
Constructing Streak Surfaces for
3D Unsteady Vector Fields:
Supplementary Material

Tony McLoughlin∗

Swansea University
Robert S. Laramee†

Swansea University
Eugene Zhang‡

Oregon State University

1 Divergence Implementation

In order to simplify the implementation of splitting due to diver-
gence, we test one quad edge at a time and update the topology of
the mesh accordingly. For example, Algorithm 1 shows how we
update the mesh topology if a quad’s west edge length |EW |> dsep.
First we test for an existing T-junction on the west edge. If there is
one we use it, otherwise we interpolate a new vertex. Likewise for
the east edge. Then we construct a new quad for the north half, as
in of Figure 12. Another procedure is called to update the resulting
topology (Quad::UpdateNeighborsWest()) shown in Algorithm 2.
The methods that handle divergence associated with the other quad
edges are similar to Quad::DivideWest().

Figure 12 shows a possible subtle configuration for the
Quad::DivideWest() operation. We have to test whether the north-
west vertex, VNW , is a T-junction. If it is we change the T-junction’s
extra neighbor pointer to point to the newly inserted quad. The
northern neighbor’s southern pointer remains the same. The red
lines indicate the correct pointer configuration after the split.

2 Convergence Implementation

In order to simplify the implementation of merging a pair of quads,
we take a similar approach to that described in Section 1. We test
one quad edge at a time, e.g. north, and test for candidate quads to
merge with. Algorithm 3 shows the implementation used to merge
with a northern neighbor. The topological cases associated with the
merging are illustrated in Figure 7. First we test to see which case
we fall into by the presence of a T-junction on the east edge of our
western neighbor. A similar test is performed on the opposite side.
The mesh topology is then updated according to the case the quad
is in. The pseudo-code is given in Algorithm 3. Similar functions
exist for the other directions e.g. Quad::MergeWest().

3 Shear Implementation

The implementation of shear is divided up into five basic functions:

1. Quad::shearEastWithT()

2. Quad::ShearEastNoT()

3. Quad::ShearEastUpdateMesh()

4. Quad::ShearEastDivideWestWithT()

5. Quad::ShearEastDivideWestNoT()

∗e-mail: cstony@swan.ac.uk
†e-mail:R.S.Laramee@swan.ac.uk
‡e-mail:zhange@eecs.oregonstate.edu

We identify two key cases when we perform the alteration to the
mesh topology. Case 1 is the simpler case where there is a T-
junction present that we can connect to, this is illustrated in Fig-
ure 8. The implementation is shown in Algorithm 4. In this case we
simply reconnect the north edge to the T-junction. This may result
in a new T-junction being added to the northern neighbor (top row).

The second case is slightly more complicated. Here we have no
T-junction on the east side. This forms an intermediate triangle
in the mesh. See Figure 9 and Algorithm 5. We decompose the
triangle into three quads by inserting a new point in the middle of
the intermediate triangle and on each of its edges. We then sub-
divide the triangle into three quads. This method is adapted from
Alliez et al. [Alliez et al. 2003]. Alliez et al. show how triangular
meshes can be converted to quad meshes.

Algorithms 5 - 8 show the implementation associated with Fig-
ures 9 and 10. The algorithm starts off by testing for the pres-
ence of a western T-junction on our eastern neighbor. It then calls
Quad::shearEastUpdateMesh() shown in Algorithm 6. Algorithm 6
starts off by creating two new mesh vertices: the vertex on the north
edge and a vertex in the center of the intermediate triangle.

It then calls procedures to create the new west and east quads shown
in Figure 10. The sub-procedure for creating the new west quad is
shown in Algorithms 7 and 8.

References

ALLIEZ, P., COHEN-STEINER, D., DEVILLERS, O., LÉVY, B., AND DESBRUN, M.
2003. Anisotropic polygonal remeshing. SIGGRAPH 03 - ACM Transactions on
Graphics 22, 3, 485–493.

Algorithm 1 Quad::DivideWest(void)

This procedure is called whenever |EW | > dsep.
Quad newQuad;
Vertex newEastVertex, newWestVertex;

IF(this->HasT_Junction(WEST)) THEN
newWestVertex = this->GetT_Junction(WEST).GetVertex();

ELSE
newWestVertex = Mid(this->GetVertex(NW), this->GetVertex(SW));
this->AddT_JunctionToWestNeighbor(newWestVertex, newQuad);

ENDIF

IF(this->HasT_Junction(EAST) THEN
newEastVertex = this->GetT_Junction(EAST).GetVertex();

ELSE
newEastVertex = Mid(this->GetVertex(NE), this->GetVertex(SE));
this->AddT_JunctionToEastNeighbor(newEastVertex, newQuad);

ENDIF

//Construct a new quad object on north half.
newQuad.SetNWVertex(this->GetNWVertex());
newQuad.SetNEVertex(this->GetNEVertex());
newQuad.SetSWVertex(newWestVertex);
newQuad.SetSEVertex(newEastVertex);

//Update this quad’s vertices
this->SetNWVertex(newWestVertex);
this->SetNEVertex(newEastVertex);

//Update neighbor pointers for new quad
this->UpdateNeighborsWest(newQuad);

RETURN;

Algorithm 2 Quad::UpdateNeighboursWest(Quad newQuad)

This procedure updates this quad’s and neighboring quad’s topology after a divide. See also Algorithm 1.
/* Update new quad’s neighbor pointers */
newQuad.SetNorthNeighbor(this->GetNeighbor(NORTH));
newQuad.SetSouthNeighbor(this);

IF(this->HasT_Junction(WEST)) THEN
newQuad.SetWestNeighbor(this->GetT_Junction(WEST).GetNeighbor());
this->GetT_Junction(WEST).GetNeighbor().SetEastNeighbor(newQuad);
this->deleteT_Junction(WEST);

ELSE
newQuad.SetWestNeighbor(this->GetNeighbor(WEST));

ENDIF

IF(this->HasT_Junction(EAST)) THEN
newQuad.SetEastNeighbor(this->GetT_Junction(EAST).GetNeighbor());
this->GetT_Junction(EAST).GetNeighbor().SetWestNeighbor(newQuad);
this->deleteT_Junction(EAST);

ELSE
newQuad.SetEastNeighbor(this->GetNeighbor(EAST));

ENDIF

/**
* Update this quad’s northern neighbor’s southern
* pointer to new quad. This handles the subtle case

*highlighted in Figure 12 of the manuscript.
*/
IF(this->GetNeighbor(NORTH).GetNeighbor(SOUTH) == this) THEN

this->GetNeighbor(NORTH).SetSouthNeighbor(newQuad);
ELSE IF((this->GetNeighbor(NORTH).HasT_Junction(SOUTH))

this->GetNeighbor(NORTH).GetT_Junction(SOUTH).SetNeighbour(newQuad);
ENDIF

/**
* Update this quad’s northern neighbor’s pointer to
* new quad.
*/
this->SetNorthNeighbor(newQuad);

/**
* If this quad had a northern T-junction,
* move it to the new quad.
*/
IF(this->HasT_Junction(NORTH)) THEN

newQuad.SetT_JunctionNorth(this->GetT_Junction(NORTH));
this->SetT_JunctionNorth(NULL);

ENDIF

RETURN;

Algorithm 3 Quad::MergeNorth(void)

This procedure is called whenever the edge length of the
west AND east sides < dconverge. One of the following
must also be true:
1. The NW vertex is a T-Junction OR
2. The NE vertex is a T-Junction OR
3. None of the corner vertices are T-Junctions.
In these three cases, this quad merges with it’s
northern neighbor.
/**
* If our WESTern neighbor has an EAST T-junction
* THEN delete it. (Cases 2,3,4,5)
* ELSE introduce WESTern T-junction to the new merged
* quad (this). (Cases 1,6)
*/
IF(this->GetNeighbor(WEST).HasT_Junction(EAST)) THEN

this->GetNeighbor(WEST).GetT_Junction(EAST).DeleteVertex();
this->GetNeighbor(WEST).DeleteT_Junction(EAST);

ELSE
this->NewT_Junction(WEST);
this->GetT_Junction(WEST).SetVertex(this.GetVertex(NW));
this->GetT_Junction(WEST).SetWesternNeighbor(this.GetNeighbor(NORTH).GetNeighbor(WEST));

ENDIF

/* Perform mirror opposite on the EAST side. */
IF(this->GetNeighbor(EAST).HasT_Junction(WEST)) THEN

this->GetNeighbor(EAST).GetT_Junction(WEST).DeleteVertex();
this->GetNeighbor(EAST).DeleteT_Junction(WEST);

ELSE
this->NewT_Junction(EAST);
this->GetT_Junction(EAST).SetVertex(this.GetVertex(NE));
this->GetT_Junction(EAST).SetEasternNeighbor(this.GetNeighbor(NORTH).GetNeighbor(EAST));

ENDIF

/* Update to new northern vertices. */
this->SetNWVertex.(this->GetNeighbor(NORTH).GetVertex(NW));
this->SetNEVertex.(this->GetNeighbor(NORTH).GetVertex(NE));
formerNorthNeighbor = this.GetNeighbor(NORTH);

/* Update new north neighbor’s south pointer. */
this->GetNeighbor(NORTH).GetNeighbor(NORTH).SetSouthNeighbor(this);

/* Update new neighbor pointer. */
this.SetNorthNeighbor(this.GetNeighbor(NORTH).GetNeighbor(NORTH));

/* Delete old north neighbor quad object. */
formerNorthNeighbor.Delete();

RETURN;

Algorithm 4 Quad::ShearWithEastT(void)
This method is called whenever a quad is sheared and
there’s a T-Junction on the east edge, i.e.
IF
1. dshort

dlong
< εshear AND

2. θNorthEast < θshear AND
3. this-¿HasT Junction(EAST) == TRUE
Shear adjustment is not applied to quads at the
boundaries of the mesh.
Quad NEquad = this->GetNeighbor(NORTH).GetNeighbor(EAST)
IF (NEquad == NULL)

RETURN

/* IF our NORTHEASTern neighbor has a WESTern
* T-junction
* THEN snap the two T-Junctions together
* ELSE create a new EAST T-junction for
* our NORTHern neighbor.
* Update our NE vertex AND delete our EASTERN T-Junction
*/

IF (NEquad.HasT_Junction(WEST)) THEN
NEQuad.SetWestNeighbour(this->GetNeighbor(NORTH));
NEquad.GetT_Junction(WEST).DeleteVertex();
NEquad.DeleteT_Junction(WEST);

ELSE
this->GetNeighbor(NORTH).NewT_Junction(EAST);
this->GetNeighbor(NORTH).GetT_Junction(EAST).SetVertex(this->GetNEvertex())
this->GetNeighbor(NORTH).SetEasternNeighbor(this->GetT_Junction(EAST)->GetNeighbor());

END IF
this->SetNEvertex(this->GetT_Junction(EAST)->GetVertex());

/* Set new south east vertex of northern neighbor */
this->GetNeighbor(NORTH).SetSEVertex(this->GetT_Junction(EAST)->GetVertex());

this->DeleteT_Junction(EAST);

Algorithm 5
Procedure: Quad::ShearEastNoT(void)
This method is called whenever a quad is sheared and there’s no T-Junction on the EAST edge, i.e. IF
1. dshort

dlong
< εshear AND

2. θNorthEast < θshear AND
3. this-¿HasT Junction(EAST) == FALSE
Shear update is not applied to quads at the boundaries of the mesh.
Quad Nquad = this->GetNeighbor(NORTH)
IF (Nquad == NULL)

RETURN

/*
* IF our EASTern neighbor has a WESTern T-junction
* THEN delete the T-Junction
* ELSE create a new EAST T-junction for
* our NORTHern neighbor.
*/
IF (this->GetNeighbor(EAST).HasT_junction(WEST)) THEN

this->GetNeighbor(EAST).GetT_junction(WEST).DeleteVertex()
this->GetNeighbor(EAST).DeleteT_junction(WEST)

ELSE
this->GetNeighbor(NORTH).NewTjunction(EAST)
this->GetNeighbor(NORTH).GetTjunction(EAST).SetVertex(this->GetNEvertex())
this->GetNeighbor(NORTH).SetEastNeighbor(this->GetNeighbor(EAST))

END IF

/* Update south-east vertex of out northern neighbor */
this->GetNeighbor(NORTH).SetSEVertex(this->GetSEVertex());

/*
* Create 2 new quads and 3 new T-junctions
* Update our vertices and topology.
*/
this->shearEastUpdateMesh()
RETURN

Algorithm 6 Procedure: Quad::shearEastUpdateMesh(void)
This method updates the mesh topology resulting from the shear. See Algorithm 5
Vertex vertexNorth, vertexCenter
Quad quadWest, quadEast
/* This quad’s north-east vertex is updated in Algorithm 5 */

vertexNorth = new Vertex(interpolate(this->GetNEvertex(), this->GetNWvertex())
vertexCenter = new Vertex(interpolate(this->GetNWvertex(), this->GetNWvertex(),

this->GetSEvertex(), this->GetSWvertex())

/* First, create the WEST quad. */
IF (this->HasT_Junction(WEST)
THEN

quadWest this->shearEastDivideWestWithT(vertexNorth, vertexCenter);
ELSE

quadWest this->shearEastDivideWestNoT(vertexNorth, vertexCenter);

/* Second, create the EAST quad. */
IF (this->HasT_Junction(EAST)
THEN

quadEast this->shearEastDivideEastWithT(vertexNorth, vertexCenter);
ELSE

quadEast this->shearEastDivideEastNoT(vertexNorth, vertexCenter);
/* Update the quadWest and quadEast neighbor topology. */
quadWest.SetEastNeighbor(quadEast);
quadEast.SetEastNeighbor(quadWest);

/* Update this quad’s vertices. */
this->SetNWvertex(quadWest.GetSWvertex());
this->SetNEvertex(vertexCenter);
this->SetSEvertex(quadEast.GetSEvertex());
/* SW vertex stays the same. */

/* Update this quad’s topology. */
this->SetNorthNeighbor(quadWest);
this->SetEastNeighbor(quadEast);
/* West and South neighbors remain the same */

/* Add new quads to central quad list. */
this->GetQuadList()->Add(quadWest, quadEast);

Algorithm 7
Procedure: Quad::shearEastDivideWestWithT(
Vertex vertexNorth, Vertex vertexCenter)
This procedure creates a new west quad when a sheared quad is identified. In this case, this quad has a WESTern T-junction.
Quad quadWest

/* Update the WEST quad’s vertices. */
quadWest.SetNWvertex(this->GetNWvertex());
quadWest.SetNEvertex(vertexNorth);
quadWest.SetSEvertex(vertexCenter);
quadWest.SetSWvertex(this->GetTjunction(WEST).GetVertex());

/* Update the WEST quad’s topology
(except for new EAST quad). */
quadWest.SetNorthNeighbor(this->GetNeighbor(NORTH));
quadWest.SetSouthNeighbor(this);
quadWest.SetWestNeighbor(this->GetTjunction(WEST).GetNeighbor());

/* Update our neighbor’s topology
(except for new EAST quad). */
this->GetNeighbor(NORTH).SetSouthNeighbor(quadWest);
this->GetTjunction(WEST).GetNeighbor().SetEastNeighbor(quadWest);

/* Delete the WESTern T-junction.*/
this->DeleteTjunction(WEST);

RETURN quadWest;

Algorithm 8 Procedure: Quad::shearEastDivideWestWithNoT(Vertex vertexNorth, Vertex vertexCenter)
This procedure creates a new west quad when a sheared quad is identified. In this case, this quad has no WESTern T-junction.
Quad quadWest

/* Update the WEST quad’s vertices. */
quadWest.SetNWvertex(this->GetNWvertex());
quadWest.SetNEvertex(vertexNorth);
quadWest.SetSEvertex(vertexCenter);
quadWest.SetSWvertex(Interpolate(this->GetNWvertex(), this->GetSWvertex());

/* Update the WEST quad’s topology
(except for new EAST quad).*/

quadWest.SetNorthNeighbor(this->GetNeighbor(NORTH));
quadWest.SetSouthNeighbor(this);
quadWest.SetWestNeighbor(this->GetNeighbor(WEST));

/* Create a new T-junction for our WEST neighbor. */
this->GetNeighbor(WEST).NewTjunction(EAST);
this->GetNeighbor(WEST).GetTjunction(EAST).SetVertex(quadWest.GetSWvertex());
this->GetNeighbor(WEST).GetTjunction(EAST).SetEastNeighbor(quadWest);

/* Update our neighbor’s topology
(except for new EAST quad). */
this->GetNeighbor(NORTH).SetSouthNeighbor(quadWest);

RETURN quadWest;

Figure 1: Even under strong deformation, the mesh remains well-structured and produces a smooth surface. This image also demonstrates
the use of triangle fans to render quads that contain t-junctions.

