scene due to a low-ceiling. Following this, we
investigate how additional knowledge on semantic con-
straints (e.g., low ceiling, picture frames) and financial
constraints (e.g., cost of mounting) would impact their
decision on camera positioning. We note that the cost
of a ceiling mounted camera is more expensive due to
structural issues in this case study. We asked the par-
ticipants to repeat the initial task with such semantic
considerations in mind. The results are shown in Fig. 11
where camera positions marked as qi,r; and mj are
ranked from best (k = 1) to worst (k = 5). It can be
observed that the nominated camera positions amongst
the participants significantly diverges in the new task.
This shows that camera positioning is not as intuitive
once multiple real-world constraints are imposed. We
presented the vision experts with the system, where
they all recognized the mutual benefits of the visualiza-
tion as it constrains the search space for optimal camera
placement to support consistent positioning.

Fig. 12 demonstrates our method for our second use-
case scenario on camera surveillance, where three can-
didate positions have been highlighted after filtering.
Here, we use multi field glyphs to provide a greater
level of detail for camera error sensitivity in the 3D
scene. This allows users to examine crucial information
such as independent and combined error distribution
and sensitivity of feature points in a global perspective,
with the option to see further detail by examining the
associated error sensitivity visualizations. Due to tem-
porary construction works along the featured structure
to the right of the region of interest, camera placement
here would not be optimal. Therefore, the most suitable
position would be along the wall near camera F as this
provides a more temporally stable solution.

We present a qualitative evaluation based on the
feedback of two sets of users. All participants felt that
the visualization helped to identify the most suitable
camera positioning in a clear and simple manner. It was
shown that for end-users, the visualization facilitates
dynamic decisions for optimal camera placement which
includes substantial trade-offs between reconstruction
quality and camera feasability without the need for ex-
tensive knowledge in reconstruction. The sporting pro-
fessionals all stated that they would use this approach
if they were to configure a camera set up. For com-
puter vision experts, the visualization proved to be an
excellent aid for single camera placement as a result of
confining the search space.

8 Conclusion

We described 2D and 3D visualization methods to dis-
play error sensitivity fields for feasible, single camera
positioning. The collection of visual mappings depict
the composition of multiple error sensitivity fields. These
map to a 3D visualization where the goal is to visually
estimate several optimal positions for the camera. We
find that the visualization can effectively aid the estima-
tion of the best camera positioning without the need for
a manual configuration through trial and error, while
providing the users with sufficient flexibility to make
dynamic decisions based on other facts that cannot be
encoded easily in an algorithm. In future work we aim to
extend our method for visualizing the composite effects
of multiple error sensitivity from several cameras to as-
sist in configuring a multi-camera system. This would
potentially benefit real-scenarios where a single optimal
camera is not achievable, and that two or more cameras
can be used in replacement to compensate non-optimal
positioning.
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