Algebra of Program Termination

Henk Doornbos* Roland Backhouse'

July 30, 2001

Abstract

Well-foundedness and inductive properties of relations are expressed in terms of
fixed points. A class of fixed point equations, called “hylo” equations, is introduced.
A methodology of recursive program design based on the use of hylo equations is
presented. Current research on generalisations of well-foundedness and inductive
properties of relations, making these properties relative to a datatype, is introduced.

*EverMind, Westerkade 15/4, 9718 AS Groningen, The Netherlands
tSchool of Computer Science and Information Technology, University of Nottingham, Nottingham NG8
1BB, England

1. Introduction 2

1 Introduction

Central to computing science is the development of practical programming method-
ologies. Characteristic of a programming methodology is that it involves a discipline
designed to maximise confidence in the reliability of the end product. The discipline
constrains the construction methods to those that are demonstrably simple and easy
to use, whilst still allowing sufficient flexibility that the creative process of program
construction is not impeded. A well-established methodology is the combined use of
invariant relations and well-founded relations in the design of iterative algorithms in se-
quential programming (see sections 2.2 and 2.5), the constraint being the restriction of
the methodology to the design of while statements rather than allowing arbitrary use
of goto statements.

In this paper we develop an algebra of terminating computations based on fixed point
calculus and relation algebra. We begin by formulating properties of well-foundedness
(of a relation) and admitting induction in terms of fixed points. This discussion is moti-
vated by the methodology of designing iterative algorithms mentioned above. We then
explore the termination of recursive programs. Here we argue for a practical discipline of
recursive programming based on a class of recursive fixed-point equations called “hylo”
equations (a notion first introduced by Meijer [MFP91]). The notion of a relation ad-
mitting induction is generalised to the notion of “F-reductivity”, where the parameter
F captures the data structure underlying the recursion.

2 Imperative Programming and Well-founded Rela-
tions

An important application of fixed point calculus is in the study of well-founded relations.
Well-founded relations are fundamental to program termination and to inductive proofs
of program properties.

Before we can begin to discuss how to express well-foundedness in terms of fixed points
we need to introduce relation algebra. In relation algebra, relations are not viewed as sets
of pairs but just as values in (the carrier of) an algebraic system. In this way, relation
algebra expresses the properties of the most fundamental operations on relations without
reference to the elements being related. For example, relation algebra encapsulates the
properties of the converse Ru of relation R without reference to the so-called pointwise
definition of Ru :

(xy) €ERv = (y,x)€R .

Instead the converse operation is given an axiomatic definition, which includes for ex-

2. Imperative Programming and Well-founded Relations 3

ample the property that it is its own inverse:
(Ru)Ju=R .

This point-free axiomatisation is the key to formulating the notions of well-foundedness
and admitting induction in terms of fixed points.

A continuous motivational thread throughout this section will be the formulation of
a methodology for the design of iterative programs in terms of relation algebra. We
begin in section 2.1 with a brief introduction to relation algebra, just enough to be able
to present a concise formulation of the use of invariant properties in section 2.2. This
latter discussion raises several issues which motivates the introduction of the domain and
division operators in section 2.3.

In section 2.4 we begin with the standard pointwise definition of well-foundedness
which we then reformulate in a point-free definition. We then go on to derive an equiv-
alent but more compact definition. The same process is followed for the notion of ad-
mitting induction. We recap the standard pointwise definition, reformulate this in a
point-free manner and then derive a more compact but equivalent definition. We then
discuss the equivalence of admitting induction and being well-founded.

2.1 Relation Algebra

For us, a (non-deterministic) program is an input-output relation. The convention we
use when defining relations is that the input is on the right and the output on the
left. The convention is thus that used in functional programming and not that used in
sequential programming. For example, the relation < on numbers is a program that
maps a number into one smaller than itself. The function succ is the relation between
natural numbers such that m(succ)n equivales m=n+1. It is thus the program that
maps a natural number into its successor.

A relation is a set of ordered pairs. In discussions of the theory of imperative program-
ming the “state space” from which the elements of each pair are drawn often remains
anonymous. This reflects the fact that type structure is often not a significant parameter
in the construction of imperative programs, in contrast to functional programs where it
is pervasive. One goal here is to combine the functional and imperative programming
paradigms. For this reason, we adopt a typed algebra of relations (formally an “alle-
gory” [Fv90]). A relation is thus a triple consisting of a pair of types I and J, say, and
a subset of the cartesian product Ix]J. We write R€ [«+] (read R has type I from J),
the left-pointing arrow indicating that we view | as the set of all possible inputs and I
as the set of possible outputs. I is called the target and | the source of the relation
R, and I+] (read I from J) is called its type.

2. Imperative Programming and Well-founded Relations 4

We write x[R]y if the pair (x,y) is an element of relation R. (As is usual in
mathematics, we omit the brackets when R is denoted by a symbol and it is easy to
parse the resulting expression — as in, for example, x <y.) We use a raised infix dot to
denote relational composition. Thus RoS denotes the composition of relations R and S
(the relation defined by x[RoS]z equivales J(y:: x[R]y Ay[S]z)). The composition ReS
is only defined when the source of R equals the target of S. Moreover, the target of
RoS is the target of R, and the source of RoS is the source of S. Thus, RoSel+K
if Rel+] and Se€]J«K. The converse of relation R is denoted by Ru. Thus, x[Ru]y
equivales y[R]x. The type rule is that Rue€ I+] equivales Re J«I.

Relations of the same type are ordered by set inclusion denoted in the conventional
way by the infix C operator. The relations of a given type [+] form a complete lattice
under this ordering. The smallest relation of type I+] is the empty relation, denoted
here by 1l;_j, and the largest relation of type I«] is the universal relation, which we
denote by TTi_j. (We use this notation for the empty and universal relations because
the conventional notation T for the universal relation is easily confused with T, a sans
serif letter T, particularly in hand-written documents.) The union and intersection of
two relations R and S of the same type are denoted by RUS and RNS, respectively.

Because relations are sets, we have the shunting rule

RNSCT =S C —RUT

where —R denotes the complement of relation R. The only use we make of this rule
here is the fact that relations of type I+1 form a completely distributive lattice and
thus a regular algebra. We use this fact when we exploit the unique extension property
of regular algebras in the identification of fixed point equations that define a relation
uniquely.

For each set I there is an identity relation on I which we denote by id;. Thus
id; € [+1. Relations of type I+I contained in the identity relation of that type will be
called coreflexives. (The terminology partial identity relation and monotype is also
used.) By convention, we use R, S, T to denote arbitrary relations and A, B and C
to denote coreflexives. A coreflexive A thus has the property that if x[AJy then x=vy.
Clearly, the coreflexives of type I+ are in one to one correspondence with the subsets
of I; we shall exploit this correspondence by identifying subsets of a set I with the
coreflexives of type I«+1. Specifically, by an abuse of notation, we write x€A for x[A]x
(on condition that A is a coreflexive). We also identify coreflexives with predicates,
particularly when discussing induction principles (which are traditionally formulated in
terms of predicates rather than sets). So we shall say “x has property A” meaning
formally that x[A]x. Continuing this abuse of notation, we use ~A to denote the
coreflexive having the same type as A and containing just those elements not in A.
Thus, x[~A]y equivales the conjunction of x€I (where A has type I+I) and x=y

2. Imperative Programming and Well-founded Relations 5

and not x[A]x. We also sometimes write I where id; is meant. (This fits in with the
convention in category theory of giving the same name to that part of a functor which
maps objects to objects and that part which maps arrows to arrows.) A final, important
remark about coreflexives is that their composition coincides with their intersection.
That is, for coreflexives A and B, AcB=ANB.

We use an infix dot to denote function application. Thus f.x denotes application of
function f to argument x. Functions are particular sorts of relations; a relation R is
functional if y[R]x and z[R]x together imply that y==z. If this is the case we write R.x
for the unique y such that y[R]x. Note that functionality of relation R is equivalent
to the property RoRu C id; where I is the target of R. We normally use f, g and h
to denote functional relations.

Dual to the notion of functionality of a relation is the notion of injectivity. A relation
R with source | is injective if RuoR Cid;. Which of the properties RoRu C id; or
RuoR C id; one calls “functional” and which “injective” is a matter of interpretation.
The choice here fits in with the convention that input is on the right and output on
the left. More importantly, it fits with the convention of writing f.x rather than say x'
(that is the function to the left of its argument). A sensible consequence is that type
arrows point from right to left.

2.2 Imperative Programming

In this section we introduce the derivation of repetitive statements using invariant re-
lations. The section contains just an outline of the methodology expressed in relation
algebra. For extensive introductions see (for example) [Gri81, Bac86]. At the end of
the section we identify a need to delve deeper into relation algebra, thus motivating the
section which follows.

Given a (non-trivial) specification, X, the key to constructing a loop implementing
X is the invention of an invariant, Inv. The invariant is chosen in such a way that it
satisfies three properties. First, the invariant can be “established” by some initialisation
Init. Second, the combination of the invariant and some termination Term satisfies the
specification X. Third, the invariant is “maintained by” some loop body Body whilst
making progress towards termination.

These informal requirements can be made precise in a very concise way. The three
components Inv, Init and Term are all binary relations on the state space, just like
the specification X. They are so-called input-output relations.

“Establishing” the invariant is the requirement that

InitCInv .

2. Imperative Programming and Well-founded Relations 6

In words, any value w’ related to input value w by Init is also related by the invariant
relation to w.

That the combination of the termination and invariant satisfies the specification X
is the requirement that

TermeInvC X .
This is the requirement that for all output values w’ and input values w,
V(v: w'[Term]v Av[Invjw: w/[X]w)

(Here we see the convention of placing input values on the right and output values on
the left.)
Finally, that the invariant is maintained by the loop body is expressed by

BodyeInv C Inv
Pointwise this is
Viw',v,w: w'[BodyJv Av[Invjw: w'[Inv]w)

So Body maps values v related by the invariant Inv to w to values w’ that are also
related by Inv to w.
Together these three properties guarantee that

TermoBody*eInit C X .

That progress is made is the requirement that the relation Body be well-founded. (This
we will return to shortly.)

As an example, consider the classic problem of finding the greatest common divisor
(abbreviated gcd) of two positive numbers x and y. The state space of the program
is IntxInt. The specification, invariant, initialisation and termination are thus binary
relations on this set. The specification, X, is simply

X' =y’ =gcd.(x,y) .

Here priming x and y is a commonly used convention for abbreviating the definition of
a relation between the pair of output values x’ and y’, and the pair of input values x
and y. More formally, X is the relation

%,y 1 x" =y =gcd.(x,y): ((x,y'), (xy))} -
The convention is that the definition

{6y, ¥y p. 6y, sy) ((Ky7), (k)

2. Imperative Programming and Well-founded Relations 7

is abbreviated to

p-(x,y,x'5y’)

the primes indicating the correspondence between input and output variables. Using
this convention, the invariant is the relation

ng.(X,,y ,) = ng-(va)
and the initialisation is the identity relation
x'=xA\y'=y .

(The initialisation is thus implemented by skip, the do-nothing statement.) The termi-
nation is a subset of the identity relation on the state space. It is the relation

X, =X= ‘y / = ‘y
The composition of the termination relation and the invariant is thus the relation
x =y’ A ged.(x',y’) =ged.(x,y)

which, since gecd.(x/,x’) equals x’, is identical to the specification X. The loop body
in Dijkstra’s well-known guarded command solution to this problem is the union of two
relations, the relation

x<y Ax'=x Ay’ =y—x
and the relation
y<xAy'=yAx'=x—y .

Exercise 1 Identify X, Inv, Init, Body and Term in the language recognition
program discussed in the chapter on Galois Connections and Fixed Point Calculus.

O

2.3 Domains and Division
2.3.1 Domains

Our account of invariants is not yet complete. The relationship between the specifica-
tion X and TermeBody*eInit is containment not equality, and may indeed be a proper
superset relation. Not every subset of the specification will do, however. An additional
requirement is that the input-output relation computed by the program is total on all
input values. Formally this is a requirement on the so-called “right domain” of the

2. Imperative Programming and Well-founded Relations 8

computed input-output relation. Right domains are also relevant if we are to relate our
account of invariants to the implementation of loops by a while statement. Recall that
Body is the body of the loop, and Term terminates the computation. The implemen-
tation of TermoBody* by a while statement demands that both of these relations are
partial and, more specifically, that their right domains are complementary.

The right domawn of a relation R is, informally, the set of input values that are
related by R to at least one output value. Formally, the right domain R> of a relation
R of type I+] is a coreflexive of type J«] satisfying the property that

V(A: ACid): RRA=R = R-CA)

Given a coreflexive A, A Cidj, the relation ReA can be viewed as the relation R re-
stricted to inputs in the set A. Thus, in words, the right domain of R is the least
coreflexive A that maintains R when R is restricted to inputs in the set A.

Note that the right domain should not be confused with the source of the relation. The
source expresses the set of input values of interest in the context of the application being
considered whereas the right domain is the set of input values over which the relation
is defined. In other words, we admit the possibility of partial relations. Formally, a
relation R of type I+] is total if R~ is idj, otherwise it is partial. Similarly the target
should not be confused with the left domain of a relation. A relation R of type I«] is
surjective if R< is id;.

Returning to loops, the requirement is that the right domain of Term is the comple-
ment of the right domain of Body. Letting b denote the right domain of Body and
~b its complement (thus bU~b =id and bNn~b = 1L) we thus have

Term = Termeo~b and Body=DBody-b .
As a consequence,
TermoBody” o Init = Termo~bo (Bodycb)* o Init .

The statement while b do Body is the implementation of ~bo(Bodycb)* in that the
latter is the least solution of the equation

X X = ~bUXeBodyeb
and executing this equation is equivalent to executing the program
X=if b then Body;X .

We continue this discussion in section 2.5.

2. Imperative Programming and Well-founded Relations 9

2.3.2 Division

The body of a loop should maintain the loop invariant. Formally, the requirement is that
BodyeInvC Inv. In general, for relations R of type I+-] and T of type [«+K there is
a relation R\T of type J«K satisfying the Galois connection, for all relations S,

RSCT=SCR\T .

The operator \ is called a division operator (because of the similarity of the above rule
to the rule of division in ordinary arithmetic). The relation R\T is called a restdual or
a factor of the relation T. Relation R\T holds between output value w’ and input
value w if and only if

V(v: v[Rw': v[T]w)

Applying this Galois connection, the requirement on Body is thus equivalent to
InvC Body\Inv

the pointwise formulation of which is
Viw' s w: w[Invjw: V(w”:w”[Body]w’": w"[Inv]w))

The relation Body\Inv corresponds to what is called the weakest prespecification of
Inv with respect to Body in the more usual predicate calculus formulations of the
methodology [HH86]. The weakest liberal precondition operator will be denoted here
by the symbol “\”. Formally, if R is a relation of type I+] and A is a coreflexive of
type I+I then R\A is a coreflexive of type J«]J characterised by the property that,
for all coreflexives B of type J«J,

(2) (ReB)-CA=BCR\A .

(If we interpret the coreflexive A as a predicate p on the type I, then R\A is the
predicate q such that

qgw=Vw w'[Rlw:p.w) .

It is the weakest condition g on input values w that guarantees that all output values
w’ that are R-related to w satisfy the predicate p.)

The operator \ plays a very significant role in what is to follow. For this reason
it is useful to have a full and intimate understanding of its algebraic properties. This,
however, is not the place to develop that understanding and we make do with a summary
of the most frequently used properties.

First note that the function (RY), being an upper adjoint, distributes over arbitrary
meets of coreflexives. Because meet on coreflexives coincides with composition it follows

2. Imperative Programming and Well-founded Relations 10

that R\ distributes over composition: R\(AoB) = (R\A)o(R\B). This corresponds to
the fact that weakest liberal precondition operator associated with a statement R is
universally conjunctive. From (2) we obtain the cancellation property:

(3) (ReR\B)<CB
Often this property is used in a slightly different form, namely:
(4) RoR\B C BoR

Both (3) and (4) express that program R produces a result from set B when started in
a state satisfying R\B. If R is a function then R\ A can be expressed without recourse
to the left-domain operator. Specifically, we have for function f:

(5) f\A = fuoAof .

A full discussion, including all the properties used here, can be found in [BW93].

2.4 Well-Foundedness Defined

Expressed in terms of points, a relation R is said to be well-founded if there are no
infinite chains %y, x1, ... such that x;;1[R]x; for all i, i>0. A relation R is thus not
well-founded if there is a set A such that

A# O AV {(x:xeA: I(y:yeA:y[R]x))

Noting that 3(y:y€A:y[R]x) = x € (AcR)> this definition converts directly into the fol-
lowing point-free form.

Definition 6 (Well-founded) Relation R is said to be well-founded if and only if
it satisfies

V(A: ACL AC 1L & AC(AR)) .

The connection between well-foundedness and fixed points is the following.
Theorem 7 Relation R is well-founded equivales
V(A:ACT(AeR)>) = 1L .

Proof For arbitrary monotonic function f we have:

2. Imperative Programming and Well-founded Relations 11

vf=_11
& { reflexivity of C, 1L is the least element }
V(X XC 1L & X Cvf)
& { fixed point induction }
V(X XC 1L & XCf.X)
The corollary follows by instantiating f to (A:A CI:(AcR)>).
O
Characteristic of definition 6 is that it is a rule for establishing when a set represented
by a coreflexive A, A CI, is empty. In the following theorem we replace sets by arbitrary

relations. This has the advantage that we can then immediately exploit the unique
extension property of a regular algebra.

Theorem 8 For arbitrary relation ReI«1I,
(V(X::XeR))> = v(A:ACIL(AeR)>)
Hence R is well-founded if and only if it satisfies
v(X:XeR) = LI .
(Here the dummy X ranges over all relations of type I+1.)

Proof We shall only sketch the proof since we have not discussed the algebraic properties
of the right domain operator in sufficient detail to give a completely formal proof. (For
such a proof see [DBvdW97].)

At first sight it would seem that a simple application of the fusion theorem would
suffice. This is not the case, however, because the right domain operator is a lower
adjoint in a Galois connection, not an upper adjoint as is required to apply fusion.

The key to the proof is to observe that v(X:XcR) is a so-called right condition.
That is,

v(X:: XeR) = TTov(X: XeR) .

(This is easily proved by a mutual inclusion argument.) This suggests the use of the
fusion theorem to prove that

L. v(p: p=TTop: peR) = v(X:: XoR)

where t denotes the function that embeds the set of right conditions of type 1«1 into the
set of relations of type I+I1. (Embedding functions between complete lattices are both
upper and lower adjoints so there is no difficulty in applying the fusion theorem.) The

2. Imperative Programming and Well-founded Relations 12

proof is now completed by using the fact that the two functions (p: p=TTep: p>) and
(A:ACLTToA) are inverse lattice isomorphisms between the lattice of right conditions
and the lattice of coreflexives of type I+I. (This is an application of the unity-of-
opposites theorem.) Thus, using the fusion theorem once again,

V(A (AR)-) = (v(p:peR))-
and

TTov(Axz(AcR)>) = v(p:peR) .
From this it follows that

(Vv(X::XeR))> = v(A:ACIL(AeR)>)
Now,

R is well-founded
{ definition }
V(A:ACT (AeR)>) = 1L
{ above }
(v(X: XeR))> = LL

{ domains }
V(X XeR) = 1L .

O

Corollary 9 Relation R is well-founded equivales
V(S,T:: T=SUTeR = T = SoR")

Proof A relation algebra is a regular algebra. So the unique extension property holds
with the product operator instantiated to relational composition and the addition oper-
ator instantiated to set union.

O

Having expressed well-foundedness in terms of fixed points it is now possible to apply
fixed-point calculus to deduce some of its properties. The following is elementary (even
without the use of fixed points!) but needs to be stated because of its frequent use.

Lemma 10 If relation R is well-founded and S CR then S is well-founded.
O

2. Imperative Programming and Well-founded Relations 13

Fixed point calculus gives an easy proof of the following more interesting theorem.
Theorem 11 For all R, that R is well-founded equivales that R* is well-founded.
Proof We prove the stronger theorem that

V(X:: XoR) =v(X:: XoR™) .

The inclusion v(X::XeR) Cv(X:: XeR*) is immediate from monotonicity of v and the
fact that RCR™. For the other inclusion, we calculate:

v(X:: XoRT) C v(X:: XcR)
& { fixed point induction }
v(X:: XoRT) C v(X:: XoRT)oR

{ Rt =RoR* }
v(X:: XoRT) C v(X:: XoRoR*)oR

{ rolling rule }
v(X:: XoRT) C v(X:: XoR*c R)
{ Rt =R*oR }

true .

O

This concludes this section. With dummies A and p ranging over coreflexives and
right conditions, respectively, and X, S and T over relations, we have established the
equivalence of the properties:

e R is well-founded.

e Vv(Au(AcR)>)=11.

o Vv(pupeR)y=_11.

e V(X:XoR)=_1l.

e R is well-founded.

e V(S5,T: T=SUTeR =T = SoR").

Exercise 12 We saw above that v(X:XcR) is a right condition. What is the inter-
pretation of this right condition as a set?

O

2. Imperative Programming and Well-founded Relations 14

Exercise 13 The standard technique for proving termination of a loop statement or
a recursive definition in a program is to use a bound function. That is, one defines a
function from the state space to a set on which a well-founded relation is defined. Most
commonly the set is the set of natural numbers, and one proves that the body of the
loop statement or recursive definition strictly reduces the value of the bound function.

Suppose the body of the loop statement is given by relation S, the bound function
is f and the well-founded relation is R. Then the technique amounts to proving that if
x[S]y then f.x[R]f.y. Thatis, S C fuoRef. In view of lemma 10, the validity of the
use of bound functions is justified by the following theorem: If R is a relation and f a
functional relation such that R is well-founded, then relation fuoRof is well-founded as
well.

Prove this theorem.

Hint: as in the proof of theorem 11 one can make a more general statement relating
v(X:: XeR) and v(X: XofuoRof).

O

Exercise 14 Show that if R s well-founded then RTNI C 1l . (So no non-empty
subset of a well-founded relation is reflexive.)

Under what conditions is the well-foundedness of R equivalent to R"NI1 C 1L ?
Prowvide examples where possible.

O

2.5 Totality of while statements

We are now in a position to complete our discussion of the construction of while state-
ments using loop invariants.

Recall that Body is the body of the loop, and Term terminates the computation.
The well-foundedness of Body guarantees that the execution of the while statement
will always terminate. It also guarantees that the implementation is total, provided that
Term and Body have complementary right domains, and the initialisation Init is total.
Specifically, we have:

(TermoBody* e Init)>=1

= { domain calculus }
((TermeBody*)>oInit)>=1

& { by assumption, Init is total, i.e. Init>==1 }
(TermeBody*)>=1

2. Imperative Programming and Well-founded Relations 15

{ (TermoBody*)> is the unique solution of the equation
A: A =Term-U(A-Body)> }
[= Term>U(I-Body)-

{ by assumption,
Term and Body have complementary right domains.
In particular, I = Term-UBody> }

true .
The penultimate step needs further justification. The claim is that the equation
Az A =Term>-U (AoBody)>

has a unique solution provided that Body is well-founded. This is easily derived from
(9). Indeed, for all coreflexives A,

A = Term->U (A -Body)>

{ domain calculus.
Specifically, (TTcA)>=A and TToR= Tl oR> }
TTeA = Tlelerm U TToAcBody
{ Body is well-founded, (9) }
TTeA = TT o TermoBody*

{ domain calculus (as above) }

A =(TermoBody*)> .

That is, (TermeoBody*)> is the unique solution of the above equation in A.

2.6 Induction Principles

Dual to the notion of well-foundedness is the notion of admitting induction. This section
formulates the latter notion in terms of fixed points and then shows that well-foundedness
and admitting induction are equivalent.

A relation R is said to admat induction if the following schema can be used to estab-
lish that property P holds everywhere: prove, for all y, that the induction hypothesis
V(x:x[R]y: P.x) implies P.y . That is, expressed in terms of points, R admits induction
iff

V(y:Py) &V{y: V{x:x[R]y: P.x) = Py) .

2. Imperative Programming and Well-founded Relations 16

The subterm

V{x:x[R]y: P.x)
in this formula is called the induction hypothesis while the proof of the subterm

V(y: V(x:x[R]y: P.x) = P.y)
the induction step. For instance, replacing R by the less-than relation (<) on natural
numbers and the dummies x and y by m and n, the less-than relation admits induction
iff

V(n:Pn)<Vn: v(im:m<n:P.m)=Pn) .

This is indeed the case since the above is the statement of the principle of strong math-
ematical induction. The induction hypothesis is V(m: m <n:P.m); the induction step is
the proof that assuming the truth of the induction hypothesis one can prove P.n. That
the less-than relation admits induction means that from the proof of the induction step
one can infer that P.n holds for all n.

Less directly but nevertheless straightforwardly, replacing R by the predecessor re-
lation on natural numbers, i.e. x[R]y =y=x+1, and simplifying using the fact that no
number is a predecessor of 0, one obtains the principle of simple mathematical induction:
with n ranging over the natural numbers,

V(n:Pn) & POAV(n: Pn=P.(n+1)) .

Thus the predecessor relation on natural numbers admits induction. Note that in this
case the proof of P.0 is called the basis of the proof by induction and the proof of
Pn=P.(n+1), for all n, the induction step.

The pointwise definition of “admits induction” given above is in terms of predicates.
Because we want to arrive at a definition in terms of relations we first reformulate it in
terms of sets. So we define: relation R admits induction if and only if:

(15) V(y:zyeA) &V(y: Vx:x[Rly:xeA) = ycA) .

To arrive at a definition without dummies we first notice that V(y:yecA), the (under-
stood) domain of y being I, can be rewritten as IC A . Furthermore, we see that the
expression in the domain of the antecedent, V(x:x[R]y:x€A), is just y€R\A. So (15)
can be drastically simplified to

(16) TCA &R\ACA ,

for all coreflexives A of type I+1I.

According to the terminology introduced above, R\ A is the induction hypothesis,
whilst a proof of R\A C A is the induction step.

This then is the definition of “admits induction”.

2. Imperative Programming and Well-founded Relations 17

Definition 17 The relation R is said to admat induction if and only if it satisfies
V(A: ACLL ICA < R\ACA)
Equivalently, R is said to admit induction if and only if

w(AtACLRVA) =TT .

Just as for well-foundedness, we propose a definition in which the type difference
between the variables is removed.

Theorem 18 That relation R admits induction equivales p(X:R\X) =TT .

O
We omit the proof as it is essentially dual to the proof of theorem 8.

Exercise 19 Definition 17 draws attention to the coreflexive n(R)): if relation R
admits induction then the set corresponding to p(RY) is the universe over which relation
R is defined. By restricting the domain of any relation R it is always possible to obtain
a relation that admits induction. Specifically, for any relation R, the relation Ropu(RY)
admits induction. Prove this theorem.

O

2.7 Admits-induction Implies Well-Founded

Now that we have seen several equivalent definitions of well-founded it is time to explore
its relationship to admitting induction. The following lemma is the key insight.

Lemma 20 v(T:ToR)opu(T=R\T) = 1L .

Proof The form of the theorem suggests that we try to apply w-fusion. Of course we
then have to find a suitable function f such that uf=_11 . The identity function is one
possibility and, as it turns out, is a good choice. However, since we want to demonstrate
how good use of the calculational technique can avoid the need to make guesses of this
nature, we construct f. We have, for all X,

Xow(TuzR\T) = 1L
{ introduce f such that 1L =puf }
Xow(T=R\T) C pf

3. Hylo Equations 18

& { basic fusion theorem }
V(T XoR\T C Xof.T)
{ choose for f, f.T=T, noting that indeed 1l =u(T:T).

factor cancellation: specifically, R.-R\T C T }

X C XoR
& { definition of v(T:TeR) }
X=v(T:TeR)

O
Theorem 21 If R admits induction then R is well-founded.

Proof If R admits induction then, by definition, w(T::R\T)=TT . So, by lemma 20,
V(T:TeR)o TT = LI . But then, since ICTT, v(T:TeR)C 1l . By theorem 8 we have
thus established that R is well-founded.

O

Exercise 22 One might suppose that an argument dual to the above leads to a proof
that well-foundedness implies admits-induction. Unfortunately this is not the case: a
true inverse, viz. complementation, is needed to do that. To prove the theorem using
the techniques developed here it suffices to know that R\S=—(R”>—S). (We haven’t
given enough information about relation algebra for you to verify this fact within the
algebra. A pointwise verification can, of course, be given instead.) This fact can then be
used to construct a function f such that v(T:TeR) = f.u(T::R\T). p-fusion should be
used bearing in mind the Galois connection —RCS = R2O—S and being particularly
careful about the reversal of the ordering relation. Having constructed f it is then
straightforward to establish the equivalence between the two notions.

Prove that well-foundedness admits induction along the lines outlined above.
In general, the right condition v(T:TeR) can be interpreted as the set of all points
from which an infinite R-chain begins.

What is the interpretation of w(T:=R\T)?

O

3 Hylo Equations

In this section we introduce a methodology for the design of recursive programs. The
methodology is based on constraining the recursion to a particular form of fixed point

3. Hylo Equations 19

equation, called a “hylo” equation, rather than allowing arbitrary recursion (which has
been called the goto of functional programming). The methodology generalises the
methodology for designing while statements by introducing a datatype as an additional
parameter in the design process. (In the case of while statements the datatype is just
the set of natural numbers, in the case of a divide-and-conquer algorithm the datatype
is a tree structure.)

A hylo equation comprises three elements, a “relator” F (which is a function from
relations to relations), and two relations, one of which is an “F-algebra” and the other
is an “F-coalgebra”. The complete definition is given in section 3.1. Section 3.2 gives a
number of examples of programs that take the form of a hylo equation. It is shown that
programs defined by structural or primitive recursion are instances of hylo programs as
well as several standard sorting algorithms and other programs based on a divide-and-
conquer strategy. The goal in this section is, of course, to demonstrate that restricting the
design methodology to hylo programs still allows sufficient room for creativity. Sections
3.3 and 3.4 introduce an important fixed-point theorem which formally relates hylo
equations with the use of an intermediate or “virtual” data structure. Understanding this
theorem is crucial to understanding the methodology of designing hylo programs. The
final section, section 3.5 is about generalising notions of well-foundedness and inductivity
to take into account the intermediate data structure implicit in any hylo program.

3.1 Relators and Hylos

A hylo equation comprises three elements, a so-called “relator” and two relations. The
notion of relator plays the same role in relation algebra as the notion of “functor” in the
category of functions and sets.

Functors are relevant to functional programming because they correspond to type
constructors. The canonical example is List, which is an endofunctor on the category
Fun. The object part of the functor List is the mapping from types (sets) to types.
(For example List.N, lists of natural numbers, is the result of applying List to IN.) The
arrow part of the functor List is the function known as map to functional programmers.
If fel—] then map.f € List.I+List.] is the function that applies function f to each
element in a list of |s to create a list of Is of the same length. It is a general fact that
parameterised datatypes (of which List is an example) define functors. The object part of
the functor is the mapping from types to types and the arrow part is the “map” operation
that applies a given function to every value stored in an instance of the datatype.

Rather than constrain ourselves to the design of functional programs, we consider pro-
grams involving relations as well. (The reasons are obvious: doing so means that we may
allow non-determinism in our programs and do not have to make an arbitrary distinction
between specifications —which typically involve an element of non-determinism— and

3. Hylo Equations 20

implementations. Also, as the theory below shows, there is no good reason for not ex-
tending the discussion to include relations.) But the categorical notion of functor is too
weak to describe type constructors in the context of a relational theory of datatypes. The
notion of an “allegory” [Fv90| extends the notion of a category in order to better cap-
ture the essential properties of relations, and the notion of a “relator” [BBM * 91, BW93]
extends the notion of a functor in order to better capture the relational properties of
datatype constructors.

Formally an allegory is a category such that, for each pair of objects A and B,
the class of arrows of type A«+B forms an ordered set. In addition there is a converse
operation on arrows and a meet (intersection) operation on pairs of arrows of the same
type. These are the minimum requirements in order to be able to state the algebraic
properties of the converse operation. For practical purposes more is needed. A locally-
complete, tabulated, unitary, division allegory is an allegory such that, for each pair
of objects A and B, the partial ordering on the set of arrows of type A«+B is complete
(“locally-complete”), the division operators introduced in section 2.3.2 are well-defined
(“division allegory”), the allegory has a unit (which is a relational extension of the
categorical notion of a unit — “unitary”) and, finally, the allegory is “tabulated”. We
won’t go into the details of what it means to be “tabulated” but, basically, it means that
every arrow in the allegory can be represented by a pair of arrows in the underlying map
category (i.e. by a pair of functions) and captures the fact that relations are subsets of
the cartesian product of a pair of sets. (Tabularity is vital because it provides the link
between categorical properties and their extensions to relations.)

A suitable extension to the notion of functor is the notion of a “relator”. A relator
is a functor whose source and target are both allegories —remember that an allegory is
a category— that is monotonic with respect to the subset ordering on relations of the
same type and commutes with converse. Thus, a relator F is a function to the objects of
an allegory C from the objects of an allegory D together with a mapping to the arrows
(relations) of C from the arrows of D satisfying the following properties:

(23) FReFI ~— F.J whenever Rel~— J.

(24) FRoFES =F.(RsS) for each R and S of composable type,
(25) Fidy =idpa for each object A,

(26) FRCFES & RCS foreach R and S of the same type,
(27) (FR)v = F.(Rv) for each R.

Two examples of relators are List and product. List is a unary relator, and product is
a binary relator. If R is a relation of type I+] then List.R relates a list of Is to a

3. Hylo Equations 21

list of Js whenever the two lists have the same length and corresponding elements are
related by R. The relation RxS relates two pairs if the first components are related by
R and the second components are related by S. List is an example of an inductively-
defined datatype; in [BBH ™ 92] it was observed that all inductively-defined datatypes
are relators.

Now that we have the definition of a relator we may also give the definition of a hylo
equation.

Definition 28 (Hylos) Let R and S be relations and F a relator. An equation of
the form

(29) X: X =RoFEXoS

is said to be a hylo equation or hylo program.
O

The identification of the importance of hylo equations is due to Meijer. (See e.g.
[MFP91].)

Note that, on typing grounds, if the unknown X in equation (29) is to have type
A«B then R must have type A« F.A. We say that R is an F-algebra with carrier
A . Also S must have type F.B+ B (equivalently Su must be an F-algebra with carrier
B). It is convenient to use the term coalgebra for a relation of type F.B« B for some
B. So a coalgebra with carrier B is the converse of an algebra with carrier B.

3.2 Hylo Programs

In this section we show how frequently recursive programs can be rewritten in the form
of hylo equations. We consider a variety of classes of recursion: structural recursion,
primitive recursion, divide-and-conquer, and so on. In order to show that each of these
classes is subsumed by the class of hylo equations some additional notation is introduced
as and when necessary. It is not necessay to understand the notation in detail in order
to be able to appreciate the examples, and the notation will not be used elsewhere.

Structural recursion The heart of functional programming is the declaration and use
of datatypes. This is facilitated by the special purpose syntax that is used. A definition
like that of the natural numbers in Haskell:

datatype Nat = Zero | Succ Nat

introduces two datatype constructors Zero and Succ of types Nat and Nat -> Nat, re-
spectively. It also facilitates the definition of functions on natural numbers by pattern
matching as in the definition of the function even:

3. Hylo Equations 22

even Zero = True
even (Succ n) = not (even n)

Category theory enables one to gain a proper understanding of such definitions and to
lift the level of discussion from particular instances of datatypes to the general case, thus
improving the effectiveness of program construction.

Category theory encourages us to focus on function composition rather than function
application and to combine the two equations above into one equation, namely:

(30) eveno(zerovsucc) = (truevnot)o (L+-even) .

In this form various important elements are more readily recognised. First, the two
datatype constructors Zero and Succ have been combined into one algebra zerovsucc.
Similarly, True and not have been combined into the algebra truevnot. The general
mechanism being used here is the disjoint sum type constructor (+) and the case opera-
tor (v). Specifically, given types A and B, their disjoint sum A+B comprises elements
of A together with elements of B but tagged to say in which component of the disjoint
sum they belong. Application of the function fvg to a value of type A+B involves
inspecting the tag to see whether the value is in the left component of the sum or in
the right. In the former case the function f is applied (after stripping off the tag); in
the latter case the function g is applied. Thus for fvg to be correctly typed, f and g
must have the same target type. Then, if f has type A«B and g has type A«C, the
type of fvg is A« B+C.

Another important element of (30) is the unit type 1 and the term L-+even. The
unit type is a type with exactly one element. The term IL-+even is read as the functor
1+ applied to the function even. As explained earlier, if f has type A«B the function
1+f has type 1+A « 1+B. It is the function that inspects the tag on a value of type
1+B to see if it belongs to the left component, 1, or the right component, B. In the
former case the value is left unaltered (complete with tag), and in the latter case the
function f is applied to the untagged value, and then the tag is replaced. The functor
1+ is called the pattern functor of the datatype N (Nat in Haskell-speak) [BJIM99].

The final aspect of (30) that is crucial is that it uniquely defines the function even.
(To be precise, the equation

X:: Xo(zerovsucc) = (truevnot)o (1+X)

has a unique solution.) This is the concept of nitiality in category theory. Specifically,
zerovsucc is an snitzal (1+)-algebra which means that for all (14)-algebras f the
equation

X:: Xo(zerovsucc) = fo (1+X)

3. Hylo Equations 23

has exactly one solution.

In summary, category theory identifies three vital ingredients in the definition (30)
of the function even, namely, the functor 1+, the initial (1+)-algebra zerovsucc and
the (14)-algebra truevnot.

The general form exemplified by (30) is

(31) Xoin = foF.X

where F is a functor, in is an initial F-algebra and f is an F-algebra. This general form
embodies the use of structural recursion in modern functional programming languages
like Haskell. The left side embodies pattern matching since, typically, in embodies a
case analysis as exemplified by zerovsucc. The right side exhibits recursion over the
structure of the datatype, which is represented by the “pattern” functor F.

Here is the formal definition of an initial algebra. The definition is standard —an
initial object in the category of F-algebras— but we give it nonetheless in order to
introduce some terminology.

Definition 32 Suppose F is an endofunctor on some category C. An arrow f in
C is an F-algebra if f € A+ F.A for some A, the so-called carrier of the algebra. If
f and g are both F-algebras with carriers A and B then arrow @ € A+ B is said to
be an F-algebra homomorphism to f from g if @of = goF.@. The category FAlg
has objects all F-algebras and arrows all F-algebra homomorphisms. Composition and
identity arrows are inherited from the base category C. The arrow in € I+ F.I is an
wnitial F-algebra if for each f € A« F.A there exists an arrow (f])€ A« 1 such that
for all he A«1,

(33) h=(f) = hef<Ein .

So, (f]) is the unique homomorphism to algebra f from algebra in. We call (f]) the
catamorphism of f.

O

The “banana bracket” notation for catamorphisms (as it is affectionately known) was
introduced by Malcolm [Mal90a, Mal90b]. Malcolm was also the first to express the
unicity property using an equivalence in this way. It is a mathematically trivial device
but it helps enormously in reasoning about catamorphisms. Note that the functor F is
also a parameter of (f]) but the notation does not make this explicit. This is because
the functor F is usually fixed in the context of the discussion. Where disambiguation
is necessary, the notation (F;f]) is sometimes used. The initial algebra is also a param-
eter that is not made explicit; this is less of a problem because initial F-algebras are
isomorphic and thus catamorphisms are defined “up to isomorphism”.

3. Hylo Equations 24

An important property of initial algebras, commonly referred to as Lambek’s lemma
[Lam68], is that an initial algebra is both injective and surjective. Thus, for example,
zerovsucc is an isomorphism between N and 1+N. Lambek’s lemma has the conse-
quence that, if in is an initial F-algebra,

hef <% in = h = foFhoino
where inv is the inverse of in. Thus, the characterising property (33) of catamorphisms
is equivalent to, for all h and all F-algebras f,

(34) h=(f) = h=foFhoinu .

That is, (f]) is the unique fixed point of the function mapping h to foF.hoinu. Equiv-
alently, (f]) is the unique solution of the hylo equation:

h: h=foFhoinu .

In the context of functions on lists the catamorphism (f]) is known to functional program-
mers as a fold operation. Specifically, for lists of type I the relevant pattern functor F
is the functor mapping X to 1+(IxX) (where x denotes the cartesian product functor)
and an F-algebra is a function of type A« 1+(IxA) for some A. Thus an F-algebra
takes the form cv (@) for some function ¢ of type A« 1 and some function @ of type
A «—IxA. The characterising property of the catamorphisms is thus

h=(cv(®)) = h=(cv(®))e (L4 (Ixh))e(niluvconsu) .

Here niluvconsu is the inverse of nilvcons. (In general, RvS is the converse conjugate
of RvS. That is, (RvS)u = RuvSu.) It can be read as the pattern matching operator:
look to see whether the argument is an empty list or a non-empty list. In the former
case nilv returns an element of the unit type, tagging it so that the result of the test is
passed on to later stages; in the latter case consv splits the list into a head and a tail, the
resulting pair also being tagged for later identification. Using the algebraic properties of
case analysis, the characterising property is equivalent to

h = (cv(®)) = henil=c A hocons = (®)(Ixh)

the right side of which is a point-free free formulation of the definition of a fold with
seed the constant ¢ and binary operator (4). As a concrete example, the function sum
that sums the elements of a list is

(zero v add))
where add is the addition function. In Haskell this function would be written

fold 0 add .

3. Hylo Equations 25

Although catamorphisms (folds) are best known in the context of functional program-
ming many relations are also catamorphisms. For example, the prefix relation on lists is
uniquely characterised by the two equations

nil [prefix]nil
and xs[prefix](y : ys) = xs=nil\V3I(zs:: xs=y:zs /A zs[prefix]ys) .
Expressed as one, point-free equation this is
(35) prefix o (nilvcons) = (nilv ((niloTT)Ucons)) o (1+(Ix prefix))

where I denotes the type of the list elements. Here we recognise a relator and two alge-
bras: in this case the relator is (1+(Ix)) and the two (1+(Ix))-algebras are nilvcons
and nil v ((nileTT) Ucons) . (Note that the second algebra is not a function.) Equivalently,
prefix is the unique solution of a hylo equation:

(36) prefix = (nilv ((niloeTT)Ucons)) o (1+(Ixprefix)) o (nilovconsv) .

Primitive recursion Structural recursion is useful since many programs that arise in
practice have this kind of recursion. However, just as structural induction is not enough
to prove all facts that can be proved by induction, structural recursion is not enough to
define all programs that can be defined by recursion. As an example of a program that
is not structurally recursive, consider the factorial function, the function defined by the
two equations

factozero = one and factosucc = timeso (factasucc)

where one is the constant function returning the number 1 and times is the multiplica-
tion function. These equations can be combined into the single equation

(37) fact = (onew (timeso (succxN)))o (1L + (Nafact)) o (zerou vsuccv)

Reading from the right, the factorial function first examines its argument to determine
whether it is zero or the successor of another number; in the former case a tagged element
of the unit type is returned, and in the latter case the predecessor of the input value
is returned, suitably tagged. Subsequently, if the input value is n+1, the function
Nafact constructs a pair consisting of the number n and the result of the factorial
function applied to n. (As forewarned, N is used here to denote the identity function
on natural numbers.) The calculation of (n+1) x n! is the result of applying the function
timeso (succxN) to the (untagged) pair. On the other hand, if the input value is zero
then one is returned as result.

To give an example of a relation defined by primitive recursion we need look no
further than the suffix relation on lists. It satisfies

3. Hylo Equations 26

nil [suffix] nil
and xs[suffix](y:ys) = xs=y:ys V xs[suffix]ys .
Expressed as a fixed point equation this is:
suffix = (nil v ((conscexl) U (exroexr)))o (14 (I x (List.I 2 suffix))) o (niluvconsv)

where [is the type of the list elements and ex| and exr project a pair onto its left and
right components, respectively. This is a definition by primitive recursion.

When we abstract from the particular functor and initial algebra in factorial program
(37) a general recursion scheme is obtained.

(38) X = X = ReF(IxX)oF.(I2I)oinu

In the case of the factorial function R is onewv (timesosuccxid), F is (1+), I is the
(identity on) natural numbers and in is zerovsucc. (Note that (WxX)o(I2I) = WaX
for all W and X with source I. Hence F.(IxX)oF.(I2aI) = F.(I2X). We have applied
this so-called x -4 -fusion law in order to make the term F.(I2I) explicit.) A definition
of this form is called primitive recursive.

This generic formulation of primitive recursion was introduced (for functions) by
Meertens [Mee92]. He called such an equation a para equation and a solution to the
equation a paramorphism.

Divide and Conquer As the name suggests, “primitive” recursion is also unsuitable
as the basis for a practical methodology of recursive program construction. Divide-and-
conquer is a well-known technique that is not easily expressed using primitive recursion.

An example of a divide-and-conquer program is the sorting algorithm known as
“quicksort” . Quicksort, here abbreviated to gs, is uniquely defined by the hylo equation:

(39) gs = (nilv(joino (Ixcons)))o (1+(gsx(Ixqgs)))e (nilovdnf)

To see that this is the quicksort program one has to interpret dnf as the well-known
“Dutch national flag” relation: the relation that splits a non-empty list into a tuple
(xs,(x,ys)) formed by a list, an element and a list such that all elements in the list xs
are at most x and all elements in ys are greater than x. The results of the recursive calls
are assembled to the output list by the operation joine(Ixcons), where join produces
the concatenation of two lists.

A typical divide and conquer program is of the form

(40) X = (Rvconquer) o (I4+(XxX)) o (I+divide) o (AvB)

3. Hylo Equations 27

Interpreting this program should not be difficult. A test is made to determine whether
the input is a base case (if the input satisfies A), the output then being computed by
R. If the input is not a base case (if the input satisfies B) the input is split into two
smaller “subproblems” by divide. Then the smaller problems are solved recursively and
finally the two solutions of the subproblems are assembled into an output by conquer.

Of course there are more divide and conquer schemes. For example, the original
problem can be split into more than two subproblems. It is also possible that the divide
step produces, besides a number of subproblems, a value that is not “passed into the
recursion”; then the middle relation of (40) has a form like Ix(XxX). Quicksort is an
example of such a divide and conquer algorithm.

Repetition is an elementary and familiar example of divide and conquer in which the
original problem is reduced to a single subproblem. A repetition is a solution of the
equation in x:

(41) x = if =b —skip | b — s fi
Using the fact that skip (do nothing) corresponds to the identity function, I, on the
state space and writing B for the coreflexive corresponding to predicate b and S for

the relation corresponding to the statement s, we may express (41) using disjoint sum
as:

(42) X = (IvI)o(I4+X)o(~B(SeB))

Here we see how while statements are expressed in terms of hylo equations, the relator
being (1+).

Parameterised recursion Often recursive programs conform to one of the schemes
discussed above but this is obscured by the presence of an additional parameter. Ele-
mentary examples are the definitions of addition, multiplication and exponentiation on
natural numbers, which are essentially, but not quite, definitions by structural recur-
sion:

0O+n=n and (M+1)4n = (m+4n)+1 ,
Oxn =0 and (M+T)xn = mxn+n ,
n® =1 and n™' = n"xn .
All these definitions have the form
X.(0,n) = fn and X.(m+1,n) = g.(m, h.n)

where X is the function being defined and f, g and h are known functions. (We leave
the reader to supply the instantiations for f, g and h.) In point-free form, we have yet
again a hylo equation:

3. Hylo Equations 28

X = ko ((I+X) x N)o(passaexr)o((zerouvsuccu) x N)
where k = ((foexr)v(ge(idxh)))eodistr .

Here distr is a function of type (HxK)+ (JxK)« (H+]J) x K that is polymorphic in H,
] and K, and pass is a function of type 1+ (IxK)+« (L +1) x K that is polymorphic in
I and K.

Despite the seeming complexity of the underlying algebra and coalgebra, the basic
structure is thus a hylo equation.

Another example, with the same structure but defined on a datatype other than
the natural numbers, is the program that appends two lists. The standard definition
comprises the two equations

nil +ys = ys and (x:xs) H ys = x: (xs # ys) .
As a single equation (where we write join instead of +):
join = posto ((L+ (I x join)) x List.I) o (pass 2 exr) o ((nilvvconsv) x List.I) .

where post = (exrvcons)odistr. Here distr is as before whereas in this case pass is a
function of type 1+ (Ix(JxK))+ (14 (Ix])) x K that is polymorphic in I, J and K.
Once again we recognise a hylo equation.

3.3 Intermediate data structures

At the beginning of section 3.2 we discussed the use of recursion on the structure of a
datatype; if R is an F-algebra with carrier A then the catamorphism (R]) can be seen
as a program that destructs an element of an initial F-algebra in order to compute a
value of type A. The converse (R)v is thus a program that constructs an element of
the initial algebra from a value of type A.

Now suppose R and Sv are both F-algebras with carriers A and B, respectively.
Then the composition (R])o(Sv])v has type A«B. It computes a value of type A from
a value of type B by first building up an intermediate value which is an element of an
initial F-algebra and then breaking the element down. The remarkable theorem is that

(R]) e (Sv]v is the least solution of the hylo equation (29).

This theorem (which we formulate precisely below) gives much insight into the design
of hylo programs. It says that executing a hylo program is equivalent to constructing
an intermediate data structure, the form of which is specified by the relator F, and
then breaking this structure down. The two phases are called the anamorphism phase
and the catamorphism phase. Executing a hylo equation for a specific input value by

3. Hylo Equations 29

unfolding the recursion hides this process; it is as if the intermediate data structure is
broken down as it is being built up. (A good comparison is with a Unix pipe in which the
values in the pipe are consumed as soon as they are produced.) Execution of (R])o(Sv])v
does make the process explicit. For this reason, the relator F is said to specify a virtual
data structure [SAM93].

Two simple examples of virtual data structures are provided by do-statements and
the factorial function. In the case of do-statements (see (42)) the virtual datatype is
the carrier set of an initial (I+)-algebra, a type which is isomorphic to IxIN —thus an
element of the virtual datatype can be seen as a pair consisting of an element of the state
space and a natural number, the latter being a “virtual” count of the number of times
the loop body is executed. In the case of the factorial function, definition (37) can be
rewritten so as to make the relator F explicit:

fact = (onev (timeseo (succxIN))) o (1+(INxfact)) o (zerouv ((IN2N)osuccu)) .

The “virtual” datatype is thus the type of lists of natural numbers, the carrier set of an
initial 1+ (INx)-algebra. The list that is constructed for a given input n is the list of
natural numbers from n — 1 down to O and the hylo theorem states that the factorial
of n can be calculated by constructing this list (the anamorphism phase) and then
multiplying the numbers together after adding 1 (the catamorphism phase).

Language recognition also illustrates the process well. Let us explain the process first
with a concrete example following which we will sketch the generic process. Consider
the following grammar:

S == aSblc

where, for our purposes, a, b and c denote some arbitrary sets of words over some
fixed alphabet. Associated with this grammar is a data structure: the class of parse
trees for strings in the language generated by the grammar. This data structure, Stree,
satisfies the equation:

Stree = (axStreexb)+c .

It is an initial F-algebra where F maps X to (axXxb)+c. Now the process of unpars-

1ng a parse tree is very easy to describe since it is defined by induction on the structure of

parse trees. Indeed the unparse function is the F-catamorphism ((concat3e (axidxb))vc])
where concat3 concatenates three strings together, a, b and c are the identity func-

tions on the sets a, b and c, and id is the identity function on all words. Moreover,

its left domain is equal to the language generated by the grammar. Since in general the

left domain of function f is fofu the language generated satisfies

S = ([(concat3o(axidxb))vc] o ((concat3o (axidxb))vc)v .

3. Hylo Equations 30

This equation defines a (nondeterministic) program to recognise strings in the language.
The program is a partial identity on words. Words are recognised by first building a parse
tree and then unparsing the tree. By the hylo theorem (or directly from the definition
of S) we also have the hylo program

S = ((concat3e(axidxb))vce)e ((axSxb)+c) e (((axidxb)oconcatdv)vc) .

This is a program that works by (nondeterministically) choosing to split the input word
into three segments (using concat3v) or to check whether the word is in the language c.
In the former case the first segment is checked for membership in a, the third segment is
checked for membership in b and the program is called recursively to check the middle
segment. Subsequently the three segments are recombined into one. In the latter case
the word is left unchanged.

The derivation of a language recogniser in this way can be generalised to an arbi-
trary context-free grammar. (This is only possible because we base our methodology
on relation algebra. The non-determinism present in a typical context-free grammar
prohibits the generalisation we are about to make in the context of functional program-
ming.) A context-free grammar defines a type of parse trees in a fairly obvious way.
Also an unparse function can always be defined mapping parse trees to strings. This
function is a catamorphism. The language generated by the grammar is the left domain
of the unparse function, which is unparseounparsev. This in turn is the composition of
a catamorphism and the converse of a catamorphism, which can be expressed as a hylo
program using the hylo theorem.

In practice the process is complicated by the fact that all practical context-free gram-
mars have more than one nonterminal, and nonterminals are linked together via mutual
recursion. But the theory we have developed covers this case too. Mutual recursion is
modelled by endorelators on a product category.

3.4 The Hylo Theorem

We summarise the previous section with a formal statement of the hylo theorem. The
theorem is rather deeper than just the statement that the least solution of a hylo equation
is the composition of a catamorphism and an anamorphism. The proof of the theorem
has been given in detail elsewhere [BH99]".

! Actually [BH99] contains a proof of the dual theorem concerning final coalgebras and is more general
than the theorem stated here. Unlike in a category, dualising between initiality and finality is not always
straightforward in an allegory because of the lack of duality between intersection and union. However,
dualising from a finality property to an initiality property is usually straightforward and it is the other
direction that is difficult. That is one reason why [BH99] chose to present the theorem in terms of coalgebras
rather than algebras. The extra generality offered by the theorem in [BH99] encompasses the relational

3. Hylo Equations 31

Recall that we defined the notion of an initial algebra in the context of a category.
(See (32).) To all intents and purposes this amounts to defining the notion of an initial
algebra in the context of functions between sets. What we need however is the notion of
an initial algebra in the context of binary relations on sets, that is, in the context of an
allegory. Definition 43 is such a definition. The hylo theorem states that the categorical
notion of an initial algebra coincides with the allegorical notion if the allegory is locally
complete and tabular.

Definition 43 Assume that F is an endorelator. Then (I,in) is a relational initial
F-algebra iff in € I+ FI is an F-algebra and there is a mapping (_) defined on all
F-algebras such that

(44) (R)eA«1 ifReA«FA ,
(45) (in) =id; , and
(46) (R)Do(S)v = n(X:: RoF.XoSuv)

That is, (R]) < (S)v is the smallest solution of the equation X:: ReF.XoSu C X.
O

In order to state the hylo theorem we let Map(.A) denote the sub-category of func-
tions in the allegory A. For clarity we distinguish between the endorelator F and the
corresponding endofunctor defined on Map(A).

Theorem 47 (Hylo Theorem) Suppose F is an endorelator on a locally-complete,
tabular allegory A. Let F’ denote the endofunctor obtained by restricting F to the
objects and arrows of Map(.A). Then in is an initial F’'-algebra if and only it is a
relational initial F-algebra.

O

3.5 Reducing problem size

There are two elements in the design of the body of a while statements: it should
maintain an invariant relation established by the initialisation procedure, and it should
make progress to the termination condition. The latter is guaranteed if the loop body is
a well-founded relation on the state space. There are also two elements in the design of
hylo equations. The intermediate data structure plays the role of the invariant relation,
whilst making progress is achieved by ensuring that each recursive call is “smaller” than

properties of disjoint sum and cartesian product but at the expense of requiring a more sophisticated
understanding of allegory theory which we wanted to avoid in the current presentation.

3. Hylo Equations 32

the original argument. In this section we formalise this requirement. The notion we
introduce, “F-reductivity” due to Henk Doornbos [Doo96], generalises the notion of
admitting induction essentially by making the intermediate data structure a parameter.
As we shall indicate in section 3.6 this has important ramifications for developing a
calculus of program termination.

Informally, for hylo program X = SoF.XoR we require that all values stored in an
output F-structure of R have to be smaller than the corresponding input to R. More
formally, with x[mem]y standing for “x is a member of F-structure y” (or, x is a
value stored in F-structure y”), we demand that for all x and z

V(y: x[mem]Jy Ay[R]z = x<z)

for some well-founded ordering <. If this is the case we say that R is F-reductive.

To make the definition of reductivity completely precise we actually want to avoid the
concept of “values stored in an F-structure”. (This is because its incorporation into the
definition of F-reductivity limits the practicality of the resulting theory.) Fortunately,
Hoogendijk and De Moor [HAMO00, Hoo97] have shown how to characterise membership
of a so-called “container” type in such a way that it can be extended to other types
where the intuitive notion of “membership” is not so readily apparent.

Hoogendijk and De Moor’s characterisation of the membership relation of a relator
is the following:

Definition 48 (Membership) Relation mem € I+ F.I is a membership relation of
relator F if and only if it satisfies, for all coreflexives A, ACI:

F.A = mem\A .
O

When this definition is expressed pointwise it reads:
x € FA = V(i ifmem]x: i€A) .

Informally: an F-structure satisfies the property F.A iff all the values stored in the
structure satisfy property A . For example, for the list relator mem holds between a
point and a list precisely when the point is in the list. For product the relation holds
between x and (x,y) and also between y and (x,y).

This definition of membership leads to a definition of F-reductivity independent of
the notion of values stored in an F-structure. To see this we observe that, for coalgebra
R with carrier I and for coreflexive A below I, we have:

3. Hylo Equations 33

(mem o R)\A

= { factors (2) }
R\ (mem\A)

= { definition 48 }
R\FA .

Now, that S €I+ admits induction is the condition that the least prefix point of the
function (A: S\A) is I, and our informal notion of the reductivity of R € F.I«+1I is that
mem o R should be well-founded. Since being well-founded is equivalent to admitting
induction, the latter is equivalent to the requirement that the least prefix point of the
function (A: R\ F.A) is I, which does not involve any appeal to notions of membership
of a “container” type. This gives us a precise, generic definition of the notion of F-
reductivity:

Definition 49 (F-reductivity) Relation R € F.I+1 is said to be F-reductive if and
only if it enjoys the property:

(50) R((R\)eF) =1

O

Obviously F-reductivity generalises the notion of admitting induction. (A relation R
admits induction if and only if it is Id-reductive, where Id denotes the identity relator.)
An immediate question is whether there is a similar generalisation of the notion of
well-foundedness and a corresponding theorem that F-well-foundedness is equivalent to
F-reductivity. As it turns out, there is indeed a generic notion of well-foundedness but
this is strictly weaker than F-reductivity. The definition is given below, the facts just
stated are left as exercises in the use of fixed point calculus.

Well-foundedness of relation R is equivalent to the equation X: X=X-R having a
unique solution (which is obviously Ll , the empty relation). This is easily generalised
to the property that, for all relations S, the equation X:: X=SoXcR has a unique solu-
tion. The generic notion of well-foundedness focusses on this unicity of the solution of
equations.

Definition 51 (F-well-founded) Relation R € FI«+1I is F-well-founded iff, for all
relations S € J«FJ and Xe J«I,

X =SoFXoR = X=pu(Y:SoFYoR) .

3. Hylo Equations 34

Exercise 52 Verify the claim made immediately before definition 51. That 1s,
show that R 1s well-founded equivales

V(X;S:: X=SoXoR = X=p(Y::SoYoR))

In words, R is well-founded equivales R is Id-well-founded. (Hint: if R is well-founded
then p(Y:SoYoR)=_11.)

O

Exercise 53 Prove that an F -reductive relation is F -well-founded.

(I

An example of a relation that is F-well-founded but not F-reductive can be con-
structed as follows. Define the relator F by FX=XxX. Suppose R € I+1I is a non-empty
well-founded relation. Then the relation Ral of type IxI«+ I (which relates a pair of
values (x,y) each of type I to a single value z of type I iff x is related by R to z and
y=z) is F-well-founded but not F-reductive. For a proof see [D0o096].

3.6 A calculus of F-reductivity

The introduction of a data structure —the relator F— as a parameter to the notion
of reductivity is a significant advance because it admits the possibility of developing a
calculus of reductivity and thus of program termination based on the structure of the
parameter. A beginning has been made to the development of such a calculus [DB95,
Doo96] sufficient to establish the termination of all the examples given in section 3.2 by
a process akin to type checking.

Space only allows us to give a brief taste of the calculus here. The fundamental
theorem is the following.

Theorem 54 The converse of an initial F-algebra is F-reductive.

Proof Let in € I+ F.I be an initial F-algebra and A an arbitrary coreflexive of type
I[«1. We must show that

ICA & inn\FA C A .
We start with the antecedent and derive the consequent:

int\ FA C A
= { for function f and coreflexive B, f\B = fuoBof,

inu is a function and F.A is a coreflexive }

3. Hylo Equations 35

inoF.Acinu C A
= { Hylo theorem: (47) and (43) ,
in is an initial F-algebra }

(in)CA

{ identity rule: (45), in € I+ F.I is an initial F-algebra }
ICA .

Theorem 54 has central importance because, if we examine all the programs in section
3.2 we see that the converse of a initial F-algebra is at the heart of the coalgebra in all
the hylo equations. In the case, for example, of primitive recursion the generic equation
has the form

X 1 X = RoF(IxX)oF.(I2I)oinu

and the coalgebra is F.(I2I)cinu where in € [«F.I is an initial F-algebra. For the
equation to define a terminating program (and consequently have a unique solution) we
must show that the coalgebra is (Fe(Ix))-reductive. This is done by showing that F.(12I)
transforms any F-reductive relation into an (Fe(Ix))-reductive relation — which is a
consequence of the fact that F.(I2I) is an instance of a natural transformation of the
relator F to the relator Fe(IX).

Acknowledgements The material in this paper was developed whilst the author was
heading the Mathematics of Program Construction group at Eindhoven University of
Technology, particularly during the period 1990-1995. It would not have been possible
to write the paper without the wonderfully stimulating and highly productive team
effort that went into all we did at that time. The sections on well-foundedness and
admitting induction are extracted from [DBvdW97] written jointly with Henk Doornbos
and Jaap van der Woude, the sections on hylomorphisms and reductivity are extracted
from Doornbos’s thesis [Do096] (see also [DB95, DB96]), and the hylomorphism theorem
in the form presented here is joint work with Paul Hoogendijk [BH99].

4. Solutions to Exercises 36

4 Solutions to Exercises

1 X is the relation on pairs (w,k)
weL = w=e Ak'=0

where w is a word, k is a natural number and L is the language given in the statement
of the problem. The invariant is the relation

wel = w'elX |
the initialisation is the relation
w=w Ak'=1 |
the loop body is the relation
k#£0 A (Fvi w=av Aw'=v Ak'=k—1)V I(vi: w=bv Anw'=v Ak'=k+1)) ,
and the termination is the relation
w=w'=¢ A k'=k=0 .
O
12 Let p denote v(X:XeR). Then p is characterised by the two properties
(a) p=peR , and
(b) V(q: q=TTeq: qCp < q=¢q°R) .

Interpreting p as a set, (a) is the property that x€p equivales 3(y:yep:y[R]x) and (b)
is the property that p is the largest such set. In words, p is the largest set of elements
such that each element begins an infinite chain of R-related elements.

O

13 By theorem 8 we have to show that the greatest fixed point of (X:: XofuoRof) equals
1l . We do this by first rewriting v(X:: XofuoRof) in terms of v(X:XcR). We have:

v(X:: XofuoRof)
= { rolling rule }

v(X:: XofofuoR)of

N

{ fofu C I, by definition of functional; v is monotonic }

v(X: XeR)of .

4. Solutions to Exercises 37

The more general statement is thus
V(X XofuoRof) C v(XuXeR)of .
Making use of it, we have:

v(X:: XofuoRof) C 11

& { transitivity }
V(X:XoR)of C 1L

& { 11 is zero of composition and composition is monotonic }
v(X:XeR) C 1L .

O

14 It suffices to show that if R is well-founded then RNIC Ll because R is well-founded
equivales R™ is well-founded.

RNIC 1L
& { assumption, R is well-founded }
RNIC (RNI)R
& { RNICR, monotonicity and transitivity }

RNIC (RNI)o(RAI)
= { for all coreflexives A, A=A0A.
RNI is a coreflexive }

true .

Well-foundedness of R is equivalent to R* NI C 1l when R is a relation on a finite set.
(This is proved by induction on the size of the set.) When R is a relation on an infinite
set the two conditions are not equivalent. For example, the less-than ordering on integers
is not well-founded but its intersection with the identity relation is empty.

O

19 We use 17 as definition of admitting induction: with A denoting p((Reop(RY))\)
we must show I=A, or equivalently (because A is a coreflexive) IC A . The proof has
two phases. In the first phase we reduce the goal to the formally weaker pu(R\)CA.

ICA
= { definition of A, uF=F.uF }
1C (Reu(RY)NA

4. Solutions to Exercises

= { monotype factors }
(Ro(R\))-C A

= { w(RY) is a monotype }
(Rop(RY)op(RY))<CA

= { monotype factors; definition of A; uF=F.uF }
n(RY) CA

Now, in the second phase, we have the opportunity to apply Knaster-Tarski.

H(RY) S A
& { Knaster-Tarski }
RV\ACA
= { definition of A; uF=F.uF }
RVA C (Rop(RY)NA
& { monotype factor is anti-monotone in left argument }
Rop(Ry) € R
= { w(RY) € I; monotonicity of composition }
true

O

22 We first show that R\S=—(R">—S). We use indirect equality.

XC=(R"o=S)

{ complements }

—X D R”o—S§

{ middle exchange }
S D ReX

{ factors }
XCR\S .

Now we construct function f as suggested:

V(-R) = f.u(R\)

& { fusion, assuming f is antimonotonic }

38

4. Solutions to Exercises 39

V(X f.XoR = f.(R\X))

{ R\S=—(R"==5) }
V(X f.XoR = f.=(R"o—=X))
& [try fX=g.-X)

V(Y: g.YoR = g.(R7cY))

& { converse }

V(Y:g.Y=Y") .
Thus, v(cR) = —p(R\)”. For the final step, we have

v(eR)C 1L
{ above }
—u(R\)” C 1L

{ complement, converse }
T Cu(R\)
{ converse }

TT Cu(R\) .

The interpretation of p(R\) is the set of all points such that all chains starting in such
a point are guaranteed to be of finite length.
O

52 By instantiating S to the identity relation, it is clear that the follows-from property
is true. We only need to prove the implication. So assume that R is well-founded. Then,
for all X and S, we have:

X=S0XeR
= { Leibniz }
TToX =TT oSeXeR
= { TTeSCTT)
TToX C TToXoR
= { assumption: R is well-founded. So v(X:XeR)=1L }
TTX C 1L
= { LLCXCTTX)

4. Solutions to Exercises 40

X=_1L
{ 1l =SolloR and LLCY forall Y }
X=pn(Y:ScYeR)

= { computation rule }

X=S0oXeR .
O

53 Suppose R € F.I«+1 is F-reductive. Suppose S € J«F.J and that X e J«I satisfies
X =SoFEXeR .
We have to show that X=u(Y: ScFYoR).

X=u(Y: SoFYoR)
{ X = SoF.XoR, definition of n }
XCu(Y: SoeFEYoR)

= { R € FI«+1I is F-reductive. So p((RY)eF) =id;. }
Xopu((RY)eF) C u(Y: SeFYoR)
& { fusion }

V(A: ACL XoR\FA C SoF(XcA)oR)
{ assumption: X = SoF.XoR,

F distributes through composition }
V(A: ACL SoFXoRoR\FA C SoFXoFA©R)
& { monotonicity }
V(A: ACL RoR\FA C FAR)
{ factors: (4) }

true .

4. Solutions to Exercises 41

References

[Bac86|

[BBH * 92]

[BBM *01]

[BH99]

[BJIMOY]

[BW93]

[DBY5]

[DBYS6]

[DBvdW97]

R.C. Backhouse. Program Construction and Verification. Prentice-Hall
International, 1986.

R.C. Backhouse, P. de Bruin, P. Hoogendijk, G. Malcolm, T.S. Voermans,
and J. van der Woude. Polynomial relators. In M. Nivat, C.S. Rattray,
T. Rus, and G. Scollo, editors, Proceedings of the 2nd Conference on Al-
gebraic Methodology and Software Technology, AMAST’91, pages 303—
326. Springer-Verlag, Workshops in Computing, 1992.

R.C. Backhouse, P. de Bruin, G. Malcolm, T.S. Voermans, and J. van der
Woude. Relational catamorphisms. In Moller B., editor, Proceedings of
the IFIP TC2/WG2.1 Working Conference on Constructing Programs
from Specifications, pages 287-318. Elsevier Science Publishers B.V., 1991.

Roland Backhouse and Paul Hoogendijk. Final dialgebras: From categories
to allegories. Theoretical Informatics and Applications, 33(4/5):401-426,
1999.

Roland Backhouse, Patrik Jansson, Johan Jeuring, and Lambert Meertens.
Generic programming. An introduction. In S.D. Swierstra, editor, 3rd
International Summer School on Advanced Functional Programmang,
Braga, Portugal, 12th-19th September, 1998, volume LNCS 1608, pages
28-115. Springer Verlag, 1999.

R.C. Backhouse and J. van der Woude. Demonic operators and monotype
factors. Mathematical Structures in Computer Science, 3(4):417-433,
December 1993.

Henk Doornbos and Roland Backhouse. Induction and recursion on
datatypes. In B. Moller, editor, Mathematics of Program Construc-
tion, 3rd International Conference, volume 947 of LNC'S, pages 242—-256.
Springer-Verlag, July 1995.

Henk Doornbos and Roland Backhouse. Reductivity. Science of Computer
Programming, 26(1-3):217-236, 1996.

H. Doornbos, R.C. Backhouse, and J. van der Woude. A calculation
approach to mathematical induction. Theoretical Computer Science,
(179):103-135, 1997.

4. Solutions to Exercises 42

[Do096]

[Fok92]

[Fv90]
[Gri81]

[HAMOO]

[HHS86]

[Hoo097]

[Lam68]

[Mal90a]

[Mal90b]

[Mee92]

[MFPY1]

[SAM93]

H. Doornbos. Reductivity arguments and program construction. PhD
thesis, Eindhoven University of Technology, Department of Mathematics
and Computing Science, June 1996.

Maarten M. Fokkinga. Law and Order in Algorithmics. PhD thesis,
Universiteit Twente, The Netherlands, 1992.

P.J. Freyd and A. S¢edrov. Categories, Allegories. North-Holland, 1990.
D. Gries. The Science of Programmaing. Springer-Verlag, New York, 1981.

Paul Hoogendijk and Oege de Moor. What is a container type? Journal
of Functional Programming, 2000. to appear.

C.A.R. Hoare and Jifeng He. The weakest prespecification. Fundamenta
Informaticae, 9:51-84, 217-252, 1986.

Paul Hoogendijk. A Generic Theory of Datatypes. PhD thesis, De-
partment of Mathematics and Computing Science, Eindhoven University
of Technology, 1997.

J. Lambek. A fixpoint theorem for complete categories. Mathematische
Zeitschrift, 103:151-161, 1968.

G. Malcolm. Algebraic data types and program transformation. PhD
thesis, Groningen University, 1990.

G. Malcolm. Data structures and program transformation. Science of
Computer Programming, 14(2-3):255-280, October 1990.

L. Meertens. Paramorphisms. Formal Aspects of Computing, 4(5):413—
424, 1992.

Eric Meijer, Maarten Fokkinga, and Ross Paterson. Functional program-
ming with bananas, lenses, envelopes and barbed wire. In FPCA ’91:
Functional Programming Languages and Computer Architecture, num-
ber 523 in LNCS, pages 124—144. Springer-Verlag, 1991.

Doaitse Swierstra and Oege de Moor. Virtual data structures. In Helmut
Partsch, Bernhard Moller, and Steve Schuman, editors, Formal Program
Development, volume 755 of LNCS, pages 355—-371. Springer-Verlag, 1993.

