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Overview
Flow Visualization with Integral Surfaces:

 Introduction to flow visualization
 Flow data and applications
 Stream, path, and streaklines

 Integral surface-based flow 
visualization

 Advantages of surfaces over curves
 Stream and path surfaces

 Stream and path surface 
construction

 Stream and path surface demo
 Streak surfaces and construction
 Streak surface demo
 Conclusions and Acknowledgments
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What is Flow Visualization?

 A classic topic within scientific visualization

 The depiction of vector quantities (as opposed to scalar quantities)

 Applications include: aerodynamics, astronomy, automotive simulation,  
chemistry, computational fluid dynamics (CFD), engineering, medicine, 
meteorology, oceanography, physics, turbo-machinery design

Challenges: 
● to effectively visualize both magnitude + direction, often 

simultaneously
● large data sets
● time-dependent data
● What should be visualized? (data filtering/feature extraction)
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What is Flow Visualization?

Challenge: to effectively visualize both magnitude + 
direction often simultaneously

magnitude only orientation only
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Note on Computational Fluid Dynamics

 We often visualize Computational 
Fluid Dynamics (CFD) simulation 
data

 CFD: discipline of predicting flow 
behavior, quantitatively

 data is (often) result of a simulation 
of flow through or around an object 
of interest

● some characteristics of CFD data:
● large, often gigabytes
● unsteady, time-dependent
● unstructured, adaptive resolution grids
● smooth
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Comparison with Reality
Experiment

Simulation
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1. direct: overview of vector field, minimal computation, e.g. glyphs, color mapping

2. texture-based: covers domain with a convolved texture, e.g., Spot Noise, LIC, ISA, 
IBFV(S)

3. geometric: a discrete object(s) whose geometry reflects flow characteristics, e.g. 
streamlines

4. feature-based: both automatic and interactive feature-based techniques, e.g. flow 
topology

Flow Visualization Classification
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Steady vs. Time-dependent

Steady (time-independent) flows:
 flow itself constant over time
 v(x), e.g., laminar flows
 simpler case for visualization

Time-dependent (unsteady) flows:
 flow itself changes over time
 v(x,t), e.g., turbulent flow
 more complex case
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Stream, Path, and Streaklines
Terminology:

 Streamline: a curve that is 
everywhere tangent to the flow 
(release 1 massless particle)

 Pathline: a curve that is 
everywhere tangent to an 
unsteady flow field (release 1 
massless particle)

 Streakline: a curve traced by 
the continues release of 
particles in unsteady flow from 
the same position in space 
(release infinitely many 
massless particles)

Each is equivalent in steady-state flow
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Characteristics of Integral Lines
Advantages:

 Implementation: various easy-to-implement 
streamline tracing algorithms (integration)

 Intuitive: interpretation is not difficult

 Applicability: generally applicable to all vector 
fields, also in three-dimensions

Disadvantages:

 Perception: too many lines can lead to clutter 
and visual complexity

 Perception: depth is difficult to perceive, no 
well-defined normal vector

 Seeding: optimal placement is very 
challenging (unsolved problem)
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Stream Surfaces
Terminology:

 Stream surface: a surface that 
is everywhere tangent to flow

 Stream surface: the union of 
stream lines seeded at all 
points of a curve (the seed 
curve)

 Next higher dimensional 
equivalent to a streamline

 Unsteady flow can be 
visualized with a path surface 
or streak surface
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Stream Surfaces
First stream surface computation

● Introduced before SciVis existed
● Early use in flow visualization (Helman and Hesselink 1990) for 

flow separation

Image: Ying et al.
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Stream Surfaces: Advantages
Motivation:

 Separates (steady) flow: flow cannot cross 
surface (stream surfaces only)

 Perception: Less visual clutter and complexity 
than many lines/curves

 Perception: well-defined normal vectors make 
shading easy, improving depth perception

 Rendering: surfaces provide more rendering 
options than lines: e.g., shading and texture-
mapping etc.

Disadvantages:

 Construction/Implementation: more 
complicated algorithms are required to construct 
integral surfaces

 Occlusion: multiple surfaces hide one another

 Placement: placement of surfaces is still and 
unsolved problem
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Stream Surfaces – Split / Merge
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Easy Integral Surfaces

● Relies on use of quad primitives
● Use of local operations (per quad).
● Simple data structure
● Implicit parameterization
● Formulated as a reconstructive 
sampling of the vector field

● d_sample
● d_advance
● d_sep
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Algorithm Overview

Seed;

While(not terminated)

Advance front;

Update Sampling Rate;

End While

Render;
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Seeding and Advancement

● Interactive seeding curve:
● Position and orientation
● Length
● Prongs/number of seeds

● Integral surface front advance 
distance guided by 

● Nyquist rate
● 0.5 d_sample
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Divergence
● Leads to undersampling
● Depicted by surface widening
• Detected: (α > 90 AND β > 90) AND d_sep > d_sample.
• Solution: Introduce new vertices into surface.
● Split quad in two
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Convergence
● Results in oversampling.
● Surface narrows
• Detected: (α < 90 AND β < 90) AND edge length < 0.5 

d_sample
• Solution: Remove vertices from surface
● Merge two quads into a single one
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Curvature
● Produces irregular quads.
• Detected: (α < 90 AND β < 90) OR (α > 90 AND β < 90). 
• Solution: Adjust step-size according to angle between segments
● Groups of quads may have to be processed together
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Splitting and Termination
● Surface may split when object 
boundary encountered
● Separate portions computed 
independently 
● Terminating Conditions:

● Critical Point (Zero Velocity)
● Object Intersection
● Leave Domain
● Desired geodesic length 

reached
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Enhancements
● Surface Painter

● Helps reduce occlusion
● User controls the length of 

surface

● Timelines and Timeribbons
● Formed from the surface 

front
● Turn off the shear operation
● Velocity magnitude is 

required
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Enhancements
● Stream and Path Arrows

● Provide information on internal 
surface structure.

● Clearly show downstream 
direction.

● Evenly-spaced flow lines.
● Stems naturally from  

convergence and divergence 
operations.

● Render flow lines on top of  
surface.
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Stream and Path Surface Results: 
Video(s)
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Constructing Streak Surfaces in 3D Unsteady 
Vector Fields

Tony McLoughlin, Robert S. Laramee and Eugene Zhang
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Discrete locations in 3D space

 4-tuple (4D vector) for each 
sample

 x-, y-, z-, t- components

 Direction

 Magnitude

 Velocity field when describing 
the motion of a fluid

 Obtained from CFD 
simulations or constructed 
from empirical data

 Unsteady vector fields vary 
over time

3D, Unsteady Vector Fields
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Terminology

 Streaklines: curved 
formed by joining all 
particles passing through 
same point in space (at 
different times)

 Strong relation to 
smoke/dye injection from 
experimental flow 
visualization.

 Streak surfaces are an 
extension of streak lines 
(next higher dimension)

What are Streak Surfaces? Recall:
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Challenges:

 Computational cost: surface advection is 
very expensive

 Surface completely dynamic: entire surface 
(all vertices) advect at each time-step

 Mesh quality and maintaining an adequate 
sampling of the field.

• Divergence
• Convergence
• Shear

 Objects in domain and critical points

 Large size of time-dependent (unsteady) 
vector field data, out-of-core techniques

Streak Surfaces: Challenges
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Properties:


Surface constructed using quad primitives (as 
opposed to triangles)


Local operations for surface refinement performed on 
a quad-by-quad basis


No global optimization required


Allows the construction of large surfaces


CPU-based for easier implementation


Fills the gap between methods of Burger et al. [2009] 
and Krishnan et al. [2009]

• Not as fast as GPU but interactive

• Less constraints than GPU implementation – 
does not need to fit into GPU memory


Good quality surfaces

Our Method
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Data Structures:

 Maintain list of particles

 Particles form vertices that create mesh

 Maintain list of quads
• Store pointers to vertices
• Store pointers to all (Quad) neighbors
• Store T-Junction objects

 Test edge lengths after each integration

 T-junction objects store extra vertex and neighbor information

 Only one T-junction allowed per edge

Algorithm Data Structures
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Do: 

Position seed with interactive rake

 Iteratively construct surface:
• Advect surface
• Refine Surface
• Test for boundary 

conditions
• Update
• Test for termination 

criteria

 Final rendering

Streak Surface Algorithm Overview
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Quad Splitting:

 Occurs when distance between neighbouring particles increases.

 Reduces the sampling of the vector field – may miss features.

 Introduce new particles – divide the quad.

Divergence
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Quad Collapse:

 Occurs when neighbouring particles move closer together.

 Leads to over-sampling, redundant particles and extra computation.

 Test distance between neighboring particles

 Remove particles from the surface – merge the quad with neighbor.

Convergence
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Shear Update:

 Can lead to heavily deformed quads

 May lead to errors in checking sampling 
frequency

 Test the ratio between the quad diagonals

 Update the mesh connectivity

Shear
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Create Temporary Triangle Fan:

 Store T-Junction object explicitly

 T-junction vertices may not necessarily lie on neighboring quads edge

 If ignored cracks can form in the surface

 Render the quad using a triangle fan
• Ensures whole surface is tesselated

T-Junctions and Surface Discontinuities
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Streak Surface Results: Video
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Summary and Conclusions

 We claim surfaces offer advantages over traditional curves when 
visualizing 3D and 4D flow

 We present interactive algorithms for construction of stream, 
path and streak surfaces

 Algorithms are based on local operations performed on quads 
for mesh refinement

 Technique handles divergence, convergence and shear flow

 Splitting of surface to adapt to flow around object boundaries

 Demonstrated on a variety of data sets
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