
Algebra of Program Termination

Henk Doornbos

∗
Roland Ba
khouse

†

July 30, 2001

Abstract

Well-foundedness and indu
tive properties of relations are expressed in terms of

�xed points. A
lass of �xed point equations,
alled \hylo" equations, is introdu
ed.

A methodology of re
ursive program design based on the use of hylo equations is

presented. Current resear
h on generalisations of well-foundedness and indu
tive

properties of relations, making these properties relative to a datatype, is introdu
ed.

∗
EverMind, Westerkade 15/4, 9718 AS Groningen, The Netherlands

†
S
hool of Computer S
ien
e and Information Te
hnology, University of Nottingham, Nottingham NG8

1BB, England

1

1. Introdu
tion 2

1 Introduction

Central to
omputing s
ien
e is the development of pra
ti
al programming method-

ologies. Chara
teristi
 of a programming methodology is that it involves a dis
ipline

designed to maximise
on�den
e in the reliability of the end produ
t. The dis
ipline

onstrains the
onstru
tion methods to those that are demonstrably simple and easy

to use, whilst still allowing suÆ
ient
exibility that the
reative pro
ess of program

onstru
tion is not impeded. A well-established methodology is the
ombined use of

invariant relations and well-founded relations in the design of iterative algorithms in se-

quential programming (see se
tions 2.2 and 2.5), the
onstraint being the restri
tion of

the methodology to the design of while statements rather than allowing arbitrary use

of goto statements.

In this paper we develop an algebra of terminating
omputations based on �xed point

al
ulus and relation algebra. We begin by formulating properties of well-foundedness

(of a relation) and admitting indu
tion in terms of �xed points. This dis
ussion is moti-

vated by the methodology of designing iterative algorithms mentioned above. We then

explore the termination of re
ursive programs. Here we argue for a pra
ti
al dis
ipline of

re
ursive programming based on a
lass of re
ursive �xed-point equations
alled \hylo"

equations (a notion �rst introdu
ed by Meijer [MFP91℄). The notion of a relation ad-

mitting indu
tion is generalised to the notion of \ F -redu
tivity", where the parameter

F
aptures the data stru
ture underlying the re
ursion.

2 Imperative Programming and Well-founded Rela-

tions

An important appli
ation of �xed point
al
ulus is in the study of well-founded relations.

Well-founded relations are fundamental to program termination and to indu
tive proofs

of program properties.

Before we
an begin to dis
uss how to express well-foundedness in terms of �xed points

we need to introdu
e relation algebra. In relation algebra, relations are not viewed as sets

of pairs but just as values in (the
arrier of) an algebrai
 system. In this way, relation

algebra expresses the properties of the most fundamental operations on relations without

referen
e to the elements being related. For example, relation algebra en
apsulates the

properties of the
onverse R∪
of relation R without referen
e to the so-
alled pointwise

de�nition of R∪
:

(x,y)∈R∪ ≡ (y,x)∈R .

Instead the
onverse operation is given an axiomati
 de�nition, whi
h in
ludes for ex-

2. Imperative Programming and Well-founded Relations 3

ample the property that it is its own inverse:

(R∪)∪=R .

This point-free axiomatisation is the key to formulating the notions of well-foundedness

and admitting indu
tion in terms of �xed points.

A
ontinuous motivational thread throughout this se
tion will be the formulation of

a methodology for the design of iterative programs in terms of relation algebra. We

begin in se
tion 2.1 with a brief introdu
tion to relation algebra, just enough to be able

to present a
on
ise formulation of the use of invariant properties in se
tion 2.2. This

latter dis
ussion raises several issues whi
h motivates the introdu
tion of the domain and

division operators in se
tion 2.3.

In se
tion 2.4 we begin with the standard pointwise de�nition of well-foundedness

whi
h we then reformulate in a point-free de�nition. We then go on to derive an equiv-

alent but more
ompa
t de�nition. The same pro
ess is followed for the notion of ad-

mitting indu
tion. We re
ap the standard pointwise de�nition, reformulate this in a

point-free manner and then derive a more
ompa
t but equivalent de�nition. We then

dis
uss the equivalen
e of admitting indu
tion and being well-founded.

2.1 Relation Algebra

For us, a (non-deterministi
) program is an input-output relation. The
onvention we

use when de�ning relations is that the input is on the right and the output on the

left. The
onvention is thus that used in fun
tional programming and not that used in

sequential programming. For example, the relation < on numbers is a program that

maps a number into one smaller than itself. The fun
tion succ is the relation between

natural numbers su
h that m〈succ〉n equivales m=n+1 . It is thus the program that

maps a natural number into its su

essor.

A relation is a set of ordered pairs. In dis
ussions of the theory of imperative program-

ming the \state spa
e" from whi
h the elements of ea
h pair are drawn often remains

anonymous. This re
e
ts the fa
t that type stru
ture is often not a signi�
ant parameter

in the
onstru
tion of imperative programs, in
ontrast to fun
tional programs where it

is pervasive. One goal here is to
ombine the fun
tional and imperative programming

paradigms. For this reason, we adopt a typed algebra of relations (formally an \alle-

gory" [Fv90℄). A relation is thus a triple
onsisting of a pair of types I and J , say, and

a subset of the
artesian produ
t I×J . We write R∈ I←J (read R has type I from J),

the left-pointing arrow indi
ating that we view J as the set of all possible inputs and I

as the set of possible outputs. I is
alled the target and J the sour
e of the relation

R , and I←J (read I from J) is
alled its type.

2. Imperative Programming and Well-founded Relations 4

We write x[[R]]y if the pair (x, y) is an element of relation R . (As is usual in

mathemati
s, we omit the bra
kets when R is denoted by a symbol and it is easy to

parse the resulting expression | as in, for example, x<y.) We use a raised in�x dot to

denote relational
omposition. Thus R◦S denotes the
omposition of relations R and S

(the relation de�ned by x[[R◦S]]z equivales ∃〈y:: x[[R]]y∧y[[S]]z〉). The
omposition R◦S

is only de�ned when the sour
e of R equals the target of S . Moreover, the target of

R◦S is the target of R , and the sour
e of R◦S is the sour
e of S . Thus, R◦S∈ I←K

if R∈ I←J and S∈ J←K. The
onverse of relation R is denoted by R∪
. Thus, x[[R∪]]y

equivales y[[R]]x . The type rule is that R∪∈ I←J equivales R∈ J←I .

Relations of the same type are ordered by set in
lusion denoted in the
onventional

way by the in�x ⊆ operator. The relations of a given type I←J form a
omplete latti
e

under this ordering. The smallest relation of type I←J is the empty relation, denoted

here by ⊥⊥I←J , and the largest relation of type I←J is the universal relation, whi
h we

denote by ⊤⊤I←J . (We use this notation for the empty and universal relations be
ause

the
onventional notation ⊤ for the universal relation is easily
onfused with T , a sans

serif letter T, parti
ularly in hand-written do
uments.) The union and interse
tion of

two relations R and S of the same type are denoted by R∪S and R∩S , respe
tively.

Be
ause relations are sets, we have the shunting rule

R∩S⊆T ≡ S ⊆ ¬R∪T

where ¬R denotes the
omplement of relation R . The only use we make of this rule

here is the fa
t that relations of type I←I form a
ompletely distributive latti
e and

thus a regular algebra. We use this fa
t when we exploit the unique extension property

of regular algebras in the identi�
ation of �xed point equations that de�ne a relation

uniquely.

For ea
h set I there is an identity relation on I whi
h we denote by idI . Thus

idI∈ I←I . Relations of type I←I
ontained in the identity relation of that type will be

alled
ore
exives . (The terminology partial identity relation and monotype is also

used.) By
onvention, we use R , S , T to denote arbitrary relations and A , B and C

to denote
ore
exives. A
ore
exive A thus has the property that if x[[A]]y then x=y .

Clearly, the
ore
exives of type I←I are in one to one
orresponden
e with the subsets

of I ; we shall exploit this
orresponden
e by identifying subsets of a set I with the

ore
exives of type I←I . Spe
i�
ally, by an abuse of notation, we write x∈A for x[[A]]x

(on
ondition that A is a
ore
exive). We also identify
ore
exives with predi
ates,

parti
ularly when dis
ussing indu
tion prin
iples (whi
h are traditionally formulated in

terms of predi
ates rather than sets). So we shall say \ x has property A " meaning

formally that x[[A]]x . Continuing this abuse of notation, we use ∼A to denote the

ore
exive having the same type as A and
ontaining just those elements not in A .

Thus, x[[∼A]]y equivales the
onjun
tion of x∈I (where A has type I←I) and x=y

2. Imperative Programming and Well-founded Relations 5

and not x[[A]]x . We also sometimes write I where idI is meant. (This �ts in with the

onvention in
ategory theory of giving the same name to that part of a fun
tor whi
h

maps obje
ts to obje
ts and that part whi
h maps arrows to arrows.) A �nal, important

remark about
ore
exives is that their
omposition
oin
ides with their interse
tion.

That is, for
ore
exives A and B , A◦B=A∩B .

We use an in�x dot to denote fun
tion appli
ation. Thus f.x denotes appli
ation of

fun
tion f to argument x . Fun
tions are parti
ular sorts of relations; a relation R is

fun
tional if y[[R]]x and z[[R]]x together imply that y= z . If this is the
ase we write R.x

for the unique y su
h that y[[R]]x . Note that fun
tionality of relation R is equivalent

to the property R ◦R∪ ⊆ idI where I is the target of R . We normally use f , g and h

to denote fun
tional relations.

Dual to the notion of fun
tionality of a relation is the notion of inje
tivity. A relation

R with sour
e J is inje
tive if R∪ ◦R ⊆ idJ . Whi
h of the properties R ◦R∪ ⊆ idI or

R∪ ◦R ⊆ idJ one
alls \fun
tional" and whi
h \inje
tive" is a matter of interpretation.

The
hoi
e here �ts in with the
onvention that input is on the right and output on

the left. More importantly, it �ts with the
onvention of writing f.x rather than say xf

(that is the fun
tion to the left of its argument). A sensible
onsequen
e is that type

arrows point from right to left.

2.2 Imperative Programming

In this se
tion we introdu
e the derivation of repetitive statements using invariant re-

lations. The se
tion
ontains just an outline of the methodology expressed in relation

algebra. For extensive introdu
tions see (for example) [Gri81, Ba
86℄. At the end of

the se
tion we identify a need to delve deeper into relation algebra, thus motivating the

se
tion whi
h follows.

Given a (non-trivial) spe
i�
ation, X , the key to
onstru
ting a loop implementing

X is the invention of an invariant, Inv . The invariant is
hosen in su
h a way that it

satis�es three properties. First, the invariant
an be \established" by some initialisation

Init . Se
ond, the
ombination of the invariant and some termination Term satis�es the

spe
i�
ation X . Third, the invariant is \maintained by" some loop body Body whilst

making progress towards termination.

These informal requirements
an be made pre
ise in a very
on
ise way. The three

omponents Inv , Init and Term are all binary relations on the state spa
e, just like

the spe
i�
ation X . They are so-
alled input-output relations.

\Establishing" the invariant is the requirement that

Init⊆ Inv .

2. Imperative Programming and Well-founded Relations 6

In words, any value w ′
related to input value w by Init is also related by the invariant

relation to w.

That the
ombination of the termination and invariant satis�es the spe
i�
ation X

is the requirement that

Term◦Inv⊆X .

This is the requirement that for all output values w ′
and input values w ,

∀〈v: w ′[[Term]]v∧ v[[Inv]]w: w ′[[X]]w〉

(Here we see the
onvention of pla
ing input values on the right and output values on

the left.)

Finally, that the invariant is maintained by the loop body is expressed by

Body◦Inv⊆ Inv

Pointwise this is

∀〈w ′, v, w: w ′[[Body]]v∧ v[[Inv]]w: w ′[[Inv]]w〉 .

So Body maps values v related by the invariant Inv to w to values w ′
that are also

related by Inv to w .

Together these three properties guarantee that

Term ◦Body∗
◦ Init ⊆ X .

That progress is made is the requirement that the relation Body be well-founded. (This

we will return to shortly.)

As an example,
onsider the
lassi
 problem of �nding the greatest
ommon divisor

(abbreviated gcd) of two positive numbers x and y . The state spa
e of the program

is Int×Int . The spe
i�
ation, invariant, initialisation and termination are thus binary

relations on this set. The spe
i�
ation, X , is simply

x ′=y ′= gcd.(x,y) .

Here priming x and y is a
ommonly used
onvention for abbreviating the de�nition of

a relation between the pair of output values x ′
and y ′

, and the pair of input values x

and y . More formally, X is the relation

{x, y, x ′, y ′: x ′=y ′= gcd.(x,y): ((x ′,y ′) , (x,y))} .

The
onvention is that the de�nition

{x, y, x ′, y ′:p.(x,y,x ′,y ′): ((x ′,y ′) , (x,y))}

2. Imperative Programming and Well-founded Relations 7

is abbreviated to

p.(x,y,x ′,y ′) ,

the primes indi
ating the
orresponden
e between input and output variables. Using

this
onvention, the invariant is the relation

gcd.(x ′,y ′)= gcd.(x,y)

and the initialisation is the identity relation

x ′=x∧y ′=y .

(The initialisation is thus implemented by skip , the do-nothing statement.) The termi-

nation is a subset of the identity relation on the state spa
e. It is the relation

x ′=x=y ′=y .

The
omposition of the termination relation and the invariant is thus the relation

x ′=y ′ ∧ gcd.(x ′,y ′)=gcd.(x,y)

whi
h, sin
e gcd.(x ′,x ′) equals x ′
, is identi
al to the spe
i�
ation X . The loop body

in Dijkstra's well-known guarded
ommand solution to this problem is the union of two

relations, the relation

x<y ∧ x ′=x ∧ y ′=y−x

and the relation

y<x ∧ y ′=y ∧ x ′=x−y .

Exercise 1 Identify X , Inv , Init , Body and Term in the language re
ognition

program dis
ussed in the
hapter on Galois Conne
tions and Fixed Point Cal
ulus.

✷

2.3 Domains and Division

2.3.1 Domains

Our a

ount of invariants is not yet
omplete. The relationship between the spe
i�
a-

tion X and Term ◦Body∗
◦ Init is
ontainment not equality, and may indeed be a proper

superset relation. Not every subset of the spe
i�
ation will do, however. An additional

requirement is that the input-output relation
omputed by the program is total on all

input values. Formally this is a requirement on the so-
alled \right domain" of the

2. Imperative Programming and Well-founded Relations 8

omputed input-output relation. Right domains are also relevant if we are to relate our

a

ount of invariants to the implementation of loops by a while statement. Re
all that

Body is the body of the loop, and Term terminates the
omputation. The implemen-

tation of Term ◦Body∗
by a while statement demands that both of these relations are

partial and, more spe
i�
ally, that their right domains are
omplementary.

The right domain of a relation R is, informally, the set of input values that are

related by R to at least one output value. Formally, the right domain R>
of a relation

R of type I←J is a
ore
exive of type J←J satisfying the property that

∀〈A: A⊆ idJ: R◦A=R ≡ R>⊆A〉 .

Given a
ore
exive A , A⊆ idJ , the relation R◦A
an be viewed as the relation R re-

stri
ted to inputs in the set A . Thus, in words, the right domain of R is the least

ore
exive A that maintains R when R is restri
ted to inputs in the set A .

Note that the right domain should not be
onfused with the sour
e of the relation. The

sour
e expresses the set of input values of interest in the
ontext of the appli
ation being

onsidered whereas the right domain is the set of input values over whi
h the relation

is de�ned. In other words, we admit the possibility of partial relations. Formally, a

relation R of type I←J is total if R>
is idJ , otherwise it is partial. Similarly the target

should not be
onfused with the left domain of a relation. A relation R of type I←J is

surje
tive if R<
is idI .

Returning to loops, the requirement is that the right domain of Term is the
omple-

ment of the right domain of Body . Letting b denote the right domain of Body and

∼b its
omplement (thus b∪∼b = id and b∩∼b = ⊥⊥) we thus have

Term = Term ◦∼b and Body=Body◦b .

As a
onsequen
e,

Term ◦Body∗
◦ Init = Term ◦∼b ◦ (Body◦b)∗ ◦ Init .

The statement while b do Body is the implementation of ∼b ◦ (Body◦b)∗ in that the

latter is the least solution of the equation

X:: X = ∼b∪X◦Body◦b

and exe
uting this equation is equivalent to exe
uting the program

X= if b then Body;X .

We
ontinue this dis
ussion in se
tion 2.5.

2. Imperative Programming and Well-founded Relations 9

2.3.2 Division

The body of a loop should maintain the loop invariant. Formally, the requirement is that

Body◦Inv⊆ Inv . In general, for relations R of type I←J and T of type I←K there is

a relation R\T of type J←K satisfying the Galois
onne
tion, for all relations S ,

R◦S⊆T ≡ S⊆R\T .

The operator \ is
alled a division operator (be
ause of the similarity of the above rule

to the rule of division in ordinary arithmeti
). The relation R\T is
alled a residual or

a fa
tor of the relation T . Relation R\T holds between output value w ′
and input

value w if and only if

∀〈v: v[[R]]w ′: v[[T]]w〉 .

Applying this Galois
onne
tion, the requirement on Body is thus equivalent to

Inv⊆Body\Inv ,

the pointwise formulation of whi
h is

∀〈w ′, w: w ′[[Inv]]w: ∀〈w ′′:w ′′[[Body]]w ′:w ′′[[Inv]]w〉〉 .

The relation Body\Inv
orresponds to what is
alled the weakest prespe
i�
ation of

Inv with respe
t to Body in the more usual predi
ate
al
ulus formulations of the

methodology [HH86℄. The weakest liberal pre
ondition operator will be denoted here

by the symbol \ \ ". Formally, if R is a relation of type I←J and A is a
ore
exive of

type I←I then R\A is a
ore
exive of type J←J
hara
terised by the property that,

for all
ore
exives B of type J←J ,

(R◦B)<⊆A ≡ B⊆R\A .(2)

(If we interpret the
ore
exive A as a predi
ate p on the type I , then R\A is the

predi
ate q su
h that

q.w≡∀〈w ′:w ′[[R]]w:p.w〉 .

It is the weakest
ondition q on input values w that guarantees that all output values

w ′
that are R -related to w satisfy the predi
ate p .)

The operator \ plays a very signi�
ant role in what is to follow. For this reason

it is useful to have a full and intimate understanding of its algebrai
 properties. This,

however, is not the pla
e to develop that understanding and we make do with a summary

of the most frequently used properties.

First note that the fun
tion (R\) , being an upper adjoint, distributes over arbitrary

meets of
ore
exives. Be
ause meet on
ore
exives
oin
ides with
omposition it follows

2. Imperative Programming and Well-founded Relations 10

that R\ distributes over
omposition: R\(A◦B) = (R\A)◦(R\B) . This
orresponds to

the fa
t that weakest liberal pre
ondition operator asso
iated with a statement R is

universally
onjun
tive. From (2) we obtain the
an
ellation property:

(R ◦R\B)<⊆B .(3)

Often this property is used in a slightly di�erent form, namely:

R ◦R\B ⊆ B◦R .(4)

Both (3) and (4) express that program R produ
es a result from set B when started in

a state satisfying R\B . If R is a fun
tion then R\A
an be expressed without re
ourse

to the left-domain operator. Spe
i�
ally, we have for fun
tion f :

f\A = f∪ ◦A◦f .(5)

A full dis
ussion, in
luding all the properties used here,
an be found in [BW93℄.

2.4 Well-Foundedness Defined

Expressed in terms of points, a relation R is said to be well-founded if there are no

in�nite
hains x0 , x1 , . . . su
h that xi+1[[R]]xi for all i , i≥0 . A relation R is thus not

well-founded if there is a set A su
h that

A 6=φ∧∀〈x:x∈A:∃〈y:y∈A:y[[R]]x〉〉 .

Noting that ∃〈y:y∈A:y[[R]]x〉 ≡ x∈ (A◦R)> this de�nition
onverts dire
tly into the fol-

lowing point-free form.

Definition 6 (Well-founded) Relation R is said to be well-founded if and only if

it satis�es

∀〈A: A⊆ I: A⊆⊥⊥⇐ A⊆ (A◦R)>〉 .

✷

The
onne
tion between well-foundedness and �xed points is the following.

Theorem 7 Relation R is well-founded equivales

ν〈A:A⊆ I: (A◦R)>〉 = ⊥⊥ .

Proof For arbitrary monotoni
 fun
tion f we have:

2. Imperative Programming and Well-founded Relations 11

νf = ⊥⊥

⇐ { re
exivity of ⊆ , ⊥⊥ is the least element }

∀〈X:: X⊆⊥⊥ ⇐ X⊆νf〉

⇐ { �xed point indu
tion }

∀〈X:: X⊆⊥⊥ ⇐ X⊆ f.X〉 .

The
orollary follows by instantiating f to 〈A:A⊆ I: (A◦R)>〉 .

✷

Chara
teristi
 of de�nition 6 is that it is a rule for establishing when a set represented

by a
ore
exive A , A⊆ I , is empty. In the following theorem we repla
e sets by arbitrary

relations. This has the advantage that we
an then immediately exploit the unique

extension property of a regular algebra.

Theorem 8 For arbitrary relation R∈ I←I ,

(ν〈X::X◦R〉)> = ν〈A:A⊆ I: (A◦R)>〉 .

Hen
e R is well-founded if and only if it satis�es

ν〈X::X◦R〉 = ⊥⊥ .

(Here the dummy X ranges over all relations of type I←I .)

Proof We shall only sket
h the proof sin
e we have not dis
ussed the algebrai
 properties

of the right domain operator in suÆ
ient detail to give a
ompletely formal proof. (For

su
h a proof see [DBvdW97℄.)

At �rst sight it would seem that a simple appli
ation of the fusion theorem would

suÆ
e. This is not the
ase, however, be
ause the right domain operator is a lower

adjoint in a Galois
onne
tion, not an upper adjoint as is required to apply fusion.

The key to the proof is to observe that ν〈X::X◦R〉 is a so-
alled right
ondition.

That is,

ν〈X::X◦R〉 = ⊤⊤◦ν〈X::X◦R〉 .

(This is easily proved by a mutual in
lusion argument.) This suggests the use of the

fusion theorem to prove that

ι . ν〈p: p=⊤⊤◦p: p◦R〉 = ν〈X::X◦R〉

where ι denotes the fun
tion that embeds the set of right
onditions of type I←I into the

set of relations of type I←I . (Embedding fun
tions between
omplete latti
es are both

upper and lower adjoints so there is no diÆ
ulty in applying the fusion theorem.) The

2. Imperative Programming and Well-founded Relations 12

proof is now
ompleted by using the fa
t that the two fun
tions 〈p: p=⊤⊤◦p: p>〉 and

〈A:A⊆ I:⊤⊤◦A〉 are inverse latti
e isomorphisms between the latti
e of right
onditions

and the latti
e of
ore
exives of type I←I . (This is an appli
ation of the unity-of-

opposites theorem.) Thus, using the fusion theorem on
e again,

ν〈A:: (A◦R)>〉 = (ν〈p::p◦R〉)>

and

⊤⊤ ◦ν〈A:: (A◦R)>〉 = ν〈p::p◦R〉 .

From this it follows that

(ν〈X::X◦R〉)> = ν〈A:A⊆ I: (A◦R)>〉 .

Now,

R is well-founded

≡ { de�nition }

ν〈A:A⊆ I: (A◦R)>〉 = ⊥⊥

≡ { above }

(ν〈X::X◦R〉)> = ⊥⊥

≡ { domains }

ν〈X::X◦R〉 = ⊥⊥ .

✷

Corollary 9 Relation R is well-founded equivales

∀〈S, T :: T = S∪T ◦R ≡ T = S ◦R∗〉

Proof A relation algebra is a regular algebra. So the unique extension property holds

with the produ
t operator instantiated to relational
omposition and the addition oper-

ator instantiated to set union.

✷

Having expressed well-foundedness in terms of �xed points it is now possible to apply

�xed-point
al
ulus to dedu
e some of its properties. The following is elementary (even

without the use of �xed points!) but needs to be stated be
ause of its frequent use.

Lemma 10 If relation R is well-founded and S⊆R then S is well-founded.

✷

2. Imperative Programming and Well-founded Relations 13

Fixed point
al
ulus gives an easy proof of the following more interesting theorem.

Theorem 11 For all R , that R is well-founded equivales that R+
is well-founded.

Proof We prove the stronger theorem that

ν〈X::X◦R〉=ν〈X:: X◦R+〉 .

The in
lusion ν〈X::X◦R〉⊆ν〈X:: X◦R+〉 is immediate from monotoni
ity of ν and the

fa
t that R⊆R+
. For the other in
lusion, we
al
ulate:

ν〈X:: X◦R+〉 ⊆ ν〈X::X◦R〉

⇐ { �xed point indu
tion }

ν〈X:: X◦R+〉 ⊆ ν〈X:: X◦R+〉 ◦R

≡ { R+ = R ◦R∗ }

ν〈X:: X◦R+〉 ⊆ ν〈X:: X◦R ◦R∗〉 ◦R

≡ { rolling rule }

ν〈X:: X◦R+〉 ⊆ ν〈X:: X◦R∗
◦R〉

≡ { R+ = R∗
◦R }

true .

✷

This
on
ludes this se
tion. With dummies A and p ranging over
ore
exives and

right
onditions, respe
tively, and X , S and T over relations, we have established the

equivalen
e of the properties:

� R is well-founded.

� ν〈A:: (A◦R)>〉=⊥⊥ .

� ν〈p::p◦R〉=⊥⊥ .

� ν〈X::X◦R〉=⊥⊥ .

� R+
is well-founded.

� ∀〈S, T :: T = S∪T ◦R ≡ T = S ◦R∗〉 .

Exercise 12 We saw above that ν〈X::X◦R〉 is a right
ondition. What is the inter-

pretation of this right
ondition as a set?

✷

2. Imperative Programming and Well-founded Relations 14

Exercise 13 The standard te
hnique for proving termination of a loop statement or

a re
ursive de�nition in a program is to use a bound fun
tion. That is, one de�nes a

fun
tion from the state spa
e to a set on whi
h a well-founded relation is de�ned. Most

ommonly the set is the set of natural numbers, and one proves that the body of the

loop statement or re
ursive de�nition stri
tly redu
es the value of the bound fun
tion.

Suppose the body of the loop statement is given by relation S , the bound fun
tion

is f and the well-founded relation is R . Then the te
hnique amounts to proving that if

x[[S]]y then f.x [[R]] f.y . That is, S ⊆ f∪ ◦R ◦ f . In view of lemma 10, the validity of the

use of bound fun
tions is justi�ed by the following theorem: If R is a relation and f a

fun
tional relation su
h that R is well-founded, then relation f∪ ◦R ◦ f is well-founded as

well.

Prove this theorem.

Hint: as in the proof of theorem 11 one
an make a more general statement relating

ν〈X::X◦R〉 and ν〈X:: X ◦ f∪ ◦R ◦ f〉 .

✷

Exercise 14 Show that if R is well-founded then R+∩ I ⊆ ⊥⊥ . (So no non-empty

subset of a well-founded relation is re
exive.)

Under what
onditions is the well-foundedness of R equivalent to R+∩ I ⊆ ⊥⊥ ?

Provide examples where possible.

✷

2.5 Totality of while statements

We are now in a position to
omplete our dis
ussion of the
onstru
tion of while state-

ments using loop invariants.

Re
all that Body is the body of the loop, and Term terminates the
omputation.

The well-foundedness of Body guarantees that the exe
ution of the while statement

will always terminate. It also guarantees that the implementation is total, provided that

Term and Body have
omplementary right domains, and the initialisation Init is total.

Spe
i�
ally, we have:

(Term ◦Body∗
◦ Init)>= I

≡ { domain
al
ulus }

((Term ◦Body∗)> ◦ Init)>= I

⇐ { by assumption, Init is total, i.e. Init>= I }

(Term ◦Body∗)>= I

2. Imperative Programming and Well-founded Relations 15

≡ { (Term ◦Body∗)> is the unique solution of the equation

A:: A = Term>∪ (A ◦Body)> }

I = Term>∪ (I ◦Body)>

≡ { by assumption,

Term and Body have
omplementary right domains.

In parti
ular, I = Term>∪Body> }

true .

The penultimate step needs further justi�
ation. The
laim is that the equation

A:: A = Term>∪ (A ◦Body)>

has a unique solution provided that Body is well-founded. This is easily derived from

(9). Indeed, for all
ore
exives A ,

A = Term>∪ (A ◦Body)>

≡ { domain
al
ulus.

Spe
i�
ally, (⊤⊤◦A)>=A and ⊤⊤◦R = ⊤⊤ ◦R> }

⊤⊤◦A = ⊤⊤◦Term ∪ ⊤⊤◦A◦Body

≡ { Body is well-founded, (9) }

⊤⊤◦A = ⊤⊤ ◦ Term ◦Body∗

≡ { domain
al
ulus (as above) }

A=(Term ◦Body∗)> .

That is, (Term ◦Body∗)> is the unique solution of the above equation in A .

2.6 Induction Principles

Dual to the notion of well-foundedness is the notion of admitting indu
tion. This se
tion

formulates the latter notion in terms of �xed points and then shows that well-foundedness

and admitting indu
tion are equivalent.

A relation R is said to admit indu
tion if the following s
hema
an be used to estab-

lish that property P holds everywhere: prove, for all y , that the indu
tion hypothesis

∀〈x:x[[R]]y:P.x〉 implies P.y . That is, expressed in terms of points, R admits indu
tion

i�

∀〈y::P.y〉⇐∀〈y:: ∀〈x:x[[R]]y:P.x〉⇒P.y〉 .

2. Imperative Programming and Well-founded Relations 16

The subterm

∀〈x:x[[R]]y:P.x〉

in this formula is
alled the indu
tion hypothesis while the proof of the subterm

∀〈y:: ∀〈x:x[[R]]y:P.x〉⇒P.y〉

the indu
tion step. For instan
e, repla
ing R by the less-than relation (<) on natural

numbers and the dummies x and y by m and n , the less-than relation admits indu
tion

i�

∀〈n::P.n〉⇐∀〈n:: ∀〈m:m<n:P.m〉⇒P.n〉 .

This is indeed the
ase sin
e the above is the statement of the prin
iple of strong math-

emati
al indu
tion. The indu
tion hypothesis is ∀〈m:m<n:P.m〉 ; the indu
tion step is

the proof that assuming the truth of the indu
tion hypothesis one
an prove P.n . That

the less-than relation admits indu
tion means that from the proof of the indu
tion step

one
an infer that P.n holds for all n .

Less dire
tly but nevertheless straightforwardly, repla
ing R by the prede
essor re-

lation on natural numbers, i.e. x[[R]]y ≡ y=x+1 , and simplifying using the fa
t that no

number is a prede
essor of 0 , one obtains the prin
iple of simple mathemati
al indu
tion:

with n ranging over the natural numbers,

∀〈n::P.n〉 ⇐ P.0∧∀〈n:: P.n⇒P.(n+1)〉 .

Thus the prede
essor relation on natural numbers admits indu
tion. Note that in this

ase the proof of P.0 is
alled the basis of the proof by indu
tion and the proof of

P.n⇒P.(n+1) , for all n , the indu
tion step.

The pointwise de�nition of \admits indu
tion" given above is in terms of predi
ates.

Be
ause we want to arrive at a de�nition in terms of relations we �rst reformulate it in

terms of sets. So we de�ne: relation R admits indu
tion if and only if:

∀〈y::y∈A〉⇐∀〈y:: ∀〈x:x[[R]]y: x∈A〉⇒y∈A〉 .(15)

To arrive at a de�nition without dummies we �rst noti
e that ∀〈y::y∈A〉 , the (under-

stood) domain of y being I ,
an be rewritten as I⊆A . Furthermore, we see that the

expression in the domain of the ante
edent, ∀〈x:x[[R]]y: x∈A〉 , is just y∈R\A . So (15)

an be drasti
ally simpli�ed to

I⊆A ⇐ R\A⊆A ,(16)

for all
ore
exives A of type I←I .

A

ording to the terminology introdu
ed above, R\A is the indu
tion hypothesis,

whilst a proof of R\A⊆A is the indu
tion step.

This then is the de�nition of \admits indu
tion".

2. Imperative Programming and Well-founded Relations 17

Definition 17 The relation R is said to admit indu
tion if and only if it satis�es

∀〈A: A⊆ I: I⊆A ⇐ R\A⊆A〉 .

Equivalently, R is said to admit indu
tion if and only if

µ〈A:A⊆ I:R\A〉 = ⊤⊤ .

✷

Just as for well-foundedness, we propose a de�nition in whi
h the type di�eren
e

between the variables is removed.

Theorem 18 That relation R admits indu
tion equivales µ〈X::R\X〉=⊤⊤ .

✷

We omit the proof as it is essentially dual to the proof of theorem 8.

Exercise 19 De�nition 17 draws attention to the
ore
exive µ(R\) : if relation R

admits indu
tion then the set
orresponding to µ(R\) is the universe over whi
h relation

R is de�ned. By restri
ting the domain of any relation R it is always possible to obtain

a relation that admits indu
tion. Spe
i�
ally, for any relation R , the relation R ◦µ(R\)

admits indu
tion. Prove this theorem.

✷

2.7 Admits-induction Implies Well-Founded

Now that we have seen several equivalent de�nitions of well-founded it is time to explore

its relationship to admitting indu
tion. The following lemma is the key insight.

Lemma 20 ν〈T :: T ◦R〉 ◦µ〈T ::R\T〉 = ⊥⊥ .

Proof The form of the theorem suggests that we try to apply µ -fusion. Of
ourse we

then have to �nd a suitable fun
tion f su
h that µf=⊥⊥ . The identity fun
tion is one

possibility and, as it turns out, is a good
hoi
e. However, sin
e we want to demonstrate

how good use of the
al
ulational te
hnique
an avoid the need to make guesses of this

nature, we
onstru
t f . We have, for all X ,

X ◦µ〈T ::R\T〉 = ⊥⊥

≡ { introdu
e f su
h that ⊥⊥=µf }

X ◦µ〈T ::R\T〉 ⊆ µf

3. Hylo Equations 18

⇐ { basi
 fusion theorem }

∀〈T :: X ◦R\T ⊆ X ◦ f.T〉

≡ {
hoose for f , f.T =T , noting that indeed ⊥⊥=µ〈T ::T〉 .

fa
tor
an
ellation: spe
i�
ally, R◦R\T ⊆ T }

X⊆X◦R

⇐ { de�nition of ν〈T :: T ◦R〉 }

X=ν〈T :: T ◦R〉 .

✷

Theorem 21 If R admits indu
tion then R is well-founded.

Proof If R admits indu
tion then, by de�nition, µ〈T ::R\T〉=⊤⊤ . So, by lemma 20,

ν〈T :: T ◦R〉 ◦⊤⊤ = ⊥⊥ . But then, sin
e I⊆⊤⊤ , ν〈T ::T ◦R〉⊆⊥⊥ . By theorem 8 we have

thus established that R is well-founded.

✷

Exercise 22 One might suppose that an argument dual to the above leads to a proof

that well-foundedness implies admits-indu
tion. Unfortunately this is not the
ase: a

true inverse, viz.
omplementation, is needed to do that. To prove the theorem using

the te
hniques developed here it suÆ
es to know that R\S=¬(R∪
◦¬S) . (We haven't

given enough information about relation algebra for you to verify this fa
t within the

algebra. A pointwise veri�
ation
an, of
ourse, be given instead.) This fa
t
an then be

used to
onstru
t a fun
tion f su
h that ν〈T :: T ◦R〉 = f.µ〈T ::R\T〉 . µ -fusion should be

used bearing in mind the Galois
onne
tion ¬R⊆S ≡ R⊇¬S and being parti
ularly

areful about the reversal of the ordering relation. Having
onstru
ted f it is then

straightforward to establish the equivalen
e between the two notions.

Prove that well-foundedness admits indu
tion along the lines outlined above.

In general, the right
ondition ν〈T ::T ◦R〉
an be interpreted as the set of all points

from whi
h an in�nite R -
hain begins.

What is the interpretation of µ〈T ::R\T〉 ?

✷

3 Hylo Equations

In this se
tion we introdu
e a methodology for the design of re
ursive programs. The

methodology is based on
onstraining the re
ursion to a parti
ular form of �xed point

3. Hylo Equations 19

equation,
alled a \hylo" equation, rather than allowing arbitrary re
ursion (whi
h has

been
alled the goto of fun
tional programming). The methodology generalises the

methodology for designing while statements by introdu
ing a datatype as an additional

parameter in the design pro
ess. (In the
ase of while statements the datatype is just

the set of natural numbers, in the
ase of a divide-and-
onquer algorithm the datatype

is a tree stru
ture.)

A hylo equation
omprises three elements, a \relator" F (whi
h is a fun
tion from

relations to relations), and two relations, one of whi
h is an \ F -algebra" and the other

is an \ F -
oalgebra". The
omplete de�nition is given in se
tion 3.1. Se
tion 3.2 gives a

number of examples of programs that take the form of a hylo equation. It is shown that

programs de�ned by stru
tural or primitive re
ursion are instan
es of hylo programs as

well as several standard sorting algorithms and other programs based on a divide-and-

onquer strategy. The goal in this se
tion is, of
ourse, to demonstrate that restri
ting the

design methodology to hylo programs still allows suÆ
ient room for
reativity. Se
tions

3.3 and 3.4 introdu
e an important �xed-point theorem whi
h formally relates hylo

equations with the use of an intermediate or \virtual" data stru
ture. Understanding this

theorem is
ru
ial to understanding the methodology of designing hylo programs. The

�nal se
tion, se
tion 3.5 is about generalising notions of well-foundedness and indu
tivity

to take into a

ount the intermediate data stru
ture impli
it in any hylo program.

3.1 Relators and Hylos

A hylo equation
omprises three elements, a so-
alled \relator" and two relations. The

notion of relator plays the same role in relation algebra as the notion of \fun
tor" in the

ategory of fun
tions and sets.

Fun
tors are relevant to fun
tional programming be
ause they
orrespond to type

onstru
tors. The
anoni
al example is List , whi
h is an endofun
tor on the
ategory

Fun . The obje
t part of the fun
tor List is the mapping from types (sets) to types.

(For example List.IN , lists of natural numbers, is the result of applying List to IN .) The

arrow part of the fun
tor List is the fun
tion known as map to fun
tional programmers.

If f∈ I←J then map.f ∈ List.I←List.J is the fun
tion that applies fun
tion f to ea
h

element in a list of J s to
reate a list of I s of the same length. It is a general fa
t that

parameterised datatypes (of whi
h List is an example) de�ne fun
tors. The obje
t part of

the fun
tor is the mapping from types to types and the arrow part is the \map" operation

that applies a given fun
tion to every value stored in an instan
e of the datatype.

Rather than
onstrain ourselves to the design of fun
tional programs, we
onsider pro-

grams involving relations as well. (The reasons are obvious: doing so means that we may

allow non-determinism in our programs and do not have to make an arbitrary distin
tion

between spe
i�
ations |whi
h typi
ally involve an element of non-determinism| and

3. Hylo Equations 20

implementations. Also, as the theory below shows, there is no good reason for not ex-

tending the dis
ussion to in
lude relations.) But the
ategori
al notion of fun
tor is too

weak to des
ribe type
onstru
tors in the
ontext of a relational theory of datatypes. The

notion of an \allegory" [Fv90℄ extends the notion of a
ategory in order to better
ap-

ture the essential properties of relations, and the notion of a \relator" [BBM

+
91, BW93℄

extends the notion of a fun
tor in order to better
apture the relational properties of

datatype
onstru
tors.

Formally an allegory is a
ategory su
h that, for ea
h pair of obje
ts A and B ,

the
lass of arrows of type A←B forms an ordered set. In addition there is a
onverse

operation on arrows and a meet (interse
tion) operation on pairs of arrows of the same

type. These are the minimum requirements in order to be able to state the algebrai

properties of the
onverse operation. For pra
ti
al purposes more is needed. A lo
ally-

omplete, tabulated, unitary, division allegory is an allegory su
h that, for ea
h pair

of obje
ts A and B , the partial ordering on the set of arrows of type A←B is
omplete

(\lo
ally-
omplete"), the division operators introdu
ed in se
tion 2.3.2 are well-de�ned

(\division allegory"), the allegory has a unit (whi
h is a relational extension of the

ategori
al notion of a unit | \unitary") and, �nally, the allegory is \tabulated". We

won't go into the details of what it means to be \tabulated" but, basi
ally, it means that

every arrow in the allegory
an be represented by a pair of arrows in the underlying map

ategory (i.e. by a pair of fun
tions) and
aptures the fa
t that relations are subsets of

the
artesian produ
t of a pair of sets. (Tabularity is vital be
ause it provides the link

between
ategori
al properties and their extensions to relations.)

A suitable extension to the notion of fun
tor is the notion of a \relator". A relator

is a fun
tor whose sour
e and target are both allegories |remember that an allegory is

a
ategory| that is monotoni
 with respe
t to the subset ordering on relations of the

same type and
ommutes with
onverse. Thus, a relator F is a fun
tion to the obje
ts of

an allegory C from the obje
ts of an allegory D together with a mapping to the arrows

(relations) of C from the arrows of D satisfying the following properties:

F.R ∈ F.I ✛

C

F.J whenever R∈ I ✛

D

J.(23)

F.R ◦F.S = F.(R◦S) for ea
h R and S of
omposable type,(24)

F.idA = idF.A for ea
h obje
t A,(25)

F.R ⊆ F.S ⇐ R ⊆ S for ea
h R and S of the same type,(26)

(F.R)∪ = F.(R∪) for ea
h R.(27)

Two examples of relators are List and produ
t. List is a unary relator, and produ
t is

a binary relator. If R is a relation of type I← J then List.R relates a list of I s to a

3. Hylo Equations 21

list of J s whenever the two lists have the same length and
orresponding elements are

related by R . The relation R×S relates two pairs if the �rst
omponents are related by

R and the se
ond
omponents are related by S . List is an example of an indu
tively-

de�ned datatype; in [BBH

+
92℄ it was observed that all indu
tively-de�ned datatypes

are relators.

Now that we have the de�nition of a relator we may also give the de�nition of a hylo

equation.

Definition 28 (Hylos) Let R and S be relations and F a relator. An equation of

the form

X:: X = R ◦F.X ◦S(29)

is said to be a hylo equation or hylo program.

✷

The identi�
ation of the importan
e of hylo equations is due to Meijer. (See e.g.

[MFP91℄.)

Note that, on typing grounds, if the unknown X in equation (29) is to have type

A←B then R must have type A←F.A . We say that R is an F -algebra with
arrier

A . Also S must have type F.B←B (equivalently S∪
must be an F -algebra with
arrier

B). It is
onvenient to use the term
oalgebra for a relation of type F.B←B for some

B . So a
oalgebra with
arrier B is the
onverse of an algebra with
arrier B .

3.2 Hylo Programs

In this se
tion we show how frequently re
ursive programs
an be rewritten in the form

of hylo equations. We
onsider a variety of
lasses of re
ursion: stru
tural re
ursion,

primitive re
ursion, divide-and-
onquer, and so on. In order to show that ea
h of these

lasses is subsumed by the
lass of hylo equations some additional notation is introdu
ed

as and when ne
essary. It is not ne
essay to understand the notation in detail in order

to be able to appre
iate the examples, and the notation will not be used elsewhere.

Structural recursion The heart of fun
tional programming is the de
laration and use

of datatypes. This is fa
ilitated by the spe
ial purpose syntax that is used. A de�nition

like that of the natural numbers in Haskell:

datatype Nat = Zero | Succ Nat

introdu
es two datatype
onstru
tors Zero and Succ of types Nat and Nat -> Nat, re-

spe
tively. It also fa
ilitates the de�nition of fun
tions on natural numbers by pattern

mat
hing as in the de�nition of the fun
tion even:

3. Hylo Equations 22

even Zero = True

even (Succ n) = not (even n)

Category theory enables one to gain a proper understanding of su
h de�nitions and to

lift the level of dis
ussion from parti
ular instan
es of datatypes to the general
ase, thus

improving the e�e
tiveness of program
onstru
tion.

Category theory en
ourages us to fo
us on fun
tion
omposition rather than fun
tion

appli
ation and to
ombine the two equations above into one equation, namely:

even ◦ (zero▽succ) = (true▽not) ◦ (11+even) .(30)

In this form various important elements are more readily re
ognised. First, the two

datatype
onstru
tors Zero and Succ have been
ombined into one algebra zero▽succ .

Similarly, True and not have been
ombined into the algebra true▽not . The general

me
hanism being used here is the disjoint sum type
onstru
tor (+) and the
ase opera-

tor (

▽
). Spe
i�
ally, given types A and B , their disjoint sum A+B
omprises elements

of A together with elements of B but tagged to say in whi
h
omponent of the disjoint

sum they belong. Appli
ation of the fun
tion f▽g to a value of type A+B involves

inspe
ting the tag to see whether the value is in the left
omponent of the sum or in

the right. In the former
ase the fun
tion f is applied (after stripping o� the tag); in

the latter
ase the fun
tion g is applied. Thus for f▽g to be
orre
tly typed, f and g

must have the same target type. Then, if f has type A←B and g has type A←C , the

type of f▽g is A←B+C .

Another important element of (30) is the unit type 11 and the term 11+even . The

unit type is a type with exa
tly one element. The term 11+even is read as the fun
tor

11+ applied to the fun
tion even . As explained earlier, if f has type A←B the fun
tion

11+f has type 11+A← 11+B . It is the fun
tion that inspe
ts the tag on a value of type

11+B to see if it belongs to the left
omponent, 11 , or the right
omponent, B . In the

former
ase the value is left unaltered (
omplete with tag), and in the latter
ase the

fun
tion f is applied to the untagged value, and then the tag is repla
ed. The fun
tor

11+ is
alled the pattern fun
tor of the datatype IN (Nat in Haskell-speak) [BJJM99℄.

The �nal aspe
t of (30) that is
ru
ial is that it uniquely de�nes the fun
tion even .

(To be pre
ise, the equation

X:: X ◦ (zero▽succ) = (true▽not) ◦ (11+X)

has a unique solution.) This is the
on
ept of initiality in
ategory theory. Spe
i�
ally,

zero▽succ is an initial (11+)-algebra whi
h means that for all (11+)-algebras f the

equation

X:: X ◦ (zero▽succ) = f ◦ (11+X)

3. Hylo Equations 23

has exa
tly one solution.

In summary,
ategory theory identi�es three vital ingredients in the de�nition (30)

of the fun
tion even , namely, the fun
tor 11+ , the initial (11+)-algebra zero▽succ and

the (11+)-algebra true▽not .

The general form exempli�ed by (30) is

X ◦ in = f ◦F.X(31)

where F is a fun
tor, in is an initial F -algebra and f is an F -algebra. This general form

embodies the use of stru
tural re
ursion in modern fun
tional programming languages

like Haskell. The left side embodies pattern mat
hing sin
e, typi
ally, in embodies a

ase analysis as exempli�ed by zero▽succ . The right side exhibits re
ursion over the

stru
ture of the datatype, whi
h is represented by the \pattern" fun
tor F .

Here is the formal de�nition of an initial algebra. The de�nition is standard |an

initial obje
t in the
ategory of F -algebras| but we give it nonetheless in order to

introdu
e some terminology.

Definition 32 Suppose F is an endofun
tor on some
ategory C . An arrow f in

C is an F -algebra if f ∈ A←F.A for some A , the so-
alled
arrier of the algebra. If

f and g are both F -algebras with
arriers A and B then arrow ϕ∈A←B is said to

be an F -algebra homomorphism to f from g if ϕ ◦ f = g ◦F.ϕ . The
ategory FAlg

has obje
ts all F -algebras and arrows all F -algebra homomorphisms. Composition and

identity arrows are inherited from the base
ategory C . The arrow in ∈ I← F.I is an

initial F -algebra if for ea
h f ∈ A← F.A there exists an arrow ([f℄)∈A← I su
h that

for all h∈A← I ,

h = ([f℄) ≡ h∈ f ✛

FAlg
in .(33)

So, ([f℄) is the unique homomorphism to algebra f from algebra in . We
all ([f℄) the

atamorphism of f .

✷

The \banana bra
ket" notation for
atamorphisms (as it is a�e
tionately known) was

introdu
ed by Mal
olm [Mal90a, Mal90b℄. Mal
olm was also the �rst to express the

uni
ity property using an equivalen
e in this way. It is a mathemati
ally trivial devi
e

but it helps enormously in reasoning about
atamorphisms. Note that the fun
tor F is

also a parameter of ([f℄) but the notation does not make this expli
it. This is be
ause

the fun
tor F is usually �xed in the
ontext of the dis
ussion. Where disambiguation

is ne
essary, the notation ([F ; f℄) is sometimes used. The initial algebra is also a param-

eter that is not made expli
it; this is less of a problem be
ause initial F -algebras are

isomorphi
 and thus
atamorphisms are de�ned \up to isomorphism".

3. Hylo Equations 24

An important property of initial algebras,
ommonly referred to as Lambek's lemma

[Lam68℄, is that an initial algebra is both inje
tive and surje
tive. Thus, for example,

zero▽succ is an isomorphism between IN and 11+IN . Lambek's lemma has the
onse-

quen
e that, if in is an initial F -algebra,

h∈ f ✛

FAlg
in ≡ h = f ◦F.h ◦ in∪

where in∪
is the inverse of in . Thus, the
hara
terising property (33) of
atamorphisms

is equivalent to, for all h and all F -algebras f ,

h = ([f℄) ≡ h = f ◦F.h ◦ in∪ .(34)

That is, ([f℄) is the unique �xed point of the fun
tion mapping h to f ◦F.h ◦ in∪
. Equiv-

alently, ([f℄) is the unique solution of the hylo equation:

h:: h = f ◦F.h ◦ in∪ .

In the
ontext of fun
tions on lists the
atamorphism ([f℄) is known to fun
tional program-

mers as a fold operation. Spe
i�
ally, for lists of type I the relevant pattern fun
tor F

is the fun
tor mapping X to 11+(I×X) (where × denotes the
artesian produ
t fun
tor)

and an F -algebra is a fun
tion of type A←11+(I×A) for some A . Thus an F -algebra

takes the form c▽ (⊕) for some fun
tion c of type A←11 and some fun
tion ⊕ of type

A← I×A . The
hara
terising property of the
atamorphisms is thus

h = ([c▽ (⊕)℄) ≡ h = (c▽ (⊕)) ◦ (11+ (I×h)) ◦ (nil∪ H cons∪) .

Here nil∪ H cons∪ is the inverse of nil▽cons . (In general, RHS is the
onverse
onjugate

of R▽S . That is, (RHS)∪ = R∪ ▽S∪
.) It
an be read as the pattern mat
hing operator:

look to see whether the argument is an empty list or a non-empty list. In the former

ase nil∪ returns an element of the unit type, tagging it so that the result of the test is

passed on to later stages; in the latter
ase cons∪ splits the list into a head and a tail, the

resulting pair also being tagged for later identi�
ation. Using the algebrai
 properties of

ase analysis, the
hara
terising property is equivalent to

h = ([c▽ (⊕)℄) ≡ h ◦nil= c ∧ h ◦ cons = (⊕) ◦ (I×h)

the right side of whi
h is a point-free free formulation of the de�nition of a fold with

seed the
onstant c and binary operator (⊕). As a
on
rete example, the fun
tion sum

that sums the elements of a list is

([zero▽ add℄)

where add is the addition fun
tion. In Haskell this fun
tion would be written

fold 0 add .

3. Hylo Equations 25

Although
atamorphisms (folds) are best known in the
ontext of fun
tional program-

ming many relations are also
atamorphisms. For example, the pre�x relation on lists is

uniquely
hara
terised by the two equations

nil[[prefix]]nil

and xs[[prefix]](y : ys) ≡ xs= nil∨∃(zs:: xs=y : zs ∧ zs[[prefix]]ys) .

Expressed as one, point-free equation this is

prefix ◦ (nil▽cons) = (nil▽ ((nil◦⊤⊤)∪ cons)) ◦ (11+(I×prefix))(35)

where I denotes the type of the list elements. Here we re
ognise a relator and two alge-

bras: in this
ase the relator is (11+(I×)) and the two (11+(I×))-algebras are nil▽cons

and nil▽ ((nil◦⊤⊤)∪ cons) . (Note that the se
ond algebra is not a fun
tion.) Equivalently,

prefix is the unique solution of a hylo equation:

prefix = (nil▽ ((nil◦⊤⊤)∪ cons)) ◦ (11+(I×prefix)) ◦ (nil∪ H cons∪) .(36)

Primitive recursion Stru
tural re
ursion is useful sin
e many programs that arise in

pra
ti
e have this kind of re
ursion. However, just as stru
tural indu
tion is not enough

to prove all fa
ts that
an be proved by indu
tion, stru
tural re
ursion is not enough to

de�ne all programs that
an be de�ned by re
ursion. As an example of a program that

is not stru
turally re
ursive,
onsider the fa
torial fun
tion, the fun
tion de�ned by the

two equations

fact ◦ zero = one and fact ◦ succ = times ◦ (fact△succ) ,

where one is the
onstant fun
tion returning the number 1 and times is the multipli
a-

tion fun
tion. These equations
an be
ombined into the single equation

fact = (one▽ (times ◦ (succ×IN))) ◦ (11+ (IN△fact)) ◦ (zero∪ H succ∪) .(37)

Reading from the right, the fa
torial fun
tion �rst examines its argument to determine

whether it is zero or the su

essor of another number; in the former
ase a tagged element

of the unit type is returned, and in the latter
ase the prede
essor of the input value

is returned, suitably tagged. Subsequently, if the input value is n+1 , the fun
tion

IN△fact
onstru
ts a pair
onsisting of the number n and the result of the fa
torial

fun
tion applied to n. (As forewarned, IN is used here to denote the identity fun
tion

on natural numbers.) The
al
ulation of (n+1)×n! is the result of applying the fun
tion

times ◦ (succ×IN) to the (untagged) pair. On the other hand, if the input value is zero

then one is returned as result.

To give an example of a relation de�ned by primitive re
ursion we need look no

further than the suÆx relation on lists. It satis�es

3. Hylo Equations 26

nil[[suffix]]nil

and xs[[suffix]](y : ys) ≡ xs=y : ys ∨ xs[[suffix]]ys .

Expressed as a �xed point equation this is:

suffix = (nil▽ ((cons◦exl)∪ (exr◦exr))) ◦ (11+ (I× (List.I△ suffix))) ◦ (nil∪ H cons∪)

where I is the type of the list elements and exl and exr proje
t a pair onto its left and

right
omponents, respe
tively. This is a de�nition by primitive re
ursion.

When we abstra
t from the parti
ular fun
tor and initial algebra in fa
torial program

(37) a general re
ursion s
heme is obtained.

X :: X = R ◦F.(I×X) ◦F.(I△I) ◦ in∪
.(38)

In the
ase of the fa
torial fun
tion R is one▽ (times ◦ succ×id) , F is (11+), I is the

(identity on) natural numbers and in is zero▽succ . (Note that (W×X) ◦ (I△I) = W△X

for all W and X with sour
e I . Hen
e F.(I×X) ◦F.(I△I) = F.(I△X) . We have applied

this so-
alled × -

△
-fusion law in order to make the term F.(I△I) expli
it.) A de�nition

of this form is
alled primitive re
ursive.

This generi
 formulation of primitive re
ursion was introdu
ed (for fun
tions) by

Meertens [Mee92℄. He
alled su
h an equation a para equation and a solution to the

equation a paramorphism.

Divide and Conquer As the name suggests, \primitive" re
ursion is also unsuitable

as the basis for a pra
ti
al methodology of re
ursive program
onstru
tion. Divide-and-

onquer is a well-known te
hnique that is not easily expressed using primitive re
ursion.

An example of a divide-and-
onquer program is the sorting algorithm known as

\qui
ksort" . Qui
ksort, here abbreviated to qs , is uniquely de�ned by the hylo equation:

qs = (nil▽(join ◦ (I×cons))) ◦ (11+(qs×(I×qs))) ◦ (nil∪ Hdnf)(39)

To see that this is the qui
ksort program one has to interpret dnf as the well-known

\Dut
h national
ag" relation: the relation that splits a non-empty list into a tuple

(xs , (x , ys)) formed by a list, an element and a list su
h that all elements in the list xs

are at most x and all elements in ys are greater than x . The results of the re
ursive
alls

are assembled to the output list by the operation join ◦ (I×cons) , where join produ
es

the
on
atenation of two lists.

A typi
al divide and
onquer program is of the form

X = (R▽conquer) ◦ (I+(X×X)) ◦ (I+divide) ◦ (AHB) .(40)

3. Hylo Equations 27

Interpreting this program should not be diÆ
ult. A test is made to determine whether

the input is a base
ase (if the input satis�es A), the output then being
omputed by

R . If the input is not a base
ase (if the input satis�es B) the input is split into two

smaller \subproblems" by divide . Then the smaller problems are solved re
ursively and

�nally the two solutions of the subproblems are assembled into an output by conquer .

Of
ourse there are more divide and
onquer s
hemes. For example, the original

problem
an be split into more than two subproblems. It is also possible that the divide

step produ
es, besides a number of subproblems, a value that is not \passed into the

re
ursion"; then the middle relation of (40) has a form like I×(X×X) . Qui
ksort is an

example of su
h a divide and
onquer algorithm.

Repetition is an elementary and familiar example of divide and
onquer in whi
h the

original problem is redu
ed to a single subproblem. A repetition is a solution of the

equation in x :

x = if ¬b→ skip [] b→ s;x fi .(41)

Using the fa
t that skip (do nothing)
orresponds to the identity fun
tion, I , on the

state spa
e and writing B for the
ore
exive
orresponding to predi
ate b and S for

the relation
orresponding to the statement s , we may express (41) using disjoint sum

as:

X = (I▽I) ◦ (I+X) ◦ (∼B H (S◦B)) .(42)

Here we see how while statements are expressed in terms of hylo equations, the relator

being (I+).

Parameterised recursion Often re
ursive programs
onform to one of the s
hemes

dis
ussed above but this is obs
ured by the presen
e of an additional parameter. Ele-

mentary examples are the de�nitions of addition, multipli
ation and exponentiation on

natural numbers, whi
h are essentially, but not quite, de�nitions by stru
tural re
ur-

sion:

0+n = n and (m+1)+n = (m+n)+1 ,

0×n = 0 and (m+1)×n = m×n+n ,

n0 = 1 and nm+1 = nm×n .

All these de�nitions have the form

X.(0, n) = f.n and X.(m+1 , n) = g.(m, h.n)

where X is the fun
tion being de�ned and f , g and h are known fun
tions. (We leave

the reader to supply the instantiations for f , g and h .) In point-free form, we have yet

again a hylo equation:

3. Hylo Equations 28

X = k ◦ ((11+X)× IN) ◦ (pass△ exr) ◦ ((zero∪ H succ∪)× IN)

where k = ((f ◦ exr)▽ (g ◦ (id×h))) ◦distr .

Here distr is a fun
tion of type (H×K)+ (J×K)← (H+J)×K that is polymorphi
 in H ,

J and K , and pass is a fun
tion of type 11+ (I×K)← (11+ I)×K that is polymorphi
 in

I and K .

Despite the seeming
omplexity of the underlying algebra and
oalgebra, the basi

stru
ture is thus a hylo equation.

Another example, with the same stru
ture but de�ned on a datatype other than

the natural numbers, is the program that appends two lists. The standard de�nition

omprises the two equations

nil ++ ys = ys and (x : xs) ++ ys = x : (xs ++ ys) .

As a single equation (where we write join instead of ++):

join = post ◦ ((11+ (I× join))×List.I) ◦ (pass△ exr) ◦ ((nil∪ H cons∪)×List.I) .

where post = (exr▽ cons) ◦distr . Here distr is as before whereas in this
ase pass is a

fun
tion of type 11+ (I×(J×K))← (11+ (I×J))×K that is polymorphi
 in I , J and K .

On
e again we re
ognise a hylo equation.

3.3 Intermediate data structures

At the beginning of se
tion 3.2 we dis
ussed the use of re
ursion on the stru
ture of a

datatype; if R is an F -algebra with
arrier A then the
atamorphism ([R℄)
an be seen

as a program that destru
ts an element of an initial F -algebra in order to
ompute a

value of type A . The
onverse ([R℄)∪ is thus a program that
onstru
ts an element of

the initial algebra from a value of type A .

Now suppose R and S∪
are both F -algebras with
arriers A and B , respe
tively.

Then the
omposition ([R℄) ◦ ([S∪
℄)

∪
has type A←B. It
omputes a value of type A from

a value of type B by �rst building up an intermediate value whi
h is an element of an

initial F -algebra and then breaking the element down. The remarkable theorem is that

([R℄) ◦ ([S∪
℄)

∪
is the least solution of the hylo equation (29).

This theorem (whi
h we formulate pre
isely below) gives mu
h insight into the design

of hylo programs. It says that exe
uting a hylo program is equivalent to
onstru
ting

an intermediate data stru
ture, the form of whi
h is spe
i�ed by the relator F , and

then breaking this stru
ture down. The two phases are
alled the anamorphism phase

and the
atamorphism phase. Exe
uting a hylo equation for a spe
i�
 input value by

3. Hylo Equations 29

unfolding the re
ursion hides this pro
ess; it is as if the intermediate data stru
ture is

broken down as it is being built up. (A good
omparison is with a Unix pipe in whi
h the

values in the pipe are
onsumed as soon as they are produ
ed.) Exe
ution of ([R℄) ◦ ([S∪
℄)

∪

does make the pro
ess expli
it. For this reason, the relator F is said to spe
ify a virtual

data stru
ture [SdM93℄.

Two simple examples of virtual data stru
tures are provided by do-statements and

the fa
torial fun
tion. In the
ase of do-statements (see (42)) the virtual datatype is

the
arrier set of an initial (I+)-algebra, a type whi
h is isomorphi
 to I×IN |thus an

element of the virtual datatype
an be seen as a pair
onsisting of an element of the state

spa
e and a natural number, the latter being a \virtual"
ount of the number of times

the loop body is exe
uted. In the
ase of the fa
torial fun
tion, de�nition (37)
an be

rewritten so as to make the relator F expli
it:

fact = (one▽ (times ◦ (succ×IN))) ◦ (11+(IN×fact)) ◦ (zero∪ H ((IN△IN) ◦ succ∪)) .

The \virtual" datatype is thus the type of lists of natural numbers, the
arrier set of an

initial 11+(IN×)-algebra. The list that is
onstru
ted for a given input n is the list of

natural numbers from n − 1 down to 0 and the hylo theorem states that the fa
torial

of n
an be
al
ulated by
onstru
ting this list (the anamorphism phase) and then

multiplying the numbers together after adding 1 (the
atamorphism phase).

Language re
ognition also illustrates the pro
ess well. Let us explain the pro
ess �rst

with a
on
rete example following whi
h we will sket
h the generi
 pro
ess. Consider

the following grammar:

S ::= aSb | c

where, for our purposes, a , b and c denote some arbitrary sets of words over some

�xed alphabet. Asso
iated with this grammar is a data stru
ture: the
lass of parse

trees for strings in the language generated by the grammar. This data stru
ture, Stree ,

satis�es the equation:

Stree = (a×Stree×b)+ c .

It is an initial F -algebra where F maps X to (a×X×b)+ c . Now the pro
ess of unpars-

ing a parse tree is very easy to des
ribe sin
e it is de�ned by indu
tion on the stru
ture of

parse trees. Indeed the unparse fun
tion is the F -
atamorphism ([(concat3 ◦ (a×id×b))▽c℄)

where concat3
on
atenates three strings together, a , b and c are the identity fun
-

tions on the sets a , b and c , and id is the identity fun
tion on all words. Moreover,

its left domain is equal to the language generated by the grammar. Sin
e in general the

left domain of fun
tion f is f ◦ f∪ the language generated satis�es

S = ([(concat3 ◦ (a×id×b))▽ c℄) ◦ ([(concat3 ◦ (a×id×b))▽ c℄)∪ .

3. Hylo Equations 30

This equation de�nes a (nondeterministi
) program to re
ognise strings in the language.

The program is a partial identity on words. Words are re
ognised by �rst building a parse

tree and then unparsing the tree. By the hylo theorem (or dire
tly from the de�nition

of S) we also have the hylo program

S = ((concat3 ◦ (a×id×b))▽ c) ◦ ((a×S×b)+ c) ◦ (((a×id×b) ◦ concat3∪) H c) .

This is a program that works by (nondeterministi
ally)
hoosing to split the input word

into three segments (using concat3∪
) or to
he
k whether the word is in the language c .

In the former
ase the �rst segment is
he
ked for membership in a , the third segment is

he
ked for membership in b and the program is
alled re
ursively to
he
k the middle

segment. Subsequently the three segments are re
ombined into one. In the latter
ase

the word is left un
hanged.

The derivation of a language re
ogniser in this way
an be generalised to an arbi-

trary
ontext-free grammar. (This is only possible be
ause we base our methodology

on relation algebra. The non-determinism present in a typi
al
ontext-free grammar

prohibits the generalisation we are about to make in the
ontext of fun
tional program-

ming.) A
ontext-free grammar de�nes a type of parse trees in a fairly obvious way.

Also an unparse fun
tion
an always be de�ned mapping parse trees to strings. This

fun
tion is a
atamorphism. The language generated by the grammar is the left domain

of the unparse fun
tion, whi
h is unparse ◦unparse∪
. This in turn is the
omposition of

a
atamorphism and the
onverse of a
atamorphism, whi
h
an be expressed as a hylo

program using the hylo theorem.

In pra
ti
e the pro
ess is
ompli
ated by the fa
t that all pra
ti
al
ontext-free gram-

mars have more than one nonterminal, and nonterminals are linked together via mutual

re
ursion. But the theory we have developed
overs this
ase too. Mutual re
ursion is

modelled by endorelators on a produ
t
ategory.

3.4 The Hylo Theorem

We summarise the previous se
tion with a formal statement of the hylo theorem. The

theorem is rather deeper than just the statement that the least solution of a hylo equation

is the
omposition of a
atamorphism and an anamorphism. The proof of the theorem

has been given in detail elsewhere [BH99℄

1

.

1

A
tually [BH99℄
ontains a proof of the dual theorem
on
erning �nal
oalgebras and is more general

than the theorem stated here. Unlike in a
ategory, dualising between initiality and �nality is not always

straightforward in an allegory be
ause of the la
k of duality between interse
tion and union. However,

dualising from a �nality property to an initiality property is usually straightforward and it is the other

dire
tion that is diÆ
ult. That is one reason why [BH99℄
hose to present the theorem in terms of
oalgebras

rather than algebras. The extra generality o�ered by the theorem in [BH99℄ en
ompasses the relational

3. Hylo Equations 31

Re
all that we de�ned the notion of an initial algebra in the
ontext of a
ategory.

(See (32).) To all intents and purposes this amounts to de�ning the notion of an initial

algebra in the
ontext of fun
tions between sets. What we need however is the notion of

an initial algebra in the
ontext of binary relations on sets, that is, in the
ontext of an

allegory. De�nition 43 is su
h a de�nition. The hylo theorem states that the
ategori
al

notion of an initial algebra
oin
ides with the allegori
al notion if the allegory is lo
ally

omplete and tabular.

Definition 43 Assume that F is an endorelator. Then (I , in) is a relational initial

F -algebra i� in ∈ I← F.I is an F -algebra and there is a mapping ([℄) de�ned on all

F -algebras su
h that

([R℄)∈A← I if R ∈ A←F.A ,(44)

([in℄) = idI , and(45)

([R℄) ◦ ([S℄)∪ = µ〈X:: R ◦F.X ◦S∪〉 .(46)

That is, ([R℄) ◦ ([S℄)∪ is the smallest solution of the equation X:: R ◦F.X ◦S∪ ⊆ X .

✷

In order to state the hylo theorem we let Map(A) denote the sub-
ategory of fun
-

tions in the allegory A . For
larity we distinguish between the endorelator F and the

orresponding endofun
tor de�ned on Map(A) .

Theorem 47 (Hylo Theorem) Suppose F is an endorelator on a lo
ally-
omplete,

tabular allegory A . Let F ′
denote the endofun
tor obtained by restri
ting F to the

obje
ts and arrows of Map(A) . Then in is an initial F ′
-algebra if and only it is a

relational initial F -algebra.

✷

3.5 Reducing problem size

There are two elements in the design of the body of a while statements: it should

maintain an invariant relation established by the initialisation pro
edure, and it should

make progress to the termination
ondition. The latter is guaranteed if the loop body is

a well-founded relation on the state spa
e. There are also two elements in the design of

hylo equations. The intermediate data stru
ture plays the role of the invariant relation,

whilst making progress is a
hieved by ensuring that ea
h re
ursive
all is \smaller" than

properties of disjoint sum and
artesian produ
t but at the expense of requiring a more sophisti
ated

understanding of allegory theory whi
h we wanted to avoid in the
urrent presentation.

3. Hylo Equations 32

the original argument. In this se
tion we formalise this requirement. The notion we

introdu
e, \ F -redu
tivity" due to Henk Doornbos [Doo96℄, generalises the notion of

admitting indu
tion essentially by making the intermediate data stru
ture a parameter.

As we shall indi
ate in se
tion 3.6 this has important rami�
ations for developing a

al
ulus of program termination.

Informally, for hylo program X = S ◦F.X ◦R we require that all values stored in an

output F -stru
ture of R have to be smaller than the
orresponding input to R . More

formally, with x[[mem]]y standing for \ x is a member of F -stru
ture y " (or, x is a

value stored in F -stru
ture y "), we demand that for all x and z

∀〈y:: x[[mem]]y∧y[[R]]z ⇒ x≺ z〉 ,

for some well-founded ordering ≺ . If this is the
ase we say that R is F -redu
tive.

To make the de�nition of redu
tivity
ompletely pre
ise we a
tually want to avoid the

on
ept of \values stored in an F -stru
ture". (This is be
ause its in
orporation into the

de�nition of F -redu
tivity limits the pra
ti
ality of the resulting theory.) Fortunately,

Hoogendijk and De Moor [HdM00, Hoo97℄ have shown how to
hara
terise membership

of a so-
alled \
ontainer" type in su
h a way that it
an be extended to other types

where the intuitive notion of \membership" is not so readily apparent.

Hoogendijk and De Moor's
hara
terisation of the membership relation of a relator

is the following:

Definition 48 (Membership) Relation mem ∈ I← F.I is a membership relation of

relator F if and only if it satis�es, for all
ore
exives A , A⊆ I :

F.A = mem\A .

✷

When this de�nition is expressed pointwise it reads:

x∈F.A ≡ ∀〈i: i[[mem]]x: i∈A〉 .

Informally: an F -stru
ture satis�es the property F.A i� all the values stored in the

stru
ture satisfy property A . For example, for the list relator mem holds between a

point and a list pre
isely when the point is in the list. For produ
t the relation holds

between x and (x,y) and also between y and (x,y).

This de�nition of membership leads to a de�nition of F -redu
tivity independent of

the notion of values stored in an F -stru
ture. To see this we observe that, for
oalgebra

R with
arrier I and for
ore
exive A below I , we have:

3. Hylo Equations 33

(mem ◦ R)\A

= { fa
tors (2) }

R\(mem\A)

= { de�nition 48 }

R \ F.A .

Now, that S∈ I←I admits indu
tion is the
ondition that the least pre�x point of the

fun
tion 〈A:: S\A〉 is I , and our informal notion of the redu
tivity of R ∈ F.I← I is that

mem ◦ R should be well-founded. Sin
e being well-founded is equivalent to admitting

indu
tion, the latter is equivalent to the requirement that the least pre�x point of the

fun
tion 〈A:: R \ F.A〉 is I , whi
h does not involve any appeal to notions of membership

of a \
ontainer" type. This gives us a pre
ise, generi
 de�nition of the notion of F -

redu
tivity:

Definition 49 (F -reductivity) Relation R ∈ F.I← I is said to be F -redu
tive if and

only if it enjoys the property:

µ((R\)•F) = I .(50)

✷

Obviously F -redu
tivity generalises the notion of admitting indu
tion. (A relation R

admits indu
tion if and only if it is Id -redu
tive, where Id denotes the identity relator.)

An immediate question is whether there is a similar generalisation of the notion of

well-foundedness and a
orresponding theorem that F -well-foundedness is equivalent to

F -redu
tivity. As it turns out, there is indeed a generi
 notion of well-foundedness but

this is stri
tly weaker than F -redu
tivity. The de�nition is given below, the fa
ts just

stated are left as exer
ises in the use of �xed point
al
ulus.

Well-foundedness of relation R is equivalent to the equation X:: X=X◦R having a

unique solution (whi
h is obviously ⊥⊥ , the empty relation). This is easily generalised

to the property that, for all relations S , the equation X:: X=S◦X◦R has a unique solu-

tion. The generi
 notion of well-foundedness fo
usses on this uni
ity of the solution of

equations.

Definition 51 (F -well-founded) Relation R ∈ F.I← I is F -well-founded i�, for all

relations S ∈ J←F.J and X∈ J←I ,

X = S ◦F.X ◦R ≡ X=µ〈Y:: S ◦F.Y ◦R〉 .

✷

3. Hylo Equations 34

Exercise 52 Verify the
laim made immediately before de�nition 51. That is,

show that R is well-founded equivales

∀〈X, S:: X=S◦X◦R ≡ X=µ〈Y::S◦Y◦R〉〉 .

In words, R is well-founded equivales R is Id -well-founded. (Hint: if R is well-founded

then µ〈Y::S◦Y◦R〉=⊥⊥ .)

✷

Exercise 53 Prove that an F -redu
tive relation is F -well-founded.

✷

An example of a relation that is F -well-founded but not F -redu
tive
an be
on-

stru
ted as follows. De�ne the relator F by F.X=X×X. Suppose R∈ I←I is a non-empty

well-founded relation. Then the relation R△I of type I×I← I (whi
h relates a pair of

values (x, y) ea
h of type I to a single value z of type I i� x is related by R to z and

y= z) is F -well-founded but not F -redu
tive. For a proof see [Doo96℄.

3.6 A calculus of F -reductivity

The introdu
tion of a data stru
ture |the relator F| as a parameter to the notion

of redu
tivity is a signi�
ant advan
e be
ause it admits the possibility of developing a

al
ulus of redu
tivity and thus of program termination based on the stru
ture of the

parameter. A beginning has been made to the development of su
h a
al
ulus [DB95,

Doo96℄ suÆ
ient to establish the termination of all the examples given in se
tion 3.2 by

a pro
ess akin to type
he
king.

Spa
e only allows us to give a brief taste of the
al
ulus here. The fundamental

theorem is the following.

Theorem 54 The
onverse of an initial F -algebra is F -redu
tive.

Proof Let in ∈ I← F.I be an initial F -algebra and A an arbitrary
ore
exive of type

I←I . We must show that

I⊆A ⇐ in∪\ F.A ⊆ A .

We start with the ante
edent and derive the
onsequent:

in∪ \ F.A ⊆ A

≡ { for fun
tion f and
ore
exive B , f\B = f∪ ◦B ◦ f ,

in∪
is a fun
tion and F.A is a
ore
exive }

3. Hylo Equations 35

in ◦F.A ◦ in∪ ⊆ A

⇒ { Hylo theorem: (47) and (43) ,

in is an initial F -algebra }

([in℄)⊆A

≡ { identity rule: (45), in ∈ I← F.I is an initial F -algebra }

I⊆A .

✷

Theorem 54 has
entral importan
e be
ause, if we examine all the programs in se
tion

3.2 we see that the
onverse of a initial F -algebra is at the heart of the
oalgebra in all

the hylo equations. In the
ase, for example, of primitive re
ursion the generi
 equation

has the form

X :: X = R ◦F.(I×X) ◦F.(I△I) ◦ in∪

and the
oalgebra is F.(I△I) ◦ in∪
where in ∈ I←F.I is an initial F -algebra. For the

equation to de�ne a terminating program (and
onsequently have a unique solution) we

must show that the
oalgebra is (F•(I×))-redu
tive. This is done by showing that F.(I△I)

transforms any F -redu
tive relation into an (F•(I×))-redu
tive relation | whi
h is a

onsequen
e of the fa
t that F.(I△I) is an instan
e of a natural transformation of the

relator F to the relator F•(I×) .

Acknowledgements The material in this paper was developed whilst the author was

heading the Mathemati
s of Program Constru
tion group at Eindhoven University of

Te
hnology, parti
ularly during the period 1990{1995. It would not have been possible

to write the paper without the wonderfully stimulating and highly produ
tive team

e�ort that went into all we did at that time. The se
tions on well-foundedness and

admitting indu
tion are extra
ted from [DBvdW97℄ written jointly with Henk Doornbos

and Jaap van der Woude, the se
tions on hylomorphisms and redu
tivity are extra
ted

from Doornbos's thesis [Doo96℄ (see also [DB95, DB96℄), and the hylomorphism theorem

in the form presented here is joint work with Paul Hoogendijk [BH99℄.

4. Solutions to Exer
ises 36

4 Solutions to Exercises

1 X is the relation on pairs (w,k)

w∈L ≡ w ′=ε ∧ k ′= 0

where w is a word, k is a natural number and L is the language given in the statement

of the problem. The invariant is the relation

w∈L ≡ w ′∈Lk ′

,

the initialisation is the relation

w=w ′ ∧ k ′= 1 ,

the loop body is the relation

k 6= 0 ∧ (∃〈v:: w=av ∧ w ′= v ∧ k ′=k−1〉 ∨ ∃〈v:: w=bv ∧ w ′= v ∧ k ′=k+1〉) ,

and the termination is the relation

w=w ′= ε ∧ k ′=k= 0 .

✷

12 Let p denote ν〈X::X◦R〉 . Then p is
hara
terised by the two properties

(a) p=p◦R , and

(b) ∀〈q: q=⊤⊤◦q: q⊆p⇐ q=q◦R〉 .

Interpreting p as a set, (a) is the property that x∈p equivales ∃〈y:y∈p:y[[R]]x〉 and (b)

is the property that p is the largest su
h set. In words, p is the largest set of elements

su
h that ea
h element begins an in�nite
hain of R -related elements.

✷

13 By theorem 8 we have to show that the greatest �xed point of 〈X:: X ◦ f∪ ◦R ◦ f〉 equals

⊥⊥ . We do this by �rst rewriting ν〈X:: X ◦ f∪ ◦R ◦ f〉 in terms of ν〈X::X◦R〉 . We have:

ν〈X:: X ◦ f∪ ◦R ◦ f〉

= { rolling rule }

ν〈X:: X ◦ f ◦ f∪ ◦R〉 ◦ f

⊆ { f ◦ f∪ ⊆ I , by de�nition of fun
tional; ν is monotoni
 }

ν〈X::X◦R〉 ◦ f .

4. Solutions to Exer
ises 37

The more general statement is thus

ν〈X:: X ◦ f∪ ◦R ◦ f〉 ⊆ ν〈X::X◦R〉 ◦ f .

Making use of it, we have:

ν〈X:: X ◦ f∪ ◦R ◦ f〉 ⊆ ⊥⊥

⇐ { transitivity }

ν〈X::X◦R〉 ◦ f ⊆ ⊥⊥

⇐ { ⊥⊥ is zero of
omposition and
omposition is monotoni
 }

ν〈X::X◦R〉 ⊆ ⊥⊥ .

✷

14 It suÆ
es to show that if R is well-founded then R∩I⊆⊥⊥ be
ause R is well-founded

equivales R+
is well-founded.

R∩I⊆⊥⊥

⇐ { assumption, R is well-founded }

R∩I⊆ (R∩I)◦R

⇐ { R∩I⊆R , monotoni
ity and transitivity }

R∩I⊆ (R∩I)◦(R∩I)

≡ { for all
ore
exives A , A=A◦A .

R∩I is a
ore
exive }

true .

Well-foundedness of R is equivalent to R+∩ I ⊆ ⊥⊥ when R is a relation on a �nite set.

(This is proved by indu
tion on the size of the set.) When R is a relation on an in�nite

set the two
onditions are not equivalent. For example, the less-than ordering on integers

is not well-founded but its interse
tion with the identity relation is empty.

✷

19 We use 17 as de�nition of admitting indu
tion: with A denoting µ((R ◦µ(R\))\)

we must show I=A , or equivalently (be
ause A is a
ore
exive) I⊆A . The proof has

two phases. In the �rst phase we redu
e the goal to the formally weaker µ(R\)⊆A .

I⊆A

≡ { de�nition of A , µF = F . µF }

I⊆ (R ◦µ(R\))\A

4. Solutions to Exer
ises 38

≡ { monotype fa
tors }

(R ◦µ(R\))<⊆A

≡ { µ(R\) is a monotype }

(R ◦µ(R\) ◦µ(R\))<⊆A

≡ { monotype fa
tors; de�nition of A ; µF = F . µF }

µ(R\)⊆A

Now, in the se
ond phase, we have the opportunity to apply Knaster-Tarski.

µ(R\)⊆A

⇐ { Knaster-Tarski }

R\A⊆A

≡ { de�nition of A ; µF = F . µF }

R\A⊆ (R ◦µ(R\))\A

⇐ { monotype fa
tor is anti-monotone in left argument }

R ◦µ(R\) ⊆ R

≡ { µ(R\)⊆ I ; monotoni
ity of
omposition }

true

✷

22 We �rst show that R\S=¬(R∪
◦¬S) . We use indire
t equality.

X⊆¬(R∪
◦¬S)

≡ {
omplements }

¬X ⊇ R
∪
◦¬S

≡ { middle ex
hange }

S⊇R◦X

≡ { fa
tors }

X⊆R\S .

Now we
onstru
t fun
tion f as suggested:

ν(◦R) = f.µ(R\)

⇐ { fusion, assuming f is antimonotoni
 }

4. Solutions to Exer
ises 39

∀〈X:: f.X ◦R = f.(R\X)〉

≡ { R\S=¬(R∪
◦¬S) }

∀〈X:: f.X ◦R = f .¬(R∪
◦¬X)〉

⇐ { try f.X = g .¬X }

∀〈Y:: g.Y ◦R = g.(R∪
◦Y)〉

⇐ {
onverse }

∀〈Y:: g.Y=Y
∪〉 .

Thus, ν(◦R) = ¬µ(R\)∪ . For the �nal step, we have

ν(◦R)⊆⊥⊥

≡ { above }

¬µ(R\)∪ ⊆ ⊥⊥

≡ {
omplement,
onverse }

⊤⊤
∪
⊆µ(R\)

≡ {
onverse }

⊤⊤⊆µ(R\) .

The interpretation of µ(R\) is the set of all points su
h that all
hains starting in su
h

a point are guaranteed to be of �nite length.

✷

52 By instantiating S to the identity relation, it is
lear that the follows-from property

is true. We only need to prove the impli
ation. So assume that R is well-founded. Then,

for all X and S , we have:

X=S◦X◦R

⇒ { Leibniz }

⊤⊤◦X=⊤⊤◦S◦X◦R

⇒ { ⊤⊤◦S⊆⊤⊤ }

⊤⊤◦X⊆⊤⊤◦X◦R

⇒ { assumption: R is well-founded. So ν〈X::X◦R〉=⊥⊥ }

⊤⊤◦X⊆⊥⊥

⇒ { ⊥⊥⊆X⊆⊤⊤◦X }

4. Solutions to Exer
ises 40

X=⊥⊥

≡ { ⊥⊥=S◦⊥⊥◦R and ⊥⊥⊆Y for all Y }

X=µ〈Y::S◦Y◦R〉

⇒ {
omputation rule }

X=S◦X◦R .

✷

53 Suppose R ∈ F.I← I is F -redu
tive. Suppose S ∈ J←F.J and that X∈ J←I satis�es

X = S ◦F.X ◦R .

We have to show that X=µ〈Y:: S ◦F.Y ◦R〉 .

X=µ〈Y:: S ◦F.Y ◦R〉

≡ { X = S ◦F.X ◦R , de�nition of µ }

X⊆µ〈Y:: S ◦F.Y ◦R〉

≡ { R ∈ F.I← I is F -redu
tive. So µ((R\)•F) = idI . }

X ◦µ((R\)•F) ⊆ µ〈Y:: S ◦F.Y ◦R〉

⇐ { fusion }

∀〈A: A⊆ I: X ◦ R \ F.A ⊆ S ◦F.(X◦A) ◦R〉

≡ { assumption: X = S ◦F.X ◦R ,

F distributes through
omposition }

∀〈A: A⊆ I: S ◦ F.X ◦ R ◦ R \ F.A ⊆ S ◦F.X ◦F.A ◦R〉

⇐ { monotoni
ity }

∀〈A: A⊆ I: R ◦ R \ F.A ⊆ F.A ◦R〉

≡ { fa
tors: (4) }

true .

✷

4. Solutions to Exer
ises 41

References

[Ba
86℄ R.C. Ba
khouse. Program Constru
tion and Veri�
ation. Prenti
e-Hall

International, 1986.

[BBH

+
92℄ R.C. Ba
khouse, P. de Bruin, P. Hoogendijk, G. Mal
olm, T.S. Voermans,

and J. van der Woude. Polynomial relators. In M. Nivat, C.S. Rattray,

T. Rus, and G. S
ollo, editors, Pro
eedings of the 2nd Conferen
e on Al-

gebrai
 Methodology and Software Te
hnology, AMAST'91, pages 303{

326. Springer-Verlag, Workshops in Computing, 1992.

[BBM

+
91℄ R.C. Ba
khouse, P. de Bruin, G. Mal
olm, T.S. Voermans, and J. van der

Woude. Relational
atamorphisms. In M�oller B., editor, Pro
eedings of

the IFIP TC2/WG2.1 Working Conferen
e on Constru
ting Programs

from Spe
i�
ations, pages 287{318. Elsevier S
ien
e Publishers B.V., 1991.

[BH99℄ Roland Ba
khouse and Paul Hoogendijk. Final dialgebras: From
ategories

to allegories. Theoreti
al Informati
s and Appli
ations, 33(4/5):401{426,

1999.

[BJJM99℄ Roland Ba
khouse, Patrik Jansson, Johan Jeuring, and Lambert Meertens.

Generi
 programming. An introdu
tion. In S.D. Swierstra, editor, 3rd

International Summer S
hool on Advan
ed Fun
tional Programming,

Braga, Portugal, 12th-19th September, 1998, volume LNCS 1608, pages

28{115. Springer Verlag, 1999.

[BW93℄ R.C. Ba
khouse and J. van der Woude. Demoni
 operators and monotype

fa
tors. Mathemati
al Stru
tures in Computer S
ien
e, 3(4):417{433,

De
ember 1993.

[DB95℄ Henk Doornbos and Roland Ba
khouse. Indu
tion and re
ursion on

datatypes. In B. M�oller, editor, Mathemati
s of Program Constru
-

tion, 3rd International Conferen
e, volume 947 of LNCS, pages 242{256.

Springer-Verlag, July 1995.

[DB96℄ Henk Doornbos and Roland Ba
khouse. Redu
tivity. S
ien
e of Computer

Programming, 26(1{3):217{236, 1996.

[DBvdW97℄ H. Doornbos, R.C. Ba
khouse, and J. van der Woude. A
al
ulation

approa
h to mathemati
al indu
tion. Theoreti
al Computer S
ien
e,

(179):103{135, 1997.

4. Solutions to Exer
ises 42

[Doo96℄ H. Doornbos. Redu
tivity arguments and program
onstru
tion. PhD

thesis, Eindhoven University of Te
hnology, Department of Mathemati
s

and Computing S
ien
e, June 1996.

[Fok92℄ Maarten M. Fokkinga. Law and Order in Algorithmi
s. PhD thesis,

Universiteit Twente, The Netherlands, 1992.

[Fv90℄ P.J. Freyd and A.

�

S�
edrov. Categories, Allegories. North-Holland, 1990.

[Gri81℄ D. Gries. The S
ien
e of Programming. Springer-Verlag, New York, 1981.

[HdM00℄ Paul Hoogendijk and Oege de Moor. What is a
ontainer type? Journal

of Fun
tional Programming, 2000. to appear.

[HH86℄ C.A.R. Hoare and Jifeng He. The weakest prespe
i�
ation. Fundamenta

Informati
ae, 9:51{84, 217{252, 1986.

[Hoo97℄ Paul Hoogendijk. A Generi
 Theory of Datatypes. PhD thesis, De-

partment of Mathemati
s and Computing S
ien
e, Eindhoven University

of Te
hnology, 1997.

[Lam68℄ J. Lambek. A �xpoint theorem for
omplete
ategories. Mathematis
he

Zeits
hrift, 103:151{161, 1968.

[Mal90a℄ G. Mal
olm. Algebrai
 data types and program transformation. PhD

thesis, Groningen University, 1990.

[Mal90b℄ G. Mal
olm. Data stru
tures and program transformation. S
ien
e of

Computer Programming, 14(2{3):255{280, O
tober 1990.

[Mee92℄ L. Meertens. Paramorphisms. Formal Aspe
ts of Computing, 4(5):413{

424, 1992.

[MFP91℄ Eri
 Meijer, Maarten Fokkinga, and Ross Paterson. Fun
tional program-

ming with bananas, lenses, envelopes and barbed wire. In FPCA '91:

Fun
tional Programming Languages and Computer Ar
hite
ture, num-

ber 523 in LNCS, pages 124{144. Springer-Verlag, 1991.

[SdM93℄ Doaitse Swierstra and Oege de Moor. Virtual data stru
tures. In Helmut

Parts
h, Bernhard M�oller, and Steve S
human, editors, Formal Program

Development, volume 755 of LNCS, pages 355{371. Springer-Verlag, 1993.

