

IntechOpen Book Chapter Template

Topological Visualisation Techniques for Volume Multifield Data

Dean P.Thomas [1][2]

798295@swansea.ac.uk

Rita Borgo [3]

rita.borgo@kcl.ac.uk

Robert S.Laramee [1]

r.s.laramee@swansea.ac.uk

Simon J.Hands [2]

s.j.hands@swansea.ac.uk

[1] Department of Computer Science, Swansea University, Swansea, United Kingdom

[2] Department of Physics, Swansea University, Swansea, United Kingdom

[3] Department of Informatics, Kings College London, London, United Kingdom

Abstract

This survey paper provides an overview of topological visualisation techniques for scalar

data sets. A review of the topological ambiguities in Marching Cubes algorithms forms a

basis for introducing topology-led approaches to visualisation. Topological algorithms are

used to reduce scalar fields to a skeleton by mapping critical changes in the topology to the

vertices of graph structures. These can be visualised using graph drawing techniques or

used as a method of seeding meshes of distinct objects existing in the data. Many

techniques are discussed in detail, beginning with a review of algorithms working on scalar

fields defined with a single variable, and then generalised to multivariate and temporal

data. The survey is completed with a discussion of methods of presenting data in higher

dimensions.

Keywords: indirect volume rendering, topology driven visualisation, multivariate

visualisation, contour tree, Reeb graph, Reeb space, joint contour net, Reeb skeleton, scalar

data

1. Introduction

The Marching Cubes (MC) algorithm [1] is a long established method used in indirect

visualisation for creating mathematical models of data existing in a scalar field. Early

research centred upon improvements for the presentation of data from medical sources such

as CT and MRI scans. Whilst well suited for approximating isosurfaces on smooth

functions, MC derived algorithms typically struggle to accurately capture features such as

sharp edges and corners. These features can often to lead to poorly shaped triangles.

Various approaches have been suggested for correcting these limitations including Extended

Marching Cubes [2], Dual Marching Cubes [3], and Cube Merging [4]. The algorithm continues

to be refined and improved for various purposes, and remains an active field of study [5].

Besides improvements to model quality, a recurring theme in research linked to the

algorithm is identifying and solving topological ambiguities in the models it creates.

mailto:798295@swansea.ac.uk
mailto:rita.borgo@kcl.ac.uk
mailto:r.s.laramee@swansea.ac.uk
mailto:s.j.hands@swansea.ac.uk

Typical ambiguities result in the absence of triangles between two surfaces existing in

opposing corners of a MC cell. This can lead to creation of a model which contains two

separate objects, when in reality the model should be a single joined object. Many

approaches have been suggested for overcoming these ambiguities including the use of

Marching Tetrahedra [6]. The use of topological algorithms removes the possibility for

ambiguities, whilst providing a method for seeding disjoint contours using similar lookup

tables to those of Marching Cubes. Algorithms for surface generation, such as Marching

Cubes, can also be generalised for use in multivariate data sets.

The remainder of this chapter is structured as follows. Section 2 highlights the main issues

with creating topologically correct surfaces using MC algorithms. Section 3 describes

topological visualisation techniques for scalar fields that solve the ambiguity problems of

MC. In Section 4 we introduce Fibre Surfaces, a multivariate extension to conventional MC,

which is used as a basis for extending topological techniques to cover multivariate data sets

in Section 5. Section 6 considers displaying the output of topological algorithms from

higher dimensional data sets. The chapter is concluded in Section 7.

2. Topological Irregularities in Marching Cubes

One particularly problematic aspect of the Marching Cubes algorithm is that it is prone to

creating isosurfaces with holes. This was a point first highlighted in a letter [7] to the

Computer Graphics journal shortly after the algorithm was published. A later modification

by Nielson and Hamman [8] proposed to address the issue using a technique named the

Asymptotic Decider. The MC algorithm does not cope well with triangulation methods in

ambiguous configurations of the lookup table. Of the original fifteen configurations present

within the MC lookup table, five configurations are prone to generating ambiguous faces.

Further investigation of the problem revealed that in total there were an additional twenty-

six variations on those already present. The ambiguities can typically be addressed by

inserting further branches into the lookup table without a noticeable increase in running

time.

Chernyaev’s [9] approach to alleviating topological inconsistencies in marching cubes was

Marching Cubes 33 (MC33), named so because the modification provided a lookup table of

thirty-three configurations. Fixing internal ambiguities was the main focus of this algorithm

and it was largely similar in implementation to the asymptotic decider. An example of an

internal ambiguity is the case where opposing vertices are marked as in / out of the surface

but it is not possible to tell if they are connected using internal triangles. Using a bilinear

interpolation across a plane parallel to a face Chernyaev suggested a possible solution to the

problem, describing the corrected ambiguous configurations.

Lewiner et al. [10] showed that the MC33 algorithm was unable to create topologically

correct surfaces in all situations. Their algorithm extended MC33 by testing for additional

internal ambiguous situations, whilst optimising the earlier algorithm by removing

redundant tests. The resultant algorithm claimed to be topologically correct by removing

cracks and topological inconsistencies. Further topological irregularities were highlighted

in the MC33 algorithm by Etiene et al. [11] with rectifications proposed in an algorithm

known as Corrected-MC33 (C-MC33) by Custodio et al. [12]. The corrected algorithm solved

ambiguities within configurations 10, 12, and 13.

Alternative approaches to MC33 have been proposed to correct topological irregularities

using additional triangles within configurations with ambiguities. Whilst the addition of

adding polygons to the mesh impacted on raw processing speed, Montani et al. [13] felt that

the added simplicity of avoiding branching in ambiguous configurations counteracted this.

In practice when compared to reference functions and using real datasets, little

computational overhead became evident in comparison to the original MC algorithm. An

extension to both the original MC algorithm and the asymptotic decider was later released

by Nielson [14], that reverted back to a branching method. This further solved the

ambiguities that were liable to cause holes in isosurfaces by extending the linear

interpolation of values, and later bilinear interpolation of faces, with a trilinear interpolation

within the interior of voxels. Using several test cases for each of the look-up table

configurations Nielson was able to prove that topologically sound surfaces could be

generated using this method. This was later confirmed as being topologically correct by

Carr [15], who described the method for completing the trilinear interpolation process as

dividing the existing cubes into smaller blocks with simpler topology. However, the

trilinear interpolation method showed differences in outputs to those proposed by Montani

et al. [13].

3. Topology driven visualisation

Algorithms for computing isosurfaces, otherwise known as level sets, are prone to

topological inaccuracies, as demonstrated in Section 2. During the construction of an

isosurface no topological information is used; hence, an isosurface is unable to distinguish

individual connected regions. Morse theory provides a method for computing the topology

of scalar data, as we sweep through the isovalue range, by considering the gradient and

second derivatives of the level set at each vertex in the scalar field. Through the use of

tetrahedral mesh cells (for 3D scalar fields) we can approximate the isosurface as a

piecewise linear function between sampling points. However, at the boundary between

cells this approach invalidates a key condition of Morse theory which requires a function to

have derivatives defined at all sampling points. Work by Edelsbrunner et al. [16] and

Bremer et al. [17] provides a mechanism for handling these limitations, allowing us to

consider the data as a Morse function.

Topology driven visualisation is used to capture characteristics of a data set using basic

topological invariants such as the number of holes or points in a connected region. This

information provides a means for obtaining a skeleton of the data which can then be used to

construct visualisations in various forms. Use of topological visualisation techniques can

see a reduction in the size of a large data set, as only key features need to be retained. By

using topological structures to represent a data set intuitive methods can be used for

speeding up computations; for example, by allowing many parts of a data set to be rendered

in parallel. A further increase in efficiency is provided by the ability to bypass redundant

computations — such as the processing of empty cells in MC. Increases in rendering

performance come with the overhead of the need to do a one-time pre-processing of the

data.

Many topology based algorithms rely on abstract graph based structures for storage of data.

In many situations the graph structures can be viewed directly to form an overview of the

data in an easily perceived format. For those with little prior knowledge of topological

visualisation techniques it can be hard to form an initial understanding of the data using

such formats. In order to better understand the data it is common to directly link the graph

visualisation, either statically or dynamically, with a rendered view of the data. However,

difficulty in understanding topological data representations can be further complicated

when a data set is large in size. Hence, other approaches are sometimes used that try to take

advantage of human perception, such as topological landscapes.

3.1 Terminology

In order to present the algorithms and structures used in topological visualisation the

following key terminology is used.

Simplex The simplex is a generalisation of the triangle or tetrahedron to 𝑛 dimensions.

Properties of simplexes in dimensions 0 (a point) through to 4 (a Pentatope) are given in

Table 1. Computational topology often refers to meshes as simplicial complexes — a set of 𝑛

simplexes glued together at their boundaries.

Betti numbers Enable us to categorise the topology of a mesh existing in 𝑛 dimensions by

examining the connectivity of its structure as a number of 𝑛 dimensional simplexes. Each

dimension, from 0 to 𝑛 − 1, has its own Betti number 𝛽𝑛 associated with it to represent the

quantity of cuts required through a mesh in order to separate it into two parts. We can

consider these numbers as representing the number of holes in the mesh in 𝑛 dimensions

(Table 2). Most topological visualisation algorithms consider only the 0𝑡ℎ dimensional Betti

number, used to represent connectivity. However, it is possible to augment the graphs with

higher order Betti numbers to provide feedback on changes in the mesh such as the

morphing from a sphere to a torus (Table 3). In this work we are primarily only interested

in the zeroth dimensional Betti number 𝛽0.

Genus This is a way of expressing the number of holes in a surface. In three dimensions, a

sphere is genus 0, and torus genus 1. Surfaces with additional holes are commonly referred

to as an 𝑛-torus.

Critical point The sampling points in a scalar field 𝑓(𝑥), at which the function value is

defined, can be categorised into two types. Critical points have a local gradient 𝑓′(𝑥) = 0

and represent positions where the topology of the level set changes. These relate to local

extrema or saddle points in the data; the second derivative 𝑓′′(𝑥) allows us to classify if the

critical point is a local minima 𝑓′′(𝑥) > 0 or a local maxima 𝑓′′(𝑥) < 0. In the case where a

critical point is a local minima all neighbouring vertices will have a higher function value,

whilst a local maxima means that all surrounding vertices are lower in value. Regular

points have a non-zero gradient and have no overall effect on the connectivity the level set.

Contour The boundary of connected regions of a level set, also known as the 0-dimensional

homology group, are known as contours. Each individual contour is an element in the level

set that represents a distinct topological object within the isosurface.

Topological persistence The most simplistic way of defining topological persistence is as a

quantitative measure of importance of each contour. In literature topological persistence is

often known as geometric measures [18] due to the fact it relates to measures such as

volume or surface area. It is possible to compute persistence values directly from the

meshes representing each contour by performing a piecewise sum of all cells in a connected

region. Alternatively, the persistence can be approximated by counting the number of

regular vertices making up a connected region. Persistence measures are often used as a

method of eliminating noise from the topological structure by iteratively removing the

contour with smallest persistence value.

Name Dimension
𝑛

Common

Name

Vertices Edges Faces Cells

0-simplex 0 Point 1 - - -

1-simplex 1 Line-

segment

2 1 - -

2-simplex 2 Triangle 3 3 1 -

3-simplex 3 Tetrahedron 4 6 4 1

4-simplex 4 Pentatope

(or 5-cell)

5 10 10 5

Table 1 Classification of simplexes in dimensions zero to four.

Betti Number Associated Simplex Property

𝛽0 Point Connected components

𝛽1 Line-segment Holes

𝛽2 Triangles Voids

Table 2 Betti numbers 𝜷𝟎, 𝜷𝟏, and 𝜷𝟐 and associated concepts of connectivity.

Topological concept 𝛽0 𝛽1 𝛽2

Sphere 1 0 1

Torus 1 2 1

Table 3 Betti numbers used to describe the sphere and torus.

Name Dimension Common name

0-manifold 0 Point

1-manifold 1 Polyline

2-manifold 2 Polygon

3-manifold 3 Polyhedron

4-manifold 4 4-Polytope

Table 4 Classification of manifolds in dimensions zero to four.

Most of the techniques and structures discussed in this section can be generalised for use in

any number of dimensions — a list of general terms is provided in Table 4.

3.2 Merge Trees

One of the fundamental data structures in computational topology are merge trees,

commonly used to describe two similar concepts. Merge trees track connected level sets

within the data as the isovalue is swept across the scalar range. The join tree captures

connected sub-level sets, or regions, of the data below a specific isovalue threshold.

Similarly the split tree captures connected super-level sets.

Figure 1 A visual representation of the merge tree algorithm for the function shown in the top-left.
The merge tree captures each of the local maxima as the function height is reduced (moving left-
to-right, top-to-bottom). A real world analogy is to think of the isovalue as the water level in a
valley that gradually drains to reveal the peaks of multiple hills. Image courtesy of Landge et al.
[19].

Merge trees present a simple method for capturing topological information as the arcs in a

tree-like structure. This can then be used to compute zero-dimensional persistence

measures representing the number of connected components in a region [20]. Merge trees

are often used as a computation step in the construction of more complex topological data

structures such as the contour tree, described in detail in Section 3.3. Alternatively, merge

trees can be used directly for analysis and feature extraction in complex data sets [19].

A visual metaphor for understanding the concept of merge trees is given in Figure 1. To

capture the merge tree, in this case the join tree of the grey function (top-left), the isovalue is

gradually decreased from the global maxima. In the top-centre image this has revealed

three local maxima, each denoted as a red critical point. In the top right image a fourth local

maxima has been revealed (the green contour) and the red and blue structures have

merged, this is marked by a node in the graph. In the bottom left image, the pink and green

surfaces have merged to form the cyan region. The bottom centre image sees the small

intervals represented by the cyan and yellow surfaces merged into one large purple region.

If the isovalue continues to be reduced it is possible to observe no further changes in the

topology until reaching the global minima represented by the blue graph node.

Figure 2 Left: a surface that varies as the function value is varied. Right: a labelled contour tree
representation of the surface. Image courtesy of Carr et al. [21].

3.3 The contour tree

The contour tree, introduced by Boyell and Ruston [22] uses concepts from Morse theory

[23], [24] to capture changes in the topology of scalar field at critical points in the data. The

tree structure allows the tracking of splits and joins in the topology as the isovalue is varied

by tracing a path through the graph. Figure 2 demonstrates how individual contours in the

data are captured by the contour tree using a one-to-one correspondence with edges. Each

leaf in the contour tree represents an individual local extrema and critical vertices represent

a change in the connectivity of the level set. Typically, the contour tree does not contain

information regarding changes in topological genus; however, this information can be

added to the output [25].

We can formally describe the structure of the contour tree as follows:

 Vertices or supernodes

o Leaf nodes correspond to:

 Local maxima where a contour is created.

 Local minima where a contour is destroyed.

o Interior nodes correspond to:

 A saddle point where one more contours are created as a contour

splits into two or more disjoint contours.

 A saddle point where one or more contours are destroyed as two

or more disjoint contours merge into one.

 Edges or superarcs

o Represent a single contour between the supernode where it is created and

the supernode where it is destroyed.

In addition to optimizations of contour tree computation, research is focused on approaches

for storing the contour tree hierarchy, allowing it to be traversed in an efficient manner. A

number of related approaches have been proposed including Kd-trees, segment trees, and

interval trees. These formats prove problematic as they can require a large amount of

storage and are difficult to navigate. An alternative method is proposed in [26] using the

observation that an isosurface is the level set of a continuous function in 3D space; therefore,

a whole contour can be traced from a single element. Vertices where contours can be built

from are given the name seeds; algorithms for computing seeds relate to work in image

processing requiring similar storage facilities. An entire contour can be computed for the

specified desired isovalue from the seed that is bounded by the two supernodes

representing the critical points of the contour. Results showed that by using this method the

number of seeds required for representation were in most cases significantly reduced.

However, often the overall storage size of the contour tree was increased in comparison to

other methods.

Carr et al. [21] investigated the use of contour trees in higher dimensional data sets, whilst

also improving upon the algorithm proposed in [27]. This also introduced the concept of

augmented contour trees, an extension that added non-branching vertices at non-critical points

in the data to provide additional values for isosurfaces to be seeded from. This feature was

built into a GUI allowing the user to identify regions of interest, using colour coding and to

distinguish them as directed by the user [28]. Carr and Snoeyink [29] use the contour tree as

the underlying data structure to generate object meshes using path seeds. The use of the

contour tree can be extended to finding paths between two points given condition clauses,

such as a minimum or maximum values, on a function defining a landscape [30].

Chiang et al. [31] introduce a modified contour tree construction algorithm that improves

processing time by only sorting critical vertices in the merge tree construction stage. This

vastly increases processing speeds in very large data sets. However, as observed by the

authors, critical vertices are difficult to identify in data with dimensionality of four or more.

Further increases in speed are offered by storing multiple seeds for the monotone path

construction algorithm [32] used to generate surfaces. An increased storage overhead is

required; however, a surface does not require complete re-extraction each time the isovalue

is changed. Recently Gueunet et al. [33] presented a multithreaded approach to computing

the augmented contour tree using a shared memory approach. Initial evaluations of the

“contour forest” algorithm showed quicker computations achievable using the approach;

however, at present the extent of the speed up is limited by load imbalance and redundant

computations.

For a given technique of subdividing the input domain, the output of the contour tree

algorithm is fixed. However, in the case that a different technique is used to define the

neighbourhood of sampling points the location of the critical point may change trivially.

For example, changing the method of defining neighbours during split / merge tree

computations can slightly alter the location of critical points. The underlying structure of

the tree, the number of supernodes and superarcs, remains fixed for a given input with only

the geometric locations of supernodes changing.

3.4 The Reeb graph

Using the contour tree comes with the limitation that the input must be defined on a simply

connected domain that is free of loops. Limitations in the merge tree computation phase of

the contour tree algorithm prevent it from correctly handling data without a boundary.

However, the Reeb graph [34], a generalisation of the contour tree, can be used to compute

the topology of scalar data in such situations [35]. As with the contour tree, the Reeb graph

can be applied to models of any dimension provided it is represented on a simplicial mesh

[36]. The Reeb graph has also been used to assist in the design of transfer functions in

volume visualisation [37], by assigning opacity based upon how many objects were

obscured by nested surfaces and their proximity to the edge of a scalar field.

The first use of the Reeb graph for encoding topological features for visualisation purposes

was by Shinagawa et al. [38] where the structure was used as a way of representing objects

obtained from computerized-tomography (CT) sources [39]. An online algorithm is given

by Pascucci et al. [36] that allowed the Reeb graph of a function to be computed using a

streaming approach with the output continually updated as additional data points are

added. Efficiency of the algorithm is optimal for two dimensional inputs and the streaming

nature of the algorithm limits peak memory usage. However, the Ο(𝑛2) complexity of the

algorithm, where 𝑛 is the number of triangles, means it performs less favourably for higher

dimensional inputs.

A key feature of many Reeb graph algorithms is that a 2-skeleton of the input volume is used

to define the relationship between vertices, edges and triangles. The same restriction

applies to scalar fields in 𝑛 dimensions; hence, provided a triangulation of the data is

available the algorithm will be able to compute a correct 𝑛 dimensional Reeb graph. Reeb

graph algorithms can largely be split into two groups; those that are sweep based, requiring

the maintenance of level sets, and those that use a split and compute method to collapse the

problem to that of a contour tree computation. A third alternative was given by Harvey et al.

[40] that randomly collapsed triangles for arbitrary 2-skeletons to improve the running time

to Ο(𝑚 log 𝑚).

The sensitivity of Reeb graph computations to the topological genus of the input domain

was first demonstrated by McLaughlin [35] in the case of a non-simply connected domain,

such as that representing a sphere or torus. Additionally, the number of loops present in the

data as a result of the Morse function can further extend the complexity of the algorithm. In

order to address this undesired effect the Reeb graph computation can be reduced to that of

the simpler contour tree algorithm. This approach was first used by Tierny et al. [41] where

they performed “loop-surgery” by making symbolic cuts during the merge tree step of the

algorithm. The symbolic cuts could then be stitched back together to retrieve a topologically

correct Reeb graph of the data. An alternative approach, capable of generalising to higher

dimensional inputs, was later proposed by Doraiswamy and Natarajan [42] that explicitly

maintained level sets, eliminating the need for a loop-surgery pre-processing step.

More recently Doraiswamy and Natarajan [43] offered an improved algorithm for

constructing the Reeb graph of 𝑛-dimensional scalar fields, reverting to the split and

compute contour tree technique, as originally proposed in [41]. A further optimised

algorithm [44], using a variation of the split and compute technique, used the join tree of the

data to identify potential loops. An important modification upon the technique developed

by Tierny et al. [41] was the segmentation of domain into multiple loop free contour trees,

instead of a single contour tree, thus enabling multiple regions of the input to be computed

in parallel.

Output from Reeb graph algorithms remains fixed provided the simplicial subdivision

defined upon the input domain does not change. As is the case with the contour tree,

variations can slightly alter the location of the critical vertices without changing the overall

structure of the graph.

3.5 Seeded contours

Contours, as opposed to isosurfaces, can be grown using values extracted from the scalar

field to produce topologically correct meshes. De Berg et al. [30] made the observation that

a whole contour could be traced starting from a single seed element. Wyvill et al. [45]

generate contour surfaces as a two-stage process; first, the core region is flood filled by

evaluating neighbouring cells for inclusion in the level set. In the second stage boundaries

are calculated using look-up tables similar in form to those of the MC algorithm [1].

Contour trees are a reliable source of seed cells for propagation algorithms similar to those

of Wyvill et al. [45]; hence, the contour tree can be used to generate surfaces for each

superarc at a given isovalue. Carr and Snoeyink [29] use the contour tree as the underlying

data structure to store and generate object meshes. Rather than using minimal seed sets as

used by van Kreveld et al. [26] to generate contours, an alternative method was deployed

using path seeds. Carr et al. [21] also investigated the use of contour trees in higher

dimensional datasets, whilst also improving upon the algorithm proposed by Tarasov and

Vyalyi [27]. This enables users to identify individual contours of interest and distinguish

them accordingly [28].

The flexible isosurface [46] is a technique for combining many of the features discussed in this

section with the concepts of topological persistence (see Section 3.6) into a single interface.

Simplification methods, as discussed in [18], can also be applied to the data so as to display

isosurfaces in a meaningful way. This approach allows each contour to be hidden or

displayed according to the user preferences at runtime. In order to further aid data

exploration contours can also remain fixed in view as the global isovalue is varied. Colour

can be applied to each surface (or a sub-tree of the main contour tree) to allow assignment of

meaning to contours by the user by providing a simple grouping mechanism.

3.6 Topological persistence and simplification

Different scientific fields of study often define the interesting features and attributes in a

domain specific form. However, some features are invariant and can be useful in any field

of science. The contour spectrum [47] was introduced as a method of relaying quantitative

information about individual contours in scalar data including surface area and volume.

Carr et al. [48] directly compare isosurface statistics against raw histograms of scalar data

for a number of data sets. Measurements evaluated included the cell intersection count,

triangle count and isosurface area. It was found that using these measures a truer

distribution of the scalar field could be computed. An improvement was given by Meyer et

al. [49] using concepts from geometric measure theory that minimised the effect of noise on

the observed distributions. The key to this improvement was introducing a normalisation of

the individual contour statistics to the domain average.

Scalar field data often contains noise; when partitioned using a topology sensitive algorithm

this manifests in the generation of a large quantity of small objects present at a limited range

of isovalues. Methods for reducing noise were first proposed by Edelsbrunner et al. [20]

using an iterative process that performed topological simplification by assessing the Betti-

numbers of topological objects. The goal of the algorithm is to simplify shape whilst

preserving the underlying topological features of data existing on a triangular mesh.

Carr et al. [18] proposed the use of concepts originally discussed as part of the contour

spectrum [47], such as enclosed volume and surface area, as an aid for noise removal.

Objects are queued in ascending order, according to the user selected measure, and

iteratively removed until a terminating level of simplification is achieved. The effects of

three different simplification features are compared using X-ray data from a human skull,

where it was found that use of the isovalue range persistence measure (Figure 3) could

result in the removal of important features such as the eyes. Carr et al. remark that

simplification techniques are sensitive to the source and should be chosen using domain

specific knowledge. The technique is suited to 𝑛 dimensional data; however, time variate

data requires additional considerations in the simplification process due to connectivity

between time steps.

Figure 3 An example of a topological persistence measure defined on the superarcs of a contour
tree or Reeb graph. The measure of persistence defined here uses the isovalue range - this is
given as the difference of isovalues of the two critical vertices defining the superarc (see Table 5).

Superarc Top supernode Bottom supernode

id persistence id isovalue id Isovalue

1 0.67 12 0.84 13 0.17

2 1.07 4 1.67 5 0.60

3 0.54 6 1.25 7 0.71

4 0.03 16 0.74 7 0.71

5 0.11 7 0.71 5 0.60

6 0.43 5 0.60 13 0.17

Table 5 Persistence measures associated with Figure 3.

3.7 Topology in Direct Volume Rendering

The techniques discussed in Section 3.5 model topological objects as meshes, meaning they

are well suited to indirect volume visualisation. However, topology based approaches can

also be applied to data displayed using direct volume rendering approaches.

A segmentation algorithm, such as the contour tree or volume skeleton tree, is first used to

look for boundaries between objects in the scalar field topology. Following this, traditional

direct volume rendering techniques can be applied to the data based upon attributes of the

identified objects. Takeshima et al. [50] use attributes such as the number of equal valued

contours and occlusion to assign levels of opacity to objects. The net effect was that the

outermost objects were assigned lower opacities so as to not obscure features centred in the

volume. A more flexible approach was used by Weber et al. [51] applying distinct transfer

functions to each object, or topological zone, as directed by the user. This customization,

implemented via the user interface, enables grouping of similar features and related

components using colour and transparency.

3.8 Temporal univariate scalar data

Recent interest in topological visualisation research has focused upon the comparison of

scalar data through topological methods to assign a degree of similarity to data. This has

potential uses in different scientific domains including physics, chemistry, and climate

science, which often feature a temporal component. The merge tree, with its simple data-

structure, presents an attractive method for computing topological differences between data

sets. Beketayev et al. [52] define a distance measure between merge trees with potential

applications in a range of scientific disciplines. The algorithm uses a branch decomposition

approach to deconstruct the merge tree into multiple sub-graphs, each a descending path

from a saddle to a leaf vertex. Each branch decomposition can then be scored via an

adapted form of the edit distance [53] between two graphs. A recursive algorithm then tests

if two merge trees are within an epsilon value to determine if they are classified as similar.

This approach was further extended by Saikia et al. [54] to produce the extended branch

decomposition graph, a union of all individual sub-trees. This data structure allows quicker

comparison between merge trees by computing multiple similarity thresholds in parallel. In

addition the extended branch decomposition graph improves upon memory usage by

reducing the redundancy found in multiple disjoint branch decompositions. Branch

decomposition methods have also be applied to the more complex contour tree to compute

similarity and symmetry in scalar topology [55].

The method used by Beketayev et al. [52] had a runtime of Ο(𝑛5), where a merge tree

contains 𝑛 nodes, this was lowered to Ο((𝑛 log 𝑛)2) in related work [54]. Potential

downfalls to the optimised algorithm are that instabilities can arise from permuted forms of

branch decompositions, this is handled in [52] by considering all possible permutations at

the cost of scalability. The optimised algorithm uses the extended branch decomposition graph,

a union of all possible branch decomposition graphs, to store all branch decompositions in a

single tree structure. Two potential uses for the distance measure are suggested;

identification of similar structures within a single data set or, for time variate data,

repetition between time steps.

Fluid dynamics is an area of science that can benefit from visualisation of 3D volumes with

a time component. The complexity of mixing two fluids is one specific problem that can be

better understood using topological methods as the system evolves over time [56].

Topological analysis makes it possible to take a slice of the volume at a given time-step and

count the number of bubbles present. Alternatively, topological analysis enables tracing of

properties, such the volume and centre of gravity of individual bubbles, throughout the

simulation.

4. Marching Cubes methods for multivariate data

Typical MC algorithms are applicable to scalar fields where the data at each point is a single

variable. However, it is also possible to visualise fields where each point is associated with

multiple variables. For this purpose the concept of the isosurface generalises to that of the

fibre surface in multi-field data sets. Fibre surfaces utilise indirect volume techniques to

create geometric models of the multi-field, in addition to generating visual representations

this allows geometric properties of the multi-field to be queried.

A MC based algorithm was presented by Carr et al. [57] that allowed the capturing of fibres

for bi-variate data sets. The captured fibre surfaces are geometrical in nature, rather than

topological; hence, they don't take connectivity into account.

Figure 4 A direct comparison of a fibre surface and a DVR render of an ethane-diol molecule
simulation. The central image shows a scatterplot of the data. Image courtesy of Carr et al. [57].

Physically fibre surfaces can be considered as the bounding surface between two or more

fields. The ability to visualise multiple scalars as fibre surfaces is seen as a tool to

complement existing techniques, such as multivariate scatter plots [58], to allow quicker

boundary extraction [57]. When compared to similar DVR techniques (Figure 4), such as

multi-dimensional peak finding [59], it was found that fibre surfaces were quicker to render

but had an addition pre-processing overhead. Fibre surfaces represent a simplified method

of presenting the data captured using the multivariate topological techniques discussed in

Section 5.

5. Multivariate topological visualisation

Multivariate topological visualisation is a more recent research interest in the visualisation

community in comparison to topological visualisations of a single field. Due to the relative

infancy of the field, Carr et al. [60] highlight the need for sufficiently complex data sets to

extensively test the emerging algorithms in the area.

Many of the topological structures and algorithms applicable to a single variable can be

generalised to more than one variable being defined at each sampling point. We begin this

section by defining the concept of Jacobi nodes, we then continue to examine structures used

to capture and the display the topology of multiple variables.

Jacobi node These are critical points in the scalar fields where the gradients of multiple

inputs become parallel or equal to zero. A pre-requisite for the algorithms are that the fields

are defined on a common sampling mesh meaning that the critical points are guaranteed to

have the same geometric locations.

5.1 The Reeb space

The Reeb space is a generalisation of the Reeb graph to allow for multivariate or temporal

data. The first discussion of using the Reeb space to compute topological structure of

multiple functions is presented by Edelsbrunner et al. [61], where it is suggested that the

Reeb space can be modelled mathematically in the form 𝑓 ∶ 𝕄 ↦ ℝ𝑘, where 𝕄 represents

the domain and 𝑓 the output of 𝑘 scalar functions. For the simple case, where 𝑘 = 1, this is

directly comparable to the Reeb graph. The Reeb space extends this formulation to

situations where 𝑘 ≥ 2.

5.2 The joint contour net

Carr et al. [62] presented the first discrete representation of the Reeb space using the Joint

Contour Net (JCN). For functions of 𝑛 variables defined in an ℝ𝑚 dimensional space the

algorithm approximates the Reeb space as a number of multivariate contours named joint

contour slabs. These represent connected regions of the domain with respect to the isovalue

of multiple functions. In situations where 𝑛 ≥ 𝑚 the JCN can still be computed; however,

the output is not an approximation of the Reeb space but instead a subdivision of the input

geometry over 𝑛 variables. The JCN captures the Reeb space as an undirected graph

structure, where vertices represent slabs of 𝑛 isovalue tuples, and edges are used to show

adjacency between regions. An example JCN of two scalar functions is presented in Figure

5 and Figure 6.

In comparison to contour tree algorithms, the JCN is better suited to parallelisation as each

joint contour slab is constructed from smaller independent regions called fragments [63].

Existing development of the algorithm has focused largely on implementation as a parallel

algorithm. A distributed memory model is used by Duke and Hosseini [64] to construct

multiple sub-JCNs in parallel, these are merged into a single output as a final post-

processing step. Current results suggest that the merge step is the limiting factor to parallel

algorithm speed up; therefore, other parallelisation strategies are under investigation.

In nuclear physics the JCN has previously been used to visualise and analyse scission

datasets where it was used to identify the splitting of an atomic nucleus into multiple parts

[65]. It was found that the JCN was well suited to capturing this divergent behaviour using

proton and neutron density fields as inputs. This experiment was initially performed at a

single temperature [66], but later repeated at multiple temperatures [67] due to its ability to

capture the splitting of the compound nucleus as a forking in the multi-field topology.

Whilst performing the analysis a number of other events were captured and linked to the

scission theory.

More recently the JCN was used to visually analyse data from hurricane Isabel [68]. Vertices

were used to represent the joint contour slabs by mapping to their barycentric spatial

coordinates. An interactive environment was developed that allowed users to relate

interactions in the temperature, pressure and precipitation fields to physical phenomena

such as rain bands and the eye of the hurricane. The ability to relate properties of the JCN to

known physical features helped to increase understanding of how the JCN is able to capture

multi-field interactions.

Figure 5 Two simple scalar functions are defined on a simplicial grid (left), where the dotted lines
represent quantisation intervals. The quantised contour tree for each function (right) is shown
mapped to the scalar field in the centre. Image courtesy of Duke et al. [65].

Figure 6 A JCN capturing the bivariate topology of the two simple functions shown in Figure 5. The
bivariate field is constructed by overlaying the quantisation intervals of the two input fields

(dotted lines). A vertex is placed at the barycentre of each region, or joint contour slab, and edges
mark adjacency. Image courtesy of Duke et al. [65].

5.3 Related topological structures

In multivariate topology a Jacobi set represents the set of critical points generated when one

Morse function is restricted to the level set of another. Alternatively, the Jacobi set can be

considered as the set of points where there is an alignment of the gradient of two or more

Morse functions or the gradient of one function vanishes. The similarity between two or

more functions can be evaluated using the resulting Jacobi set using a method defined by

Edelsbrunner et al. [69]. Applications of the Jacobi set include use as a feedback loop on

simulation parameters or to perform comparison of algorithms. An algorithm was

presented by Edelsbrunner and Harer [70] for computing Jacobi sets of multiple Morse

functions defined on a triangular mesh of isovalue 𝑛-tuples in Euclidean space. This allows

multiple independent functions such as pressure, temperature, or wind speed to be used as

inputs. Alternatively for temporal data multiple time-steps can be used as input to allow

the evaluation of a function with respect to time.

Carr et al. extend the JCN [62] to extract further topological structure from the Reeb space

by first evaluating an intermediate structure, the Multi-Dimensional Reeb graph (MDRG) [71].

This is a hierarchical structure that recursively stores the joint contours of each function

(𝑓1, 𝑓2, … , 𝑓𝑛) restricted to the contours of those preceding it. At the top level the MDRG

represents the contours of the function 𝑓1 as a Reeb Graph; the second tier relates to the

Reeb graph of function 𝑓2 when restricted to the contours of 𝑓1, continuing down to function

𝑓𝑛 restricted to the contours of 𝑓1, … , 𝑓𝑛−1. Besides being used in the extraction of the Jacobi

structure and the related Reeb skeleton [72], the MDRG represents a convenient structure for

extracting the Reeb graphs of each individual function making up the Reeb space.

An additional abstraction, the Jacobi structure, related to the mathematical topology concept

of singular fibre-components are introduced by Chattopadhyay et al. [71] as part of the MDRG

extraction algorithm. This represents an improvement over the Jacobi set by providing a

method of relating the Jacobi set directly to the Reeb space. The Jacobi structure is able to

capture the exact location of topological change and is defined as the projection of the Jacobi

set from the domain to the Reeb space. In practice this extends the Jacobi set to also include

the “regular sheets” connecting one another in the Reeb space. This means the Jacobi

structure is able to capture elements of the topological structure that the Jacobi set is unable

to represent. The Jacobi structure is extracted as the set of critical nodes in the Multi-

Dimensional Reeb Graph (MDRG), itself a structure for storing Reeb space criticalities.

Forking in multi-field topology in nuclear scission data is an example behaviour that can be

captured by the Jacobi structure [71].

The Layered Reeb graph is an alternative approach deployed by Strodthoff and Juttler [73] for

presenting the Reeb space of multiple scalar functions. This approach to representing the

Reeb space differs from the MDRG [71] by working directly with the Jacobi sets, rather than

the more recently proposed Jacobi structure.

5.4 Topological persistence and simplification

Persistence in multivariate data sets is more complex to define in comparison to the

univariate case. Simplification and persistence metrics can be defined on a number of

secondary structures computable from the multi-field topology. The concept of isosurface

statistics [48], [49] is extended to multivariate inputs through the use of Continuous

Scatterplots [58]. These can be defined to show relations between 𝑚 dimensional inputs with

𝑛 scalar fields; in the case where 𝑚 = 3 and 𝑛 = 1 the output approximates to the output

of Meyer et al. [49].

Multivariate data gives rise to multi-filtrations due to their parametrisation by more than one

variable; this leads to no definable compact invariants, such as the Betti numbers, existing in

multi-fields. Therefore, existing concepts, such as the persistence bar code [74], do not

directly generalise to multi-variate domains. However, this does not mean that persistence

and simplification cannot be applied, instead other approaches have been suggested. The

“rank invariant” is a method for representing persistence in a multi-field by generalising

upon the concept of Betti numbers present in univariate topology. For the univariate case,

the rank invariant and persistence bar code are the same [75]. The original algorithm used

to compute the rank invariant was exponential in time complexity, this was later improved

to polynomial time by reformulating the problem as an algebraic geometry problem [76].

The Jacobi set, where the gradient of multiple functions align or have a gradient of zero, can

assist in defining persistence measures [69]. When the multi-field is used to represent

temporal data this can be used to augment the univariate notion of persistence with a

lifetime parameter. This approach was used by Bremer et al. [77] to compute persistence in

the context of the Morse-Smale complex. However, when generalised to non-temporal

functions defining persistence as a feature of the Jacobi set becomes a non-trivial task [78].

5.5 The Reeb skeleton

The Reeb skeleton (Figure 7) is a simplified graph structure that takes into account the size

of connected components, allowing measures of persistence to be assigned to its arcs. An

extended Jacobi set, the Jacobi Structure, is used by the Reeb skeleton algorithm to aid

multivariate simplification [72].

The Jacobi structure [71] is a promising starting point for simplification due to its ability to

separate the Reeb space, as approximated by the JCN, into singular and regular components.

Just as in the univariate equivalent, the Reeb graph, singular nodes in the Jacobi structure

map to topological changes in the multi-field. To exploit this, the Reeb Skeleton extends the

concept of the Jacobi structure further, primarily to aid multi-dimensional simplification

[72].

The Reeb skeleton is generated as the dual graph of the singular and regular components

captured in the Jacobi structure. Visually, this means the Reeb skeleton translates the sheet-

like form of the Jacobi structure into a simplified skeletal form. The simplified graph data

structure allows measures of persistence to be assigned to arcs of the Reeb skeleton in a

similar manner to that of the Reeb graph. Lip pruning techniques, similar to the leaf

pruning method of simplification found in univariate topological structures [18] can then be

applied to progressively remove noisy features in the multi-field. Example persistence

measures that can be applied to the JCN include the accumulated volume of joint contour

slabs in a connected region.

Figure 7 An example of a Reeb skeleton, showing how it relates to the JCN (a); (b) shows the full,
non-simplified Reeb skeleton; (c) modifies the Reeb skeleton to highlight only critical changes in
the multivariate topology (red vertices); (d) shows how performing simplification using the Reeb
skeleton removes less significant regions of the topology; (e) after simplification, the Reeb
skeleton can be reduced to only key vertices; (f) the arrowed regions relate to the two surfaces.
Image courtesy of Chattopadhyay et al. [72].

6. Visualisation in higher dimensions

Name Dimension
𝑛

Common

name

Vertices Edges Faces Cells

0-cube 0 Point 1 - - -

1-cube 1 Line-

segment

2 1 - -

2-cube 2 Square 4 4 1 -

3-cube 3 Cube 8 12 6 1

4-cube 4 Tesseract 16 32 24 8

Table 6 Properties of hypercubes in dimensions zero to four.

When moving to higher dimensional spaces it is beneficial to generalise the terminology

used to describe the geometry. The 𝑛-dimensional analogue of the square is the hypercube,

often shortened to 𝑛-cube (see Table 6). When working in higher dimensional spaces it is

common to perform a simplicial sub-division of the 𝑛-cube into 𝑛-simplexes, this helps to

avoid the ambiguities often associated with MC style algorithms [79].

6.1 Projection and perception

Creating easily perceivable and topologically correct three-dimensional models for

projection on to flat surfaces, the computer monitor, is a difficult task. Volumes of data

become increasingly hard to visualize as their dimensionality increase; for example, by

introducing a temporal fourth-dimension. One of the major limiting factors is our in ability

to perceive things four-dimensionally. A metaphor for trying to understand four-

dimensions in a three-dimensional world is to consider the case of two-dimensional

creatures trying to understand a three-dimensional world. This is a thought exercise

discussed in [80], which also discusses how a four-dimensional Euclidean representation of

space-time relates to real world physics.

Existing projection methods are available that take a four-dimensional objects and display

them on a two-dimensional surface, usually in wire-frame form. Quite often the projections

are animated to show the object as it rotates on one or more axis; however, this can also be

adapted to allow the user to rotate the object through conventional approaches such as

mouse interaction. The effect of perspective and isometric projection are explored by

Hollasch [81] using tesseracts — the 4D hyper-cube. In addition, the use of ray-tracing in

four-dimensions can produce understandable images, as depth cueing is handled

automatically by the algorithm in the creation of shadows. However, the added complexity

of a fourth dimension in a looping ray tracing algorithm makes it time consuming and

potentially unworkable for real time display.

6.2 Computing surfaces in higher dimensions

Whilst presenting difficulties with regard to visualisation, it can be beneficial to compute

surfaces in higher dimensions. This is especially true in the case of volumetric data with a

temporal element; animation can often be used to reconstruct this form of data but that

presents its own perceptual issues. Computation of isosurfaces on fields existing in ℝ4

space can help to improve animations by providing interpolation between discrete time-

steps, resulting in smoother and easier to perceive animations. Alternatively the high-

dimensional topology can be sliced along arbitrary axes to provide a snap-shot with a

reduction in dimension (e.g. ℝ4 ↦ ℝ3).

An unavoidable consequence of upping the dimensionality of the input field is an increase

in the complexity of its storage and computation. An early example of computing surfaces

in > 3 dimensions is considered by Weigle and Banks [82] using a recursive technique to

split 𝑛-dimensional cells into 𝑛-simplexes. The resulting surfaces exist in four dimensions

and are able to be displayed using two techniques; stereographic projection (Section 6.1) or

slicing to reduce dimensionality. It is noted that the centroid division technique used to

break cells into simplexes used in this work is suboptimal (see Table 7), but can be improved

using lookup tables similar to those used in marching cubes. The technique was used in [83]

to compute the swept volumes of time-varying data generated from electromagnetic field

simulations, allowing them to be displayed as animations.

𝑛 Centroid division (2𝑛−1𝑛!) 𝑛!

2 4 2

3 24 6

4 192 24

5 1920 120

6 23040 720

Table 7 Number of simplexes generated using differing sub-division techniques in 𝒏 dimensions.

Extending MC into the fourth dimension, and beyond, was explored by Bhaniramka et al.

[84]. At the time of the report, a relatively small amount of work had been conducted in

studying isosurfaces beyond the third dimension. It was found that by extending MC into 4

dimensions the look-up table, following removal of symmetrical configurations, required

222 separate configurations. As with the 3D variation of MC, one aspect to be taken into

consideration is the dealing of ambiguous configurations; a mathematical proof of

correctness is provided to verify that the topological structures generated are valid. An

example use of this algorithm would be to present volume data with a time dimension by

selecting three-dimensional slices of the hyper-volume.

Figure 8 Peaks within a topological landscape (left) correspond to distinct topological features in
the Direct Volume Render (right). Image courtesy of Weber et al. [51].

6.3 Topological landscapes

An alternative approach of viewing contour information, the topological landscape, was

proposed by Weber et al. [51], using the contour tree to build a 3D terrain model (Figure 8).

The purpose of this is to harness the natural ability that humans have in understanding

terrain structure and use it to provide an easier to understand model of the underlying data

topology. Valleys in the terrain illustrate events where a contour splits into two or more

parts and peaks represent where two or more contours merge. Topological landscapes can

be applied to contour trees of any number of dimensions; hence, they can provide a useful

method for exploring what is happening in high dimensional data sets. The topological

landscape methodology was further expanded using a number of different methods for

laying out the data, primarily from established 2D visualisation techniques [85].

7. Conclusion

In this chapter we discussed problems existing in marching cubes algorithms relating to

topological correctness of the data. We demonstrated how, through the use of topology, a

correct representation of a scalar field can be captured using graph structures. These could

be used to seed topologically correct meshes for rendering, or to provide a means to analyse

the data. After providing a description of algorithms for data sets consisting of a single

variable, we showed how many of the techniques can be generalised to multivariate data.

Finally, we considered the techniques for displaying data existing in higher dimensions.

Acknowledgments

This work used the resources of the DiRAC Facility jointly funded by STFC, the Large

Facilities Capital Fund of BIS and Swansea University, and the DEISA Consortium

(www.deisa.eu), funded through the EU FP7 project RI-222919, for support within the

DEISA Extreme Computing Initiative. The work was also partly funded by EPSRC project:

EP/M008959/1. The authors would also like to thank Dr. Hamish Carr for his advice and

assistance throughout the duration of this work.

References

[1] W. E. Lorensen and H. E. Cline, “Marching Cubes: A High Resolution 3D Surface

Construction Algorithm,” in Computer Graphics (Proceedings of SIGGRAPH 87), 1987,

vol. 21, no. 4, pp. 163–169.

[2] L. P. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel, “Feature sensitive surface

extraction from volume data,” in Proceedings of the 28th annual conference on Computer

graphics and interactive techniques, 2001, pp. 57–66.

[3] G. M. Nielson, “Dual marching cubes,” in Proceedings of the conference on

Visualization’04, 2004, pp. 489–496.

[4] A. Bhattacharya and R. Wenger, “Constructing isosurfaces with sharp edges and

corners using cube merging,” in Computer Graphics Forum, 2013, vol. 32, no. 3pt1, pp.

11–20.

[5] T. S. Newman and H. Yi, “A survey of the marching cubes algorithm,” Comput.

Graph., vol. 30, no. 5, pp. 854–879, 2006.

[6] Y. Zhou, W. Chen, and Z. Tang, “An elaborate ambiguity detection method for

constructing isosurfaces within tetrahedral meshes,” Comput. Graph., vol. 19, no. 3,

pp. 355–364, 1995.

[7] M. J. Dürst, “Re: additional reference to marching cubes,” ACM SIGGRAPH Comput.

Graph., vol. 22, no. 5, p. 243, 1988.

[8] G. M. Nielson and B. Hamann, “The Asymptotic Decider: Removing the Ambiguity

in Marching Cubes,” in Visualization ’91, 1991, pp. 83–91.

[9] E. V Chernyaev, “Marching cubes 33: Construction of topologically correct

isosurfaces,” Inst. High Energy Physics, Moscow, Russ. Rep. CN/95-17, vol. 42, 1995.

[10] T. Lewiner, H. Lopes, A. W. Vieira, and G. Tavares, “Efficient implementation of

marching cubes’ cases with topological guarantees,” J. Graph. tools, vol. 8, no. 2, pp.

1–15, 2003.

[11] T. Etiene et al., “Topology verification for isosurface extraction,” IEEE Trans. Vis.

Comput. Graph., vol. 18, no. 6, pp. 952–965, 2012.

[12] L. Custodio, T. Etiene, S. Pesco, and C. Silva, “Practical considerations on Marching

Cubes 33 topological correctness,” Comput. Graph., vol. 37, no. 7, pp. 840–850, 2013.

[13] C. Montani, R. Scateni, and R. Scopigno, “A modified look-up table for implicit

disambiguation of marching cubes,” Vis. Comput., vol. 10, no. 6, pp. 353–355, 1994.

[14] G. M. Nielson, “On marching cubes,” Vis. Comput. Graph. IEEE Trans., vol. 9, no. 3,

pp. 283–297, 2003.

[15] H. Carr, “(No) more marching cubes,” in Proceedings of the Sixth Eurographics/Ieee

VGTC conference on Volume Graphics, 2007, pp. 81–90.

[16] H. Edelsbrunner, J. Harer, and A. Zomorodian, “Hierarchical Morse complexes for

piecewise linear 2-manifolds,” in Proceedings of the seventeenth annual symposium on

Computational geometry, 2001, pp. 70–79.

[17] P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci, “A multi-resolution

data structure for two-dimensional Morse-Smale functions,” in Proceedings of the

14th IEEE Visualization 2003 (VIS’03), 2003, p. 19.

[18] H. Carr, J. Snoeyink, and M. van de Panne, “Simplifying flexible isosurfaces using

local geometric measures,” in Proceedings of the conference on Visualization’04, 2004,

pp. 497–504.

[19] A. G. Landge et al., “In-situ feature extraction of large scale combustion simulations

using segmented merge trees,” in High Performance Computing, Networking, Storage

and Analysis, SC14: International Conference for, 2014, pp. 1020–1031.

[20] H. Edelsbrunner, D. Letscher, and A. Zomorodian, “Topological persistence and

simplification,” Discret. Comput. Geom., vol. 28, no. 4, pp. 511–533, 2002.

[21] H. Carr, J. Snoeyink, and U. Axen, “Computing contour trees in all dimensions,”

Comput. Geom., vol. 24, pp. 75–94, 2003.

[22] R. L. Boyell and H. Ruston, “Hybrid techniques for real-time radar simulation,” in

Proceedings of the November 12-14, 1963, fall joint computer conference, 1963, pp. 445–

458.

[23] T. Banchoff and others, “Critical points and curvature for embedded polyhedra,” J.

Differ. Geom., vol. 1, no. 3–4, pp. 245–256, 1967.

[24] H. Freeman and S. P. Morse, “On searching a contour map for a given terrain

elevation profile,” J. Franklin Inst., vol. 284, no. 1, pp. 1–25, 1967.

[25] V. Pascucci and K. Cole-McLaughlin, “Efficient computation of the topology of level

sets,” in Proceedings of the conference on Visualization’02, 2002, pp. 187–194.

[26] M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and D. Schikore, “Contour

trees and small seed sets for isosurface traversal,” Proc. Thirteen. Annu. Symp.

Comput. Geom. - SCG ’97, pp. 212–220, 1997.

[27] S. P. Tarasov and M. N. Vyalyi, “Construction of contour trees in 3D in O (n log n)

steps,” in Proceedings of the fourteenth annual symposium on Computational geometry,

1998, pp. 68–75.

[28] H. Carr and M. Van Panne, “Topological manipulation of isosurfaces,” The

University of British Columbia (Canada), 2004.

[29] H. Carr and J. Snoeyink, “Path seeds and flexible isosurfaces using topology for

exploratory visualization,” in Proceedings of the symposium on Data visualisation 2003,

2003, pp. 49–58.

[30] M. De Berg and M. van Kreveld, “Trekking in the Alps Without Freezing or Getting

Tired,” Algorithmica, vol. 18. pp. 306–323, 1997.

[31] Y.-J. Chiang, T. Lenz, X. Lu, and G. Rote, “Simple and optimal output-sensitive

construction of contour trees using monotone paths,” Comput. Geom., vol. 30, no. 2,

pp. 165–195, 2005.

[32] S. Takahashi, T. Ikeda, Y. Shinagawa, T. L. Kunii, and M. Ueda, “Algorithms for

extracting correct critical points and constructing topological graphs from discrete

geographical elevation data,” in Computer Graphics Forum, 1995, vol. 14, no. 3, pp.

181–192.

[33] C. Gueunet, P. Fortin, J. Jomier, and J. Tierny, “Contour Forests: Fast Multi-threaded

Augmented Contour Trees,” 2016.

[34] G. Reeb, “Sur les points singuliers d’une forme de pfaff completement integrable ou

d’une fonction numerique [on the singular points of a completely integrable pfaff

form or of a numerical function],” Comptes Rendus Acad. Sci. Paris, vol. 222, pp. 847–

849, 1946.

[35] K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci,

“Loops in Reeb graphs of 2-manifolds,” in Proceedings of the nineteenth annual

symposium on Computational geometry, 2003, pp. 344–350.

[36] V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas, “Robust on-line

computation of Reeb graphs: simplicity and speed,” in ACM Transactions on Graphics

(TOG), 2007, vol. 26, no. 3, p. 58.

[37] I. Fujishiro, Y. Takeshima, T. Azuma, and S. Takahashi, “Volume data mining using

3D field topology analysis,” IEEE Comput. Graph. Appl., no. 5, pp. 46–51, 2000.

[38] Y. Shinagawa and T. L. Kunii, “Constructing a Reeb graph automatically from cross

sections,” IEEE Comput. Graph. Appl., no. 6, pp. 44–51, 1991.

[39] Y. Shinagawa, T. L. Kunii, and Y. L. Kergosien, “Surface coding based on Morse

theory,” IEEE Comput. Graph. Appl., no. 5, pp. 66–78, 1991.

[40] W. Harvey, Y. Wang, and R. Wenger, “A randomized O (m log m) time algorithm

for computing Reeb graphs of arbitrary simplicial complexes,” in Proceedings of the

twenty-sixth annual symposium on Computational geometry, 2010, pp. 267–276.

[41] J. Tierny, A. Gyulassy, E. Simon, and V. Pascucci, “Loop surgery for volumetric

meshes: Reeb graphs reduced to contour trees,” Vis. Comput. Graph. IEEE Trans., vol.

15, no. 6, pp. 1177–1184, 2009.

[42] H. Doraiswamy and V. Natarajan, “Efficient algorithms for computing Reeb

graphs,” Comput. Geom., vol. 42, no. 6, pp. 606–616, 2009.

[43] Doraiswamy, Harish and Natarajan, Vijay, H. Doraiswamy, and V. Natarajan,

“Output-sensitive construction of Reeb graphs,” Vis. Comput. Graph. IEEE Trans.,

vol. 18, no. 1, pp. 146–159, 2012.

[44] H. Doraiswamy and V. Natarajan, “Computing Reeb graphs as a union of contour

trees,” Vis. Comput. Graph. IEEE Trans., vol. 19, no. 2, pp. 249–262, 2013.

[45] G. Wyvill, C. McPheeters, and B. Wyvill, “Data structure for soft objects,” Vis.

Comput., vol. 2, no. 4, pp. 227–234, 1986.

[46] H. Carr, J. Snoeyink, and M. van de Panne, “Flexible isosurfaces: Simplifying and

displaying scalar topology using the contour tree,” Comput. Geom., vol. 43, no. 1, pp.

42–58, 2010.

[47] C. L. Bajaj, V. Pascucci, and D. R. Schikore, “The contour spectrum,” in Proceedings of

the 8th conference on Visualization’97, 1997, pp. 167--173.

[48] H. Carr, D. Brian, and D. Brian, “On histograms and isosurface statistics,” IEEE

Trans. Vis. Comput. Graph., vol. 12, no. 5, pp. 1259–1266, 2006.

[49] M. Meyer, C. E. Scheidegger, J. M. Schreiner, B. Duffy, H. Carr, and C. T. Silva,

“Revisiting histograms and isosurface statistics,” IEEE Trans. Vis. Comput. Graph.,

vol. 14, no. 6, pp. 1659–1666, 2008.

[50] Y. Takeshima, S. Takahashi, I. Fujishiro, and G. M. Nielson, “Introducing topological

attributes for objective-based visualization of simulated datasets,” in Volume

Graphics, 2005. Fourth International Workshop on, 2005, pp. 137–236.

[51] G. H. Weber, P.-T. Bremer, and V. Pascucci, “Topological landscapes: A terrain

metaphor for scientific data,” Vis. Comput. Graph. IEEE Trans., vol. 13, no. 6, pp.

1416–1423, 2007.

[52] K. Beketayev, D. Yeliussizov, D. Morozov, G. H. Weber, and B. Hamann,

“Measuring the distance between merge trees,” in Topological Methods in Data

Analysis and Visualization III, Springer, 2014, pp. 151–165.

[53] H. Bunke and K. Riesen, “Graph edit distance: optimal and suboptimal algorithms

with applications,” Anal. complex networks, from Biol. to Linguist., pp. 113–143, 2009.

[54] H. Saikia, H.-P. Seidel, and T. Weinkauf, “Extended Branch Decomposition Graphs:

Structural Comparison of Scalar Data,” Comput. Graph. Forum, vol. 33, no. 3, pp. 41–

50, 2014.

[55] D. M. Thomas and V. Natarajan, “Symmetry in scalar field topology,” Vis. Comput.

Graph. IEEE Trans., vol. 17, no. 12, pp. 2035–2044, 2011.

[56] D. Laney, P.-T. Bremer, A. Mascarenhas, P. Miller, and V. Pascucci, “Understanding

the structure of the turbulent mixing layer in hydrodynamic instabilities,” Vis.

Comput. Graph. IEEE Trans., vol. 12, no. 5, pp. 1053–1060, 2006.

[57] H. Carr, G. Zhao, J. Tierny, A. Chattopadhyay, and A. Knoll, “Fiber Surfaces:

Generalizing Isosurfaces to Bivariate Data,” in Computer Graphics and Visual

Computing (CGVC) 2015, 2015, pp. 63–64.

[58] S. Bachthaler and D. Weiskopf, “Continuous scatterplots,” IEEE Trans. Vis. Comput.

Graph., vol. 14, no. 6, pp. 1428–1435, 2008.

[59] N. Kotava et al., “Volume rendering with multidimensional peak finding,” in

Visualization Symposium (PacificVis), 2012 IEEE Pacific, 2012, pp. 161–168.

[60] H. A. Carr, J. Tierny, and G. H. Weber, “Pathological and Test Cases For Reeb

Analysis,” in Topology-Based Methods in Visualization 2017 (TopoInVis 2017), 2017.

[61] H. Edelsbrunner, J. Harer, and A. K. Patel, “Reeb spaces of piecewise linear

mappings,” in Proceedings of the twenty-fourth annual symposium on Computational

geometry, 2008, pp. 242–250.

[62] H. Carr and D. Duke, “Joint Contour Nets,” IEEE Trans. Vis. Comput. Graph., vol. 20,

no. 8, pp. 1100–1113, 2013.

[63] D. J. Duke, F. Hosseini, and H. Carr, “Parallel computation of multifield topology:

experience of Haskell in a computational science application,” in Proceedings of the

3rd ACM SIGPLAN workshop on Functional high-performance computing, 2014, pp. 11–

21.

[64] D. J. Duke and F. Hosseini, “Skeletons for distributed topological computation,” in

Proceedings of the 4th ACM SIGPLAN Workshop on Functional High-Performance

Computing, 2015, pp. 35–44.

[65] D. Duke, H. Carr, A. Knoll, N. Schunck, H. A. Nam, and A. Staszczak, “Visualizing

nuclear scission through a multifield extension of topological analysis,” Vis. Comput.

Graph. IEEE Trans., vol. 18, no. 12, pp. 2033–2040, 2012.

[66] N. Schunck, D. Duke, H. Carr, and A. Knoll, “Description of induced nuclear fission

with Skyrme energy functionals: Static potential energy surfaces and fission

fragment properties,” Phys. Rev. C, vol. 90, no. 5, p. 54305, 2014.

[67] N. Schunck, D. Duke, and H. Carr, “Description of induced nuclear fission with

Skyrme energy functionals. II. Finite temperature effects,” Phys. Rev. C, vol. 91, no. 3,

p. 34327, 2015.

[68] Z. Geng, D. Duke, H. Carr, and A. Chattopadhyay, “Visual analysis of hurricane

data using joint contour net,” in Computer Graphics and Visual Computing (CGVC),

2014.

[69] H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci, “Local and global

comparison of continuous functions,” in Visualization, 2004. IEEE, 2004, pp. 275–280.

[70] H. Edelsbrunner and J. Harer, “Jacobi sets of multiple Morse functions,” Found.

Comput. Math. Minneap., vol. 8, pp. 37–57, 2002.

[71] A. Chattopadhyay, H. Carr, D. Duke, and Z. Geng, “Extracting Jacobi Structures in

Reeb Spaces,” in EuroVis-Short Papers, 2014.

[72] A. Chattopadhyay, H. Carr, D. Duke, Z. Geng, and O. Saeki, “Multivariate topology

simplification,” arXiv Prepr. arXiv1509.04465, 2015.

[73] B. Strodthoff and B. Jüttler, “Layered Reeb graphs of a spatial domain,” Bookl. Abstr.

EuroCG, pp. 21–24, 2013.

[74] A. Zomorodian and G. Carlsson, “Computing persistent homology,” Discrete

Comput. Geom., vol. 33, no. 2, pp. 249–274, 2005.

[75] G. Carlsson and A. Zomorodian, “The theory of multidimensional persistence,”

Discrete Comput. Geom., vol. 42, no. 1, pp. 71–93, 2009.

[76] G. Carlsson, G. Singh, and A. Zomorodian, “Computing multidimensional

persistence,” in Algorithms and computation, Springer, 2009, pp. 730–739.

[77] P. T. Bremer et al., “Topological feature extraction and tracking,” in Journal of

Physics: Conference Series, 2007, vol. 78, no. 1, p. 12007.

[78] N. Suthambhara and V. Natarajan, “Simplification of jacobi sets,” in Topological

Methods in Data Analysis and Visualization, Springer, 2011, pp. 91–102.

[79] G. M. Nielson and B. Hamann, “The asymptotic decider: resolving the ambiguity in

marching cubes,” in Proceedings of the 2nd conference on Visualization’91, 1991, pp. 83–

91.

[80] R. von Bitter Rucker, Geometry, relativity and the fourth dimension. Dover Publications,

1977.

[81] S. R. Hollasch, “Four-Space Visualization of 4D Objects,” Arizona State University,

1991.

[82] C. Weigle and D. C. Banks, “Complex-valued contour meshing,” in Proceedings of the

7th conference on Visualization’96, 1996, p. 173--ff.

[83] C. Weigle and D. C. Banks, “Extracting iso-valued features in 4-dimensional scalar

fields,” in Proceedings of the 1998 IEEE symposium on Volume visualization, 1998, pp.

103–110.

[84] P. Bhaniramka, R. Wenger, and R. Crawfis, “Isosurfacing in higher dimensions,”

Proc. Vis. 2000. VIS 2000 (Cat. No.00CH37145), 2000.

[85] W. Harvey and Y. Wang, “Topological landscape ensembles for visualization of

scalar-valued functions,” Comput. Graph. Forum, vol. 29, pp. 993–1002, 2010.

	Abstract
	1. Introduction
	2. Topological Irregularities in Marching Cubes
	3. Topology driven visualisation
	3.1 Terminology
	3.2 Merge Trees
	3.3 The contour tree
	3.4 The Reeb graph
	3.5 Seeded contours
	3.6 Topological persistence and simplification
	3.7 Topology in Direct Volume Rendering
	3.8 Temporal univariate scalar data

	4. Marching Cubes methods for multivariate data
	5. Multivariate topological visualisation
	5.1 The Reeb space
	5.2 The joint contour net
	5.3 Related topological structures
	5.4 Topological persistence and simplification
	5.5 The Reeb skeleton

	6. Visualisation in higher dimensions
	6.1 Projection and perception
	6.2 Computing surfaces in higher dimensions
	6.3 Topological landscapes

	7. Conclusion
	Acknowledgments
	References

