
1

Program Construction

Roland Backhouse

January 2001



2

Outline

• Program Specification

• Assignments

• Conditional Statements

• Sequential Composition

• Loops



3

Program Specification

Comments

When writing computer programs it is a very good idea to comment
them thoroughly in order to explain what is going on.

Comments can also be almost useless. The comment

increment i by 1

immediately preceding the C/Java statement

i++

is completely useless to the experienced programmer who can be
expected to know that “i++” means “increment i by one” in C/Java
idiom.

Useless comments simply repeat in natural language what is stated
simply and precisely in the program statements. They are
operational.

Good comments, on the other hand, should have added value. They
should supplement the program text with explanations of the
program’s function and why the code that is used achieves that
function.



4

Assertions

Here, comments will be indicated by enclosing them in curly brackets
— “{” and “}”.

They state formal properties of the program variables at a particular
point in the execution of the program.

For example, the text of a program may look like

. . . {i= 0} . . .

where the dots represent some arbitrary program statements.

The intended meaning is that, when execution of the program has
reached the point in the program text where the comment appears,
the value of the variable i is guaranteed be zero.

Such comments are called assertions, conditions or properties.



5

Bracketed Statements

When a program statement is bracketed by two comments, as for
example in

{ 0< i} i := i−1{ 0≤ i} ,

we reason about the correctness of the program statement on the
basis that the first comment acts as an assumption.

That is, we understand the comments as claiming that if 0< i before
the statement i := i−1 is executed then 0≤ i after the assignment
has been executed.



6

Hoare Triples

An expression of the form

{ P} S{ Q} ,

where P and Q are properties of the program variables and S is a
program statement (some portion of the program text), is called a
Hoare triple.

The property P is called the precondition and the property Q is
called the postcondition of the statement S.

We read such a triple as the claim that if the property P holds of the
program variables before execution of statement S then execution of
S is guaranteed to terminate and afterwards the program variables
will satisfy property Q.

A Hoare triple thus denotes a boolean value; if the value is true then
we say the triple is valid, and if it is false we say the triple is invalid.



7

Valid Triples

{ i= 0} i := i+1{ i= 1} ,

{ i+j= 0} i := i+1 ; j := j−1{ i+j= 0} ,

{ true} i := 1{ i= 1} .

Invalid Triples

{ i= 1} i := i+1{ i= 0} ,

{ i+j 6= 0} i := i+1 ; j := j−1{ i+j= 0} ,

{ true} i := 1{ i= 0} .



8

Exercise 1 Using your current knowledge say which of the
following is a valid Hoare triple. (Shortly we show how to validate
Hoare triples formally.)

(a) { i= 1 } j := i { i= j= 1 }

(b) { i= 1 } i := j { i= j= 1 }

(c) { 0≤ i<N } i := i+1 { 0< i≤N }

(d) { true } i := j+1 { i< j }

(e) { i= 1 } i := 0 { true }

(f) { i= 0 } i := 1 { false }

(g) { false } i := 1 { i= 0 }

2



9

Pre and Post Conditions

The specification of a program, in its simplest form, is a relation
between input values and output values.

It is important to note that specifications are by nature
nondeterministic.

There is usually some latitude in what is acceptable output for given
input.

In mathematical terms, specifications are truly relations and not
functions.

A program S is specified by stating a precondition P and a
postcondition Q and requiring that S be constructed to satisfy

{ P} S{ Q} .

If so, we say that S establishes (postcondition) Q under the
assumption of precondition P.



10

Problems

Four main problems with the use of Hoare triples are

(a) we are forced to name the variables to be used in the program
(whereas the names are irrelevant to the specification),

(b) there is no way of saying which variables may be altered in the
course of execution of the program and which should remain
constant (that is, there is no distinction between input and
output variables),

(c) there is no way of limiting the mechanisms for updating the
values of the output variables,

(d) an artificial mechanism (so-called “ghost” or “rigid” variables)
sometimes needs to be employed to relate the input values of
variables to their desired output values.



11

Output Variables

The second problem is illustrated by a very simple example. If we
require that program S satisfies

{ true} S{ i= j} .

then this can be achieved by the assignments

i := j

and
j := i ,

there being no way to distinguish between the two variables.

In reality one of i and j would be the input value and the other the
output value, and the requirement would be to assign a value to the
output variable so as to meet the specification leaving the value of
the input variable unchanged.

The problem is resolved informally — we state which are the input
and which are the ouput variables in the text accompanying the
formal specification.



12

Ghost Variables

Suppose we want to specify that the sum of two variables i and j
should remain constant.

We specify this by introducing a ghost variable C.

This variable should not be used anywhere else in the program; to
distinguish ghost variables from normal program variables we use a
sans-serif type.

Then the program S is specified by

{ i+j= C} S{ i+j= C} .

This says that if the sum of i and j has the value C before execution
of statement S then execution of statement S is guaranteed to
terminate in a state in which the sum of i and j still has the value C.

Ghost variables are treated just like ordinary program variables but
the program code may not refer to them in any way.



13

Assignment

It is convenient to allow simultaneous assignments. In a simultaneous
assignment, the left side is a list of variables and the right side is a
list of expressions of the same length as the list of variables.

A simultaneous assignment to three variables x, y, and z is, for
example,

x,y,z := 2×y , x+y , 3×z .

A simultaneous assignment

x0 , x1 , . . . , xn := e0 , e1 , . . . , en

is executed by evaluating all of the expressions e0 , e1 , . . . , en and
then, for each i, updating the value of the variable xi to the value
obtained for expression ei.

The assignment
x,y := y,x

has the effect of swapping the values stored in variables x and y.



14

Restrictions

The variables on the left side of a simultaneous assignment should be
pairwise distinct. For example, the assignment

x,x := 0,1

doesn’t make sense and is disallowed.

Very occasionally it is useful to relax this requirement. The statement

a[i] , a[j] := a[j] , a[i]

swaps the ith and jth values in the array a.

When i and j are equal the statement means “do nothing”.



15

Assignment Axiom

{ Q[x := e]} x := e{ Q}

Example

Application of the assignment axiom gives

{ 0= 0} i := 0{ i= 0} .

Of course, 0= 0 simplifies to true. So the conclusion is:

{ true} i := 0{ i= 0} .



16

Example

Application of the assignment axiom gives

{ 2×i<10} i := 2×i{ i<10} .

Again, the precondition can be simplified, this time to i<5. So we
conclude that:

{ i<5} i := 2×i{ i<10} .



17

Assignment Axiom (More Than One LHS Variable)

If x is the list x0 , x1 , . . . , xn and e is the list e0 , e1 , . . . , en then
Q[x := e] denotes the simultaneous substitution of e0 for x0, e1 for
x1, and so on.

Example

Consider the postcondition i+j= C and the simultaneous assignment
i,j := i+1 , j−1. Then, simultaneously substituting “i+1” for “i”
and “j−1” for “j”, application of the assignment axiom gives

{ (i+1)+ (j−1)= C} i,j := i+1 , j−1{ i+j= C} .

Simplifying the precondition we get

{ i+j= C} i,j := i+1 , j−1{ i+j= C} .



18

Exercise 2 Perform the following substitutions. Be careful with
parenthesisation and remove unnecessary parentheses. (A raised infix
dot denotes multiplication. Multiplication has precedence over
addition)

1. x[x := x+2]

2. (y·x)[x := x+y]

3. (x+y)[x := x+y]

4. (x+1)[y := x]

5. x[x, y := 0 , x+2]

6. (x+y·x)[x, y := x−y , x+y]

7. (x+y)[x, y := x·y , x·y]

2



19

Exercise 3 Using the assignment axiom , determine preconditions
for the following statements and postconditions. Simplify the
preconditions you obtain.

Statement Postcondition

(a) x := x+1 x+y<10

(b) x := x−1 x2+ 2·x = 0

(c) x,y := x−y , x+y x·y= 1

(d) x,y,z := z,x,y x= 0∨y= 1∨ z= 2

2



20

Calculating Assignments

Suppose the requirement is to maintain the value of the sum j+k

constant whilst incrementing k by 1. Our task is to calculate an
expression X such that

{ j+k= C} j,k := X ,k+1{ j+k= C} .

Applying the assignment axiom, we get

{ X+k+1= C} j,k := X ,k+1{ j+k= C} .

Comparing the precondition so obtained with the given precondition,
the specification is met if

j+k= C ⇒ X+k+1= C .



21

Now,

j+k

= { arithmetic — introducing “k+1” }

j+k+1−1

= { rearranging }

(j−1)+k+1 .

It thus follows that a suitable value of X is j−1. That is,

{ j+k= C} j,k := j−1 , k+1{ j+k= C} .



22

Suppose variables s and n satisfy the property

s=n2

and we want to increment n by 1 whilst maintaining this relationship
between s and n.

Our goal is to calculate an expression X involving only addition such
that

{ s=n2} s,n := s+X ,n+1{ s=n2} .

Applying the assignment axiom we get

{ s+X=(n+1)2} s,n := s+X ,n+1{ s=n2} .

Comparing with the specification we calculate X so that

s=n2 ⇒ s+X=(n+1)2 .



23

Now,

(n+1)2

= { arithmetic — introducing “n2” }

n2+ 2n+ 1 .

That is,
s=n2 ⇒ s+ 2n+ 1 = (n+1)2 .

In this way we have calculated the required assignment statement:

{ s=n2} s,n := s+ 2n+ 1 , n+1{ s=n2} .



24

Exercise 4 Suppose there are three program variables n, s and t.
Calculate assignments to s and t that maintain invariant the
relationship

s=n2 ∧ t=n3 .

In other words, calculate X and Y such that

{ s=n2 ∧ t=n3} s,t,n := s+X , t+Y ,n+1{ s=n2 ∧ t=n3} .

The assignments to s and t should involve additions only.
Multiplications are not allowed.

2



25

Complications

Division by zero, overflow and underflow errors, out-of-bound errors
in array indexing, etc. are catered for by the more complete rule:

{ “e” is well-defined ∧ Q[x := e]} x := e{ Q} .


