
*Only include this sentence if you do have all necessary rights and consents. For example, if you have including photographs or
images from the web or from other papers or documents then you need to obtain explicit consent from the original copyright owner. If
in doubt, delete this sentence. See Copyright Information for more details.

**Only include this sentence if there is some reason why your dissertation should not be accessible for some period of time, for
example if it contains information which is commercially sensitive or might compromise an Intellectual Property claim. If included,
fill in the date from which access should be allowed.

FinVis: Visualising the relationship between news content and numeric equity data.

Submitted April 2024 in partial fulfilment of
the conditions for the award of the degree BSc Computer Science.

20363018
School of Computer Science

University of Nottingham

I hereby declare that this dissertation is all my own work, except as indicated
in the text:

Signature: TJM

Date 28/04/2024

I hereby declare that I have all necessary rights and consents to publicly
distribute this dissertation via the University of Nottingham's e-dissertation
archive.*

Public access to this dissertation is restricted until: DD/MM/YYY**

http://edissertations.nottingham.ac.uk/copyrightinfo.html

Abstract

The current global economic landscape is one of unprecedented inflation, impacted by post-pandemic market
dynamics and political instability. Personal finances are being strained throughout the developed world, with
individuals increasingly motivated to maximise savings and investments. The impact of news content and sen-
timent on share price movements has been extensively researched, as illustrated by Atkins and Niranian [1].
They go on to state the elegance that would come from presenting the relationship between news content and
share price. However, academic work such as Nguyen et al. [32] has predominantly focused on machine learning
and developing tools that seek to accurately predict the share price movement from analysing news content.
The results have limited accuracy and remain inaccessible for individual investors. Existing web applications
targeting individual investors do little to help the user extract meaning from news content and sentiment, to
inform investments. The likes of Morning Star [27] and Motley Fool [28] amongst others simply provide list
views of news content, at best presented on the same view as share price. A clear gap exists in the market to
visualise news content and sentiment directly within the context of share price movement over time. This visu-
alisation project seeks to provide individual investors with the mechanism to better understand news content
and sentiment to inform their investment decisions. This is a novel project that forms part of a portfolio of
information sources that can be used to improve investment outcomes for individuals.

Acknowledgements

The Author would like to specifically thank Prof. Robert S Laramee for his continued support and encourage-
ment through the project. Feedback was always carefully considered and genuinely constructive at every stage.
Furthermore, the papers ’Bob’s Project Guidelines’ [23] and ’Bob’s Concise Coding Conventions’ [22] have been
hugely appreciated.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Project Goal and Benefits . 1
1.3 Challenges . 2
1.4 Structure . 2

2 Background 2
2.1 Related Work . 2
2.2 Previous Systems . 3

2.2.1 Morning Star . 3
2.2.2 Motley Fool . 4
2.2.3 Seeking Alpha . 4
2.2.4 Google Finance . 5
2.2.5 Yahoo Finance . 5

2.3 Data Characteristics . 5
2.3.1 NewsCatcherAPI . 6
2.3.2 Polygon . 6

3 Project Specification 7
3.1 Feature Specification . 7

3.1.1 Required Features . 8
3.1.2 Optional Features . 9

3.2 Technology Choices . 9
3.2.1 Developmental Tools . 9
3.2.2 Libraries . 10
3.2.3 Project Management Tools . 10

4 Project Design 10
4.1 Frontend Component Overview . 10
4.2 Backend Class Overview . 12
4.3 Process Diagrams . 12

5 Project Plan and Gantt Charts 14
5.1 Project Management . 14
5.2 Gantt Charts . 14

6 Implementation 16
6.1 Required Features . 16

6.1.1 Login . 17
6.1.2 Run Search . 18
6.1.3 Retrieve Data . 19
6.1.4 Visualise Data . 22

6.2 Optional Features . 23
6.2.1 Run Search . 24
6.2.2 Retrieve Data . 25
6.2.3 Visualise Data . 26
6.2.4 Visualisation Interaction . 27
6.2.5 Save Visualisation . 27

7 Testing and Evaluation 28
7.1 Automated Testing . 28

7.1.1 News Data . 28
7.1.2 Stock Data . 30

7.2 Manual Testing . 30
7.2.1 Visual Testing . 30

7.3 Benchmark Testing . 32
7.3.1 Backend Benchmarks . 32
7.3.2 Frontend Benchmarks . 33

7.4 Evaluation . 34
7.4.1 Case Study 1 - NVDA stock price correction April 2024 34

Tom

7.4.2 Case Study 2 - TSLA Q4 earnings report . 36
7.4.3 Case Study 3 - Federal Reserve Inflation Comments . 36

8 Conclusions 37
8.1 Reflection . 37
8.2 LSEPI . 37

9 Future Work 38

References 39

1 Introduction

1.1 Motivation

The COVID pandemic and the period since have seen significant global challenges. Individuals and households
in most of the developed world have seen finances stretched, in what has been termed the cost-of-living crisis
[33]. Rising inflation has left many individuals keen to protect and maximise their savings and investments.
An increasing number of people are turning to equity investments to achieve greater returns on their savings.
The population in the United States of America is a good example of this mindset, with one of the highest
propensities to ’play’ the stock market on a personal level. Recent research [18] shows that 61% of Americans
have some sort of personal equity investment portfolio. This is the highest proportion of the population since
the financial crisis in 2008.

For individuals active in equity investing, achieving consistent positive returns can be challenging. A raft
of internal and external factors influence equity prices. One such group of factors relates to market sentiment,
both generally and specifically, which is reflected in the news content associated with the specific equity. As
Grob-Klubmann [14] states there is a direct correlation between market reaction and news content. The scale
of the information and the complexity of the investment decision places significant demand on the individual
investor who can lack the time and resources to e↵ectively analyse the available information. Atkins and Ni-
ranian [1] state the value that exists in the relationship between share price and news data, as shown in the
following quote.

”. . . the very idea of relating information extracted from news feeds to market movement via the
intermediate step of characterizing sentiments is an elegant one. Overall emotions, both at the level
of groups of traders and at the level of wider society, are bound to influence the behaviour of financial
markets.” [1]

The vast majority of the products and services designed for individual investors focus on presenting historical
financial data. There is a gap in applications that seek to make sense of the investment news component that is
an indicator of market sentiment. Subsequently, individual investors, are at a disadvantage, which this project
seeks to rectify. This project is principly focused on using information visualisation techniques to empower the
human user to more easily access meaningful investment insight.

Visualisation techniques are needed to ensure that the individual investor can identify themes and extract
meaning from the news content. Keywords and frequency of use, are one of the ways in which evaluation and
analysis can be carried out with news content. However, for there to be greater value in investment decision-
making, this keyword analysis needs to be set within the context of the share price. By relating patterns in
keyword frequency, with historic share price, individual investors should be better placed to factor sentiment
into their investment decisions.

1.2 Project Goal and Benefits

This project goal is to develop an application that will support individual investors in gaining insight into
invesment news content and its relationship to share price movements in set date ranges.

The application will visualise the frequency of news articles which include selected companies’ tickers against
their historic share price movements. Multiple companies and their associated news content frequency and share
price are displayed on a single graph for easy comparison. The frequency visualised is the number of articles
published per day, within this each article will also be given a sentiment score to try and predict if it is positive
or negative news. This will provide individual investors with a new perspective that can act as part of a range
of sources of insight to inform better investment decisions.

The benefits of this project are:

• This project provides a novel web app that will visualise the financial and news data of specified companies
within set date ranges.

• The application will have the advantage of being interactive, including filtering data, changing display
options, zooming for clarity and exploring news data for more details on specific articles or groups of
articles.

• Individual investors will be the main beneficiaries of the project as it will contribute to better investment
decisions.

1

• The novelty of the project comes from the visualisation of news data, frequency and sentiment, within the
context of historic share price movement.

1.3 Challenges

In order to achieve the material benefits of this project, as outlined above, some challenges need to be over-
come. The first area is that the data required, both financial and news sits behind paywalls that can make
it prohibitively expensive. Given the academic nature of this project, the key is to identify sources of data
that o↵er access at a significantly reduced rate. A further challenge to the data is making it usable for the
application; this will require substantial data processing, which in turn comes with the technical challenge of
making a subsystem to handle it e↵ectively. A particularly challenging addition to general data processing is
sentiment analysis. Assigning a value that indicates a degree of positivity or negativity to each news article is
di�cult.

Visualising the data is a general challenge to most information visualisation projects and this is no di↵er-
ent. This challenge can be segmented into the choice of visualisaiton techniques and technical realisation. To
access the benefits to the individual investor, who will use the application, the data must be presented in an
easy-to-interpret way. A choice must also be made regarding how the visualisations will be realised, such as
what libraries should be used if any.

The technical choices made from the outset of the project are material in delivering the benefits and ulti-
mately the project goal. A language best suited to the project must be chosen to make the development process
as e�cient as possible. The architecture of the project must also be considered in order to make the code base
easy to work with, especially if the project is to benefit from future work. How the data flows around the appli-
cation will need to be carefully considered, particularly how subsystems interact with each other. Abstraction
and decomposition are required to overcome the challenge of complexity within the project.

1.4 Structure

The following is a breakdown of how the remainder of the dissertation is organised this follows closely with the
guidance of Robert S Laramee [23]:

• Section 2: Explores the academic literature on associated topics and evaluates related systems, as well as
data characteristics.

• Section 3: Includes a breakdown of the project features and looks at the technology chosen throughout
the implementation of the project.

• Section 4: Covers the architecture of the project, in addition to a breakdown of the data processing.

• Section 5: Outlines the project management deployed throughout this project and the associated timescales.

• Section 6: Details the technical realisation of the software application, including methodologies used.

• Section 7: Presents the testing done on the visualisations, in particular, the data processing and evaluation
of the project.

• Section 8: Summarises the dissertation and o↵ers reflective thoughts on the project.

• Section 9: O↵ers consideration of the potential for future work for the project.

2 Background

2.1 Related Work

The complexity in equity investing is well documented, with various assertions on the degree of predictability.
First cited by Louis Bachelier in 1900 as ’The Random Walk Theory’ and later refined by Malkiel [25] in ’The
E�cient Market Hypothesis’, the view was presented that the market factors all information into the share price,
completely and immediately. There have been challenges to the idea that the markets are quite so e�cient.
The overreaction of investors is supported by the work of Veronesi (1999) who is cited by Feng and Fu (2022),
stating that investors overreact to bad news in good times and conversely underreact to good news in bad times
[8]. While not entirely aligned, Chan [5] undertook research into the monthly share price returns of numerous
companies and cross-referenced with news content, both positive and negative, to understand the relationship.
The idea that individual investors over-rely on sentiment when investing was cited by Frankel [10], who states

2

that “most investors underperform the market because they let their emotions get the best of them. . . ” For
those seeking to invest and make good decisions, an understanding of news content and the resulting sentiment
needs to be factored in.

The challenges associated with extracting indications of sentiment from news content, to predict share price is
a further area of study. Grob-Klubmann (2011) explored the concept of automated text analysis interpreting
news content [14]. While the paper confirmed that markets respond to the news, it also highlights the challenges
associated with the scale and volume produced by contemporary news outlets. This position is illustrated in
the following quote.

”Markets react sensitively to textual information updates—so-called ”news”—which are announced
on a regular and irregular basis. However, due to the enormous amount of news continuously released
by modern electronic communication media nowadays it becomes increasingly di�cult to process all
news related to a certain financial asset.” [14]

Research into the relationship between news content, sentiment and share price, as outlined above, is extensive.
Building on this study has sought to explore the e↵ectiveness of using machine learning to interpret content, pre-
dict share price movement and inform investment decisions. Accuracy remains an issue, with a leading project
by Nguyen et al. [32] delivering 54% accuracy in predicting overall market movement using Yahoo Finance
messaging content. Extensive research has been undertaken; Gandmal and Kumar [11] examine 50 di↵erent
research projects using a variety of methodologies to predict share price. This includes the Bayesian model,
Fuzzy classifier, Artificial Neural Networks, and Support Vector Machine classifier amongst others. While there
is merit in some, there are limits to all and there is currently no workable model.

Academic work to better understand the relationship between news content and sentiment, and its e↵ect on
share price movements are well documented. However, finding an automated or machine-learning based solution
that has su�cient accuracy to inform good investment decisions remains an issue. This further validates the
potential that e↵ective visualisaiton could provide in o↵ering a workable means of improving understanding of
news content to help inform individual investors’ decisions. Given that the focus of this project is individual
investors there is certainly no viable tool that exists to support an accessible means of understanding and in-
terpreting news content when making investment decisions.

A further area of research in undertaking this project has been that of information visualisation. While the
primary goal of the project is not to develop the academic theory surrounding information visualisation, it does
draw upon the theory to optimise the application. As illustrated in both the Survey of Surveys by McNabb and
Laramee (2017) [26] and A Survey of Information Visualisation Books by Rees and Laramee (2019) [37], the
work on the topic is extensive. These comprehensive surveys have provided a plethora of resources to inform
and enhance the visualisation techniques adopted within the project.

Visualisation of financial data is a widely considered topic as illustrated by Ko et al (2016), which explores
a range of papers on the topic [21]. A key consideration is the use of line graphs or candle stick charts in the
representation of di↵erent financial data sets. Interaction is an important aspect when it comes to visualising
large amounts of data in order to abide by the quote ”Overview first, filtering and selection and details-on-
demand” as stated by Shneiderman (1996) [39]. Kiem (2002) [20] presents various important techniques to use
when thinking about interaction in terms of information visualisation. In particular, for this project, interactive
filtering and interactive zooming are both key to exploring subsets in further detail. Interactive techniques are
relevant in managing large datasets such as financial and news data.

Liu et al (2022) [24] gather and review various tools in the space of visualisation. Colour is an important
component of visualisation and this paper identifies and examines tools to support e↵ective use of colour. This
includes D3 Color Mapping [3] and Color Brewer [4]; both of which are o↵ered to support e↵ective use of colour.
A further area of related work that has been explored is that of the use of glyphs in visualisation. As outlined
by Borgo et al (2013) in [2] (identified from [26]), glyphs are an important visualisation technique when it comes
to multivariate data as is the case in this project. The paper explores theories and application of glyph based
visualisaiton techniques.

2.2 Previous Systems

2.2.1 Morning Star

Morning Star [27] is a web application that can be accessed by most modern devices on a web browser. While
the site is promoted to both individual and institutional investors, it has a premium position with the market,

3

due to its large paywall of up to $35 a month, with a 7-day free trial. The site has in-depth financial data and
allows the user to access the majority of it through various visualisations, the rest being text-based. Presenting
news data to the user is Morning Stars’ biggest downfall; there is no directly linked news on the share view
page and navigating to the page to find news content is di�cult. Searching on the news pages displays a list of
all articles related to the query showing the title, category, source and date. Financial reporting and advice is
a key service o↵ering of the site; given the costs, it is targeted more at serious individual investors.

Figure 1: A screenshot of AAPL on Morning Star [27], as well as a screenshot of the news page

2.2.2 Motley Fool

Figure 2: A screenshot of AAPL
on Motley Fool [28]

Motley Fool [28] targets itself at individual investors and pro-
vides both free and premium content. Financial data on spe-
cific stocks is available within the free tier, as well as gen-
eral news content. There is an attempt to link the news
with individual stocks; however, the results showed a low level
of correlation. The premium tiers start at £149 per year and
go up to £999 per year. These services are investment ad-
vice targeted at individual investors with portfolios in excess of
£25,000. A 30-day subscription refund guarantee is available
on all premium tiers. Again, this is a web-based applica-
tion that can be accessed by most modern devices on a web
browser. It visualises its financial data in line graphs, can-
dlestick graphs, bar charts and pie charts; however, each vi-
sualisation is used for specific data and is prescribed to the
user.

2.2.3 Seeking Alpha

Figure 3: A screenshot of AAPL on Seeking
Alpha [38]

Seeking Alpha [38], as with the other examples, is an in-
vestment site targeted at individual investors. This site
has a greater emphasis on presenting aligned news con-
tent relevant to particular stocks. While it promotes
the quality of the news that it accesses, it makes no
e↵ort to visualise the content to bring greater depth
or meaning to the user. A two-tier model is em-
ployed with limited financial data and news content avail-
able for free and greater financial analysis available at
a yearly cost of $239. The premium tier is o↵ered
with a trial month of around $5. Both tiers are ac-
cessed on a modern browser as a web-based applica-
tion.

4

2.2.4 Google Finance

Figure 4: A screenshot of AAPL on Google
Finance [13]

Google Finance [13] is provided as part of the portfolio of
products o↵ered by Google. It is a free web-based appli-
cation accessible by modern browsers, combining simple fi-
nancial data on a wide range of specific stocks and com-
prehensive aligned news content from a plethora of sources.
There is no premium subscription or associated enhanced ser-
vice o↵ering. Google Finance is targeted at all investors
or those with an investment interest. There are only two
visualisations on each stock: the line chart showing share
price over time and bar charts illustrating financial state-
ments.

2.2.5 Yahoo Finance

Yahoo Finance [43] is another free web-based application. The site provides relevant news content but again
only visualises the financial data. The level of functionality and interaction available with the financial data is
extensive; this includes comparisons of multiple di↵erent stocks and indexes, the addition of indicators, choice
of graph type and the ability to draw onto the graph. Again, due to the free nature of the software it is
targeted at all investors. The level of sophistication possible with financial data visualisation means that this
site could appeal to advanced individual investors opperating independently. However, the ability to simplify
the visualisations keeps the audience broad.

Figure 5: A screenshot of AAPL on Yahoo Finance [43] and a screenshot of AAPL, GOOG and TSLA on Yahoo
Finance Chart [43]

2.3 Data Characteristics

Within the final visualisation application, two key data sets will be needed: share price data of multiple stocks
and news data related to those stocks. Due to the real-time and historic nature of the data required, an API is
the best solution to this problem, as downloading historic data sets would prevent the real-time aspect.

The key requirements of the APIs are to contain historical data, to allow the visualisation to reflect an ap-
propriate time range, and to allow for multiple stocks and news articles to be provided. Finally, the APIs need
to be relatively cheap or ideally free due to the academic nature of this project. For news content, originally
NewsAPI [30] was selected. However, later on in this project the restriction of 1-month historic data became a
bigger drawback than initially anticipated, which led to the discovery of NewsCatcherAPI [31]. Requesting an
educational discount NewsCatcherAPI [31] allowed premium access for this academic project, in turn granting
historic data up to 6 years.

5

2.3.1 NewsCatcherAPI

NewsCatcherAPI [31] provides a REST-API that allows the developer to send a GET request to a specified URL
along with their private key for authentication and query-related parameters in the URL to retrieve specified
data. The specified data will be returned in JSON format, which allows for easy access and manipulation in
JavaScript, which is the main language that will be used in this project. In the educational tier there is a size
limit of 100 articles per request, meaning each of the responses will return 100 samples of data.

Figure 6: News Catcher API sample JSON return structure [31] and News Catcher API sample article within
JSON return with strings changed to ”value” to reduce space [31]

The above figures 6 show the formatting of the response from a GET request from the NewsCatcherAPI [31];
the examples shown above are requested as follows:

GET: https://api.newscatcherapi.com/v2/search?q=apple&from=2020-11-12&to=2023-12-12&lang=en

This can be broken down into sections to better understand how it works. The first part of the URL is
NewsCatcherAPI’s domain where all of their API endpoints are stored. The URL then states the version of the
API being requested, in this case ”v2”; after which the search is then specified using ”q=...”. This is where the
user puts the query about the articles they would like to search for, in this case, apple. From and to dates are
then specified to give time parameters for the searched articles and finally the language is selected, which in
this case is ”en” for English.

2.3.2 Polygon

Polygon [34] is the chosen API for the financial data in this project. Like NewsCatcherAPI [31], it is a REST-
API which also allows GET requests to be sent by developers to a URL to receive specified JSON formatted
data. Unlike NewsCatcherAPI, there is no educational plan with this API; however, it does have a free tier. In
the initial phases, the free tier providing 5 API calls per minute was su�cient for the demands of the project.
However, in the latter stages, an upgrade to reduce the wait time between searches was required. This was
because a feature enabling the viewing of multiple stocks was implemented increasing the calls per minute
required by the application. Therefore the starter package was purchased which facilitated unlimited calls and
reduced the time in between searches. The starter package costs $29 per month, which is relatively expensive
compared to the free tier. However, this made a big di↵erence when testing and presenting the product although
not required for the core functionality.

The data used by this project mainly uses the free-tier restrictions and therefore does not have a reliance
on the starter tier and its associated cost. Data requested still uses end-of-day data rather than the 15-minute
delayed data available to the starter tier. The size of the data is dynamic but can be requested up to the previous
two years which will return a limit of 730 samples of data per stock. Due to this being abstract financial data,
the close price, which is what this project focuses on, has a minimum of 0 and no defined maximum value.

6

Figure 7: Polygon sample JSON return for AAPL between 10th Jan 2024 and the 10th Feb 2024 [34] and a
sample result

Figure 7 shows the results from a GET request to the polygon API. The following is an explanation of the
returned keys in figure 7 as described in Polygon’s documentation [34]:

• v: Trading volume

• vw: Volume weighted average price

• o: The open price

• c: The close price

• h: The highest price of the day

• l: The lowest price of the day

• t: The Unix Msec timestamp

• n: Number of transactions

3 Project Specification

3.1 Feature Specification

The primary goal of this project is to develop a web-based tool to concurrently visualize both news content
and share price. Delivering on the project goal the specification can be segmented into smaller objectives. A
key visualisation principle by Shneiderman (1996) [39] is ”Overview first, filtering and selection and details-on-
demand”. This principle is key to the project as it will allow the user to see the overview of the data, filter the
data to see specific subsets and then see the details of the data. This principle will be applied to the visualisation
of the news content and share price.

The following is an outline of those smaller objectives:

• Visualise share price.
This objective is not unique but is fundamental for the project, providing a comparative a contextual
baseline for other aspects of the project.

• Quantify and visualise the sentiment of an article.
Currently, where news content is incorporated with share price it is in a simple list format. The objective
is to create a mechanism to define and contextualise news sentiment against share price movement.

• Visualse frequency of an article.
A further objective to advance the current list view approach to news content is to visualise the number
of articles published by day across specified date ranges again within the context of share prices.

7

• Comparison of multiple stocks.
Currently, the most common view is single stocks; an objective of this project is to build a view of multiple
stocks including both share price and news content.

• Enabling informed investments
The current approach to presenting news content associated with share price makes the identification of
sentiment laborious. The objective is to enable the user to draw meaning from news content as part of
informed investment decisions.

The feature specification will deliver on the above objectives. To do this it is broken down into two sections:
required features and optional features. The required features represent the minimum standard necessary to
make the project useful and the optional features will provide more advanced functionality which separates this
project from previous applications.

With the project adopting agile methodologies, there have been frequent iterations and prototypes. At each
stage of the iterations, more requirements have come to light due to a greater understanding of the data and
seeing which visualisaitons work and which do not, causing the requirements to vary since both the project
proposal and interim report.

3.1.1 Required Features

Login

REQ-01 The homepage will have a log in button that will redirect the user to a Google login page.

REQ-02 The user will be able to log in using their Google account.

REQ-03 The system will allow the user to access the dashboard page once they have logged in.

REQ-04 The system will not allow the user to access the dashboard page if they are not logged in.

REQ-05 The system will allow the user to log out.

Run Search

REQ-06 The dashboard page will have a dropdown menu for the user to select a stock ticker.

REQ-07 The system will allow the user to click a button to run the search.

REQ-08 The system will send the selected ticker to the backend requesting both historic share price for that
ticker and any news related to it.

Retrieve Data

REQ-09 The system will retrieve the stock data from the Polygon API [34].

REQ-10 The system will retrieve the news data from the NewsCatcherAPI [31].

REQ-11 The system will process the stock data into a format that can be used by the front-end.

REQ-12 The system will process the news data into a format that can be used by the front-end.

REQ-13 The system will return the processed stock data to the front-end.

REQ-14 The system will return the processed news data to the front-end.

REQ-15 The system will return an error message if the stock data cannot be retrieved.

REQ-16 The system will return an error message if the news data cannot be retrieved.

Visualise Data

REQ-17 The system will display the stock data as a line chart.

REQ-18 The system will display the news articles as a list.

8

3.1.2 Optional Features

Run Search

OPT-01 The dashboard page will have a selector for glyph size.

OPT-02 The dashboard page will have a dropdown for glyph type.

OPT-03 The dashboard page will have a dropdown for date range.

OPT-04 The dashboard page will have a dropdown for colour mapping domain.

OPT-05 The dashboard page will have a dropdown for stock tickers that allows for multiple to be selected.

Retrieve Data

OPT-06 The backend will handle multiple stock tickers.

OPT-07 The backend will add sentiment to each article.

Visualise Data

OPT-08 The system will display multiple stocks on the line chart.

OPT-09 The system will display glyphs onto each line on the chart.

OPT-10 The system will map size of the glyphs to the number of articles in each day.

OPT-11 The system will map colour of the glyphs to the associated average sentiment of the articles in each
day.

OPT-12 The system will display the glyphs as a pie chart with each segment’s colour mapped to its individual
sentiment.

Visualisation Interaction

OPT-13 The system will allow the user to click on a glyph to see the articles associated with that day.

OPT-14 The system will allow the user to zoom in on the line chart.

OPT-15 The system will allow the user to hover over a circular glyph and view the number of articles, average
sentiment and date.

OPT-16 The system will allow the user to hover over a pie glyph segment and view the article title and
sentiment score.

Save Visualisation

OPT-17 The system will allow the user to click a button which will save the visualisation.

OPT-18 The system will store the data for the visualisation in a database.

OPT-19 The system will allow the user to view their saved visualisations.

OPT-20 The system will not show other users’ saved visualisations.

3.2 Technology Choices

3.2.1 Developmental Tools

• JavaScript, HTML, CSS: There are a few reasons why using a web stack is best for this project. The
first is that I have experience with web technologies, therefore I can work quickly and e�ciently. The
second reason is that there are many libraries and frameworks that can be used to help build this project.
Finally, a web-based approach makes the application accessible to the greatest amount of people.

• React: React [35] is a web framework that makes building reactive user interfaces simpler. This project
seeks to deliver sophisticated visualisations and will therefore require a reactive user interface. Further-
more, React Native provides the future potential for the project to be exported to mobile devices.

• React Router: React Router [36] was used to handle routing, due to the main framework used being
React [35]. This is because React [35] is designed to create single-page applications, so React Router [36]
makes it easier to convert it into a multi-page application.

9

• D3.js: With visualisations being a key part of this project, a library that would allow flexibility to create
e↵ective and interactive visualisations was needed. D3 [6] was selected as it o↵ers this functionality and
is well documented.

• Firebase: Firebase [9] is a cloud service that was used to handle the backend of this project. It allows
easy integration of users and authentication without having to handle storing the data independently. It
also allows the running of backend functions without having to set up a server, as well as easily integrate
a database and host the web application.

• Tailwind: TailwindCSS [40] is a library that speeds up styling html elements. It does this by providing
pre-built classes for general styling, which can be combined to create more complex styles. Saving you
from having to write the CSS yourself.

• DaisyUI: DaisyUI [7] is a plugin for TailwindCSS [40]. It provides more complex pre-built classes that
speed up styling even further as well as providing style guides for common components.

• JSDoc: JSDoc [19] is a tool that is used to document the project’s code base. It allows comments to be
written in the code that are then turned into a documentation website. This is important for future work
as it provides a more comprehensive understanding of the code.

3.2.2 Libraries

• multiselect-react-dropdown multiselect-react-dropdown [29] is a library containing a react component
that lets the user select multiple items in a dropdown list rather than the default HTML dropdown which
only allows for one. Using this component saves time as a custom component does not need to be created
to handle this functionality.

• vader-sentiment The vader sentiment [41] library allows the import of the vader-sentiment model into
the backend code to generate a sentiment value for each article title. This avoids having to implement the
model from scratch as well as providing a good alternative to the costly cloud-based solutions or training
a machine learning algorithm.

3.2.3 Project Management Tools

• GitLab: GitLab [12] is a web-based Git repository manager that is used to store the code. It allows
for version control, issue tracking, and tagging. Version control is important as it allows for tracking of
changes to the code and the ability to revert to previous versions if needed. Issue tracking is important as
GitLab allows issues to be viewed on a Kanban board, which makes it easier to keep track of what needs
to be done. Tagging is important as it allows marking of certain commits as a milestone, which makes it
easier to keep track of progress.

• Agile Methodology: An agile methodology has been used to manage this project. It is a good fit for
this project as it asks for an iterative approach, which allows for the production of a number of prototypes
as feedback is given to each one.

• Sprints: One-week sprints have been used throughout this project. This aligns well with the weekly
meetings with the project supervisor, where a sprint review takes place, talking about the previous sprint
and planning the next one.

4 Project Design

4.1 Frontend Component Overview

Due to this project being written using React [35], a component-oriented approach has been taken. Structuring
in this way has close similarities to object-oriented programming. However, the methodology slightly changed
from OOP with the focus being on interchangeable components rather than functionality-defined objects. This
allows the code to be more maintainable, as well as making it easier to swap in and out components when
needed.

10

Figure 8: A component overview of the frontend of the project showing the heihrachy of components i.e which
components are children of others

• App: The App component is the root component of the project. It contains the routing for the project
and the navigation bar allowing the user to navigate easily between the di↵erent pages.

• Nav Bar: This component holds the navigation bar that is displayed at the top of the page. It contains
the dropdown menu that allows the user to choose which page they want to go to, as well as the log in
and log out buttons.

• Home: The home component contains a brief description of the project and an arrow pointing towards
the login button if the user is not logged in. This is the only page that is accessible to the user if they are
not logged in.

• Dashboard: The dashboard component is the main page of the project. It contains the search bar and
the component which holds the visualisations as well as the articles. It also contains most of the ”states”
which control the flow of the project.

• Snapshots: The snapshots component is a page that allows the user to view their saved visualisations.
It also contains the chart and articles components which display the visualisations and articles. However,
it does not contain the searchbar and instead presents a list of saved visualisations.

• SearchBar: The search bar component holds all of the various select elements which control the data
retrieved for the visualisation, as well as a few options for the visualisation itself. It also contains the
button that runs the search.

• Chart and Articles: This component displays the visualisations and the articles. This is so it is easy to
add both functionalities to di↵erent pages. It also holds the logic for which articles need to be displayed
and which visualisation choices have been made.

• Menu Item: The menu item component is a simple component that purely handles the display of each
item in the list of saved visualisations.

• Multi Line Graph: This component contains the D3 [6] code that creates the line graph. It also handles
interaction with the graph such as zooming. This also handles the creation of the glyphs on the graph.
The tooltips for each glyph are also created in this component.

• Ticker Legend: This component handles displaying the legend for each line on the graph.

• Gradient Legend: This component handles displaying the gradient line showing the sentiment of the
articles.

• Article: This component displays each article, as well as containing a button that will take the user to
said article.

• Glyph: This component handles the displaying of a days worth of articles as a glyph.

11

• Pie Glyph: This component handles the displaying of a days worth of articles; however each article is a
segment of the pie chart.

4.2 Backend Class Overview

The backend of the project is handled by Firebase [9] and follows a more traditional OOP approach. This is
because the backend is more focused on handling data and processing it, rather than displaying it. The backend
is split into three main classes: one for each of the external APIs being used and one for handling the saving of
snapshots. The classes are as follows:

Figure 9: A class overview of the backend of the project showing the heihrachy of classes i.e which classes are
children of others. The rounded rectangle represents a class that only contains interfaces and the rectangle
represents a class that contains functions.

• Index: The index class is the main class of the backend. It exclusively handles exporting the functions
from the other classes to Firebase [9].

• News Data: The news data class handles the API checks for calling the NewsCatcherAPI [31]. It
retrieves the data from the API and formats the data, including the removal of data not needed by the
application. Additionally, it also handles running sentiment analysis on the article titles.

• Stock Data: This class functions similarly to the news data class, however dealing with financial data. It
handles API checks making sure the data is correct to be sent to Polygon [34]. It retrieves the data from
the API and formats the data into a more usable format, including filling in missing days with estimated
values.

• Snapshots: This class handles the saving of snapshots. It takes data from the front end and saves it to
the Firebase [9] database. It also retrieves the data from the database and sends it back to the front end.

• Interfaces: On its own this class provides no functionality; however, it contains the interfaces that are
used by the other classes. This is so that shared types can be used across the other classes.

4.3 Process Diagrams

Figure 10: A high-level overview of the project showing how the largest sections of the project interact with
each other.

As shown in figure 10, the project is split into three distinct sections: the front-end web app, Firebase [9], and
the external APIs. The front-end web app provides the user interface and will be where the user engages with

12

the application. The front-end will display the visualizations and allow the user to interact with them, such as
selecting specific stocks.

Firebase [9] has been selected as it provides an e↵ective backend for the application, supporting objectives.
There are three services of Firebase [9] being used in this project. Authentication allows user verification,
confirming they are who they say they are and managing the sign-in process. Firestore (NoSQL database)
provides an easy and scalable database that integrates well with the other Firebase services. Functions remove
the requirement of a dedicated server whilst still allowing backend code to be run.

The external APIs are used to retrieve live and historic data, both share price and news articles. Polygon
[34] provides access to stock data for a particular company in a given range of dates. NewsCatcherAPI [31] is
used to get the top 100 most popular news articles for each selected stock in a given date range that can be
aligned to the stock data.

Figure 11: This is a high-level overview of the functions section showing the generalised flow of interaction and
data between the user, frontend and internal functions.

The function section of the project is broken down further in figure 11. This section takes a request for data
from the front-end, retrieves it from the external APIs, and then processes it before returning it to the front-end.
This is so the front-end does not waste resources processing data into an easier format, as the user’s device may
not be powerful enough to do so.

Figure 12: A more in-depth look into the stock data processing section of the functions.

The processing part of the functions can be again broken down into two parts; the first of which is outlined in
figure 12. The process starts by retrieving the data from the Polygon API [34], then re-formats the data into
an array of objects, one object for each day. It then fills in the missing days with the previous day’s data before
finally returning the data to the front end.

13

Figure 13: A more detailed overview of the news data processing section of the functions.

The second part of the processing overview is figure 13, which retrieves the data from the NewsCatcherAPI [31]
then converts the date format to a timestamp to match the stock data. It groups the articles by timestamp to
make it easier to visualize before running sentiment analysis on the article titles to get a sentiment value. Then
it removes any redacted articles that may cause errors in the visualizations. Finally, it returns the data to the
front end if there have been no errors along the way.

5 Project Plan and Gantt Charts

5.1 Project Management

Project management is a key aspect of any software engineering project. It is important to stay organised and
keep track of progress when it comes to working on a large project. Many tools and methodologies have helped
with this. The methodology that has been the biggest help is agile. The agile manifesto [15] states the following:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

These principles have been followed throughout the project where possible and meaning has been interpreted
to suit the nature of this project.

Following these principles, the project has been broken into one-week sprints. This corresponds to the weekly
meetings with the project supervisor. In these meetings, the previous week’s work is discussed and the next
week’s work is planned, as well as reflection on the current iteration of the project to understand what is working
and what is not.

To keep track of the project and to maintain version control, Gitlab [12] has been used. As well as just
storing the code, GitLab allows for the tagging of commits, which has been used at every major milestone of the
project. This allows for easy rollback to previous versions if needed and makes it easier to view the progress of
the project. GitLab also has an issue tracker with an integrated Kanban board. This has been useful to break
down the weekly tasks into smaller more manageable tasks and visualise the progress of the sprint.

More details of the tools used can be found in the technology choices section of this report. 3.2.3

5.2 Gantt Charts

As part of the initial project proposal, a Gantt chart was created with a breakdown of the key components of
the project and estimated time frames. This was a helpful exercise and has formed a reference point in the
regular reviews of progress. The original Gantt chart is shown in figure 14.

14

Figure 14: Initial outline of timeframes for the project created for the project proposal.

At the time of the interim report, a revised Gantt chart was created, figure 15, to reflect the progress made
and the changes required. This was useful to understand the progress made and reflect on the causes of the
changes. Some examples of these changes include the removal of the keyword research as this was replaced with
a query-based approach. Time required on frontend development was increased, leading to a reduction in the
time allocated to backend development. Increasing the time allowed for writing the final dissertation, due to
the interim report taking longer than expected. Throughout this initial stage of the project, the project Gantt
chart has been updated to reflect the progress made and the changes required.

Figure 15: Revised Gantt chart showing the changes made to the timeframes during the writing of the interim
report.

A few changes have been made to the timeframes since the interim report. The final Gantt chart is shown
in figure 16. The biggest changes were to the timeframes for the backend and frontend development; this
was mainly due to the addition of both the Pie Glyph and the Multi-Line Graph visualisations. Due to the
complexity of these visualisations, a lot of work was required to implement them correctly and maintain previous
functionality. An extension of the dissertation deadline was also allowed giving more time to write the final
report. However, the overall estimation of time frames in the interim report was reasonably accurate.

Figure 16: The final Gantt chart showing the timeframes used at the end of the project.

15

6 Implementation

The implementation phase provides a detailed overview of the development process that has been undertaken to
create the final web application. This is broken down into two sections: required features and optional features.
Throughout the development phase of this project, reference has been made to the guidance contained within
Bob’s Concise Coding Conventions[22] by R. S. Laramee. It should be noted that the conventions have been
adapted to suit the language and framework, as this project has used JavaScript and React.

The implementation section provides clarity on establishing the web application outlined in figure 17. This
screenshot provides an overview of the full functionality of the site with the exception of some of the interactive
elements.

Figure 17: The final version of the web application showing AAPL, TSLA, AMZN, NVDA from 25th Apr 2023
to 25th Apr 2024.

6.1 Required Features

The first phase of implementation focuses on the required features of the project outlined in section 3.1.1. Table
1 below shows the required features, their associated IDs and their current status. It is segmented into four
sections: Login, Run Search, Retrieve Data, and Visualise Data. This structure will be used throughout this
section to describe the implementation phase.

Required Features

ID Description Status
Login

REQ-01 Log-in button on homepage Completed
REQ-02 Log-in with Google Completed
REQ-03 Access to dashboard on log-in Completed
REQ-04 No access to dashboard without log-in Completed
REQ-05 Log-out button Completed

Run Search
REQ-06 Dropdown menu for stock ticker Completed
REQ-07 Button to run search Completed
REQ-08 Send selected ticker to backend Completed

Retrieve Data
REQ-09 Retrieve stock data from Polygon Completed
REQ-10 Retrieve news data from NewsCatcherAPI Completed
REQ-11 Process stock data Completed
REQ-12 Process news data Completed
REQ-13 Return processed stock data Completed
REQ-14 Return processed news data Completed
REQ-15 Error message if stock data cannot be retrieved Completed
REQ-16 Error message if news data cannot be retrieved Completed

Visualise Data
REQ-17 Display stock data as a line chart Completed
REQ-18 Display news articles as a list Completed

Table 1: A table showing the required features of the project and their current status.

16

6.1.1 Login

Having login functionality comes with a few benefits. The first being that it enables the addition of user-specific
saved visualisations. The second is that, when combined with the blocking of the dashboard page without login,
it provides a level of security, stopping bots from accessing the dashboard. This would cause strain on the
backend functions and potentially cost money.

The login features have been implemented using Firebase [9] authentication. This made the process of de-
veloping this section more simple than it otherwise would have been. To do this, a firebase project was created
and the Firebase [9] package was installed into the project.

Once the Firebase [9] package was installed a sign-in function was than created that would open up the Google
sign-in page, as well as correctly handling authentication. This function can be seen in figure 18.

Figure 18: The login function that handles the Google sign-in process.

This was then added to a button on the Nav Bar component, shown in figure 19. Now the user is able to click
a button and be taken to the Google sign-in page.

Figure 19: The login button that opens the Google sign-in page and the associated code.

With the user now able to login, the next step was to change the login button to the user’s google profile picture
and add a way for the user to sign out.

17

Figure 20: The profile picture and logout button that replaces the login button and the code that handles the
logout process.

The final step was to make sure that the user cannot access the dashboard page without being logged in. To do
this a function was implemented that redirects the user to the homepage if they are not logged in; this function
can be seen in figure 21. It has been implemented using the useE↵ect hook provided by React [35].

Figure 21: The function that redirects the user to the homepage if they are not logged in.

6.1.2 Run Search

The run search features are some of the most important features in the project, without them the user would
not be able to request the data for the visualisations. To implement them, first a searchbar component was
created. This is so the functionality of the search can be easily added to other pages if needed in future. The
search bar originally contained a dropdown menu for the stock ticker and a button to run the search; however
it was later updated to include more options for the user to select from (See 6.2).

SearchBar.jsx

const SearchBar = forwardRef((props,ref) =>
const {handleSearch} = props
const {tickerSelectRef} = ref
...
return(

<div className="searchbar">
<select ref={tickerSelectRef}>

<option>AAPL</option>
<option>GOOGL</option>
...

</select>
<button onClick={() => handleSearch}> Run Search </button>

</div>
)

)

18

Dashboard.jsx

const Dashboard = () => {
const [ticker, setTicker] = useState("AAPL")
const [stockData, setStockData] = useState([])
const [newsData, setNewsData] = useState([])
const tickerSelectRef = useRef()
...
const handleSearch = () => {

setTicker(tickerSelectRef.current.value)
}
...
useEffect(() => {

...
getMultipleStockData({ticker}).then((data) => {

setStockData(data)
})
...
getMultipleNewsData({ticker}).then((data) => {

setNewsData(data)
})
...

},[ticker])
...
return(

<div>
<SearchBar ref={{tickerSelectRef}} handleSearch={handleSearch}/>
...

</div>
)

}

The above code shows how this functionality would be implemented if it had not been updated to include more
options. The search bar component contains a dropdown menu for the user to select a ticker, which has a ”ref”
passed to it from the parent component. There is also a button on the searchbar that, when clicked, runs the
function passed to the component by the parent component.

In the parent component, Dashboard, the ticker is set to AAPL; this is done using the useState hook pro-
vided by React [35] and is used to store the ticker that the user has selected. useState is used to enable the
value to be stored so it does not get lost when the component re-renders. The useState hook is also used to
store the stock data and news data so it can be used later in the visualisations. A reference is created for the
ticker dropdown menu so that the value can be accessed later. The handleSearch function is then created so
that it can be passed into the search bar component and run when the button is clicked. The handleSearch
function sets the ticker to the value selected in the dropdown. A useE↵ect hook is then used to run the requests
to the backend using firebase functions to get the stock and news data which will be epanded on in 6.1.3. The
useE↵ect hook waits for the ticker value to change and when it does, it calls the code inside the hook, therefore
retrieving the data and saving it to the newsData and stockData values respectively.

6.1.3 Retrieve Data

Retrieving data is fundamental as it is the process in which we get the data needed for the visualisations. The
way that this has been implemented is by using Firebase [9] functions to call the external APIs, as well as
processing them. Using Firebase allows for the backend to be run without the need for a dedicated server or
running the functions on the front-end. This is important as it allows for the data to be processed in a more
powerful environment than the user’s computer in turn making the application more e�cient. Additions will
be made in section 6.2 to increase the functionality of these features.

The first thing required to enable the Firebase functions is to add the functions service to the Firebase project;
this does require swapping from the free tier to the pay-as-you-go tier. However, in the context of this project,
the costs are negligible and remain well within the credits provided by Google Cloud. As of writing this, the
project has spent £0.01 on server time and the credits from Google Cloud allow up to £300.

The backend has been split up into four main classes; within this section the focus will be on the main class,
Index, and the two classes that handle the external APIs, News Data and Stock Data.

Index.ts

19

const getStockData = require(’./stockData’)
exports.getStockData = getStockData.getStockData
...
const getNewsData = require(’./newsData’)
exports.getNewsData = getNewsData.getNewsData
...

The above code shows the index file for the functions; this file is used to get the function from the other classes
and export them so that Firebase [9] can use them. This is done by requiring the other classes and then ex-
porting the functions that return the processed and retrieved data.

stockData.ts

const isStockDataParams = (data: any){
return(

typeof data.ticker === "string" &&
typeof data.from === "string" &&
typeof data.to === "string"

)
}
...
const mutateStockData = ({data, from, to}: any) => {

const fromDate = new Date(from)
const toDate = new Date(to)

fromDate.setHours(0,0,0,0)
toDate.setHours(0,0,0,0)

const stockData = data

const stockDataMap = stockData.reduce(
(acc: any, item: {t: number, c:number}) => {

const date = new Date(item.t)
date.setHours(0,0,0,0)
acc[date.getTime()] = item.c
return acc

}, {}
)

let lastNonNullClose = 0;

const mutatedStockData = []
for(let d = fromDate ; d <= toDate: d.setDate(d.getDate + 1)){

const timestamp = d.getTime()

mutatedStockData.push({
t: timestamp,
c: stockDataMap[timestamp] || null,
ec: stockDataMap[timestamp] ? null : lastNonNullClose

})

if(stockDataMap[timestamp]){
lastNonNullClose = stockDataMap[timestamp]

}
}

return mutatedStockData
}
...
const getExternalStockData = async ({ticker, from, to}: StockDataParams) => {

const url = "... + ticker + ... + from + ... + to + ..."
try{

const response = fetch(url)
if(!response.ok) throw new Error(‘Failed to retrieve data! status: ${response.status}‘)
const data = await response.json()
return mutateStockData({data, from, to});

20

}
}
...
exports.getStockData = onCall (

{
cors: [...]
region: "..."

},
async (request) => {

if(!stockDataParams(request.data)) throw new Error("Invalid Parameters");
const [ticker, from, to] = [request.data.ticker, request.data.from, request.data.to]
return await getExternalStockData({ticker, from, to});

}
)

The above code shows the stockData class. The first thing that happens when the getStockData function is
called from Firebase [9] is the sent-in parameters are checked to see if they match what is expected. This is so
when the inputs are passed to the external API they are guaranteed to be in the correct format, reducing the
chance of errors. The request is then sent to the next function, getExternalStockData, which retrieves the data
from the external API and returns it, after passing it to the mutateStockData function.

Inside the getExternalStockData function, the URL is created with the ticker, from, and to parameters. The
URL is then fetched using the inbuilt JavaScript fetch function. The response is then checked to see if it is ok, if
not an error is thrown. Assuming that the response is ok the data is the sent to the mutateStockData function
alongside the from and to parameters, before being returned.

The mutateStockData function is used to process the data. The first thing it does is normalise the from
and to values to midnight of the day. It then creates a map of the stock data with the timestamp ”t” being
normalised to midnight, as well as getting the closing price ”c”. The map is then used to fill in any missing
days with a new property ”ec” which is an estimated close price. In practice, this is the last close price before
the missing data. This is used to make it easier for the line chart to draw the line without any gaps.

newsData.ts

...
const isNewsDataParams = (data: any){

return(
typeof data.ticker === "string" &&
typeof data.from === "string" &&
typeof data.to === "string"

)
}

const mutateNewsData = (articles: Article[]) => {
const articlesWithTimestamps = articles.map((article: Article) => {

const articleDate = new Date(article.published_date)
articleDate.setHours(0,0,0,0)
return {...article, t: articleDate.getTime()}

})

const groupedArticles = articlesWithTimestamps.reduce((grouped: any, article: any) => {
(grouped[article.t] = grouped[article.t] || []).push(article)
return grouped;

}, {})

delete groupedArticles[0]

return groupedArticles;
}

const getExternalNewsData = async ({ticker, from, to key}: NewsDataParams) => {
const url = "... + ticker + ... + from + ... + to + ..."
const options = {method: "GET", headers: {"x-api-key": key}}
try{

const response = await fetch(url, options);
if(!response.ok) throw new Error(‘Failed to retrieve data! status: ${response.status}‘)

21

const data = await response.json()
return mutateNewsData(data.articles)

}
catch{

throw new Error("Failed to retrieve data!")
}

}

exports.getNewsData = onCall (
{

cors: [...]
region: "..."
secrets: ["NEWS_API_KEY"]

},
async (request) => {

if (!isNewsDataParams(request.data)) throw new Error("Invalid Parameters");
if(!process.env.NEWS_API_KEY) throw new Error("API Key not found");
const key: string = process.env.NEWS_API_KEY
const [ticker, from, to] = [request.data.ticker, request.data.from, request.data.to]
return await getExternalNewsData({ticker, from, to, key});

}
)

Within the newsData class, there are some similarities with the stockData class. The getNewsData function
is the entry function called by Firebase [9]. Like the stockData class, it first checks the parameters to make
sure they are in the correct format. However, it then also checks that an API key is present in the env file.
Storing the API key in the env file is good practice as it stops the API key from being hardcoded in, reducing
the chances of it accidentally being published to a public repository. Once the parameters have been checked,
the function then calls the getExternalNewsData function.

The getExternalNewsData function is almost identical to the getExternalStockData function. The only dif-
ferences are that the URL is di↵erent and that options have to be specified including the API key. Once the
data has been retrieved, it then sends the gathered data to the mutateNewsData function alongside the ticker.

The mutateNewsData function is the biggest di↵erence from the stockData class as the two di↵erent types
of data require di↵erent processing or ”mutating”. It first converts the published date of the article to a times-
tamp, alongside normalising it to midnight so the dates all align. It then groups the articles by day so that
they can be easily visualised. Then index 0 is removed as it contains redacted articles.

6.1.4 Visualise Data

The visualisation of the data is done using D3 [6] and React [35]. The visualisations this section will focus on
are the line chart and the list of articles. A line chart has been chosen for stock data as it will be the most
familiar to the user and therefore is the most e↵ective.

To create this visualisation, x and y scales have been created using the D3 [6] scaleLinear function, as well
as the D3 scaleTime function. These scales are functions that take in a value and will map it against the
domain and range specifiecd. The domain is the minimum and maximum values of the data and the range is
the minimum and maximum values of the chart. The scales are then used to create the line, which is done
using the D3 line function. A second line is also created to show the estimated close and fill in the gaps in the
original line. To di↵erentiate, a stroke is used to create a dashed e↵ect. This function takes in the data and the
x and y scales to produce a line that can be drawn on the chart. The x and y axis are then created using the
D3 axisLeft and axisBottom. The resulting chart is shown in figure 22.

22

Figure 22: The line chart visualisation of AAPL from 2023-04-15 to 2024-04-15.

The list of articles was created by using the JS map function to loop through all the articles in the retrieved
data and create a new Article component for each one. The Article component contains the title, date and a
button to take the user to the article. An example of this can be seen in figure 23.

Figure 23: 2 articles for AAPL published within 2023-04-15 and 2024-04-15.

6.2 Optional Features

The following section outlines the implementation of the optional features previously discussed in section 3.1.2.
Table 2 shows the optional features and their current status. The optional features are split into three sections:
Run Search, Visualise Data, and Save Visualisation.

23

Optional Features

ID Description Status
Run Search

OPT-01 Add glyph size selection Completed
OPT-02 Add glyph type selection Completed
OPT-03 Add date range selection Completed
OPT-04 Add colour mapping selection for sentiment Completed
OPT-05 Add multiple stock selection Completed

Retrieve Data
OPT-06 Handle multiple stock tickers Completed
OPT-07 Add sentiment analysis to news data Completed

Visualise Data
OPT-08 Add multiple lines to the line chart Completed
OPT-09 Add glyphs to the line chart Completed
OPT-10 Map size of glyphs to the number of articles each day Completed
OPT-11 Add circular glyphs to the line chart Completed
OPT-12 Add pie glyphs to the line chart Completed

Visualisation Interaction
OPT-13 Show articles associated with glyph when clicked Completed
OPT-14 Zooming on line chart Completed
OPT-15 Circular glyph hover tooltip Completed
OPT-16 Pie glyph hover tooltip Completed

Save Visualisation
OPT-17 Add a save button to the dashboard Completed
OPT-18 Save visualisation to Firebase Completed
OPT-19 Add a page to view the saved visualisations Completed
OPT-20 Make sure only the user can see their saved visualisations Completed

Table 2: A table showing the optional features of the project and their current status.

6.2.1 Run Search

The run search features have been expanded upon from section 6.1. This is to allow the user to be able to
control the new features added in the rest of section 6.2.

The features in the updated search bar build on the original search bar. They all get passed their own ”ref”
which is used in the handleSearch function sent from the parent component, Dashboard, to the searchBar com-
ponent. These refs are then used to get the values from the inputs and store them in state variables created by
the useState hook. As before the state variables are then watched by the useE↵ect hook and when they change
the requests are sent to the backend to get the data.

Figure 24: The up-to-date searchBar component with all optional features added.

The dropdown menu has been replaced with a multi-select dropwdown menu [29]; this allows the user to select
more than one ticker without using a separate dropdown menu for each one. The state variable holding the
ticker selection has been changed from a single string to an array to accommodate this.

To handle the new additions to the search bar, the handleSearch function has been updated and is shown
in figure 25.

24

Figure 25: The updated handleSearch function that handles the new inputs from the search bar.

6.2.2 Retrieve Data

Slight changes have had to be made to the backend functions in order to allow for the multiple stock tickers to
be handled.

Within the entry function of the news data class, multiple tickers are now accepted. This is done, first by
changing the parameters to accept an array of tickers instead of a single ticker. The function then loops
through the tickers and calls the getExternalNewsData function for each one. A one second wait is added to
prevent a 429 error (too many requests) from the NewsCatcherAPI [31], as it has a rate limit of 100 articles per
second. The loop within this function is shown in figure 26.

Figure 26: The loop that handles multiple tickers in the newsData class.

A similar change to that made above is also made to the stock data class. Again, the parameter checks have
been changed to accept an array of tickers; however a new check has also been introduced to make sure the
array is no longer than 5 tickers. This is to allow the backend to use the free tier of the Polygon API [34], even
though it currently uses the starter tier to reduce the wait time. The Polygon free-tier has a limit of 5 requests
per minute, which in turn would require restriction on the frontend to prevent the user from searching more
than once per minute. This is the main reason the starter tier has been purchased. The updated function can
be seen in figure 27.

Figure 27: The updated getStockData function that handles multiple tickers.

The final change that needs to be made to the newsData class is to add in the sentiment analysis. This is done
using the Vader Sentiment Analysis library [41]. The library is used to analyse the title of the article and return
an estimated sentiment score. This score is then added to the article object and returned to the frontend. The
code for this can be seen in figure 28.

25

Figure 28: The getSentiment function and the loop added to the mutateNewsData function.

6.2.3 Visualise Data

The visualisation aspect of the project has been greatly expanded up on in this section, starting with adding
multiple lines to the line chart. This was done by first using the D3 [6] group function to group the data by
its ticker. This is necessary for the data to be in a format that is handled well by D3. The data is then looped
through, adding a line for each colour and changing the colour of the line to di↵erentiate them. Finally, a
legend is added to display the ticker alongside the associated colour of the line. The rest of the line chart code
is negligibly di↵erent from the single line chart. An example of the multiple line chart can be seen in figure 29.

Figure 29: The line chart visualisation of AAPL, TSLA, AMZN and NVDA from 2023-04-16 to 2024-04-16.

Another addition to the visualisations is the glyphs. These glyphs are used to depict both the frequency of
articles on a given day but also the sentiment of said articles. In the final project, there are two types of glyphs:
circular glyphs, colour-mapped to the average sentiment of the articles, and pie glyphs, with segments mapped
to the individual sentiment of the articles. The circular glyphs are created exclusively using the in-built svg
circle element with the colour being set to the average sentiment of the articles and the colour scale being
ColorBrewer’s RdYlGn scale [4]. The radius is then set using the following formula:

radius =
number of articles in the day ÷ maximum number of articles
⇥ width of a day ÷ 2 ⇥ user selected multiplier

After the glyph component has been created it is then added to the line chart by looping through all of the
article groups and adding a glyph element to an array which is stored in a state variable. The state variable
is attached to the return of the linechart component this way the glyphs are automatically rendered when the
array is changed. An example of the line charts with circular glyphs can be seen in figure 30.

Figure 30: The line chart visualisation of AAPL, TSLA, AMZN and NVDA from 2023-04-16 to 2024-04-16 with
circular glyphs at 20 times multiplier for better clarity.

The second type of glyph, the pie glyph, is built using the D3 [6] pie and arc functions. First, a filler array is
created to ensure all of the segments of the pie are the same size. This is done by creating an array the same

26

size as the number of articles in a day and filling it with 1s. The pie function is then called on the filler array
and the arc function is called on the result of the pie function. The colour is then mapped using the same colour
scale as the circular glyphs, and the same radius formula. However, instead of using the average sentiment for
the colour, each segment’s article sentiment is used. An example of a pie glyph can be seen in figure 31.

Figure 31: The pie glyph for AAPL on 2024-04-04.

6.2.4 Visualisation Interaction

There are 4 di↵erent interactions that have been added to the line chart: glyphs on click to show relevant articles
along side the chart, zooming on the line chart and two di↵erent tooltips for the two glyph types. The first
interaction, the glyph on click, is done by adding an onClick listener onto the glyph component. This listener
then calls a function that sets a state variable to the articles associated with the glyph. The state variable is
then used to display an article component for each article in the state variable array.

The zooming on the line chart is done using the brush function provided by D3 [6], alongside updating the
x functions inputted domain to be that of what is selected by the brush. After which the linechart is rerendered
showing the selected area. To go back to the original view of the chart, the user can double click resetting the
x domain to the original value.

Tooltips have been created for both the circular and pie glyphs. The circular glyph tooltip is created by
adding an onMouseOver listener to the circle element. A Tooltip is then created and displayed when hovering.
This tooltip is removed by an onMouseLeave listener. The tooltip flips to the other side of the glyph depending
on where the glyph is on the chart. This is done by working out the midpoint of the graph. An example of a
circular glyph tooltip can be seen in figure 32.

Figure 32: The circular glyph tooltip for AAPL on 2024-04-04.

The pie glyph tooltip is created using a lot of the functionality from the circular glyph tooltip. The only
di↵erence is the text. The text is created by splitting the article title by how many characters fit on a line.
If the second line is too long, its last 3 characters are replaced with ”...”. Additionally, the specific article’s
sentiment score is displayed in place of the average sentiment. On top of showing the tooltip the, hovered over
segment is also highlighted by moving it outwards slightly. This can be seen in figure 33

Figure 33: The pie glyph tooltip for AAPL on 2024-04-04.

6.2.5 Save Visualisation

Saving visualisations allows the user to save the selections they have made and revisit them at a later date.
This is done by adding a save button to the dashboard page, which is linked to a function that pushes the

27

currently loaded news and stock data to the Firebase [9] database. This data is then retrieved from Firebase
and displayed on the snapshots page.

Within the backend, the snapshots class has been created to handle the saving and retrieving of the snap-
shots. Again this is done using Firebase [9] functions. The first entry point ”add” is used to add a snapshot to
the database. First, the parameters are sent in to make sure everything required is present and is of the correct
types. The data is then added to the snapshots collection in the database. The required fields are uid (the user
id), name (the name of the snapshot), newsData, and stockData.

The second entry point list is used to retrieve all snapshots for a user. This is done by first checking a uid has
been sent in via the request and that it is a string. The snapshots are then searched for in the database using
the uid. Finally the snapshots are returned to the frontend. A screenshot of the database is shown in figure 34.

Figure 34: The Firebase database showing the snapshots collection.

7 Testing and Evaluation

Testing and debugging are key to having a successful project. This section will outline the testing that has been
done on the project and the evaluation of the project as a whole. The testing of this project has been conducted
using a combination of manual and automated testing. Throughout the project, testing at each stage has also
been done to ensure each feature works as expected.

7.1 Automated Testing

The automated testing has been done on the backend to ensure each function works as expected. To do this
the Jest testing framework [17] has been used. The tests are run using the npm test command.

Automated Tests

Test Pass / Fail
Mutate News Data Pass
Mutate Stock Data Pass

Table 3: A table showing the automated tests conducted and their results.

7.1.1 News Data

The first automated test is checking the mutateNewsData function to check that it processes the data correctly.

Input
The following is an array of articles from NewsCatcherAPI [31] with the following structure:

[
{

title: "Test Article",
author: "Test Author",
published_date: "2024 -04 -04 T00 :00:00Z",
published_date_precision: "day",
link: "https :// test.com"
clean_url: "test.com"

28

excerpt: "This is a test article"
summary: "This is a test article"
rights: "test.com"
rank: 1
topic: "test"
country: "test"
language: "test"
authors: "test"
media: "test"
is_opinion: false
twitter_account: "test"
_score: 1
_id: "test"

}
]

Expected Output
The expected output should be a JSON object with the following structure:

{
timestamp: [

{
... Input Article ,
s: sentiment score
t: timestamp

},
...

]
}

The output should be a JSON object with the timestamp as the key and an array of articles as the value. Each
article should be exactly the same as in the input but with the sentiment score and timestamp added.

Output
The output of the test was as expected and the test passed. The following is an example of the output:

{
"1670150400000": [

{
title: "Test Article",
author: "Test Author",
published_date: "2024 -04 -04 T00 :00:00Z",
published_date_precision: "day",
link: "https :// test.com"
clean_url: "test.com"
excerpt: "This is a test article"
summary: "This is a test article"
rights: "test.com"
rank: 1
topic: "test"
country: "test"
language: "test"
authors: "test"
media: "test"
is_opinion: false
twitter_account: "test"
_score: 1
_id: "test"
t: 1670150400000
s: 0

}
]

}

29

7.1.2 Stock Data

The second automated test is checking the mutate stock data function to check that it processes stock data
correctly.

Input
An array of stock data from the Polygon API [34] with the following structure:

[
{

"v": 4.6192908e+07,
"vw": 185.2509 ,
"o": 184.35 ,
"c": 186.19 ,
"h": 186.4 ,
"l": 183.92 ,
"t": 1704862800000 ,
"n": 554777

}
]

Expected Output
The expected output should be an array of JSON objects with the following structure:

[
{

t: timestamp normalised to midnight ,
c: close price or null ,
ec: estimated close price or null

}
]

The output should be an array of objects with a normalised timestamp, the close price, and the estimated close
price. The close price or estimated close price can be null but not both. The estimated close price should be
the last close price before the missing data.

Output
The output of the test was as expected and the test passed. The following is an example of the output:

[
{

t: 1704844800000 ,
c: 186.19 ,
ec: null

}
]

7.2 Manual Testing

Manual testing has been done across the entire project to ensure that the user experience is as expected.

7.2.1 Visual Testing

Visual Tests

Test Pass / Fail
Check line chart displays correct data Pass
Check all search bar options work Pass
Check articles are correctly displayed on glyph click Pass
Check average glyph tooltip displays correctly Pass
Check pie glyph tooltip displays correctly Pass

Table 4: A table showing the visual tests that have been conducted and their results.

The first test was to check that the line chart was displaying the correct data.

30

Figure 35: The line chart visualisation of AAPL from 2023-04-21 to 2024-04-21 on this projects visualisation
and yahoo finance [43].

As shown in figure 35, the line chart displays the correct data. The data is the same as that on Yahoo Finance
[43]. The only di↵erence is the estimated close price, which is not displayed on Yahoo Finance [43] and this is
expected.

After the line chart was confirmed to be displaying the correct data, the next test was to check that the
search bar was working as expected. To check this each part of the search bar was set to a di↵erent value and
the data was checked to see if it was correct.

Figure 36: Search bar test with the ticker set to AAPL and TSLA, the glyph size set to 2x, the glyph type set
to the average colour the date range set to 2024-03-21 to 2024-04-21 and the colour mapping set to -0.5 to 0.5.

All the data was shown as expected and the test passed. The two lines were displayed on the chart with the
correct colours. The correct type of glyphs were shown with the increased size and the correct colour mapping.
The articles were also displayed correctly.

The next check is to see if the articles appear correctly when a glyph is clicked. This is done by clicking
on a glyph to see if the articles appear and then checking that they are all from the correct date and related to
the correct ticker.

31

Figure 37: The glyph clicked and the associated articles displayed.

As shown in figure 37, the articles are displayed correctly and are all from the correct date and ticker.

The next two tests are to check that the tooltips are displayed correctly. The average sentiment glyph should
have a tooltip with the date, the number of articles, and the average sentiment. The pie glyph should have a
tooltip with the article title and the sentiment of the article.

Figure 38: Both the average glyph tooltip and the pie glyph tooltip displayed.

Both tooltips correctly display the information required, with the data displayed matching both the data on
the chart and the data contained within the articles and the state variables within the application.

7.3 Benchmark Testing

Benchmark testing has been conducted to compare the performance of the application, both backend and
frontend. This is to better understand the how the application performs under di↵ering number of stock tickers.

7.3.1 Backend Benchmarks

32

Backend Benchmarks

No. Tickers From Date To Date Time Size
Stock Data

1 2024-04-19 2024-04-19 120ms 66B
2 2024-04-19 2024-04-19 170ms 123B
5 2024-04-19 2024-04-19 143ms 291B
1 2024-03-19 2024-04-19 183ms 1830B
2 2024-03-19 2024-04-19 134ms 3.6KB
5 2024-03-19 2024-04-19 162ms 8.9KB
1 2023-10-19 2024-04-19 316ms 10.2KB
2 2023-10-19 2024-04-19 355ms 20.4KB
5 2023-10-19 2024-04-19 570ms 51.1KB
1 2023-04-19 2024-04-19 384ms 20.4KB
2 2023-04-19 2024-04-19 460ms 40.8KB
5 2023-04-19 2024-04-19 513ms 101.9KB

News Data
1 2024-04-19 2024-04-19 1.24s 13.5KB
2 2024-04-19 2024-04-19 2.57s 31.6KB
5 2024-04-19 2024-04-19 6.25s 52KB
1 2024-03-19 2024-04-19 2.36s 318.2KB
2 2024-03-19 2024-04-19 4.65s 572.3KB
5 2024-03-19 2024-04-19 11.5s 1809.1KB
1 2023-10-19 2024-04-19 2.19s 187.3KB
2 2023-10-19 2024-04-19 4.64s 375.5KB
5 2023-10-19 2024-04-19 11.3s 1236.3KB
1 2023-04-19 2024-04-19 2.95s 211.6KB
2 2023-04-19 2024-04-19 5.11s 387.2KB
5 2023-04-19 2024-04-19 12.6s 1336.9KB

Table 5: A table showing the benchmarks done on the backend. The tickers used are APPL, TSLA, MSFT,
GOOG and NVDA, with the 1 and 2 tickers being the first and first two tickers in the list respectively. The
size is the size of the data returned from the backend. The time is the response time from the backend. This
has been tested using Insomnia [16].

The results from the backend benchmarking are as expected. When it comes to the stock data tests, the size
increased linearly with increasing date range and increasing number of tickers. The time taken also slightly
increased; however, the biggest factor for this was the slight latency in the network connection.

News data was di↵erent, this is because there is a hardcoded time increase with the more tickers that are
added, 1 second per ticker. Additionally, the size of the data is greatly a↵ected by which articles are returned;
this is more random so the size of the data is more sporadic than the stock data. The time taken increased
more with the number of tickers than the date range, which should be the case due to the number of articles
per ticker being the same no matter the date range.

7.3.2 Frontend Benchmarks

33

Frontend Benchmarks

No. Tickers Date Range Time
1 1 Months 2.1s
1 3 Months 2.83s
1 6 Months 3.24s
1 1 Year 2.88s
2 1 Months 5.67s
2 3 Months 5.61s
2 6 Months 5.74s
2 1 Year 6.42s
5 1 Months 12.49s
5 3 Months 13.75s
5 6 Months 13.68s
5 1 Year 12.97s

Table 6: A table showing the benchmarks done on the front end. This has been tested by clicking the search
button and timing how long it takes for the data to be displayed. Slight human error is expected.

The frontend benchmarks line up very similarly to the backend benchmarks, with the limiting factor being the
news data. The time taken for the frontend to visualise the data seems to have an extremely minimal impact
on the time taken even with the larger sample sizes.

7.4 Evaluation

7.4.1 Case Study 1 - NVDA stock price correction April 2024

Nvidia is a Californian headquartered technology business that designs and manufactures graphics processing
units (GPUs) and is listed on the NASDAQ stock exchange. The business is closely aligned to the artificial
intelligence market, due to GPUs being highly used in machine learning and AI. Nvidia is extremely well
positioned, given that its technology is currently the only truly viable option for AI. The share price has
benefited significantly over the last 12 months, seeing an increase of over 200%. However, the stock price has
seen a correction in April 2024, with a decline of 10% between the 18th and 19th of April. This provides an
interesting case study in using this project to support the understanding of share price and market sentiment
through its visualisation.

Figure 39: The visualisation of NVDA from 2024-03-25 to 2024-04-25

Figure 39 shows share price movements of Nvidia across late March and April 2024. There is a general downward
trend but the most significant movement was the 10% drop on the 19th of April. Preceding this drop, there
is a glyph showing news coverage with average sentiment that is neutral. Over the last 12 months, Nvidia has
typically had a positive sentiment, so this period shows a decline in sentiment. Reviewing the specific news
content in the period directly preceding the market correction, articles include the one outlined in figure 40,
which has been accessed through the application.

34

Figure 40: A yahoo finance article on Nvidia stock correction

The news article from Yahoo Finance, which has a sentiment rating of -0.128, indicates that the cause of the
share price drop relates to sentiment regarding the broader technology hardware market that Nvidia operates
within. The application in this case study enables the user to better understand share price movement within
the context of market sentiment. However, as the news articles are based on the search of the stock ticker term,
news regarding broader market sentiment is marginally less clear in the glyph visualisation.

The news articles regarding the Nvidia share price drop, flag that the trigger for the correction was another
business Super Micro Computer Inc. (SMCI), who broke tradition and provided no preliminary indication prior
to the scheduled earnings report at the end of April. This caused a ripple e↵ect across the technology hardware
market and significantly impacted the share prices of NVDA and SMCI. This application is designed to enable
individual investors to undertake an iterative process to inform better investment decisions, an example of which
is shown in figure 41, showing the same time period as figure 39 but with NVDA and SMCI in a comparative
view.

Figure 41: The visualisation of NVDA and SMCI from 2024-04-01 to 2024-04-25

35

7.4.2 Case Study 2 - TSLA Q4 earnings report

A further case study relates to where individual investors would seek to evaluate share price movements in
respect to news content and sentiment over a specific time period. This example relates to Tesla, a Californian-
based electric vehicle manufacturer listed on the NASDAQ stock exchange. The period under review is the last
six months to date, which has seen significant volatility in the share price. Individual investors can use the
application to review news content and evaluate sentiment at key price movements. Figure 42 shows the Tesla
share price and glyphs for the period.

Figure 42: The visualisation of TSLA from 2023-10-25 to 2024-04-25, with glyph colour mapping lowered to
show higher definition.

The screenshot above in figure 42 also highlights a specific time period in late January 2024. The line graph
indicates a significant drop in the share price and the glyphs indicate a corresponding negative sentiment in
the news content. The article indicated to the right has a sentiment score of -0.6, which shows a significant
negative bias. Further review of the content shows that Tesla reported poor earnings for Q4 2023, which
resulted in a decline in the share price. This microeconomic perspective is well served by the application, as the
search functionality is preset for the specific share price. Where factors influencing share price movements are
company-specific and not general market factors, the application provides meaningful insight to the individual
investor.

7.4.3 Case Study 3 - Federal Reserve Inflation Comments

Individual investors seeking to make sound decisions will want to understand both microeconomic factors re-
lating to specific companies, as well as macroeconomic factors such as the broader market. One of the biggest
macroeconomic factors impacting share price is the actions and comments of central banks such as the Federal
Reserve in the United States. The screenshot shown in figure 43 shows the share price of significant US tech
stocks: Tesla, Apple, Google and Amazon. Specific focus is given to the 31st January 2024 which shows a
decline in the share price of all four stocks.

36

Figure 43: The visualisation of TSLA, AAPL, GOOG and AMZN from 2024-01-27 to 2024-04-25

The Federal Reserve chairman Jerome Powell made comments on the 31st January 2024 that inflation was more
persistent than expected and interest rate cuts could be delayed [42]. After reviewing the news articles associated
with the glyphs on the graph in figure 43, there is no evidence the application has picked up this significant
macroeconomic factor, assuming that the Federal Reserve’s influence on the market has caused the decline.
This suggests there are limitations to the evaluation possible for individual investors using this application.
The search functionality is based around predefined terms, using the specific stock ticker; this makes it more
e↵ective in understanding microeconomic factors on share price movements.

8 Conclusions

8.1 Reflection

This project has had a successful outcome, delivering on all the requirements as listed in the Project Specifi-
cation section 3: visualisation of stock data, news content and sentiment within an accessible user interface.
There is no current product available to individual investors that helps to extract meaning and sentiment from
the vast array of investment news content.

The main goals of this project were in developing visualisation techniques to present the data e↵ectively and
creating interactive elements that further enhance understanding. This has been achieved and the application
o↵ers individual investors a way to extract meaning from news content. The frequency of news content related
to a specific share o↵ers insight into how the volume of news impacts share price. Presenting a visualisation
of the degree of positive or negative bias in the content o↵ers an e�cient means of extracting understanding.
The interactive aspects of the visualisation provide the user the opportunity to focus on specific shares, time
frames and views that deepen understanding. While the application does not instruct investment decisions, it
enhances the information available to the individual investor, which in turn supports better returns.

This project has produced a web application that fulfils a gap in the market for individual investors. Cur-
rently while news is clearly important and included by other systems, no e↵ort is made to use visualisation to
enhance understanding. This project provides a unique visualisation-based perspective, that o↵ers genuinley
improved understanding of market context for individual investors to seek to improve investment descisions.

8.2 LSEPI

This project has been undertaken in consideration of the research framework: Legal, Social, Ethical and Pro-
fessional Issues (LSEPI). The nature of this project means the implications are limited but full reference has
been made to ensure the work is compliant.

There are several legal legislations and standards that the project has considered, most notably the Gen-
eral Data Protection Regulation (GDPR). Conscious of the implications, this was a further advantage of using
Firebase [9] which outsources the responsibility and avoids the retention of data that would cause the regulation

37

to apply. The social aspects of the research are limited, with no primary research involving direct interaction,
thus this is not a significant concern. The project has no bias to a particular author, academic or work and as
such, ethical concerns are limited. The investment nature of the application does raise ethical considerations
but at no point is the application encouraging investments or dictating specific investments. The author has
completed the research mindful of the British Computer Society (BCS) and its code of conduct. Further pro-
fessional considerations have included a careful approach to research and adhering to the Copyright, Designs
and Patents Act 1988, with accurate referencing.

Consideration has also been given to the United Nations (UN) ’Sustainable Development Goals’ and the ’Big
Picture’ that the project operates within. The goal of ’Decent Work and Economic Growth’ is an aspect of
the project. The project goal is to support individual investors in achieving better returns through a greater
understanding of news content and sentiment against share price. The project delivers on this goal and should
encourage economic growth through improved investments. A further UN goal is the reduction in inequalities.
This project seeks to provide greater understanding and access to information for all, rather than the current
disadvantage individuals have with limited access to information.

9 Future Work

The application o↵ers a viable tool to support individual investors in understanding the context of share price
movements. However, there are opportunities for further development and enhancement, including sentiment
accuracy, additional search functionality, additional quantitive data, additional media sources, and improved
data processing times.

The sentiment analysis is the main drawback of the project and can be improved. An example of its cur-
rent limitation is that the sentiment analysis has no context of the stock the article is about. This means that if
an article mentions the selected stock ticker and is negative about a competitor, the sentiment will be negative
for the selected stock. This could be improved by developing a machine learning model that can understand the
context of the article and also know which stock the sentiment should be for. This would be a large undertaking
and would likely be a project in itself.

As indicated in the case studies, one of the challenges of the application has relates to its ability to pro-
vide insight relating to macroeconomic factors. This is due to the search functionality being restricted to the
stock ticker term. An area of further work would be to broaden the search functionality to include the ability
to pickup key events in the broader market.

Not all share price movements are directly related to news content, this could be improved upon by adding
more quantitive data to the application. Factors such as trade volume, moving averages and other technical
indicators could have their own visualisations. This would give greater context to the user and allow for a more
comprehensive view of the stock.

The application only focuses on news content, this could lead to bias in the sentiment analysis. The inclu-
sion of other media sources such as social media could provide more di↵ering opinions on stocks and greater
accuracy in sentiment analysis. This would require a similar machine learning model to the one mentioned
above, as well as an additional API to retrieve data from these sources.

The wait times for the data processing could be improved. This is mainly a limitation on the API tiers
that are being used. Replacing the current APIs with higher tiers could improve the speed by allowing more
requests to be made at once. Another solution is to make the application independent of the APIs by web
scraping the data; however, that would be a much larger task.

38

References

[1] A. Atkins, M. Niranian, and E. Gerding. Financial news predicts stock market volatility better than close
price. International Review of Financial Analysis, 4(2):120–137, 2018.

[2] R. Borgo, J. Kehrer, D. H. S. Chung, E. Maguire, R. S. Laramee, H. Hauser, M. Ward, and M. Chen.
Glyph-base visualization: Foundations, design guidelines, techniques and applications. Eurographics State
of the Art Reports, pages 39–63, 2013.

[3] M. Bostock, P. Riviere, and K. A. Github - d3/d3-scale-chromatic: Sequential, diverging and categorical
color scales. https://github.com/d3/d3-scale-chromatic, 2021. [Online; accessed 2024-04-07].

[4] Brewer and C. A. Colorbrewer: Color advice for maps. https://colorbrewer2.org/, 2016. [Online;
accessed 2024-04-07].

[5] W. S. Chan. Stock price reaction to news and no-news: Drift and reversal after headlines. Journal of
Financial Economics, 70(2):223–260, 2003.

[6] D3. D3. http:d3js.org, 2023. [Online; accessed 2023-12-29].

[7] DaisyUI. Daisyui. http:daisyui.com, 2023. [Online; accessed 2023-12-29].

[8] L. Feng, T. Fu, and Y. Shi. How does news sentiment a↵ect the state of japanese stock return volatility?
International Review of Financial Analysis, 84, 2022.

[9] Firebase. Firebase. http:firebase.google.com, 2023. [Online; accessed 2023-12-29].

[10] M. Frankel. 3 reasons why the average investor actually stinks at in-
vesting. https://www.fool.com/the-ascent/buying-stocks/articles/
3-reasons-why-the-average-person-actually-stinks-at-investing/#:~:text=The%2520bottom%
2520line,a%2520combination%2520of%2520the%2520three/, 2023. [Online; accessed 2023-10-15].

[11] D. P. Gandhma and K. Kumar. Systematic analysis and review of stock market prediction techniques.
Computer Science Review, 34:100–190, 2019.

[12] GitLab. Gitlab. http:gitlab.com, 2023. [Online; accessed 2023-12-29].

[13] Google. Google finance. http:google.com/finance, 2023. [Online; accessed 2024-04-07].

[14] A. Grob-Klubmann and N. Hautsch. When machines read the news: Using automated text analytics to
quantify high frequency news-implied market reactions. International Review of Financial Analysis, 18(2),
2011.

[15] J. Highsmith and F. M. The agile manifesto. Software development, 9(8):28–35, 2001.

[16] Insomnia. Insomnia. http:insomnia.rest, 2023. [Online; accessed 2023-12-29].

[17] Jest. Jest. http:jestjs.io, 2023. [Online; accessed 2023-12-29].

[18] J. M. Jones. What percentage of americans owns stock? "https://news.gallup.com/poll/266807/
percentage-americans-owns-stock.aspx", 2023. [Online; accessed 2023-10-14].

[19] JSDoc. Jsdoc. http:jsdoc.app, 2023. [Online; accessed 2023-12-29].

[20] D. A. Keim. Information visualizatioin and visual data mining. IEEE Transactions on Visualization and
Computer Graphics, 8(1):1–8, 2002.

[21] S. Ko, I. Cho, S. Afzal, C. Yau, J. Chae, A. Malik, K. Beck, Y. Jang, W. Ribarsky, and D. S. Ebert. A
survey on visual analysis approaches for financial data. Computer Graphics Forum, 35(3):599–617, 2016.

[22] R. S. Laramee. Advances in Computer Science and Engineering, 4(1):23–36, 2010.

[23] R. S. Laramee. Bob’s project guidelines: Writing a dissertation for a bsc. in computer science. Innovation
in Teaching and Learning in Information and Computer Science, 10(1):43–54, 2011.

[24] X. Liu, M. Alharbi, J. Chen, A. Diehl, E. E. Firat, D. Rees, Q. Wang, and R. S. Laramee. Visualization
resources: A survey. Information Visualisation, 22(1):3–30, 2022.

[25] B. G. Malkiel. The e�cient market hypothesis and its critics. Journal of Economic Perspectives, 17(1):59–
82, 2003.

39

https://github.com/d3/d3-scale-chromatic
https://colorbrewer2.org/
http:d3js.org
http:daisyui.com
http:firebase.google.com
https://www.fool.com/the-ascent/buying-stocks/articles/3-reasons-why-the-average-person-actually-stinks-at-investing/#:~:text=The%2520bottom%2520line,a%2520combination%2520of%2520the%2520three/
https://www.fool.com/the-ascent/buying-stocks/articles/3-reasons-why-the-average-person-actually-stinks-at-investing/#:~:text=The%2520bottom%2520line,a%2520combination%2520of%2520the%2520three/
https://www.fool.com/the-ascent/buying-stocks/articles/3-reasons-why-the-average-person-actually-stinks-at-investing/#:~:text=The%2520bottom%2520line,a%2520combination%2520of%2520the%2520three/
http:gitlab.com
http:google.com/finance
http:insomnia.rest
http:jestjs.io
http:jsdoc.app

[26] L. McNabb and R. S. Laramee. Survey of surveys (sos) - mapping the landscape of survey papers in
information visualization. Computer Graphics Forum, 36(3):589–617, 2017.

[27] MorningStar. Morning star. http:morningstar.com, 2023. [Online; accessed 2023-10-15].

[28] MotleyFool. Motley fool. http:motleyfool.com, 2023. [Online; accessed 2023-10-15].

[29] Multiselect-React-Dropdown. Multiselect-react-dropdown. https://github.com/srigar/
multiselect-react-dropdown, 2023. [Online; accessed 2023-12-29].

[30] NewsAPI. Newsapi.org. http:newsapi.org, 2023. [Online; accessed 2023-12-29].

[31] NewsCatcherAPI. Newscatcherapi.com. https://www.newscatcherapi.com/. [Online; accessed 2023-04-
09].

[32] T. H. Nguyen, K. Shirai, and J. Velcin. Sentiment analysis on social media for stock movement prediction.
Expert Systems with Applications, 42(24):9603–9611, 2015.

[33] R. Patrick and K. Pybus. Cost of living crisis: we cannot ignore the human cost of living in poverty. British
Medical Journal, (377), 2022.

[34] Polygon. Polygon.io. http:polygon.io, 2023. [Online; accessed 2023-12-29].

[35] React. React. http:reactjs.org, 2023. [Online; accessed 2023-12-29].

[36] ReactRouter. React router. http:reactrouter.com, 2023. [Online; accessed 2023-12-29].

[37] D. Rees and R. S. Laramee. A survey of information visualization books. Computer Graphics Forum,
38(1):610–646, 2019.

[38] SeekingAlpha. Seeking alpha. http:seekingalpha.com, 2023. [Online; accessed 2023-10-15].

[39] B. Shniederman. The eyes have it: a task by data type taxonomy for information visualizations. IEEE
Symposium on Visual Languages, pages 336–343, 1996.

[40] Tailwind. Tailwind css. http:tailwindcss.com, 2023. [Online; accessed 2023-12-29].

[41] Vader-Sentiment. Vader-sentiment. https://github.com/vaderSentiment/vaderSentiment-js#readme,
2023. [Online; accessed 2023-12-29].

[42] R. Wile. Federal reserve holds interest rates stead, as consumer confidence
improves and inflation slows. https://www.nbcnews.com/business/economy/
federal-reserve-interest-rate-decision-january-2024-increase-decrease-rcna136429, 2024.
[Online; accessed 2024-04-25].

[43] Yahoo. Yahoo finance. https://uk.finance.yahoo.com/. [Online; accessed 2024-04-07].

40

http:morningstar.com
http:motleyfool.com
https://github.com/srigar/multiselect-react-dropdown
https://github.com/srigar/multiselect-react-dropdown
http:newsapi.org
https://www.newscatcherapi.com/
http:polygon.io
http:reactjs.org
http:reactrouter.com
http:seekingalpha.com
http:tailwindcss.com
https://github.com/vaderSentiment/vaderSentiment-js#readme
https://www.nbcnews.com/business/economy/federal-reserve-interest-rate-decision-january-2024-increase-decrease-rcna136429
https://www.nbcnews.com/business/economy/federal-reserve-interest-rate-decision-january-2024-increase-decrease-rcna136429
https://uk.finance.yahoo.com/

	Introduction
	Motivation
	Project Goal and Benefits
	Challenges
	Structure

	Background
	Related Work
	Previous Systems
	Morning Star
	Motley Fool
	Seeking Alpha
	Google Finance
	Yahoo Finance

	Data Characteristics
	NewsCatcherAPI
	Polygon

	Project Specification
	Feature Specification
	Required Features
	Optional Features

	Technology Choices
	Developmental Tools
	Libraries
	Project Management Tools

	Project Design
	Frontend Component Overview
	Backend Class Overview
	Process Diagrams

	Project Plan and Gantt Charts
	Project Management
	Gantt Charts

	Implementation
	Required Features
	Login
	Run Search
	Retrieve Data
	Visualise Data

	Optional Features
	Run Search
	Retrieve Data
	Visualise Data
	Visualisation Interaction
	Save Visualisation

	Testing and Evaluation
	Automated Testing
	News Data
	Stock Data

	Manual Testing
	Visual Testing

	Benchmark Testing
	Backend Benchmarks
	Frontend Benchmarks

	Evaluation
	Case Study 1 - NVDA stock price correction April 2024
	Case Study 2 - TSLA Q4 earnings report
	Case Study 3 - Federal Reserve Inflation Comments

	Conclusions
	Reflection
	LSEPI

	Future Work
	References

