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In this paper we demonstrate the use of multivariate topological algorithms to analyse and interpret 
Lattice Quantum Chromodynamics (QCD) data. Lattice QCD is a long established field of theoretical 
physics research in the pursuit of understanding the strong nuclear force. Complex computer simulations 
model interactions between quarks and gluons to test theories regarding the behaviour of matter in a 
range of extreme environments. Data sets are typically generated using Monte Carlo methods, providing 
an ensemble of configurations, from which observable averages must be computed. This presents issues 
with regard to visualisation and analysis of the data as a typical ensemble study can generate hundreds 
or thousands of unique configurations.
We show how multivariate topological methods, such as the Joint Contour Net, can assist physicists in 
the detection and tracking of important features within their data in a temporal setting. This enables 
them to focus upon the structure and distribution of the core observables by identifying them within the 
surrounding data. These techniques also demonstrate how quantitative approaches can help understand 
the lifetime of objects in a dynamic system.

© 2019 Elsevier Inc. All rights reserved.
1. Introduction

Recent advances in multivariate topological visualisation have 
provided new approaches for detecting interesting phenomena in 
scalar fields of more than one variable. Much of this work builds 
upon existing techniques used to understand the topology of scalar 
fields — where critical events, such as the creation and merging of 
unique features, are captured using graph structures. The ability 
to examine multiple fields in parallel also presents a method for 
tracking objects in higher dimensional data sets.

In this paper we use the joint contour net (JCN) algorithm [1]
to track objects with a finite lifetime across multiple time steps. 
(Anti-)Instantons are 4D “pseudo-particles” studied by domain sci-
entists that are localised to specific locations in 4D Euclidean 
space-time. Existing statistical physics methods are able to predict 
the existence of these objects; however, more complex properties 
such as their structure and lifetime are more difficult to evaluate.

* Corresponding author.
E-mail addresses: 798295@swansea.ac.uk (D.P. Thomas), rita.borgo@kcl.ac.uk

(R. Borgo), r.s.laramee@swansea.ac.uk (R.S. Laramee), s.j.hands@swansea.ac.uk
(S.J. Hands).
https://doi.org/10.1016/j.bdr.2019.02.003
2214-5796/© 2019 Elsevier Inc. All rights reserved.
To demonstrate how multivariate topological visualisation tech-
niques can benefit lattice QCD scientists we focus upon analysing 
a single instanton pre-identified by existing physics methods. Due 
to the Euclidean nature of lattice QCD, where space and time are 
treated equivalently, the techniques used in this paper can also be 
used to scan volumes with a temporal component (xyt , xzt , yzt) 
along a spatial axis. Whilst not seen as a direct replacement for 
viewing these fields in their native 4D embeddings, this technique 
presents an interesting approach to pin-point critical events in the 
topology of a single evolving field.

By carrying out this case study we intend to answer the follow-
ing questions:

• Can we use the JCN to track an instanton between multiple 
neighbouring time slices?

• Can extra properties about instantons be determined through 
multivariate persistence measures?

• Can the Reeb skeleton be used to simplify the field and sum-
marise properties of observables?

The remainder of this paper begins with an overview of the 
necessary background information in Section 2. Section 3 briefly 
introduces the application used to carry out the work in this pa-
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per. We then give a description of the observed data in Section 4, 
this forms the basis of a quantitative approach to evaluating the 
topological structure of the data in Section 5. We then show an 
experimental use of the JCN to locate and study the structure of 
an (anti-)instanton within an entire 4D data set in Section 6. The 
paper is concluded in Section 7 where we summarise our findings 
from the case study.

2. Background

In this section we introduce the relevant background informa-
tion required to read the rest of the paper. We begin by pro-
viding an overview of multivariate topological visualisation algo-
rithms, before introducing aspects of lattice QCD that are relevant 
to this paper. Much of multivariate topology uses a generalisation 
of univariate topology concepts where structures such as the Reeb 
graph [2] summarise the topology of a scalar field. For a more in 
depth overview of the use of topology in visualisation we refer the 
reader to the survey paper by Heine et al. [3].

2.1. Multivariate topological visualisation

The Reeb space is a generalisation of the Reeb graph enabling 
multivariate or temporal data to analysed. The first discussion of 
using the Reeb space to compute topological structure of multiple 
functions is presented by Edelsbrunner et al. [4], where it is sug-
gested that the Reeb space can be modelled mathematically in the 
form f : M �→ R

k , where M represents the domain and f the out-
put of k scalar functions. For the simple case, where k = 1, this 
is directly comparable to the Reeb graph. The Reeb space extends 
this formulation to situations where k ≥ 2.

2.1.1. The joint contour net
Carr et al. [1] presented the first discrete representation of the 

Reeb space using the Joint Contour Net (JCN). For functions of n
variables defined in an Rm dimensional space the algorithm ap-
proximates the Reeb space as a number of multivariate contours 
named joint contour slabs. These represent connected regions of 
the domain with respect to the isovalue of multiple functions. In 
situations where n ≥ m the JCN can still be computed; however, 
the output is not an approximation of the Reeb space but in-
stead a subdivision of the input geometry over n variables. The JCN 
captures the Reeb space as an undirected graph structure, where 
vertices represent slabs of n isovalue tuples, and edges are used 
to show adjacency between regions. An example JCN of two scalar 
functions is presented in Figs. 1 and 2. The JCN has previously been 
used to study multivariate data originating from nuclear scission 
simulations [5–7] and hurricane measurements [8].

The Reeb skeleton is a simplified graph structure that takes 
into account the size of connected components, allowing mea-
sures of persistence to be assigned to its arcs to aid multivari-
ate simplification [9]. Lip pruning techniques, similar to the leaf 
pruning method of simplification found in univariate topological 
structures [10] can then be applied to progressively remove noisy 
features in the multi-field. Example persistence measures applied 
to the JCN include the accumulated volume of joint contour slabs 
in a connected region. Alternatively, the Reeb skeleton can be used 
to quantify regions of the multivariate topology for analysis.

2.2. Lattice quantum chromodynamics

Kenneth Wilson was the first physicist to suggest that a dis-
crete 4D lattice could be used to model properties of quark-gluon 
fields [11]. The lattice is a hyper-torus in Euclidean space-time, 
meaning that the three spatial dimensions and the time dimen-
sion are treated as equal. Periodic boundary conditions, where the 
minima and maxima on each axis are connected, are used so that 
it is impossible to consider any position on the lattice to be on a 
boundary. The scale at which lattice QCD acts is typically in the 
region of 2 to 4 femtometres (10−15 m), with state of the art sim-
ulations having a lattice spacing a of 0.02 to 0.04 femtometres.

Quarks are located on the lattice at positions with integer in-
dices referred to as sites. From each lattice site four link variables
are used to model the gluon potential in the x, y, z and t directions 
between two sites. Each link variable is a member of the special 
unitary group of matrices, identified using the notation SU(n). The 
value of n represents the number of charge colours used in the 
gauge theory, with true QCD defined with n = 3. However, in this 
work we use a simplified two colour model of the theory using 
SU(2) matrices. Colour is used in this context to parametrise the 
concept of colour neutrality in a form similar to that of positive 
and negative charge. One of the primary reasons for using a sim-
plified model is that it allows us the freedom to vary the chemical 
potential of the system [12]. Chemical potential represents the en-
ergy change as either a quark is added or an anti-quark is removed 
from a system. Varying the parameter enables exotic forms of mat-
ter, such as neutron star cores, to be simulated.

The discrete nature of the lattice means it is possible to calcu-
late paths around sites in space and time. Certain configurations 
of closed loops on the lattice are used to generate the scalar field 
observables of lattice QCD. The most basic unit closed loop in any 
directions is commonly referred to as a plaquette; computing the 
average plaquette in all 4 dimensions produces the Wilson action
observable. In this work we mainly focus upon the topological 
charge density field, computed as a loop in all four space-time 
dimensions from each site [13]. Regions of the lattice where the 
topological charge density reach a minima or maxima indicate the 
presence of (anti-)instanton pseudo-particles — one of the primary 
observables of lattice QCD. These have a finite extent in the time 
dimension and are able to appear and disappear, unlike real parti-
cles.

In order to reveal the structure of (anti-)instanton observables, 
the effect of quantum fluctuations must be minimised through a 
noise reduction technique known as cooling. After applying cool-
ing what should remain are long range physical interactions that 
characterise the existence of an (anti-)instanton; however, overly 
aggressive use of cooling can result in the destruction of the core 
observables.

3. Implementation

In this work we use the JCN implementation supplied as 
part of the Multifield Extension of Topological Analysis (META) 
project [14]. This provides a number of filters for multivariate 
data that can be applied to the visualisation pipeline as part of 
a VTK [15] workflow. Filters are included for creating an initial JCN 
decomposition of the input fields that are able to be presented in 
graph form. As part of the process of creating the JCN individual 
joint contour slabs, in the form of polygon meshes, are created as 
the union of multiple smaller fragments.

Input fields are placed on to a common set of sampling points 
in three dimensions and each cubic cell is subdivided into 6 tetra-
hedra using a Freudenthal subdivison. In order to handle period-
icity an additional cell is constructed to link the minimum and 
maximum samples on each axis.

3.1. Interactive user interface

This case study was performed using a modified version of 
the interactive tool used by Geng et al. for the analysis of hur-
ricane data [8]. Modifications of the software were largely made 
to facilitate collection of quantitative measurements for analysis. 
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Fig. 1. Two simple scalar functions defined on a simplicial grid (left) where the dotted lines represent the quantisation intervals. The quantised contour tree for each function 
(right) is shown mapped to scalar field in the centre.
Image taken from Duke et al. [5].

Fig. 2. The JCN capturing the bivariate topology of the two simple functions shown in Fig. 1. The bivariate field is decomposed by overlaying the quantisation intervals of the 
two input fields (dotted line). A vertex is placed at the barycentre of each region, or joint contour slab, and edges mark adjacency.
Image taken from Duke et al. [5].
In addition, the transfer functions used to colour the glyphs have 
been modified to enhance feedback for lattice QCD fields that are 
often centred on zero [16–18]. Figs. 3 and 4 give a visual overview 
of the user interface.

4. Visual analysis of lattice objects in four dimensions

In the following section we give details of how an (anti-)instan-
ton can be located and tracked using the JCN. The entire workflow 
is given, beginning with the steps a domain scientist would use to 
locate a potentially interesting observable in a typical study. We 
also discuss important considerations such as the slab size param-
eter which defines the resolution the scalar field is captured at.

4.1. Selecting a candidate configuration for visual analysis

Data used in this case study originates from a lattice with 16 
spatial sites and 8 time sites, otherwise denoted as a 163 × 8 or 
“hot” lattice on account of the short temporal extent. This particu-
lar lattice is chosen as it features relatively few time slices in com-
parison to other ensembles where the temporal extent can exceed 
32 steps. The JCN is demonstrated capturing a single topological 
object across the temporal axis including the periodic boundary 
between t = 8 and t = 1. We also use the short temporal axis to 
push the limits of the JCN by queuing multiple time slices on the 
multi-field to see if we are able to observe a signature for the en-
tire 4D hyper-volume (Sec. 6).

The configuration used in this study conp0050 originates from 
an ensemble with a chemical potential μ = 0.7. The lattice is pre-
cooled for 30 iterations to a stable state, validated by inspection of 
the total topological charge density and peak Wilson action graphs. 
At this point in the cooling process the total topological charge 
Q T O T remains flat for many cooling iterations (Fig. 5) and the peak 
Wilson action S P E AK follows a smooth trajectory (Fig. 6).

The stability of the lattice is also reflected by monitoring the 
location of minima and maxima in the topological charge density 
Q and Wilson action S fields (Table 1). In this interval of the cool-
ing process the predicted locations of field minima and maxima 
are extremely stable, indicating that the same object is persisting 
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Fig. 3. The user interface used to explore temporal lattice QCD data as captured by the JCN. The JCN captures the topology as a graph structure (1) — displayed here in a 
spring layout. Each JCN glyph (2) represents a slab (or quantised contour) using scale to provide feedback on the overall size of the slab. Glyphs are coloured by isovalue (3), 
where the top half of each glyph represents the first input field and the bottom the second input. Also visible is the Reeb skeleton (4) which captures the JCN in a simplified 
form; red glyphs represent major changes in topological connectivity and blue glyphs represent relatively stable regions of topological structure. Slabs are only rendered (5) 
to reflect any selections made by the user; in this view nothing has been selected. (For interpretation of the colours in the figure(s), the reader is referred to the web version 
of this article.)

Fig. 4. The user interface allows the user to select nodes in the Reeb skeleton (1) or JCN (2) using rubber band selection. Green glyphs in the Reeb skeleton correspond 
directly to the blue glyphs in the JCN view. Selected vertices are displayed as quantised contours (3) using a colour transfer function (4) determined by the bivariate input 
fields.

Fig. 5. Total topological charge Q T O T .
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Fig. 6. Peak Wilson action S P E AK .

Table 1
The location on the lattice of global minima and maxima in the conp0050 configuration. Changes between cooling 
iterations are highlighted in bold.

Cools S M A X Q M A X Q M I N

27 (11, 4, 13, 5) (11, 4, 13, 5) (6, 2, 7, 2)
28 (9, 8, 10, 5) (9, 8, 10, 5) (6, 2, 7, 2)
29 (9, 8, 10, 5) (9, 8, 10, 5) (6, 2, 7, 2)
30 (9, 8, 10, 5) (9, 8, 10, 5) (6, 2, 7, 2)
31 (9, 8, 10, 5) (9, 8, 10, 5) (6, 2, 7, 2)

Cools S M A X Q M A X Q M I N

32 (9, 8, 10, 5) (9, 8, 10, 5) (6, 2, 7, 2)
33 (9, 8, 10, 5) (9, 8, 10, 5) (6, 2, 7, 2)
34 (9, 8, 10, 5) (9, 8, 10, 5) (6, 2, 7, 2)
35 (9, 8, 10, 5) (9, 8, 10, 5) (6, 2, 7, 2)
36 (9, 8, 10, 5) (9, 8, 10, 5) (6, 2, 7, 2)
throughout. The location of maxima in the Wilson action SM A X

and topological charge density Q M A X coincide predicting the pres-
ence of an (anti-)instanton.

4.2. Input fields

In order to use the 4D topological charge density with the JCN 
algorithm [14] the dimensionality is reduced to 3D by slicing along 
the t axis. Each JCN in this case study is constructed from two 
neighbouring time-slices (tn , tn+1), additionally as the time axis is 
also periodic in lattice QCD the JCN (tmax(n), tmin(n)) is a valid input 
configuration. Hence, for the 16 ×8 ensemble, as used in this study, 
we preserve temporal periodicity by computing a JCN for (t8, t1).

4.2.1. Slab size parameter
Throughout this study the JCN slab size parameter is fixed 

dividing the topological charge density, with approximate range 
[−45.0, 45.0], into 29 = 512 intervals to give a slab size of 
0.17578125. Fig. 7 visualises the instanton as 3 consecutive tem-
poral objects, generated as interval contours at the specified slab 
size. The green shades of each object, used to show neutral iso-
values, show the outer layers of the instanton hide a dense core 
at the field maxima. The same object is present in each time step; 
however, its structure constantly evolves with time. Multivariate 
persistence measures can be used to capture this information at 
the specified slab size as demonstrated in Sec. 5.

4.3. Global location of (anti-)instanton observables

Fig. 8 presents the eight separate JCNs created by evaluat-
ing each pair (tn, tn+1) of temporal fields. A fixed colour transfer 
function is used, based upon on the peak magnitude in four-
dimensions, in order to present a true representation of potential 
(anti-)instantons in the data. This technique was chosen as lat-
tice QCD observables must be considered as global extrema in 4D, 
rather than as localised between two time steps.

Initially it is possible to locate an anti-instanton in the JCN 
for t = (1, 2) by identifying the object as a global minima using 
the coloured glyphs (Fig. 9). The object can also be detected in 
t = (2, 3) using the same approach; however, the bottom half of 
the glyph turns green to indicate a neutral isovalue. The struc-
ture of the anti-instanton continues to persist in the data beyond 
this time slice despite the change in isovalue. Recovery of the 
anti-instanton slab structure in later time slices requires some ex-
ploration of JCN branches using knowledge of the objects location. 
The anti-instanton becomes a prominent feature in the bivariate 
topology at t = (8, 1) where the coloured glyphs indicate the pres-
ence of a global minima.

Also present in the JCN overview (Fig. 8) is a global max-
ima which first becomes prominent in the multivariate glyphs at 
t = (4, 5). This coincides with the output of the FORTRAN code 
which predicts the presence of an instanton at t = 5. The instan-
ton quickly begins to fade into the surrounding lattice structure at 
t = (5, 6) where the multivariate glyphs indicate a return to more 
neutral isovalues (Fig. 10).

Several other localised features exist in the data at various 
points in the temporal JCNs. A second potential anti-instanton ap-
pears in the JCN at t = (7, 8), continuing to exist in parallel to the 
main anti-instanton observable at t = (8, 1). The JCN offers an in-
teresting approach to examining the interactions between multiple 
temporally localised lattice objects. Lattice observables in neigh-
bouring time slices could potentially have an influence over the 
geometric structure of other objects.
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Fig. 7. View of the main instanton observable as univariate slabs.

Fig. 8. Using the JCN to locate the most prominent (anti-)instantons (by magnitude) across the time axis. Less prominent (anti-)instantons also appear in the data but are not 
labelled.
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Fig. 9. An anti-instanton can be located in the t = (1,2) JCN as the branch with blue glyphs. This object continues to exist for several time steps.

Fig. 10. An instanton can be located in the t = (5, 6) JCN as the branch with red & yellow glyphs. The bottom half of the glyphs indicate that the topological charge density 
quickly drops off from a global peak at t = 5.
4.4. Visually tracking an instanton across the temporal axis

In the following section the bivariate topology, as captured by 
the JCN and Reeb skeleton, is examined in greater detail. We be-
gin by looking at the identified global maxima in four dimensions, 
predicted by the cooling code as being at (9, 8, 10, 5) and continue 
across the periodic boundary back to the origin.
Time steps t = 4 and t = 5. The instanton is located by examining 
the JCN vertices using the coloured glyphs relating to isovalue. The 
JCN, when drawn in domain layout, shows the approximate loca-
tion of barycentre of the slabs making up the instanton. Displaying 
the slab geometry makes it possible to validate that the location of 
the object agrees with the predicted location (9, 8, 10, 5) from the 
cooling code. The instanton structure is the most prominent region 
of the bivariate topology captured in the Reeb skeleton.
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Fig. 11. The JCN in domain layout for t = (8, 1) displayed alongside the joint contour slabs. The selected glyphs (11) represent the instanton and correlate with the slab 
structure.
Selecting Reeb skeleton vertices highlights common vertices in 
the JCN. Vertices in the Reeb skeleton share a one-to-many rela-
tionship with the JCN as the Reeb skeleton collapses regions of 
path connected slabs into a single vertex. In both fields the in-
stanton is surrounded by slabs with low isovalue, represented by 
green glyphs — relating to the region of percolation on the lattice 
where topological charge density centres on zero. The Reeb skele-
ton facilitates the removal of the outer layers of the instanton by 
considering it as topological noise due to low persistence.

Time steps t = 5 and t = 6. The Reeb skeleton highlights two sig-
nificant features for t = (5, 6). The most prominent feature is the 
instanton, but a secondary feature also stands out in the Reeb 
skeleton and JCN. Examination of the secondary object as slabs 
and using the JCN shows a relatively small feature made up of 
a number of densely packed layers. Isovalues of the object in both 
temporal fields reveal that the topological charge density at the 
inner core is neutral, indicated by the green coloured glyphs. This 
allows it to be concluded that although a significant feature in the 
lattice topology this object is not a potential (anti-)instanton.

Time steps t = 6 and t = 7. The instanton is located using the JCN 
as significant feature of the topology. At t = 6 the instanton ap-
pears as a maxima in the topological charge density field; however, 
at t = 7 the isovalue of the instanton is drastically reduced to neu-
tral. The Reeb skeleton also identifies a potential anti-instanton, 
existing as a local minima at t = 7. Also present is a secondary 
maxima that replaces the instanton structure as the local maxima 
at time slice t = 7.

Time steps t = 7 and t = 8. The instanton structure continues to 
remain visible in the t = (7, 8) JCN. The object becomes a less sig-
nificant feature of the JCN with green glyphs revealing that the 
isovalue has reduced to near zero. However, enough topological 
structure remains to separate the instanton from the surrounding 
region of percolation. Due to reduction of isovalue range repre-
senting the object the Reeb skeleton discards the instanton, instead 
determining it to be topological noise.

Time steps t = 8 and t = 1. At standard resolution the JCN, with 
inputs set to t = 8 and t = 1, failed to reveal any structure re-
lating to the instanton observable. However, when the slab size 
is decreased the instanton can be isolated from the surrounding 
topology charge density. A halving of the slab size to 0.087890625, 
giving 210 = 1024 intervals, is sufficient to allow the object to be 
located. Examination of the geometric structure of the instanton, 
through the joint contour slabs, reveals that the shape found in 
earlier time slices begins to merge into the surrounding lattice 
field. However, it is possible to confirm that the selected object 
relates to the instanton by observing the JCN in domain layout 
(Fig. 11).

Time steps t = 1 and t = 2. The JCN for time-steps t = (1, 2) re-
veals that the instanton can still be differentiated from the sur-
rounding topological charge density by again halving the slab size 
to 0.087890625. Evidence of the emergence of a potential anti-
instanton in the data can also be found in the JCN and Reeb skele-
ton. This coincides with the global minima Q M I N estimated by the 
cooling code to be present on the lattice at (6, 2, 7, 2).

Time steps t = 2 and t = 3. The main instanton observable reap-
pears in the bivariate topology at standard resolution with inputs 
t = (2, 3). The JCN and Reeb skeleton identify the instanton as a 
minor feature of the topology alongside several more significant 
features. Two other features, interesting in the context of lattice 
QCD, are present including the global minima in 4D – a potential 
anti-instanton. The presence of the anti-instanton appears not to 
distort the structure of the instanton.

Time steps t = 3 and t = 4. The Reeb skeleton detects the instanton 
as the most prominent feature. The slab structure captured by the 
JCN is well defined and resembles that of other time slices. The 
isovalues associated with the instanton object at t = (3, 4) shows 
a large jump in isovalue between the two time-slices, captured by 
the colour change from red to green in the JCN.

5. A quantitative approach to instanton tracking

We have shown how the instanton can be tracked by the 
JCN visually; however, for domain scientists a more quantitative 
approach is required. In the following section we look at what 
statistical measurements are available using bivariate topological 
structures. It should be noted that each of these processes require
manual locating of the target object.

5.1. Slab count

A basic measure of persistence can be computed from the JCN 
by counting the number of slabs making up a topological region. 
Each vertex in the JCN represents a joint contour slab, or region 
of the quantised Reeb space, associated with a pair of isovalues. 
Throughout the case study it was found that the number of slabs 
linked to an object tended to vary with two properties of the ob-
ject; the volume of the slabs, and the isovalue range of the object. 
Sparse objects with a wide range of isovalues frequently appear as 
sheet-like structures in the JCN, and densely packed objects appear 
with a branch-like structure.
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Table 2
Number of JCN vertices contributing to instanton structure. All values are taken using a slab size of 0.17578125.

Input fields Instanton Entire JCN Percentage
sub-graph structure

t = (1,2) 0 572 0
t = (2,3) 5 371 1.35
t = (3,4) 39 339 11.50
t = (4,5) 199 584 34.08

Input fields Instanton Entire JCN Percentage
sub-graph structure

t = (5,6) 212 472 44.92
t = (6,7) 44 237 18.57
t = (7,8) 6 360 1.67
t = (8,1) 0 806 0

Fig. 12. Number of slabs in the JCN representing the instanton structure.

Fig. 13. Percentage of slabs in the JCN representing the instanton structure.
We found that it was possible to get a rough estimate of prop-
erties of lattice objects in the quantised Reeb space by calculating 
the percentage of vertices in the JCN contributing to the object, as 
detected through manual selection.

Table 2 presents the number of vertices present in each JCN 
across the temporal axis at the standard slab size. When plotted as 
a histogram, as in Fig. 12, a peak in the number of vertices in the 
manually identified instanton sub-graph coincides with Q M A X .

The JCNs show an increase in the number of total vertices on 
the lead up to Q M A X and Q M I N , followed by a drop in graph 
complexity after each event. The peaks were expected to coincide
with the emergence of the anti-instanton and instanton; how-

ever, both peaks seem to proceed the time-steps containing the 
(anti-)instanton structures rather than directly matching them.

Viewing the number of vertices in the instanton sub-graph as 
a percentage of the entire JCN (Fig. 13) suggests that the struc-

ture dominates the quantised Reeb space at its peak value, where 
t = 5, agreeing with the predicted global maxima Q M A X . In the 
t = (1, 2) and t = (8, 1) JCNs the percentage of vertices is zero — 
this is where the instanton structure was not detected at all at the 
standard resolution.
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Table 3
Number of vertices in Reeb skeleton after simplification.

t = (1,2) t = (2,3) t = (3,4) t = (4,5) t = (5,6) t = (6,7) t = (7,8) t = (8,1)

Unsimplified Reeb skeleton 0 2 8 43 12 2 0 0
Simplified Reeb skeleton 0 1 1 1 4 1 0 0
Persistence simplification 0 0 1 1 1 0 0 0
Volume simplification 0 1 1 1 4 1 0 0

Table 4
Number of node in JCN relating to instanton after simplification.

t = (1,2) t = (2,3) t = (3,4) t = (4,5) t = (5,6) t = (6,7) t = (7,8) t = (8,1)

Manual selection 0 5 39 199 212 44 6 0
Unsimplified Reeb skeleton 0 5 34 186 212 28 0 0
Simplified Reeb skeleton 0 2 33 167 122 1 0 0
Persistence simplification 0 0 26 137 120 0 0 0
Volume simplification 0 2 33 167 122 1 0 0
5.2. Simplification and persistence data using the Reeb skeleton

The Reeb skeleton summarises the multivariate topology in a 
more compact graph structure. Adjacent slabs are merged, pro-
vided no critical events coincide with the slab. This allows entire 
path connected regions to be summarise as a single unit, repre-
sented by a vertex in the Reeb skeleton. Besides simplification of 
the quantised Reeb space, the Reeb skeleton enables the gener-
alisation of persistence measures used in univariate topology to 
multivariate topology. Each vertex in the Reeb skeleton has persis-
tence measures attached representing the connected components 
(the joint contour slabs), allowing us to further analyse the instan-
ton structure.

This section examines how different persistence measures, used 
during simplification, affect the ability of the Reeb skeleton to 
detect the instanton structure. The simplification measures are de-
fined as follows:

Reeb skeleton. Collapses adjacent slabs into a single vertex, mean-
ing entire sheet or branch-like structures in the JCN can be sum-
marised by a single branch of the Reeb skeleton. Topological 
events, such as splits and merges, are captured as vertices with de-
gree 3 or higher. No simplification is performed, frequently leading 
to the creation of multiple leaf vertices along branches of the Reeb 
skeleton.

Simplified Reeb skeleton. This is the full Reeb skeleton except a 
basic pruning of non-critical vertices is performed. First, all de-
gree one singular vertices (leaf nodes) are removed from the Reeb 
skeleton and replaced with regular vertices. Next any degree two 
singular vertices are replaced with regular nodes. Finally, any reg-
ular leaf vertices are merged with their neighbours until a singu-
lar vertex is encountered. This has the effect of collapsing large 
branches of regular vertices to a single vertex representing the en-
tire set of connected components.

Persistence simplified Reeb skeleton. The Reeb skeleton is first 
pruned of non-critical vertices, as described above. Following this 
each of the remaining components in the graph are assigned a 
level of persistence based upon the quantity of JCN nodes that 
make up the sub-graph represented by the vertex. Next regular 
vertices of the JCN that fall below a specified threshold are re-
moved from the graph. Finally, any remaining non-critical vertices 
are removed by repeating the basic pruning technique.

Volume simplified Reeb skeleton. This method of simplification is 
similar to “persistence simplification” except instead of counting 
the number of JCN nodes in a sub-graph of connected compo-
nents, the volumes are approximated by counting the number of 
fragments passed through. Each fragment represents a tetrahedra 
cell in the quantised Reeb space, counting the number of these in 
each slab gives a rough estimate of volume.

Table 3 shows the effect that various forms of simplification 
have on the Reeb skeleton, also visualised in Fig. 16. This confirms 
that under simplification the Reeb skeleton often reduces regions 
of the bivariate topology representing the instanton to a single ver-
tex.

Simplification using basic leaf pruning and volume measures at 
first appear to give similar results. However, when viewing the 
effect by cross referencing the JCN (Table 4, Fig. 17) variations 
appear, as smaller slabs are filtered out under simplification. The 
simplification preserves the observed forking behaviour in the in-
stanton structure at t = (5, 6), resulting in four nodes in the Reeb 
skeleton (Fig. 14). Investigating the object by viewing the slab ge-
ometry (Fig. 15) shows the instanton splits into an outer (3) and 
inner (4) shell structure.

Fig. 17 shows how under simplification the number of vertices 
in the JCN judged to be topological noise varies by the persistence 
measure used. The unfiltered Reeb skeleton captures most of the 
vertices that are chosen by manual selection. Minor variations are 
found at the point where the instanton branch of the Reeb skele-
ton attaches to the region of percolation around zero. This appears 
as a very highly connected vertex at the centre of the JCN and Reeb 
skeleton. Under simplification most techniques merge the JCN ver-
tices closest to isovalue zero into the central vertex due to their 
low relative persistence.

We also observed that the vertices at the ends of JCN branches, 
where the isovalue is furthest from zero, representing the core of 
an (anti-)instanton are often removed from the intended observ-
able. There were other situations where simplification resulted in 
a single disconnected joint contour slab halfway along the instan-
ton branch (Fig. 18). This is often linked to the creation of many 
small and low persistence slabs — most likely this is an indication 
that the slab size parameter is too high.

The most aggressive form of simplification witnessed in this 
case study was based upon the number of connected components. 
This removed the intended instanton observable from the simpli-
fied topology several time-steps earlier than other simplification 
techniques. We believe this was likely caused by an overly strict 
threshold level and highlights the need for careful selection of sim-
plification parameters.
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Fig. 14. Reeb skeleton for t = (5, 6), simplified using volume persistence measures. The instanton (1) is captured as a branch in the simplified Reeb skeleton. At vertex (2) the 
instanton splits into two; the outer part (3) and inner core (4).

Fig. 15. The forking behaviour visualised using the slab geometry. The full instanton structure (1) splits into outer (3) and inner (4) parts.

Fig. 16. Number of nodes in the Reeb skeleton representing the instanton under simplification.
6. Feature detection using the entire lattice data

The final use of the JCN is an experimental attempt to detect 
the instanton using all eight time-slices as input. Whilst the Reeb 
space is only well defined for situations where m > n, the JCN al-
gorithm can be used on data where this condition is not met. In 
this situation we will be dealing with data defined on an m = 3
dimensional mesh with n = 8 function values. The output of the 
algorithm is a subdivision of the input field with regard to all 8 
functions; embedded amongst this we expect to find structure re-

lating to the instanton.

The JCN for t = (1, 2, 3, 4, 5, 6, 7, 8) is shown in Fig. 19, featur-

ing 36450 vertices and 104373 edges. The structure clearly splits 
the input space into distinct topological objects, meaning it is pos-

sible to select a single branch of the JCN to isolate the instanton 
structure (1). Viewing the instanton as joint contour slabs (Fig. 20) 
shows an object very similar to that output by the bivariate JCNs.
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Fig. 17. Number of nodes in the JCN representing the instanton under simplification.

Fig. 18. Comparison of simplification techniques on the t = (6,7) joint contour net.
Stepping through the data, colouring the graph by isovalue for 
each time-step, allows the variation in isovalues of each branch to 
be observed. When reaching peak topological charge density Q M A X

at time-step t = 5 all other vertices in the graph have very low 
relative isovalues, indicated by blue glyphs. This is largely a side-
effect of the colour transfer function being relative to the data set 
in view — for Q M A X this offsets the values further from zero than 
other time-steps. The same effect is less obvious for Q M I N at t = 2, 
but can still be observed.

7. Conclusion

We have shown in this paper how recent advances in multi-
variate topological analysis can be applied to lattice QCD data sets. 
We have demonstrated how multivariate topology can be used 
for comparing data with a temporal element in order to observe 
critical topological events as the time step is varied. This case 
study also considered some basic multivariate persistence mea-
sures available in the data, such as the number of slabs. These 
measures are suited to evaluation as lattice simulation parameters 
are varied as their values can be collected autonomously.

In summary this paper makes the following contributions:

• The JCN was used to track and observe the structure of an 
instanton in 4D space-time.
• Quantitative measures were taken directly from the JCN and 
Reeb skeleton to evaluate the importance of lattice observables 
in the context of the topology of the lattice.

• We demonstrated how multivariate simplification metrics 
could potentially be utilised to locate important observables 
in lattice QCD.

• It was also demonstrated how the JCN can be used to reduce 
the structure of a 4D object to a 3D approximation.

The study carried out in this paper forms part of a much larger 
body of work studying the use of topological visualisation tech-
niques in lattice QCD [19]. The quantitative approaches demon-
strated here can be used to perform analysis on ensembles of 
hundreds of configurations. This is a typical use case for lattice 
QCD scientists, where averages across a large sample of configu-
rations are needed to evaluate the effect of changing simulation 
parameters. We give a more detailed review of how a domain ex-
pert may perform such a study in [20].

Acknowledgements

This work used the resources of the DiRAC Facility jointly 
funded by STFC, the Large Facilities Capital Fund of BIS and 
Swansea University, and the DEISA Consortium (www.deisa.eu), 
funded through the EU FP7 project RI-222919, for support within 
the DEISA Extreme Computing Initiative. The work was also partly 
funded by EPSRC project: EP/M008959/1.

http://www.deisa.eu


D.P. Thomas et al. / Big Data Research 15 (2019) 29–42 41
Fig. 19. Top: The JCN for t = (1,2,3,4,5,6,7,8). captures the instanton as branch (1). Bottom: Examining the branch in greater detail shows that the peak in topological 
charge density is capture in only a few vertices at the end of the branch. The peak in the topological charge density is captured by the multivariate glyph at t = 5. It is also 
possible to observe elevated levels in the topological charge density in neighbouring time slices.
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