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Abstract—Three-dimensional symmetric tensor fields have a wide
range of applications in solid and fluid mechanics. Recent advances
in the (topological) analysis of 3D symmetric tensor fields focus on
degenerate tensors which form curves. In this paper, we introduce a
number of feature surfaces, such as neutral surfaces and traceless
surfaces, into tensor field analysis, based on the notion of eigenvalue
manifold. Neutral surfaces are the boundary between linear tensors
and planar tensors, and the traceless surfaces are the boundary
between tensors of positive traces and those of negative traces. De-
generate curves, neutral surfaces, and traceless surfaces together
form a partition of the eigenvalue manifold, which provides a more
complete tensor field analysis than degenerate curves alone. We
also extract and visualize the isosurfaces of tensor modes, tensor
isotropy, and tensor magnitude, which we have found useful for
domain applications in fluid and solid mechanics.

Extracting neutral and traceless surfaces using the Marching Tetra-
hedra method can lead to the loss of geometric and topological
details, which can lead to false physical interpretation. To robustly
extract neutral surfaces and traceless surfaces, we develop a poly-
nomial description of them which enables us to borrow techniques
from algebraic surface extraction, a topic well-researched by the
computer-aided design (CAD) community as well as the algebraic
geometry community. In addition, we adapt the surface extraction
technique, called A-patches, to improve the speed of finding degen-
erate curves.

Finally, we apply our analysis to data from solid and fluid mechanics
as well as scalar field analysis.
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1 INTRODUCTION

T HREE-DIMENSIONAL symmetric tensor fields have a
wide range of applications in science, medicine, and

engineering. Most earlier work focuses on semi-positive
definite tensors, with the main application in medical imag-
ing. More recent advances focus on the understanding and
extraction of degenerate tensors in a tensor field. For exam-
ple, Zheng et al. [1], [2] point out that under structurally
stable conditions degenerate points form curves. Along a
degenerate curve the tensor field exhibits 2D degenerate
tensor patterns such as wedges and trisectors [3]. Tricoche
et al. [4] develop an efficient degenerate curve extraction
method by noticing that degenerate curves in the tensor
field are a subset of the ridges and valley lines of mode, a
tensor invariant. All of these advances are inspirational to
our research, for not only the insights they provide but also
new and interesting questions they open.

For example, are degenerate tensors the only features in a
tensor field? If not, what other features should be included
in tensor field analysis, and why? What is the relationship
among these features?

In searching for answers to these questions, our research
leads to the notion of eigenvalue manifold, which shows
that the set of traceless tensors and the set of neutral
tensors (the medium eigenvalue equal to the average of the
major and minor eigenvalues) are also important features
in a tensor field. Across neutral surfaces, the predominant
eigenvector field switches from the major eigenvector field
to the minor eigenvector field. Together, neutral surfaces
and traceless surfaces divide the domain into four types of
regions, each of which has a unique characteristic.

Neutral surfaces are the zeroth levelset of tensor mode
function, which is a trivariate polynomial in terms of
spatial coordinates. Using the standard Marching Tetrahedra
method [5] can lead to large errors in the geometry and
topology of the neutral surfaces. To robustly extract neutral
surfaces, we convert the problem of finding such features
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Fig. 1: This figure shows the results of applying our tensor field visualization to the Sullivan vortex: (a) the vector field
shown in colored arrows supplemented with tensor field topology such as degenerate curves (colored curves), (b) our
glyphs (Section 6: Figure 5) based on the eigenvalue manifold (Section 4), and (c) neutral surfaces (chartreuse color)
which separate linear degenerate tensors (green curves) and planar degenerate tensors (yellow curves).

into the problem of finding algebraic surfaces, a well-
researched topic in the computer-aided design and algebraic
geometry communities. By adopting the idea of A-patches,
based on Bernstein polynomials [6], neutral surfaces can
be extracted with controlled topological errors. In addition,
we make use of the idea of Bernstein polynomials to help
improve the speed of degenerate curve extraction by first
locating tetrahedra that do not contain degenerate curves
and eliminating them from further processing.

We also extract and visualize the isosurfaces of tensor
mode, magnitude, and isotropy. We have found that the
transition of these surfaces over different isovalues can lead
to insights into the domain applications.

We apply our analysis and visualization to data sets from
solid mechanics and fluid dynamics and provide physical
interpretations based on our analysis and visualization.
Furthermore, we observe that tensor field analysis, when
applied to the Hessian of a 3D scalar field, can provide
critical information that is difficult to extract from existing
scalar field visualization techniques.

In this paper we make the following contributions:

1) We introduce the notion of eigenvalue manifold for
the analysis of 3D symmetric tensor fields, and in-
clude the set of neutral tensors and the set of traceless
tensors into tensor field features. We also connect
neutral tensors to tensor field topology through their
interplay with degenerate tensors (Section 4).

2) We provide an efficient method to extract neutral
surfaces and traceless surfaces, by reusing techniques
from algebraic surface extraction. In addition, we
speed up the degenerate curve extraction process
based on Bernstein polynomials (Section 5).

3) We extract and visualize the isosurfaces of tensor
modes, magnitudes, and isotropy index (Section 4).

4) We provide physical interpretation of our analysis and
visualization in the context of solid mechanics and
fluid dynamics (Section 7).

5) We point out that tensor field analysis can provide
critical insights into scalar field analysis (Section 7).

The rest of the paper is organized as follows. We review
related work in Section 2 and relevant background on tensor
fields in Section 3. We describe the theory of our tensor
field analysis in Section 4. In Section 5 we provide a
framework for robust extraction of feature surfaces as well
as degenerate curves. We describe our visualization system
in Section 6, including a set of glyphs that focus on showing
tensor modes, i.e., traceless tensors. In Section 7 we show
the results of applying our feature-based tensor field visu-
alization to data sets from solid mechanics, fluid dynamics,
as well as scalar field analysis. Section 8 summarizes our
work and discusses limitations of our approaches as well
as some possible future research directions.

2 PREVIOUS WORK

We start by reviewing relevant prior work on the topic of
3D tensor fields for scientific visualization. There has been
much work on 2D tensor fields, and we refer the readers
to [7], [8] and references therein. For 3D symmetric tensor
fields, surveys on diffusion tensors from medical images
can be found in [9], [10] while a survey on non-positive-
definite tensors is available by Kratz et al. [11]. Much work
on tensor field topology is inspired by topological analysis
of vector field, and the readers can find a good review of
work in vector field topology in [12]. In this paper we will
only review work most closely related to the present topic.

Delmarcelle and Hesselink [13] introduce the notion of
hyperstreamlines for the visualization of 2D and 3D sym-
metric tensor fields. Hsu [14] and Zheng and Pang [15]
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visualize hyperstreamlines by adapting the well-known
Line Integral Convolution (LIC) method of Cabral and
Leedom [16] to symmetric tensor fields which they term
HyperLIC [15]. Jankun-Kelly and Mehta [17] provide
glyphs for traceless tensors arising from the study of
nematic liquid crystals. Schultz and Kindlmann [18] extend
ellipsoidal glyphs that are traditionally used for positive-
definite tensors to superquadric glyphs which can be used
for general symmetric tensors. Their glyph design is based
on mapping the set of 3D symmetric tensors to a lune
on a sphere representing possible eigenvalue compositions.
Recall that a lune is a region on a sphere bounded by two
intersecting great circles (a great circle divides the sphere
into two equal halves). In our paper we use the same lune
for our topological analysis. However, we partition the lune
differently from Schultz et al. and introduce the notion of
traceless tensors and neutral tensors, which we incorporate
into tensor field analysis.

Delmarcelle and Hesselink [13], [19] introduce the topol-
ogy of 2D symmetric tensor fields as well as conduct
some preliminary studies on 3D symmetric tensors in the
context of flow analysis. Hesselink et al. later extend this
work to 3D symmetric tensor fields [20] and study the
degeneracies in such fields. Zheng and Pang [1] point
out that triple degeneracy, i.e., a tensor with three equal
eigenvalues, cannot be extracted in a structurally stable
fashion. They further show that double degeneracies, i.e.,
only two equal eigenvalues, form lines in the domain.
In this work and subsequent research [2], they provide a
number of degenerate curve extraction methods based on
the analysis of the discriminant function of the tensor field.
Schultz et al. [21] point out the degenerate curve extraction
methods of Zheng and Pang are often not adequate for real
world data, such as those from medical imaging. Tricoche
et al. [4] show that the degenerate curves in a tensor field
are a subset of the ridge and valley lines of mode, a tensor
invariant. They also develop a method to detect ridge and
valley lines (degenerate curves) based on the parallel vector
operator method [22]. In this paper, we introduce the notion
of neutral surfaces and traceless surfaces, which we include
in tensor field analysis and visualization.

In this paper we apply our analysis to a number of tensors
arising from solid and fluid mechanics, including the stress
tensors. Applying tensor field analysis to the stress tensor
has been carried out recently by a number of visualization
researchers [23], [24], with a focus on hyperstreamlines.
In addition, we show that tensor field analysis can provide
critical insights to scalar field analysis that is difficult to
extract from existing scalar field visualization techniques.

3 TENSOR BACKGROUND

We review the relevant background on 3× 3 symmetric
tensors and tensor fields. This paper focuses on symmetric
tensors. Consequently, in the remainder of the paper we

will drop the mention of symmetric when referring to sym-
metric tensors. A 3×3 tensor T has three real eigenvalues
λ1 ≥ λ2 ≥ λ3, referred to as the major eigenvalue, medium
eigenvalue, and minor eigenvalue, respectively. When the
eigenvalues are mutually distinct, T is referred to as non-
degenerate. In this case, it is possible to choose three unit
eigenvectors {v1,v2,v3} such that vi corresponds to λi for
any 1≤ i≤ 3 and vi’s form a right-hand orthonormal basis
of the space.

There are five important quantities derived from T that are
invariant under the change of basis: (1) trace: P = λ1 +
λ2+λ3, (2) minor Q= λ1λ2+λ2λ3+λ3λ1, (3) determinant
R = λ1λ2λ3, (4) tensor magnitude: ||T ||=

√
λ 2

1 +λ 2
2 +λ 2

3 ,

and (5) mode M =
√

6 (λ1− P
3 )

3+(λ2− P
3 )

3+(λ3− P
3 )

3

[
√

(λ1− P
3 )

2+(λ2− P
3 )

2+(λ3− P
3 )

2]3
. A ten-

sor can be uniquely decomposed as P
3 I+ A where I is

the three-dimensional identity matrix and A = T − P
3 I is

referred to as the deviator of T . A is a traceless tensor,
i.e., P(A)= 0. More importantly, the directional information
(eigenvectors) in T is contained purely in its deviator in the
following sense: a vector v is an eigenvector of T if and
only if v is an eigenvector of A. In fact, as we will discuss
later, the topology of a tensor field can be defined in terms
of its deviator tensor field. Another nice property of the set
of traceless tensors is that it is closed under matrix addition
and scalar multiplication, making a linear subspace of the
set of tensors.

We now consider degenerate tensors, which refer to tensors
with repeating eigenvalues. There are three types of degen-
erate tensors: neutral (λ1 = λ2 = λ3), linear (λ1 > λ2 = λ3),
and planar (λ1 = λ2 > λ3). The neutral degeneracy is also
referred to as the triple degeneracy, for which any non-zero
vector is an eigenvector. The linear and planar degeneracies
are called double degeneracies. The non-repeating eigen-
value is referred to as non-degenerate eigenvalue, while
the repeating eigenvalues are referred to as the degenerate
eigenvalues. Degenerate tensors can be described as the
zeros of the so-called discriminant: D = (λ1− λ2)

2(λ2−
λ3)

2(λ3 − λ1)
2 = Q2P2 − 4RP3 − 4Q3 + 18PQR − 27R2.

Linear degenerate tensors have a mode value of 1, while
planar degenerate tensors have a mode value of −1.

A tensor field is a continuous tensor-valued function in
R3. A point p is a (linear, planar, triple) degenerate point
if T (p) is a degenerate tensor of the corresponding type.
Given a generic tensor field, the set of triple degenerate
points is structurally unstable, i.e., the structure does not
persist under any arbitrarily small perturbation [25]. Under
structurally stable conditions, linear and planar degenerate
points form curves. The degenerate points on a degenerate
curve must either be always linear or always planar. More-
over, a linear degenerate curve cannot intersect a planar
degenerate curve because such an intersection point would
be a triple degenerate point.
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4 NOVEL TENSOR FIELD FEATURES AND
EIGENVALUE MANIFOLD

Existing topological analysis of 3D symmetric tensor fields
focuses on analyzing the behaviors of the tensor field
around a degenerate curve. Such analysis is influenced
primarily by the eigenvector analysis around individual
degenerate curves. In this section, we introduce two new
types of feature surfaces, the neutral surfaces (Section 4.1)
and the traceless surfaces (Section 4.2). We also present
the concept of eigenvalue manifold for symmetric tensors
(Section 4.3), which integrates degenerate curves, neutral
surfaces and traceless surfaces.

4.1 Neutral Surfaces

As we discussed earlier, along a linear degenerate curve,
the major eigenvectors are well-defined, and the medium
and minor eigenvectors are degenerate. Similarly, along a
planar degenerate curve, the major and medium eigenvec-
tors are degenerate, while the minor eigenvectors are well-
defined. An interesting question is raised when the medium
eigenvectors become special. The following theorem helps
address this question.

Theorem 1: Consider a continuous 3D symmetric tensor
field T (x,y,z) defined on a finite subvolume Ω ⊂ R3. The
major eigenvector field, a line field, can be converted
into a continuous vector field on any simply-connected
component U ⊂ Ω of the linear region in the tensor
field, i.e., where T (x,y,z) satisfies λ2 < λ1+λ3

2 . Similarly,
the minor eigenvector field of T (x,y,z) can be converted
into a continuous vector field inside a simply-connected
component of the planar region in the tensor field, where
T (x,y,z) satisfies λ2 >

λ1+λ3
2 .

The proof is based on a classical result from differential
topology [26] which states that a continuous line field on a
differential manifold M is orientable, i.e., can be turned
into a vector field consistently, if the line field has no
singularities in M and the fundamental group of M contains
no proper subgroups of order two. Since U is simply-
connected, its fundamental group is trivial, i.e., containing
only one element, the identity. Consequently, there is no
element of order two in the group.

One significance of Theorem 1 is that it points out that
the major and minor eigenvectors play different roles
in regions where λ2 < λ1+λ3

2 (linear region) and regions
where λ2 >

λ1+λ3
2 (planar region). In the former, the minor

eigenvector field contains all the interesting topological
features in the tensor field (discontinuity in the eigenvector
directions), while the major eigenvector field bears no
topological significance. Transitioning into the latter type of
region, the roles of the two eigenvector fields are reversed.
The major eigenvector field now contains the topological
features in the tensor field, while the minor eigenvector
field is topologically insignificant. The boundary between

these two types of regions, i.e., λ2 =
λ1+λ3

2 , or equivalently
λ2 = 0 if traceless, acts as the transition boundary between
the major and minor eigenvector fields where their roles
switch. We refer to such tensors as neutral tensors.

In a generic tensor field, the places where the tensor field is
neutral form surfaces. We define the following descriptor:

N = (λ1−
λ2 +λ3

2
)(λ2−

λ3 +λ1

2
)(λ3−

λ1 +λ2

2
) (1)

Then a tensor T is neutral if and only if N = 0. For traceless
tensors, N(T ) = 27

8 R(T ). Consequently, N is a multiple
of the determinant of the deviator part of a tensor. It is
straightforward to verify that a tensor is neutral if and only
if its mode is zero. The eigenvalues of a neutral tensor have
the form of λ0 + k, λ0, and λ0− k for some k ≥ 0. If the
neutral tensor is also traceless, then its eigenvalues are k,
0, and −k.

The normal to the neutral surface at a given point p0
is 5N(p0). Assuming a traceless tensor field, this nor-
mal is then 5|T |(p0) =5(λ1λ2λ3)(p0) = λ2(p0)λ3(p0)5
λ1(p0)+ λ3(p0)λ1(p0)5 λ2(p0)+ λ1(p0)λ2(p0)5 λ3(p0).
Since λ2 = 0 on neutral surfaces, the normal is simply
5λ2(p0). This suggests that the middle eigenvalue plays
a special role at the neutral surface. It dictates both the
location of the neutral surface (λ2 = 0) and its normal
(5λ2).

The above discussions, i.e., major and minor eigenvector
fields switching roles at the neutral surface, and the medium
eigenvalue playing a key role in deciding the location and
normal of the neutral surface, inspire us to incorporate
neutral surfaces into the topology of 3D symmetric tensor
fields for the first time.

4.2 Isotropy Index and Traceless Surfaces

Given a tensor T and its trace-deviator decomposition
P
3 I+ A, the quantity φ = arctan( P/3

||A|| ) measures the ratio
between the strength of the isotropy P

3 I and the strength
of the anisotropy A. For the stress tensor, ||T || is the
total stress, while P

3 and ||A|| are the octahedral normal
stress and the octahedral shear stress, respectively. The
octahedral shear stress is also called the von Mises stress
[27]. When φ = ±π

2 , T = P
3 I is purely isotropic (π/2 for

expansion and −π/2 for contraction) and when φ = 0,
T = A is pure shear (purely anisotropic). We refer to
φ as the isotropic index, a name inspired by the shape
index [28], [29] for a 2× 2 curvature tensor and is used
to classify surface geometry into elliptical and hyperbolic
sectors. Unfortunately, this quantity is not an algebraic
function of the tensor entries. For robust surface extraction,
we wish to find a quantity that can also characterize the
ratio between isotropy and anisotropy in the tensor yet can
lead to an algebraic expression. Consequently, we choose
the quantity P√

3||T || , which has a range of [−1,1]. We will
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refer to the latter formulation as the isotropy index in the
remainder of the paper. The two quantities are equivalent in
describing the isotropy and anisotropy ratios in the tensors
because they can be expressed as monotonically increasing
functions of the other quantity.

Given a generic tensor field, the set of points where the
tensor field is traceless form surfaces. We refer to such
surfaces as the traceless surface. While the trace of a tensor
field is not affecting the eigenvectors of the tensor field,
we wish to point out that the traceless surface represents
significant change in the behavior of the tensor field.
Therefore, we incorporate traceless surfaces into tensor
field analysis along with neutral surfaces, which present
transitions in the eigenvector fields (from rich in degenerate
curves to free of degenerate curves and vice versa).

4.3 Eigenvalue Manifold

We now describe one model to characterize the behaviors
of a tensor field, which we term the eigenvalue manifold
of tensors. Consider the set of 3× 3 tensors, which is a
six-dimensional linear space. One of the simplifications of
this space is to consider all possible eigenvalue combi-
nations, i.e., {(λ1,λ2,λ3)|λ1,λ2,λ2 ∈ R}. This is a three-
dimensional linear space. The unit sphere in the space
centering the origin is the set of unit tensors, i.e., unit
tensor magnitude. However, there is a six-fold symmetry
in this representation due to the permutations of λ1, λ2, λ3.
Consequently, it is sufficient to consider {(λ1,λ2,λ3)|λ 2

1 +
λ 2

2 +λ 2
3 = 1,λ1 ≥ λ2 ≥ λ3}, which is a lune on the sphere

{(λ1,λ2,λ3)|λ 2
1 + λ 2

2 + λ 2
3 = 1} bounded by two planes

{(λ1,λ2,λ3)|λ1 = λ2} and {(λ1,λ2,λ3)|λ2 = λ3}.

The aforementioned lune representation has been developed
by Schultz et al. [18] to design glyphs for tensors with
potentially negative eigenvalues. In their work, the lune is
then divided into regions based on the sign of individual
eigenvalues or their pairwise sums and differences.

In our analysis, we reuse the lune of Schultz et al. as the
geometric representation of our eigenvalue manifold, but
with a different parameterization (thus different analysis).
Each point inside the eigenvalue manifold is characterized
by two quantities: the tensor mode, and the isotropy index
(Figure 2 (top)). On any horizontal line, the tensor isotropy
index remains constant, while the mode decreases from 1
(left boundary representing linear degenerate tensors) to
−1 (right boundary representing planar degenerate tensors).
The vertical bisector consists of neutral tensors. The top
and bottom tips of the lune represent pure positive isotropy
and pure negative isotropy, respectively. Travelling along
the strictly descending path from the highest point to the
lowest point in the lune, the isotropy index decreases, and
one observes initially pure material expansion, followed
by a mix of material expansion and shear deformation,
pure shearing, a mix of material contraction and shear
deformation, and finally pure material contraction. The
horizontal bisector of the lune corresponds to traceless

tensors. We wish to also comment that given a generic
tensor field, the highest and lowest points in the lune are
not possible, since they represent triple degenerate points
that are structurally unstable. This implies that in material
deformation, a pure expansion or contraction is structurally
unstable as some shear deformation must occur.

The two bisectors (neutral tensors and traceless tensors)
partition the lune into four parts of equal size (Figure 2
(top)), based on the mode and trace of the tensor: (1)
positively-traced linear tensors in the upper-left region, (2)
positively-traced planar tensors in the upper-right region,
(3) negatively-traced linear tensors in the lower-left region,
and (4) negatively-traced planar tensors in the lower-right
region. Figure 2 (bottom) shows the result of applying this
partition to a 3D tensor field. Each partition is given a
unique color. Note that a positively-traced linear region
cannot border a negatively-traced planar region. Similarly, a
positively-traced planar region cannot border a negatively-
traced linear region. The notion of the eigenvalue manifold
has been developed for 2D asymmetric tensor fields [8].

In our visualization system, we extract isosurfaces of tensor
mode, tensor isotropy index, and magnitude, which we have
found to be useful in our physical interpretations of various
applications (Section 7).

5 FEATURE EXTRACTION METHODS

In this section we describe our method to extract neutral
surfaces, traceless surfaces, and degenerate curves.

Marching Tetrahedra is a well-known technique to extract
the levelsets of a function defined over a tetrahedral mesh.
However, it assumes that the function is linear, which
implies that if the function values at the two vertices of
an edge have different signs, there must be one and exactly
one zero crossing. Furthermore, if a tetrahedron intersects
with a plane, then the plane must also intersect some
edges of the tetrahedron, i.e., no plane can be completely
enclosed by the tetrahedron. For non-linear functions, these
assumptions do not hold, and errors in the surface topology
can be uncontrolled. A state-of-the-art technique developed
by the CAGD and algebraic geometry communities, called
A-patches, provides a remedy to the problem [6]. Figure 3
shows a comparison of the two methods for a simulation
data set (Section 7).

In this paper, we incorporate the use of the A-patches
method to extract neutral surface and traceless surfaces.
In addition, we make use of the fundamental idea behind
the A-patches to speed up the process of finding degenerate
curves.

Given a polynomial function f and a tetrahedron t, the A-
patches approach seeks to answer the following questions:
does the zero levelset of f intersect t. If so, does it
intersect t with a single sheet, and whether the single
sheet is triangular or quadrangular? The main idea behind
the answers to these questions is the conversion of the
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(a) Level 0 (b) Level 3 (c) Level 4 (d) Level 5 (e) 2D Isolation

Fig. 4: Our framework based on A-patches can cull out tetrahedra not containing degenerate curves (a-d). In addition,
on each face of a tetrahedron containing degenerate curves (e: the largest triangle), our method finds sub-regions on the
face that can intersect with degenerate curves (e: the sub-triangles). The combination of tetrahedron culling and efficient
search inside faces makes our degenerate curve extraction faster.

Fig. 2: The top of the figure shows the eigenvalue manifold,
which is the shape of a lune. Notice that the same lune has
been used by Schultz and Kindlmann [18] for the design
of glyphs for indefinite tensors. The left and right part
of the lune’s boundary corresponds to linear degenerate
tensors and planar degenerate tensors, respectively. The
vertical bisector corresponds to the set of neutral tensors
while the horizontal bisector corresponds to the set of
traceless tensors. The corner points of the lune correspond
to triple degenerate points. There are two types of such
points, one with a positive trace, and the other with a
negative trace. The two bisectors divide the eigenvalue
manifold into four regions, representing different tensor
behaviors. The bottom image shows the four-way partition
of the eigenvalue manifold by neutral tensors and traceless
tensors. The partition is demonstrated on a tensor field
(bottom), which is the Hessian of the von Mises stress of
a simulation data (Figure 7: left).

polynomial of three variables (x, y, z) to the Bernstein
polynomials of four variables (α , β , δ , γ) where α , β ,
γ , and δ are the barycentric coordinates of points inside
the tetrahedron t. The degree of polynomial f , denoted

Fig. 3: This figure compares the neutral surface of the
three ball simulation using the Marching Tetrahedra method
(top) and the A-patches method (bottom). Notice that not
only does the A-patches method better preserves geometry
details such as the outline of the holes, it also reduces
the topological errors caused by the Marching Tetrahedra
method.

by n = degree( f ), gives rise to a set of control points
(see [6] for an illustration of the control grid). The
number of control points on each edge of t is n + 1.
The properties of Bernstein polynomials ensure that if the
function f has the same sign at two adjacent control points,
then there are no zero crossings on the edge connecting
them. If the signs are different, then there is exactly one
zero crossing. Moreover, if a sub-tetrahedron formed by
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mutually adjacent control points have the same sign, then
there cannot be a zero levelset of the polynomial surface
in the interior of the sub-tetrahedron. In other words, by
using the Bernstein polynomials, we are able to develop
a grid inside the tetrahedron such that the properties of
the Marching Tetrahedra method for linear functions are
obtained, even when the function is not linear. Moreover,
there is no need to perform random subdivision and search,
as the degree of the polynomial produces the grid that
guarantees the success of the A-patches method. The only
exceptions to this are the singularities of the surfaces, which
require additional subdivision.

At a high-level, the A-patches algorithm considers a few
cases. In the first case, all the control points in the grid have
the same sign. In this case there is no zero levelset inside the
tetrahedron t. In the second case, there is a separating layer
in the grid such that the control points on one side of the
layer have one sign and the control points on the other side
of the layer have the opposite sign. In this case there is a
single sheet of zero levelset surface which can be extracted
in a similar fashion to the Marching Tetrahedra method.
If one side contains one vertex of the original tetrahedron
and the other side contains three vertices of the tetrahedron,
the surface is a triangular sheet. If each side contains two
vertices of the tetrahedron t, then there is a quadrangular
sheet of the surface. In the last case where the control points
have mixed signs but no separating layer can be found or
there are more than one separating layer, the tetrahedron is
subdivided, and the process repeats for each tetrahedron in
the subdivision.

Notice that the neutral surface and the traceless surface
are both polynomials in terms of the components of the
tensor fields, which are polynomials in terms of the 3D
coordinates.

Besides extracting neutral surfaces, we have found the idea
of A-patches useful for improving the degenerate curve
extraction method. Existing techniques [4], [1] rely on
finding the intersections of degenerate curves with the
faces of the cells. Since there may be more than one
degenerate curve intersecting a face, the techniques perform
iterative subdivisions of the face in order to find all such
intersections. However, it is difficult to predict where the
intersection points are on the faces. Consequently, the face
needs to be subdivided uniformly several times, without a
clear stopping criterion. Moreover, even if no intersections
have been found on any face of a cell, it is uncertain
whether degenerate curves intersect the cell. Numerical
issues are known to cause missing solutions in root-finding.

We adapt the A-patches idea to help address these issues.
Recall that degenerate curves are the solutions to D = 0
where D is the discriminant of the tensor and is a degree-
six polynomial in terms of the tensor entries. D can be
expressed as the sum of squares of seven polynomials,
each of which can be both positive and negative. Moreover,
as long as one of the seven functions is purely positive
(or negative) inside a tetrahedron, the discriminant will be

strictly positive inside the tetrahedron, i.e., no degenerate
curves. Therefore, for each tetrahedron t, we perform the
A-patches algorithm on all seven functions. A tetrahedron
or a sub-tetrahedron is eliminated as soon as all of the
control points have the same sign for at least one function.
This helps us quickly eliminate the tetrahedra that cannot
contain degenerate curves. Next, for tetrahedra that intersect
degenerate curves, we run the A-patches algorithm on each
face of the tetrahedron, again using the seven functions.
This allows us to efficiently identify regions in the face
that intersect degenerate curves. Once we find these regions
on the face, we resort back to the method of Zheng
and Pang [1] by first searching for a zero point in each
region and then connecting these points through tracing
degenerate curves. Figure 4 shows our method for both
finding tetrahedra and sub-tetrahedra enclosing degenerate
curves (a-d) and locating regions in the faces of tetrahedra
that intersect degenerate curves (e).

6 VISUALIZATION TECHNIQUES

Our tensor field visualization system visualizes the features
and topology of 3D symmetric tensor fields by depicting its
degenerate curves, traceless surfaces, and neutral surfaces.
In addition, one can inspect the behavior of the tensor field
using glyphs and hyperstreamlines following any of the
eigenvector fields. Furthermore, we extract the isosurfaces
for tensor mode, tensor isotropy index, and tensor magni-
tude. All of these surfaces are extracted using the A-patches
methods.

Degenerate curves are rendered as tubes around the actual
degenerate curves. This makes it easier to perceive the
absolute and relative depth of the degenerate curves. A
point p on a degenerate curve γ can be further colored,
based on the trace, tensor magnitude, and determinant as
well as its linearity/planarity: green (linear) and yellow
(planar). Traceless surfaces, neutral surfaces, as well as iso-
surfaces of the tensor mode, the magnitude, and the isotropy
index are drawn using the smoke surface method [30]. To
distinguish between them, we show isosurfaces of tensor
modes (including the neutral surfaces) in the chartreuse
color, the isosurfaces of the tensor isotropy index (including
traceless surfaces) purple, and the isosurfaces of the tensor
magnitude in cyan.

We have developed a set of glyphs that are designed
for traceless tensors. Unlike existing glyph designs for
indefinite tensors [17], [18] which employ both convex
and concave glyph shapes, our approach only uses convex
shapes. This is motivated by a number of needs from the
domain users:

1) to highlight the location and eigenvector directions of
neutral tensors.

2) to help emphasize the special eigenvector directions
in degenerate tensors and make it easier to distinguish
them from other eigenvectors.
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Fig. 5: A visual comparison of the superquadric glyphs
(top) and our glyphs (bottom). From left to right, the tensor
shown is linear degenerate, linear non-degenerate, neutral,
planar non-degenerate, and planar degenerate, respectively.
Our glyphs are based on the deviators, which highlight
the difference and symmetry between linear, neutral, and
planar tensors. Green and red represent linear and planar,
respectively. The colored bands on the glyph’s faces cor-
respond to eigenvalues with the same sign (two negative,
in the case of linear tensors, and two positive for planar
tensors). The direction perpendicular to the bands are the
non-degenerate eigenvectors, i.e., major eigenvectors for
linear tensors (green) and minor eigenvectors for planar
tensors (red).

3) to convey the symmetry between linear tensors and
planar tensors, thus conveying once again the impor-
tance of neutral tensors.

4) to show the magnitude of tensor mode.

Consequently, we provide three glyph types: (1) degenerate
tensors, (2) neutral tensors, and (3) non-degenerate and
non-neutral tensors. Figure 5 illustrates each glyph we use.
A degenerate tensor is a cylinder where the axis of the
cylinder indicates the non-degenerate eigenvector direction.
A loop is drawn in the middle of the cylinder, circling this
axis. The cylinder is color-coded in green if it is a linear
degenerate tensor, and in red if it is a planar degenerate
tensor. A neutral tensor is drawn as a flat disk with a color
of gray, and the normal to the disk indicates the medium
eigenvector direction. A red loop is drawn perpendicular
to the minor eigenvector direction, and a green loop is
drawn perpendicular to the major eigenvector direction. For
a non-degenerate, non-neutral tensor, we use a box with
rounded corners and edges. The color of the box is green
if it is linear, and red if planar. A loop is drawn at the
middle of the faces of the box perpendicular to the non-
degenerate eigenvector direction. Notice that the glyphs are
designed to have continuity. For example, starting from a
degenerate tensor (a cylinder) and decreasing tensor mode,
the cylinder will morph into a box with round corners and
edges. Eventually, it becomes a flat disk, i.e., middle image
of the bottom row in Figure 5. We wish to emphasize that
we do not intend to replace existing, well-accepted glyph
designed with our own. Instead, we consider our design a
complementary approach.

7 APPLICATIONS

Performance: We have applied our analysis to a number of
well-known data sets. The data is collected from a computer
with an Intel Core i7 3.07 GHz processor, 24 MB of RAM,

Fig. 6: The Sullivan Vortex viewed in the x-y plane (left)
and the x-z plane (right).

Fig. 7: Two geometric configurations of a linear elastic
block being pressed from above by solid spheres.

and an NVIDIA GTX Titan graphics card. The running time
for our CPU-based feature (curves and surfaces) extraction
algorithms is between 40 to 120 seconds.

Fig. 8: This figure shows the degenerate curves in the
Sullivan vortex in connection with its magnitude surfaces.
Left and right, the isovalues of the magnitude surfaces are
15.44 and 13.79, respectively. Notice that the surface in the
left is tangent to the vertical degenerate curves (yellow).
In the center regions in both figures, the topology of the
magnitude surface changes so that it is now tangent to
the smallest degenerate loop (yellow). While the shape
of the magnitude surfaces can be predicted based on the
definition of the Sullivan vortex, their interesting interplay
with the degenerate curves was not known to the best of
our knowledge.

Two fundamental quantities in solid and fluid mechanics
are the stress and strain tensors. How the solid material
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Fig. 9: The mode surfaces of the Sullivan vortex (Figure 1). From left to right, the mode values are 0.8, 0.4, 0 (the
neutral surface), −0.4, and −0.94, respectively. Notice that the linear degenerate curves (green) and the planar degenerate
curves (yellow) are separated by the neutral surface. Moreover, the topology of the mode surface changes. As the mode
increases, the mode surfaces converge toward linear degenerate curves. In contrast, when the mode decreases, the mode
surfaces converge toward planar degenerate curves.

deforms determines the design and performance of bridges,
automobiles, circuit boards and medical devices that are
investigated with the theories of solid mechanics. Being
able to visualize the topology of the stress tensors can
shed light on the force distribution. In fluid mechanics, one
often studies the instantaneous velocity field and its spatial
gradient. Such a gradient is asymmetric in general. The
symmetric part of this velocity-gradient tensor is assumed
proportional to the deviatoric stress tensor. This is the
hypothesis for Newtonian fluid mechanics.

For a stress tensor, the eigenvectors indicate principal stress
directions. The eigenvalues indicate the stress magnitude in
these directions. The trace is three times the mean normal
stress, while the determinant is the total volumetric change
for the displacement gradient tensors, when the stress is
proportional to the strain. The anisotropy in the tensor is
measured by the relative strengths of the eigenvalues. For
example, in medical imaging, researchers often classify the
diffusion tensors into three types, i.e., linear, planar, and
spherical, based on the eigenvalues.

In this paper, we focus on indefinite tensors such as the
stress and strain tensors from solid and fluid mechanics.
Stress tensors are symmetric which we can prove by calcu-
lating the angular momentum for an infinitesimal material
volume. The degenerate curve indicates either tensile stress
(linear) represented by the major eigenvalue or compressive
stress (planar) represented by the minor eigenvalue on the
material. Consequently, the linear domain and the planar
domain express tension dominant (i.e. only one positive
eigenvalue with the largest magnitude) and compression
dominant regions (i.e. only one negative eigenvalue with
the largest magnitude), respectively. On the neutral surfaces,
the stress field becomes two dimensional, i.e. no deviatoric
stress on one of the principal directions.

Below we show results of our techniques applied to two
applications.

7.1 Sullivan Vortex

The Sullivan vortex [31] is an exact analytical solution
of the Navier-Stokes equations for incompressible fluids,
whose flow patterns in the horizontal and vertical planes are
depicted in Figure 6. Away from the vortex center, the flow
is predominantly in the negative radial direction (toward the
center) with the upward flow. Near the center, the flow is
outward with the down-welling motion. Note that the local
flow pattern near the center resembles that of a hurricane
or a tornado. To extract the symmetric part of the velocity-
gradient tensor of the Sullivan vortex, we first compute
5u+(5u)T

2 in which u is the velocity vector: this tensor
represents the time rate of angular deformation (i.e. the rate-
of-strain tensor), and is traceless because of the assumption
of incompressible fluids, i.e. λ1+λ2+λ3 = 0. Even though
the volume of the fluid particles are not changing, we call
that the fluid parcels are predominantly compression when
λ1 > 0 and λ2 > 0, while they are predominantly expansion
when λ2 < 0 and λ3 < 0.

Figure 1 shows (a) the velocity vector field and (b) the
glyph presentation of the symmetric tensor field for the half
domain that is cut vertically through the center, and (c) the
degenerate curves with the neutral surface. Figure 10 shows
the glyph presentations in the horizontal cut planes at the
mid-level and at the bottom of the domain, respectively.
The figure also includes the location of the neutral surface
on the cut planes. The visualization of the velocity vector
field (Figure 1 (a)) shows the up-welling and down-welling
motion. Additional information can be extracted from the
glyph plot. In the outermost part in the plot in Figure 1
(b) (in the region far from the center of the vortex), the
fluids are compressed in the horizontal direction, presented
by the red glyphs (the planar type) with the red band
oriented in the radial direction. The glyph presentation
in the horizontal cut plane at the midlevel (Figure 10
(top)) explicitly shows that the orientation of the minor
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eigenvector is in the clockwise spiral direction toward the
center. At the level very close to the bottom (Figure 10
(bottom)), the pattern is consistent with that at the midlevel,
but they are closer (but not exactly) to the degenerate
state. Across the outer neutral surface, the pattern of glyphs
transforms to the green color (the linear type) pointing in
the vertical direction (the green band around the glyphs are
vertically oriented). The glyphs in the cut planes (Figure 10
(top and bottom)) indicate the eigenvectors in the azimuthal
direction is very small: the condition close to the neutral
state. Across another neutral surface, fluid deformation
takes place primarily in the x-z plane in the further inward
and upper region away from the ground (Figure 1 (b)):
the red glyph orientation in the region inside of the green
band in Figure 10 shows the eigenvalues in the azimuthal
direction are small. Furthermore, fluids stretch vertically
downward toward the center and compressing vertically
upward toward the center (see the green and red band loop
orientations in Figure 1 (b)). Near the ground level of the
vortex center, the fluid deformation becomes complex, but
is dominated by compression in the counterclockwise spiral
direction toward the center, which is opposite the pattern
of the outer region. Furthermore, we see the degenerate
glyphs that correspond to the degenerate curves (yellow)
shown in Figure 1 (b): the planar degenerate curves that
represent pure compression in the direction represented by
the glyph orientations and the other eigenvectors being
undefined: note that the direction of pure compression does
not coincide with the tangential direction of the degenerate
curve. The structure of degenerate curves for the Sullivan
Vortex is further discussed next.

Figure 1 (c) presents the degenerate curves of the rate-of-
strain tensor field. There are two distinct vertical planar type
(yellow) lines surrounded by the two planar-type circular
degenerate loops and the one linear circular degenerate loop
(green). The two larger loops (the planar and linear types)
form very close to the bottom boundary. The vertical planar
degenerate curves represent the fluid compression due to
the down-welling flow motion, which can be identified as
the degenerate glyphs (red cylindrical shape) between the
second and third neutral surfaces shown in Figure 10 (b).
As discussed earlier, the direction of the pure compression
is not aligned with the (yellow) degenerate curve, but
deviated in the counterclockwise spiral direction toward the
center. Figure 10 (b) also shows the linear-type degenerate
curve between the inner two neutral surfaces. The linear
degenerate glyphs reveal that the stretching orientation is
closely tangential to the degenerate curve. The successive
linear type and planar type degenerate loops near the ground
represent the fluid deformation (pure expansion near the
center followed by pure compression away from the center).
Note that the neutral surfaces shown in the transparent
chartreuse color separate the linear type from the planar
domain (Figure 1 (c)). The outer annular neutral surfaces
coincide with the location of the cylindrical wall-like region
of the linear type (green) shown in Figure 1 (b). The
transition pattern of the mode surfaces shown in Figure 9

Fig. 10: Glyphs based on eigenvalue manifold in the
horizontal cut plane at the midlevel (top) and at the bottom
(bottom) of the Sullivan Vortex. The thin circular curves
in chartreuse represent the intersect of neutral surface onto
the cut plane, and the planar- and linear-type degenerate
curves are shown with the thick lines in yellow and green,
respectively.

explicitly illustrates the flow kinematics associated with the
Sullivan vortex: i.e. compression and expansion dominated
deformations of the fluid parcels. Without the present tensor
field visualization, such information is difficult to capture
even for the simple flow like the Sullivan vortex.

The interplay of the small planar-type degenerate loop
above the floor with the two vertical planar degenerate
curves is worth noting. First, the glyphs in Figure 1 indicate
that the direction of eigenvector of λ3 (compression) along
the degenerate loop is nearly vertical, slightly pointing up-
ward toward the center. The iso-magnitude surfaces shown
in Figure 8 demonstrate that the small degenerate loop plays
a role in the topology of the magnitude surface. Those
topological features enable us to analyze the detailed and
complex flow kinematics that appear in the relatively simple
flow field of the Sullivan vortex.

We emphasize that the velocity gradient tensor of incom-
pressible fluids is traceless. Consequently, it does not help
to compute isosurfaces of the tensor isotropy index.
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Fig. 11: The isosurfaces of the isotropy index with values at 0.70, 0.36, 0, -0.36, and -.70 for the single sphere scenario
in Figure 7.

7.2 Spheres Compressing Linear Elastic Block

In the second application we include a solid mechanics
example of a block deformed by spheres pressing on top
(Figure 7). We consider three scenarios with increasing
complexity, and in our visualization, the spheres and the
block themselves are omitted to accentuate the feature-
based and topological surfaces. These numerical examples
are extracted from research involving vehicle loading on
roads and bridges.

We first apply the isosurfaces of the tensor isotropy index
(not applicable to incompressible fluids) to the stress ten-
sors for the one sphere case. In Figure 11, we show that
while the isotropy index varies from 0.70 to −0.70, the
zones with shear stress grow and then shrink similar to the
behavior analogous to the vertical bisector of the lune.

The combination of the traceless surface and the mode
surface of this dataset is shown in Figure 12 (1a and
1b: neutral surfaces in chartreuse and traceless surfaces
in purple). The left column shows an angle view and the
middle row a side view. Notice that both surfaces reveal
the indentation, the hollow area in the middle, made by the
sphere. In addition, the neutral surface and the traceless
surface are both mostly aligned with the top face of the
block, implying that the behaviors of the materials are
nearly uniform, i.e., vertical compression. It is interesting
to note that the neutral surface (two layers) sandwich
the traceless surface. This is an observation that can lead
to further investigations by material scientists. Typically,
engineers who evaluate the stress distribution are limited
to plotting the von Mises stress, which presents a high-
low magnitude of the deviatoric stress and is insufficient
in tracking the displacement of the material. The traceless
surfaces separate the important zones of material layers
which are in expansion and compression, and this division
can facilitate creation of designs that incorporate multi-
materials and sensors. By viewing the neutral surfaces,
investigation can evolve in correlating the eigen-directions
to material displacement. This information enables intelli-
gent and optimal definition of boundary conditions for the
materials. Furthermore, in the three sphere (right column)

scenarios (Figure 12), we note that between every pair of
adjacent spheres, a tubular region emerges underneath. The
neutral tensors enclose these tubular regions, an observation
that shows the material being compressed by the pair of
spheres and is pushed to the sides, changing from planar
compression to linear compression while crossing the neu-
tral surfaces. The capability of isolating these regions is
new to the best of our knowledge.

7.3 Scalar Field Analysis

The Hessian of a smooth scalar field is a 3×3 symmetric
tensor field, containing its partial second derivatives. Ex-
amples in which Hessians were previously used in scalar
field visualization include the classification of critical points
when constructing Morse-Smale complexes [32], or the
definition of curvature-based transfer functions for direct
volume rendering [33].

Applying our newly proposed method for tensor field
analysis to Hessians allows us to use it to gain insight
into scalar fields. For example, a classic method for edge
detection in volumetric scalar data involves localizing the
Laplacian zero crossings [34], which coincide with the
traceless surfaces in our framework. Similarly, Schultz et al.
[35] point out that generic height ridge and valley surfaces
end in degenerate curves of the Hessian field briefly before
they would form a junction. Thus, neutral surfaces partition
the domain into parts in which ridge surfaces (negative
mode) or valley surfaces (positive mode) can form such
a configuration.

Figure 14 shows the neutral (b) and traceless (c) surfaces
in the Hessian of the von Mises stress, a scalar field that
is derived from the one-sphere simulation. We found that
these surfaces reveal interesting structures that are comple-
mentary to those in the stress tensor field itself (Figure 12,
top row). Together, neutral and traceless surfaces lead
to a four-way partitioning of the domain. Figure 14 (a)
illustrates it using a color coding on a slice that is located
near the top of the block, oriented perpendicular to the
external force. This subdivision clearly reflects the main
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(1a) (2a) (3a)

(1b) (2b) (3b)

Fig. 12: This figure shows the neutral surfaces (left and middle columns) and degenerate curves (right column) for two
scenarios of spheres pressing a block. The left column shows an angled view and the middle column shows a side view.
In the top row, we also show the traceless surface. We note the two surfaces are nearly parallel generally following the
shape of the block. In addition, the neutral surface has two sheets which sandwich one sheet of the traceless surface.
Above the traceless surface is the region of expansion while below the traceless surface is the region of contraction.
The expansion region is linear above the upper sheet of the mode surface and planar below it. The bottom row shows
a tubular region emerging beneath pairs of spheres for the three sphere scenarios. These regions indicate planar tensors.
In addition, the trace in those regions are negative, indicating compression. However, the compression is not isotropic.
There is one direction with the most compression while the other two directions exhibit less compression (or even with
slight extension). In the right column, the degenerate curves for one sphere and three spheres are shown, respectively.
Notice that the linear degenerate curves and planar degenerate curves are relatively separate from each other in the one
sphere case. However, for three spheres, the two types can interact through links (green curves linking yellow curves).

Fig. 13: The neutral surface is the zeroth levelset of the
tensor mode function and has no self-intersections. While
this can be difficult to perceive given our choice of surface
rendering [30] when there are multiple layers in the surface
(e.g., Figure 12 (1b)), viewing the dataset from different
views (e.g., this figure) can clarify this. Notice that in this
figure there is clearly a separation between the outermost
part of the neutral surface and the next layer, which is
difficult to judge from the top figure.

maximum of the Von Mises stress (green) and the ridges
leading up to it (yellow).

In general, positive Hessian trace indicates a region in
which the scalar field is concave (including all local
minima), while negative trace indicates convexity (local
maxima). The mode of the Hessian tensor is affected by
the dimensionality of the local extremum: For example,
Hessians along a typical valley line would have negative
tensor mode, with two clearly positive eigenvalues, and a
remaining less dominant one. In contrast, a planar valley
surface is characterized by a single dominant positive
eigenvalue, leading to positive tensor mode. As indicated
in the legend of Figure 14 (a), the roles of positive and
negative mode are reversed in case of ridges.

8 CONCLUSION AND FUTURE WORK

In this paper, we have presented novel analysis of 3D
symmetric tensor fields. At the core of our approach is the
introduction of the eigenvalue manifold for 3D tensors, as
well as the neutral surfaces and traceless surfaces and their
inclusion into tensor field analysis. We have also defined the
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(a)

(b)

(c)

Fig. 14: This figure shows that tensor field analysis can also
be useful for scalar field visualization. Given a 3D scalar
field (a: top), which is the von Mises stress for the one-
sphere simulation data in Figure 7 (left), the Hessian is a
symmetric tensor field which can contain rich structures (a
(bottom), b and c) and provide critical and complementary
information about the original scalar field.

concept of tensor isotropy index which, along with tensor
mode, are used to parameterize the eigenvalue manifold.

We make use of the A-patches method to efficiently extract
mode surfaces (including the neutral surfaces) and the
isotropy index surfaces (including the traceless surfaces).
Finally, we provide physical interpretation of our analysis
and visualization in the context of fluid dynamics and solid
mechanics. We also demonstrate that our analysis can be
applied to scalar field visualization.

Our system is not without limitations. Our system does not
guarantee that all degenerate curves and neutral surfaces
are extracted. This can be attributed to the fact that the A-
patches algorithm that we adapted [6] does not guarantee
convergence when there are singularities on the surfaces,
like cusps.

Like scalar and vector fields, noise and numerical issues can
lead to noise in tensor field analysis. As a future direction,
we plan to investigate techniques to reduce geometric and
topological noise in tensor field analysis. Furthermore,
extending our analysis to 3D asymmetric tensor fields is
also a natural direction. Finally, we wish to explore means
to reduce the visual cluttering associated with displaying
degenerate curves and neutral surfaces.

ACKNOWLEDGEMENTS

Eugene Zhang is partially sponsored by the US National
Science Foundation (NSF) grant IIS-0917308. In addition,
he wishes to acknowledge the support received while a
guest professor at the Max-Planck-Institute of Informatics
where some of the initial research ideas in this paper were
conceived.

REFERENCES

[1] X. Zheng and A. Pang, “Topological lines in 3d tensor fields,” in
Proceedings IEEE Visualization 2004, ser. VIS ’04. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 313–320. [Online].
Available: http://dx.doi.org/10.1109/VISUAL.2004.105

[2] X. Zheng, B. N. Parlett, and A. Pang, “Topological lines in 3d tensor
fields and discriminant hessian factorization,” IEEE Transactions on
Visualization and Computer Graphics, vol. 11, no. 4, pp. 395–407,
Jul. 2005.

[3] X. Zheng, B. Parlett, and A. Pang, “Topological structures of 3D
tensor fields,” in Proceedings IEEE Visualization 2005, 2005, pp.
551–558.

[4] X. Tricoche, G. Kindlmann, and C.-F. Westin, “Invariant crease
lines for topological and structural analysis of tensor fields,” IEEE
Transactions on Visualization and Computer Graphics, vol. 14, no. 6,
pp. 1627–1634, 2008.

[5] G. M. Treece, R. W. Prager, and A. H. Gee, “Regularised marching
tetrahedra: Improved iso-surface extraction,” Computers and Graph-
ics, vol. 23, pp. 583–598, 1998.

[6] C. Luk and S. Mann, “Tessellating algebraic curves and surfaces
using a-patches,” in GRAPP, 2009, pp. 82–89.

[7] E. Zhang, J. Hays, and G. Turk, “Interactive tensor field design and
visualization on surfaces,” IEEE Transactions on Visualization and
Computer Graphics, vol. 13, no. 1, pp. 94–107, 2007.



IEEE TVCG, VOL. ?,NO. ?, AUGUST 200? 14

[8] E. Zhang, H. Yeh, Z. Lin, and R. S. Laramee, “Asymmetric tensor
analysis for flow visualization,” IEEE Transactions on Visualization
and Computer Graphics, vol. 15, no. 1, pp. 106–122, 2009.

[9] D. K. Jones, Ed., Diffusion MRI: Theory, Method, and Applications.
Oxford University Press, 2011.

[10] T. Schultz, “Feature extraction for DW-MRI visualization: The state
of the art and beyond,” in Scientific Visualization: Interactions,
Features, Metaphors, ser. Dagstuhl Follow-Ups, H. Hagen, Ed.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2011, vol. 2,
pp. 322–345.

[11] A. Kratz, C. Auer, M. Stommel, and I. Hotz, “Visualization and
analysis of second-order tensors: Moving beyond the symmetric
positive-definite case,” Computer Graphics Forum, vol. 32, no. 1, pp.
49–74, 2013. [Online]. Available: http://dx.doi.org/10.1111/j.1467-
8659.2012.03231.x

[12] G. Scheuermann and X. Tricoche, “Topological Methods in Flow
Visualization,” in The Visualization Handbook, C. Hansen and
C. Johnson, Eds. Elsevier, 2005, pp. 341–358.

[13] T. Delmarcelle and L. Hesselink, “Visualizing second-order tensor
fields with hyperstream lines,” IEEE Computer Graphics and Appli-
cations, vol. 13, no. 4, pp. 25–33, Jul. 1993.

[14] E. Hsu, “Generalized line integral convolution rendering of diffusion
tensor fields,” 2001, p. 790.

[15] X. Zheng and A. Pang, “Hyperlic,” Proceeding IEEE Visualization,
pp. 249–256, 2003.

[16] B. Cabral and L. C. Leedom, “Imaging vector fields using line
integral convolution,” in Poceedings of ACM SIGGRAPH 1993, ser.
Annual Conference Series, 1993, pp. 263–272.

[17] T. J. Jankun-Kelly and K. Mehta, “Superellipsoid-based, real sym-
metric traceless tensor glyphs motivated by nematic liquid crystal
alignment visualization,” vol. 12, no. 5, pp. 1197–1204, 2006.

[18] T. Schultz and G. L. Kindlmann, “Superquadric glyphs for symmet-
ric second-order tensors,” IEEE Transactions on Visualization and
Computer Graphics, vol. 16, no. 6, pp. 1595–1604, 2010.

[19] T. Delmarcelle and L. Hesselink, “The Topology of Symmetric,
Second-Order Tensor Fields,” in Proceedings IEEE Visualization ’94,
1994.

[20] L. Hesselink, Y. Levy, and Y. Lavin, “The topology of symmetric,
second-order 3D tensor fields,” IEEE Transactions on Visualization
and Computer Graphics, vol. 3, no. 1, pp. 1–11, Mar. 1997.

[21] T. Schultz, H. Theisel, and H.-P. Seidel, “Topological visualization
of brain diffusion MRI data,” vol. 13, no. 6, pp. 1496–1503, 2007.

[22] R. Peikert and M. Roth, “The ”parallel vectors” operator-a vector
field visualization primitive,” in Visualization ’99. Proceedings, Oct
1999, pp. 263–532.

[23] C. Dick, J. Georgii, R. Burgkart, and R. Westermann, “Stress tensor
field visualization for implant planning in orthopedics,” IEEE Trans.
on Visualization and Computer Graphics, vol. 15, no. 6, pp. 1399–
1406, 2009.

[24] A. Kratz, M. Schoeneich, V. Zobel, B. Burgeth, G. Scheuermann,
I. Hotz, and M. Stommel, “Tensor visualization driven mechanical
component design,” in Proc. IEEE Pacific Visualization Symposium,
2014, pp. 145–152.

[25] J. Damon, “Generic structure of two-dimensional images under
gaussian blurring,” SIAM Journal on Applied Mathematics, vol. 59,
no. 1, pp. 97–138, 1998.

[26] L. Markus, “Line element fields and lorentz structures on
differentiable manifolds,” Annals of Mathematics, vol. 62,
no. 3, pp. pp. 411–417, 1955. [Online]. Available:
http://www.jstor.org/stable/1970071

[27] S. Kazimi, Solid Mechanics. McGraw-Hill, 1982.

[28] J. J. Koenderink and A. J. van Doorn, “Surface shape and curvature
scales,” Image Vision Comput., vol. 10, no. 8, pp. 557–565,
Oct. 1992. [Online]. Available: http://dx.doi.org/10.1016/0262-
8856(92)90076-F

[29] M. Nieser, J. Palacios, K. Polthier, and E. Zhang,
“Hexagonal global parameterization of arbitrary surfaces,”
IEEE Transactions on Visualization and Computer Graphics,
vol. 18, no. 6, pp. 865–878, Jun. 2012. [Online]. Available:
http://dx.doi.org/10.1109/TVCG.2011.118

[30] W. von Funck, T. Weinkauf, H. Theisel, and H.-P. Seidel, “Smoke
surfaces: An interactive flow visualization technique inspired by
real-world flow experiments,” IEEE Transactions on Visualization
and Computer Graphics, vol. 14, no. 6, pp. 1396–1403, Nov. 2008.
[Online]. Available: http://dx.doi.org/10.1109/TVCG.2008.163

[31] R. D. Sullivan, “A two-cell vortex solution of the navier-stokes
equations,” Journal of Aero/Space Sciences, vol. 26, no. 11, pp. 767–
768, Nov. 1959.

[32] H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci, “Morse-
smale complexes for piecewise linear 3-manifolds,” in Proc. 19th
Ann. Sympos. Comput. Geom. (SCG), 2003, pp. 361–370.

[33] G. Kindlmann, R. Whitaker, T. Tasdizen, and T. Möller, “Curvature-
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