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Asymmetric Tensor Analysis for Flow Visualization

Eugene Zhang, Harry Yeh, Zhongzang Lin, and Robert S. Laramee

Abstract—The gradient of a velocity vector field is an asym- stretching of fluids can be a good indicator for the rate of
metric tensor field which can provide critical insight that is  fluid mixing and energy dissipation, rotation expresses the
difficult to infer from traditional trajectory-based vector field g6yt of vorticity, and volumetric expansion and contraction
visualization techniques. We describe the structures in the eigen- lated to ch f fluid iility 121 [10]. [24
e S e e o e 6 0 ot o om0 28
structures can be used to infer the behaviors of the velocity . -
field that can represent either a 2D compressible flow or the the gradient tensor of the vector field. Consequently, inferring
projection of a 3D compressible or incompressible flow onto a them using traditional vector field visualization methods that
tW(')r-odlmjsnt?;galhrgagtl:ﬁlcotlﬁres in asymmetric tensor fields, we USE 3TOWS, streamlines, and colors encoding the magnitude of
introduce the notions of eigenvalue manifold and eigenvéctor the. vector f',eld (Figure 1 (a-c)) is difficult even to the trained
manifold. These concepts afford a number of theoretical results fluid dynamics researchers.
that clarify the connections between symmetric and antisym-  The gradient tensor has found application in a wide range of
metric components in tensor fields. In addition, these manifolds vector field visualization tasks such as fixed point classification
ggg‘fé?]”yef'fe;ﬂvteo ﬁg&t;'i‘;gfioﬁf ;fr';?géi;f'd;’lo‘r"ggsgr Wv?le“seitécr’] 4 and separatrix computation [12], attachment and separation
eigenvectors continuously into the complex domaiﬁs which we dliIZnYe] extrgctlon_ %,7]’ V%r.ttei; ctoret.lder[llecatlon [29],t[f:1l-6], [25],f
refer to as pseudo-eigenvectors. We make use of evenly-space ,» and periodic orpit detection |4f. However, the use o
tensor lines following pseudo-eigenvectors to illustrate the local the gradient tensor in these applications is often limited to
linearization of tensors everywhere inside complex domains point-wise computation and analysis. There has been relatively

simultaneously.

Both eigenvalue manifold and eigenvector manifold are sup-
ported by a tensor reparameterization with physical meaning.
This allows us to relate our tensor analysis to physical quantities
such as rotation, angular deformation, and dilation, which
provide physical interpretation of our tensor-driven vector field
analysis in the context of fluid mechanics.

To demonstrate the utility of our approach, we have applied
our visualization techniques and interpretation to the study of
the Sullivan Vortex as well as computational fluid dynamics
simulation data.

Index Terms— Tensor field visualization, flow analysis, asym-

metric tensors, flow segmentation, tensor field topology, surfaces.

I. INTRODUCTION

V

little work in investigating the structures in the gradient tensors
as a tensor field and what information about the vector field
can be inferred from these structures. While symmetric tensor
fields have been well explored, it is not clear how structures
in symmetric tensor fields can be used to reveal structures
in asymmetric tensor fields due to the existence of the anti-
symmetric components.

Zheng and Pang are the first to study the structures in 2D
asymmetric tensor fields [40]. To our knowledge, this is the
only work where the focus of the analysis is on asymmetric
tensor fields. In their research, Zheng and Pang introduce
the concept ofdual-eigenvectorsinside complex domains
where eigenvalues and eigenvectors are complex. When the
tensor field is the gradient of a vector field, Zheng and Pang
demonstrate that dual-eigenvectors represent the elongated

ECTOR field analysis and_ V|§uallz.at|on are an Integr"E’Jlirections of the local linearization inside complex domains.
part of a number of applications in the field of aeroConsequentIy

and hydro-dynamics. Local fluid motions comprise translatio

tensor field structures can be visualized using
the combination of eigenvectors and dual-eigenvectors.

rotation, volumetric expansion and contraction, and stretching.-l-he work of Zheng and Pang has inspired this study of

Most existing flow visualization techniques focus on the velo

%symmetric tensor fields. In particular, we address a number of

ity vector field of the flow and have led to effective iIIustrationauestiOnS that have been left unanswered. First, their algorithm

of the translational component. On the other hand, other fl%/r

motions may be the center of interest as well.

computing the dual-eigenvectors relies on eigenvector

For exampleynutation or singular value decomposition, neither of which
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Fig. 1. The gradient tensor of a vector field (d) can provide additional information about the vector field that is difficult to extract from traditional vector
field visualization techniques, such as arrow plots (a), trajectories and color coding of vector field magnitude (b), or vector field topology (c) [4]. The colors

in (d) indicate the dominant flow motion (without translation) such as isotropic scaling, rotation, and anisotropic stretching. The tensor lines in (d) show the
structures in the eigenvectors and dual-eigenvectors of the tensor, which reflect the directions of anisotropic stretching. Notice that it is a challenging task
to use vector field visualization techniques (a-c) to provide insight such as locating stretching-dominated regions in the flow and identifying places where
the orientations of the stretching change significantly. On the other hand, visualizations based on the gradient tensor (d) facilitate the understanding of these
important questions. Detailed description for (d) will be discussed in Section IV-B. The flow field shown here is a planar slice of a three-dimensional vector
field that is generated by linear superposition of two Sullivan Vortices with opposite orientations [30] (Section V-A).

to visualize local linearization in the flow in those regionswill first review related existing techniques in vector and
Fourth, eigenvalues are an important aspect of tensor fieltensor field visualization and analysis in Section Il and provide
Yet, there is little discussion on the structures of eigenvalueslevant background on symmetric and asymmetric tensor
by Zheng and Pang. Finally, the focus of Zheng and Pafiglds in Section Ill. Then in Section IV, we describe our
is on general asymmetric tensor fields, and there is limiteghalysis and visualization approaches for asymmetric tensor
investigation of the physical interpretation of their results ifields defined on two-dimensional manifolds. We provide some

the context of flow analysis. physical intuition about our approach and demonstrate the
To address these fundamental issues, we make the followiftectiveness of our analysis and visualization by applying
contributions: them to the Sullivan Vortex as well as cooling jacket and

1) We introduce the concepts @figenvalue manifolda diesel engine simulation applications in Section V. Finally,
hemisphere) angigenvector manifolda sphere), both We summarize our work and discuss some possible future

of which facilitate tensor analysis (Section IV). directions in Section VI.
2) With the help of the eigenvector manifold, we extend
the theoretical results of Zheng and Pang on eigen- [l. PREVIOUS WORK

vector analysis (Section IV-A) by providing an explicit  There has been extensive work in vector field analysis and
and geometric characterization of the dual-eigenvectqfs,y visualization [20], [21]. However, relatively little work
(Section IV-A.1), which enables degenerate point clagyzs heen done in the area of flow analysis by studying the
sification (Section IV-A.2). , _structures in the gradient tensor, an asymmetric tensor field.
3) we mtroduc_e pseudo-e|genvectprs which we use to 'I!uﬁi general, previous work is limited to the study of symmetric,
trate the elliptical flow patterns in the complex domaingyc,nq_order tensor fields. Asymmetric tensor fields are usu-

2 S/sgcurgxr;itlj\é_éilsénvalue analvsis based on a Voronoi p 1Y decomposed into a symmetric tensor field and a rotational
Ve p 9 y . ' Plector field and then visualized simultaneously (but as two
tition of the eigenvalue manifold (Section IV-B) which

L . separate fields). In this section, we review related work in
allows us to maintain the relative strengths among t}L mmetric and asymmetric tensor fields

three main non-translational flow components: isotropi
scaling (dilation), rotation (vorticity), and anisotropic
stretching (angular deformation). This partition alsé. Symmetric Tensor Field Analysis and Visualization
demonstrates that direct transitions between certainSymmetric tensor field analysis and visualization has been
dominant-to-dominant components are impossible, suglell researched for both two- and three-dimensions. To refer
as between clockwise and counterclockwise rotations all past work is beyond the scope of this article. Here we
The transition must go through a dominant flow patterwill only refer to the most relevant work.
other than rotation. Delmarcelle and Hesselink [7] provides a comprehensive
5) We present a number of novel vector and tensor fieldydy on the topology of two-dimensional symmetric tensor
visualization techniques based on our eigenvalue afiflids and defindyperstreamlinegalso referred to agensor

eigenvector analysis (Sections IV-A and IV-B). ~|ines), which they use to visualize tensor fields. This research
6) We provide physical interpretation of our analysis in thg; |ater extended to analysis in three-dimensions [13], [39],
context of flow visualization (Section V). [41] and topological tracking in time-varying symmetric tensor

The remainder of the article is organized as follows. Weelds [31].
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Zheng and Pang provide a high-quality texture-based tensloat associates with every poipte M a second-order tensor
field visualization technique, which they refer to aty- ) _ (Tll(p) Ti2(p)
perLIC [38]. This work adapts the idea dfine Integral To1(p)  Tz2(p)
Convolution (LIC) of Cabral and Leedom [3] to symmetrictem in the tangent plane at The entries off (p) depend on
tensor fields. Zhang et al. [36] develop a fast and high-quali#f¢ choice of the coordinate system. A ten§g is symmetric
texture-based tensor field visualization technique, which isifaTij = Tiji-
non-trivial adaptation of thémage-Based Flow Visualization
(IBFV) of van Wijk [34]. Hotz et al. [15] present a texture-A. Symmetric Tensor Fields

based method for visualizing 2D symmetric tensor fields. A symmetric tensofl can be uniquely decomposed into the

Different constituents of the tensor field corrgspondlng Qm of its isotropic parD and the @eviatoric tensor A:
stress and strain are mapped to visual properties of a texture

emphasizing regions of volumetric expansion and contraction. T
- . 114722 T11—To

To reduce the noise and small-scale features in the datap ; A — <2 T ET22> + <2 TT}% > (1)
and therefore enhance the effectiveness of visualization, a 0 = Tz 2H
symmetric tensor field is often simplified either geometrically
through Laplacian smoothing of tensor values [1], [36] or T T2
topologically using degenerate point pair cancellation [32@ > 0. LetE;(p) andEx(p) be unit eigenvectors
[36] and degenerate point clustering [33]. that correspond to eigenvalugs+ ys and yy — Vs, respectively.

We also note that the results presented in this article exhibit and E, are themajor and minor eigenvector fields off.
some resemblance to those usi@ifford Algebra[9], [14], T(p) is equivalent to two orthogonal eigenvector fields(p)
[8], in which vector fields are decomposed into different loc&nd Ex(p) when A(p) # 0. Delmarcelle and Hesselink [6]
patterns, e.g., sources, sinks, and shear flows, and then cattiggest visualizingensor lines which are curves that are
coded. tangent to an eigenvector field everywhere along its path.

Different tensor lines can only meet at degenerate points,

where A(pp) = 0 and major and minor eigenvectors are not
. , , , ) ~well-defined. The most basic types of degenerate points are:
_Analysis of asymmetric tensor fields is relatively new ifeqgeqndtrisectors Delmarcelle and Hesselink [6] define a
visualization. Zheng and Pang provide analysis on 2D asyRncor indexfor an isolated degenerate poipg, which must

metric tensors [40]. Their analysis includes the partition ¢fg 5 multiple of% due to the sign ambiguity in tensors. It
the domain into real and complex, defining and use of dueg— 1

: Lo h . 1 for a wedge,—3 for a trisector, and0 for a regular
eigenvectors for the visualization of tensors inside compl%int_ Delmarcelle shows that the total indices of a tensor

domains, incorporation of degenerate curves into tensor figld,y \yith only isolated degenerated points is related to the
features, and a circular discriminant that enables the deteC%Bology of the underlying surface [5]. La#l be a closed
of degenerate points (circular points). orientable manifold with an Euler characterisgi¢éM), and let

In this article, we extend the analysis of Zheng and PaRge 4 continuous symmetric tensor field with only isolated

by providing an explicit formulation of the dual—eigenvectorsdegenerate pointép; : 1 < i < N}. Denote the tensor index of
which allows us to perform degenerate point cIassification as!(pi,T). Then: -

and extend the PoindaHopf theorem to two-dimensional '

asymmetric tensor fields. We also introduce the concepts of N

pseudo-eigenvectors which can be used to illustrate the ellip- Z\' (Pi,T) =Xx(M) 2)
tical patterns inside complex domains. Such illustration cannot =

be achieved through the visualization of dual-eigenvectors.In this article, we will adapt the classification of degenerate
Moreover, we provide the analysis on the eigenvalues whig®ints of symmetric tensor fields to asymmetric tensor fields.
we incorporate into visualization. Finally, we provide explicit

physical interpretation of our analysis in the context of flo8, Asymmetric Tensor Fields

semantics. . . o An asymmetric tensor differs from a symmetric one in

Ruetten and C.hong [26] d.escrlbe a VI§l_JaI|zat|on framewomany aspects, the most significant of which is perhaps that an
f(.)r three-d}mensmnal flow f|eI('js.that utilizes the thigen- asymmetric tensor can have complex eigenvalues for which
ciple m_vanants P, Q, and R Similar to our approach, they no real-valued eigenvectors exist. Given an asymmetric tensor
n_ormah_ze the thre_e quantities. On the other hand, for twgg, T, the domain ofT can be partitioned intoceal domains
dlmensmnal flow fields as in our cas@,: -R Therefor-e, real eigenvalued; whereA; # Ay), degenerate curvegeal
the.|r gpproach would only havg two mdependent variabl ?genvalueé\i whereA; = A,), andcomplex domainécomplex
while in our method there are still three variables. eigenvalues). Degenerate curves form the boundary between

the real domains and complex domains.
Ill. BACKGROUND ON TENSORFIELDS In the complex domains where no real eigenvectors ex-

We first review some relevant facts about tensor fields @st, Zheng and Pang [40] introduce the concept dofal-
two-dimensional manifolds. An asymmetric tensor figldor eigenvectorsvhich are real-valued vectors and can be used to
a manifold surfaceM is a smooth tensor-valued functiondescribe the elongated directions of the elliptical patterns when

> under some local coordinate sys-

T114+T22
2

T has eigenvalueg + ys in which yy = and ys =

B. Asymmetric Tensor Field Analysis and Visualization
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the asymmetric tensor field is the gradient of a vector field. Thehere yy — T3z, y — Ta-Tiz y, — \/<T11*T22)22+(T12”21>2
dual-eigenvectors in the real domains are the bisectors betwaea thestrengthsof isotropic scaling, rotation, and anisotropic
the major and minor eigenvectors. The following equatiorgretching, respectively. Note thgs > 0 while y and yy can
characterize the relationship between the dual-eigenvediorspe any real numbe < [0,2m) is the angular component of
(major) andJ, (minor) and the eigenvectots; (major) and the vector Ti1—Too
E, (minor) in the real domains: T2+ To1
stretching.

Ei= Vi1 + Vi), E>=/hd— /i) (3) In this article, we focus on hqw the relative stre_ngths of the_
three components effect the eigenvalues and eigenvectors in
the tensor. Given our goals, it suffices to studhit tensors
e, i +W+yE=1L1

Er= Vi +ivVied, Ex=mdi—iyixd (4) The space of unit tensors is a three-dimensional manifold,

. . . for which direct visualization is formidable. Fortunately, the
where Ly a_n_d U2 are the singular values_ln the singular Val“%igenvalues of a tensor only depend yan , and ys, while
decomposition. Furthermore, the following fields: the eigenvectors depend ¢n y, and8. Therefore, we define

the eigenvalue manifold/ , as:

), which encodes the orientation of the

as well as in the complex domains:

Vi(p) :{ Ei(p) T(p) in the real domain 5)

Ji(p)  T(p) in the complex domain {(vas ¥, V) Ve + P+ Y2 =1and ys > 0} (8)

i = 1,2 are continuous across degenerate curves. Either figldy theeigenvector manifoldv, as:
can be used to visualize the asymmetric tensor field.
Dual-eigenvectors are undefinedd@generate poinfsvhere

the circular discriminant {(%.¥5.0)f +¥e =1andys>0and0< 6 < 2m}. (9)
) ) Both M, andM, are two-dimensional, and their structures
Az = (Tia—T22)" 4 (Ta2+ Ta1) (6)  can be understood in a rather intuitive fashion. A second-order

achieves a value of zero. Degenerate points represent locati§isor fieldT (p) defined on a two-dimensional manifold
where flow patterns are purely circular, and they only occifptroduces the followingontinuousmaps:
inside complex domains. They are also referred toieilar
points[40], and together with degenerate curves they form the GiM—=M,, nr:M—M,, (10)
asymmetric tensor field features _ ~In the next two sections, we describe the analysi#igf and
In this article, we extend the aforementioned analysis mv_
Zheng and Pang [40] in several aspects that include a ge-
ometric interpretation of the dual-eigenvectors (Section I\,(‘-‘
A.1), the classification of degenerate points and the extension ) ) )
of the Poincaé-Hopf theorem from symmetric tensor fields Th€ analysis on eigenvectors and dual-eigenvectors by
(Equation 2) to asymmetric tensor fields (Section IV-A.2), théNeng and Pang [40] can be largely summarized by Equa-
introduction and use giseudo-eigenvectofsr the visualiza- tions 3-6. The eigenvector manifold presented here not only al-
tion of tensor structures inside complex domains (Section \2WS US to provide more geometric (intuitive) reconstruction of
A.3), and the incorporation of eigenvalue analysis (Section [their results, but also leads to novel analysis that includes the

Eigenvector Manifold

B). classification of degenerate points, extension of the Pdrcar
Hopf theorem to two-dimensional asymmetric tensor fields,
IV. ASYMMETRIC TENSORFIELD ANALYSIS AND and the definition of pseudo-eigenvectors which we use to
VISUALIZATION visualize tensor structures in the complex domains. We begin

Our asymmetric tensor field analysis starts with a aramvt\ali—th the definition of the eigenvector manifold.
y y P The eigenvectors of an asymmetric tensor expressed in the

terization for the set o2 x 2 tensors. form of Equation 7 only depend o, y, and 8. Given that

It is well known that any second-order tensor can IOt e tensor magnitude and the isotropic scaling component do

;Qlﬂzezmd;ﬁzrzz?nsegng:; tcvii:# r;e(:s:rse ?Kg]r:;tlﬂrc] a;:not affect the behaviors of eigenvectors, we will only need to
>y P : . 9 A%hsider unit traceless tensors, i.g,=0and P+ =1
rotation caused by the tensor, respectively. Another popular ; 3
o ey have the following form:
decomposition removes the trace component from a symmetric
tensor which corresponds to isotropic scaling (Equation 1). ,
The remaining constituent, théeviatoric tensarhas a zero  T(g,¢) = sing (0 _1> + cos$ <0939 sm@) (12)
trace and measures the anisotropy in the original tensor. We 10 sin  —cosd
combine both decompositions to obtain the following unifiegh which ¢ = arctar(%) ¢ [~ 2, 7). Consequently, the set of
parameterization of the space ®k 2 tensors: unit tracelesg x 2 tensors can be represented by a unit sphere
which we refer to as theigenvector manifol@Figure 2 (left)).
10 0 -1 cosb sin@ The following observation provides some intuition about the
T=vy + W% +Y¥ (7)

0 1 1 0 sin@ —cos@ eigenvector manifold.
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@=n/2: pure counterclockwise rotation Northern hemisphere:
counterclockwise rotatio

o=n/4

Wrn

¢=0: pure anisotropic stretching 0=n

x ......

Wes . .
major eigenvector

o=-1/4 minor eigenvector
major dual-eigenvector

major pseudo-eigenvector

minor pseudo-eigenvector

=n/4
=n/8

Wes

¢=-1/2: pure clockwise rotation

0=3n/2

Eigenvector manifold (side view) Eigenvector manifold: northern
hemisphere (top-down view)

Fig. 2. The eigenvector manifold (left) is partitioned into real domains in the northern hemispligdeafid the southern hemispheiy§) as well as

complex domains in these hemispherég { andW;s). The orientation of the rotational component is counterclockwise in the northern hemisphere and
clockwise in the southern hemisphere. The equator represents pure symmetric tensors, while the poles represent pure rotations. Along any longitude, (e.
6 =0 (right)), and starting from the intersection with the equator and going north (right), the major dual-eigenvectors (blue lines) remain constant. In the real
domains, i.e.0< ¢ < 7, the angle between the major eigenvectors (solid cyan lines) and the minor eigenvectors (solid green lines) monotonically decreases
to 0. The angle is exactlp when the magnitude of the stretching constituent equals that of the rotational part. Inside the complex domains where major and
minor eigenvectors are not real, pseudo-eigenvectors (cyan and green dashed lines, details in Definition 4.6) are used for visualization purposes. The major al
minor pseudo-eigenvectors @t(F < ¢ < 7) are defined to be the same as the minor and major eigenvectobs-f@r along the same longitude. Traveling

south of the equator towards the south pole, the behaviors of the eigenvectors and pseudo-eigenvectors are similar except they rotate in the opposite directic
At the equator, there are two bisectors, i.e., major and minor dual-eigenvectors cannot be distinguished. We consider the equator a bifurcation point anc
therefore part of tensor field features. On a different longitude, the same pattern repeats except the eigenvectors, dual-eigenvectors, and pseudo-eigenvect
are rotated by a constant angle. Different longitudes correspond to different constant angles.

A AN A NN\ N
O—— S N N

T s 355 XN

o=n/2 0=37/8 o=m/4 o=n/8 0=0 O=—m/8 O=—m/4 0=—3m/8 O=—m/2

Fig. 3. Example vector fields whose gradient tensors correspond to points along the loSgit@iéFigure 2 (right)).

Theorem 4.1:Given two tensord; =T(6,¢) (i=1,2) on (Section IV-A.1), classify degenerate points and extend the
cosd —sind Poincaé-Hopf theorem to asymmetric tensor fields (Sec-
sind cosd ) tion IV-A.2), and introduce the pseudo-eigenvectors which
with & = @. Then any eigenvector or dual-eigenveciar we use to illustrate tensor structures in the complex domains
of T, can be written as\w; wherew; is an eigenvector or (Section IV-A.3).
dual-eigenvector off;, respectively. 1) Geometric Construction of Dual-Eigenvector3heo-
The proofs of this theorem and the theorems thereafter &#n 4.1 allows us to focus on the behaviors of eigenvectors
provided in the Appendix. and dual-eigenvectors along the longitude whére- 0, for

Theorem 4.1 states that as one travels along a latitude in YHaich Equation 11 reduces to:
eigenvector manifold, the eigenvectors and dual-eigenvectors cosp —sing
are rotated at the same rate. This suggests that the fundamental T= <sin¢ B cos¢>
behaviors of eigenvectors and dual-eigenvectors are dependent
on ¢ only. In contrast,6 only impacts the directions of The tensors have zero, one, or two real eigenvalues when
the eigenvectors and dual-eigenvectors, but not their relatigs2p < 0, =0, or > 0, respectively. Consequently, the tensor
positions (Figure 2, right). is referred to as beinip the complex domajron a degenerate

Next, we will make use of the eigenvector manifold t@urve orin the real domairf40]. Notice that the tensor is on
provide a geometric construction of the dual-eigenvectoasdegenerate curve if and only ¢f=+7.

the same latitude-7 < ¢ < 7, let N =

(12)



IEEE TVCG, VOL. ?,NO. ?, AUGUST 200? 6

In the complex domains, it is straightforward to verifithat A, does not make such a distinction between the two

that (12 and ( 1) are the dual-eigenvectors except whe[l€mispheres. Therefore, we advocate the ugeasf a measure

1 -1 for the degree of being symmetric of an asymmetric tensor.
¢ = +3, i.e, degenerate points. In the real domains, the2) pegenerate Point ClassificationNext, we discuss the
eigenvalues are-,/co2¢. A major eigenvector is: degenerate points where dual-eigenvectors are undefined, i.e.,
. circular points. We provide the following definition:
<\/S!”(¢ + g) +/cos¢ + ;?) (13)  Definition 4.3: Given a continuous asymmetric tensor field
V/sin(@ + ) —\/cosd + 7) T defined a two-dimensional manifoldl, let Q be a small
and a minor eigenvector is: circle aroundpg € M such thatQ contains no additional
degenerate points and it encloses only one degenerate point,
<\/sin(¢ + ) —\/cog¢ + Z)) (14) Po Starting from a point o® and travelling counterclockwise
V/sin(g + )+ /cog¢ + ) alongQ, the major dual-eigenvector field (after normalization)

y covers the unit circleSt a number of times. This number is
id to be the tensor index @h with respect toT, and is
I%noted byl (po, T).

The bisectors between them are linés=Y and X = —
whereX andY are the axes of the coordinate systems in t

tangent plane at each point. That is, the dual-eigenvectors . . ,
1 We now return to the discussion on degenerate points,

the real domains are aIséi) and (_1). Combined with \which correspond to the poleg & +7), ie., 5= 0. The
the dual-eigenvector derivation in the complex domains, fglationship between the dual-eigenvectors of an asymmetric
is clear that the dual-eigenvectors remain the same for d@y1sor T(6,¢) and the corresponding symmetric tensgr
¢ € (%, 7). This is significant as it implies that the dual-described in Equation 15 leads to the following theorem:
eigenvectors depend primarily on the symmetric componentTheorem 4.4:Let T be a continuous asymmetric tensor
of a tensor field. field defined on a two-dimensional manifol satisfying
The anti-symmetric (rotational) component impacts the + Y2 > O everywhere inM. Let Sy be the symmetric
dual-eigenvectors in the following way. In the northern hemomponent off which has a finite number of degenerate points
K ={pi:1<i <N} Then we have:
1) K is also the set of degenerate pointsTof

sphere wherg; = sing > 0, a major dual-eigenvector @) :
1)' In the southern hemi-  2) For any degenerate poiri, I(pi,T) = I(pi,Sr). In

and a minor dual-eigenvector (s . i .
-1 particular, a wedge remains a wedge, and a trisector

sphere § = sing < 0), the values of the dual-eigenvectors are remains a trisector.

swapped. Consequently, the major dual-eigenvector ield  This theorem allows us to not only detect degenerate points,
discontinuous across curves whére- 0, which correspond to pyt also classify them based on their tensor indexes (wedges,
pure symmetric tensors (Equation 11) that form the boundariggectors, etc) and the hemisphere they dwell on, something
between regions of counterclockwise rotations and regions @t addressed by Zheng and Pang’s analysis [40]. Furthermore,

clockwise rotations. _ . this theorem leads directly to the extension of the well-known
With the help of Theorem 4.1, the above discussion can pgincae-Hopf theorenfor vector fields to asymmetric tensor
formulated into the following. fields as follows.

Theorem 4.2:The major and minor dual-eigenvectors of a Theorem 4.5:Let M be a closed orientable two-
tensorT (6, ¢) are respectively the major and minor eigenveGtimensional manifold with an Euler characteristidM ),

tors of the following symmetric tensor: and letT be a continuous asymmetric tensor field with only
g ; I isolated degenerate poin{g; : 1 <i <N}. Then:
pr— 7r c95(9+ %) sin(@ + ’21) (15) '
|y| sin(@+75) —cog6+ %)

whereverPr is non-degenerate, i.ey; = cosp # 0 and ys = le Pi, T M) (16)
sing # 0. The eigenvector manifold also prowdes hints that degenerate
This inspires us to incorporate places correspondinggte points occurring at opposite poles have different rotational

0 into tensor field features in addition =47 (degenerate orientations. In fact, any tensor line connecting a degenerate
curves) andp = +7 (degenerate points). Symmetric tensorgoint pair inside different hemispheres necessarily crosses the
and degenerate curves divide the eigenvector maniibld equator (pure symmetric tensors) an odd number of times.
into four regions: (1) real domains in the northern hemisphehe contrast, when the degenerate point pair is in the same
(W.n), (2) real domains in the southern hemisphéhgs), (3) hemisphere, any connecting tensor line will cross the equator
complex domains in the northern hemisphéfé ), and (4) an even number of times or remain in the same hemisphere
complex domains in the southern hemisphé&tggj. Figure 2 (zero crossing).

(left) illustrates this partition. 3) Pseudo-EigenvectorsWe conclude our analysis with
Notice that¢ measures thsignedspherical distance of athe introduction of pseudo-eigenvectors, which like dual-
unit traceless tensor to pure symmetric tensors (the equateiyenvectors are continuous extensions of eigenvectors into the
For example, the north pole has a positive distance and ttmmplex domains. Unlike dual-eigenvectors, however, pseudo-
south pole has a negative distance. In contrast, the circuddgenvectors are not mutually perpendicular. Recall that in
discriminantA, (Equation 6) satisfieA, = 4ys, which implies the complex domains, flow patterns without translations and
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Fig. 4. Three tensor line-based technigues in visualizing the eigenvectors of the vector field shown in Figure 1. In (a), the regions with a single family of tensor
lines are the complex domains and the regions with two families of tensor lines are the real domains. Red indicates a counterclockwise rotational component
while green suggests a clockwise one. The major and minor eigenvectors (real domains) are colored black and white, respectively. The blue tensor lines inside
the complex domains follow the major dual-eigenvectors. In (b), dual-eigenvectors are replaced by pseudo-eigenvectors (blue) inside complex domains. The
image in (d) is obtained from (b) by blending it with a texture-based visualization of the vector field. In (c), the physical meanings of eigenvectors (top) and
pseudo-eigenvectors (bottom) are annotated.

isotropic scalings are ellipses, whose elongated directions ar&he major and minor pseudo-eigenvectors are undefined at
represented by the major and minor dual-eigenvectors [4Bpgenerate points, i.e¢q = +7. In fact, the set of degen-
Unfortunately, the elliptical patterns cannot be demonstratedate points of either pseudo-eigenvector field matches that
by drawing tensor lines following the major and minor dualef the major dual-eigenvector field (number, location, tensor
eigenvectors since they are always mutually perpendicular. ifglex), thus respecting the adapted Poigéddopf theorem for
remedy this, we observe that an ellipse can be inferred frasymmetric tensor fields (Theorem 4.5). The orientations of
the smallest enclosing diamond whose diagonals representtigsor patterns in the pseudo-eigenvector fields near degenerate
major and minor axes of the ellipse (Figure 4 (c: bottompoints are obtained by rotating patterns in the major dual-
Given two families of evenly-spaced lines of the same densigigenvector field in the same regions Pyeither counterclock-
d, intersecting at an angler = f(0), any ellipse can be wise (@ > 0) or clockwise ¢ < 0).
represented. Our question then is: given a tenbod, ¢) 4) Visualizations:In Figure 4, we apply three visualization
where 7 < |¢| < 3, how do we decide the directions of theiechniques based on eigenvector analysis to the vector field
two families of lines? This leads to the following definitionsshown in Figure 1. In addition to the option of visualizing

Definition 4.6: Given a tensorT = T(6,¢), the major eigenvectors in the real domains and major dual-eigenvectors
pseudo-eigenvectaf T is defined to be theninor eigenvector in complex domain (Figure 4 (a)), pseudo-eigenvectors provide
of the tensorT(6,5 — ¢) when ¢ > T and T(8,—7 — ¢) an alternative (Figure 4 (b)). In these images, the background
when ¢ < —7. Similarly, theminor pseudo-eigenvectaf T colors are either red (counterclockwise rotation) or green
is defined to be thenajor eigenvector of the same tensorgclockwise rotation). Tensor lines following the major and
under these conditions. minor eigenvector fields are colored in black and white,

It is straightforward to verify that evenly-spaced linesespectively. Tensor lines according to the dual-eigenvector
following the major and minor pseudo-eigenvectors produdield (a) and pseudo-eigenvector fields (b) are colored in blue,
diamonds whose smallest enclosing ellipses represent the flwhich makes it easy to distinguish between real and complex
patterns corresponding Toin the complex domains (Figure 3:domains. Degenerate points are highlighted as either black
¢ = i%"). Notice that the definitions of the major andwedges) or white (trisectors) disks. Note that it is easy to
minor pseudo-eigenvectors can be swapped as evenly-spageglthe features of tensor fields (degenerate points, degenerate
lines following either definition produce the same diamondsurves, purely symmetric tensors) in these visualization tech-
Because of this, we assign the same color (blue) to batlgues. Figure 4 (d) overlays the eigenvector visualization in
pseudo-eigenvector fields in our visualization techniques (h) onto texture-based visualization of the vector field. It is
which they are used (Figure 4 (b) and (d)). evident that flow directions do not align with the eigenvector

Both major and minor pseudo-eigenvector figRig = 1,2) or pseudo-eigenvector directions. Furthermore, as expected the
in the complex domains are continuous with respect to tfiged points in the vector field and degenerate points in the
major and minor eigenvector fields (i = 1,2) in the real tensor field appear in different locations.
domains across degenerate curves. Thus we definm#jar
and minor augmented eigenvector fiels(i = 1,2) as:

B. Eigenvalue Manifold

We now describe our analysis on the eigenvalue? »f2
tensors, which have the following forms:

[ Ei(p) T(p) in the real domain

A(p) —{ R(p) T(p) in the complex domain (17
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must intersect with &*-, D™-, or Stype region. A similar
ALo = otV - =Y (18) statement can be made betwee#&- and D~ -type region
’ Va2 —y2 if Y2 <P pair. Note these statements can be difficult to verify without
. the use of eigenvalue manifold.

Reca_II that){d, Y "’?”d ¥ rep_resent the (relauve_) strengths We propose two visualization techniques. With the first
of the 'SOUOP'C scaling, ro'tat|on, and anisotropic Stretch""[gchnique, we assign a unique color to each of the five special
components in the tensor field. , onfigurations shown in Figure 5 (upper-middle). Effective

To understand the nature of a'tensor 'usu.ally requires @aor assignment can allow the user to identify the type
study of yy, ¥, ¥, Or some of_t_helr comblna}tlons: Since nQye primary characteristic at a given point as well as the
upper bounds on these quantities necessarily exist, the effgga e ratios among the three components. We use the scheme
tlvgness of the V|suallzgt|0n technlqggs can be limited by tlgﬁown in Figure 5 (upper-right): pure positive isotropic scaling
ratio between the maximum and minimum values. HoweveUellow), pure negative isotropic scaling (blue), pure coun-
itis often desirable to r?mswer the following questions: terclockwise rotation (red), pure clockwise rotation (green),

« What are the relative strengths of the three componenfsd pure anisotropic stretching (white). For any other point

(ya, ¥, and ys) at a pointpe? _ (va(%,Y), % (X,Y), ys(X,y)), we computea as the angular com-

« Which of these components is dominantpa®? ponent of the vectofya(x,y), yi (x,y)) with respect to(1,0)

Both questions are more concerned with the relative ratigsounterclockwise rotation). The hue of the color is then:
among y4, %, and ys rather than their individual values,

which makes it possible to focus on unit tensors, i.e., when { 2%0! if O<a<m (19)
ya+ VY2 +y2=1andys > 0. The set of all possible eigenvalue 30 if —-m<a<O0

configurations satisfying these conditions can be modelgghtice that angular distortion ensures that the two isotropic
as a unit hemisphere, which is a compact two-dimensiongalings and rotations will be assigned opposite colors, re-
manifold (Figure 5 upper-left). spectively. Our color legend is adopted from Ware [35]. The
There are five special points in the eigenvalue manifolshturation of the color ref|ec‘§(x’y)+yrz(x,y), and the value
that represent the extremal situations: (1) pure positive scaliggthe color is always one. This ensures that as the amount of
(o =1, ¥ = ¥ =0), (2) pure negative scalingy{ = —1, anisotropic stretching increases, the color gradually changes
¥ = ¥ =0), (3) pure counterclockwise rotations (= 1, ya = to white, which is consistent with our choice of color for
¥s = 0), (4) pure clockwise rotation(= —1, ya = s =0), representing anisotropic stretching. Figure 6 (a) illustrates this
and (5) pure anisotropic stretchings & 1, ya = % = 0)  visualization with the vector field shown in Figure 1.
(Figure 5 (upper-left)). The Voronoi diagram with respect Qur second eigenvalue visualization method assigns a
to these configurations leads to a partition of the eigenvalyfiique color to each of the five Voronoi cells in the eigenvalue
manifold into the following types of regions: (D* (positive manifold. Figure 6 (b) shows this visualization technique for
scaling dominated), (2p~ (negative scaling dominated), (3)the aforementioned vector field.
R* (counterclockwise rotation dominated), ®) (clockwise  Notice that the two techniques differ in how they address
rotation dominated), and (5§ (anisotropic stretching dom- the transitions between regions of different dominant char-
inated). Here, the distance function is the spherical geodesgigeristics. The first method allows for smooth transitions
distance, i.e.d(v1,V2) = 1—v1-V; for any two points/; andvz  and preserves relative strengths yaf ¥, and ys, which we
on the eigenvalue manifold. The resulting diagram is illustrategfer to as the AC (all components) method. The second
in Figure 5 (upper-middle). method explicitly illustrates the boundaries between regions
A point po in the domain is said to be a tyd@" point with different dominant behaviors, which we refer to as the
if T(po) is in the Voronoi cell of pure positive scaling,DC (dominant component) method. We use both methods in
i.e., Ya(Po) > max(ys(po), |% (Po)|). A D*-type regionR is a our interpretations of the data sets (Section V). To illustrate the
connected region in which every point is of type. Points absolute magnitude of the tensor field, we provide a visualiza-
and regions corresponding to the other types can be definediéh in which the colors represent the magnitude of the gradient
a similar fashion. We define the features of a tensor field witBnsor, i.e.,y§+ y2 +y2 (Figure 6 (c)). In this visualization,
respect to eigenvalues as the set of points in the domain whesg indicates high values and blues indicate low values. Notice

tensor values map to the boundaries between the Vorofigt this visualization can provide complementary information
cells in the eigenvalue manifold. The following result is @an either the AC or DC method.

straightforward derivation from the Voronoi decomposition of Combining visualizations based on eigenvalue and eigen-

the eigenvalue manifold. vector analysis leads to several hybrid techniques. The fol-
Theorem 4.7:Given a continuous asymmetric tensor fieldowing provides some insight on the link between eigenvalue

T defined on a two-dimensional manifolsl, let Uy and analysis and eigenvector analysis.

U, be ana- and -type region, respectively, where, 3 € Theorem 4.8:Given a continuous asymmetric tensor field

{D*,D",R",R",S} are different. ThedU1NdU2 =0 if a- T defined on a two-dimensional manifold such thgt- yZ +

and B-types represent regions in the eigenvalue manifold thg > 0 everywhere, the following are true:

do not share a common boundary. 1) anR'-type region is contained i#,, and anR -type
As an application of this theorem, we state that a continuous  region is contained i/,

path travelling from arR"-type region to arR-type region 2) an Stype region is contained i (JW s,
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anisotropic
stretching

clockwise positive isotropic
rotation: a=rt scaling: o=m/2

anisotropic
isotropic stretching
scaling

positive scaling

clockwise counterclockwise
rotation

anisotropic
stretching counterclockwise
rotation: a=0

rotation

egative scaling

Eigenvalue manifold Eigenvalue manifold nega'tive isotropic
(top-down view) scaling: o=—m/2

(a) source (positive scaling) (b) node  (c) saddle (anisotropic stretching)  (d) simple shear  (e) center (counterclockwise rotation)  (f) spiral (g) improper node

Fig. 5. The eigenvalue manifold of the set 2k 2 tensors. There are five special configurations (top-left: colored dots). The top-middle portion shows a
top-down view of the hemisphere along the axis of anisotropic stretching. The hemisphere is decomposed into the Voronoi cells for the five special cases,
where the boundary curves are part of tensor field features. To show the relationship between a vector field and the eigenvalues of the gradient, seven vecto
fields with constant gradient are shown in the bottom rows( @, ys) = (1,0,0) , (b) (,0,*2), (c) (0,0,1), (d) (0,2, %), () (0,1,0), () (*2,*2,0),

and (g)(@, @, @). Finally, we assign a unique color to every point in the eigenvalue manifold (upper-right). The boundary circle of the eigenvalue manifold

is mapped to the loop of the hues. Notice the azimuthal distortion in this map, which is needed in order to assign positive and negative scaling with hues
that are perceptually opposite. Similarly we assign opposite hues to distinguish between counterclockwise and clockwise rotations.

(a) (b) (c)

Fig. 6. Three visualization techniques on the vector field shown in Figure 1 (Section V-A): (a) eigenvalue visualization based on all components, (b)
eigenvalue visualization based on the dominant component, and (c) magnitude (dyadic product) of the velocity gradient tensor. The color scheme for (a) is
described in Figure 5 (upper-right). The color scheme for (b) is based on the dominant component in the tensor: positive scaling (green), negative scaling
(red), counterclockwise rotation (yellow), clockwise rotation (blue), and anisotropic stretching (white). In (c), red indicates large values and blue indicates
small.

3) a D'-type or D -type region can have a non-empty « C, =R NWs (green),
intersection with any of the followingV; n, Wes, We n, o C3=D"NWenUWn) (vellow-+red),
andWes. « Cy= Di NWesUWes) (yellow-+green),
Three hybrid visualizations are shown in Figure 7. In (a), ° Cs =D~ (N(WenUWrn) (bluetred),

the colors are obtained by combining the colors from the: %Zg&@\(/l’:ctjvv\r/n\/r)s)( v\(lﬁli;l:igde)en),

eigenvalue visualization (Figure 6 (b)) with the background , Cs = SNWesUWis) (whitet+green),
colors (red or green) from eigenvector visualization (Figure 4 . '

(a)). This results in eight different colors according to Theo- Futhermpre,Cﬁ —Ce can be_ in either the real or complex
rem 4.8): domain. This can be distinguished based on the colors of the

tensor lines (see Figure 7 (b)): real domains (tensor lines in
o C1 =R"NWep (red), black and white) and complex domains (tensor lines in blue).
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Fig. 7. Example hybrid visualization techniques on the vector field shown in Figure 1: (a) a combination of eigenvalue-based visualization (Figure 6 (b))

with the background color (red and green) from eigenvector-based visualization (Figure 4 (a)), (b) same as (a) except the underlying texture-based vector field
visualization is replaced by eigenvectors and major dual-eigenvectors, and (c) a combination of (a) and (b).

Figure 7 (c) is obtained by combining the visualizations in

Figure 7 (a) and (b). Ou = t_racsﬂu] 3j + Qij +Eij (20)
C. Computation of Field Parameters where §; is the Kronecker delta N is the dimension of

Our system can accept either a tensor field or a vector fielde domain (eithe2 or 3), racdul §; represents the volume
In the latter case, the vector gradient (a tensor) is used as @igortion (equivalent toisotropic scalingin mathematical
input. The computational domain is a triangular mesh in eitht§ms), and the anti-symmetric tens@y; = 3(0Ou— (Ou)")

a planar domain or a curved surface. The vector or tensor fiéRpresents the averaged rotation of fluid. Sike has only

is defined at the vertices only. To obtain values at a point dree entities wheN = 3, it can be considered as a pseudo-
the edge or inside a triangle, we use a piecewise interpolati¢#ftor; twice the magnitude of the vector is calleatticity.
scheme. On surfaces, we use the scheme of Zhang et al. [371e symmetric tensor:
[36] that ensures vector and tensor field continuity in spite of

the discontinuity in the surface normal. Ej = %(Du+ (Ou)T) - trace{Du] ——9j (21)
Given a tensor fieldT, we first perform the following
computation for every vertex. is termed therate-of-strain tensor(or deformation tensqr
« Reparameterization, in which we compute ¥, ys, and that represents the angular deformation, i.e. the stretching of
0. a fluid element along a principle axis. Notice that in two-
« Normalization, in which we scalg, ¥, andys to ensure dimension casesN(= 2) Equation 20 corresponds directly
y2+y2+y2 1. to the tensor reparameterization (Equation 7) in whjgh-=
. Elgenvector analysis, in which we extract the elgenveé‘@ V¥ =|Qual, s = \/E4 +EZ, and 8 = tan—l(E12)
tors, dual-eigenvectors, and pseudo-eigenvectors at eaghsider the gradient tenisor of a two-dimensional flow field
Vertex. (see Figures 6 and 7 for an example), the counterclockwise and

Next, we extract the features of the tensor field with respesibckwise rotations in the tensor field indicate positive vortic-
to the eigenvalues. This is done by visiting every edge in thies (red) and negative vorticities (green), respectively . The
mesh to locate possible intersection points with the boundasgsitive and negative isotropic scalings represent volumetric
curves of the Voronoi cells shown in Figure 5. We then connegkpansion and contraction of the fluid elements (yellow and
the intersection points whenever appropriate. blue). The anisotropic stretching is equivalent to the rate of

Finally, we extract tensor features based on eigenvectasdgular deformation, i.e., shear strain (white). Furthermore,
This includes the detection and classification of degenerate illustrated in Figure 3, eigenvectors in the real domain
points as well as the extraction of degenerate curves amgresent deformation patterns of fluid elements, while dual-

symmetric tensors. eigenvectors in the complex domain represent the skewed
(elliptical) rotation pattern.
V. PHYSICAL INTERPRETATION ANDAPPLICATIONS For the analysis of three-dimensional incompressible-fluid

In this section, we describe the physical interpretation dbws (Zi3=1Tii =0) confined to a plane (e.g., Figures 6 and 7),
our asymmetric tensor analysis in the context of fluid flowwice the trace ofdJu can be written asliy+ Top = —Tas,
fields. Letu be the flow velocity. The velocity gradient tensowhich represents the net flow to the plane from neighboring
Ou consists of all the possible fluid motions except translatigrianes: this is a consequence of mass conservation. Positive
and can be decomposed into three terms [2], [28]: scaling in the plane represents the effect of inflow from the
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(@ (b) (d)

Fig. 9. Four visualization techniques on the Sullivan flow (Section V-A): (a) vector field topology [4] with textures representing the vector field, (b) eigenvalue
visualization based on all components with textures showing major eigenvectors in the real domain and major dual-eigenvectors in the complex domain, (c)
same as (b) except that colors encode the dominant component, and (d) magnitude (dyadic product) of the velocity gradient tensor with the underlying textures
following the vector field. The visualization domainris< 2.667.

Y VA
MU e
H(s) :/ exp{—t+3/ Zodrjdt  (29)
0 0
X
> Sketches of the flow pattern in the horizontal and vertical

planes are shown in Figure 8. Away from the vortex center
Fig. 8. The Sullivan Vortex viewed in (left) they plane and (right) the-z «, the flow is predoml_nantly in the ”egat"’e radial direction
plane. (toward the center) with the accelerating upward flaws

—ar, v~ 0, wa 2az On the other hand, asbecomes small

(r — 0), we haveu~ 3ar, v~ 0, w~ —4az Figure 9 visualizes
3D neighborhood of the plane. This can be also interpreted@se instance of the Sullivan Vortex with= 1.5, ' = 25, and
negative stretching of fluid material in the normal directiony = 0.1 in the planez= 1.
i.e. the velocity gradient in the direction normal to the plane Figure 9 (a) shows the velocity vector field together with
is negative Ts3 < 0). A similar interpretation can be madethe topology [4] identifying the unstable focus (the green
for negative scalingTgs > 0). This would be stretching in the dot) and the periodic orbit (the red loop). The images in
normal direction. For compressible fluids, the interpretation réh) and (c) are the eigenvalue visualizations based on all
quires care: positive scaling can represent not only volumetgomponents (AC method) and on the dominant component
dilation of compressible fluid, but also contain the foregoinDC method), respectively. The textures in (b) and (c) illustrate
effect of inflow of the fluid from the neighborhood of thethe major eigenvector field in the real domains and the major
subject plane. dual-eigenvector field in the complex domains. Due to the
normalization of tensors, our visualization techniques shown
in (b) and (c) exhibit relative strengths of tensor components
(va» ¥, and ys) at a given point. To examine the absolute

The first example we discuss is an analytical 3D incomtrength of velocity gradients in an inhomogeneous flow field,

pressible flow that is presented by Sullivan [30]. This is agpatial variations of the magnitude (dyadic product) of velocity
exact solution of the Navier-Stokes equations for a thre@radients are provided in (d) with the texture representing

A. Sullivan Vortex: a Three-Dimensional Flow

dimensional vortex. The flow is characterized by: the velocity vector field. Red indicate high values and blue
correspond to low values.
cosO —sin@ 0 The behaviors of the third dimension (z-direction) can be
ur (% Y,2) | sin@ | +ug(x,y,2) cosh | +uy(x,y,2) | O inferred from our DC-based eigenvalue visualization in the
0 0 1 x-y plane (Figure 9 (c)). Namely, in the regions of lamge
(22) the negative isotropic scaling (blue) is dominant, and near
in which: the vortex center, the positive isotropic scaling (yellow) is

dominant. Identifying such isotropic scaling is formidable with
the use of texture-based vector visualization (Figure 9 (a)).

_(ar2/2
Up = —ar +6v/r[1—e (/2] The eigenvalue visualization (Figure 9 (b) and (c)) allows
ug = (I'/2mmr)[H (ar?/2v) /H ()] us to see stretching-dominated regions (white), which cannot
U, = 2aZ1— 3e—ar2/2v] 23 be identified from the corresponding vector field visualization

(Figure 9 (a)). Figure 9 (b) and (d) collectively exhibit that
are the radial, azimuthal, and axial velocity componentstrong counterclockwise rotation of fluid appears in the annular
respectively. Herea (flow strength),I” (flow circulation), and region near the center, and the rotation diminishes as
v (kinematic viscosity) are constants= /X2 +y2, and: creases (away from the center). Notice that this information is
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outlet

transversal

Fig. 10. The major components of the flow through a cooling jacket incluc s =
a longitudinal component, lengthwise along the geometry and a transvel
component in the upward-and-over direction. The inlet and outlet of tt
cooling jacket are also indicated. (b)

Fig. 11. DC-based eigenvalue visualization of a simulated flow field inside

g . ._ . the cooling jacket: (a) the outside surface of a side wall in the cooling
difficult to extract from the texture-based vector visualizatiofcyet, and (b) the inside surface of the same side wall. This is the first

(Figure 9 (a)), although it can be achieved with a vorticityime asymmetric tensor analysis is applied to this data set.
based visualization.
Comparing the texture plots of Figure 9 (a) and (b), we
notice that the major eigenvectors ((b): the directions @hd scaling that appear on the contact (inner) surface. As
stretching) closely align with the streamlines in the real defiscussed earlier, stretching is a measure of fluid mixing.
main (a) for large enough while the major dual-eigenvectorsjt increases the interfacial area of a lump of fluid material,
((b): the direction of elongation) are nearly perpendicular tnd the interfacial area is where heat exchange takes place
the streamlines (a) in the complex domain near the centf conduction. Given that the flow in the cooling jacket is
of the vortex. This kind of enlightening observations are n@pnsidered incompressible [18], scalings that appear on the
revealed without tensor analysis. contact surface, whether positive or negative, indicate the flow
The extremely localized high magnitude of velocity gradierfomponents normal to the interface, i.e., convection at the
(red region) shown in Figure 9 (d) represents the compl@erface. Note that fluid rotations (either counterclockwise or
flows that resemble theye wallof a hurricane or tornado, clockwise) would yield inefficient heat transfer at the contact
although for large, the Sullivan Vortex differs from hurricane interface since rotating motions do not increase the surface of
or tornado flows. a lump of fluid material and consequently do not contribute
We have also applied our visualization techniques to thg the increase of mixing of fluids.
combination of two Sullivan Vortices whose centers are Thjs gataset has been examined using various vector field
slightly displaced with a distance 6f17 and whose rotations yisyalization techniques based on velocity and vorticity [22],
are opposite but of equal strength. The visualization resu[&cs], [19]. We have applied our asymmetric tensor analysis

are shown in Figures 1, 4, 6, and 7. to this data set and discuss the additional insight that has not
_ been observed from previous study.
B. Heat Transfer With a Cooling Jacket In order to distinguish the regions of rotation-dominant

A cooling jacket is used to keep an engine from overheatinfipws from scalings and anisotropic stretching, we choose to
Primary considerations for its design include 1) achievingse the DC-based eigenvalue visualization (Figure 11). In (a)
an even distribution of flow to each cylinder, 2) minimizingand (b), we show the outer and inner surface of the right
pressure loss between the inlet and outlet, 3) eliminating fldvalf of the jacket, respectively. The visualization suggests that
stagnation, and 4) avoiding high-velocity regions that mape flows are indicative of heat transfer, especially at the
cause bubbles or cavitation. Figure 10 shows the geometryimfier side of the wall (b). This is because a large portion
a cooling jacket, which consists of three components: 1) tloé the surface area exhibits positive scaling (yellow), negative
lower half of the jacket or cylinder block, 2) the upper halécaling (blue), and anisotropic stretching (white), whereas the
of the jacket or cylinder head, and 3) the gaskets to connecea of predominantly rotations (red and green) are relatively
the cylinder block to the head. Evidently, the geometry of ttemall. Comparing the inner and outer surfaces of the cooling
surface is highly complex. jacket provides interesting insight into the flow patterns. In

In order to achieve efficient heat transfer from the engirthe cylinder blocks between the adjacent cylinders, the flow
block to the fluid flowing in the jacket, the fluid must bepattern in the inner surface (b) is positive scaling (yellow)
continuously convected while being mixed. Consequentlgreceded by negative scaling flows (blue), which represent
desirable flow patterns to enhance cooling include stretchitige flows normal toward and away from the contact surface,
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Intake Ports

respectively. The flow path from one cylinder to another has
significant curvature (Figure 10), and a portion of the flow
is brought to the upper jacket through the gasket. It appears
that curvature-induced advective deceleration and acceleration
and the outflow to the upper jacket are responsible for the
repetitious flow pattern on the inner surface. On the other
hand, no clear repetitious pattern is present on the outer
surface except negative scaling (blue) between the cylinders.
In general, there is no significant region where flow rotation is
dominant on the inner surface. While there are more rotation-
dominated regions on the outer surface, it is not as critical
as the inner surface. This indicates a positive aspect of thg 12. The swirling motion of flow in the combustion chamber of a diesel
cooling jacket design. engine.Swirl is used to describe circulation about the cylinder axis. The intake

While these flow patterns could be interpreted with vectgfrs % ¢ o7 irovde e tangentel component of e ow necessany o
field visualization, it would require a more careful inspectiorels.

On the other hand, our eigenvalue presentation of the tensor

field can reveal such characteristics explicitly, automatically,

and objectively. For example, to our knowledge, the aforé eigenvectors). Note that the trend is opposite to that of
mentioned repeating patterns of positive and negative scalirige Sullivan Vortex (Figure 9). Also observe that the major
on the inner surface (Figure 11 (b)), which are the flo®igenvectors appear aligned normal to the bottom surface that
characteristics normal to the surface, have not been reportegresent the piston head; this indicates that the diesel engine
from previous visualization work that studies this data set [23§ in the intake process, hence the flow is being stretched along
[18], [19]. the piston motion.

On the cylinder surface shown in (a) and (b), there are two
dominant regions: counterclockwise rotation and anisotropic
stretching. There are two smaller regions indicating flow

Swirl motion, an ideal flow pattern strived for in a diesetlivergence (positive scaling shown in yellow): the one near
engine [23], resembles a helix spiral about an imaginatije top of the cylinder is consistent with the flow-attachment
axis aligned with the combustion chamber as illustrated pattern shown in the velocity vector streamlines in (a), and the
Figure 12. Achieving this ideal motion results in an optimabther near the bottom (near the piston head). Also observed
mixing of air and fuel and thus a more efficient combustiois a small region of negative scaling (shown in blue) along
process. A number of vector field visualization techniquebe right side edge that indicates inward flows from the wall.
have been applied to a simulated flow inside the diesEhe alternating pattern of positive and negative scalings along
engine [23], [11], [4]. These techniques include arrow plotthe spiral motion is informative. On the other hand, the top
color coding velocity, textures, streamlines, vector field topobf the cylinder shows the dominance of clockwise rotation,
ogy, and tracing particles. We have applied our tensor-basehich is consistent with the spiral pattern. These observations
techniques to this dataset, which to our knowledge is the fieste difficult to make from visualization of the velocity vector
time asymmetric tensor analysis is applied to this data.  field, i.e. the texture in Fig 13 (a) alone.

Visualization of both eigenvalues and eigenvectors on theThe locations of pure circular rotation of fluid can be spotted
curved surface is presented in Figure 13: (a) AC-baséd(b) as the degenerating points such as wedges (black dots)
eigenvalue visualization, (b) a hybrid approach with eigemnd trisectors (white dots). A degenerate point represents the
vectors and pseudo-eigenvectors illustrated. We also apfsgation of zero angular strain. Hence for two-dimensional
our visualization techniques to a planar vector field obtainégcompressible flows, no mixing or energy dissipation can
from a cross section of the cylinder &6 percent of the take place at the degenerate points. Nonetheless, it is not
length of the cylinder from the top where the intake portexactly the case for three-dimensional and compressible flows
meet the chamber. The visualization techniques are: (c) Aib-this example, because stretching could still take place in the
based eigenvalue visualization, and (d) DC-based eigenvatlieection normal to the surface, if isotropic scaling component
combined with eigenvectors and major dual-eigenvectors. Notere present.
that the textures shown in (a) and (c) illustrate the velocity The vector plot of Figure 13 (c) shows the complex flow
vector field. pattern comprising several vortices with both rotations. The

Figure 13 (a) and (b) demonstrate that our technique foomplex pattern results from the decelerating flow, since this
visualizing both eigenvalues and eigenvectors ocuaved flow field is taken at the end of the intake process, i.e., the
surface. The major eigenvectors in the real domain (stretchiaglinder head is near the bottom. The overlay of eigenvalues
direction of fluid) do not align with the velocity vectoreffectively exhibits the directions of rotation, positive and
streamlines. In some locations, they are perpendicular to eaxdgative isotropic scaling (expansion and contraction), and
other. On the other hand, the elongation of rotating motiamisotropic stretching (shear strain).
tends to be in the similar direction to the velocity vector In Figure 13 (d), the direction of stretching is readily
(see Figure 3 for the stretching and elongation interpretatiomsderstood by the major and minor eigenvectors in the real
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IEEE TVCG, VOL. ?,NO. ?, AUGUST 2007? 14

(@) (b)

Fig. 13. Visualization of a diesel engine simulation dataset (Section V-C): (a) AC-based eigenvalue visualization of the data on the surface of the engine,
(b) hybrid eigenvalue and eigenvector visualization (Figure 7 (b)) of the gradient tensor on the surface with eigenvectors in the real domains and pseudo-
eigenvectors in the complex domains, (c) AC-based visualization of a planar slice @btpatcent of the length of the cylinder from the top where the

intake ports meet the chamber), and (d) the hybrid visualization used for (b) is applied to the planar slice. The degenerate points are highlighted using colored
dots: black for wedges and white for trisectors. This is the first time asymmetric tensor analysis is applied to this set.

domains and the major dual-eigenvectors in the complexBased on the parameterization, we introduce the concepts
domains. This image also demonstrates the fact, as we showéaigenvalue manifolqFigure 5) andeigenvector manifold
in Figures 2 and 5, that fluid rotation cannot directly com@-igure 2) and describe the features of these objects. Analysis
in contact with the flow of opposite rotational orientationbased on them leads to physically-motivated partitions of the
There must be a region of stretching in-between with tHkw field, which we exploit in order to construct visualization
only exception being a pure source or sink. Furthermore,téchniques. In addition, we provide a geometric characteriza-
can be observed that the regions between rotations in then of the dual-eigenvectors (Theorem 4.2), an algorithm to
same direction tend to induce stretching. The regions betwesassify degenerate points (Theorem 4.4), and the definition of
rotations in the opposite directions tend to generate negatpseudo-eigenvectors (Definition 4.6) which we use to visualize
scaling, which represents volumetric contraction. There atnsor structures inside complex domains.
several degenerate points such as wedges (black dots) angle provide physical interpretation of our approach in the
trisectors (white dots) in the figure. context of flow understanding, which is enabled by the rela-
In summary, the following flow characteristics are visutionship between our tensor parameterization and its physical
alized for the diesel engine dataset: expansion, contractigiterpretation. Our visualization techniques can provide a
stretching, elongation, and degenerate points. It is evident tampact and concise presentation of flow kinematics. Principal
significantly enriched flow interpretations can be achieved withotions of fluid material consist of angular deformation (i.e.
the tensor visualization presented herein. stretching), dilation (i.e. scaling), rotation, and translation.
In our tensor field visualization, the first three components
(stretching, scaling, and rotation) are expressed explicitly,
while the translational component is not illustrated. One of the
In this article, we provide the analysis of asymmetric tensadvantages in our tensor visualization is that the kinematics
fields defined on two-dimensional manifolds and develop efxpressed in eigenvalues and eigenvectors can be interpreted
fective visualization techniques based on such analysis. At thieysically, for example, to identify the regions of efficient
core of our technique is a novel parameterization of the spaaed inefficient mixing. Furthermore, the components of scaling
of 2 x 2 tensors, which has well-defined physical meanindslivergence and convergence) in a two-dimensional surface for
when the tensors are the gradient of a vector field. incompressible flows can provide information for the three-

VI. CONCLUSION AND FUTURE WORK
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dimensional flow; negative scaling represents stretching \6f = NVj is the singular decomposition db. This implies
fluid in the direction normal to the surface, and vice versa.that T; and T, have the same singular valugs and pi,.

We demonstrate the efficiency of these visualization meth-The relationship between the dual-eigenvectorsTofand
ods by applying them to the Sullivan Vortex, an exact solutiofy can be verified by plugging into Equations 3 and 4 the
to the Navier-Stokes equations, as well as two CFD simulatiaforementioned statements on eigenvectors and singular values
applications for a cooling jacket and a diesel engine. between congruent matrices. ]

To summarize, the eigenvalue visualization enables us toTheorem4.4: LetT be a continuous asymmetric tensor field
examine the relative strengths of fluid expansion (contractiomefined on a two-dimensional manifdidi satisfyingy? + y2 >
rotations, and the rate of shear strain in one single plot. Her@everywhere irMl. Let Sy be the symmetric component of
such a plot is convenient for inspection of global flow chawhich has a finite number of degenerate poifts- {p; : 1 <
acteristics and behaviors, as well as to detect salient featuies.N}. Then we have:

In fact, the visualization technique should be ideal for the 1) K is also the set of degenerate pointsTof

exploratory investigation of complex flow fields. Furthermore, 2) For any degenerate poirgi, |(pi,T) = I(pi,Sr). In

the developed eigenvector visualization allows us to uniquely  particular, a wedge remains a wedge, and a trisector
identify the detailed deformation patterns of the fluid, which remains a trisector.

provides additional insights in unde'rstar.wdln'g of fluid _motlons.. Proof: Given thaty2(T) + y2(T) > 0 everywhere in the
Consequently, the tensor-based visualization techniques "M'Hmain, the degenerate pointsobnly occur inside complex
provide an additional tool for flow-field investigations. domains. Recall that the structures ®f inside complex

There are a number of possible future research directiof§mains are defined using the dual-eigenvectors, which are
that are promising. First, in this work we have focused Qe eigenvectors of symmetric tensor fig¥l (Equation 15).

a two-dimensional subset of the full three-dimensional ei%€efiforeover, the set of degenerate pointsTois the same as the

value manifold (unit tensors). While this allows an efficientq; ¢ degenerate points & inside complex domains, i.e.
segmentation of the flow based on the dominant componegt,_ | ’ ’

the tensor magnitude can be used to distinguish betweerNotiée that the major and minor eigenvectors R are

the absolute magnitude of the tensor field into our analygi§nnected component in the complex domains, the orientation
and study the full three-dimensional eigenvalue manifold iq rotation is constant. Zhang et al. [36] show that rotating
Second, tensor field simplification is an important task, aqqe eigenvectors of a symmetric tensor field (in this cage
we will explore proper simplification operations and metricgnitormiy in the domain (in this case a connected component
that apply to asymm_etric tensor f_ields. Third, we plan ft8f the complex domains) by an angle Bf(in this case+Z)
expand our research into 3D domains as well as time-varyiggy s in another symmetric tensor field that has the same
fields. For three-dimensional fields, we will seek to explorgy ot qegenerate points as the original field. Moreover, the
the relationships between pure symmetric tensors and PWEsqr indices of the degenerate points are maintained by such
antisymmetric tensors much like what we have done for the 7Bktation. ThereforeSr andPr (and consequently) have the
case in this article. We also plan to extend ideas of eigenva e set of degenerate points. Furthermore, the tensor indices
and eigenvector manifolds to three-dimensional flow fields. ;.o the same between corresponding degenerate point.
Theorem4.5: LetM be a closed orientable two-dimensional
manifold with an Euler characteristig(M ), and letT be a

continuous asymmetric tensor field with only isolated degen-
In the appendix, we provide the proofs for the theoremsgate points{p; : 1 <i < N}. Then:

from Section V.

APPENDIX
PROOFsS

. : N
Theorem 4.1: Given two tensors; =T (6, i=12)on
e e oo —sin 3 10T) = X(W) @s)

the same latitude-5 < ¢ < 7, let N = (sinc‘i 0S5 ) i= ) |
with & = %281 Then any eigenvector or dual-eigenvecigr Proof: 524 1(pi,T) = Xi¢ ! (pi, Sr) = X(M). The first
of T2 can be written ag\]vvi Wherev\_/i is an eigen\/ector or equat|0n is a direct consequence of Theorem 44, while the
dual-eigenvector of;, respectively. second equation makes use of the fact thats a symmetric

Proof: It is straightforward to verify thaf, = NT,NT, tensor field, for which thePoincare-Hopf theoremhas been
i.e., T and T, are congruent Results from classical linear Proven true [5]. ]

a|gebra state thé[]_ and T have the same set of eigenva|ues_ Theorem 4.7: Given a continuous asymmetric tensor field
Furthermore, a vectom; is an eigenvector ofy if and only T defined on a two-dimensional manifoldl, let U; and
if W = NWj is an eigenvector of>. U, be ana- and B-type region, respectively, where, 3 €

To verify the relationship between the dual-eigenvectors $§P*,D~,R",R™, S} are different. TherdU;NoU, = 0 if a-
and (3-types represent regions in the eigenvalue manifold that
do not share a common boundary.

Proof. Sincelr (Equation 10) is a continuous map from

M to the eigenvalue manifolt¥l,, we havel;1(0) =0. m

0

Ty andTy, letU; (“1 :1)2) V; is the singular value decompo-
sition of T,. ThenU, (“1 L?z) Vs in which U, = U;NT and

0
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Theorem 4.8: Given a continuous asymmetric tensor fielfi2]
T defined on a two-dimensional manifold such thgt- 7 +
y2 > 0 everywhere, the following are true:

1) anR"-type region is contained i, and anR -type

region is contained W\ s,

2) an Stype region is contained i, JWs,

3) a D-type or D™ -type region can have a non-empty
intersection with any of the following n, W s, Wen,  [15]
andWs.

Proof: Given a pointpg in an R"-type region, we have [16]
¥ (Po) > Vs(po) > 0, i.e., po is in a complex domain in the
northern hemispheréA¢ ). Similarly, if pg is in anR™-type (171
region, thenpg € Wes.

If po is in an Stype region, thens(po) > |y (Po)|, i.e.,po  [18l
is in the real domains that can be in either the northern or the
southern hemisphere. [19]

Finally, if pp is in a D'-type region, thenyy(po) >
max(| % (Po)|, ¥s(Po)). However, there is no constraint on the
discriminant¢ = arctar(%). Therefore,pp can be inside any
of W n, Wis, Wen, andWes. A similar statement can be madd20]
whenpg is in aD~-type region. [ ]

(13]

(14]
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