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Abstract 

This survey paper provides an overview of topological visualisation techniques for scalar 

data sets.   A review of the topological ambiguities in Marching Cubes algorithms forms a 

basis for introducing topology-led approaches to visualisation.  Topological algorithms are 

used to reduce scalar fields to a skeleton by mapping critical changes in the topology to the 

vertices of graph structures.  These can be visualised using graph drawing techniques or 

used as a method of seeding meshes of distinct objects existing in the data.  Many 

techniques are discussed in detail, beginning with a review of algorithms working on scalar 

fields defined with a single variable, and then generalised to multivariate and temporal 

data.  The survey is completed with a discussion of methods of presenting data in higher 

dimensions. 

Keywords: indirect volume rendering, topology driven visualisation, multivariate 

visualisation, contour tree, Reeb graph, Reeb space, joint contour net, Reeb skeleton, scalar 
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1. Introduction 

The Marching Cubes (MC) algorithm [1] is a long established method used in indirect 

visualisation for creating mathematical models of data existing in a scalar field.  Early 

research centred upon improvements for the presentation of data from medical sources such 

as CT and MRI scans.  Whilst well suited for approximating isosurfaces on smooth 

functions, MC derived algorithms typically struggle to accurately capture features such as 

sharp edges and corners.  These features can often to lead to poorly shaped triangles.  

Various approaches have been suggested for correcting these limitations including Extended 

Marching Cubes [2], Dual Marching Cubes [3], and Cube Merging [4].  The algorithm continues 

to be refined and improved for various purposes, and remains an active field of study [5]. 

Besides improvements to model quality, a recurring theme in research linked to the 

algorithm is identifying and solving topological ambiguities in the models it creates.  
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Typical ambiguities result in the absence of triangles between two surfaces existing in 

opposing corners of a MC cell.  This can lead to creation of a model which contains two 

separate objects, when in reality the model should be a single joined object.  Many 

approaches have been suggested for overcoming these ambiguities including the use of 

Marching Tetrahedra [6].  The use of topological algorithms removes the possibility for 

ambiguities, whilst providing a method for seeding disjoint contours using similar lookup 

tables to those of Marching Cubes.  Algorithms for surface generation, such as Marching 

Cubes, can also be generalised for use in multivariate data sets. 

The remainder of this chapter is structured as follows.  Section 2 highlights the main issues 

with creating topologically correct surfaces using MC algorithms.  Section 3 describes 

topological visualisation techniques for scalar fields that solve the ambiguity problems of 

MC.  In Section 4 we introduce Fibre Surfaces, a multivariate extension to conventional MC, 

which is used as a basis for extending topological techniques to cover multivariate data sets 

in Section 5.  Section 6 considers displaying the output of topological algorithms from 

higher dimensional data sets.  The chapter is concluded in Section 7. 

2. Topological Irregularities in Marching Cubes 

One particularly problematic aspect of the Marching Cubes algorithm is that it is prone to 

creating isosurfaces with holes.  This was a point first highlighted in a letter [7] to the 

Computer Graphics journal shortly after the algorithm was published.  A later modification 

by Nielson and Hamman [8] proposed to address the issue using a technique named the 

Asymptotic Decider.  The MC algorithm does not cope well with triangulation methods in 

ambiguous configurations of the lookup table.  Of the original fifteen configurations present 

within the MC lookup table, five configurations are prone to generating ambiguous faces.  

Further investigation of the problem revealed that in total there were an additional twenty-

six variations on those already present.  The ambiguities can typically be addressed by 

inserting further branches into the lookup table without a noticeable increase in running 

time. 

Chernyaev’s [9] approach to alleviating topological inconsistencies in marching cubes was 

Marching Cubes 33 (MC33), named so because the modification provided a lookup table of 

thirty-three configurations.  Fixing internal ambiguities was the main focus of this algorithm 

and it was largely similar in implementation to the asymptotic decider.  An example of an 

internal ambiguity is the case where opposing vertices are marked as in / out of the surface 

but it is not possible to tell if they are connected using internal triangles.  Using a bilinear 

interpolation across a plane parallel to a face Chernyaev suggested a possible solution to the 

problem, describing the corrected ambiguous configurations. 

Lewiner et al. [10] showed that the MC33 algorithm was unable to create topologically 

correct surfaces in all situations.  Their algorithm extended MC33 by testing for additional 

internal ambiguous situations, whilst optimising the earlier algorithm by removing 

redundant tests.  The resultant algorithm claimed to be topologically correct by removing 

cracks and topological inconsistencies.  Further topological irregularities were highlighted 

in the MC33 algorithm by Etiene et al. [11] with rectifications proposed in an algorithm 



  

 

known as Corrected-MC33 (C-MC33) by Custodio et al. [12].  The corrected algorithm solved 

ambiguities within configurations 10, 12, and 13. 

Alternative approaches to MC33 have been proposed to correct topological irregularities 

using additional triangles within configurations with ambiguities.  Whilst the addition of 

adding polygons to the mesh impacted on raw processing speed, Montani et al. [13] felt that 

the added simplicity of avoiding branching in ambiguous configurations counteracted this.  

In practice when compared to reference functions and using real datasets, little 

computational overhead became evident in comparison to the original MC algorithm.  An 

extension to both the original MC algorithm and the asymptotic decider was later released 

by Nielson [14], that reverted back to a branching method.  This further solved the 

ambiguities that were liable to cause holes in isosurfaces by extending the linear 

interpolation of values, and later bilinear interpolation of faces, with a trilinear interpolation 

within the interior of voxels.  Using several test cases for each of the look-up table 

configurations Nielson was able to prove that topologically sound surfaces could be 

generated using this method.  This was later confirmed as being topologically correct by 

Carr [15], who described the method for completing the trilinear interpolation process as 

dividing the existing cubes into smaller blocks with simpler topology.  However, the 

trilinear interpolation method showed differences in outputs to those proposed by Montani 

et al. [13]. 

3. Topology driven visualisation 

Algorithms for computing isosurfaces, otherwise known as level sets, are prone to 

topological inaccuracies, as demonstrated in Section 2.  During the construction of an 

isosurface no topological information is used; hence, an isosurface is unable to distinguish 

individual connected regions.  Morse theory provides a method for computing the topology 

of scalar data, as we sweep through the isovalue range, by considering the gradient and 

second derivatives of the level set at each vertex in the scalar field.  Through the use of 

tetrahedral mesh cells (for 3D scalar fields) we can approximate the isosurface as a 

piecewise linear function between sampling points.  However, at the boundary between 

cells this approach invalidates a key condition of Morse theory which requires a function to 

have derivatives defined at all sampling points.  Work by Edelsbrunner et al. [16] and 

Bremer et al. [17] provides a mechanism for handling these limitations, allowing us to 

consider the data as a Morse function. 

Topology driven visualisation is used to capture characteristics of a data set using basic 

topological invariants such as the number of holes or points in a connected region.  This 

information provides a means for obtaining a skeleton of the data which can then be used to 

construct visualisations in various forms.  Use of topological visualisation techniques can 

see a reduction in the size of a large data set, as only key features need to be retained.  By 

using topological structures to represent a data set intuitive methods can be used for 

speeding up computations; for example, by allowing many parts of a data set to be rendered 

in parallel.  A further increase in efficiency is provided by the ability to bypass redundant 

computations — such as the processing of empty cells in MC.  Increases in rendering 



  

 

performance come with the overhead of the need to do a one-time pre-processing of the 

data. 

Many topology based algorithms rely on abstract graph based structures for storage of data.  

In many situations the graph structures can be viewed directly to form an overview of the 

data in an easily perceived format.  For those with little prior knowledge of topological 

visualisation techniques it can be hard to form an initial understanding of the data using 

such formats.  In order to better understand the data it is common to directly link the graph 

visualisation, either statically or dynamically, with a rendered view of the data.  However, 

difficulty in understanding topological data representations can be further complicated 

when a data set is large in size.  Hence, other approaches are sometimes used that try to take 

advantage of human perception, such as topological landscapes. 

3.1 Terminology 

In order to present the algorithms and structures used in topological visualisation the 

following key terminology is used. 

Simplex The simplex is a generalisation of the triangle or tetrahedron to 𝑛 dimensions.  

Properties of simplexes in dimensions 0 (a point) through to 4 (a Pentatope) are given in 

Table 1.  Computational topology often refers to meshes as simplicial complexes — a set of 𝑛 

simplexes glued together at their boundaries. 

Betti numbers Enable us to categorise the topology of a mesh existing in 𝑛 dimensions by 

examining the connectivity of its structure as a number of 𝑛 dimensional simplexes.  Each 

dimension, from 0 to 𝑛 − 1, has its own Betti number 𝛽𝑛 associated with it to represent the 

quantity of cuts required through a mesh in order to separate it into two parts.  We can 

consider these numbers as representing the number of holes in the mesh in 𝑛 dimensions 

(Table 2).  Most topological visualisation algorithms consider only the 0𝑡ℎ dimensional Betti 

number, used to represent connectivity.  However, it is possible to augment the graphs with 

higher order Betti numbers to provide feedback on changes in the mesh such as the 

morphing from a sphere to a torus (Table 3).  In this work we are primarily only interested 

in the zeroth dimensional Betti number 𝛽0. 

Genus This is a way of expressing the number of holes in a surface.  In three dimensions, a 

sphere is genus 0, and torus genus 1.  Surfaces with additional holes are commonly referred 

to as an 𝑛-torus. 

Critical point The sampling points in a scalar field 𝑓(𝑥), at which the function value is 

defined, can be categorised into two types.  Critical points have a local gradient 𝑓′(𝑥)  =  0 

and represent positions where the topology of the level set changes.  These relate to local 

extrema or saddle points in the data; the second derivative 𝑓′′(𝑥) allows us to classify if the 

critical point is a local minima 𝑓′′(𝑥)  >  0 or a local maxima 𝑓′′(𝑥)  <  0.  In the case where a 

critical point is a local minima all neighbouring vertices will have a higher function value, 

whilst a local maxima means that all surrounding vertices are lower in value.  Regular 

points have a non-zero gradient and have no overall effect on the connectivity the level set.   



  

 

Contour  The boundary of connected regions of a level set, also known as the 0-dimensional 

homology group, are known as contours.  Each individual contour is an element in the level 

set that represents a distinct topological object within the isosurface. 

Topological persistence The most simplistic way of defining topological persistence is as a 

quantitative measure of importance of each contour.  In literature topological persistence is 

often known as geometric measures [18] due to the fact it relates to measures such as 

volume or surface area.  It is possible to compute persistence values directly from the 

meshes representing each contour by performing a piecewise sum of all cells in a connected 

region.  Alternatively, the persistence can be approximated by counting the number of 

regular vertices making up a connected region.  Persistence measures are often used as a 

method of eliminating noise from the topological structure by iteratively removing the 

contour with smallest persistence value. 

Name Dimension 
𝑛 

Common 

Name 

Vertices Edges Faces Cells 

0-simplex 0 Point 1 - - - 

1-simplex 1 Line-

segment 

2 1 - - 

2-simplex 2 Triangle 3 3 1 - 

3-simplex 3 Tetrahedron 4 6 4 1 

4-simplex 4 Pentatope 

(or 5-cell) 

5 10 10 5 

Table 1 Classification of simplexes in dimensions zero to four. 

Betti Number Associated Simplex Property 

𝛽0 Point Connected components 

𝛽1 Line-segment Holes 

𝛽2 Triangles Voids 

Table 2 Betti numbers 𝜷𝟎, 𝜷𝟏, and 𝜷𝟐 and associated concepts of connectivity. 

Topological concept 𝛽0 𝛽1 𝛽2 

Sphere 1 0 1 

Torus 1 2 1 

Table 3 Betti numbers used to describe the sphere and torus. 

  



  

 

Name Dimension Common name 

0-manifold 0 Point 

1-manifold 1 Polyline 

2-manifold 2 Polygon 

3-manifold 3 Polyhedron 

4-manifold 4 4-Polytope 

Table 4 Classification of manifolds in dimensions zero to four. 

Most of the techniques and structures discussed in this section can be generalised for use in 

any number of dimensions — a list of general terms is provided in Table 4. 

3.2 Merge Trees 

One of the fundamental data structures in computational topology are merge trees, 

commonly used to describe two similar concepts.  Merge trees track connected level sets 

within the data as the isovalue is swept across the scalar range.  The join tree captures 

connected sub-level sets, or regions, of the data below a specific isovalue threshold.  

Similarly the split tree captures connected super-level sets. 

 

Figure 1 A visual representation of the merge tree algorithm for the function shown in the top-left.  
The merge tree captures each of the local maxima as the function height is reduced (moving left-
to-right, top-to-bottom).  A real world analogy is to think of the isovalue as the water level in a 
valley that gradually drains to reveal the peaks of multiple hills.  Image courtesy of Landge et al. 
[19]. 

Merge trees present a simple method for capturing topological information as the arcs in a 

tree-like structure.  This can then be used to compute zero-dimensional persistence 

measures representing the number of connected components in a region [20].  Merge trees 

are often used as a computation step in the construction of more complex topological data 



  

 

structures such as the contour tree, described in detail in Section 3.3.  Alternatively, merge 

trees can be used directly for analysis and feature extraction in complex data sets [19]. 

A visual metaphor for understanding the concept of merge trees is given in Figure 1.  To 

capture the merge tree, in this case the join tree of the grey function (top-left), the isovalue is 

gradually decreased from the global maxima.  In the top-centre image this has revealed 

three local maxima, each denoted as a red critical point.  In the top right image a fourth local 

maxima has been revealed (the green contour) and the red and blue structures have 

merged, this is marked by a node in the graph.  In the bottom left image, the pink and green 

surfaces have merged to form the cyan region.  The bottom centre image sees the small 

intervals represented by the cyan and yellow surfaces merged into one large purple region.  

If the isovalue continues to be reduced it is possible to observe no further changes in the 

topology until reaching the global minima represented by the blue graph node. 

 

Figure 2 Left: a surface that varies as the function value is varied.  Right: a labelled contour tree 
representation of the surface.  Image courtesy of Carr et al. [21]. 

3.3 The contour tree 

The contour tree, introduced by Boyell and Ruston [22] uses concepts from Morse theory 

[23], [24] to capture changes in the topology of scalar field at critical points in the data.  The 

tree structure allows the tracking of splits and joins in the topology as the isovalue is varied 

by tracing a path through the graph.  Figure 2 demonstrates how individual contours in the 

data are captured by the contour tree using a one-to-one correspondence with edges.  Each 

leaf in the contour tree represents an individual local extrema and critical vertices represent 

a change in the connectivity of the level set.  Typically, the contour tree does not contain 

information regarding changes in topological genus; however, this information can be 

added to the output [25]. 

  



  

 

We can formally describe the structure of the contour tree as follows: 

 Vertices or supernodes 

o Leaf nodes correspond to: 

 Local maxima where a contour is created. 

 Local minima where a contour is destroyed. 

o Interior nodes correspond to: 

 A saddle point where one more contours are created as a contour 

splits into two or more disjoint contours. 

 A saddle point where one or more contours are destroyed as two 

or more disjoint contours merge into one. 

 Edges or superarcs 

o Represent a single contour between the supernode where it is created and 

the supernode where it is destroyed.  

In addition to optimizations of contour tree computation, research is focused on approaches 

for storing the contour tree hierarchy, allowing it to be traversed in an efficient manner.  A 

number of related approaches have been proposed including Kd-trees, segment trees, and 

interval trees.  These formats prove problematic as they can require a large amount of 

storage and are difficult to navigate. An alternative method is proposed in [26] using the 

observation that an isosurface is the level set of a continuous function in 3D space; therefore, 

a whole contour can be traced from a single element.  Vertices where contours can be built 

from are given the name seeds; algorithms for computing seeds relate to work in image 

processing requiring similar storage facilities.  An entire contour can be computed for the 

specified desired isovalue from the seed that is bounded by the two supernodes 

representing the critical points of the contour.  Results showed that by using this method the 

number of seeds required for representation were in most cases significantly reduced.  

However, often the overall storage size of the contour tree was increased in comparison to 

other methods. 

Carr et al. [21] investigated the use of contour trees in higher dimensional data sets, whilst 

also improving upon the algorithm proposed in [27].  This also introduced the concept of 

augmented contour trees, an extension that added non-branching vertices at non-critical points 

in the data to provide additional values for isosurfaces to be seeded from.  This feature was 

built into a GUI allowing the user to identify regions of interest, using colour coding and to 

distinguish them as directed by the user [28].  Carr and Snoeyink [29] use the contour tree as 

the underlying data structure to generate object meshes using path seeds.  The use of the 

contour tree can be extended to finding paths between two points given condition clauses, 

such as a minimum or maximum values, on a function defining a landscape [30]. 

Chiang et al. [31] introduce a modified contour tree construction algorithm that improves 

processing time by only sorting critical vertices in the merge tree construction stage.  This 

vastly increases processing speeds in very large data sets.  However, as observed by the 

authors, critical vertices are difficult to identify in data with dimensionality of four or more.  



  

 

Further increases in speed are offered by storing multiple seeds for the monotone path 

construction algorithm [32] used to generate surfaces.  An increased storage overhead is 

required; however, a surface does not require complete re-extraction each time the isovalue 

is changed.  Recently Gueunet et al. [33] presented a multithreaded approach to computing 

the augmented contour tree using a shared memory approach.  Initial evaluations of the 

“contour forest” algorithm showed quicker computations achievable using the approach; 

however, at present the extent of the speed up is limited by load imbalance and redundant 

computations. 

For a given technique of subdividing the input domain, the output of the contour tree 

algorithm is fixed.  However, in the case that a different technique is used to define the 

neighbourhood of sampling points the location of the critical point may change trivially.  

For example, changing the method of defining neighbours during split / merge tree 

computations can slightly alter the location of critical points.  The underlying structure of 

the tree, the number of supernodes and superarcs, remains fixed for a given input with only 

the geometric locations of supernodes changing. 

3.4 The Reeb graph 

Using the contour tree comes with the limitation that the input must be defined on a simply 

connected domain that is free of loops.  Limitations in the merge tree computation phase of 

the contour tree algorithm prevent it from correctly handling data without a boundary.  

However, the Reeb graph [34], a generalisation of the contour tree, can be used to compute 

the topology of scalar data in such situations [35].  As with the contour tree, the Reeb graph 

can be applied to models of any dimension provided it is represented on a simplicial mesh 

[36].  The Reeb graph has also been used to assist in the design of transfer functions in 

volume visualisation [37], by assigning opacity based upon how many objects were 

obscured by nested surfaces and their proximity to the edge of a scalar field. 

The first use of the Reeb graph for encoding topological features for visualisation purposes 

was by Shinagawa et al. [38] where the structure was used as a way of representing objects 

obtained from computerized-tomography (CT) sources [39].  An online algorithm is given 

by Pascucci et al. [36] that allowed the Reeb graph of a function to be computed using a 

streaming approach with the output continually updated as additional data points are 

added.  Efficiency of the algorithm is optimal for two dimensional inputs and the streaming 

nature of the algorithm limits peak memory usage.  However, the Ο(𝑛2) complexity of the 

algorithm, where 𝑛 is the number of triangles, means it performs less favourably for higher 

dimensional inputs. 

A key feature of many Reeb graph algorithms is that a 2-skeleton of the input volume is used 

to define the relationship between vertices, edges and triangles.  The same restriction 

applies to scalar fields in 𝑛 dimensions; hence, provided a triangulation of the data is 

available the algorithm will be able to compute a correct 𝑛 dimensional Reeb graph.  Reeb 

graph algorithms can largely be split into two groups; those that are sweep based, requiring 

the maintenance of level sets, and those that use a split and compute method to collapse the 

problem to that of a contour tree computation.  A third alternative was given by Harvey et al. 

[40] that randomly collapsed triangles for arbitrary 2-skeletons to improve the running time 

to Ο(𝑚 log 𝑚). 



  

 

The sensitivity of Reeb graph computations to the topological genus of the input domain 

was first demonstrated by McLaughlin [35] in the case of a non-simply connected domain, 

such as that representing a sphere or torus.  Additionally, the number of loops present in the 

data as a result of the Morse function can further extend the complexity of the algorithm.  In 

order to address this undesired effect the Reeb graph computation can be reduced to that of 

the simpler contour tree algorithm.  This approach was first used by Tierny et al. [41] where 

they performed “loop-surgery” by making symbolic cuts during the merge tree step of the 

algorithm.  The symbolic cuts could then be stitched back together to retrieve a topologically 

correct Reeb graph of the data.  An alternative approach, capable of generalising to higher 

dimensional inputs, was later proposed by Doraiswamy and Natarajan [42] that explicitly 

maintained level sets, eliminating the need for a loop-surgery pre-processing step. 

More recently Doraiswamy and Natarajan [43] offered an improved algorithm for 

constructing the Reeb graph of 𝑛-dimensional scalar fields, reverting to the split and 

compute contour tree technique, as originally proposed in [41].  A further optimised 

algorithm [44], using a variation of the split and compute technique, used the join tree of the 

data to identify potential loops.  An important modification upon the technique developed 

by Tierny et al. [41] was the segmentation of domain into multiple loop free contour trees, 

instead of a single contour tree, thus enabling multiple regions of the input to be computed 

in parallel. 

Output from Reeb graph algorithms remains fixed provided the simplicial subdivision 

defined upon the input domain does not change.  As is the case with the contour tree, 

variations can slightly alter the location of the critical vertices without changing the overall 

structure of the graph. 

3.5 Seeded contours 

Contours, as opposed to isosurfaces, can be grown using values extracted from the scalar 

field to produce topologically correct meshes.  De Berg et al. [30] made the observation that 

a whole contour could be traced starting from a single seed element.  Wyvill et al. [45] 

generate contour surfaces as a two-stage process; first, the core region is flood filled by 

evaluating neighbouring cells for inclusion in the level set.  In the second stage boundaries 

are calculated using look-up tables similar in form to those of the MC algorithm [1].   

Contour trees are a reliable source of seed cells for propagation algorithms similar to those 

of Wyvill et al. [45]; hence, the contour tree can be used to generate surfaces for each 

superarc at a given isovalue.  Carr and Snoeyink [29] use the contour tree as the underlying 

data structure to store and generate object meshes.  Rather than using minimal seed sets as 

used by van Kreveld et al. [26] to generate contours, an alternative method was deployed 

using path seeds. Carr et al. [21] also investigated the use of contour trees in higher 

dimensional datasets, whilst also improving upon the algorithm proposed by Tarasov and 

Vyalyi [27].  This enables users to identify individual contours of interest and distinguish 

them accordingly [28].   

The flexible isosurface [46] is a technique for combining many of the features discussed in this 

section with the concepts of topological persistence (see Section 3.6) into a single interface.  

Simplification methods, as discussed in [18], can also be applied to the data so as to display 



  

 

isosurfaces in a meaningful way.  This approach allows each contour to be hidden or 

displayed according to the user preferences at runtime.  In order to further aid data 

exploration contours can also remain fixed in view as the global isovalue is varied.  Colour 

can be applied to each surface (or a sub-tree of the main contour tree) to allow assignment of 

meaning to contours by the user by providing a simple grouping mechanism. 

3.6 Topological persistence and simplification 

Different scientific fields of study often define the interesting features and attributes in a 

domain specific form.  However, some features are invariant and can be useful in any field 

of science.  The contour spectrum [47] was introduced as a method of relaying quantitative 

information about individual contours in scalar data including surface area and volume.  

Carr et al. [48] directly compare isosurface statistics against raw histograms of scalar data 

for a number of data sets.  Measurements evaluated included the cell intersection count, 

triangle count and isosurface area.  It was found that using these measures a truer 

distribution of the scalar field could be computed. An improvement was given by Meyer et 

al. [49] using concepts from geometric measure theory that minimised the effect of noise on 

the observed distributions.  The key to this improvement was introducing a normalisation of 

the individual contour statistics to the domain average. 

Scalar field data often contains noise; when partitioned using a topology sensitive algorithm 

this manifests in the generation of a large quantity of small objects present at a limited range 

of isovalues.  Methods for reducing noise were first proposed by Edelsbrunner et al. [20] 

using an iterative process that performed topological simplification by assessing the Betti-

numbers of topological objects.  The goal of the algorithm is to simplify shape whilst 

preserving the underlying topological features of data existing on a triangular mesh. 

Carr et al. [18] proposed the use of concepts originally discussed as part of the contour 

spectrum [47], such as enclosed volume and surface area, as an aid for noise removal.  

Objects are queued in ascending order, according to the user selected measure, and 

iteratively removed until a terminating level of simplification is achieved.  The effects of 

three different simplification features are compared using X-ray data from a human skull, 

where it was found that use of the isovalue range persistence measure (Figure 3) could 

result in the removal of important features such as the eyes.  Carr et al. remark that 

simplification techniques are sensitive to the source and should be chosen using domain 

specific knowledge.  The technique is suited to 𝑛 dimensional data; however, time variate 

data requires additional considerations in the simplification process due to connectivity 

between time steps. 



  

 

 

Figure 3 An example of a topological persistence measure defined on the superarcs of a contour 
tree or Reeb graph.  The measure of persistence defined here uses the isovalue range - this is 
given as the difference of isovalues of the two critical vertices defining the superarc (see Table 5). 

Superarc Top supernode Bottom supernode 

id persistence id isovalue id Isovalue 

1 0.67 12 0.84 13 0.17 

2 1.07 4 1.67 5 0.60 

3 0.54 6 1.25 7 0.71 

4 0.03 16 0.74 7 0.71 

5 0.11 7 0.71 5 0.60 

6 0.43 5 0.60 13 0.17 

Table 5 Persistence measures associated with Figure 3. 

3.7 Topology in Direct Volume Rendering 

The techniques discussed in Section 3.5 model topological objects as meshes, meaning they 

are well suited to indirect volume visualisation.  However, topology based approaches can 

also be applied to data displayed using direct volume rendering approaches.   

A segmentation algorithm, such as the contour tree or volume skeleton tree, is first used to 

look for boundaries between objects in the scalar field topology.  Following this, traditional 

direct volume rendering techniques can be applied to the data based upon attributes of the 

identified objects.  Takeshima et al. [50] use attributes such as the number of equal valued 

contours and occlusion to assign levels of opacity to objects.  The net effect was that the 

outermost objects were assigned lower opacities so as to not obscure features centred in the 

volume.  A more flexible approach was used by Weber et al. [51] applying distinct transfer 

functions to each object, or topological zone, as directed by the user.  This customization, 

implemented via the user interface, enables grouping of similar features and related 

components using colour and transparency. 



  

 

3.8 Temporal univariate scalar data 

Recent interest in topological visualisation research has focused upon the comparison of 

scalar data through topological methods to assign a degree of similarity to data.  This has 

potential uses in different scientific domains including physics, chemistry, and climate 

science, which often feature a temporal component.  The merge tree, with its simple data-

structure, presents an attractive method for computing topological differences between data 

sets.  Beketayev et al. [52] define a distance measure between merge trees with potential 

applications in a range of scientific disciplines.  The algorithm uses a branch decomposition 

approach to deconstruct the merge tree into multiple sub-graphs, each a descending path 

from a saddle to a leaf vertex.  Each branch decomposition can then be scored via an 

adapted form of the edit distance [53] between two graphs.  A recursive algorithm then tests 

if two merge trees are within an epsilon value to determine if they are classified as similar. 

This approach was further extended by Saikia et al. [54] to produce the extended branch 

decomposition graph, a union of all individual sub-trees.  This data structure allows quicker 

comparison between merge trees by computing multiple similarity thresholds in parallel.  In 

addition the extended branch decomposition graph improves upon memory usage by 

reducing the redundancy found in multiple disjoint branch decompositions.  Branch 

decomposition methods have also be applied to the more complex contour tree to compute 

similarity and symmetry in scalar topology [55]. 

The method used by Beketayev et al. [52] had a runtime of Ο(𝑛5), where a merge tree 

contains 𝑛 nodes, this was lowered to Ο((𝑛 log 𝑛)2) in related work [54].  Potential 

downfalls to the optimised algorithm are that instabilities can arise from permuted forms of 

branch decompositions, this is handled in [52] by considering all possible permutations at 

the cost of scalability.  The optimised algorithm uses the extended branch decomposition graph, 

a union of all possible branch decomposition graphs, to store all branch decompositions in a 

single tree structure.  Two potential uses for the distance measure are suggested; 

identification of similar structures within a single data set or, for time variate data, 

repetition between time steps. 

Fluid dynamics is an area of science that can benefit from visualisation of 3D volumes with 

a time component.  The complexity of mixing two fluids is one specific problem that can be 

better understood using topological methods as the system evolves over time [56]. 

Topological analysis makes it possible to take a slice of the volume at a given time-step and 

count the number of bubbles present.  Alternatively, topological analysis enables tracing of 

properties, such the volume and centre of gravity of individual bubbles, throughout the 

simulation. 

4. Marching Cubes methods for multivariate data 

Typical MC algorithms are applicable to scalar fields where the data at each point is a single 

variable.  However, it is also possible to visualise fields where each point is associated with 

multiple variables.  For this purpose the concept of the isosurface generalises to that of the 

fibre surface in multi-field data sets.  Fibre surfaces utilise indirect volume techniques to 



  

 

create geometric models of the multi-field, in addition to generating visual representations 

this allows geometric properties of the multi-field to be queried. 

A MC based algorithm was presented by Carr et al. [57] that allowed the capturing of fibres 

for bi-variate data sets.  The captured fibre surfaces are geometrical in nature, rather than 

topological; hence, they don't take connectivity into account. 

 

Figure 4 A direct comparison of a fibre surface and a DVR render of an ethane-diol molecule 
simulation.  The central image shows a scatterplot of the data.  Image courtesy of Carr et al. [57]. 

Physically fibre surfaces can be considered as the bounding surface between two or more 

fields. The ability to visualise multiple scalars as fibre surfaces is seen as a tool to 

complement existing techniques, such as multivariate scatter plots [58], to allow quicker 

boundary extraction [57].  When compared to similar DVR techniques (Figure 4), such as 

multi-dimensional peak finding [59], it was found that fibre surfaces were quicker to render 

but had an addition pre-processing overhead.  Fibre surfaces represent a simplified method 

of presenting the data captured using the multivariate topological techniques discussed in 

Section 5. 

5. Multivariate topological visualisation 

Multivariate topological visualisation is a more recent research interest in the visualisation 

community in comparison to topological visualisations of a single field.  Due to the relative 

infancy of the field, Carr et al. [60] highlight the need for sufficiently complex data sets to 

extensively test the emerging algorithms in the area.   

Many of the topological structures and algorithms applicable to a single variable can be 

generalised to more than one variable being defined at each sampling point.  We begin this 

section by defining the concept of Jacobi nodes, we then continue to examine structures used 

to capture and the display the topology of multiple variables.   

Jacobi node These are critical points in the scalar fields where the gradients of multiple 

inputs become parallel or equal to zero.  A pre-requisite for the algorithms are that the fields 

are defined on a common sampling mesh meaning that the critical points are guaranteed to 

have the same geometric locations. 



  

 

5.1 The Reeb space 

The Reeb space is a generalisation of the Reeb graph to allow for multivariate or temporal 

data.  The first discussion of using the Reeb space to compute topological structure of 

multiple functions is presented by Edelsbrunner et al. [61], where it is suggested that the 

Reeb space can be modelled mathematically in the form 𝑓 ∶  𝕄 ↦  ℝ𝑘, where 𝕄 represents 

the domain and 𝑓 the output of 𝑘 scalar functions.  For the simple case, where 𝑘 =  1, this is 

directly comparable to the Reeb graph.  The Reeb space extends this formulation to 

situations where 𝑘 ≥  2. 

5.2 The joint contour net 

Carr et al. [62] presented the first discrete representation of the Reeb space using the Joint 

Contour Net (JCN).  For functions of 𝑛 variables defined in an ℝ𝑚 dimensional space the 

algorithm approximates the Reeb space as a number of multivariate contours named joint 

contour slabs.  These represent connected regions of the domain with respect to the isovalue 

of multiple functions.  In situations where 𝑛 ≥  𝑚 the JCN can still be computed; however, 

the output is not an approximation of the Reeb space but instead a subdivision of the input 

geometry over 𝑛 variables.  The JCN captures the Reeb space as an undirected graph 

structure, where vertices represent slabs of 𝑛 isovalue tuples, and edges are used to show 

adjacency between regions.  An example JCN of two scalar functions is presented in Figure 

5 and Figure 6. 

In comparison to contour tree algorithms, the JCN is better suited to parallelisation as each 

joint contour slab is constructed from smaller independent regions called fragments [63].  

Existing development of the algorithm has focused largely on implementation as a parallel 

algorithm.  A distributed memory model is used by Duke and Hosseini [64] to construct 

multiple sub-JCNs in parallel, these are merged into a single output as a final post-

processing step.  Current results suggest that the merge step is the limiting factor to parallel 

algorithm speed up; therefore, other parallelisation strategies are under investigation. 

In nuclear physics the JCN has previously been used to visualise and analyse scission 

datasets where it was used to identify the splitting of an atomic nucleus into multiple parts 

[65].  It was found that the JCN was well suited to capturing this divergent behaviour using 

proton and neutron density fields as inputs.  This experiment was initially performed at a 

single temperature [66], but later repeated at multiple temperatures [67] due to its ability to 

capture the splitting of the compound nucleus as a forking in the multi-field topology.  

Whilst performing the analysis a number of other events were captured and linked to the 

scission theory. 

More recently the JCN was used to visually analyse data from hurricane Isabel [68].  Vertices 

were used to represent the joint contour slabs by mapping to their barycentric spatial 

coordinates. An interactive environment was developed that allowed users to relate 

interactions in the temperature, pressure and precipitation fields to physical phenomena 

such as rain bands and the eye of the hurricane. The ability to relate properties of the JCN to 

known physical features helped to increase understanding of how the JCN is able to capture 

multi-field interactions. 

 



  

 

 

Figure 5 Two simple scalar functions are defined on a simplicial grid (left), where the dotted lines 
represent quantisation intervals.  The quantised contour tree for each function (right) is shown 
mapped to the scalar field in the centre.  Image courtesy of Duke et al. [65].   

 

Figure 6 A JCN capturing the bivariate topology of the two simple functions shown in Figure 5.  The 
bivariate field is constructed by overlaying the quantisation intervals of the two input fields 

(dotted lines).  A vertex is placed at the barycentre of each region, or joint contour slab, and edges 
mark adjacency.  Image courtesy of Duke et al. [65]. 



  

 

5.3 Related topological structures 

In multivariate topology a Jacobi set represents the set of critical points generated when one 

Morse function is restricted to the level set of another.  Alternatively, the Jacobi set can be 

considered as the set of points where there is an alignment of the gradient of two or more 

Morse functions or the gradient of one function vanishes.  The similarity between two or 

more functions can be evaluated using the resulting Jacobi set using a method defined by 

Edelsbrunner et al. [69].  Applications of the Jacobi set include use as a feedback loop on 

simulation parameters or to perform comparison of algorithms.  An algorithm was 

presented by Edelsbrunner and Harer [70] for computing Jacobi sets of multiple Morse 

functions defined on a triangular mesh of isovalue 𝑛-tuples in Euclidean space.  This allows 

multiple independent functions such as pressure, temperature, or wind speed to be used as 

inputs.  Alternatively for temporal data multiple time-steps can be used as input to allow 

the evaluation of a function with respect to time. 

Carr et al. extend the JCN [62] to extract further topological structure from the Reeb space 

by first evaluating an intermediate structure, the Multi-Dimensional Reeb graph (MDRG) [71].  

This is a hierarchical structure that recursively stores the joint contours of each function 

(𝑓1, 𝑓2, … , 𝑓𝑛) restricted to the contours of those preceding it.  At the top level the MDRG 

represents the contours of the function 𝑓1 as a Reeb Graph; the second tier relates to the 

Reeb graph of function 𝑓2 when restricted to the contours of 𝑓1, continuing down to function 

𝑓𝑛 restricted to the contours of 𝑓1, … , 𝑓𝑛−1.  Besides being used in the extraction of the Jacobi 

structure and the related Reeb skeleton [72], the MDRG represents a convenient structure for 

extracting the Reeb graphs of each individual function making up the Reeb space. 

An additional abstraction, the Jacobi structure, related to the mathematical topology concept 

of singular fibre-components are introduced by Chattopadhyay et al. [71] as part of the MDRG 

extraction algorithm.  This represents an improvement over the Jacobi set by providing a 

method of relating the Jacobi set directly to the Reeb space.  The Jacobi structure is able to 

capture the exact location of topological change and is defined as the projection of the Jacobi 

set from the domain to the Reeb space.  In practice this extends the Jacobi set to also include 

the “regular sheets” connecting one another in the Reeb space.  This means the Jacobi 

structure is able to capture elements of the topological structure that the Jacobi set is unable 

to represent.  The Jacobi structure is extracted as the set of critical nodes in the Multi-

Dimensional Reeb Graph (MDRG), itself a structure for storing Reeb space criticalities.  

Forking in multi-field topology in nuclear scission data is an example behaviour that can be 

captured by the Jacobi structure [71]. 

The Layered Reeb graph is an alternative approach deployed by Strodthoff and Juttler [73] for 

presenting the Reeb space of multiple scalar functions.  This approach to representing the 

Reeb space differs from the MDRG [71] by working directly with the Jacobi sets, rather than 

the more recently proposed Jacobi structure. 

5.4 Topological persistence and simplification 

Persistence in multivariate data sets is more complex to define in comparison to the 

univariate case.  Simplification and persistence metrics can be defined on a number of 

secondary structures computable from the multi-field topology.  The concept of isosurface 



  

 

statistics [48], [49] is extended to multivariate inputs through the use of Continuous 

Scatterplots [58].  These can be defined to show relations between 𝑚 dimensional inputs with 

𝑛 scalar fields; in the case where 𝑚 =  3 and 𝑛 =  1 the output approximates to the output 

of Meyer et al. [49]. 

Multivariate data gives rise to multi-filtrations due to their parametrisation by more than one 

variable; this leads to no definable compact invariants, such as the Betti numbers, existing in 

multi-fields.  Therefore, existing concepts, such as the persistence bar code [74], do not 

directly generalise to multi-variate domains.  However, this does not mean that persistence 

and simplification cannot be applied, instead other approaches have been suggested.  The 

“rank invariant” is a method for representing persistence in a multi-field by generalising 

upon the concept of Betti numbers present in univariate topology.  For the univariate case, 

the rank invariant and persistence bar code are the same [75].  The original algorithm used 

to compute the rank invariant was exponential in time complexity, this was later improved 

to polynomial time by reformulating the problem as an algebraic geometry problem [76]. 

The Jacobi set, where the gradient of multiple functions align or have a gradient of zero, can 

assist in defining persistence measures [69].  When the multi-field is used to represent 

temporal data this can be used to augment the univariate notion of persistence with a 

lifetime parameter.  This approach was used by Bremer et al. [77] to compute persistence in 

the context of the Morse-Smale complex.  However, when generalised to non-temporal 

functions defining persistence as a feature of the Jacobi set becomes a non-trivial task [78]. 

5.5 The Reeb skeleton 

The Reeb skeleton (Figure 7) is a simplified graph structure that takes into account the size 

of connected components, allowing measures of persistence to be assigned to its arcs.  An 

extended Jacobi set, the Jacobi Structure, is used by the Reeb skeleton algorithm to aid 

multivariate simplification [72]. 

The Jacobi structure [71] is a promising starting point for simplification due to its ability to 

separate the Reeb space, as approximated by the JCN, into singular and regular components.  

Just as in the univariate equivalent, the Reeb graph, singular nodes in the Jacobi structure 

map to topological changes in the multi-field.  To exploit this, the Reeb Skeleton extends the 

concept of the Jacobi structure further, primarily to aid multi-dimensional simplification 

[72]. 

The Reeb skeleton is generated as the dual graph of the singular and regular components 

captured in the Jacobi structure.  Visually, this means the Reeb skeleton translates the sheet-

like form of the Jacobi structure into a simplified skeletal form.  The simplified graph data 

structure allows measures of persistence to be assigned to arcs of the Reeb skeleton in a 

similar manner to that of the Reeb graph.  Lip pruning techniques, similar to the leaf 

pruning method of simplification found in univariate topological structures [18] can then be 

applied to progressively remove noisy features in the multi-field.  Example persistence 

measures that can be applied to the JCN include the accumulated volume of joint contour 

slabs in a connected region. 



  

 

 

Figure 7 An example of a Reeb skeleton, showing how it relates to the JCN (a); (b) shows the full, 
non-simplified Reeb skeleton; (c) modifies the Reeb skeleton to highlight only critical changes in 
the multivariate topology (red vertices); (d) shows how performing simplification using the Reeb 
skeleton removes less significant regions of the topology; (e) after simplification, the Reeb 
skeleton can be reduced to only key vertices; (f) the arrowed regions relate to the two surfaces.  
Image courtesy of Chattopadhyay et al. [72]. 

6. Visualisation in higher dimensions 

Name Dimension 
𝑛 

Common 

name 

Vertices Edges Faces Cells 

0-cube 0 Point 1 - - - 

1-cube 1 Line-

segment 

2 1 - - 

2-cube 2 Square 4 4 1 - 

3-cube 3 Cube 8 12 6 1 

4-cube 4 Tesseract 16 32 24 8 

Table 6 Properties of hypercubes in dimensions zero to four. 

When moving to higher dimensional spaces it is beneficial to generalise the terminology 

used to describe the geometry.  The 𝑛-dimensional analogue of the square is the hypercube, 

often shortened to 𝑛-cube (see Table 6).  When working in higher dimensional spaces it is 

common to perform a simplicial sub-division of the 𝑛-cube into 𝑛-simplexes, this helps to 

avoid the ambiguities often associated with MC style algorithms [79]. 



  

 

6.1 Projection and perception 

Creating easily perceivable and topologically correct three-dimensional models for 

projection on to flat surfaces, the computer monitor, is a difficult task.  Volumes of data 

become increasingly hard to visualize as their dimensionality increase; for example, by 

introducing a temporal fourth-dimension.  One of the major limiting factors is our in ability 

to perceive things four-dimensionally.  A metaphor for trying to understand four-

dimensions in a three-dimensional world is to consider the case of two-dimensional 

creatures trying to understand a three-dimensional world.  This is a thought exercise 

discussed in [80], which also discusses how a four-dimensional Euclidean representation of 

space-time relates to real world physics. 

Existing projection methods are available that take a four-dimensional objects and display 

them on a two-dimensional surface, usually in wire-frame form.  Quite often the projections 

are animated to show the object as it rotates on one or more axis; however, this can also be 

adapted to allow the user to rotate the object through conventional approaches such as 

mouse interaction.  The effect of perspective and isometric projection are explored by 

Hollasch [81] using tesseracts — the 4D hyper-cube.  In addition, the use of ray-tracing in 

four-dimensions can produce understandable images, as depth cueing is handled 

automatically by the algorithm in the creation of shadows.  However, the added complexity 

of a fourth dimension in a looping ray tracing algorithm makes it time consuming and 

potentially unworkable for real time display. 

6.2 Computing surfaces in higher dimensions 

Whilst presenting difficulties with regard to visualisation, it can be beneficial to compute 

surfaces in higher dimensions.  This is especially true in the case of volumetric data with a 

temporal element; animation can often be used to reconstruct this form of data but that 

presents its own perceptual issues.  Computation of isosurfaces on fields existing in ℝ4 

space can help to improve animations by providing interpolation between discrete time-

steps, resulting in smoother and easier to perceive animations.  Alternatively the high-

dimensional topology can be sliced along arbitrary axes to provide a snap-shot with a 

reduction in dimension (e.g. ℝ4  ↦  ℝ3).  

An unavoidable consequence of upping the dimensionality of the input field is an increase 

in the complexity of its storage and computation.  An early example of computing surfaces 

in > 3 dimensions is considered by Weigle and Banks [82] using a recursive technique to 

split 𝑛-dimensional cells into 𝑛-simplexes.  The resulting surfaces exist in four dimensions 

and are able to be displayed using two techniques; stereographic projection (Section 6.1) or 

slicing to reduce dimensionality.  It is noted that the centroid division technique used to 

break cells into simplexes used in this work is suboptimal (see Table 7), but can be improved 

using lookup tables similar to those used in marching cubes.  The technique was used in [83] 

to compute the swept volumes of time-varying data generated from electromagnetic field 

simulations, allowing them to be displayed as animations. 

  



  

 

𝑛 Centroid division (2𝑛−1𝑛!) 𝑛! 

2 4 2 

3 24 6 

4 192 24 

5 1920 120 

6 23040 720 

Table 7 Number of simplexes generated using differing sub-division techniques in 𝒏 dimensions. 

Extending MC into the fourth dimension, and beyond, was explored by Bhaniramka et al. 

[84].  At the time of the report, a relatively small amount of work had been conducted in 

studying isosurfaces beyond the third dimension.  It was found that by extending MC into 4 

dimensions the look-up table, following removal of symmetrical configurations, required 

222 separate configurations.  As with the 3D variation of MC, one aspect to be taken into 

consideration is the dealing of ambiguous configurations; a mathematical proof of 

correctness is provided to verify that the topological structures generated are valid.  An 

example use of this algorithm would be to present volume data with a time dimension by 

selecting three-dimensional slices of the hyper-volume. 

 

Figure 8 Peaks within a topological landscape (left) correspond to distinct topological features in 
the Direct Volume Render (right).  Image courtesy of Weber et al. [51]. 

6.3 Topological landscapes 

An alternative approach of viewing contour information, the topological landscape, was 

proposed by Weber et al. [51], using the contour tree to build a 3D terrain model (Figure 8).  

The purpose of this is to harness the natural ability that humans have in understanding 

terrain structure and use it to provide an easier to understand model of the underlying data 

topology.  Valleys in the terrain illustrate events where a contour splits into two or more 

parts and peaks represent where two or more contours merge.  Topological landscapes can 

be applied to contour trees of any number of dimensions; hence, they can provide a useful 

method for exploring what is happening in high dimensional data sets.  The topological 

landscape methodology was further expanded using a number of different methods for 

laying out the data, primarily from established 2D visualisation techniques [85]. 



  

 

7. Conclusion 

In this chapter we discussed problems existing in marching cubes algorithms relating to 

topological correctness of the data.  We demonstrated how, through the use of topology, a 

correct representation of a scalar field can be captured using graph structures.  These could 

be used to seed topologically correct meshes for rendering, or to provide a means to analyse 

the data.  After providing a description of algorithms for data sets consisting of a single 

variable, we showed how many of the techniques can be generalised to multivariate data.  

Finally, we considered the techniques for displaying data existing in higher dimensions.  
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