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Overview
 Part 1: Robert S Laramee

 Introduction, Challenges
 Classification
 Integration-Based Geometric 

Vector Field Visualization
 Point-Based Seeding in 2D and 

2.5D
 Part 2: Tony McLoughlin

 Effective Particle Tracing
 Point-Based Seeding in 3D

 Part 3: Ronald Peikert
 Curve-Based Seeding
 Planar-Based Seeding

 Conclusions and Future Work
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What is Flow Visualization?
 A classic topic within scientific visualization
 Depiction of vector quantities (as opposed to scalar 

quantities)
 Applications include automotive simulation, aerodynamics, 

turbo machinery, meteorology, oceanography, medical 
visualization

Challenges: 
 To effectively visualize both magnitude + direction, often 

simultaneously
 Large, time-dependent data sets
 Interaction, seeding, and placement, 
 Computation time and irregular grids
 Perception
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Computational vs. Experimental Flow Visualization

Computational Flow Visualization -using computers 
 data resulting from flow simulation, 

measurements, or flow modelling, e.g., 
computational fluid dynamics (CFD)

 computer-generated images and animations, often 
mimicking experimental flow visualization

Visualization of actual fluids, e.g. water and air
 dye injection
 interferometry
 Schlieren/shadows
 flow topology graphs
 etc.
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Data Characterized by Many Dimensions
Spatial dimensions:

 2D (planar flow, simplified or synthetic)
 2.5D (boundary flow, flow on surface)
 3D (real-world flow)

Temporal dimension:
 steady flow -one time step (or instantaneous or static 

flow)
 time-dependent flow -multiple time steps (or unsteady or 

transient, real-world)
 caution is advised in the context of animation

Simulation Data Attributes a.k.a. Data Dimensions:
 velocity
 temperature
 pressure
 and many more...
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 direct: overview of vector field, minimal computation, e.g. glyphs, color 
mapping

 texture-based: covers domain with a convolved texture, e.g., Spot Noise, 
LIC, ISA, IBFV(S)

 geometric: a discrete object(s) whose geometry reflects flow 
characteristics, e.g. streamlines

 feature-based: both automatic and interactive feature-based techniques, 
e.g. flow topology

Flow Visualization Classification
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Geometric Flow Visualization

∫=
λ

λλ
0

0 )(),( dvxtx

The computation of discrete 
objects whose shape is directly 
related to underlying geometry
Velocity is described by:
  v = dx/dt
Displacement described by:
  dx = v · dt
Integrate in order to solve for 
position:
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Geometric Flow Visualization
Advantages: 
 Intuitive, 
 Clearer perception of 
characteristics, 
 Applicable to 3D/4D

Disadvantages: 
 Placement, 
 Perception: visual complexity 
in 3D and 4D, 
 irregular grids: Sometimes 
difficult implementation
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Survey Overview

 
 red = seeding 
 green = perceptual 
challenges
 yellow = performance
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Geometric Flow Visualization: Some Terminology
Stream vs. Path vs Streak vs Time lines

Streamline
 everywhere tangent to flow at 

instantaneous time, t0 
(blue/aqua)Pathline

 path traced by a particle over 
time, t (red/maroon)

Streakline
 line traced by continuous 

injection at location, x0 (light 
green)

StreamPathStreakTimeLines.xls
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Point-Based Seeding: Problem

Regularly spaced seeds do not result in regularly 
spaced streamlines.
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Point-Based Seeding in 2D, Steady-State Vector 
Fields

 Algorithm: 
place streamlines 
(randomly), 
DO shift streamlines,
   IF (improved position)
   THEN (accept change)
UNTIL no more 
improvements  

Image Guided Streamlines (Turk and Banks '96)

 Distribute streamlines evenly in image space
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Point-Based Seeding in 2D, Steady-State Vector 
Fields

Implementation: 
 Place initial 

streamline 
(randomly), 

 Perform streamline-
driven search of 
image space for new 
seeds.

Evenly-Spaced Streamlines 
(Jobard and Lefer '97)

 Distribute streamlines 
evenly in image space 
quickly
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Point-Based Seeding in 2D, Steady-State Vector 
Fields

Implementation: 
 Texture-mapped streamlines

High Quality Animation of 2D, Steady 
Vector Fields (Lefer et al. '04)

 A dense, animation of flow
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Point-Based Seeding in 2D, Steady-State Vector 
Fields

Implementation: 
 Extract critical points
 Apply dense seeding template

Flow-Guided Streamline Seeding (Verma et al. '00)
 Emphasize critical points in flow field
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Point-Based Seeding in 2D, Steady-State Vector 
Fields

Implementation: 
 Seed in largest empty spaces

Farthest Point Seeding for Efficient 
Placement of Streamlines (Mebarki et al. 
'05)

 Longer, more coherent 
streamlines
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Point-Based Seeding in 2D, Steady-State Vector 
Fields

Implementation: 
 faster streamline integrator
 double-queueing strategy-

prioritizes streamlines near 
critical points

 efficient loop detection
 (Ocean Flow from Pacific 

Northwest)

An Advanced Evenly-Spaced 
Streamline Seeding Algorithm (Liu et al. 
'06)

 Faster than previous 
algorithms and can detect 
streamline loops
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Point-Based Seeding in 2D, Steady-State Vector 
Fields

Implementation: 
 derive a distance field
 compare sample points to 

existing streamline points
 trace new streamlines only when 

difference exceeds a threshold

Illustrative Streamline Placement and 
Visualization (Li et al. '08)

 place minimal number of 
streamlines and capture features
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Point-Based Seeding in 2D, Unsteady Vector 
Fields

Implementation: 
 evenly-spaced streamlines 

computed for each time step
 streamlines computed at 

previous time step are used a 
basis for current set

Unsteady Flow Visualization by Animating 
Evenly-Spaced Streamlines (Jobard and 
Lefer. '00)

 Extension to unsteady flow 
visualization
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Point-Based Seeding on Surfaces, Steady-
State Flow

Implementation: 
 Shading, filtering, scan 

conversion, occlusion 
including hidden surface 
removal

 (Thermal air flow through a 
TV cabin)

Flow Visualization with Surface Particles 
(Van Wijk '93)

 Efficient rendering and 
animation on surfaces
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Streamline Seeding on Surfaces, Steady-State

Implementation: 
 Map surface vectors to 

computational space of 
curvilinear grid

 Introduce a new energy 
function to handle distortion 
resulting from mapping

Image-Guided Streamline Placement 
on Curvilinear Grid Surfaces (Mao et al. 
'98)

 Streamline placement for 
surfaces
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Streamline Seeding on Surfaces

Implementation: 
 Project vector field to 

image space
 Perform integration in 

image space

Evenly-Spaced Streamlines for 
Surfaces: An Image-Based 
Approach (Spencer et al. '09)

 General streamline 
placement for surfaces
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End of Part I
 Thank you for your attention! Any 

questions?
We would like to thank the following:
 G. Chen, R. Crawfis, H. Doleisch, C. Garth, B. Girod, H. Hauser, 

A. Helgeland, V. Interrante, B. Jobard, W. de Leeuw, H. 
Loeffelmann, F. H. Post, A. Telea, H. Theisel, X. Tricoche, V. 
Verma, J. J. van Wijk. T. Weinkauf, D. Weiskopf, R. Westermann, 
E. Zhang

 PDF versions of STAR and MPEG movies 
available at:

http://cs.swan.ac.uk/~csbob

 Next up: Tony McLoughlin and Part II


