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Abstract

Algorithmi
 graph theory |as taught in many university 
ourses| fo
uses on the

notions of a
y
li
ity and strongly 
onne
ted 
omponents of a graph, and the related

sear
h algorithms. This do
ument is about 
ombining mathemati
al pre
ision and 
on-


ision in the 
ontext of algorithmi
 graph theory. Spe
i�
ally, we use point-free reasoning

about paths in graphs (as opposed to pointwise reasoning about paths between nodes

in graphs), resorting to pointwise reasoning only where this is unavoidable. Our aim is

to use the 
al
ulations as the basis of a ma
hine-supported formal veri�
ation of graph

algorithms in order to assess the 
urrent state of automated veri�
ation systems.

This do
ument extends joint work with Henk Doornbos, Roland Gl�u
k and Jaap van

der Woude published in [BDGv22℄.

Algorithmi
 Graph Theory April 8, 2022



ii

Algorithmi
 Graph Theory April 8, 2022



Chapter 1

Introduction

This do
ument is about formal 
al
ulations in an axiom system representing proper-

ties of graphs. Algorithmi
 graph theory is a subje
t that is extremely well known and

there is little novelty in the 
ontent of the theorems that are presented. (That is, when

appropriately interpreted, almost all the theorems 
an be found in undergraduate-level

textbooks.) We use the 
al
ulations to illustrate the 
ombination of 
on
ision and pre-


ision that is e�e
ted by the use of point-free reasoning. Our thesis is that this is a vital

step towards making ma
hine-veri�ed proofs a pra
ti
al reality.

The presentation is divided into four parts. The �rst part, 
omprising 
hapters 2 to

5 presents the axiomati
 framework that we use in later 
hapters, and the �nal part,


omprising 
hapters 10 to 
hapter 13, presents a detailed analysis of graph-sear
hing

algorithms, in
luding topologi
al sear
h of an a
y
li
 graph and depth-�rst sear
h.

Formal analysis of the algorithms we present is based on point-free relation algebra

rather than the 
ommonly used pointwise reasoning about relations. In other words,

we reason dire
tly about relations rather than about whether or not a relation holds

of a pair of points. Of 
ourse, pointwise reasoning is sometimes ne
essary. Chapter 6

gives a relational semanti
s to a simple imperative language as well as formulating an

interfa
e between pointwise and point-free 
al
ulations. Chapters 7 to 9 present well-

known properties of relations almost ex
lusively in point-free form.

Theorems and lemmas are typi
ally stated without proof in the initial 
hapters (in

parti
ular, 
hapters 2 to 5). Proofs are given, however, of properties that do not already

appear in extant literature. (The reason for not in
luding proofs is to maintain a balan
e

between the lengths of the initial 
hapters and the 
hapters on graph algorithms. To

make the paper self-
ontained we may in
lude all proofs at a later date.)

This work is part of an ongoing endeavour to make the mathemati
s of program


onstru
tion mu
h more 
al
ulational than is 
ustomary in traditional mathemati
al

do
uments. In order to a
hieve our goals, we often deviate from traditional mathemat-

i
al pra
ti
e, in parti
ular with respe
t to notational 
onventions. For example, we use

Algorithmi
 Graph Theory 1 April 8, 2022
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a uniform syntax for denoting all quanti�
ations rather than the many di�erent nota-

tions frequently seen in mathemati
s texts. The notational 
onventions we do adopt

are strongly in
uen
ed by the work of Edsger W. Dijkstra. We refer the reader to

[Ba
03, Ba
11℄ for spe
i�
 details and raison d'être.

An Apology It is 
ommon to in
lude up-to-date 
itations in s
ienti�
 publi
ations.

With a small number of ex
eptions, we do not do so here for a number of reasons.

First, the graph algorithms and properties of graphs dis
ussed in the paper are now


ommon knowledge having found their way into undergraduate 
urri
ula at least forty

years ago | so long ago that we have forgotten where we ourselves learned about them.

(We make no 
laim to novelty on this s
ore.) Se
ond, the foundations for the point-free


al
ulations presented in the paper were �rst laid more than forty years ago [Ba
75, BC75℄

and 
ompleted more than twenty years ago (eg. [ABH

+
92, Mat95, Doo96, DBvdW97℄).

That writing the paper would make a worthwhile 
ontribution to 
urrent resear
h, in

parti
ular our 
onvi
tion that point-free 
al
ulations are vital to over
oming some of

the 
hallenges fa
ed by modern theorem-proving systems, was inspired by Gl�u
k's work

[Gl�u17℄ to whi
h we refer the reader for more re
ent literature.

End of Apology

Algorithmi
 Graph Theory April 8, 2022
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Chapter 2

Elements of Lattice Theory

This is the �rst of several 
hapters in whi
h we provide an introdu
tion to relation

algebra, the axiomati
 
al
ulus of relations due to (among others) De Morgan, S
hr�oder

and Tarski. Full a

ounts appear in several monographs (see, for example, [SS93, TG87℄);

we will make do with just a summary of pre
isely those properties we need in our


al
ulations.

Relation algebra is very ri
h, so mu
h so that, for the novi
e, it 
an be daunting.

Our approa
h is to separate out di�erent substru
tures and the interfa
es between these

substru
tures. Brie
y, we present relation algebra as a hierar
hy of three substru
tures:

a 
omplete latti
e, a regular algebra and �nally relation algebra. This 
hapter is about


omplete latti
es.

2.1 Partial Orderings

A (heterogeneous) binary relation between two sets A and B is a subset of the 
artesian

produ
t A×B . In other words, a relation is an element of the powerset 2A×B
.

In general, a powerset (the set of subsets of a set) is partially ordered by the sub-

set relation; it is also \
omplete" and \
ompletely distributive", it has \
omplements"

and its elements (sets) themselves have elements. This se
tion is about axiomatising

su
h properties of partial orderings. Se
tion 2.6 is about axiomatising properties of the

element-of relation.

A 
omplete latti
e is a partially ordered set equipped with unrestri
ted supremum

and in�mum operators. Let us assume the set is denoted by A and the ordering is

denoted by ⊑ . (Later, when we spe
ialise the dis
ussion to power sets, we swit
h to

using the 
onventional subset symbol ⊆ but, for the moment, we don't do so in order

to emphasise the greater generality of the dis
ussion.) Of 
ourse, we assume that the

ordering is re
exive, transitive and anti-symmetri
.

Algorithmi
 Graph Theory 5 April 8, 2022
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That the ordering is 
omplete means that every fun
tion f with target A has a

supremum, denoted by ⊔f , satisfying the property

〈∀x :: ⊔f ⊑ x ≡ 〈∀u :: f.u ⊑ x〉〉(2.1)

and an in�mum, denoted by ⊓f , satisfying the property

〈∀x :: x ⊑ ⊓f ≡ 〈∀u :: x ⊑ f.u〉〉 .(2.2)

Properties (2.1) and (2.2) spe
ialise to binary suprema and in�ma, whi
h we denote in

the usual way by in�x operators. That is,

〈∀x,y,z :: y⊔z ⊑ x ≡ y⊑x ∧ z⊑x〉(2.3)

and

〈∀x,y,z :: x ⊑ y⊓z ≡ x⊑y ∧ x⊑ z〉 .(2.4)

We often use the de�nitions of supremum and in�mum in our 
al
ulations without ex-

pli
ity 
iting the rules.

Aside In many 
ases, we want to use a fun
tion without giving it a spe
i�
 name. In

su
h 
ases, we use the notation 〈x :: E〉 rather than the more 
onventional x7→E or

λx.E . We also write 〈⊔x :: E〉 rather than the stri
tly 
orre
t ⊔〈x ::E〉 . (The motivation

for this is to avoid additional parentheses.) The expression 〈∀u :: f.u ⊑ x〉 used in (2.1)

is an example: the universal quanti�er, denoted by ∀ , is the in�mum operator in the


omplete latti
e of booleans ordered by impli
ation. The \ x " in 〈x :: E〉 is a bound

variable, and the s
ope of the binding is delimited by the angle bra
kets. The \E " is

any well-de�ned expression of appropriate type. An expression of the form 〈⊕x :: E〉 is


alled a quanti�ed expression, the fun
tion denoted by ⊕ being 
alled the quanti�er.

Typi
ally, we omit type information in quanti�ed expressions relying on the 
ontext to

make the types 
lear. (For example, the dummy u in 〈∀u :: f.u ⊑ x〉 is assumed to

range over the sour
e type of the fun
tion f ; the information is not provided be
ause it

is not relevant.) O

asionally we do in
lude type information in expressions of the form

〈⊔x : R : E〉 , where R is some expression. The expression R is 
alled the range and the

expression E is 
alled the term of the quanti�
ation.

The advantage of using a 
onsistent notation for quanti�
ation is that it is possible

to formulate 
al
ulational rules based on assumed properties of the quanti�er. We only

use the quanti�er notation when the binary form of ⊕ is asso
iative and symmetri
. We

assume that the reader is familiar with the 
al
ulational rules.

As the reader may already have surmised, we use an in�x dot to denote fun
tion

appli
ation | as in \ f.u ". The dot is omitted when the argument is parenthesised;

fun
tion appli
ation is then denoted by juxtaposition.) End of Aside

Algorithmi
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A 
omplete latti
e has a top (a greatest element, the in�mum of the unique fun
tion

with sour
e the empty set), whi
h we denote by ⊤⊤ , and a bottom (a least element, the

supremum of the unique fun
tion with sour
e the empty set), whi
h we denote by ⊥⊥ .

That is,

〈∀x :: ⊥⊥⊑x⊑⊤⊤〉 .(2.5)

(We use the notation ⊤⊤ and ⊥⊥ rather than the more 
ommon ⊤ and ⊥ be
ause ⊤ is

easily 
onfused with T .) More generally, we say that a partially ordered set is bounded

if it has both a top, ⊤⊤ , and a bottom, ⊥⊥ , satisfying (2.5).

A 
omplete latti
e is said to be 
ompletely distributive i� for all sets J and K and

all fun
tions f of type A←J×K , the following equality and its dual hold:

〈⊓j : j∈J : 〈⊔k : k∈K : f(j,k)〉〉 = 〈⊔g : g∈K←J : 〈⊓j : j∈J : f(j , g.j)〉〉 .

(The dual equality is obtained by swapping the in�mum and supremum operators.)

The reader may want to instantiate the above formula with ∀ as the in�mum operator

and ∃ as the supremum operator; the resulting formula is a statement of the axiom of


hoi
e in predi
ate 
al
ulus.

A powerset ordered by set in
lusion is a 
omplete, 
ompletely distributive latti
e

but the full power of the distributivity property is rarely used; so-
alled \universal

distributivity" most often suÆ
es. Formally, a 
omplete latti
e is said to be universally

distributive if

〈∀x,f :: x⊔ (⊓f) = 〈⊓j :: x⊔ f.j〉 ∧ x⊓ (⊔f) = 〈⊔j :: x⊓ f.j〉〉 .

We frequently apply universal distributivity without spe
i�
 referen
e to the rule. Par-

ti
ular examples that we use frequently are x⊓⊥⊥=⊥⊥ and x⊔⊤⊤=⊤⊤ .

2.2 Pseudo-Complements

Suppose x is an element of a partially ordered set with top element ⊤⊤ and bottom

element ⊥⊥ . A 
omplement of x is an element y su
h that x⊔y=⊤⊤ and x⊓y=⊥⊥ .

A partially ordered set is said to be 
omplemented if it is bounded and every element

of the set has a 
omplement.

In our earlier work (see, for example, [ABH

+
92, DBvdW97℄) we expli
itly avoided

the use of 
omplementation. This was be
ause our goal was to develop a (point-free)

relational theory of datatypes in whi
h 
omplementation has no role. In the 
urrent

appli
ation |a theory of �nite graphs| 
omplementation does play a signi�
ant role.

An example is a
y
li
ity of graphs: de�ned as not having 
y
les.
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A powerset ordered by set in
lusion is 
omplemented but, as for 
omplete distribu-

tivity, the existen
e of 
omplements is sometimes unne
essary. The weaker notion of

\pseudo-
omplementation" is a 
onsequen
e of universal distributivity. This se
tion ex-

plores its properties. Throughout the se
tion, we assume that (A ,⊑ ) is a partially

ordered set. We assume the existen
e of a bottom element ⊥⊥ and top element ⊤⊤ , and

binary suprema and in�ma. We also assume �nite distributivity of in�ma over suprema

and suprema over in�ma.

Definition 2.6 (Pseudo-Complement) Suppose (A ,⊑ ) is a partially ordered set

with bottom element ⊥⊥ and �nite in�ma. A pseudo-
omplement of an element p of

A is a solution of the equation

x :: 〈∀q :: q⊑x ≡ q⊓p=⊥⊥〉 .(2.7)

✷

A simple 
al
ulation shows that an element p has at most one pseudo-
omplement:

Suppose x and y both satisfy (2.7). Then

1

x⊑y

= { assumption: y is a pseudo-
omplement of p ,

(2.7) with q,x :=x,y }

x⊓p=⊥⊥

⇐ { assumption: x is a pseudo-
omplement of p ,

(2.7) with q,x :=x,x }

x⊑x

= { re
exivity of ⊑ }

true .

Inter
hanging x and y , we get y⊑x ; 
ombining the two inequalities, we get x=y .

Pseudo-
omplements may not exist | even when the poset is bounded and 
omplete.

However, in the 
ase that the poset is bounded, the pseudo-
omplements of the top and

bottom elements are guaranteed to exist. Indeed,

∼⊥⊥=⊤⊤ ∧ ∼⊤⊤=⊥⊥(2.8)

1

See, for example, [DS90, Ba
03, Ba
11℄ for explanation of our notational 
hoi
es and style of 
al
u-

lation. Brie
y, the equality of booleans is denoted both by the symbol \≡ " and the symbol \= ". The

use of two symbols is helpful to disambiguate the overloading of the \= " symbol, whilst also emphasising

its most fundamental property. We do not use the symbol \⇔ ′′
for boolean equality be
ause it empha-

sises its anti-symmetry instead. So-
alled \
ontinued" relations |three or more expressions 
onne
ted by

relations, as in this 
al
ulation| should always be read 
onjun
tionally.
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sin
e (as is easily veri�ed)

〈∀q :: q⊑⊤⊤ ≡ q⊓⊥⊥=⊥⊥〉 ∧ 〈∀q :: q⊑⊥⊥ ≡ q⊓⊤⊤=⊥⊥〉 .

(The �rst 
onjun
t is (2.7) instantiated with p :=⊥⊥ and the se
ond is (2.7) instantiated

with p :=⊤⊤ .)

If p has a pseudo-
omplement, we denote it by ∼p . Instantiating (2.7), the axiom

de�ning ∼p is thus

〈∀q :: q ⊑ ∼p ≡ q⊓p = ⊥⊥〉 .(2.9)

Several properties are immediate from (2.9). By instantiating (2.9) with q :=∼p , we

get:

∼p⊓p = ⊥⊥ .(2.10)

(This instantiation was used in the 
al
ulation above.) An immediate 
onsequen
e is the

\anti-monotoni
ity" property

2

∼p⊑∼q ⇐ q⊑p(2.11)

sin
e

∼p ⊑ ∼q

= { (2.9) with p,q := q ,∼p }

∼p⊓q = ⊥⊥

= { (2.10), ⊥⊥ is the least element of the ordering }

∼p⊓q ⊑ ∼p⊓p

⇐ { monotoni
ity of ( (∼p)⊓ ) }

q⊑p .

Instantiating (2.9) with p,q := ∼p ,p and applying (2.10), we also get:

p ⊑ ∼∼p .(2.12)

The 
ombination of (2.11) and (2.12) then gives ∼∼∼p ⊑ ∼p . But, for the 
onverse,

we have:

2

An endofun
tion f on the partially ordered set (A ,⊑ ) is \anti-monotoni
" if it is a monotoni


fun
tion from (A ,⊒ ) to (A ,⊑ ).
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∼p ⊑ ∼∼∼p

= { (2.9) with p,q := ∼∼p ,∼p }

∼p⊓∼∼p = ⊥⊥

= { symmetry of ⊓ }

∼∼p⊓∼p = ⊥⊥

= { (2.9) with p,q := ∼p ,∼∼p }

∼∼p ⊑ ∼∼p

= { re
exivity }

true .

By anti-symmetry of the ⊑ relation, we 
on
lude that

∼∼∼p = ∼p .(2.13)

The existen
e of pseudo-
omplements is guaranteed by the assumption that the partially

ordered set (A ,⊑ ) is a 
omplete, universally distributive latti
e. (This is an appli
ation

of the theory of Galois 
onne
tions dis
ussed later in se
tion 2.4: see 
orollary 2.32.)

Assuming distributivity of �nite in�mum over �nite supremum, we 
an show that

∼(p⊔q) = ∼p⊓∼q .(2.14)

Spe
i�
ally, for all r ,

r ⊑ ∼(p⊔q)

= { (2.9) with p,q := p⊔q , r }

r⊓(p⊔q) = ⊥⊥

= { assumption: �nite distributivity }

r⊓p = ⊥⊥ ∧ r⊓q = ⊥⊥

= { (2.9) with p,q :=p,r and p,q :=q,r }

r⊑∼p ∧ r⊑∼q

= { de�nition of binary in�mum }

r ⊑ ∼p⊓∼q .

Property (2.14) follows by the rule of indire
t equality. A similar 
al
ulation establishes

that:

∼(p⊔∼p) = ⊥⊥ .(2.15)

Spe
i�
ally, for all r ,
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r ⊑ ∼(p⊔∼p)

= { (2.9) with p,q := p⊔∼p , r }

r⊓ (p⊔∼p) = ⊥⊥

= { distributivity and (2.9) with p,q :=p,r and p,q := ∼p , r }

r⊑∼p ∧ r⊑∼∼p

= { de�nition of in�mum and (2.10) with p :=∼p }

r⊑⊥⊥ .

Thus (2.16) follows by the rule of indire
t equality.

Combining (2.15) and (2.8) we get:

∼∼(p⊔∼p) = ⊤⊤ .(2.16)

Dual to the notion of pseudo-
omplement is the notion of pseudo-
o
omplement |

the pseudo-
o
omplement of element p in the partially ordered set (A ,⊑ ) is the

pseudo-
omplement of p in the partially ordered set (A ,⊒ ). Formally, the pseudo-


o
omplement of p , denoted by ∽p , has the property

〈∀q :: q ⊒ ∽p ≡ q⊔p = ⊤⊤〉 .(2.17)

We leave it to the reader to dualise the above properties of pseudo-
omplement. For our

purposes, it suÆ
es to note that (assuming universal distributivity), for all p ,

∼p ⊑ ∽p(2.18)

sin
e

∼p

= { ⊤⊤ is greatest element }

∼p⊓⊤⊤

= { dual of (2.10) }

∼p⊓ (p⊔∽p)

⊑ { assumption: distributivity,

and q⊓r⊑ r with q,r := ∼p ,∽p }

(∼p⊓p)⊔∽p

= { (2.10) }

⊥⊥⊔∽p
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= { ⊥⊥ is the least element }

∽p .

In general, the pseudo-
omplement and pseudo-
o
omplement may be di�erent (even

when both exist). A simple example is the 3-element set {⊥⊥,0,⊤⊤} ordered by ⊥⊥⊑0⊑⊤⊤ .

The pseudo-
omplement of 0 is ⊥⊥ and its pseudo-
o
omplement is ⊤⊤ .

2.3 Complements

In this se
tion we de�ne 
omplements in terms of pseudo-
omplements and pseudo-


o
omplements and then show that this is equivalent to a simpler (and possibly more

familiar) dire
t de�nition. (The reason for beginning with the more 
ompli
ated def-

inition is that we want to isolate properties that rely only on the weaker notion of

pseudo-
omplement.) The se
tion is 
on
luded by a list of properties that are exploited

frequently later.

Definition 2.19 (Complement) Suppose (A ,⊑ ) is a partially ordered set. A 
om-

plement of an element p of A is an element of A that is simultaneously the pseudo-


omplement and pseudo-
o
omplement of p . The poset is 
omplemented if all of its

elements have a 
omplement. Formally, the poset is 
omplemented i� it is pseudo-


omplemented and pseudo-
o
omplemented and

〈∀p :: ∼p = ∽p〉 .

(where ∼p and ∽p denote, respe
tively, the pseudo-
omplement and pseudo-
o
omplement

of the element p ).

✷

Lemma 2.20 Suppose (A ,⊑ ) is both pseudo-
omplemented and pseudo-
o
omplemented.

Then that it is 
omplemented equivales

〈∀p :: p⊔∼p = ⊤⊤〉(2.21)

(where ∼p denotes the pseudo-
omplement of p ).

Proof

(A ,⊑ ) is 
omplemented

= { de�nition 2.19 }

〈∀p :: ∼p = ∽p〉
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= { (2.18) and anti-symmetry }

〈∀p :: ∼p ⊒ ∽p〉

= { (2.17) with p,q := p ,∼p }

〈∀p :: ∼p⊔p = ⊤⊤〉 .
✷

Aside It is perhaps worth brie
y mentioning that the di�eren
e between so-
alled \
las-

si
al" and \
onstru
tive logi
" is that negation in 
lassi
al logi
 is a 
omplement whereas

in 
onstru
tive logi
 it is a pseudo-
omplement operator. (In both logi
s, the ordering

relation is everywhere-impli
ation, ⊥⊥ is the Boolean predi
ate false and ⊤⊤ is the

Boolean predi
ate true .) In the 
ontext of 
lassi
al versus 
onstru
tive logi
, property

(2.21) is 
alled the law of the ex
luded middle . So, in words, a 
omplemented latti
e is

a latti
e that is both pseudo-
omplemented and pseudo-
o
omplemented and in whi
h

the law of the ex
luded middle is universally valid.

Those familiar with 
onstru
tive logi
 will re
ognise (2.16) as a weak form of the law

of the ex
luded middle: property (2.16) (with supremum repla
ed by disjun
tion and the

top element repla
ed by true ) is valid in both 
onstru
tive and 
lassi
al logi
 whereas

the law of the ex
luded middle is not generally valid in 
onstru
tive logi
.

Property (2.16) is an example of a meta-law relating 
lassi
al and 
onstru
tive logi
:

the double negation of any valid property in 
lassi
al logi
 is a valid property of 
on-

stru
tive logi
. In 
onstru
tive logi
, the basi
 assumption is the so-
alled \Curry-

Howard isomorphism" whi
h is stronger than the assumption of the existen
e of pseudo-


omplements. In our formalism, the Curry-Howard isomorphism is the assumption that,

for all p , the endofun
tion (⊓p ) has an upper adjoint. The assumption is thus that

there is a (binary) fun
tion ⇛ su
h that, for all p , q and r ,

q⊓p ⊑ r ≡ q ⊑ (p⇛r) .

The de�nition of pseudo-
omplement is the instan
e of this property when r=⊥⊥ . In

general, it is not possible to express p⇛r as ∼p⊘ r for some (binary) fun
tion ⊘ .

For example, take the 4-element set {⊥⊥,0,1,⊤⊤} ordered by ⊥⊥⊑0⊑1⊑⊤⊤ . Then

∼0=∼1=⊥⊥ , but it is required that 1⇛0 = 0 and 0⇛0 = ⊤⊤ . That is, if, for all p

and r , p⇛r = ∼p⊘ r , we must have ∼0⊘ 0 = ⊥⊥⊘0 = 0 and ∼1⊘0 = ⊥⊥⊘0 = ⊤⊤ ,

whi
h is impossible.

End of Aside

An alternative, more dire
t (and possibly more familiar) de�nition of 
omplements

is given by the following lemma.

Lemma 2.22 Assuming �nite distributivity, a 
omplement of p is a solution of the

equation

x :: x⊓p=⊥⊥ ∧ x⊔p=⊤⊤ .(2.23)
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Proof By de�nition, a 
omplement of p is a pseudo-
omplement of p and a pseudo-


o
omplement of p ; so a 
omplement of p satis�es the equation (2.23).

Conversely, suppose x satis�es (2.23). Then

〈∀q :: q⊑x ≡ q⊓p=⊥⊥〉

= { mutual impli
ation }

〈∀q :: q⊑x⇒ q⊓p=⊥⊥〉 ∧ 〈∀q :: q⊑x⇐ q⊓p=⊥⊥〉

= { x satis�es (2.23) (in parti
ular x⊓p=⊥⊥ )

and monotoni
ity }

〈∀q :: q⊑x⇐ q⊓p=⊥⊥〉

= { q

= { q⊑⊤⊤ for all q }

q⊓⊤⊤

= { x satis�es (2.23) (in parti
ular x⊔p=⊤⊤ ) }

q⊓(x⊔p)

= { distributivity }

(q⊓x)⊔ (q⊓p)

Leibniz and ⊥⊥ is zero of supremum }

〈∀q :: q⊓x⊑x ⇐ q⊓p=⊥⊥〉

= { de�nition of in�mum }

true .

(The penultimate step in the above 
al
ulation uses Leibniz's rule: the rule sometimes


alled \substitution of equals for equals" identi�ed by Gottfried Wilhelm Leibniz as the

�rst rule of logi
. Often |in 
ommon with 
onventional mathemati
al pra
ti
e| we use

Leibniz's rule without spe
i�
 mention; often however, we do mention the rule expli
itly,

giving \Leibniz" as hint. Here it is mentioned be
ause the ante
edent of the impli
ation

is the equality between q⊓p and ⊥⊥ , and this equality has been used in 
ombination

with the sub
al
ulation to simplify the 
onsequent.)

That is, x satis�es de�nition 2.6 of the pseudo-
omplement of p . Dualising the


al
ulation, x also satis�es the de�nition of the pseudo-
o
omplement of p . Sin
e

pseudo-
omplements and pseudo-
o
omplements are the unique solutions of their de�n-

ing equations, it follows that every element p has a pseudo-
omplement and a pseudo-


o
omplement and both are equal.
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✷

We assume various properties of 
omplements in a 
omplete, universally distributive,


omplemented latti
e. First, 
omplements are unique. We denote the unique 
omple-

ment of element x by −x . (This notation is temporary: we want to retain the distin
tion

between pseudo-
omplement and 
omplement until the end of this 
hapter. After then,

we blur the distin
tion.) Se
ond, 
omplementation is an order isomorphism of (A ,⊑ )

and (A ,⊒ ). Spe
i�
ally, for all x and y in A ,

−(−x)=x and(2.24)

−x ⊑ y ≡ x ⊒ −y .(2.25)

(Property (2.24) is a 
onsequen
e of the fa
t that −x=∼x=∽x and (2.12) and the dual

property of ∽x . Property (2.25) then follows from (2.24) and the anti-monotoni
ity

of pseudo-
omplements: property (2.11).) It follows that 
omplementation distributes

through in�ma and suprema: for all f ,

−〈⊓x :: f.x〉 = 〈⊔x ::−(f.x)〉 ∧ −〈⊔x :: f.x〉 = 〈⊓x ::−(f.x)〉 .(2.26)

Finally, we have the shunting rule : for all x , y and z ,

x⊓y ⊑ z ≡ x ⊑ −y⊔ z .(2.27)

We leave the veri�
ation of the shunting rule to the reader: use ex
luded middle |see

lemma 2.20| and its dual (2.10) (and, of 
ourse, that −y is both the pseudo-
omplement

and pseudo-
o
omplement of y ).

No doubt the rules we have mentioned in this se
tion are familiar to the reader (even

more so were we to repla
e \⊑ " by \⊆ ", \⊔ " by \∪ " and \⊓ " by \∩ "). It would

take too mu
h spa
e to enumerate all the properties we assume. Where a property is

assumed that we have not expli
itly stated, the reader should be able to derive it from

this short summary.

2.4 Galois Connections and Fixed-Point Calculus

We assume familiarity with Galois 
onne
tions and �xed-point 
al
ulus. See [Ba
02,

DB02℄ for an introdu
tion and [Ba
00℄ for a detailed a

ount of their properties. For

ease of referen
e we summarise the most fundamental properties below.

A Galois 
onne
tion involves two partially ordered sets (A , ≤ ) and (B ,� ) and two

fun
tions, F∈A←B and G∈B←A . These four 
omponents together form a Galois


onne
tion i� for all x∈B and y∈A the following holds

F.x≤y ≡ x�G.y .(2.28)
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We refer to F as the lower adjoint and to G as the upper adjoint.

Examples of Galois 
onne
tions are the de�nitions of supremum and in�mum (2.1)

and (2.2), the spe
ial 
ases (2.3) and (2.4), the order isomorphism (2.25) and the shunting

rule (2.27). It is straightforward to see that (2.25) and (2.27) are Galois 
onne
tions (in

the 
ase of (2.27), the lower and upper adjoints are (⊓y ) and ( (∼y)⊔ ), respe
tively)

but, as is 
ommonly the 
ase, it is not immediately obvious that (2.1) and (2.2) �t the

de�nition of a Galois 
onne
tion. Some pra
ti
e is needed to be able to readily spot that

a fun
tion is an adjoint in a Galois 
onne
tion. The skill is, however, well worthwhile

a
quiring. See, for example, the dis
ussion of irredu
ibility in se
tion 2.6.

Perhaps the most frequently used property is that a (left or right) adjoint is mono-

toni
. That is, the lower adjoint F in (2.28) has the property that

F.x≤F.z⇐ x� z ,(2.29)

and similarly for the upper adjoint G . Of 
ourse, it is not the 
ase that all monotoni


fun
tions are left or right adjoints.

Perhaps the most signi�
ant property (of whi
h monotoni
ity is a 
orollary) is that

lower adjoints preserve suprema and upper adjoints preserve in�ma. The theorem in the

form that we use it here (thus not in its most general form) is the following.

Theorem 2.30 Suppose F∈A←B and G∈B←A are the lower and upper adjoints

in a Galois 
onne
tion of 
omplete latti
es (A , ≤ ) and (B ,� ). Then, for all fun
tions

h and k of appropriate type,

F.(⊔Bh) = ⊔A(F◦h) ∧ G.(⊓Ak) = ⊓B(G◦k) .
✷

The theorem predi
ts, for example, that the distributivity law (2.26) follows from the

order isomorphism (2.25). Subs
ripts have been added to the supremum and in�mum

operators be
ause the types of F and G may be signi�
ant. (See, for example, lemma

2.64.)

In fa
t, theorem 2.30 
an be strengthened to an equivalen
e: the 
onverse is that

universal distributivity implies the existen
e of an upper adjoint.

Theorem 2.31 (Fundamental Existence Theorem) Suppose that A is a poset and

B is a 
omplete poset. A fun
tion F∈A←B is a lower adjoint in a Galois 
onne
tion

equivales F is supremum-preserving (i.e. for all fun
tions h of appropriate type, F.(⊔Bh)

satis�es the de�nition of the supremum in A of the fun
tion F◦h ).

Dually, suppose that B is a poset and A is a 
omplete poset. A fun
tion G∈B←A

is an upper adjoint in a Galois 
onne
tion equivales G is in�mum-preserving (i.e. for all

fun
tions k of appropriate type, G.(⊓Ak) satis�es the de�nition of the in�mum in B

of the fun
tion G◦k ).

✷
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We mentioned earlier that the existen
e of pseudo-
omplements is guaranteed by

universal distributivity. This is a 
orollary of the above fundamental existen
e theorem:

Corollary 2.32 A 
omplete, universally distributive latti
e is pseudo-
omplemented

and pseudo-
o
omplemented (but not ne
essarily 
omplemented).

Proof Suppose (A , ⊑ ) is 
omplete and universally distributive. Then by de�nition of

universal distributivity, for ea
h element p of A , the endofun
tion (p⊓ ) is supremum

preserving. By the fundamental existen
e theorem, theorem 2.31, it has an upper adjoint.

Denoting the upper adjoint by (p⊓)♯ , de�ne ∼p to be (p⊓)♯⊥⊥ . Then, for all q ,

q ⊑ ∼p

= { de�nition of ∼p }

q ⊑ (p⊓)♯⊥⊥

= { de�nition of upper adjoint }

p⊓q ⊑ ⊥⊥

= { ⊥⊥ is the least element }

p⊓q = ⊥⊥ .

That is, ∼p satis�es de�nition 2.6 of the pseudo-
omplement of p . Similarly, the

lower adjoint (p⊔)♭⊤⊤ of the endofun
tion (p⊔ ) satis�es the de�nition of the pseudo-


o
omplement of p .

The 3-element set {⊥⊥,0,⊤⊤} ordered by ⊥⊥⊑ 0⊑⊤⊤ is an example of a 
omplete,

universally distributive latti
e that is not 
omplemented.

✷

Finally, the theorem that is sometimes des
ribed as the most interesting property is

the theorem that we 
all the \unity of opposites". The theorem in the form that we use

it here is as follows.

Theorem 2.33 (Unity of Opposites) Suppose F∈A←B and G∈B←A are the

lower and upper adjoints in a Galois 
onne
tion of posets (A , ≤ ) and (B ,� ). Then

F.B and G.A are isomorphi
 posets. Moreover, if one of A or B is 
omplete, F.B and

G.A are also 
omplete. Assuming B is 
omplete, the in�mum and supremum operators

are given by

⊓G.Ah = ⊓Bh

⊔G.Ah = G.(F.⊔Bh)

⊓F.Bk = F.⊓B(G◦k)

⊔F.Bk = F.⊔B(G◦k) .
✷
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We now turn to �xed points. Suppose A=(A,⊑) is a partially ordered set and

suppose f is a monotoni
 endofun
tion on A . Then a pre�x point of f is an element

x of the 
arrier set A su
h that f.x⊑x . A least pre�x point of f is a solution of the

equation

x:: f.x⊑x ∧ 〈∀y : f.y⊑y : x⊑y〉 .

A least pre�x point of f is thus a pre�x point of f that is smaller than all other pre�x

points of f. A least �xed point of f is a solution of the equation

x:: f.x=x ∧ 〈∀y : f.y=y : x⊑y〉 .(2.34)

We use the notation Pre.f to denote the set of pre�x points of f and Fix.f to denote

the set of �xed points of f .

Theorem 2.35 (Least Prefix Point) Suppose (A,⊑) is an ordered set and the

fun
tion f of type (A,⊑)← (A,⊑) is monotoni
. Then f has at most one least pre�x

point, µf , 
hara
terised by the two properties:

f.µf ⊑ µf(2.36)

and, for all x∈A ,

µf⊑x ⇐ f.x⊑x .(2.37)

Moreover, a least pre�x point of f is a �xed point of f :

f.µf = µf .(2.38)

✷

Theorem 2.39 (Greatest Postfix Point) Suppose (A,⊑) is an ordered set. Sup-

pose, also, that the fun
tion f of type (A,⊑)← (A,⊑) is monotoni
. Then f has at

most one greatest post�x point, νf , 
hara
terised by the two properties:

νf ⊑ f.νf(2.40)

and, for all x∈A ,

x⊑νf ⇐ x⊑ f.x .(2.41)

Moreover, the greatest post�x point of f is a �xed point of f :

f.νf = νf .(2.42)

✷
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Theorems 2.35 and 2.39 do not assert the existen
e of least or greatest �xed points.

Indeed, a simple example suÆ
es to show that �xed points need not exist: Suppose

A is the set {0,1} and suppose the ordering ⊑ is the equality relation. De�ne the

endofun
tion f by f.0=1 and f.1=0 . Then f is monotoni
 but does not have any

�xed points.

Theorems that do guarantee the existen
e of least and greatest fun
tions are well

known | and are appli
able to the algebras dis
ussed later in this do
ument. For

brevity, we omit the details and generally assume their existen
e.

A least �xed point of a monotoni
 fun
tion is, as we have seen in theorem 2.35,


hara
terised by two properties. It is a �xed point, and it is least among all pre�x points

of the fun
tions. This gives us two 
al
ulational rules for reasoning about a least �xed

point µf of monotoni
 fun
tion f : the 
omputation rule

µf = f.µf

and the indu
tion rule : for all x ,

µf⊑x ⇐ f.x⊑x .

Theorem 2.43 (µ -fusion) Suppose f∈A←B is the lower adjoint in a Galois 
on-

ne
tion between the posets (A, ⊑) and (B , �) . Suppose also that g∈ (B , �)← (B , �)

and h∈ (A, ⊑)← (A, ⊑) are monotoni
 fun
tions. Suppose g and h both have least

�xed points, µg and µh , respe
tively. Then

(a) f.µg ⊑ µh ⇐ 〈∀x :: f.(g.x)⊑h.(f.x)〉 , and

(b) f.µg = µh ⇐ 〈∀x :: f.(g.x)=h.(f.x)〉 .

Indeed, if the 
ondition f◦g=h◦f , i.e.

〈∀x :: f.(g.x)=h.(f.x)〉 ,

holds, f is the lower adjoint in a Galois 
onne
tion between the posets (Pre.h , ⊑) and

(Pre.g , �) .

✷

2.5 Closure Operators

Definition 2.44 An endofun
tion f on a partially ordered set A is a 
losure operator

if

〈∀x,y :: x⊑ f.y ≡ f.x⊑ f.y〉 .
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In words, f is a 
losure operator if, for all y , the set of elements at most f.y is \
losed"

under appli
ation of the fun
tion f .

✷

Closure operators frequently arise from Galois 
onne
tions. If F and G are lower

and upper adjoints in a Galois 
onne
tion then G◦F is a 
losure operator.

It is easy to show that a 
losure operator is extensive

〈∀x :: x⊑ f.x〉

monotoni


〈∀x,y :: f.x⊑ f.y⇐ x⊑y〉

and idempotent

〈∀x :: f.x = f.(f.x)〉 .

Examples of 
losure operators that will be dis
ussed later are the re
exive 
losure, sym-

metri
 
losure and the transitive 
losure of a relation.

Definition 2.45 Suppose f and g are both endofun
tions of the same type. Then

we say that the �xed points of f are 
losed under g i�

〈∀x :: f.(g.x)=g.x ⇐ f.x=x〉 .

The fun
tion f is said to be g -idempotent i� f◦g◦f=g◦f .

✷

Lemma 2.46 Suppose f and g are both endofun
tions of the same type and f is

a 
losure operator. Then the �xed points of f are 
losed under g if and only if

3 f is

g -idempotent.

Proof First, assume f is g -idempotent. Then, for all x ,

f.x = x

⇒ { Leibniz }

g.(f.x)=g.x

= { assumption: f is g -idempotent }

g.(f.x)=g.x ∧ f.(g.(f.x)) = g.(f.x)

⇒ { Leibniz (apply leftmost equality to rightmost term) }

f.(g.x) = g.x .

3

We use \if and only if" and \equivales" inter
hangeably, but most often the latter. We use \if and

only if" when the proof is by mutual impli
ation | as here. The abbreviation \i�" |pronoun
ed \if"|

is sometimes used in de�nitions.
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That is, the �xed points of f are 
losed under g .

Now to establish the 
onverse, assume the �xed points of f are 
losed under g .

Then, for all x ,

f.(g.(f.x)) = g.(f.x)

⇐ { assumption: 〈∀x :: f.(g.x)=g.x ⇐ f.x=x〉 with x := f.x }

f.(f.x) = f.x

= { f is a 
losure operator, idempoten
e property }

true .

That is (by extensionality) f◦g◦f=g◦f .

✷

The only use we have for de�nition 2.45 and lemma 2.46 is when the fun
tion g

is pseudo-
omplementation. For ease of referen
e, we instantiate de�nition 2.45 and

lemma 2.46 for this 
ase below. In de�nition 2.47 and lemma 2.48, we assume that A is

a pseudo-
omplemented, partially ordered set and f is an endofun
tion on A .

Definition 2.47 The fun
tion f is said to be pseudo-
omplementation �xed i�

〈∀x :: f.(∼x)=∼x ⇐ f.x=x〉 .

The fun
tion f is said to be pseudo-
omplementation idempotent i�

〈∀x :: f.(∼(f.x)) = ∼(f.x)〉 .

✷

Lemma 2.48 Suppose f is a 
losure operator. Then f is pseudo-
omplementation

�xed equivales f is pseudo-
omplementation idempotent.

Proof Instantiate the fun
tion g in lemma 2.46 in the obvious way.

✷

2.6 Atoms, Saturation and Powersets

A powerset forms a 
omplete, universally distributive, 
omplemented latti
e under the

subset ordering. However, these properties do not 
hara
terise the properties of the

elements of the sets in the powerset. For this, we need the notion of a \saturated",

\atomi
" latti
e: elements of a set are modelled by so-
alled \atoms". We avoid the use

of saturated atomi
ity wherever possible. However, there are some 
ir
umstan
es where

its use is unavoidable.
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Throughout this se
tion, we assume that A is a 
omplete latti
e. (This means that

we 
an use the supremum and in�mum operators without 
aveats on their existen
e.)

For brevity, we sometimes omit to say that A is 
omplete. Variables p and q range

over arbitrary elements of A . For the moment, we 
ontinue to use ⊑ for the ordering

relation on elements of A . A proper element is an element di�erent from ⊥⊥ .

Definition 2.49 (Atom and Atomicity) The element p is an atom i�

〈∀q :: q⊑p ≡ q=p ∨ q=⊥⊥〉 .

Note that ⊥⊥ is an atom a

ording to this de�nition. If p is an atom that is di�erent

from ⊥⊥ we say that it is a proper atom. A latti
e is said to be atomi
 if

〈∀q :: q 6=⊥⊥ ≡ 〈∃a : atom.a∧a 6=⊥⊥ : a⊑q〉〉 .

In words, a latti
e is atomi
 if every proper element in
ludes a proper atom.

✷

Definition 2.50 (Saturated) A 
omplete latti
e is saturated i�

〈∀p :: p = 〈⊔a : atom.a ∧ a⊑p : a〉〉 .

✷

Elsewhere the word \full" is sometimes used instead of our \saturated". Other au-

thors also sometimes use \atomi
" to mean both atomi
 (a

ording to de�nition 2.49)

and saturated.

The following theorem [ABH

+
92, theorem 6.43℄ is 
entral to the use of saturated

latti
es as a model of powersets.

Theorem 2.51 Suppose A is a 
omplete, universally distributive latti
e. Then the

following statements are equivalent.

(a) A is saturated,

(b) A is atomi
 and 
omplemented,

(c) A is isomorphi
 to the powerset of its atoms.

✷

We don't use theorem 2.51 dire
tly. We use it indire
tly in the sense that our ax-

iomatisation of relation algebra postulates a 
omplete, universally distributive, saturated

latti
e. In this se
tion, we 
onsider 
onsequen
es of the de�nitions that allow point-

wise reasoning akin to 
onventional reasoning about sets and, in parti
ular, membership

properties. Spe
i�
ally, for latti
e element p and proper atom a , the assertion a⊑p
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e�e
tively means a∈p . For example, the booleans ¬(a⊑p) and a⊑∼p are equal

4

;

this models the 
ommonly used property of set membership: the boolean ¬(a∈p) is

equal to a∈∼p . See lemma 2.52. Other lemmas, su
h as lemmas 2.60 and 2.63, have

a similar role. The se
tion is 
on
luded by a proof of theorem 2.51; hopefully, the proof


lari�es how the notion of saturation models the notion of powerset in a way that avoids

the use of the membership relation.

We begin by exploring the notion of saturation. First, the above-mentioned lemma

expressing how we mimi
 the de�ning property of the 
omplement of a set:

Lemma 2.52 Suppose A is a 
omplete, pseudo-
omplemented latti
e. Then for all

elements p of A and all proper atoms a of A ,

¬(a⊑p) ≡ a⊑∼p .(2.53)

Proof Suppose a is an atom. Then, for all p ,

true

= { a is an atom and a⊓p⊑a ,

de�nition 2.49 with p,q := a ,a⊓p }

a⊓p=⊥⊥ ∨ a⊓p=a

⇒ { A is a pseudo-
omplemented latti
e, (2.9) withp,q :=p,a ;

de�nition of in�mum }

a⊑∼p ∨ a⊑p .

That is, for all p , ¬(a⊑p) ⇒ a⊑∼p . For the 
onverse, we have:

a⊑∼p ⇒ ¬(a⊑p)

= { predi
ate 
al
ulus }

¬(a⊑∼p ∧ a⊑p)

= { de�nition of in�mum }

¬(a ⊑ ∼p⊓p)

= { (2.15): ∼p⊓p = ⊥⊥ ; for all a , ⊥⊥⊑a }

a 6=⊥⊥ .

4

In this informal introdu
tion, ∼p 
an be read as the 
omplement of p. Later we prove the rule with

∼p de�ned to be the pseudo-
omplement of p . The existen
e of 
omplements is not required although,

of 
ourse, for set membership 
omplements do indeed exist.
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Combining the two 
al
ulations, we get the lemma.

✷

The universal quanti�
ation in the de�nition of saturated 
an be eliminated:

Lemma 2.54 A 
omplete, universally distributive latti
e is saturated i� its greatest

element is saturated, i.e. i�

⊤⊤ = 〈⊔a : atom.a :a〉 .

Proof The proof is by mutual impli
ation. One impli
ation is a straightforward


onsequen
e of the de�nition of saturation. (Just instantiate p to ⊤⊤ in de�nition

2.50.) For the other, �rst note that a 
omplete, universally distributive latti
e is pseudo-


omplemented. (See 
orollary 2.32.) This means that lemma 2.52 is appli
able. So, for

all p ,

⊤⊤ = 〈⊔a : atom.a :a〉

= { 
ase analysis and range disjun
tion }

⊤⊤ = 〈⊔a : atom.a∧a⊑p : a〉 ⊔ 〈⊔a : atom.a∧¬(a⊑p) : a〉

= { lemma 2.52 }

⊤⊤ = 〈⊔a : atom.a∧a⊑p : a〉 ⊔ 〈⊔a : atom.a ∧ a⊑∼p : a〉

⇒ { p=⊤⊤⊓p , universal distributivity }

p = 〈⊔a : atom.a∧a⊑p : a⊓p〉 ⊔ 〈⊔a : atom.a ∧ a⊑∼p : a⊓p〉

= { 〈⊔a : atom.a ∧ a⊑∼p : a⊓p〉

⊑ { monotoni
ity }

〈⊔a : atom.a ∧ a⊑∼p : ∼p⊓p〉

= { pseudo-
omplements: (2.10) }

〈⊔a : atom.a ∧ a⊑∼p : ⊥⊥〉

= { ⊔(K.⊥⊥) = ⊥⊥ (where K is the 
onstant 
ombinator) }

⊥⊥ }

p = 〈⊔a : atom.a∧a⊑p : a⊓p〉 .

That is, ⊤⊤ is saturated implies p is saturated, for all p .

✷

Another 
onsequen
e of ⊤⊤ being saturated is the existen
e of 
omplements:

Lemma 2.55 Suppose A is a 
omplete latti
e, and both pseudo-
omplemented and

pseudo-
o
omplemented. Then it is 
omplemented if its greatest element, ⊤⊤ , is satu-

rated.
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Proof We apply lemma 2.20.

A is 
omplemented

= { assumption: A is 
omplete, pseudo-
omplemented

and pseudo-
o
omplemented, lemma 2.20 }

〈∀p :: p⊔∼p = ⊤⊤〉

= { assumption: ⊤⊤ is saturated; ⊤⊤ is the greatest element }

〈∀p :: 〈⊔a : atom.a ∧ a 6=⊥⊥ : a〉 ⊑ p⊔∼p〉

= { de�nition of supremum }

〈∀p,a : atom.a ∧ a 6=⊥⊥ : a ⊑ p⊔∼p〉 .

But, for all p and proper atoms a ,

a ⊑ p⊔∼p

= { double negation }

¬¬(a ⊑ p⊔∼p)

= { lemma 2.52, spe
i�
ally (2.53) with p,a := p⊔∼p , a }

¬(a ⊑ ∼(p⊔∼p))

= { pseudo-
omplement: (2.15) }

¬(a⊑⊥⊥)

= { assumption: a 6=⊥⊥ }

true .
✷

Now we turn to the notion of atomi
ity. The assumption of universal distributivity

gives an alternative de�nition:

Lemma 2.56 Suppose A is universally distributive. Then A is atomi
 equivales

〈∀q :: q=⊥⊥ ≡ 〈⊔a : atom.a :a〉⊓q = ⊥⊥〉 .

Proof Comparing the lemma with the de�nition of atomi
ity (see de�nition 2.49), we

have to prove that

〈∀q :: ¬〈∃a : atom.a∧a 6=⊥⊥ : a⊑q〉 ≡ 〈⊔a : atom.a :a〉⊓q = ⊥⊥〉 .

That is, we must show that

〈∀q :: 〈∀a : atom.a∧a 6=⊥⊥ : ¬(a⊑q)〉 ≡ 〈⊔a : atom.a :a〉⊓q = ⊥⊥〉 .

We have, for all q ,
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〈∀a : atom.a∧a 6=⊥⊥ : ¬(a⊑q)〉

= { trading }

〈∀a : atom.a∧a⊑q : a=⊥⊥〉

= { a=⊥⊥≡a⊑⊥⊥ , de�nition of supremum }

〈⊔a : atom.a∧a⊑q : a〉 = ⊥⊥

= { a⊑q ≡ a=a⊓q , Leibniz }

〈⊔a : atom.a ∧ a=a⊓q : a⊓q〉 = ⊥⊥

= { ⊔(K.⊥⊥) = ⊥⊥ (where K is the 
onstant 
ombinator) }

〈⊔a : atom.a ∧ a=a⊓q : a⊓q〉 = ⊥⊥

∧ 〈⊔a : atom.a ∧ ⊥⊥=a⊓q : a⊓q〉 = ⊥⊥

= { a⊓q⊑a ; so, by de�nition 2.49, a=a⊓q ∨ ⊥⊥=a⊓q

(⇒ ) range disjun
tion and idempoten
e of supremum

(⇐ ) range disjun
tion and ⊥⊥ is the least element }

〈⊔a : atom.a : a⊓q〉 = ⊥⊥

= { assumption: A is universally distributive }

〈⊔a : atom.a : a〉⊓q = ⊥⊥ .

✷

We are now part way to establishing theorem 2.51:

Corollary 2.57 Suppose A is 
omplete and universally distributive. Then A is

atomi
 if A is saturated.

Proof

A is atomi


= { lemma 2.56 }

〈∀p :: p=⊥⊥ ≡ 〈⊔a : atom.a :a〉⊓p = ⊥⊥〉

⇐ { Leibniz }

〈∀p :: 〈⊔a : atom.a :a〉⊓p = p〉

= { assumption: A is 
omplete, universally distributive and

saturated, lemma 2.54 }

〈∀p :: ⊤⊤⊓p = p〉
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= { ⊤⊤ is the greatest element }

true .

✷

We 
ontinue with some more te
hni
al lemmas. The following lemma gives a useful


hara
terisation of proper atoms.

Lemma 2.58

atom.a ≡ 〈∀q : a⊓q 6=⊥⊥ : a⊑q〉 .

atom.a ∧ a 6=⊥⊥ ≡ 〈∀q :: a⊓q 6=⊥⊥ ≡ a⊑q〉 .

Proof First,

atom.a

= { de�nition 2.49 with p :=a }

〈∀q :: q⊑a ≡ q=a ∨ q=⊥⊥〉

= { ⇐ is trivial }

〈∀q : q⊑a : q=a ∨ q=⊥⊥〉

= { q⊑a ≡ 〈∃r :: q=a⊓r〉 }

〈∀q : 〈∃r :: q=a⊓r〉 : q=a ∨ q=⊥⊥〉

= { range disjun
tion }

〈∀q,r : q=a⊓r : q=a ∨ q=⊥⊥〉

= { one-point rule }

〈∀r :: a⊓r=a ∨ a⊓r=⊥⊥〉

= { trading rule and a⊓r=a ≡ a⊑ r }

〈∀r : a⊓r 6=⊥⊥ : a⊑ r〉 .

The lemma follows by renaming the bound variable r . Se
ond,

atom.a ∧ a 6=⊥⊥

= { above and a⊑q ≡ a⊓q=a }

〈∀q : a⊓q 6=⊥⊥ : a⊑q〉 ∧ 〈∀q : a⊑q : a⊓q 6=⊥⊥〉

= { trading and mutual impli
ation }

〈∀q :: a⊓q 6=⊥⊥ ≡ a⊑q〉 .

Algorithmi
 Graph Theory April 8, 2022



28

✷

Lemma 2.59 For all atoms a and all elements p , p⊓a is an atom.

Proof We apply the de�nition: for all q ,

q⊑p⊓a

= { in�ma }

q⊑p ∧ q⊑a

= { a is an atom, de�nition 2.49 with p :=a }

q⊑p ∧ (q⊑⊥⊥ ∨ q=a)

= { distributivity, q⊑⊥⊥ ≡ q=⊥⊥ , ⊥⊥⊑p }

q=⊥⊥ ∨ (q⊑p ∧ q=a)

⇒ { by Leibniz's rule, q=a ⇒ (q⊑p ≡ a=p⊓a) }

q=⊥⊥ ∨ q=p⊓a

⇒ { 
ase analysis, ⊥⊥⊑p⊓a and p⊓a⊑p⊓a }

q⊑p⊓a .

It follows by mutual impli
ation that, for all q , q⊑p⊓a ≡ q=⊥⊥ ∨ q=p⊓a . The

lemma follows by de�nition of an atom.

✷

Lemma 2.60 If p 6=⊥⊥ and b is an atom, then p=b≡p⊑b . Also, if a and b are

both proper atoms, a=b ≡ a⊓b 6=⊥⊥ .

Proof First,

p=b

= { assumption: p 6=⊥⊥ , predi
ate 
al
ulus }

(p=b ∨ p=⊥⊥) ∧ p 6=⊥⊥

= { assumption: b is an atom, de�nition 2.49 with p,q :=p,b }

p⊑b ∧ p 6=⊥⊥

= { assumption: p 6=⊥⊥ }

p⊑b .
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Se
ond,

a⊓b 6=⊥⊥

⇒ { assumption: atom.a ∧ a 6=⊥⊥

lemma 2.58 with a,q :=a,b }

a⊑b .

Similarly, applying lemma 2.58 with a,q :=b,a , we get the symmetri
 property

a⊓b 6=⊥⊥ ⇒ b⊑a .

Combining the two using anti-symmetry of the partial ordering

a⊓b 6=⊥⊥ ⇒ a=b .

The 
onverse impli
ation is 
learly true given the assumption that a and b are both

proper atoms. So the lemma follows by mutual impli
ation.

✷

We are now well on the way to establishing theorem 2.51:

Corollary 2.61 Suppose A is 
omplete and universally distributive. Then A is

saturated if and only if A is atomi
 and 
omplemented.

Proof Suppose A is 
omplete and universally distributive.

First, by 
orollary 2.32, A is pseudo-
omplemented and pseudo-
o
omplemented.

So, by 
orollary 2.57 and lemma 2.55, it is atomi
 and 
omplemented if it is saturated.

Conversely, suppose A is atomi
 and 
omplemented. Then

A is saturated

⇐ { lemma 2.54 }

⊤⊤ = 〈⊔a : atom.a :a〉

⇐ { assumption: A is 
omplemented,

double negation: (2.24) and −⊥⊥=⊤⊤ }

⊥⊥ = −〈⊔a : atom.a :a〉

= { assumption: A is atomi
, lemma 2.56 with q :=⊥⊥ }

〈⊔a : atom.a :a〉 ⊓ −〈⊔a : atom.a :a〉 = ⊥⊥

= { 
omplements are pseudo-
omplements, (2.10) }

true .
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✷

Lemma 2.52 establishes the existen
e of a Galois 
onne
tion, albeit slightly disguised.

Spe
i�
ally, suppose A is a 
omplete, 
omplemented latti
e. Then we have, for all

elements p of A , all proper atoms a of A and all booleans b ,

(a⊑p)⇒ b ≡ p ⊑ if b→⊤⊤✷¬b→∼a fi .(2.62)

(The simple proof that this is equivalent to (2.53) is left to the reader; of 
ourse, (2.25)

must be invoked as well.) Applying theorem 2.30, we dedu
e that atoms are irredu
ible

in the following sense.

Lemma 2.63 Suppose A is a 
omplete, universally distributive, saturated latti
e and

a is a proper atom of A . Then, for all subsets S of the proper atoms of A ,

a ⊑ 〈⊔b : b∈S : b〉 ≡ 〈∃b : b∈S : a=b〉 .

Proof

a ⊑ 〈⊔b : b∈S : b〉

= { (2.62) and theorem 2.30 with F :=(a⊑) and A :=(Bool,⇒) }

〈∃b : b∈S : a⊑b〉

= { a is a proper atom, dummy b ranges over proper atoms,

lemma 2.60 }

〈∃b : b∈S : a=b ∨ a=⊥⊥〉 .

✷

Let us now return to theorem 2.51. Corollary 2.61 establishes that 2.51(a) and 2.51(b)

are equivalent. So it remains to establish that, if A is a 
omplete and universally

distributive, A is isomorphi
 to a powerset if and only if it is atomi
, 
omplemented

and saturated.

If S is a set, the powerset 2S is the set of all subsets of S . Set theory postulates that

2S is a 
omplete, universally distributive latti
e under the usual subset ordering. The

proper atoms of 2S are the singleton sets {a} where dummy a ranges over the elements

of S ; its top and bottom elements are S and the empty set ∅ , and the supremum

operator is set union. Set theory postulates that, for any subset p of S ,

a∈p ≡ {a}⊆p

and

p = 〈∪a :a∈p : {a}〉 .
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That is, set theory postulates that 2S is saturated. By 
orollary 2.61 it is thus atomi


and 
omplemented: the 
omplement ¬p of the set p is, of 
ourse,

¬p = 〈∪a : ¬(a∈p) : {a}〉 .

Thus, if A is isomorphi
 to a powerset, it is atomi
, 
omplemented and saturated.

Conversely, if A is a 
omplete, universally distributive, saturated latti
e, de�ne S

to be the 
arrier set of A . De�ne the mapping set from A to 2S by, for all elements p

of A ,

set.p = 〈∪a : atom.a ∧ a 6=⊥⊥ ∧ a⊑p : {a}〉

(where a ranges over elements of A ). A straightforward 
onsequen
e of the de�nition

of atoms, de�nition 2.49, is that proper atoms a of A are then mapped to {a} , whi
h

is a proper atom of 2S ; the bottom element ⊥⊥ is mapped to ∅ and the top element

⊤⊤ is mapped to S . Then, assuming A is saturated, for all p in the 
arrier set of A ,

we have

〈∪a : atom.a ∧ a 6=⊥⊥ ∧ a⊑p : set.a〉

= { by the de�nition of set and de�nition 2.49,

a 6=⊥⊥ ∧ a⊑p ⇒ set.a= {a} }

〈∪a : atom.a ∧ a 6=⊥⊥ ∧ a⊑p : {a}〉

= { de�nition of set }

set.p

= { assumption: A is saturated }

set.〈⊔a : atom.a ∧ a 6=⊥⊥ ∧ a⊑p : a〉 .

That is, assuming A is 
omplete, universally distributive and saturated, the fun
tion

set is an isomorphism of the latti
e A and the powerset 2S (ordered by set in
lusion).

As mentioned at the beginning of this se
tion, the exploitation of properties of atoms

is a me
hanism for mimi
king pointwise reasoning within an axiomati
 formulation of

powersets. Be
ause we want to avoid pointwise reasoning, we avoid the use of atoms

ex
ept where this is absolutely essential (for example to show that every node in a graph

is 
ontained in a strongly 
onne
ted 
omponent of the graph).

2.7 The Lattice of Fixed Points

Throughout this se
tion, f is a monotoni
 endofun
tion on a partially ordered set A .

Re
all that we use Fix.f to denote the �xed points of f . This se
tion is about showing

the extent to whi
h Fix.f inherits algebrai
 properties of A .
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The set Fix.f is a subset of the set A and thus inherits its partial ordering. The

following well-known lemma is often attributed to Alfred Tarski.

Lemma 2.64 Suppose the partially ordered set A is a 
omplete latti
e. Suppose f

is a 
losure operator on the latti
e A . Then Fix.f is 
omplete. Spe
i�
ally, if h is a

fun
tion with range Fix.f then

⊓Fix.fh = ⊓Ah ∧ ⊔Fix.fh = f.⊔Ah .

In parti
ular,

⊤⊤Fix.f = ⊤⊤A ∧ ⊥⊥Fix.f = f.⊥⊥A .

Proof This is an appli
ation of the unity-of-opposites theorem (theorem 2.33). We note

that a 
losure operator is the lower adjoint in a Galois 
onne
tion: letting ι denote the

\forgetful" fun
tion of type A←Fix.f (so 
alled be
ause it \forgets" that its argument

is a �xed point), the de�nition 2.44 
an be written as, for all x∈A and all y∈Fix.f ,

x⊑ ι.y ≡ f.x⊑y .

The lemma follows by applying theorem 2.33 with the instantiations

A,B,F,G := Fix.f ,A , f , ι .

✷

E�e
tively, lemma 2.64 states that the in�mum in A of a fun
tion h with range

Fix.f is a �xed point of f . On the other hand, the supremum ⊔Ah of a fun
tion h with

range Fix.f is not ne
essarily a �xed point of f . Instantiating the unity-of-opposites

theorem is 
ompli
ated by the type information: the formulae given in the lemma for

the in�mum and the supremum \forget" the \forgetful" fun
tion. The lemma 
an easily

be veri�ed independently without referen
e to the unity-of-opposites theorem.

Our goal now is to show that if A is saturated then Fix.f is also saturated. Great


are needs to be taken in doing so. The diÆ
ulty is that, although the partial ordering

is the same for both sets, the supremum of a fun
tion with range Fix.f in A is not the

same as the supremum of the fun
tion in Fix.f . In parti
ular, the least element of A is

not the same as the least element of Fix.f . Overloading the symbol \⊥⊥ " is therefore

ambiguous! Similarly, distributivity properties 
an also be ambiguous, or in
orre
t, if


are is not taken to make 
lear whi
h suprema are intended.

To avoid the 
lutter and the ambiguity, we use the unsubs
ripted symbol \⊥⊥ "

ex
lusively for ⊥⊥A ; similarly, o

urren
es of ⊔ denote supremum in A . Be
ause the

greatest elements of A and Fix.f 
oin
ide, subs
ripts are unne
essary for ⊤⊤ ; similarly

subs
ripts are unne
essary on o

urren
es of ⊓ . O

asionally it is ne
essary to re
all

that f.⊥⊥ denotes ⊥⊥Fix.f but sometimes we re-introdu
e subs
ripts for greater 
larity.
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Lemma 2.65 Suppose A is a 
omplete, universally distributive latti
e. Suppose f

is a 
losure operator on the latti
e A and suppose f is pseudo-
omplementation �xed.

Then f.a is an atom of Fix.f if a is an atom of A .

Proof First, 
orollary 2.32 establishes that A is pseudo-
omplemented. Suppose that

a is an atom of A . By the idempoten
y property of 
losure operators, f.a is a �xed

point of f . Now, suppose p is an element of Fix.f . That is, p is an element of A and

p= f.p . Then,

p⊑ f.a

= { predi
ate 
al
ulus }

a⊑p⊑ f.a ∨ (¬(a⊑p) ∧ p⊑ f.a) .

We now 
onsider ea
h disjun
t in turn. First,

a⊑p⊑ f.a

= { f is a 
losure operator and so is monotoni
 }

a⊑p ∧ f.a⊑ f.p ∧ p⊑ f.a

= { p= f.p , Leibniz and anti-symmetry of ⊑ }

a⊑p ∧ p= f.a

= { f is a 
losure operator, extensivity }

p= f.a .

(Note that no use has yet been made of the assumption that a is an atom of A .) The

se
ond disjun
t is split into two 
ases: a=⊥⊥ and a 6=⊥⊥ . In the �rst 
ase,

¬(⊥⊥⊑p) ∧ p⊑ f.⊥⊥ ≡ false

(sin
e ⊥⊥⊑p≡ true ). In the se
ond 
ase, a is, by de�nition, a proper atom of A . So

¬(a⊑p) ∧ p⊑ f.a

= { assumption: A is 
omplete, universally distributive and saturated;

a is a proper atom of A , lemma 2.52 }

a⊑∼p ∧ p⊑ f.a

⇒ { f is a 
losure operator and so is monotoni
 }

f.a⊑ f.(∼p) ∧ p⊑ f.a
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= { p= f.p and f is pseudo-
omplementation �xed, so ∼p= f.(∼p) }

f.a⊑∼p ∧ p⊑ f.a

⇒ { anti-monotoni
ity: (2.11) }

∼∼p ⊑ ∼(f.a) ∧ p⊑ f.a

⇒ { double negation: (2.12), transitivity and in�mum }

p ⊑ ∼(f.a)⊓ f.a

= { pseudo-
omplement: (2.10) }

p⊑⊥⊥

⇒ { ⊥⊥ is least element, a 6=⊥⊥ }

¬(a⊑p) ∧ p⊑ f.a .

We 
on
lude that, when a 6=⊥⊥ ,

¬(a⊑p) ∧ p⊑ f.a ≡ p⊑⊥⊥ .

Substituting the results of the three 
ases in the initial 
al
ulation, we have established

that

p⊑ f.a ≡ p= f.a ∨ p⊑⊥⊥ .

Sin
e, as already mentioned, f.a is a �xed point of f , it is, by de�nition 2.49, an atom

of Fix.f .

✷

Lemma 2.66 Suppose A is a 
omplete, universally distributive latti
e. Suppose f

is a 
losure operator on the latti
e A and suppose f is pseudo-
omplementation �xed.

Then

⊤⊤Fix.f = f.⊤⊤A = ⊤⊤A ∧ ⊥⊥Fix.f = f.⊥⊥A = ⊥⊥A .

Proof The �rst 
onjun
t is immediate from lemma 2.64 and the extensivity of a 
losure

operator. For the se
ond 
onjun
t, we have:

f.⊥⊥A = ⊥⊥A

= { ⊥⊥=∼⊤⊤ (see (2.8)) }

f.(∼⊤⊤A) = ∼⊤⊤A

⇐ { assumption: f is pseudo-
omplementation idempotent

lemma 2.48 and de�nition 2.47 }
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f.⊤⊤A = ⊤⊤A

= { ⊤⊤ is the greatest element of A , so f.⊤⊤⊑⊤⊤ , anti-symmetry }

⊤⊤A ⊑ f.⊤⊤A

= { assumption: f is a 
losure operator and hen
e extensive }

true .

✷

Lemma 2.67 Suppose f is a pseudo-
omplementation idempotent 
losure operator.

Then Fix.f is pseudo-
omplemented. Spe
i�
ally, the pseudo-
omplement of �xed point

x of f in Fix.f is its pseudo-
omplement in A .

Proof Suppose y is a �xed point of f (i.e. y= f.y ) and suppose ∼y is the pseudo-


omplement of y in A . We show that ∼y is the pseudo-
omplement of y in Fix.f .

Instantiating de�nition 2.6 with A,p := Fix.f , y , we must show that

〈∀q : q∈Fix.f : q⊑∼y ≡ q⊓y=⊥⊥Fix.f〉 .

But this is immediate from (2.9) (with p :=y ) and lemma 2.66 (spe
i�
ally, the se
ond


onjun
t). Note that impli
it use is made of the fa
t that the ordering relation and

in�ma are the same in A and Fix.f .

✷

Lemma 2.65 identi�es a subset of the atoms of Fix.f . We now strengthen the lemma

to an equality.

Lemma 2.68 Suppose A is a 
omplete, universally distributive, saturated latti
e.

Suppose f is a 
losure operator on the latti
e A and suppose f is pseudo-
omplementation

�xed. Then, for all a ,

atomFix.f.a ≡ 〈∃b : atomA.b : a= f.b〉 .

Moreover, Fix.f is saturated.

Proof Under the given assumptions, A is pseudo-
omplemented by 
orollary 2.32.

Lemma 2.65 then establishes the impli
ation

atomFix.f.a ⇐ 〈∃b : atomA.b : a= f.b〉 .

For the 
onverse, we �rst observe that

〈⊔A b : atomA.b : f.b〉 = ⊤⊤Fix.f .(2.69)

The proof is straightforward:
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⊤⊤A

⊒ { de�nition of top element }

〈⊔A b : atomA.b : f.b〉

⊒ { f is a 
losure operator, so b⊑ f.b }

〈⊔A b : atomA.b : b〉

= { assumption: A is saturated }

⊤⊤A .

Thus, by anti-symmetry, ⊤⊤A = 〈⊔A b : atomA.b : f.b〉 . Property (2.69) follows immedi-

ately from the fa
t that ⊤⊤A=⊤⊤Fix.f (see lemma 2.64).

Now we 
an establish the 
onverse impli
ation. Suppose a is an atom in Fix.f .

There are two 
ases. If a=⊥⊥Fix.f , then a= f.⊥⊥A by lemma 2.64. In the se
ond 
ase,

a 6=⊥⊥Fix.f . Then

a

= { de�nition of top, assumption: a∈Fix.f }

a⊓⊤⊤Fix.f

= { (2.69) }

a ⊓ 〈⊔A b : atomA.b : f.b〉

= { assumed universal distributivity property of A }

〈⊔A b : atomA.b : a⊓ f.b〉

= { ⊥⊥A is zero of suprema }

〈⊔A b : atomA.b ∧ f.b 6=⊥⊥A : a⊓ f.b〉

= { assumption: a is a proper atom of Fix.f ,

by lemma 2.65, f.b is an atom of Fix.f ,

lemma 2.60 (applied to atoms of Fix.f ) }

〈⊔A b : atomA.b ∧ a= f.b : a⊓ f.b〉

= { Leibniz and idempoten
e of in�mum }

〈⊔A b : atomA.b ∧ a= f.b : a〉 .

Summarising,

a 6=⊥⊥Fix.f ∧ a = 〈⊔A b : atomA.b ∧ a= f.b : a〉 .
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Now assume ¬〈∃b : atomA.b : a= f.b〉 . Then, by the de�nition of supremum,

a 6=⊥⊥Fix.f ∧ a=⊥⊥A .

But ⊥⊥Fix.f=⊥⊥A (lemma 2.66). So we have a 
ontradi
tion, and we 
on
lude that

〈∃b : atomA.b : a= f.b〉 as required.

Finally, in order to show that Fix.f is saturated, it suÆ
es to prove that ⊤⊤Fix.f is

saturated. (See lemma 2.54.) That is, we have to prove that ⊤⊤Fix.f is the supremum of

the atoms of Fix.f . Spe
i�
ally, we have to prove that

〈⊔Fix.f a : atomFix.f.a :a〉 = ⊤⊤Fix.f .(2.70)

We have:

⊤⊤Fix.f

⊒ { de�nition of top and supremum }

〈⊔Fix.f a : atomFix.f.a : a〉

= { lemma 2.64 }

f.〈⊔A a : atomFix.f.a : a〉

⊒ { properties of suprema, f is monotoni
 }

〈⊔A a : atomFix.f.a : f.a〉

= { atomFix.f.a⇒ f.a=a }

〈⊔A a : atomFix.f.a : a〉

⊒ { assumptions on A and f :

so, by lemma 2.65, 〈∀b : atomA.b :atomFix.f.(f.b)〉 }

〈⊔A b : atomA.b : f.b〉

= { (2.69) }

⊤⊤Fix.f .

The required property (2.70) now follows by anti-symmetry of the ordering relation.

✷

We 
on
lude this se
tion with a summary of the properties we have established.

Theorem 2.71 Suppose A is a 
omplete, universally distributive, saturated lat-

ti
e. Suppose f is a 
losure operator on the latti
e A and suppose f is pseudo-


omplementation �xed. Then Fix.f is a 
omplete, saturated latti
e. The atoms in

Fix.f are given by {b: atomA.b: f.b} .
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Proof This is a 
ombination of lemmas 2.68 and 2.64.

✷

Note that we haven't proved that Fix.f is universally distributive. (Currently we do

not know whether or not this is always the 
ase.) So we 
annot apply theorem 2.51 in

order to 
laim that Fix.f is isomorphi
 to the powerset of its atoms.
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Chapter 3

Regular Algebra

Regular algebra (sometimes also known as \Kleene algebra") is the algebra of three

operators 
entral to programming: 
omposition, 
hoi
e and iteration. As su
h, it is

perhaps the most fundamental algebrai
 stru
ture in 
omputing s
ien
e.

This 
hapter summarises fundamental properties of a regular algebra. Sin
e the

properties are typi
ally well known, proofs are omitted. Some of the most important

properties are given names for future referen
e

3.1 The Axioms

Algebrai
ally, program 
omposition is modelled by a monoid and 
hoi
e by binary

suprema in a latti
e. Iteration is modelled by a parti
ular form of �xed point.

Definition 3.1 A monoid is a triple (A,·,1 ), where A is a set, · is a binary operator

and 1 is an element of A , satisfying the properties:

1·x = x = x·1 for all x∈A,(3.2)

and

x·(y·z) = (x·y)·z for all x,y,z∈A.(3.3)

The element 1 is 
alled the unit of the monoid, and the operator · is 
alled the produ
t

operator.

✷

(The raised dot used to denote a produ
t operator throughout this 
hapter should not

be 
onfused with the non-raised dot used to denote fun
tion appli
ation. The only use

of the non-raised dot in this 
hapter is in the expression \ red.A " introdu
ed in (3.19).)

A monoid is su
h a simple algebrai
 stru
ture that little 
an be said at this stage.

(Perhaps one thing that 
an be said is that monoids are truly ubiquitous | but then
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a theory of everything is a theory of nothing!) Monoids only be
ome interesting when


ombined with other algebrai
 stru
tures.

Definition 3.4 (Regular Algebra) A regular algebra is a tuple (A , · , + ,≤ , 0 , 1 )

where

(a) (A , · , 1 ) is a monoid,

(b) (A ,≤ ,+ , 0 ) is a 
omplete latti
e with least element 0 and binary supremum

operator + ,

(
) for all a∈A , the endofun
tions (a· ) and ( ·a ) are both lower adjoints in Galois


onne
tions between (A ,≤ ) and itself.

A regular algebra is said to be universally distributive if the underlying latti
e (see

(b)) is universally distributive.

✷

Aside The assumption of a 
omplete latti
e means that all in�ma exist (as well as all

suprema). However, dis
ussions of regular algebra often ignore the existen
e of in�ma,

and there is no standard notation for the in�mum operator in a regular algebra or even

the greatest element. In 
ases where in�ma are relevant, the 
hoi
e of the \+ " symbol

for the binary supremum operator is unfortunate. Shortly, therefore, we swit
h to using

set notation. End of Aside

Our de�nition of a regular algebra does not postulate the existen
e of a star operator.

A universally distributive regular algebra is what Conway [Con71℄ 
alls a \standard

Kleene algebra". (Instead of (
), Conway postulates a universal distributivity rule whi
h,

together with other axioms, is equivalent to (
).)

The upper adjoints of (a· ) and ( ·a ) are 
alled the fa
torisation operators. Although

these operators are important, we seldom use them dire
tly; more often, we use only the

fa
t that they exist.

Following Conway, we sometimes refer to the elements of the 
arrier set of a regular

algebra as events.

3.2 Reflexive, Transitive Closure

In this se
tion, properties of the \star" operator are brie
y summarised. For more details

on this se
tion, see [Mat95℄. The star operator models iteration.

There are several di�erent de�nitions of the star operator in a regular algebra. Pos-

sibly the best known de�nition is

a∗ =
〈

Σi :0≤ i :ai
〉

.(3.5)
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Another de�nition is

a∗ = 〈µx :: 1+a+x·x〉 .(3.6)

This de�nition states that a∗
is the re
exive, transitive 
losure of a : spe
i�
ally, the

indu
tion rule for least pre�x points establishes that it is re
exive:

1 ≤ 〈µx :: 1+a+x·x〉 ,

it in
ludes a :

a ≤ 〈µx :: 1+a+x·x〉 ,

and it is transitive:

〈µx :: 1+a+x·x〉 · 〈µx :: 1+a+x·x〉 ≤ 〈µx :: 1+a+x·x〉 .

It then follows that the star operator is a 
losure operator.

Two other 
ommonly used de�nitions are in terms of left and right iteration. Spe
if-

i
ally, left iteration is de�ned by

a∗ = 〈µx :: 1+a·x〉(3.7)

and right iteration by

a∗ = 〈µx :: 1+x·a〉 .(3.8)

It is easily shown that all of these de�nitions are equivalent. Choosing one or other

de�nition gives di�erent indu
tion rules; de
iding whi
h to use in spe
i�
 
ir
umstan
es

requires some pra
ti
e. We use all four di�erent de�nitions at some stage below.

Note that the equivalen
e of (3.5) with, for example, (3.7) is proved using the universal

distributivity of (a· ) over supremum (property (
) in de�nition 3.4). Othe axiomatisa-

tions of so-
alled \Kleene algebra" (for example, ones studied by Conway [Con71℄) are

oriented towards one parti
ular appli
ation: the equality of regular expressions when in-

terpreted as languages. To this end, they typi
ally postulate properties of 
omposition,


hoi
e and iteration but the properties of 
omposition are not as strong as 3.4(
). It is

not possible to prove this property with weaker axiom systems making them inadequate

for reasoning about path problems in graphs.

Consequen
es of the above de�nitions are that

a∗·b = 〈µx :: b+a·x〉(3.9)

(whi
h is most easily proved using (3.7), and

b·a∗ = 〈µx :: b+x·a〉(3.10)
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(whi
h is most easily proved using (3.8)). An immediate 
orollary is that a∗·b and b·a∗

are �xed points of the relevant fun
tions:

b+a·(a∗·b) = a∗·b ,(3.11)

b+ (b·a∗)·a = b·a∗ .(3.12)

The transitive 
losure of a is denoted by a+
. Like the re
exive, transitive 
losure it

has several equivalent de�nitions, the most 
ommonly used being:

a+ =
〈

Σi : 1≤ i :ai
〉

(3.13)

and

a+ = 〈µx :: a+x·x〉 = 〈µx :: a+x·a〉 = 〈µx :: a+a·x〉 .(3.14)

Also like the re
exive, transitive 
losure, these di�erent de�nitions give rise to di�erent

indu
tion rules.

Other properties of the star operator are as follows:

(a) a ·b∗ ≤ c∗ ·a ⇐ a·b≤ c·a

(b) c∗ ·a ≤ a ·b∗ ⇐ c·a≤a·b

(
) a · (b·a)∗ = (a·b)∗ ·a

(d) (a+b)∗ = b∗ · (a ·b∗)∗ = (b∗ ·a)∗ ·b∗

Properties (a) and (b) are 
alled leapfrog rules (be
ause a \leapfrogs" from one side

of a star term to the other). Both have the immediate 
orollary that

∗
is monotoni


(by taking a to be 1 ). Properties (
) and (d) are 
alled the mirror rule and star-

de
omposition rule, respe
tively.

There are many other properties of the star operator that we use without further ado.

3.3 The Unique Extension Property

In the previous se
tion we saw that a·b∗ is the least solution of the equation

x:: x = a+x·b .

Here we 
onsider its largest solution 〈νx :: a+x·b〉 . In parti
ular, we do so for a latti
e

that is universally distributive, so that among other things (y+ ) and (+y ) distribute

over all in�ma and, hen
e, are upper adjoints. Then ν -fusion (the dual of µ -fusion)

yields a simple proof of the following theorem.
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Theorem 3.15 If (y+ ) is an upper adjoint, then we have, for all a and b ,

〈νx :: a+x·b〉 = y+ 〈νx ::x·b〉 ⇐ y = a+y·b .

✷

As a 
onsequen
e, in a universally distributive regular algebra, the largest solution

of the equation x:: x = a+x·b is the sum (i.e. supremum) of an arbitrary solution

and the largest solution of the equation x:: x=x·b . Note that a spe
ial 
hoi
e for y in

theorem 3.15 is y = a ·b∗ .

An immediate 
orollary of theorem 3.15 is that if 〈νx ::x·b〉= 0 , fun
tion 〈x :: a+x·b〉

has a unique �xed point. The 
ombination of this property and its 
onverse is the rule

we 
all the unique extension property (uep) of regular algebra.

Theorem 3.16 (The unique extension property (uep)) Suppose b is an element

of a universally distributive regular algebra. Then

〈νx ::x·b〉= 0 ≡ 〈∀x,a :: x = a ·b∗ ≡ x = a+x·b〉 .

Proof Only-if is an immediate 
onsequen
e of theorem 3.15. Spe
i�
ally,

〈νx ::x·b〉 = 0

⇒ { theorem 3.15 }

〈∀y,a :: 〈νx :: a+x·b〉 = y ⇐ y = a+y·b〉

= { y := a ·b∗ ; (3.12) with a,b :=b,a }

〈∀y,a :: 〈νx :: a+x·b〉 = y ⇐ y = a+y·b〉

∧ 〈νx :: a+x·b〉 = a ·b∗

⇒ { Leibniz (and dummy renaming) }

〈∀x,a :: a ·b∗ = x ⇐ x = a+x·b〉

= { (3.12) with a,b :=b,a }

〈∀x,a :: x = a ·b∗ ≡ x = a+x·b〉 .

The 
onverse is straightforward:

〈∀x,a :: x = a ·b∗ ≡ x = a+x·b〉

⇒ { a :=0 , properties of 0 }

〈∀x :: x= 0 ≡ x=x·b〉

⇒ { by de�nition of ν , 〈νx ::x·b〉= 〈νx ::x·b〉·b

x := 〈νx ::x·b〉 }

〈νx ::x·b〉 = 0 .
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✷

Theorem 3.16 was postulated as an axiom of regular algebra in [Ba
75, BC75℄. Here,

a proof is needed be
ause the star operator is not a primitive but de�ned in terms of

least �xed points.

The uep draws attention to the importan
e of property 〈νx ::x·b〉= 0 . In language

theory, it is equivalent to ε6∈b sin
e if, on the 
ontrary, x is a non-empty set su
h that

x=x·b , the length of the shortest word in x must be equal to the length of the shortest

word in x plus the length of the shortest word in b . That is, the length of the shortest

word in b is zero. The terminology that is often used is \b does not possess the empty-

word property". In relation algebra, we say \b is well-founded": the property expresses

that there are no in�nite sequen
es of b -related elements (thus, if relation b represents

a �nite dire
ted graph, 〈νx ::x·b〉= 0 means that the graph is a
y
li
).

(We remarked earlier that other axiomatisations of regular algebra do not demand

the existen
e of fa
torisation operators, making them inadequate for reasoning about

path-�nding problems. The requirement of universal distributivity is also 
ommonly not

made. However, the uep is a vital tool in the 
ontext of a
y
li
 graphs and the omission

of universal distributivity would render the theory inadequate for our purposes.)

In the 
ontext of relation algebra, there are several equivalent ways of de�ning well-

foundedness, the one referred to above being perhaps less well known. This is dis
ussed

further in se
tion 8.1.

3.4 Reflexive-Transitive Reduction

The re
exive-transitive redu
tion of a relation is an important 
on
ept. For example, it

underlies the display of (small, �nite) posets by means of a so-
alled Hasse diagram: the

relation displayed in su
h a diagram is not the partial ordering but its re
exive-transitive

redu
tion. The 
on
ept is important in other appli
ations. For example, the basis of

the Knuth-Morris-Pratt pattern mat
hing algorithm (and its generalisations [KMP77,

Wei73, AC75℄) is the \fa
tor graph" of a regular language de�ned by the pattern, and

the \fa
tor graph" is the re
exive-transitive redu
tion of Conway's \fa
tor matrix" of

the language [BL77, Ba
16℄. This se
tion introdu
es the 
on
ept in this broader 
ontext;


al
ulations update and expand on previously published work.

We assume that the algebra under 
onsideration is 
omplemented; we denote the


omplement operator by the pre�x operator \¬ ". (See theorem 2.51.)

Be
ause the primary appli
ation is relation algebra, and be
ause we want to make

extensive use of the in�mum operator, we now swit
h to using set notation: that is we

use the symbol \⊆ " to denote the ordering, \∪ " for the supremum operator and \∩ "
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for the in�mum operator. Also, be
ause it �ts in with relation algebra, we use \ I " for

the unit.

It should not be supposed that relation algebra is the sole appli
ation of the results

of this se
tion. An important appli
ation is to a \matrix" (powerset) algebra. Su
h an

algebra has 
arrier set the set of fun
tions with sour
e A×A , for some A , and range a

powerset algebra; the produ
t operator is de�ned as is usual for matri
es and the other

operators are de�ned by a pointwise \lifting" of the operators of the powerset algebra.

For more details see [Ba
06℄.

Definition 3.17 (Starth Root) Suppose U is an event of a regular algebra. A starth

root of U is any event V that satis�es V∗=U∗
; it is minimal if no smaller event has

this property. It is least if it is at most all starth roots. Formally, V is a minimal

starth root of U if

V∗=U∗ ∧ 〈∀W : W⊆V ∧ W∗=U∗ : W=V〉

and V is the least starth root of U if

V∗=U∗ ∧ 〈∀W : W∗=U∗ : V ⊆W〉 .
✷

De�nition 3.18 and the lemmas and theorems that follow assume a 
omplemented

regular algebra. We use the notation ¬U to denote the 
omplement of event U . This

should, of 
ourse, not be 
onfused with the notation for the 
omplement of a predi
ate:

the 
ontext should make 
lear whi
h is intended.

Definition 3.18 (Reflexive and Transitive Reduction) Let A and B be events

in a 
omplemented regular algebra with unit I . Then A∩¬I is 
alled the re
exive

redu
tion of A and B∩¬(B ·B+) is 
alled the transitive redu
tion of B . The transitive

redu
tion of the re
exive redu
tion of A is 
alled the re
exive-transitive redu
tion of

A .

✷

(De�nitions 3.17 and 3.18 abstra
t from Brzozowski's theorem asserting the existen
e

of a \unique irredu
ible generating set" of a \monoid with length" [Brz67, Theorem 2℄.)

We denote the re
exive-transitive redu
tion of A by red.A . That is,

red.A = A ∩ ¬I ∩ ¬((A∩¬I) · (A∩¬I)+) .(3.19)

If G represents the edges of a graph, the re
exive-transitive redu
tion red.G \redu
es"

G by eliminating self-loops and edges 
onne
ting distin
t nodes that are subsumed by

paths of edge-length two or more and not involving self-loops. (Self-loops are edges from

a node to itself. The multiple o

urren
es of \∩¬I " in (3.19) serve to eliminate su
h

edges, leaving only edges 
onne
ting distin
t nodes.)

A 
ouple of lemmas on re
exive redu
tion prove useful later:
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Lemma 3.20 Let X be an event in a 
omplemented regular algebra with unit I .

Then

X∗ = (X∩¬I)∗ .

(In words, the re
exive redu
tion of X is a starth root of X .)

Proof

X∗ = (X∩¬I)∗

⇐ { X ⊇ X∩¬I , monotoni
ity of star }

X∗ ⊆ (X∩¬I)∗

= { ∗
is a 
losure operator }

X ⊆ (X∩¬I)∗

⇐ { I∪Y⊆Y∗
with Y := X∩¬I }

X ⊆ I∪ (X∩¬I)

= { absorption rule }

X ⊆ I∪X

= { set 
al
ulus }

true .

✷

Lemma 3.21 Let X and Y be events in a 
omplemented regular algebra with unit

I . Then

X∗⊆Y∗ ≡ (X∩¬I)+ ⊆ (Y∩¬I)+ ,

X∗=Y∗ ≡ (X∩¬I)+ = (Y ∩¬I)+ .

Proof First,

(X∩¬I)+ ⊆ (Y ∩¬I)+

= { +
is a 
losure operator }

X∩¬I ⊆ (Y ∩¬I)+

= { 
omplements }

X ⊆ (Y ∩¬I)+ ∪ I

= { for all Z , Z+∪ I = Z∗
with Z := Y ∩¬I ,
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lemma 3.20 with X :=Y }

X ⊆ Y∗

= { ∗
is a 
losure operator }

X∗⊆Y∗ .

The se
ond property follows immediately from the anti-symmetry of set in
lusion.

✷

Theorem 3.22 (Least Starth Root) Let A be an event in a 
omplemented regular

algebra with unit I . Then

A∗ = (red.A)∗ ⇒ 〈∀X : X∗=A∗ : red.A⊆X〉 .

That is, if the re
exive-transitive redu
tion of A is a starth root of A , it is the least

starth root of A .

Proof Assume that A∗ = (red.A)∗ and X∗=A∗
. Let B = A∩¬I , C = B∩¬(B ·B+)

and Y = X∩¬I . By applying lemma 3.20 and in
luding the two assumptions, we have

A∗=B∗=C∗=X∗=Y∗ .

Next we note that

C

= { de�nition of C and B }

A∩¬I∩¬(B ·B+)

= { idempoten
y and symmetry of in�mum }

(A∩¬I∩¬(B ·B+)) ∩ ¬I

= { de�nition of C and B }

C ∩ ¬I .

It follows that we 
an apply lemma 3.21 with X,Y :=A,C and X,Y :=C,X to dedu
e that

B+=C+=Y+ .

We 
an now pro
eed with the 
al
ulation.

B∩¬(B ·B+) ⊆ X

= { B∩¬(B ·B+) = C = C∩C+ = C∩Y+ }

B∩¬(B ·B+)∩Y+ ⊆ X
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= { shunting rule (2.27) }

B∩Y+ ⊆ X ∪ B ·B+

⇐ { B∩Y+ ⊆ Y+ }

Y+ ⊆ X ∪ B ·B+

⇐ { Y+ = Y ∪ Y ·Y+ }

Y⊆X ∧ Y ·Y+ ⊆ B ·B+

= { Y = X∩¬I }

Y ·Y+ ⊆ B ·B+

= { [ X ·X+ = X+ ·X+ ] with X :=B

(well-known property, simple proof left to reader) }

Y+ ·Y+ ⊆ B+ ·B+

= { B+=Y+
: see above }

true .

✷

Theorem 3.22 postulates a 
andidate for a least starth root. In some 
ases, the


andidate is indeed a least starth root, as illustrated by example 3.23 below, but this is

not always the 
ase, as illustrated by example 3.24. (In the 
ase of example 3.23, the

\graph" is not in�nite.) Fortunately, the 
andidate is indeed a starth root in the 
ase

relevant to the 
urrent dis
ussion: when A is a �nite a
y
li
 graph.

Example 3.23 Consider the at-most relation on integers. This is normally denoted by

the symbol \≤ " but it is more 
onvenient here to use the symbol atmost . The at-most

relation is, of 
ourse, re
exive and transitive. That is, atmost= atmost∗ . Instantiating

the variable A in theorem 3.22 with atmost , the relation B is the less-than relation.

This is normally denoted by the symbol \< " but let us write less instead. The reader

may easily verify that the relation less∩¬(less ◦ less+) is the prede
essor relation, pred ,

given by, for all integers i and j ,

i[[pred]]j ≡ i+1= j .

The theorem states that, if the prede
essor relation is a starth root of the at-most relation,

then it is the least starth root of that relation. And, indeed, pred∗= atmost . So, we


on
lude that

〈∀R : R∗= atmost : pred⊆R〉 .

✷
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Example 3.24 Suppose we 
onsider the universal relation on the set {1,2,3} . Fig.

3.1(a) depi
ts the relation as a graph. Figs. 3.1(b) and (
) depi
t starth roots of the

relation; they are both minimal but are distin
t.

1

2 3

1

2 3

1

2 3

(a) Universal relation

(b) Minimal starth root (c) Minimal starth root 

Figure 3.1: Distin
t minimal starth roots of the universal relation

Denoting the universal relation on {1,2,3} by ⊤⊤ and the identity relation on {1,2,3}

by I , the relation ⊤⊤∩¬I∩¬((⊤⊤∩¬I) ◦ (⊤⊤∩¬I)+) is the empty relation and the

re
exive-transitive 
losure of the empty relation is the identity relation. Thus, it is

not a starth root of the universal relation.

✷

Example 3.25 The 
onverse of theorem 3.22 is not valid sin
e a relation may have a

least starth root that is not its re
exive-transitive redu
tion. This is demonstrated by

the following example.

Suppose R is the relation {(1, 2),(2, 1)} . Then R∗
is the universal relation on {1,2}

and red.R is the empty relation. Thus, for all X , red.R⊆X ; however, R∗ 6=(red.R)∗ .

Indeed, the least starth root of R is R itself.

✷

Example 3.26 The lexi
ographi
 ordering on words over a �nite alphabet is well-

founded. However, if the alphabet has at least two elements, it has no least starth root.

We 
an gain insight into why this is the 
ase by 
onsidering a simpler 
ase. Suppose

we 
onsider the alphabet {a,b} and the set of words

{
k : 1≤k : ak

}
∪
{
k : 1≤k :bk

}
.
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That is, ea
h word is either a string of a s or a string of b s. Fig. 3.2(a) depi
ts the

(re
exive redu
tion of the) lexi
ographi
 ordering on words in this set of length at most

three. The transitive redu
tion of the latter relation is depi
ted in �g. 3.2(b). Note, in

parti
ular the diagonal edge from aaa to b .

a aaaaa

b bb bbb

a aaaaa

b bb bbb

(a) Lexicographic ordering (b) Transitive reduction

Figure 3.2: Subgraph of word order and its transitive redu
tion

Now imagine what happens when \three" is generalised to an arbitrary number and

then 
onsider what happens in the limit. The (re
exive-)transitive redu
tion of the

lexi
ographi
 ordering on the in�nite set of words relates ak to ak+1 and bk to bk+1 for

ea
h k but does not relate ak to bj for any values of j and k . It is thus not a starth

root of the lexi
ographi
 ordering. Indeed, any starth root of the lexi
ographi
 ordering

must relate ak to b for an in�nite number of values of k . But, given su
h a starth root,

the removal of any one value of k is also a starth root. There is thus no least starth

root.

✷
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Chapter 4

Relation Algebra

This 
hapter dis
usses the algebra of binary relations: relation algebra for short. Our

axiomatisation is point-free as opposed to pointwise . A pointwise axiomatisation de�nes

the operators of a relation algebra in terms of Boolean values xRy ; the variables of the

axiomatisation are thus relations, R , and points, x and y . This is the more 
onventional

means of de�ning operators on relations. A point-free axiomatisation omits the points;

the variables in the axiomatisation are ex
lusively relations.

The advantage of a point-free axiomatisation is in
reased 
on
ision. This is invaluable

to the goal of establishing general properties of relations. A disadvantage is that when one


omes to apply su
h general properties to parti
ular relations, like the at-most relation,

it is parti
ular Boolean values, like m≤n , that are of interest. In addition to the

point-free axioms we therefore need to give a pointwise interpretation of ea
h of the

operators. That is, we need to say, for ea
h operator that we introdu
e, how the operator

de�nes a set of pairs. Su
h an interpretation is often 
alled a (set-theoreti
) model of

the axiom system. In giving the interpretation we use the notation [[E]] to mean \the

interpretation of E ". Thus we write x[[R]]y instead of xRy ; this enhan
es readability

and also emphasises the di�eren
e between the obje
ts of an abstra
t relation algebra

and the interpretation of su
h obje
ts as binary relations. Note that the expression E is

most often a relation, but is sometimes an ordering between relations.

A possible sour
e of error is the interfa
e between interpretation and the abstra
t

algebra. That is, errors may be introdu
ed either when formulating informal statements

in the abstra
t algebra or, vi
e-versa, when interpreting expressions in the abstra
t

algebra. It is impossible to avoid all su
h errors but, in order to minimise the risk, we

formalise the pro
ess of interpreting point-free formulae in a way that narrows the gap

between the formal and informal.
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4.1 The Axioms

Relation algebra is a ri
h algebrai
 stru
ture involving a large number of operators.

There is a down-side as well as an up-side to its ri
hness. On the one hand it is very

expressive, on the other hand 
al
ulations within the algebra 
an be diÆ
ult be
ause of

the sheer abundan
e of 
al
ulational rules. In order to make the algebra more tra
table

we present it as a number of units with interfa
es between the units. Ea
h unit is a

well-understood and well-do
umented mathemati
al stru
ture of suÆ
iently small size

to be easily 
omprehended.

The �rst unit in relation algebra is a latti
e stru
ture. Spe
i�
ally, let (A ,⊆ ) be a

partially-ordered set. We postulate that A forms a 
omplete, universally distributive

latti
e. The in�mum and supremum operators will be denoted by ∩ and ∪ , respe
tively.

The top and bottom elements of the latti
e will be denoted by ⊤⊤ and ⊥⊥ , respe
tively.

We will 
all elements of A relations and denote them by variables R , S and T .

As suggested by the 
hoi
e of notation, the interpretation of ⊆ is the subset ordering,

the interpretation of ∩ is set interse
tion, and the interpretation of ∪ is set union.

Formally,

[[R⊆S]] ≡ 〈∀x,y :x[[R]]y : x[[S]]y〉 ,

x [[R∩S]]y ≡ x[[R]]y∧ x[[S]]y ,

and

x [[R∪S]]y ≡ x[[R]]y∨ x[[S]]y .

This is the most 
ompli
ated unit in the framework but one whi
h should be familiar to

the reader.

Every binary relation has a 
onverse. At the point level the 
onverse operator, denoted

by a post�x \

∪
" symbol, is de�ned by

x [[R
∪

]]y ≡ y[[R]]x

for all x and y . At the point-free level we postulate the existen
e of a (total) unary

fun
tion from relations to relations su
h that, for all relations R and S

R
∪

⊆S ≡ R⊆S
∪

.(4.1)

The Galois 
onne
tion (4.1) is all that is ne
essary to de�ne the 
onverse operator and its

interfa
e with the latti
e stru
ture. Its being a Galois 
onne
tion makes it so attra
tive.

Be
ause the 
onverse operator is its own upper and lower adjoint we 
an immediately

infer that it is universally ∩ -jun
tive (sin
e it is its own upper adjoint) and universally
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∪ -jun
tive (sin
e it is its own lower adjoint). We most often use su
h distributivity

properties in the 
ase of �nite suprema and in�ma. Spe
i�
ally,

⊤⊤
∪

= ⊤⊤ ,

and

⊥⊥
∪

= ⊥⊥ ,

and, for all relations R and S ,

(R∩S)
∪

= R
∪

∩S
∪

, and

(R∪S)
∪

= R
∪

∪S
∪

.

The fa
t that 
onverse is its own upper and lower adjoint yields yet more. The two

standard 
an
ellation properties of Galois 
onne
tions yield the in
lusions R⊆ (R∪)∪

and (R∪)∪⊆R when
e by anti-symmetry of the ordering relation we 
on
lude

R=(R
∪

)
∪

.

Converse is thus a bije
tion from relations to relations that is its own inverse. Further-

more, it is a poset isomorphism; substituting S
∪

for S in (4.1) and simplifying using

S=(S∪)∪ we have

R
∪

⊆S
∪

≡ R⊆S .

Finally, a property that often 
omes in handy is:

R=R
∪

≡ R⊆R
∪

.

The property is a trivial 
onsequen
e of the de�ning Galois 
onne
tion.

The set of binary relations over some universe in
ludes the identity relation, I , de�ned

at the point level by

x[[I]]y ≡ x=y

for all x and y . Relations may also be 
omposed via the binary 
omposition operator,

◦
, de�ned at the point level by

x [[R◦S]] z ≡ 〈∃y ::x[[R]]y∧y[[S]]z〉 .

We 
apture these two notions in our algebrai
 framework by demanding the existen
e of

a relation I and a binary operator,

◦
, mapping a pair of relations to a relation, su
h

that (A , ◦ , I ) is a monoid. That is, 
omposition is asso
iative

(R◦S)◦T =R◦(S◦T) ,(4.2)
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for all relations R , S and T , and I is a left and right unit of 
omposition

R◦I=R= I◦R ,(4.3)

for all relations R .

There are two interfa
es to be spe
i�ed: that with the latti
e stru
ture and that

with the 
onverse operator. The interfa
e with the 
onverse operator is soon dealt with.

Bearing in mind the intended relational interpretations of 
onverse and 
omposition we

postulate

(R◦S)
∪

= S
∪

◦R
∪

,(4.4)

for all relations R and S .

From (4.4), it is easy to dedu
e that

I
∪

= I .(4.5)

For the interfa
e with the latti
e stru
ture we postulate that a relation algebra is a

regular algebra. In parti
ular, we postulate that for all relations R the fun
tions (R◦
)

and (

◦R ) distribute universally over suprema.

By the fundamental theorem of Galois 
onne
tions, this is equivalent to postulating

the existen
e of two binary operators \ and / satisfying the properties

R◦S⊆T ≡ S⊆R\T ,(4.6)

and

R◦S⊆T ≡ R⊆T/S .(4.7)

These two operators are 
alled the fa
toring, or division, operators. We suggest that

they be pronoun
ed \under" and \over", respe
tively.

The meaning of R\T expressed in terms of points 
an be re
overed from (4.6) by

instantiating S to the relation {(x, y)} . Formally, we have:

x [[R\T ]]y

= { de�nition }

{(x, y)}⊆R\T

= { (4.6) }

R ◦ {(x, y)} ⊆ T

= { interpretation of ⊆ }

〈∀u,v : u [[R ◦ {(x, y)}]] v : u[[T ]]v〉
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= { interpretation of 
omposition and the relation {(x, y)} }

〈∀u,v : 〈∃w :: u[[R]]w ∧ w=x ∧ v=y〉 : u[[T ]]v〉

= { one-point rule }

〈∀u : u[[R]]x : u[[T ]]y〉 .

That is,

x [[R\T ]]y ≡ 〈∀u :u[[R]]x :u[[T ]]y〉 .

Similarly,

x [[T/S]]y ≡ 〈∀u :y[[S]]u :x[[T ]]u〉 .

Just as the use of the 
omposition operator avoids the use of existential quanti�
ations,

the use of the division operators avoids the use of universal quanti�
ations in point-free

reasoning.

4.1.1 Operator Precedence

We have now introdu
ed quite a large number of operators. In order to redu
e the

number of parentheses in formulae we should agree on a pre
eden
e between the di�erent

operators.

A general rule we use throughout is that all pre�x and post�x operators as well as

subs
ripting and supers
ripting take pre
eden
e over in�x operators and in�x operators

in turn take pre
eden
e over multi�x operators. When both pre�x and post�x operators

are applied to an expression, we use parentheses to 
larify the order of evaluation. Thus

we only need to dis
uss the relative pre
eden
e of the in�x operators.

For in�x operators, the general rule is that metaoperators (operators like ≡ and

∧ ) have the lowest pre
eden
e. Next 
ome relations like ≤ and ⊆ . The operators

of relation algebra have the next highest pre
eden
e, and fun
tion appli
ation |when

expli
itly written as an in�x operator| has the highest pre
eden
e of all.

Among the in�x operators of relation algebra the pre
eden
e is: interse
tion and

union have the same, lowest pre
eden
e, next is 
omposition and the highest pre
eden
e

is given to the division operators. Thus the expression R ◦S\T ∩ U is parenthesised as

(R◦(S\T))∩U . (Note how white spa
e is added in order to suggest the 
orre
t parsing.)

4.1.2 Modularity Rule and Cone Rule

We have postulated that 
omposition distributes through suprema. We have not pos-

tulated that 
omposition distributes through in�ma. Were we to do so then the binary
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relations would not form a model of our algebrai
 framework. The la
k of su
h a law,

however, poses severe problems. We know that, for ea
h R , the fun
tion (R◦
) is mono-

toni
 (sin
e it is universally ∪ -jun
tive) and hen
e

R◦(S∩T) ⊆ R◦S ∩ R◦T .

Thus we are in a position to reason with in�ma of 
ompositions so long as they appear

on the bigger side of an in
lusion. But we have no means of working with su
h a term

when it appears on the smaller side of an in
lusion. Something more is needed to a�ord

the manipulative freedom we need.

The rule we now introdu
e to over
ome this diÆ
ulty a
ts as an interfa
e between

all three units of the framework. J. Riguet [Rig48℄ named the rule after the famous

mathemati
ian J.W.R. Dedekind (he 
alled it \la relation de Dedekind") be
ause of

its resemblan
e to the modular identity, a property of normal subgroups dis
overed by

Dedekind. S
hmidt and Str�ohlein [SS88, SS93℄ have adopted Riguet's terminology (they

refer to \die Dedekind Formel", the Dedekind formula) whereas Freyd and

�

S�
edrov [Fv90℄


all it the law of modularity (possibly for the same reason as Riguet). We 
all it the

modularity rule .

The modularity rule is that, for all relations R , S and T ,

R◦S∩T ⊆ R ◦ (S ∩ R
∪

◦T) .(4.8)

At �rst sight, this is a diÆ
ult rule to appre
iate and to use. A little analysis of its

stru
ture helps. Note that the term on the smaller side of the in
lusion is an in�mum

of two terms and the term on the larger side is a 
omposition of two terms. None of

the rules given so far 
ater for either of these situations. Note also that R is the only

repeated variable on the larger side. Viewing 
omposition as a multipli
ation operator

and in�mum as addition, it is as if R
∪

is the inverse of R , it being 
an
elled when R is

multiplied through on the righthand side in order to obtain the lefthand side.

These hints may help the reader to understand and remember the rule. However, the

best way to get to grips with it is to use it. Let's work through a few simple examples.

The easiest way to begin is to look for some obvious simpli�
ations. Not all are

interesting but some may prove to be.

One simpli�
ation is to eliminate the interse
tion operator on the right side. This we


an do by the assignment S:=⊤⊤ . We obtain

R◦⊤⊤∩ T ⊆ R ◦R
∪

◦ T .(4.9)

This property has two interesting 
onsequen
es. The right side 
an be simpli�ed by

instantiating T to I . We get

R◦⊤⊤∩ I ⊆ R ◦R
∪

.
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Hen
e

R◦⊤⊤∩ I ⊆ R ◦R
∪

∩ I .

But, by monotoni
ity, sin
e ⊤⊤⊇R∪

we have

R◦⊤⊤∩ I ⊇ R ◦R
∪

∩ I .

We 
on
lude

R◦⊤⊤∩ I = R ◦R
∪

∩ I .(4.10)

Property (4.10) was obtained by 
hoosing T so as to simplify the right side of (4.9). The

se
ond interesting 
onsequen
e is obtained by 
hoosing T =R thus simplifying its left

side. We obtain (sin
e R◦⊤⊤ ∩ R = R )

R ⊆ R ◦R
∪

◦R .(4.11)

As a �nal, preliminary, example of the use of the modularity rule let us see what it

predi
ts about the distribution of 
omposition of 
ap. We have

(R◦S)∩ (R◦T) = R◦(S∩T)

= { (R◦S)∩ (R◦T) ⊇ R◦(S∩T) }

(R◦S)∩ (R◦T) ⊆ R◦(S∩T)

⇐ { modularity rule: (4.8)

with R,S,T := R ,S ,R◦T }

R ◦ (S ∩ R∪

◦R◦T) ⊆ R◦(S∩T)

⇐ { monotoni
ity of 
omposition }

S ∩ R∪

◦R◦T ⊆ S∩T

⇐ { monotoni
ity of (S∩ ) }

R
∪

◦R◦T ⊆ T .

By symmetry, S and T may be inter
hanged everywhere. So we 
on
lude:

(R◦S)∩ (R◦T) = R◦(S∩T) ⇐ R
∪

◦R ◦T ⊆ T ∨ R
∪

◦R ◦S ⊆ S .(4.12)

Be
ause 
onverse is a latti
e isomorphism, all rules we obtain have a dual 
onstru
ted

by turning 
ompositions around. The modularity rule itself has the dual form

S◦R∩T ⊆ (S ∩ T ◦R
∪

)◦R .(4.13)
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and the rules (4.10) and (4.12) have the duals

⊤⊤◦R∩ I = R
∪

◦R ∩ I .(4.14)

and

(S◦R)∩ (T ◦R) = (S∩T)◦R ⇐ T ◦R ◦R
∪

⊆ T ∨ S ◦R ◦R
∪

⊆ S .(4.15)

(Property (4.11) is self-dual.) The reader is invited 
he
k these 
laims for themself. In

the future, we sometimes make 
laims of the form \the 
onverse-dual of x is y ".

The rule sometimes 
alled \Tarski's rule" is 
alled the \
one rule" below: for all

relations R ,

⊤⊤◦R◦⊤⊤=⊤⊤ ∨ R=⊥⊥ .(4.16)

The 
one rule expresses the universality of the relation ⊤⊤ . Its signi�
an
e be
omes

evident in se
tion 5.2 where it is used in 
ombination with the \all or nothing" rule to

model reasoning about relations as sets of pairs.

The set of homogeneous binary relations on the empty set is, of 
ourse, the 
arrier set

of a relation algebra. The empty relation, the identity relation and the universal relation

are all equal and so the algebra is 
ompletely trivial. In order to ex
lude this model,

the 
one rule is sometimes reformulated as an ex
lusive-or rather than an in
lusive-or (a

disjun
tion). The rule is then, for all R :

R=⊥⊥ 6≡ ⊤⊤◦R◦⊤⊤ = ⊤⊤ .

(Equivalently,

R 6=⊥⊥ ≡ ⊤⊤◦R◦⊤⊤ = ⊤⊤ .)

The reader 
an easily 
he
k that this is equivalent to the 
onjun
tion of the standard


one rule and ⊥⊥ 6= ⊤⊤ . Not ex
luding the trivial model be
omes vital when the rule is

extended to heterogeneous relations. See se
tion 5.4.

Axiom systems for relation algebra often in
lude a 
omplementation (negation) oper-

ator and, instead of the modularity rule, the so-
alled S
hr�oder rule is postulated. Our

formulation of S
hr�oder's rule is slightly di�erent from standard a

ounts, as we now

explain.

Suppose we 
onsider an algebra that obeys all the axioms of relation algebra ex
ept

for the modular identity. Suppose that the algebra is 
omplemented (i.e. every relation

has a 
omplement). Consider the rule:

R
∪

= ¬I /¬R ,(4.17)
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and the middle-ex
hange rule :

R ◦¬X ◦S ⊆ ¬Y ≡ R
∪

◦Y ◦S
∪

⊆ X .(4.18)

The rules (4.17) and (4.18) are both equivalent to the modularity rule.

One way of proving the equivalen
e |left to the reader| is to show that (4.17)

implies (4.18), that (4.18) implies the modularity rule and that the modularity rule

implies (4.17). A step on the way is to prove the divergen
e rule ,

R◦S ⊆ ¬I ≡ S◦R ⊆ ¬I ,(4.19)

and the not -R -verse rule:

¬(R
∪

) = (¬R)
∪

.(4.20)

The middle-ex
hange rule gets its name from the fa
t that the middle term in a 
ompo-

sition is ex
hanged with the right side of an in
lusion. It has an attra
tive, symmetri


form, making it easy to remember in spite of having four free variables. The divergen
e

rule gets its name from the interpretation of ¬I : the relation that holds between two

values if and only if they \diverge" from ea
h other, i.e. are unequal. The name \not-

R -verse" rule is borrowed from the way the famous mathemati
ian Augustus de Morgan

denoted the 
ombination of 
omplementation and 
onverse. He literally wrote \not-R -

verse" pointing out that it didn't matter whether one read this as (not R ) 
onverse or

not (R 
onverse). In our notation we would write ¬R
∪

and (deliberately) omit spe
i-

fying a pre
eden
e of one operator over the other. This justi�es the 
ombination of a

pre�x operator for negation and a post�x operator for 
onverse. In general, 
ombining

pre�x operators with post�x operators is not to be re
ommended sin
e, if the operand

(R above) is any other than a variable or 
onstant, it is extremely diÆ
ult to parse the

formulae. Even so, we don't follow this re
ommendation and sti
k to standard notation

| with the 
onsequen
e that we have just warned about!

Instead of the middle-ex
hange rule, many publi
ations state two rules, ea
h with

three variables, due to S
hr�oder. The rules are equivalent to the 
onjun
tion of the two

equivalen
es: for all R , S and T ,

R◦S ⊆ ¬T
∪

≡ S◦T ⊆ ¬R
∪

(4.21)

and

R◦S ⊆ T ≡ T ◦R ⊆ ¬S
∪

.(4.22)

We 
all these rules the rotation rules (be
ause of the way the variables are rotated).
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4.2 Summary

This 
on
ludes our dis
ussion of the algebrai
 framework. In a few senten
es, a rela-

tion algebra is a 
omplete, universally distributive latti
e on whi
h is de�ned a monoid

stru
ture and a unary 
onverse operator. Composition on the left and on the right

both have upper adjoints, the division operators. Converse is a latti
e isomorphism that

preserves the unit of 
omposition and distributes 
ontravariantly through 
omposition.

Finally, the latti
e stru
ture, 
onverse and the monoid stru
ture are all interrelated via

the modularity and 
one rules.
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Chapter 5

Coreflexives, Heterogeneous
Relations and Functions

When one writes a 
omputer program there are many important details, mostly to do

with eÆ
ien
y, that play a major rôle. Ignoring all these details, the most primitive

des
ription that we 
an give of a sequential program is that it is a binary relation on the

so-
alled \state spa
e". (The state spa
e of a program is the set of all values that 
an be

assumed by the program variables.)

A

ording to this view of programs, a programming language is a me
hanism for

des
ribing and stru
turing binary relations that 
an be implemented: that is, des
riptions

of binary relations to whi
h an \operational semanti
s" 
an be given detailing how the

des
ription 
an be interpreted as instru
tions 
ontrolling the exe
ution of a ma
hine.

Programming languages are normally so 
onstrained that they only des
ribe the

relations that are implementable but, in order to support program 
onstru
tion, it is vital

that an algebra be able to express relations that are not ne
essarily implementable or

dire
tly implementable. The notion of a \guard" on a guarded statement is an example.

A guard a
ts as a �lter on the domain of exe
ution of a statement. Operationally it 
an

be viewed as a partial skip. Mathemati
ally, a guard is just a devi
e that enables sets

|subsets of the state spa
e| to be in
orporated into program statements.

In the relation 
al
ulus there are several me
hanisms for viewing sets as relations,

and thus modelling guards, ea
h of whi
h has its own merits. One is via \
onditions"

and another is via \
ore
exives"

1

. Axiomati
ally these have the following de�nitions.

First, we say that relation R is a 
ore
exive if and only if R⊆ I . Se
ond, we say that

relation R is a right 
ondition if and only if R=⊤⊤◦R . Finally, we say that R is a left


ondition if and only if R=R◦⊤⊤ .

1

\Core
exives" are also 
alled \monotypes" [ABH

+
92, BW93, DBvdW97℄ or \tests" [Gl�u17℄, depend-

ing on the intended interpretation; the name \partial identity" is also used (eg. [Voe99℄). We now prefer

the appli
ation-neutral terminology used by Freyd and

�

S�
edrov [Fv90℄.
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In the relational model, we assume, for example, that the universe U 
ontains two

unequal values true and false . The 
ore
exive representation of the set boolean is then

de�ned to be the relation

{(true, true) , (false, false)} .

The right 
ondition representation of the set boolean is the relation

{x:x∈U : (x, true)} ∪ {x:x∈U : (x, false)}

It is 
lear that for any given universe U there is a one-to-one 
orresponden
e between

the subsets of U and the 
ore
exives. Spe
i�
ally, the set A is represented by the


ore
exive p where x[[p]]y ≡ x=y∧y∈A . Equally 
lear is the existen
e of a one-to-one


orresponden
e between the subsets of U and the right 
onditions on U . That is, if A

is some set then the right 
ondition de�ned by A is that relation Ar su
h that for all x

and y , x[[Ar]]y≡y∈A . Similarly, the left 
ondition 
orresponding to A is that relation

Al su
h that for all x and y , x[[Al]]y≡x∈A .

Using 
ore
exives to represent subsets of U as relations, a guard on a relation is

modelled by 
omposition of the relation, either on the left or on the right, with su
h a


ore
exive. Thus, if R and S are relations and p is a 
ore
exive then p◦R and S◦p

are both relations, the �rst being relation R after restri
ting elements in its left domain

to those in p and the se
ond being the relation S after restri
ting elements in its right

domain to those in p . Using 
onditions, a guard on the left domain of relation R is

modelled by the interse
tion of R with a left 
ondition, and a guard on the right domain

of R by its interse
tion with a right 
ondition. In prin
iple, this poses a dilemma on the


hoi
e of representation of sets in the relation 
al
ulus. Should one 
hoose 
ore
exives

or 
onditions?

We 
hoose 
ore
exives, there being several reasons for doing so. One is the simple

fa
t that guarding both on the left and on the right of a relation is a

omplished in

one go with 
ore
exives. Moreover, 
ore
exives have simple and 
onvenient properties.

Spe
i�
ally, for all 
ore
exives p and q

p = I∩p = p
∪

= p◦p

and

p◦q = q◦p = p∩q .

The most 
ompelling reason, however, for 
hoosing to represent sets by 
ore
exives is the

dominant position o

upied by 
omposition among programming primitives. Introdu
ing

a guard in the middle of a sequential 
omposition of relations is a frequent a
tivity that

is easy to express in terms of 
ore
exives but 
lumsy to express with 
onditions.
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Nevertheless, 
onditions do have their pla
e from time to time. They too have at-

tra
tive 
al
ulational properties. In parti
ular, they form a sublatti
e of the latti
e

of relations (that is they are 
losed under union and interse
tion) and |unlike the


ore
exives| they are 
losed under negation. However, from the above it is 
lear that

there is a one-to-one 
orresponden
e between 
ore
exives and both types of 
onditions

whi
h we do
ument formally below. Exploitation of this 
orresponden
e is 
entral to

many 
al
ulations in the relation 
al
ulus. See [DBvdW97℄ for detailed examples.

Distributivity properties are used extensively in our 
al
ulations. In relation algebra,


omposition does not distribute through interse
tion | in general. In spe
i�
 
ases it

does. One su
h 
ase is 
omposition with a 
ore
exive. Spe
i�
ally, for all 
ore
exives p

and all relations R and S ,

p◦(R∩S) = p◦R∩S = p◦R∩p◦S .(5.1)

The �rst equality is proved as follows.

p◦(R∩S) = p◦R∩S

= { anti-symmetry }

p◦(R∩S) ⊆ p◦R∩S ∧ p◦(R∩S) ⊇ p◦R∩S

= { 1st 
onjun
t: distributivity, p⊆ I and monotoni
ity }

p◦(R∩S) ⊇ p◦R∩S

⇐ { modularity rule: (4.8) }

p◦(R∩S) ⊇ p◦(R ∩ p∪

◦S)

= { p⊆ I , monotoni
ity }

true .

Now, for the se
ond equality, we apply the �rst equality:

p◦R∩S

= { p=p◦p }

p◦p◦R∩S

= { [ p◦(R∩S) = p◦R∩S ] with R :=p◦R }

p◦(p◦R∩S)

= { symmetry of interse
tion }

p◦(S∩p◦R)

= { [ p◦(R∩S) = p◦R∩S ] with R,S := S ,p◦R
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symmetry of interse
tion }

p◦R∩p◦S .

5.1 The Domain Operators

In this se
tion, we introdu
e two operators mapping relations to 
ore
exives, the so-
alled

domain operators. They play an extremely important rôle in the theory to follow.

We 
all the two operators the left-domain operator and the right-domain operator .

We might have 
hosen to 
all one of them the \domain operator" and the other the \range

operator", but this would have introdu
ed an unwel
ome dire
tion in the interpretation

of relations. (One of the elements in a pair satisfying a given relation would have to

be designated the input and the other the output.) We prefer to make no 
ommitment

about the \dire
tion" of a relation for as long as possible. The left- and right-domain

operators are denoted by the post�x symbols \

<
" and \

>
", respe
tively.

Definition 5.2 (Right Domain) The right domain of a relation R is the 
ore
exive

denoted by R>
and de�ned by

R> = I∩⊤⊤◦R .

Dually, the left domain of a relation R is the 
ore
exive denoted by R<
and de�ned by

R< = I∩R◦⊤⊤ .

✷

We restri
t our attention here to the right-domain operator. The reader is requested

to dualise the results to the left-domain operator.

The intended interpretation of R>
(read R \right") for relation R is {x | 〈∃y ::y[[R]]x〉} .

Two ways we 
an reformulate this requirement without re
ourse to points are formulated

in the following theorem.

Theorem 5.3 (Right Domain) For all relations R and 
ore
exives p ,

R>⊆p ≡ R⊆⊤⊤◦p and(5.4)

R>⊆p ≡ R=R◦p .(5.5)

✷
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The 
hara
terisations (5.4) and (5.5) predi
t a number of useful 
al
ulational prop-

erties of the right domain operator. Some are immediate, some involve a little bit of

work for their veri�
ation. Immediate from (5.4) |a Galois 
onne
tion| is that the

right domain operator is universally ∪ -jun
tive, and (⊤⊤◦
) is universally distributive

over in�ma of 
ore
exives. In parti
ular,

⊤⊤◦(p∩q) = (⊤⊤◦p)∩ (⊤⊤◦q) ,

(R∪S)> = R>∪S> ,

and

⊥⊥>=⊥⊥ .

The last of these 
an in fa
t be strengthened to

R>=⊥⊥ ≡ R=⊥⊥ .(5.6)

The proof is straightforward: use (5.4) in 
ombination with ⊤⊤◦⊥⊥=⊥⊥ .

From (5.4) we may also dedu
e a number of 
an
ellation properties. But, in 
ombina-

tion with the modularity rule, the 
an
ellation properties 
an be strengthened. We leave

their proofs together with a 
ouple of other interesting appli
ations of Galois 
onne
tions

as exer
ises.

Theorem 5.7 For all relations R , S and T

(a) ⊤⊤ ◦R> = ⊤⊤◦R ,

(b) R ∩ S◦⊤⊤◦T = S< ◦R ◦T> ,

(c) (R∪)> = R< ,

(d) (R∩S◦T)> = (S∪

◦R ∩ T)> ,

(e) (R◦⊤⊤◦S)> = S> ⇐ R 6=⊥⊥ .

✷

We 
omplete this se
tion by do
umenting the isomorphism between 
ore
exives and


onditions. Re
all that the right 
onditions are, by de�nition, the �xed points of the

fun
tion (⊤⊤◦
).

Theorem 5.8 The 
ore
exives are the �xed points of the right domain operator. That

is, for all R ,
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(a) R=R> ≡ R⊆ I .

Also, for all 
ore
exives p and all right 
onditions C ,

(b) (⊤⊤◦p)>=p , and

(
) ⊤⊤ ◦C> = C .

Moreover, for all relations R and S ,

(d) R>⊆S> ≡ ⊤⊤◦R⊆⊤⊤◦S .

Hen
e,

(e) R>=S> ≡ ⊤⊤◦R=⊤⊤◦S .

The right-domain operator is thus a poset isomorphism mapping the set of right


onditions to the set of 
ore
exives and its inverse is the fun
tion (⊤⊤◦
).

✷

Some powerful and far from obvious theorems about 
ore
exives are proved by map-

ping the theorems to statements about 
onditionals and then exploiting the 
hara
teristi


properties of ⊤⊤ | ⊤⊤⊇R for all R , and ⊤⊤=⊤⊤
∪

| to prove these statements. An

illustration of the te
hnique is a�orded by the proof of the following lemma.

(R◦S)>=(R> ◦S)> .(5.9)

We begin the proof by invoking theorem 5.8

(R◦S)> = (R> ◦S)>

= { theorem 5.8(e) }

⊤⊤◦R◦S = ⊤⊤ ◦R> ◦S

= { ⊤⊤ ◦R> = ⊤⊤◦R }

⊤⊤◦R◦S = ⊤⊤◦R◦S

= { re
exivity }

true .

Another useful property is:

X=⊥⊥ ≡ X>=⊥⊥ .(5.10)

The proof is by mutual impli
ation. First,

X=⊥⊥ ⇒ {Leibniz } X>=⊥⊥> ⇒ {⊥⊥>=⊥⊥} X>=⊥⊥ .
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Se
ond,

X>=⊥⊥

= { ⊥⊥ is least relation }

X>⊆⊥⊥

= { theorem 5.3 }

I∩⊤⊤◦X ⊆ ⊥⊥

⇒ { monotoni
ity of 
omposition,

preparing for use of the modularity rule }

(I∩X◦⊤⊤)◦⊤⊤⊆⊥⊥

⇒ { modularity rule: (4.8), ⊤⊤=⊤⊤
∪

}

⊤⊤∩X⊆⊥⊥

= { ⊤⊤ is greatest relation, ⊥⊥ is least relation }

X=⊥⊥ .

For modelling programming statements, in parti
ular 
onditionals, 
omplemented

domains are ne
essary. We assume that the latti
e of 
ore
exives is 
omplemented and

let R>•
denote the 
omplement of R>

. That is,

R>∪R>• = I and R>∩R>• = ⊥⊥ .

Then, for relations R and 
ore
exives p ,

R>• ⊇ p ≡ R◦p=⊥⊥ .(5.11)

Moreover, for all R ,

(R>)>• = R>• = (R>•)> .(5.12)

Note that (5.11) is a slightly disguised Galois 
onne
tion sin
e the right side 
an be

rewritten as R⊆⊥⊥/p . (See (4.7).) The equation de�nes R>•
as the largest 
ore
exive p

su
h that restri
ting the right domain of R to p yields the empty relation. A 
onsequen
e

is the distributivity property

(R∪S)>• = R>•∩S>• .

Just as for the non-
omplemented domain operator, it is diÆ
ult to simplify (R∩S)>• .
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5.2 Points and Extensionality

In this se
tion, our goal is to 
apture the notion that a relation is a set with elements

pairs of points. We begin with the de�nition of a \point"

2

and then postulate an \ex-

tensionality" axiom similar to the notion of saturation dis
ussed in se
tion 2.6.

Definition 5.13 (Point) A homogeneous relation a of type A is a point i� it has

the following three properties.

(a) a 6=⊥⊥ ,

(b) a⊆ I , and

(c) a=a◦⊤⊤◦a .

In words, a point is a proper, 
ore
exive re
tangle.

✷

As in de�nition 5.13, we use lower 
ase letters a , b and c to denote points.

Lemma 5.14 A point is an atom. That is, if a is a point then, for all b ,

b⊆a ≡ b=⊥⊥ ∨ b=a .

Proof Suppose a is a point and b is a relation of the same type as a . The proof that

a is an atom is by mutual impli
ation. \If" is straightforward. For \only if", assume

that b⊆a and b 6=⊥⊥ . We have to prove that b=a . This we do as follows.

b

= { assumptions: b⊆a⊆ I , property of 
ore
exives }

a◦b◦a

= { assumption: a=a◦⊤⊤◦a }

a◦⊤⊤◦a◦b◦a◦⊤⊤◦a

= { assumptions: b⊆a⊆ I , property of 
ore
exives }

a◦⊤⊤◦b◦⊤⊤◦a

= { assumption: b 6=⊥⊥ ; 
one rule }

a◦⊤⊤◦a

= { assumption: a=a◦⊤⊤◦a }

a .

2

The de�nitions and lemmas in this se
tion are due to Ed Voermans.
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✷

The following property was introdu
ed by [Gl�u17℄. Pairs (a, b) in 
lassi
al formu-

lations of relations are 
aptured in our system by events of the form a◦⊤⊤◦b where a

and b are points (proper atomi
 
ore
exives). The 
at
hy name given to the lemma

expresses the property that membership of a relation is a boolean.

Lemma 5.15 (All or Nothing) Suppose a and b are points. Then

〈∀R :: a◦R◦b=⊥⊥ ∨ a◦R◦b=a◦⊤⊤◦b〉 .

Proof Suppose a◦R◦b 6=⊥⊥ . We have to prove that a◦R◦b=a◦⊤⊤◦b .

a◦R◦b

= { assumptions: a=a◦⊤⊤◦a and b=b◦⊤⊤◦b }

a◦⊤⊤◦a◦R◦b◦⊤⊤◦b

= { assumption: a◦R◦b 6=⊥⊥ , 
one rule }

a◦⊤⊤◦b .

✷

In general, if a is a point of type A and b is a point of type B , the relation a◦⊤⊤◦b

represents the pair (a, b) ; given a relation R of type A∼B and points a and b of type

A and B , respe
tively, the statement

a◦⊤⊤◦b ⊆ R

has the interpretation that the pair a and b are related by R . Spe
i�
ally, for all

relations R and points a and b of appropriate type,

(a◦R◦b 6= ⊥⊥) = (a◦⊤⊤◦b ⊆ R) = (a◦⊤⊤◦b = a◦R◦b) .(5.16)

(In 
onforman
e with long-standing mathemati
al pra
ti
e, property (5.16) should be

read 
onjun
tionally: that is as the equality of three terms. In this 
ase, ea
h term is

boolean. The property is a straightforward 
orollary of the all-or-nothing rule.)

The following lemma motivates the all-or-nothing rule. That \pairs" a◦⊤⊤◦b are

atoms is equivalent to the all-or-nothing rule.

Lemma 5.17 Suppose a and b are atomi
 
ore
exives. Then

〈∀R :: a◦R◦b=⊥⊥ ∨ a◦R◦b=a◦⊤⊤◦b〉 ≡ atomic.(a◦⊤⊤◦b) .

Proof Suppose p and q are 
ore
exives. Then, for all R ,
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R ⊆ p◦⊤⊤◦q

= { set theory }

R = R ∩ p◦⊤⊤◦q

= { domains (spe
i�
ally theorem 5.7(b)),

p and q are 
ore
exives, so p=p<
and q=q> }

R = p◦R◦q .

We 
on
lude that

R ⊆ p◦⊤⊤◦q ≡ R = p◦R◦q .

We shall only need to apply this property in the 
ase that p and q are atomi
 
ore
ex-

ives. Now, assume a and b are atomi
 
ore
exives and a◦R◦b=⊥⊥ ∨ a◦R◦b=a◦⊤⊤◦b .

Then

R ⊆ a◦⊤⊤◦b

= { above with p,q :=a,b }

R = a◦R◦b

⇒ { assumption and Leibniz }

R=⊥⊥ ∨ R=a◦⊤⊤◦b .

We 
on
lude, by de�nition 2.49 of atomi
,

〈∀R :: a◦R◦b=⊥⊥ ∨ a◦R◦b=a◦⊤⊤◦b〉 ⇒ atomic.(a◦⊤⊤◦b) .

In words, if the all-or-nothing rule is universally valid for atomi
 
ore
exives a and b ,

then a◦⊤⊤◦b is atomi
. Now, suppose a◦⊤⊤◦b is an atom. Then, for all R ,

a◦R◦b ⊆ a◦⊤⊤◦b

= { a◦⊤⊤◦b is an atom, de�nition 2.49 }

a◦R◦b=⊥⊥ ∨ a◦⊤⊤◦b=a◦R◦b .

That is, if a◦⊤⊤◦b is an atom, the all-or-nothing rule applies to a◦R◦b , for all R .

✷

Combining lemmas 5.15 and 5.17, we get:

Lemma 5.18 For all points a and b , a◦⊤⊤◦b is atomi
.

✷
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Lemma 5.19 For all proper 
ore
exives p and q ,

p◦⊤⊤◦q ⊆ I ⇒ p=q .

Proof

p◦⊤⊤◦q ⊆ I

⇒ { monotoni
ity and unit of 
omposition }

p◦p◦⊤⊤◦q ⊆ p ∧ p◦⊤⊤◦q◦q ⊆ q

⇒ { p is 
ore
exive, so p=p◦p=p>
, similarly for q

monotoni
ity and domains }

(p◦⊤⊤◦q)> ⊆ p ∧ (p◦⊤⊤◦q)< ⊆ q

= { domains (spe
i�
ally theorem 5.7(e)),

p and q are non-empty 
ore
exives }

q⊆p ∧ p⊆q

= { anti-symmetry }

p=q .

✷

An immediate 
orollary of lemma 5.19 is that, for all points a and b ,

a◦⊤⊤◦b ⊆ I ≡ a=b .(5.20)

(Folows-from is immediate from the de�nition of a point. Implies is an instan
e of lemma

5.19.)

Definition 5.21 (Extensional) Suppose A is a type. The latti
e of 
ore
exives of

type A is said to be extensional i� for all 
ore
exives p of type A ,

p = 〈∪a : point.a ∧ a⊆p : a〉 .

✷

We 
on
lude with a theorem stating 
onditions under whi
h the latti
e of relations

(of a given type) is saturated and atomi
. The proper atoms are events of the form

a◦⊤⊤◦b where a and b are points; su
h an event models the pair (a, b) in 
onventional

pointwise formulations of relation algebra.

Theorem 5.22 Suppose, for types A and B , the latti
es of 
ore
exives of types A

and B are both 
omplete, universally distributive and extensional. Then the latti
e of

relations of type A∼B is a saturated, atomi
 latti
e; the atoms are elements of the form
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a◦⊤⊤◦b where a and b are atoms of the latti
e of 
ore
exives (of types A and B ,

respe
tively). It follows that, if the latti
e of relations of type A∼B is 
omplete and

universally distributive, it is isomorphi
 to the powerset of the set of elements of the

form a◦⊤⊤◦b where a and b are atoms of the latti
es of 
ore
exives of types A and

B , respe
tively.

Proof By lemma 5.15, it suÆ
es to prove that the latti
e of relations of type A∼B is

saturated. This is easy: for all R of type A∼B ,

R

= { I is unit of 
omposition,

latti
es of 
ore
exives of types A and B are extensional }

〈∪a :point.a :a〉 ◦R ◦ 〈∪b :point.b :b〉

= { distributivity of 
omposition over ∪ }

〈∪a,b : point.a∧point.b : a◦R◦b〉

= { all-or-nothing rule: lemma 5.15, ⊥⊥ is zero of supremum }

〈∪a,b : point.a ∧ point.b ∧ a◦R◦b 6=⊥⊥ : a◦⊤⊤◦b〉 .

That the latti
e of relations is a powerset follows from theorem 2.51.

✷

Hen
eforth, we assume that, for ea
h type A , the latti
e of 
ore
exives of type A

is 
omplete, universally distributive and saturated. That is, re
alling theorem 2.51,

we assume that the 
ore
exives of a given type form a powerset. Theorem 5.22 then

states that, for ea
h pair of types A and B , the latti
e of relations of type A∼B is

a powerset with atoms of the form a◦⊤⊤◦b where a and b are points of type A and

B , respe
tively. In view of theorem 2.51, we use ⊆ for the ordering relation and ∼

for the 
omplement operator on 
ore
exives. We use ¬ for the 
omplement operator

on relations. Thus, for 
ore
exive p , ∼p = I∩¬p . Later, when the relations represent

graphs, we use \node" as a synonym for \point". Standard properties of powersets |the

properties of set union, interse
tion and 
omplementation| will be assumed, sometimes

without spe
i�
 mention and sometimes with the hint \set theory".

We use p and q to range over 
ore
exives and a and b to range over points.

Summarising, the saturation property is that

〈∀R :: R = 〈∪a,b : a◦⊤⊤◦b⊆R : a◦⊤⊤◦b〉〉 .(5.23)

The irredu
ibility property is that, if R is a fun
tion with range relations of type A∼B

and sour
e K , then, for all points a and b of appropriate type,

a◦⊤⊤◦b ⊆ ∪R ≡ 〈∃k : k∈K : a◦⊤⊤◦b⊆R.k〉 .(5.24)
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The identity relation IA of type A has the property that, for all points a and a ′
of

type A ,

a◦⊤⊤◦a ′ ⊆ IA ≡ a=a ′ .(5.25)

Other than its de�nition, the 
ru
ial property of the 
omplement operator on 
ore
exives

is that, for all points a and 
ore
exives p ,

¬(a⊆p) ≡ a⊆∼p .

See lemma 2.52.

5.2.1 Properties of Points

This se
tion do
uments properties of points with respe
t to domains and fa
tors.

Lemma 5.26 For all relations R and points a and b (of appropriate type),

a ⊆ R< ≡ (a◦R)> 6= ⊥⊥ , and

b ⊆ R> ≡ (R◦b)< 6= ⊥⊥ .

Proof We prove the se
ond equation.

(R◦b)< 6= ⊥⊥

= { 
one rule: (4.16) }

⊤⊤ ◦ (R◦b)< ◦⊤⊤ = ⊤⊤

= { [ R< ◦⊤⊤ = R◦⊤⊤ ] with R :=R◦b }

⊤⊤◦R◦b◦⊤⊤ = ⊤⊤

= { [ ⊤⊤ ◦R> = ⊤⊤◦R ] }

⊤⊤ ◦R> ◦b ◦⊤⊤ = ⊤⊤

= { 
one rule: (4.16) }

R> ◦b 6= ⊥⊥

= { R> ◦b ⊆ b ;

so, by atomi
ity of b , R> ◦b = b ∨ R> ◦b = ⊥⊥ ;

also, b 6= ⊥⊥ }

R> ◦b = b

= { R> ◦b = R>∩b }

b ⊆ R> .
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✷

For a point b the square R ◦b ◦R
∪

represents the set of all points a su
h that a and

b are related by R . This is made pre
ise in lemma 5.27 and its 
orollary, lemma 5.28.

Lemma 5.27 For all relations R of type A∼B , all 
ore
exives p of type A∼A and

all points b of type B ,

p ⊆ R ◦b ◦R
∪

≡ p◦⊤⊤◦b ⊆ R .

Symmetri
ally, for all relations R of type A∼B , all 
ore
exives q of type B∼B and

all points a of type A ,

q ⊆ R
∪

◦a ◦R ≡ a◦⊤⊤◦q ⊆ R .

Proof By mutual impli
ation:

p ⊆ R ◦b ◦R
∪

⇒ { monotoni
ity }

p◦⊤⊤◦b ⊆ R ◦b ◦R
∪

◦⊤⊤ ◦b

⇒ { R
∪

◦⊤⊤ ⊆ ⊤⊤ }

p◦⊤⊤◦b ⊆ R◦b◦⊤⊤◦b

⇒ { b is a point: so, by de�nition 5.13, b◦⊤⊤◦b=b and b⊆ I }

p◦⊤⊤◦b ⊆ R

⇒ { 
onverse and monotoni
ity }

p ◦⊤⊤ ◦b ◦b ◦⊤⊤ ◦p
∪ ⊆ R ◦b ◦R

∪

⇒ { b is a point: so b◦b=b and ⊤⊤◦b◦⊤⊤=⊤⊤

p is a 
ore
exive, so p
∪ =p ; monotoni
ity }

p◦⊤⊤◦p ⊆ R ◦b ◦R
∪

⇒ { I⊆⊤⊤ and p◦p=p }

p ⊆ R ◦b ◦R
∪

.

✷

Property (5.16) is the most basi
 formulation of membership of pairs in a relation. It


an also be formulated in terms of squares and in terms of domains:

Lemma 5.28 For all relations R and points a and b (of appropriate type),

(a ⊆ R ◦b ◦R
∪

) = (a◦⊤⊤◦b ⊆ R) = (b ⊆ R
∪

◦a ◦R) .
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Proof Straightforward instantiation of lemma 5.27:

a ⊆ R ◦b ◦R
∪

= { lemma 5.27 with p :=a }

a◦⊤⊤◦b ⊆ R

= { lemma 5.27 with p :=b }

b ⊆ R
∪

◦b ◦R .

✷

Lemma 5.29 For all relations R and points a and b (of appropriate type),

(a ⊆ (R◦b)<) = (a◦⊤⊤◦b ⊆ R) = (b ⊆ (a◦R)>) .

Proof

a◦⊤⊤◦b ⊆ R

⇒ { monotoni
ity and a is a 
ore
exive, so a◦a=a }

a◦⊤⊤◦b ⊆ a◦R

⇒ { monotoni
ity }

(a◦⊤⊤◦b)> ⊆ (a◦R)>

= { domains abd }

b ⊆ (a◦R)>

⇒ { monotoni
ity }

a◦⊤⊤◦b ⊆ a ◦⊤⊤ ◦ (a◦R)>

= { domains: [ ⊤⊤ ◦R> = ⊤⊤◦R ] with R :=a◦R }

a◦⊤⊤◦b ⊆ a◦⊤⊤◦a◦R

= { a is a point, so a◦⊤⊤◦a=a }

a◦⊤⊤◦b ⊆ a◦R

⇒ { a is a 
ore
exive, monotoni
ity }

a◦⊤⊤◦b ⊆ R .

That is, we have shown by mutual impli
ation that

a◦⊤⊤◦b ⊆ R ≡ b ⊆ (a◦R)> .
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A symmetri
 
al
ulation establishes that

a◦⊤⊤◦b ⊆ R ≡ a ⊆ (R◦b)< .

✷

Combined with property (5.16), lemmas 5.28 and 5.29 give six alternative ways of

formulating the membership relation a◦⊤⊤◦b ⊆ R . All are useful.

Lemma 5.30 For all relations R and points a (of appropriate type),

a⊆R< ≡ 〈∃b : b⊆R> : a◦⊤⊤◦b ⊆ R〉 .

Also, for all relations R and points b (of appropriate type),

b⊆R> ≡ 〈∃a : a⊆R< : a◦⊤⊤◦b ⊆ R〉 .

Proof We prove the �rst equation:

a ⊆ R<

= { lemma 5.26 }

(a◦R)> 6= ⊥⊥

= { lemma 5.32 }

〈∃b :: b ⊆ (a◦R)>〉

= { lemma 5.29 }

〈∃b :: a◦⊤⊤◦b ⊆ R〉

= { domains (spe
i�
ally, a◦⊤⊤◦b ⊆ R⇒ b⊆R>
) }

〈∃b : b⊆R> : a◦⊤⊤◦b ⊆ R〉 .

✷

Lemma 5.31 gives a pointwise interpretations of the fa
tor operators. Although we

typi
ally try to avoid pointwise reasoning, the lemma is sometimes indispensable.

Lemma 5.31 For all relations R of type A∼C and S of type B∼C (for some A , B

and C ) and all points a and b ,

a◦⊤⊤◦b ⊆ R/S ≡ (b◦S)> ⊆ (a◦R)> .

Dually, for all relations R of type C∼A and S of type C∼B , and all points a and b ,

a◦⊤⊤◦b ⊆ R\S ≡ (R◦a)< ⊆ (S◦b)< .

Proof By mutual impli
ation:
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a◦⊤⊤◦b ⊆ R/S

= { de�nition of fa
tor }

a◦⊤⊤◦b◦S ⊆ R

⇒ { a and b are points, monotoni
ity and domains

(see initial steps in proof of lemma 5.29) }

(b◦S)> ⊆ (a◦R)>

⇒ { monotoni
ity }

a ◦⊤⊤ ◦ (b◦S)> ⊆ a ◦⊤⊤ ◦ (a◦R)>

= { domains }

a◦⊤⊤◦b◦S ⊆ a◦⊤⊤◦a◦R

= { a is a point (so a◦⊤⊤◦a=a ) }

a◦⊤⊤◦b◦S ⊆ a◦R

⇒ { a is a 
ore
exive }

a◦⊤⊤◦b◦S ⊆ R

= { de�nition of fa
tor }

a◦⊤⊤◦b ⊆ R/S .

The se
ond equivalen
e is proved similarly.

a◦⊤⊤◦b ⊆ R\S

= { de�nition of fa
tor }

R◦a◦⊤⊤◦b ⊆ S

⇒ { monotoni
ity and 
ore
exives

(see initial steps in proof of lemma 5.29) }

(R◦a)< ⊆ (S◦b)<

⇒ { (as in above 
al
ulation) }

a◦⊤⊤◦b ⊆ R\S .

✷

5.2.2 Unicity

Sometimes we want to de�ne fun
tions indire
tly via a property relating input and output

values. The property is formalised and then it is shown that the formal spe
i�
ation
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relates ea
h input value to exa
tly one output value. That is, the formal spe
i�
ation

relates ea
h input value to at most one and at least one output value. In order to reason

within our axiom system, we then want to 
on
lude that output values are points. See,

for example, se
tion 5.3, where we de�ne the meaning of fun
tionality and exhibit an

expression that formulates, in very general terms, the result of applying a fun
tion to an

argument.

Although the pro
ess seems to be obvious, we want to sti
k to our goal of validating

every step within our axiom system. For this reason, we now present the te
hni
al

justi�
ation. As just mentioned, we refer the reader to se
tion 5.3 for a 
on
rete example.

In the following lemmas, p is a 
ore
exive relation and dummies a and a ′
are points

of the same type as p .

We begin with the 
onsequen
e of showing that spe
i�
ation p has at least one

solution.

Lemma 5.32

p 6=⊥⊥ ≡ 〈∃a ::a⊆p〉 .

Proof

p 6=⊥⊥

= { 
one rule: (4.16) }

⊤⊤◦p◦⊤⊤ = ⊤⊤

= { saturation property: (5.23) }

⊤⊤ ◦ 〈∪a :a⊆p :a〉 ◦⊤⊤ = ⊤⊤

= { distributivity }

〈∪a :a⊆p :⊤⊤◦a◦⊤⊤〉 = ⊤⊤

= { a ranges over points, so a 6=⊥⊥ , 
one rule: (4.16) }

〈∪a :a⊆p :⊤⊤〉 = ⊤⊤

⇒ { 〈∪a : false :⊤⊤〉=⊥⊥ and ⊥⊥ 6=⊤⊤ }

〈∃a ::a⊆p〉

⇒ { a ranges over points: so ⊥⊥ 6=a

predi
ate 
al
ulus, (details left to the reader) }

p 6=⊥⊥ .

✷

Next we formulate the 
onsequen
e of showing that spe
i�
ation p has at most one

solution.
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Lemma 5.33

〈∀a : a⊆p : a=p〉 ≡ 〈∀a,a ′ : a⊆p ∧ a ′⊆p : a=a ′〉 .

Proof

〈∀a : a⊆p : a=p〉

= { anti-symmetry }

〈∀a : a⊆p : a⊇p〉

= { extensionality assumption: de�nition 5.21 }

〈∀a : a⊆p : a ⊇ 〈∪a ′ :a ′⊆p :a ′〉〉

= { suprema }

〈∀a : a⊆p : 〈∀a ′ : a ′⊆p : a⊇a ′〉〉

⇐ { re
exivity of the subset relation }

〈∀a : a⊆p : 〈∀a ′ : a ′⊆p : a=a ′〉〉

= { nesting of quanti�
ations }

〈∀a,a ′ : a⊆p ∧ a ′⊆p : a=a ′〉

⇐ { Leibniz and predi
ate 
al
ulus }

〈∀a : a⊆p : a=p〉 .

✷

Theorem 5.34 Suppose p is a 
ore
exive relation. Then p is a point equivales

〈∃a ::a⊆p〉 ∧ 〈∀a,a ′ : a⊆p ∧ a ′⊆p : a=a ′〉 .

(As above, dummies a and a ′
range over points of the same type as p .)

In words, a spe
i�
ation p de�nes a point i� it has at least one solution and at most

one solution.

Proof In the following dummy q ranges over 
ore
exives of the same type as p and

a ranges over points of the same type as p .

p is atomi


= { de�nition 2.49 }

〈∀q : q⊆p : q=p ∨ q=⊥⊥〉

= { trading }
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〈∀q : q⊆p∧q 6=⊥⊥ : q=p〉

= { lemma 5.32 }

〈∀q : q⊆p∧ 〈∃a ::a⊆q〉 : q=p〉

= { distributivity (of 
onjun
tion over disjun
tion),

range disjun
tion }

〈∀q,a : a⊆q⊆p : q=p〉

⇐ { anti-symmetry }

〈∀a : a⊆p : a=p〉

= { lemma 5.33 }

〈∀a,a ′ : a⊆p ∧ a ′⊆p : a=a ′〉 .

Also,

p is atomi


= { de�nition 2.49 }

〈∀q : q⊆p : q=p ∨ q=⊥⊥〉

⇒ { points a and a ′
are 
ore
exives, weakening }

〈∀a,a ′ : a⊆p ∧ a ′⊆p : (a=p ∨ a=⊥⊥) ∧ (a ′=p ∨ a ′=⊥⊥)〉

= { points are proper (i.e. a 6=⊥⊥ and a ′ 6=⊥⊥ ) }

〈∀a,a ′ : a⊆p ∧ a ′⊆p : a=p ∧ a ′=p〉

⇒ { transitivity of equality }

〈∀a,a ′ : a⊆p ∧ a ′⊆p : a=a ′〉 .

Combining the two 
al
ulations, we have established by mutual impli
ation that

p is atomi
 ≡ 〈∀a,a ′ : a⊆p∧a ′⊆p : a=a ′〉 .(5.35)

It follows that, for all 
ore
exives p ,

p is a point

= { de�nitions 2.49 and 5.13, assumption: p is 
ore
exive }

p 6=⊥⊥ ∧ p is atomi


= { lemma 5.32 and (5.35) }

〈∃a ::a⊆p〉 ∧ 〈∀a,a ′ : a⊆p ∧ a ′⊆p : a=a ′〉 .

✷
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5.3 Functionality and Totality

A subset of the relations is formed by the fun
tions, whi
h 
an be seen as deterministi


relations. There are a number of ways to 
hara
terise them. Be
ause we want to stress

the importan
e of Galois 
onne
tions we 
hoose the following.

Definition 5.36 (Functional Relation) A relation f is said to be fun
tional if and

only if it has the property that for all relations R and S :

R ◦ f> ⊆ S◦f ≡ R ◦ f
∪

⊆ S .(5.37)

✷

Note: The 
onverse-dual of (5.37) 
ould equally have been 
hosen as the de�nition

of fun
tional. It is at this point that we are obliged to 
ommit to a \dire
tion" when

giving pointwise interpretations to relations. Spe
i�
ally, we interpret the left domain of

a relation as the possible \outputs" of the relation and the right domain as the possible

\inputs". (See also se
tion 5.4.) This 
hoi
e is 
onsistent with the use of the symbol \

◦
"

to denote both 
omposition of relations and 
omposition of fun
tions.

The de�nition of fun
tional is almost a Galois 
onne
tion, but not quite: the right

domain on the lefthand side spoils it. However, it is a Galois 
onne
tion if we restri
t our

attention to total fun
tions, that is fun
tional relations with right domain the identity

relation. Another way of turning the de�nition into a Galois 
onne
tion is by 
onsidering

the set of relations with right domain 
ontained in f> . It 
an be shown that these

relations form a 
omplete latti
e with ⊥⊥ as bottom element, relation ⊤⊤ ◦ f> as top

and the interse
tion and union operators as meet and join. It is not diÆ
ult to verify

that the fun
tions (

◦f ) and (

◦(f∪) ) form a Galois 
onne
tion between this latti
e and the

latti
e of the relations. As a 
onsequen
e, the fun
tion (

◦f ) distributes over non-empty

interse
tions of relations, a property that is expe
ted from pointwise 
onsiderations.

In this se
tion, we deviated from our pra
ti
e of starting with a pointwise interpreta-

tion. So, we now have to 
he
k whether the de�nition 
aptures the idea of fun
tionality.

The 
hara
terising property of a fun
tion is that it is single-valued (also known as Leib-

niz's rule), i.e. if y[[f]]x and z[[f]]x then y is equal to z . This is written as:

〈∀y,z : 〈∃x ::y[[f]]x ∧ z[[f]]x〉 : y[[I]]z〉 .

After rewriting the existential quanti�
ation using relation 
omposition and subsequently

the universal quanti�
ation using the de�nition of relation in
lusion, we obtain (the mu
h

more 
on
ise):

f ◦ f
∪

⊆ I .(5.38)
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Expression (5.38) follows easily from de�nition 5.36 by instantiation of R to f and S to

I . It is also not diÆ
ult to derive 
ondition (5.37) from (5.38), in other words, expression

(5.38) is an alternative de�nition of the notion of fun
tionality.

As is often the 
ase with important 
on
epts, there is a number of equivalent de�ni-

tions of fun
tionality. We mention a third:

f ◦ f
∪

= f< .(5.39)

This is obtained by rewriting (5.38) as f ◦ f
∪ = I ∩ f ◦ f∪ and noting that the righthand

side of the latter formula is equal to the left domain of f (this uses the dual of (4.14)).

The notion dual to fun
tionality, viz. inje
tivity, is now of 
ourse easy to de�ne as: f

is inje
tive if and only if f
∪

is fun
tional. A relation that is both inje
tive and fun
tional

is 
alled a bije
tion.

The standard notion of a partial fun
tion is a relation that de�nes a unique output

value for ea
h input value in its domain. In our axiom system we have the following

theorem.

Theorem 5.40 Suppose relation R has type A∼B . Then

R ◦R
∪

⊆ IA ≡
〈

∀b : b⊆R> : point.(R ◦b ◦R
∪

)
〉

.(5.41)

Moreover, if f is a relation of type A∼B and f ◦ f
∪ ⊆ IA , the relation f ◦b ◦ f

∪

is a point

of type A and

〈

∀a,b : b⊆ f> : a◦⊤⊤◦b ⊆ f ≡ a = f ◦b ◦ f
∪
〉

.(5.42)

Proof We prove (5.41) by mutual impli
ation. First,

R ◦R∪ ⊆ IA

= { domains }

R ◦R> ◦R
∪ ⊆ IA

= { extensionality assumption: de�nition 5.21 }

R ◦ 〈∪b : b⊆R> : b〉 ◦R∪ ⊆ IA

= { distributivity }

〈∀b : b⊆R> : R ◦b ◦R
∪ ⊆ IA〉

⇐ { de�nition 5.13 of a point }

〈∀b : b⊆R> : point.(R ◦b ◦R
∪)〉 .

Thus we have established the \if" part of the equivalen
e. Now, for the \only-if", assume

R ◦R
∪ ⊆ IA .
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We �rst note that, for all b su
h that b⊆R>
, the equation

a: point.a: a◦⊤⊤◦b ⊆ R(5.43)

has at most one solution sin
e, for all points a and a ′
of type A ,

a◦⊤⊤◦b ⊆ R ∧ a ′
◦⊤⊤◦b ⊆ R

⇒ { 
onverse and monotoni
ity }

a◦⊤⊤◦b◦b◦⊤⊤◦a ′ ⊆ R ◦R
∪

= { b is a point, so ⊤⊤◦b◦b◦⊤⊤=⊤⊤ }

a◦⊤⊤◦a ′ ⊆ R ◦R
∪

⇒ { assumption: R ◦R
∪ ⊆ IA , transitivity of the subset relation }

a◦⊤⊤◦a ′ ⊆ IA

⇒ { a and a ′
are points: (5.25) }

a=a ′ .

That is,

〈∀b : b⊆R> : 〈∀a,a ′ : a◦⊤⊤◦b ⊆ R ∧ a ′
◦⊤⊤◦b ⊆ R : a=a ′〉〉 .(5.44)

By lemma 5.26, equation (5.43) has at least one solution for all points b su
h that

b⊆R>
. That is,

〈∀b : b⊆R> : 〈∃a :: a◦⊤⊤◦b ⊆ R〉〉 .(5.45)

Thus equation (5.43) has exa
tly one solution for all points b su
h that b⊆ f> . So:

〈∀b : b⊆R> : point.(R ◦b ◦R
∪)〉

= { R ◦b ◦R
∪

⊆ { assumption: b⊆R>
, monotoni
ity }

R ◦R> ◦R
∪

= { domains }

R ◦R
∪

⊆ { assumption: R ◦R
∪ ⊆ IA }

IA ,

theorem 5.34 with p := R ◦b ◦R
∪

}

〈∀b : b⊆R> : 〈∃a :: a ⊆ R ◦b ◦R
∪〉〉
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∧ 〈∀b : b⊆R> : 〈∀a,a ′ : a ⊆ R ◦b ◦R
∪

∧ a ′ ⊆ R ◦b ◦R
∪

: a=a ′〉〉

= { lemma 5.28 }

〈∀b : b⊆R> : 〈∃a :: a◦⊤⊤◦b ⊆ R〉〉

∧ 〈∀b : b⊆R> : 〈∀a,a ′ :a◦⊤⊤◦b ⊆ R ∧ a ′
◦⊤⊤◦b ⊆ R :a=a ′〉〉

= { (5.44) and (5.45) }

true .

This 
on
ludes the proof of (5.41).

Now, assuming that f ◦ f
∪ ⊆ I , it follows from (5.41) (with R := f ) that f ◦b ◦ f

∪

is a

point. Also, for all points a and b (of types A and B , respe
tively),

b⊆ f> ∧ a◦⊤⊤◦b ⊆ f

= { lemma 5.29 (aiming to eliminate �rst 
onjun
t) }

b⊆ f> ∧ b⊆ (a◦f)> ∧ a◦⊤⊤◦b ⊆ f

= { monotoni
ity and lemma 5.29 }

a◦⊤⊤◦b ⊆ f

= { lemma 5.28 }

a ⊆ f ◦b ◦ f
∪

= { f ◦b ◦ f
∪

is a point, de�nitions 5.13 and 2.49 }

a = f ◦b ◦ f
∪

.

✷

In words, theorem 5.40 states that f is fun
tional i�, for all points b in the right

domain of f , the relation f ◦b ◦ f
∪

de�nes a unique point of type A . This is the point

that we denote by f.b . The de�ning property of f.b is thus

〈∀a,b : b⊆ f> : a◦⊤⊤◦b ⊆ f ≡ a= f.b〉 .(5.46)

A 
onsequen
e of the uni
ity property expressed by (5.46) is the property that, for all

fun
tional relations f of type C∼A and g of type C∼B , and all points a and b ,

a◦⊤⊤◦b ⊆ f
∪

◦g ≡ a⊆ f> ∧ f.a=g.b ∧ b⊆g> .(5.47)

When introdu
ing the modularity rule in se
tion 4.1.2, we emphasised the importan
e

of distributivity properties. A distributivity property that possibly goes unnoti
ed in

pointwise 
al
ulations but must be used expli
itly in point-free 
al
ulations is the dis-

tributivity of fun
tions over interse
tion: for all relations R and S and all fun
tional

relations f ,

(R∩S)◦f = R◦f∩S◦f .(5.48)
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The property is an appli
ation of (4.15) 
ombined with (5.38).

Besides fun
tionality and inje
tivity, there are two other dual notions whi
h relations

may enjoy: totality and surje
tivity. We only spell out what it means for a relation to

be total, be
ause surje
tivity 
an be de�ned in terms of totality: relation R is surje
tive

i� its 
onverse R
∪

is total.

Relation R is total means that it 
an a

ept every element of the universe as an

input. Formally, relation R is total i� R>= I . An equivalent formulation is: I ⊆ R
∪

◦R .

From this, it 
an be seen that surje
tivity is, in a sense, also dual to inje
tivity: relation

R is inje
tive 
an be expressed as I ⊇ R
∪

◦R .

We 
on
lude this se
tion with a useful lemma on establishing the equality of two

fun
tional relations.

Lemma 5.49 Suppose f and h are fun
tional relations of the same type. Then

f=h ≡ f⊆h ∧ f>=h>

Proof Clearly, the left side implies the right side and it suÆ
es to prove follows-from.

h⊆ f

= { domains: (5.5), and assumption: f>=h> }

h ◦ f> ⊆ f

= { assumption: f is a fun
tion and (5.37) }

h ◦ f
∪ ⊆ I

⇐ { assumption: f⊆h , monotoni
ity and transitivity }

h ◦h
∪ ⊆ I

= { assumption: h is a fun
tion and (5.38) }

true .

The required impli
ation follows from the anti-symmetry of the subset relation.

✷

5.4 Heterogeneous Relations

A heterogeneous relation R has a type given by two sets A and B , whi
h we 
all the

target and sour
e of R . We use the notation A∼B to denote the type of a relation.

Formally, a relation of type A∼B is a subset of A×B . (Equivalently, it is a fun
tion
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with domain A×B and range Bool .) A homogeneous relation is a relation of type A∼A

for some A .

The target and sour
e of a relation should not be 
onfused with its left domain and

right domain. If R has type A∼B then its left domain R<
has type A∼A and its right

domain R>
has type B∼B . As always, R<

and R>
are 
ore
exives, but this property

is expressed formally as R<⊆ IA and R>⊆ IB , where IA denotes the identity relation of

type A∼A (and similarly for IB ).

The operators in the algebra of heterogeneous relations are typed. For example, the


omposition of two relations R and S , denoted as always by R◦S , is only de�ned when

the sour
e of R equals the target of S . Moreover, the target of R◦S is the target of R

and the sour
e of R◦S is the sour
e of S . That is, if R has type A∼B and S has type

B∼C then R◦S has type A∼C . We assume the reader is familiar with su
h rules.

As mentioned earlier, the rules of the untyped 
al
ulus are appli
able in the typed


al
ulus, with some restri
tions on types. For example, the rule R = R< ◦R remains

valid without restri
tion. Restri
tions are ne
essary on types for the middle-ex
hange

and rotation rules (see se
tion 4). For example, the in
lusion R◦S⊆¬T
∪

is only de�ned

if R has type A∼B , S has type B∼C and T has type C∼A , for some sets A , B

and C . (The 
onverse T
∪

of T then has type A∼C , whi
h equals the type of ¬T
∪

and R◦S .) With these type restri
tions, S◦T ⊆¬R
∪

is also well-de�ned, and the two

in
lusions R◦S⊆¬T
∪

and S◦T ⊆¬R
∪

are equal as per the rotation rule.

It is now possible to see why the 
hoi
e of an in
lusive-or in the statement of the 
one

rule (4.16) is vital: the rule, for all R :

R=⊥⊥ 6≡ ⊤⊤◦R◦⊤⊤ = ⊤⊤

is invalid in the 
ase that the type of R is ∅∼∅ and, as good programmers are very well

aware, su
h extreme 
ases 
an and do o

ur in pra
ti
e.

The 
are that must be exer
ised with overloading is exempli�ed by the rule

R◦⊤⊤ = R< ◦⊤⊤ .

Re
all that, if R has type A∼B , R<
has type A∼A . Thus the notation \⊤⊤ " on

the left side of the equation denotes the universal relation of type B∼C , for some type

C ; on the other hand, the notation \⊤⊤ " on the right side of the equation denotes the

universal relation of type A∼C . Rather than overload the notation in this way, we 
ould

de
orate every o

urren
e of ⊤⊤ with its type. For example, we 
ould rephrase the rule

as

R ◦ B⊤⊤C = R< ◦ A⊤⊤C .

We prefer not to do so be
ause the type information is usually easy to infer. (An

ex
eption is that we o

asionally de
orate the identity relation I with its type: IA
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denotes the identity relation of type A∼A .) Nevertheless, we urge the reader to 
he
k

types, parti
ularly where notation is overloaded.

Typed relation algebra, as brie
y summarised above, extends 
ategory theory to what

has been 
alled allegory theory . See Freyd and

�

S�
edrov [Fv90℄ for more details.

5.5 The Interface Between Formal and Informal

In order to narrow the gap between 
onventional pointwise reasoning and the formal

axiomati
 reasoning in this paper, this se
tion explains how to pro
eed from one to the

other.

Theorem 5.22 enables more familiar pointwise reasoning. For example, we 
an derive

the standard pointwise de�nition of the 
omposition of relations. With dummies a , b ,

c and d ranging over proper atomi
 
ore
exives, we have:

R◦S

= { theorem 5.22 }

〈∪a,b : a◦R◦b 6=⊥⊥ : a◦⊤⊤◦b〉 ◦ 〈∪ c,d : c◦S◦d 6=⊥⊥ : c◦⊤⊤◦d〉

= { distributivity and nesting of quanti�
ations }

〈∪a,b,c,d : a◦R◦b 6=⊥⊥ ∧ c◦S◦d 6=⊥⊥ : a◦⊤⊤◦b◦c◦⊤⊤◦d〉

= { b◦c=⊥⊥ ⇐ b 6= c , one-point rule and b◦b=b ; }

〈∪a,b,d : a◦R◦b 6=⊥⊥ ∧ b◦S◦d 6=⊥⊥ : a◦⊤⊤◦b◦⊤⊤◦d〉

= { 
one rule: (4.16), and b 6=⊥⊥ }

〈∪a,b,d : a◦R◦b 6=⊥⊥ ∧ b◦S◦d 6=⊥⊥ : a◦⊤⊤◦d〉

= { disjun
tion rule of the quanti�er 
al
ulus }

〈∪a,d : 〈∃b :: a◦R◦b 6=⊥⊥ ∧ b◦S◦d 6=⊥⊥〉 : a◦⊤⊤◦d〉 .

That is, with dummies a , b and d ranging over proper atomi
 
ore
exives,

R◦S = 〈∪a,d : 〈∃b :: a◦R◦b 6=⊥⊥ ∧ b◦S◦d 6=⊥⊥〉 : a◦⊤⊤◦d〉(5.50)

A similar 
al
ulation gives the standard pointwise de�nition of the 
onverse of a relation.

R
∪

= 〈∪a,b : a◦R◦b 6=⊥⊥ : b◦⊤⊤◦a〉 .(5.51)

In these 
al
ulations, the boolean a◦R◦b 6=⊥⊥ plays the role of a[[R]]b in 
onventional

reasoning. Atomi
 
ore
exives a and b thus play the role of points and an event of

the form a◦⊤⊤◦b models the pair (a, b) in 
onventional pointwise reasoning. In this
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way, pointwise statements in 
onventional reasoning 
an be me
hani
ally translated into

statements in our formal axiomati
 system.

In the opposite dire
tion, translating point-free statements into pointwise statements

involves exploiting the fa
t that the latti
e of relations is saturated and atomi
. This

allows a relation to be rewritten as the supremum of set of atoms a◦⊤⊤◦b in the same

way that in 
onventional reasoning a relation is expressed as the union of a set of pairs.

Typi
ally (as illustrated above) this involves the introdu
tion of quanti�ers, in
luding

universal and/or existential quanti�ers.

As in example, this is how (5.38) is justi�ed within the formal system we have pre-

sented.

f ◦ f
∪

= { theorem 5.22 }

〈∪a,b : a ◦ f ◦ f
∪

◦b 6= ⊥⊥ : a◦⊤⊤◦b〉

= { pointwise de�nitions: (5.50) and (5.51)

and quanti�er 
al
ulus (range disjun
tion) }

〈∪a,b,c : a◦f◦c 6= ⊥⊥ ∧ b◦f◦c 6= ⊥⊥ : a◦⊤⊤◦b〉 .

So,

〈∀a,b : 〈∃c :: a◦f◦c 6= ⊥⊥ ∧ b◦f◦c 6= ⊥⊥〉 : a=b〉

= { range disjun
tion }

〈∀a,b,c : a◦f◦c 6= ⊥⊥ ∧ b◦f◦c 6= ⊥⊥ : a=b〉

= { (5.20) }

〈∀a,b,c : a◦f◦c 6= ⊥⊥ ∧ b◦f◦c 6= ⊥⊥ : a◦⊤⊤◦b⊆ I〉

= { above and property of supremum }

f ◦ f
∪ ⊆ I .

Of 
ourse, it is impossible to avoid pointwise reasoning. All the meta-reasoning we

do is pointwise |the \points" are the events in our axiom system| and, within our

axiom system, it is sometimes ne
essary to exploit saturation and atomi
ity.

When reasoning about algorithms in later se
tions, mu
h of the reasoning be
omes

pointwise. The \points" are states of the program and properties of the states are

expressed pointwise in terms of the values of the program variables. For this reason, it

is important to 
onsider the di�erent ways that properties are formulated.

Just as, in 
onventional reasoning, a[[R]]b and (a, b)∈R have the same meaning

|impli
itly exploiting the isomorphism between a subset of a power set and its 
hara
-

teristi
 (boolean-valued) fun
tion| the two expressions a◦R◦b 6=⊥⊥ and a◦R◦b=a◦⊤⊤◦b
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have the same meaning. Indeed, there are many di�erent but equivalent expressions in


onventional pointwise reasoning; similarly, there are often di�erent, but equivalent ways

of translating informal expressions into the formal 
al
ulus.

When formulating proof rules for reasoning about algorithms, we typi
ally 
hoose to

represent guards and assertions by 
ore
exives. See, for example, the indu
tion theorem

for reasoning about depth-�rst sear
h presented in 
hapter 12. However, guards and

assertions in programs are invariably expressed as boolean fun
tions of the state spa
e.

Consequently, when applying the proof rules we need a formal me
hanism for translating

between the language of 
ore
exive relations and boolean fun
tions. Below we formulate

the translation.

The type Bool has two elements true and false . Let us use TRUE and FALSE to

denote points of type Bool∼Bool representing the subsets {true} and {false} , respe
tively.

Suppose State is a set. The name is 
hosen on a

ount of the appli
ation: State is the

state spa
e of a program segment. Then the fun
tion

〈P :: (TRUE ◦P)>〉

maps a fun
tion P of type Bool←State into a 
ore
exive of type State∼State that

represents the set of states σ for whi
h P.σ is true . Conversely, the fun
tion

〈p :: TRUE◦⊤⊤◦p ∪ FALSE ◦⊤⊤ ◦p>•〉

maps a 
ore
exive p of type State∼State into a (total) fun
tion of type Bool←State .

(Note that p>•=∼(p>)=∼p .)

Lemma 5.52 Suppose P is a total fun
tion of type Bool←State . Then

(TRUE ◦P)>• = (FALSE ◦P)>

and

(FALSE ◦P)>• = (TRUE ◦P)> .

Proof By mutual in
lusion. First,

(TRUE ◦P)>• ⊇ (FALSE ◦P)>

= { de�nition of 
omplemented domain: (5.11) }

TRUE ◦P ◦ (FALSE ◦P)> = ⊥⊥

= { (5.6) with \

>
" repla
ed by \

<
" }

(TRUE ◦P ◦ (FALSE ◦P)>)< = ⊥⊥

= { (5.9) and 5.7(
) }
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(TRUE ◦P ◦P
∪

◦ FALSE)< = ⊥⊥

= { (5.6) with \

>
" repla
ed by \

<
" }

TRUE ◦P ◦P
∪

◦ FALSE = ⊥⊥

⇐ { assumption: P is a fun
tion, so P ◦P∪ ⊆ IBool }

TRUE ◦ FALSE = ⊥⊥

= { FALSE=∼TRUE }

true .

Se
ond,

(TRUE ◦P)>• ⊆ (FALSE ◦P)>

= { 
omplements }

(TRUE ◦P)>• ◦ (FALSE ◦P)>• ⊆ ⊥⊥

= { 
omplements, ∼⊥⊥= I }

(TRUE ◦P)>∪ (FALSE ◦P)> ⊇ IState

= { distributivity }

((TRUE∪ FALSE) ◦P)> ⊇ IState

= { TRUE∪FALSE= IBool }

P> ⊇ IState

= { assumption: P is total }

true .

Combining the two 
al
ulations, we have proved the �rst equation. The se
ond is ob-

tained by inter
hanging TRUE and FALSE .

✷

Theorem 5.53 For all 
ore
exives p of type State∼State ,

p = (TRUE ◦ (TRUE◦⊤⊤◦p ∪ FALSE ◦⊤⊤ ◦p>•))>

and for all total fun
tions P of type Bool←State

P = TRUE ◦⊤⊤ ◦ (TRUE ◦P)> ∪ FALSE ◦⊤⊤ ◦ (TRUE ◦P)>• .

That is, the fun
tions

〈P :: (TRUE ◦P)>〉 ,
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whi
h maps a fun
tion P of type Bool←State into a 
ore
exive of type State∼State ,

and

〈p :: TRUE◦⊤⊤◦p ∪ FALSE ◦⊤⊤ ◦p>•〉 ,

whi
h maps a 
ore
exive p of type State∼State into a total fun
tion of type Bool←State ,

are inverses of ea
h other.

Proof

(TRUE ◦ (TRUE◦⊤⊤◦p ∪ FALSE ◦⊤⊤ ◦p>•))>

= { distributivity and TRUE◦FALSE=⊥⊥ }

(TRUE ◦TRUE ◦⊤⊤ ◦p)>

= { TRUE is a proper 
ore
exive, so TRUE ◦TRUE=TRUE 6=⊥⊥

5.7(e) }

p>

= { p is a 
ore
exive }

p .

Also,

TRUE ◦⊤⊤ ◦ (TRUE ◦P)> ∪ FALSE ◦⊤⊤ ◦ (TRUE ◦P)>•

= { 5.7(a) and lemma 5.52 }

TRUE ◦⊤⊤ ◦TRUE ◦P ∪ FALSE ◦⊤⊤ ◦FALSE ◦P

= { TRUE and FALSE are points, de�nition 5.13(
) }

TRUE ◦P ∪ FALSE ◦P

= { distributivity, TRUE∪FALSE= IBool }

P .

✷

Theorem 5.53 is the formal basis for swit
hing between fun
tions of type Bool←State

and 
ore
exives of type State∼State to represent assertions and 
onditions in programs.

See also se
tion 6.8.5.

5.6 Bibliographic Remarks

Relation algebra was �rst developed in the 19th 
entury by De Morgan [DM60℄, Peir
e

[Pei70℄ and S
hr�oder [S
h95℄, and further developed in the mid 20th 
entury by Tarski
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[Tar41℄ and his students. Histories of its development are by Maddux [Mad91℄ and Pratt

[Pra92℄.

Our presentation has its origins in a resear
h proje
t aimed at developing a relational

theory of datatypes [ABH

+
92℄. See also [DBvdW97℄, [Hoo97℄ and [Voe99℄. The all-or-

nothing rule and the notions of 
omplementation-idempotent and 
omplementation-�xed


losure operator are from [Gl�u17℄.
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Chapter 6

Imperative Programming

In later 
hapters, we derive several graph algorithms. The algorithms are presented as

imperative programs and their 
orre
tness is formulated using standard te
hniques. We

assume that the reader has already seen several examples. For introdu
tions, see (for

example) [Gri81, Ba
03℄. This 
hapter is about expressing the semanti
s of the programs

in relation algebra. In order not to burden the reader with details that are not relevant

later, some simpli�
ations have been made, parti
ularly with respe
t to the dis
ussion

of program termination and the di�eren
e between so-
alled \angeli
" and \demoni
"

nondeterminism. See [BW93℄ for more details.

Programs are synta
ti
 entities, the 
hosen syntax depending on the 
hoi
e of pro-

gramming language. Here we use a Pas
al-like language 
omprising assignment state-

ments, sequential 
omposition, while statements, 
onditional statements and 
hoi
e

statements. For us assertions |a me
hanism for do
umenting a program| also form

an integral part of the syntax of a programming language. We often refer to 
omponents

of a program as program segments. For example, the 
omposition of an assignment

statement and a while statement might be referred to as a program segment.

We also admit so-
alled \re
ursive" programs. A re
ursive program is a program that

is de�ned by an \equation" in whi
h the left side of the \equation" is the name of the

program and the right side is a program segment that in
ludes the name of the program.

That is, the name of the program \re
urs" in its de�nition.

The basi
 unit of syntax is an identi�er ; identi�ers are the names given to 
onstants

and variables. Program segments are parameterised by 
onstants, whi
h in
lude items

that are normally understood as \
onstants", like the number 0 , but also other items like

the type Node , the less-than ordering relation on numbers and the subset ordering on

subsets of Node , and fun
tions like set union, et
. A \
onstant" is thus any entity named

impli
itly or expli
itly in the program segment that is un
hanged by exe
ution of the

program segment. Variables are named entities whose value 
hanges during exe
ution.

The variables that are in s
ope in a program segment determine its state spa
e. For
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brevity, we omit expli
it de
larations of variables and their s
ope. Inspe
tion of the vari-

ables referred to in a program is usually suÆ
ient to determine the state spa
e. For ex-

ample, if a program segment refers to variables a of type Node and s of type SetOfNode

then the state spa
e of the program is the 
artesian produ
t Node×SetOfNode . (The

program may also refer to a 
onstant G of type Graph .)

Choi
e statements augment the state spa
e by introdu
ing one or more variables

that satisfy a given spe
i�
ation (the 
hoi
e 
riterion). The s
ope of these variables is

delimited by begin-end bra
keting.

Assertions also sometimes extend the state spa
e by the introdu
tion of ghost vari-

ables. Ghost variables help to do
ument the relation between input and output values

at 
ertain points in the exe
ution of the 
ode. In order to distinguish ghost variables

from other variables we use subs
ripting as in, for example, σ0 . Typi
ally, the ghost

variable σ0 would be used to relate the value of program variable σ at some point in

the exe
ution of the program to its initial value. Ghost variables σ1 , σ2 , et
. might be

used to relate the value of σ to its value at 
ertain intermediate points in the exe
ution

of the program.

O

asionally it is ne
essary to introdu
e additional auxiliary variables. Auxiliary

variables play no role in the 
omputation itself but, like ghost variables, are an aid to

do
umenting a program. Auxiliary variables di�er from ghost variables in that they do

appear on the left side of assignment statements whereas ghost variables do not.

If a program segment P depends on variables xs , we often write P(xs) . This no-

tation does not denote fun
tion appli
ation. Instead, it is used to express synta
ti


substitution . For example, suppose we have an assertion x+y=x2 . In order to rea-

son about the assertion, we might give it the name p(x,y) . Then by (for example)

p(x+1 , y) , we mean the synta
ti
 entity (x+1)+y=(x+1)2 obtained by substituting

every o

urren
e of the symbol \ x " in the assertion by \( x+1 )".

6.1 Specifications

Programs are often des
ribed as de�ning an \input-output" relation. This suggests that

the semanti
s of a program is a heterogeneous relation of type Out∼In for some types

Out and In . This is not how we de�ne the semanti
s of a program.

Programs are invariably parameterised by a number of entities whi
h de�ne the input

of the program. Typi
ally, some of the variables in a program are input parameters.

The use of the word \variable" is then arguably misleading: the input \variables" are


onstants in the sense that their values are un
hanged by exe
ution of the program.

A program may also be parameterised by other entities that are not normally 
alled

\variables"; these in
lude types and relations. The state spa
e of the program is de�ned
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by the variables that are not 
onstants and the output of the program is spe
i�ed as the

�nal values of some subset of the state-spa
e variables.

For example, we 
onsider in se
tion 6.9 an algorithm to 
al
ulate the least �xed point

of a fun
tion of type A←A for some partially ordered set (A,�) . The algorithm

employs two variables, F and x , the value of F being 
onstant whilst the value of x is


ontinually updated during exe
ution of the algorithm. Thus F is an input parameter

and x de�nes the state spa
e. The partially ordered set (A,�) is also a parameter of

the algorithm.

A simple synta
ti
 
he
k enables the distin
tion between \
onstants" and truly vary-

ing \variables" in a program: the 
onstants are the \variables" that do not o

ur on the

left side of any assignment statement. Sometimes, however, programs are written that do

assign to input variables, ghost variables then being ne
essitated in order to spe
ify the

program. We avoid this pra
ti
e. Indeed, so that the reader 
an more easily distinguish


onstants from variables, our pra
ti
e is to use lower-
ase identi�ers (like \ seen ") to

name variables; symbols (like \� ") and identi�ers beginning with an upper-
ase letter

are used to name 
onstants.

When de�ning the semanti
s of a program, it is desirable to 
learly separate the

issue of termination from other issues. Whether or not a program terminates for given

input values is governed by its so-
alled operational semanti
s : how the program is

interpreted and exe
uted. We do not present an operational semanti
s of programs but

we do show how to determine whether or not individual program segments terminate.

Termination of 
omposite programs is de�ned to be demoni
: that is, a program is

guaranteed to terminate only if all segments of the program are guaranteed to terminate.

We spe
ify the semanti
s of programs only for terminating programs, by whi
h we mean

programs that are guaranteed to terminate for all inputs satisfying a given spe
i�
ation.

Formally, the semanti
s of a program segment is a fun
tion with target

State∪ {⊥} ∼ State

where State is the type of the state spa
e (typi
ally a 
artesian produ
t of the types of

the program variables) and ⊥ expresses non-termination; the sour
e of the fun
tion is

a (typi
ally quite 
omplex) 
olle
tion of types, operators, relations and values satisfying


ertain properties. A terminating program segment is one that is guaranteed to always

terminate; the semanti
s of a terminating program segment is thus a fun
tion that maps

the parameters of the program to a homogeneous relation on the state spa
e. Less

formally, a (terminating) program segment is a possibly non-deterministi
, parameterised

state transformer.

This view of program segments as parameterised state transformers allows us to

restri
t attention to homogeneous relations. In this way, we avoid the 
lutter of type


he
king. In what follows, the parameters will be impli
it. Whenever we formulate a
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rule, it is to be understood that the rule is universally quanti�ed over all possible values

of the parameters. See se
tion 6.4 on veri�
ation 
onditions for further dis
ussion.

A spe
i�
ation is a triple (Context,P,R ) where Context spe
i�es properties of the

input parameters |in
luding the state spa
e State| , P is a (parameterised) pred-

i
ate of type Bool←State , and R is a (parameterised) homogeneous relation of type

State∼State .

Spe
i�
ations are typi
ally non-deterministi
 |for given input values, di�erent out-

put values may be a

eptable| but program segments typi
ally resolve some of the

non-determina
y, if not all. (In the extreme 
ases, fun
tional programs are determinis-

ti
: ea
h input value yields exa
tly one output value.) Program segments are relations

that 
an be expressed in a restri
ted language. A program segment Prog with meaning

[[Prog]] is said to meet spe
i�
ation (Context,P,R ) if, for all possible parameter values

satisfying the predi
ate Context , it is 
onditionally 
orre
t, i.e. [[Prog]]◦[[P]]⊆R (where

[[P]] is the 
ore
exive 
orresponding to the predi
ate P ) and it is guaranteed to terminate.

The type of the semanti
s of a program segment is most often a so-
alled \dependent

type". For example, the �xed-point algorithm mentioned above has three inputs: a type

A , and an ordering relation and a fun
tion both of whose types depend on A . The

pre
ise details form what we have 
alled the \
ontext" of the algorithm. Typi
ally, the


ontext embodies a great amount of detail most of whi
h is impli
it in informal a

ounts.

When program veri�
ation is made formal and/or automated it be
omes ne
essary to be

expli
it about the 
ontext. For example, programs that manipulate variables de
lared

as \integers" often rely on properties of the less-than relation on natural numbers, these

properties being impli
it in the spe
i�
ation but vital to formal proof. The level of detail

that is required is just too mu
h for human 
onsumption, and mu
h of it is well known

in any 
ase. This is why we 
hoose to de�ne the semanti
s of program segments as

parameterised state transformers whereby the parameters are left impli
it.

We 
all P the pre
ondition of the spe
i�
ation. It is 
ommon to 
ombine the 
on-

text and the pre
ondition into one; previously, we have also done so. We now prefer to

distinguish the two in order to emphasise that Context spe
i�es properties that remain

true throughout exe
ution of the program segment. \Pre
onditions" (and \post
ondi-

tions") are properties that hold only at 
ertain points during the exe
ution. Be
ause the


ontext is a 
onstant of any implementation, it is most often an impli
it parameter of

the dis
ussion that follows.

6.2 Structures

In order to present the semanti
s of program segments without making the 
ontext

expli
it, we exploit the insights on \stru
tures" introdu
ed by Dijkstra and S
holten
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[DS90℄. A \stru
ture" is simply an expression that denotes a parameterised value where

the parameters are not made expli
it. As observed by Dijkstra and S
holten, reasoning

about \stru
tures" requires more 
are than is usual in traditional mathemati
s with

regard to the overloading of operators, in parti
ular the equality symbol. Spe
i�
ally,

given two stru
tures A and B , the expression \A=B " might denote a boolean stru
ture

or a boolean s
alar.

For example, suppose A and B are ve
tors of the same (impli
it) type and dimen-

sion. Then A=B 
an be interpreted in two ways. Interpreting it as a stru
ture, A=B

denotes a boolean ve
tor of the same dimension as A and B , the entries in the ve
tors

being true or false depending on whether or not the 
orresponding entries in A and B

are equal. Interpreting it as a s
alar, A=B is a boolean: it is true or false depending

on whether or not A and B are everywhere equal (i.e. all 
orresponding entries in A

and B are equal.)

Traditional pra
ti
e in mathemati
s is to assume that A=B denotes a boolean s
alar.

However, as argued by Dijkstra and S
holten [DS90℄, this pra
ti
e is undesirable if the

goal is to 
ombine pre
ision with 
on
ision in 
al
ulational reasoning. Their solution is

straightforward as well as aestheti
ally pleasing. The expression A=B is de�ned to

be a stru
ture (of the same shape as A and B ) and [A=B ] is the boolean s
alar.

The square bra
kets are 
alled \everywhere" bra
kets, and [A=B ] is read as \A is

everywhere equal to B ", or simply \everywhere A=B ". The same devi
e is applied

to other operators. For example, if A and B are boolean ve
tors, A⇐B is a boolean

ve
tor and [A⇐B ] is a boolean s
alar. Similarly, if A and B are integer ve
tors,

A<B is a boolean ve
tor and [A<B ] is a boolean s
alar.

A potential drawba
k is that \everywhere" bra
kets be
ome ubiquitous, parti
ularly

in formal 
al
ulations. Dijkstra and S
holten [DS90℄ avoid this by introdu
ing 
onven-

tions in the format of proofs that enable everywhere bra
kets to be omitted. We use the

same 
onventions here. Another drawba
k is the unfamiliarity of most readers with the

use of \everywhere" bra
kets. In order to avoid the dangers of misinterpretation that

this may 
ause |see [BN98℄| , we avoid the use of \everywhere" bra
kets when reason-

ing about 
on
rete algorithms. This entails the introdu
tion of new \pointed" operator

symbols for ea
h of the 
lassi
al operator symbols in the 
ontext of the algorithm. For

example, in our dis
ussion of the semanti
s of depth-�rst sear
h in se
tion 11.2, we de�ne

the operators

_⊆ and _

◦
as pointwise extensions of the subset relation and 
omposition,

respe
tively. See de�nition 6.6 for an example where the everywhere bra
kets eliminate

this notational burden.

Dijkstra and S
holten presented a predi
ate-transformer semanti
s of imperative pro-

grams. We present a relational semanti
s. Returning to our earlier dis
ussion, we for-

mulate the de�nition of a program segment meeting a spe
i�
ation below. In doing so,

we 
arry out our intention of making the spe
i�
ation of the input parameters |the
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Context 
omponent of a spe
i�
ation| impli
it. That is, in the de�nition, the meaning

of a program segment is a fun
tion of the 
ontext, and the square \everywhere" bra
kets

denote universal quanti�
ation over all input variables satisfying the Context predi
ate.

(If P is a predi
ate on the 
ontext, many authors would prefer to write Context � P

rather than [P] .)

Definition 6.1 Suppose (Context,P,R ) is a spe
i�
ation. Suppose p denotes the


ore
exive 
orresponding to pre
ondition P . The meaning [[S]] of a program segment

S with state spa
e State in the 
ontext Context is a homogeneous relation on State .

The program segment S meets the relation R under pre
ondition P i�:

(i) It is 
onditionally 
orre
t . That is,

[ [[S]] ◦p ⊆ R ] .

(ii) It is total . That is,

[ p ⊆ [[S]]> ] .

(iii) It is (everywhere) terminating .

✷

\Conditionally 
orre
t" is often 
alled \partially 
orre
t". We prefer to use \
on-

ditional" be
ause to say that something is \partially" 
orre
t suggests that it is also

partially in
orre
t. Totality be
omes an issue primarily when 
hoi
e statements are

used. See se
tion 6.7. Termination be
omes an issue when program segments involve

loops and/or re
ursion. It is often established by introdu
ing a so-
alled bound fun
-

tion. That is, some �niteness assumption is made about the input parameters and this

is used to predi
t an upper bound on the number of operations used when exe
uting the

algorithm. In the 
ase of the algorithms we present in this do
ument, termination is rel-

atively easy to verify and most e�ort is expended on establishing 
onditional 
orre
tness.

For further dis
ussion of the formal basis of bound fun
tions, see se
tion 6.8.6.

6.3 Assertions

We use assertions both to do
ument programs and to do
ument the stru
ture of the

veri�
ation that a program meets its spe
i�
ation.

Assertions are (parameterised) predi
ates on the state spa
e. That is, they are fun
-

tions of type Bool←State . Given predi
ates P and Q (the so-
alled pre
ondition and

post
ondition, respe
tively)

Q
∪

◦ (⇐) ◦P
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is a (parameterised) relation of type State∼State . Spe
i�
ally, it is the relation R de�ned

by

[ 〈∀σ,σ ′ :: σ ′ R σ ≡ (Q.σ ′ ⇐ P.σ)〉 ] .

The 
ombination of two predi
ates P and Q (in a given 
ontext) thus determines a

spe
i�
ation where the pre
ondition is P and the relation is R as de�ned above.

Of 
ourse, not all homogeneous relations 
an be expressed in this way. So-
alled

\ghost variables" are used to 
ir
umvent this limitation. See the example below.

Suppose S is a program segment. Suppose predi
ates P and Q are formulated by

the expressions pre(σ) and post(σ) , respe
tively. (So the meaning of pre(σ) is the

predi
ate P , and similarly for post(σ) .) Then the expression

{ pre(σ) }

S

{ post(σ) }

has meaning S meets the relation Q
∪

◦ (⇐) ◦P under pre
ondition P . That is, [[S]] is


onditionally 
orre
t, total and terminating. (See de�nition 6.1.) Expressed pointwise,

the 
onditional 
orre
tness of S is the theorem

[ 〈∀σ,σ ′ : [[pre(σ)]] ∧ σ ′[[S]]σ : [[post(σ ′)]] ⇐ [[pre(σ)]]〉 ]

whi
h is equivalent to

[ 〈∀σ,σ ′ : [[pre(σ)]] ∧ σ ′[[S]]σ : [[post(σ ′)]]〉 ] .

(Note that σ ′
is on the left in σ ′[[S]]σ and σ is on the right. This is a matter of


onvention. For us, the \output" of a relation is on the left and its \input" is on the

right. The syntax of assertions is that the output is at the bottom and the input is

at the top.) The point-free formulation of S meeting the relation Q
∪

◦ (⇐) ◦P under

pre
ondition P is the theorem

[

[[S]] ◦ (TRUE◦P)> ⊆ Q
∪

◦ (⇐) ◦P
]

.

Just like the pointwise formulation, this has an equivalent form, namely:

[

([[S]] ◦P
∪

◦ TRUE)< ⊆ (TRUE◦Q)>
]

.(6.2)

A program segment may meet several di�erent spe
i�
ations. For example, the assign-

ment i := i+1 meets the greater-than relation on numbers, as well as the at-least relation

and the relation given by the pair (1, 0) (that is, if i has initial value 0 , after the as-

signment it has value 1 ). Using the ghost variable i0 to 
apture the initial state, we


an do
ument the �rst of these by
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{ i= i0 }

i := i+1

{ i> i0 }

and the last by

{ i= 0 }

i := i+1

{ i= 1 } .

The input parameters in this 
ase are the integers, the addition operator and greater-than

relation on integers, and the 
onstants 0 and 1 . We regard them as parameters be
ause

a formal veri�
ation of the program segment will ne
essarily be based on assumptions

about their algebrai
 properties, thus allowing other interpretations of the parameters.

6.4 Verification Conditions

Suppose that we want to show that a program segment S meets a given spe
i�
ation.

Often this involves establishing one or more veri�
ation 
onditions . Suppose the spe
-

i�
ation is expressed by the assertions pre(σ) and post(σ) and suppose we do
ument

the program segment as follows:

{ pre(σ) }

S

{ post(σ) } .

Then, in the simpler 
ases, it is possible to 
ompute a so-
alled \weakest pre
ondi-

tion" wp(σ) guaranteeing the post
ondition post after exe
ution of S . By de�nition

of \weakest pre
ondition" that S meets the spe
i�
ation is equivalent to proving the

theorem

[ 〈∀σ : [[pre(σ)]] : [[wp(σ)]]〉 ] .(6.3)

The formula (6.3) is 
alled a veri�
ation 
ondition. We sometimes do
ument the 
on-

stru
tion of veri�
ation 
onditions as follows:

{ pre(σ) }

{ wp(σ) }

S

{ post(σ) } .
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Where two assertions are juxtaposed as here, the meaning is that the upper assertion im-

plies the lower assertion everywhere. That is, the meaning of a juxtaposition of assertions

is the veri�
ation 
ondition (6.3).

6.5 Assignment Statements

An assignment statement is the imperative syntax for a fun
tion. If xs is a list of

distin
t variables and Es is a list of expressions of the same length as xs , then a �rst

approximation to the meaning of the assignment xs :=Es is the fun
tion 〈xs ::Es〉 .

Re
all, however, that the state spa
e of a program segment is typi
ally a 
artesian

produ
t, and the individual variables of the segment refer to spe
i�
 
omponents of the

produ
t. An assignment statement is a 
onvenient me
hanism for spe
ifying a fun
tion of

type State←State that a�e
ts only 
ertain 
omponents of the produ
t. For example, the

assignment i :=E , where i is a variable of type IN may be a segment in a program with

state spa
e IN×ZZ whereby the se
ond 
omponent is referen
ed by an additional variable,

x say. In su
h a 
ontext, the assignment is equivalent to the assignment i,x :=E,x

and its meaning is the fun
tion 〈i ::E〉× IZZ (equivalently, 〈(i, x) :: (E, x)〉 ). That is, an

assignment statement xs :=Es is the identity fun
tion on those 
omponents that are not

named in the list xs and the fun
tion 〈xs ::Es〉 on the 
omponents that are named.

We don't give any guidan
e on what are allowable expressions on the right side of an

assignment ex
ept to say that the expressions must be implementable in a 
onventional

programming language, and their evaluation (for parti
ular input values) must be guar-

anteed to terminate | typi
ally, but not ne
essarily, in \
onstant time". We rely on the

reader's programming experien
e to de
ide whether or not this is the 
ase.

Most often assignment statements are total fun
tions. In general, the right domain

is the subset of the state spa
e on whi
h the right side of the assignment is de�ned.

For example, the assignment i := i÷j is de�ned on state spa
es su
h that the value of

variable j is non-zero.

Be
ause assignments are fun
tional, it is easy to derive the assignment axiom. (See

below.) Spe
i�
ally, the assignment axiom states that

{ post(E) }

σ :=E

{ post(σ) }

is a theorem (i.e. it is true everywhere for all σ ). Here post(E) denotes the expression

obtained by repla
ing all o

urren
es of σ in the expression post(σ) by the expression

\(E )". (We use quotation marks in order to emphasise that this is a synta
ti
 sub-
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stitution. The parentheses are ne
essary to avoid any error that might be 
aused by

pre
eden
e 
onventions.)

Normally the assignment axiom is used to 
onstru
t a veri�
ation 
ondition. Suppose

the assignment statement is do
umented as follows:

{ pre(σ) }

σ :=E

{ post(σ) } .

Then we augment the do
umentation with the expression post(E) :

{ pre(σ) }

{ post(E) }

σ :=E

{ post(σ) } .

This then gives the veri�
ation 
ondition:

[ 〈∀σ : [[pre(σ)]] : [[post(E)]]〉 ] .(6.4)

(The point-free justi�
ation of the assignment axiom pro
eeds as follows. Suppose f

is a fun
tion of type State←State and suppose P and Q are predi
ates on the state,

i.e. fun
tions of type Bool←State . Then that f meets the relation Q∪
◦ (⇐) ◦P under

pre
ondition P is, by (6.2),

[

(f ◦P
∪

◦TRUE)< ⊆ (TRUE◦Q)>
]

.

But,

(f ◦P∪

◦ TRUE)< ⊆ (TRUE◦Q)>

= { isomorphism of 
ore
exives and 
onditions }

f ◦P
∪

◦ TRUE ◦⊤⊤ ⊆ Q
∪

◦TRUE ◦⊤⊤

= { f is a fun
tion }

P
∪

◦ TRUE ◦⊤⊤ ⊆ f
∪

◦Q
∪

◦TRUE ◦⊤⊤

= { 
onverse and isomorphism of 
ore
exives and 
onditions }

(TRUE◦P)> ⊆ (TRUE◦Q◦f)> .

The 
ore
exive (TRUE◦P)> 
orresponds to the set of states for whi
h P holds, and

(TRUE◦Q◦f)> 
orresponds to the set of states σ for whi
h Q holds of f.σ . The property

[ (TRUE◦P)> ⊆ (TRUE◦Q◦f)> ]

is the point-free formulation of the veri�
ation 
ondition (6.4).)
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6.6 Sequential Composition

The meaning of the sequential 
omposition S1 ; S2 is the so-
alled demoni
 
omposition

of the meanings of S1 and S2 . Formally,

[[S1 ; S2]] = [[S2]] ◦ [[S1]] ◦ [[S1]]\ [[S2]]>

where [[S1]]\ [[S2]]> is a 
ore
exive. How this 
ore
exive is de�ned is not needed here.

Its rôle is to restri
t the right domain of S1 to values that guarantee that exe
ution of

S1 results in values that are elements of the right domain of S2 . (See [BW93℄ for full

details.)

In pra
ti
e, the 
ompli
ations of the de�nition of demoni
 
omposition are avoided

by establishing that [[S1]]< ⊆ [[S2]]> , in whi
h 
ase it equals the so-
alled angeli
 
om-

position

[[S2]] ◦ [[S1]] .

The di�eren
e between demoni
 and angeli
 
omposition only be
omes apparent when

we 
onsider 
hoi
e statements.

Note the swit
h in the order of S1 and S2 (S1 ; S2 versus [[S2]] ◦ [[S1]] ).

6.7 Choice Statements

Program segments in the algorithms we present 
ommonly in
lude 
hoi
e statements,

whereby a new variable is introdu
ed and assigned |possibly non-deterministi
ally| a

value that satis�es some 
riterion.

As for 
omposition, 
hoi
e statements have a demoni
 (as opposed to angeli
) se-

manti
s. (Again, see [BW93℄ for full details.) However, we avoid the 
ompli
ation by

imposing a restri
tion on when the meaning of a 
hoi
e statement is de�ned. Spe
i�
ally,

the meaning of the 
hoi
e statement

begin


hoose x su
h that q(x,σ)

; S

end

is a relation with right domain restri
ted to states that allow the 
riterion q to be

satis�ed; in this 
ase, it is de�ned to be a supremum:

〈∪x : [[q(x,σ)]] : [[S]]〉 .
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A 
hoi
e statement introdu
es a new lo
al variable with s
ope delimited by the begin-

end bra
keting; the state spa
e of the statement S is thus assumed to be extended

appropriately. This means that x is allowed to be a free variable in assertions about

segments of S . However, assertions about the 
hoi
e statement itself may not refer to

the variable x .

Just as for expressions on the right side of assignment statements, 
hoi
e 
riteria

must be implementable in a 
onventional programming language, and their evaluation

(for parti
ular input values) must be guaranteed to terminate.

The operational meaning of a 
hoi
e statement is that the variable x is assigned an

initial value that satis�es the 
riterion q ; then the program segment S is exe
uted. We

do
ument a 
hoi
e statement by adding assertions as shown below. The pre
ondition

pre and post
ondition post do
ument the spe
i�
ation of the 
hoi
e statement and are

assumed to be given. Note that the pre
ondition of the program segment S depends on

the state σ and on x |re
e
ting the fa
t that the state spa
e has been augmented| ;

on the other hand, the post
ondition does not depend on x .

{ pre(σ) }

begin


hoose x su
h that q(x,σ)

; { pre(σ) ∧ q(x,σ) }

S

{ post(σ) }

end

{ post(σ) }

In order to guarantee that su
h a 
hoi
e statement meets a given spe
i�
ation, it is

ne
essary to establish totality. (See de�nition 6.1(ii).) Supposing that the pre
ondition

is de�ned in the usual way by a predi
ate pre , the totality requirement be
omes

[ [[pre(σ)]] ⇒ 〈∃x :: [[q(x,σ)]]〉 ] .

The 
hoi
e may be entirely deterministi
: in parti
ular, a statement of the form

begin


hoose x su
h that x=E

; S

end
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introdu
es a new lo
al variable x that is initialised to the value of the expression E and

has s
ope the program segment S . In this 
ase, totality is immediate (ex
ept in less


ommon 
ases where E may sometimes be unde�ned). When using su
h a deterministi



hoi
e statement, we omit the words \
hoose" and \su
h that" and write the 
hoi
e in

the standard way as an assignment statement. (A frequent o

urren
e is the initialisation

of the program variables.)

6.8 Loops

So far, we have 
onsidered so-
alled \straight-line programs": programs where termi-

nation is always guaranteed. In this se
tion, we 
onsider \loops" in the form of while

statements.

The meaning of a while statement is the least �xed point of a so-
alled \re
ursive"

equation. Depth-�rst sear
h uses a more 
omplex form of re
ursion; its meaning is

dis
ussed in se
tion 11.2 and, more generally, in se
tion 12. The loops we 
onsider in

this se
tion are simpler be
ause they are de�ned using the star operator of a regular

algebra.

The meaning [[B]] of a guard B is a 
ore
exive, and the meaning of the statement

while B do S is

∼[[B]] ◦ ([[S]] ◦ [[B]])∗ .

That is, it is the least solution of the equation

W:: [ W ⊇ ∼[[B]] ∪ W ◦ [[S]] ◦ [[B]] ] .

This equation 
orresponds to the operational meaning of a while statement: the guard

B is used to 
hoose between terminating without a 
hange of state |the operational

meaning of the 
ore
exive ∼[[B]]|- or exe
uting S and then \looping" ba
k to exe
ute

the while statement again.

Termination of while statements is dis
ussed in se
tion 6.8.3.

(Although we haven't dis
ussed it here, a parameterised �xed point is a �xed point.

This is a fundamental property of �xed points | so fundamental indeed that it is almost

invariaby taken for granted. For reasons of expedien
y, we have omitted the relevant

theory for now but we may in
lude it at a later date.)

6.8.1 Invariant Relations

Given a spe
i�
ation 
omprising a relation R and a (
ore
exive representation of a)

pre
ondition p , the key to 
onstru
ting a loop implementing the spe
i�
ation is the
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invention of an invariant Inv . In the most general 
ase, invariants are relations on the

state spa
e; in more spe
i�
 
ases, they are values or properties. In this subse
tion, we


onsider the most general 
ase, whilst invariant values and properties are 
onsidered in

subse
tion 6.8.4.

An invariant Inv is 
hosen in su
h a way that it satis�es three properties. First,

the invariant 
an be \established" by some initialisation Init . Se
ond, the 
ombination

of the initialisation the invariant, and some termination Term satis�es the spe
i�
ation

Spec . Third, the invariant is \maintained by" some loop body Body whilst making

progress towards termination.

These informal requirements 
an be made pre
ise in a 
on
ise way. The 
omponents

Inv , Init , Term and Body are all homogeneous binary relations on the (parameterised)

state spa
e, just like the spe
i�
ation Spec . Below we dis
uss how the tasks involved in

showing that the implementations of these 
omponents meet the spe
i�
ation is a
hieved.

6.8.2 Conditional Correctness

The �rst requirement is that the invariant relation is total. That is,

[ p ⊆ Inv> ] .

Often this requirement is met trivially and needs no further dis
ussion.

\Establishing" the invariant is the requirement that

[ Init◦p⊆ Inv ] .

In words, for all states σ ′
and σ su
h that σ satis�es the pre
ondition p , if σ ′

is

related by Init to σ then σ ′
is also related by the invariant relation to σ .

That the 
ombination of the termination and invariant satis�es the relation R is the

requirement that

[ Term◦Inv ⊆ R ] .

This is the requirement that for all states σ and σ ′′
,

[ 〈∀σ ′ : σ ′′ Term σ ′∧σ ′ Inv σ : σ ′′ Spec σ〉 ]

(Here we see again the 
onvention of pla
ing input values on the right and output values

on the left.)

Finally, that the invariant is maintained by the loop body is expressed by

[ Body◦Inv⊆ Inv ] .

Pointwise this is

[ 〈∀σ,σ ′,σ ′′ : σ ′′ Body σ ′∧σ ′ Inv σ : σ ′′ Inv σ〉 ] .
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So Body maps states σ ′
related by the invariant Inv to σ to states σ ′′

that are also

related by Inv to σ .

Together these three properties guarantee that

[ Term ◦Body∗ ◦ Init ◦p ⊆ R ]

sin
e

R

⊇ { [ Term◦Inv ⊆ R ] }

Term◦Inv

⊇ { [ Body◦Inv ∪ Inv ⊆ Inv ]

hen
e [ Body∗◦Inv ⊆ Inv ] }

Term ◦Body∗ ◦ Inv

⊇ { [ Init◦p⊆ Inv ] }

Term ◦ (Body◦b)∗ ◦ Init ◦p .

6.8.3 Totality and Termination

Our a

ount of invariants needs to be further re�ned if we are to relate it to the imple-

mentation of loops by a while statement. Re
all that Body spe
i�es the body of the

loop, and Term spe
i�es the termination of the 
omputation. The implementation of

Term ◦Body∗ by a while statement demands that both relations Term and Body are

partial and, more spe
i�
ally, that their right domains are 
omplementary.

Letting b denote the right domain of Body and ∼b its 
omplement (thus

[ b∪∼b = IState ∧ b∩∼b = ⊥⊥ ] ,

where IState is the 
ore
exive of type State∼State representing the entire state spa
e),

we have

[ Term = Term ◦∼b ∧ Body=Body ◦b ] .

Hen
e,

[ Term ◦Body∗ ◦ Init = Term ◦∼b ◦ (Body ◦b)∗ ◦ Init ] .

The statement

while b do

S
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is the implementation of ∼b ◦ (Body ◦b)∗ provided that S implements the relation Body

under pre
ondition

1 b . If [[S]] ◦b is (everywhere) well-founded, ∼b ◦ ([[S]] ◦b)∗ is, by the

unique extension property of regular algebra, the unique solution of the equation:

W:: [ W = ∼b ∪ W ◦ [[S]] ◦b ] .

Exe
uting this equation is equivalent to exe
uting the \re
ursive" program

W = if b then (S ;W) .

The well-foundedness of [[S]] ◦b guarantees that the exe
ution of the while statement

will always terminate. It also guarantees that the implementation is total, provided that

Term and Body have 
omplementary right domains, and the initialisation Init is total.

Spe
i�
ally, we have:

(Term ◦Body∗ ◦ Init)> = Init>

= { domain 
al
ulus }

((Term ◦Body∗)> ◦ Init)> = Init>

⇐ { I is the identity of 
omposition }

(Term ◦Body∗)> = I

= { (Term ◦Body∗)> is the unique solution of the equation

p:: p = Term>∪ (p ◦Body)> }

I = Term> ∪ (I ◦Body)>

= { by assumption,

Term and Body have 
omplementary right domains.

In parti
ular, I = Term>∪Body> }

true .

The penultimate step needs further justi�
ation. The 
laim is that the equation

p:: [ p = Term>∪ (p ◦Body)> ]

has a unique solution provided that Body is (everywhere) well-founded. This is easily

derived from the uep of regular algebra (theorem 3.16). Spe
i�
ally, for all homogeneous

relations R , we have:

R is well-founded ≡ 〈∀S,T :: T = S∪T ◦R ≡ T = S ◦R∗〉 .(6.5)

(See se
tion 8.1 for more details.) Indeed, for all 
ore
exives p ,
1

Stri
tly, b is a 
ore
exive and what is meant here is the predi
ate 
orresponding to b .
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p = Term>∪ (p ◦Body)>

= { domain 
al
ulus.

Spe
i�
ally, (⊤⊤◦p)>=p and ⊤⊤◦R = ⊤⊤ ◦R> }

⊤⊤◦p = ⊤⊤◦Term ∪ ⊤⊤◦p◦Body

= { Body is well-founded, (6.5) }

⊤⊤◦p = ⊤⊤ ◦Term ◦Body∗

= { domain 
al
ulus (as above) }

p=(Term ◦Body∗)> .

That is, (Term ◦Body∗)> is the unique solution of the above equation in p .

6.8.4 Invariant Properties and Invariant Values

In general, invariants are relations on the (parameterised) state spa
e. Spe
ial 
ases of

invariants are invariant properties and invariant values . Invariant properties will be

familiar to many readers and invariant values possibly less so. Nevertheless, we begin

with values be
ause formally they are simpler.

Consider a simple example: Suppose the state spa
e is a 
artesian produ
t of two

sets ranged over by program variables x and y . Then, obviously, an assignment x := E

has no e�e
t on the value of program variable y . We say that the value of y is an

invariant of the assignment. A slightly more 
omplex example is given by the assignment

x,y := x+1 ,y+1 (with state spa
e Int×Int ); in this 
ase the value of x−y is an invariant

of the assignment.

In general, a \value" is given by a total fun
tion on the state spa
e. Let us denote su
h

a fun
tion by h . Then that the \value" is an invariant of program segment S equivales

the relation h
∪

◦h is an invariant of S . That is, [ S ⊆ h
∪

◦h ] . Equivalently, [ h◦S⊆h ] ;

alternatively, if σ and σ ′
denote su

essive states during exe
ution of S (i.e. σ ′[[S]]σ ),

h.σ ′=h.σ . For example, the \value" x−y is given by the fun
tion mapping the pair

(x, y) to x−y . This fun
tion is an invariant \value" of the assignment x,y := x+1 , y+1

be
ause (x+1)−(y+1)=x−y is a theorem of arithmeti
.

If h is a total fun
tion on the state spa
e, the relation h
∪

◦h is re
exive and transi-

tive. This is an important property of invariant values when reasoning about loops and

re
ursion. (In fa
t, h
∪

◦h is an equivalen
e relation. However, in this 
ontext symmetry

is not relevant.)

Let us now turn to invariant \properties". Suppose h is a boolean fun
tion of the

state spa
e (a fun
tion of type Bool←State ) and let S be a relation (typi
ally, the
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semanti
s of a program segment). Then h is an invariant property of S if

[

S ⊆ h
∪

◦ (⇐) ◦h
]

.

Expressed pointwise, h is an invariant property of S if

[ 〈∀σ ′,σ : σ ′[[S]]σ : h.σ ′⇐h.σ〉 ] .

Follows-from of boolean-fun
tion values is obviously a re
exive and transitive relation. It

follows that, if h is a total boolean fun
tion of the state spa
e, the relation h
∪

◦ (⇐) ◦h

is also re
exive and transitive. More generally, if h is a total fun
tion and R is a

homogeneous relation on the range of h , the relation h
∪

◦R ◦h is re
exive if R is re
exive

and transitive if R is transitive. As for invariant values, this is important when reasoning

about loops and re
ursion.

Invariant properties sometimes o

ur naturally but, more 
ommonly, are introdu
ed

arti�
ially through the use of so-
alled \ghost" variables. A \ghost" variable re
ords the

state before exe
ution of a program segment S but, unlike auxiliary variables, a \ghost"

variable is not made expli
it in the program 
ode. Instead, the 
onvention is that a

subs
ript \0" is used to denote the initial value of variable.

6.8.5 Truthifying and Maintaining Invariant Properties

When reasoning about loops, we often say that a property is \truthi�ed" by the initial-

isation, and \maintained" by the body of the loop. Let us formulate these 
on
epts.

Definition 6.6 Suppose P has type Bool←State . Then a relation S truthi�es P if

[ S< ⊆ (TRUE ◦P)> ] .

The relation S maintains P if

[

S ◦ (TRUE ◦P)> ⊆ P
∪

◦ (⇐) ◦P
]

.

(Equivalently, relation S maintains P if

[

S ◦ (TRUE ◦P)> ⊆ P
∪

◦ (⇐) ◦P ◦ (TRUE ◦P)>
]

sin
e, for all relations S and R and all 
ore
exives p ,

[ S◦p ⊆ R ≡ S◦p ⊆ R◦p ] .

The easy proof of the equivalen
e by mutual impli
ation is left to the reader.)

✷
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Typi
ally de�nition 6.6 is used with S instantiated to the meaning of a program

segment. The square bra
kets denote universal quanti�
ation over the 
ontext of the

program segment. Were we not to use the everywhere bra
kets, we would be obliged

to introdu
e new symbols for all �ve operators in the de�nition. We would also have

to write K.TRUE (the fun
tion that always returns TRUE ) in the de�nition in order to

distinguish it from TRUE (the s
alar boolean value) as used, for example, in the hints in

the proof of the lemma below. See the dis
ussion of the semanti
s of depth-�rst sear
h

in se
tion 11.2 for how so-
alled \lifted" operators are de�ned.

Lemma 6.7 Suppose P has type Bool←State . Then

[

(P
∪

◦ (⇐) ◦P ◦ (TRUE ◦P)>)< ⊆ (TRUE ◦P)>
]

.

Proof

(P∪

◦ (⇐) ◦P ◦ (TRUE ◦P)>)<

= { domains: theorem 5.7(
), and dual of (5.9) }

(P∪

◦ (⇐) ◦P ◦P
∪

◦TRUE)<

⊆ { P is fun
tional }

(P∪

◦ (⇐) ◦TRUE)<

= { IBool = FALSE∪TRUE

FALSE◦(⇐)◦TRUE = ⊥⊥

TRUE◦(⇐)◦TRUE = TRUE }

(P∪

◦TRUE)<

= { domains: theorem 5.7(
) and 
onverse }

(TRUE ◦P)> .

✷

Lemma 6.8 Suppose P has type Bool←State . Suppose S1 truthi�es P and S2

maintains P . Then S2◦S1 truthi�es P .

Proof We have:

S2 ◦ (TRUE ◦P)> ⊆ P
∪

◦ (⇐) ◦P ∧ S1< ⊆ (TRUE ◦P)>

⇒ { S1< ⊆ (TRUE ◦P)> ⇒ S1 = (TRUE ◦P)> ◦S1 }

S2 ◦ (TRUE ◦P)> ⊆ P
∪

◦ (⇐) ◦P ∧ (S2◦S1)< = (S2 ◦ (TRUE ◦P)> ◦S1)<

⇒ { monotoni
ity }
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(S2◦S1)< ⊆ (P∪

◦ (⇐) ◦P ◦ (TRUE ◦P)>)<

⇒ { lemma 6.7 and transitivity }

(S2◦S1)< ⊆ (TRUE ◦P)> .

✷

Lemma 6.9 Suppose P has type Bool←State . Suppose Init is a program segment

that truthi�es P . Suppose T is a fun
tion of type Bool←State and t=(TRUE ◦T)> . (So

t is a 
ore
exive representing the set of all states satisfying the termination 
ondition

T .) Suppose Body is a program segment su
h that Body ◦∼t maintains P . Then

(Body ◦∼t)∗ maintains P and (Body ◦∼t)∗ ◦ Init truthi�es P . It follows that

t ◦ (Body ◦∼t)∗ ◦ Init

truthi�es P∧ T .

Proof The �rst step of the proof applies de�nition 6.6 and simultaneously \strengthens

the indu
tion hypothesis" ready for use of �xed-point indu
tion

(Body ◦∼t)∗ maintains P

= { de�nition 6.6 and domain 
al
ulus }

[ (Body ◦∼t)∗ ◦ (TRUE ◦P)> ⊆ P
∪

◦ (⇐) ◦P ◦ (TRUE ◦P)> ] .

But

(Body ◦∼t)∗ ◦ (TRUE ◦P)> ⊆ P
∪

◦ (⇐) ◦P ◦ (TRUE ◦P)>

⇐ { �xed-point indu
tion }

(TRUE ◦P)> ⊆ P
∪

◦ (⇐) ◦P ◦ (TRUE ◦P)>

∧ Body ◦∼t ◦P∪

◦ (⇐) ◦P ◦ (TRUE ◦P)> ⊆ P
∪

◦ (⇐) ◦P ◦ (TRUE ◦P)>

= { domain 
al
ulus }

(TRUE ◦P)> ⊆ P
∪

◦ (⇐) ◦P

∧ Body ◦∼t ◦P∪

◦ (⇐) ◦P ◦ (TRUE ◦P)> ⊆ P
∪

◦ (⇐) ◦P

⇐ { TRUE⊆ IBool ; (⇐ ) is re
exive, i.e. IBool ⊆ (⇐) ;

lemma 6.7 }

P> ⊆ P
∪

◦P

∧ Body ◦∼t ◦ (TRUE ◦P)> ⊆ P
∪

◦ (⇐) ◦P

⇐ { domains (spe
i�
ally P> = I ∩ P∪

◦P );
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assumption: Body ◦∼t maintains P }

true .

That (Body ◦∼t)∗ ◦ Init truthi�es P now follows from lemma 6.8 and the assumption

that Init truthi�es P .

✷

Lemma 6.9 justi�es the way that invariant properties are used in pra
ti
e. To do
u-

ment the 
ode, we suppose that the spe
i�
ation is de
omposed into pre
ondition pre(σ)

and post
ondition post(σ) ; then we add assertions:

{ pre(σ) }

Init

{ Invariant property: P }

; while ∼t do

{ P∧¬T }

S

{ P }

{ P∧ T }

{ post(σ) }

from whi
h we 
an extra
t the three veri�
ation 
onditions:

{ pre(σ) }

Init

{ P }

(the initialisation truthi�es P ),

{ P∧¬T }

S

{ P }

(the loop body maintains P ), and

{P∧ T }

{ post(σ) }

Algorithmi
 Graph Theory April 8, 2022



116

(the post
ondition is implied by the 
onjun
tion of the invariant and the 
ondition for

terminating the loop).

A �nal remark is that, although 
onditional 
orre
tness is most often established

using invariant properties and values, relations are vital to establishing termination of

loops and other forms of re
ursion. Se
tion 6.9 gives an example.

6.8.6 Bound Functions

As we have seen in se
tion 6.8.3, the use of while statements in programs entails estab-

lishing that the body of the loop maintains an invariant that is a well-founded relation.

This is usually done by means of a so-
alled bound fun
tion.

Formally, the use of bound fun
tions generalises the use of invariant properties to

invariant relations. Suppose ≺ is a well-founded relation on some set A , and suppose

h is a fun
tion from the state spa
e to A (i.e. a fun
tion of type A←State ). Then,

establishing that a while statement with body Body and termination 
ondition t is

guaranteed to terminate is a
hieved by showing that

[

Body ◦ ∼t ⊆ h
∪

◦ (≺) ◦h
]

.

The fun
tion h is 
alled the bound fun
tion ; the well-founded ordering is usually im-

pli
it in the type of h .

The theorem that is being exploited here is that h
∪

◦ (≺) ◦h is a well-founded relation

if ≺ is well-founded. (See the dis
ussion following lemma 8.36.) Note the resemblan
e

of this expression to the notion of an invariant property: the ordering relation in the


ase of an invariant property is the \if" relation on predi
ates. When we dis
uss 
on
rete

algorithms, we see this pattern o

urring repeatedly in the invariants we formulate.

6.9 Calculating a Least Fixed Point

As illustration, we present an iterative algorithm for 
al
ulating a least �xed point.

The least �xed point of a monotoni
 endofun
tion F on a �nite, partially ordered set

(A,�) with least element 0 
an be 
omputed by a simple iterative algorithm:

x := 0

; while x 6= F.x do

x := F.x

An invariant property of the algorithm is that x�µF ; the algorithm is guaranteed

to terminate if the relation ≻ is well-founded (in parti
ular, if A is �nite) sin
e x is

stri
tly in
reased at ea
h iteration. On termination, x= F.x . That is, x is a �xed point
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of F . Sin
e µF is the least �xed point and, at all times, x�µF , we 
on
lude that, on

termination, x=µF .

In order to relate this brief, informal a

ount with the dis
ussion above, we must

identify the individual 
omponents of the algorithm. The program is parameterised by

the partially ordered set (A,�) , the fun
tion F of type (A,�)←(A,�) (the set of

monotoni
 endofun
tions on A ) and the 
onstant 0 ; its state spa
e is A . All of these


onstitute what we have 
alled the 
ontext of the spe
i�
ation. Note that, even for su
h

a simple algorithm, the 
ontext is quite 
omplex. It in
ludes, for example, the fa
t that

the 
onstant � is a re
exive, transitive and anti-symmetri
 relation.

The pre
ondition of the spe
i�
ation is true and the relation is the relation R of type

A∼A de�ned by, for all x and x0 of type A ,

x R x0 ≡ x=µF .

(The fun
tion F and the partially ordered set (A,�) are impli
it parameters of R ,

as explained above.) By the assumed anti-symmetry of the ordering relation, and the

�xed-point indu
tion rule,

[ x=µF ⇐ x�µF ∧ x= F.x ] .

(Here and elsewhere, the everywhere bra
kets denote a universal quanti�
ation over the

input parameters and the state x .) Noting that x= F.x is the 
ondition for terminating

the loop, 
onditional 
orre
tness thus amounts to showing that the algorithm truthi�es

the post
ondition x�µF , for all monotoni
 fun
tions F of the given type. This suggests

the use of lemma 6.9, with the property x�µF as invariant. That is, we show that the

initialisation truthi�es x�µF and the loop body maintains x�µF .

Establishing that, in addition, the loop always terminates demands that we add the

additional 
onjun
t x� F.x . By showing that this property is also invariant we infer that

the loop body |whi
h is just the fun
tion F| 
ombined with the pre
ondition for its

exe
ution

x�F.x ∧ x 6= F.x ,

i.e. x≺F.x , is a subset of the relation ≻ . The guarantee of termination follows from the

assumption that this relation is well-founded.

Thus the remaining task is to show that the initialisation truthi�es, and the loop

body maintains the property

x�F.x ∧ x�µF .

This gives rise to two veri�
ation 
onditions. Making use of the assignment axiom, the

veri�
ation 
ondition for the initialisation is:

[ 0�F.0 ∧ 0�µF ]
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and that for the loop body is:

[ F.x�F.(F.x) ∧ F.x�µF ⇐ x� F.x ∧ x�µF ∧ x 6= F.x ] .

Given the assumptions made about the input parameters (impli
it in the everywhere

bra
kets), both of these are true and the (\total") 
orre
tness of the algorithm has been

established. (Note that the guard on exe
uting the loop body, x 6= F.x , is not needed for

the 
onditional 
orre
tness but is needed for the guarantee of termination.)
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Chapter 7

Equivalence Relations and Partitions

In this 
hapter we explore properties of equivalen
e relations, some of whi
h are well

known. Se
tion 7.1 formulates the well-known 
orresponden
e between partitions of a

set and equivalen
e 
lasses in a point-free style and se
tion 7.2 explores properties of the

equivalen
e-
lass fun
tion, in parti
ular with respe
t to 
omplementation.

7.1 Partitions

An equivalen
e relation is a relation that is re
exive, transitive and symmetri
. As

is well known, an equivalen
e relation partitions the set on whi
h it is de�ned into a

number of so-
alled equivalen
e 
lasses . More formally, if R is an equivalen
e relation

on a set A , there is a set C and a surje
tive fun
tion f of type C←A , su
h that, for

all a and b in A ,

a[[R]]b ≡ f.a= f.b .(7.1)

(It is 
ommon to use square bra
kets to denote the fun
tion f . So, instead of writing

f.a , one writes [a] , or [a]R if it is thought ne
essary to make the equivalen
e relation

expli
it.)

Conversely, given sets A and C and a total fun
tion f of type C←A , we 
an use

equation (7.1) to de�ne a homogeneous relation R on A . The relation R is then an

equivalen
e relation.

Equation (7.1) is expressed more su

in
tly by the point-free equation

R = f
∪

◦ f .(7.2)

Point-free formulations of fun
tionality, totality, surje
tivity and inje
tivity then support

e�e
tive point-free 
al
ulation. Here, for example, is the proof that it is transitive (in

every detail, in
luding the use of the asso
iativity of 
omposition).
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(f∪ ◦ f)◦(f∪ ◦ f)

= { 
omposition is asso
iative }

f
∪

◦ (f ◦ f∪) ◦ f

⊆ { f is fun
tional, i.e. f ◦ f∪ ⊆ IC ,

monotoni
ity of 
omposition }

f
∪

◦ IC ◦ f

= { IC is identity of 
omposition }

f
∪

◦ f .

The 
onverse proposition is that if R is an equivalen
e relation on set A , the fun
tion

f of type 2A←A de�ned to be

〈a :: Set . (R ◦a)<〉

maps (
ore
exive) atoms a to equivalen
e 
lasses of R (where Set is a so-
alled \
ast"

that maps a 
ore
exive of type A∼A , for some A , to the atomi
 
ore
exive of type 2A

representing the same subset of A ). That is, R = f∪ ◦ f . The proof is straightforward,

although somewhat long. See theorem 7.7 below.

Lemma 7.3 If R is an equivalen
e relation, then for all proper atomi
 
ore
exives a

and b ,

(R◦a)< = (R◦b)< ≡ a◦R◦b = a◦⊤⊤◦b .

Proof By lemma 5.27 with R,p,b :=R,a,b ,

a ⊆ (R◦b)< ≡ a◦R◦b = a◦⊤⊤◦b .(7.4)

Se
ond,

(R◦a)< ⊆ (R◦b)<

⇒ { assuming R is re
exive, a ⊆ (R◦a)< }

a ⊆ (R◦b)<

⇒ { monotoni
ity }

(R◦a)< ⊆ (R ◦ (R◦b)<)<

= { domains: (5.9) }

(R◦a)< ⊆ (R◦R◦b)<

⇒ { assuming R is transitive, R◦R⊆R ; monotoni
ity }

(R◦a)< ⊆ (R◦b)< .
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That is, if R is re
exive and transitive,

a ⊆ (R◦b)< ≡ (R◦a)< ⊆ (R◦b)< .(7.5)

Moreover, if R is symmetri
 and a and b are 
ore
exives,

a◦R◦b = a◦⊤⊤◦b ≡ b◦R◦a = b◦⊤⊤◦a .(7.6)

Thus, if R is an equivalen
e relation,

(R◦a)< = (R◦b)<

= { anti-symmetry }

(R◦a)< ⊆ (R◦b)< ∧ (R◦b)< ⊆ (R◦a)<

= { (7.5) }

a ⊆ (R◦b)< ∧ b ⊆ (R◦a)<

= { (7.4) }

a◦R◦b = a◦⊤⊤◦b ∧ b◦R◦a = b◦⊤⊤◦a

= { (7.6) }

a◦R◦b = a◦⊤⊤◦b .

✷

Theorem 7.7 Suppose R is an equivalen
e relation. Let the fun
tion f be de�ned

to be

〈a :: Set . (R ◦a)<〉 .

Then

R = f
∪

◦ f

and

f = f ◦R .

Proof Suppose R is an equivalen
e relation on set A . By the de�nition of f , for all

points a of type A and points c of type 2A ,

c◦⊤⊤◦a ⊆ f ≡ c = Set.(R◦a)< .(7.8)

Thus, with dummies a and b ranging over points of type A , and dummy c ranging

over points of type 2A , we have:
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R

= { saturation assumption: theorem 5.22

and all-or-nothing rule }

〈∪a,b : a◦R◦b=a◦⊤⊤◦b : a◦⊤⊤◦b〉

= { assumption: R is an equivalen
e relation, 
orollary 7.3 }

〈∪a,b : (R◦a)< = (R◦b)< : a◦⊤⊤◦b〉

= { Set 
asts a 
ore
exive of type A∼A to a point of 2A }

〈∪a,b : Set.(R◦a)< = Set.(R◦b)< : a◦⊤⊤◦b〉

= { de�nition of f : (7.8), and (5.47) }

f
∪

◦ f

and

f ◦R

= { above }

f ◦ f
∪

◦ f

= { f is a fun
tion, so f ◦ f
∪ ⊆ I and hen
e f ◦ f

∪ = f< }

f< ◦ f

= { domains (spe
i�
ally theorem 5.3) }

f .
✷

7.2 Properties of the Partition Function

In se
tion 7.1, the fun
tion 〈a :: Set . (R ◦a)<〉 was shown to map a proper atom a into

the set of proper atoms equivalent to a under the (equivalen
e) relation R . This se
tion

is about exploring the properties of the endofun
tion 〈p :p⊆ I : (R◦p)<〉 . We show that

it is a 
omplementation-�xed 
losure operator.

To avoid 
lutter, we use the 
onvention that lower 
ase identi�ers p and q range

over 
ore
exives. So the fun
tion of interest is 〈p :: (R◦p)<〉 .

Re
alling de�nition 2.47 of 
omplementation-�xed and noting that, for all relations

R , R•<=∼(R<) , we explore 
onditions under whi
h

(R ◦ (R◦S)•<)< = (R◦S)•<

beginning with the in
lusion.
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Lemma 7.9 For arbitrary relations R and S ,

(R ◦ (R◦S)•<)< ⊆ (R◦S)•< ⇐ R
∪

◦R ⊆ R .

Proof Note how the 
al
ulation below is used to determine simpler 
onditions on R

for whi
h the more 
ompli
ated in
lusion holds. The use of the isomorphism between


onditionals and domains in the �rst step is driven by the fa
t that the negation of a


ondition is a 
ondition. The use of middle-ex
hange then be
omes obvious.

(R ◦ (R◦S)•<)< ⊆ (R◦S)•<

= { theorem 5.8(e) }

R ◦ (R◦S)•< ◦⊤⊤ ⊆ (R◦S)•< ◦⊤⊤

= { property of negated left domain }

R ◦¬(R◦S◦⊤⊤) ⊆ ¬(R◦S◦⊤⊤)

= { middle-ex
hange rule (4.18)

with R,X,S,Y := R ,R◦S◦⊤⊤ , I , R◦S◦⊤⊤ }

R
∪

◦R ◦S ◦⊤⊤ ⊆ R◦S◦⊤⊤

⇐ { monotoni
ity of 
omposition }

R
∪

◦R ⊆ R .
✷

Corollary 7.10 If R is an equivalen
e relation, for all S ,

(R ◦ (R◦S)•<)< = (R◦S)•< .

In words, if R is an equivalen
e relation, (R◦S)•< is a �xed point of the fun
tion mapping


ore
exive p to (R◦p)< .

Proof We have:

(R ◦ (R◦S)•<)<

⊆ { R is an equivalen
e relation, so R
∪

◦R ⊆ R , lemma 7.9 }

(R◦S)•<

= { I is unit of 
omposition; (R•<)<=R•<
for all R , with R :=R◦S }

(I ◦ (R◦S)•<)<

⊆ { R is an equivalen
e relation, so I⊆R ,

monotoni
ity of 
omposition and domains }

(R ◦ (R◦S)•<)< .

Algorithmi
 Graph Theory April 8, 2022



126

The equality thus follows by the anti-symmetry of ⊆ .

✷

Lemma 7.11 If R is re
exive and transitive, the fun
tion 〈p :: (R◦p)<〉 is a 
losure

operator.

Proof The equivalen
e in de�nition 2.44 of a 
losure operator is established by mutual

impli
ation. Impli
ation:

(R◦q)<

⊆ { assume q ⊆ (R◦p)< , monotoni
ity of (R◦
) and

< }

(R ◦ (R◦p)<)<

= { domains (dual of theorem 5.9) }

(R◦R◦p)<

⊆ { R is transitive }

(R◦p)<

and follows-from:

q ⊆ (R◦p)<

⇐ { assume (R◦q)< ⊆ (R◦p)< , transitivity of ⊆ }

q ⊆ (R◦q)<

⇐ { R is re
exive, i.e. I⊆R ; monotoni
ity of (

◦q ) and < }

q ⊆ (I◦q)<

= { domains: theorem 5.8, and assumption: q is 
ore
exive }

true .

✷

Theorem 7.12 If R is an equivalen
e relation, the fun
tion 〈p :p⊆ I : (R◦p)<〉 is a


omplementation-�xed and 
omplementation-idempotent 
losure operator.

Moreover, if R is an equivalen
e relation on a 
omplete, universally distributive,

saturated latti
e, the set of 
ore
exives Fix.〈p :: (R◦p)<〉 is a 
omplete, saturated latti
e,

its atoms being the set of 
ore
exives (R◦a)< where a is an atom of the latti
e of all


ore
exives.

Proof An equivalen
e relation R is re
exive ( I⊆R ), symmetri
 (R=R∪

) and transitive

(R◦R⊆R ). So the fun
tion 〈p :: (R◦p)<〉 is a 
losure operator by lemma 7.11 and, hen
e,
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omplementation-idempotent by 
orollary 7.10. It is thus also 
omplementation-�xed by

lemma 2.48.

If R is an equivalen
e relation on a 
omplete, universally distributive latti
e, the


ompleteness and saturation properties are given by theorem 2.71.

✷

Lemma 7.13 Suppose R is an equivalen
e relation on a saturated atomi
 latti
e.

Then

〈∪a : atom.a : (R◦a)<〉 = I .

Proof

〈∪a : atom.a : (R◦a)<〉

= { the fun
tions

<
and (R◦

) are lower adjoints

and so are universally distributive }

(R ◦ 〈∪a : atom.a : a〉)<

= { the latti
e of 
ore
exives is saturated, i.e. 〈∪a : atom.a : a〉 = I }

(R ◦ I)<

= { R<⊆ I , for all R ;

R is re
exive, i.e. I⊆R ; <
is monotoni
 and I<= I . }

I .

✷

Note that, as already observed, the fun
tion 〈p :: (R◦p)<〉 is the lower adjoint in a

Galois 
onne
tion of the 
ore
exives (ordered by the subset relation) with itself. Thus,

if R is an equivalen
e relation, the fun
tion is universally distributive, as well as being

a 
omplementation-�xed and 
omplementation-idempotent 
losure operator.

Finally, note that all the properties stated and proven in this se
tion 
an be dualised to

properties of the fun
tion 〈p :: (p◦R)>〉 . This is important, for example when we 
onsider

the notions of left- and right-de�niteness of a relation in se
tion 8.1. The fun
tion

〈R :: Set.〈p :: (R◦p)<〉〉 is akin to what Bird and De Moor [BdM97℄ 
all the \existential

image" fun
tor. The fun
tion 〈a :: Set . (R ◦a)<〉 (where a ranges over proper atoms)

is what they 
all the \power-transpose" of R . This terminology is more relevant to

appli
ations where relations are viewed as set-valued fun
tions.
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Chapter 8

Acyclic Graphs

This 
hapter begins our presentation of algorithmi
 graph theory in point-free relation

algebra. From now on, a graph G is simply a homogeneous \edge" relation of type

Node∼Node where Node is a �nite set. A proper atom a in the latti
e of 
ore
exives

of type Node is a node of the graph. Then, if a and b are both nodes, the boolean

a◦G◦b 6=⊥⊥ represents the existen
e of an edge from a to b ; if indeed a◦G◦b 6=⊥⊥ ,

the edge itself is the atom a◦⊤⊤◦b (in the poset of relations of type Node∼Node ). The

existen
e of a path from a to b is represented by the boolean a ◦G∗
◦b 6= ⊥⊥ . (The path

itself is a sequen
e of nodes.) In this way, relation algebra is the appropriate vehi
le for a

study of the algorithmi
 properties of the existen
e of paths in graphs. (Regular algebra

is the appropriate vehi
le for studying more general properties of paths in graphs.)

A
y
li
 graphs (graphs without 
y
li
 paths) form an important sub
lass of graphs.

This is not just be
ause they naturally o

ur in pra
ti
al problems |they 
orrespond

to partial orderings on �nite sets| but also be
ause all graphs 
omprise a 
olle
tion

of so-
alled \strongly 
onne
ted 
omponents" that are 
onne
ted by an a
y
li
 graph.

This stru
tural property of graphs |formalised in theorem 9.30| is important in path-

�nding algorithms as well as the seemingly unrelated problem of eÆ
iently representing

the inverse of a real matrix. (See the dis
ussion following theorem 9.30 for further

dis
ussion.)

Subse
tion 8.1 de�nes a
y
li
ity in the 
onventional way in terms of paths. At

the same time, a less well-known property, whi
h we 
all \de�niteness" is introdu
ed.

Whereas a
y
li
ity is parti
ularly appropriate to reasoning about graphs, de�niteness is

more general. For �nite graphs, the two notions 
oin
ide, as shown in this se
tion.

Subse
tion 8.2 is about showing that the re
exive-transitive redu
tion of a de�nite

relation is its least starth root. Equivalently, every partial ordering on a �nite set has a

unique so-
alled \Hasse diagram".

Subse
tion 8.3 develops a formal proof of the following fa
t from graph theory: in

an a
y
li
 graph, the nodes rea
hable from set A 
oin
ide with the nodes rea
hable
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from the minimal elements of A. The theorem is a 
orollary of a mu
h more general

theorem about \right-de�niteness" of a relation. In more 
onventional terminology, it is

the theorem that, given a well-founded relation on a set S , every non-empty subset of

S has a minimal element (with respe
t to the well-founded relation).

The �nal subse
tion in this se
tion, subse
tion 8.4, is about how a \topologi
al sear
h"

of an a
y
li
 graph assigns to the nodes of the graph a so-
alled \topologi
al ordering".

The de�nition of a topologi
al ordering and the algorithm for topologi
al sear
h are

formulated in point-free relation algebra.

Many properties we prove are valid for arbitrary relations and not just for graphs.

That is, the assumption of �niteness is not required. Nevertheless, we sometimes use

graph terminology| partly be
ause this is the primary appli
ation here but also be
ause

it is more \graphi
" in the sense of being easier to explain with the aid of diagrams. In

order to make the level of generality 
lear, we use R to denote an arbitrary relation and

G to denote a graph | that is, a relation over a �nite set of nodes.

8.1 Definiteness and Acyclicity

We have to de�ne the meaning of a graph being a
y
li
. Obviously, a 
y
le gives rise to

an in�nite path in the graph. But, 
onversely, an in�nite path in a �nite graph 
ontains

a 
y
le (be
ause the number of verti
es is �nite). Therefore, a
y
li
ity in �nite graphs

is the same as the absen
e of in�nite paths, to whi
h we give the name \(left- or right-)

de�nite".

Definition 8.1 ((Right/Left) Definite) Relation R is said to be right-de�nite if

and only if it satis�es

〈∀p :: p⊆⊥⊥ ⇐ p ⊆ (p◦R)>〉 .(8.2)

It is said to be left-de�nite if and only if it satis�es

〈∀p :: p⊆⊥⊥ ⇐ p ⊆ (R◦p)<〉 .(8.3)

It is said to be de�nite if it is both left- and right-de�nite.

✷

Informally, right-de�niteness means the absen
e of in�nite \des
ending" paths. That

is, there is not a non-empty set of atoms, represented by the 
ore
exive p , su
h that,

for all atoms a in p , it is always possible to �nd an atom b in p su
h a is in the set

represented by (b◦R)> , i.e. b[[R]]a . Were this possible, the pro
ess 
an be repeated ad

in�nitum ; in graphs, this means the existen
e of paths 
omprising an in�nite number

of edges. (See lemmas 8.17 and 8.19 for the formalisation of this argument.)

Algorithmi
 Graph Theory April 8, 2022



131

Note that R is right-de�nite equivales that its 
onverse R
∪

is left-de�nite. So left-

de�niteness means the absen
e of in�nite \as
ending" paths. A hint on how to remember

whi
h is whi
h is that left-de�niteness is de�ned in terms of the left domain operator

and right-de�niteness in terms of the right domain operator.

The importan
e of the 
on
ept of de�niteness is what we have 
alled the unique

extension property (uep) of relation algebra.

Theorem 8.4 (Uep of Relation Algebra) Suppose R is a right-de�nite relation.

Then, for all 
ore
exives p and q ,

p = (p◦R)> ∪ q ≡ p = (q ◦R∗)> .

Also, for all relations X and S ,

X = X◦R∪S ≡ X = S ◦R∗ .

Dually, if R is a left-de�nite relation, for all 
ore
exives p and q ,

p = (R◦p)< ∪ q ≡ p = (R∗
◦q)< ,

and, for all relations X and S ,

X = R◦X∪S ≡ X = R∗
◦S .

✷

A proof of theorem 8.4 
an be found in [DBvdW97, se
tion 7℄. E�e
tively, in relation

algebra theorem 8.4 is equivalent to the unique extension property of regular algebra

presented in se
tion 3.3. (See theorem 3.16.) Note that [DBvdW97℄ uses the terminology

\well-founded" rather than \right-de�nite" in order to �t with the standard terminology

of the prin
iple appli
ation 
onsidered in the paper.

For later use, we note the following simple lemma.

Lemma 8.5 Suppose R is right-de�nite and R⊇S . Then S is right-de�nite. The

same is true with \left" repla
ing \right".

Proof Immediate from the monotoni
ity of transitive 
losure, 
omposition and the

domain operators.

✷

As mentioned earlier, in [DBvdW97℄ the better-known term \well-founded" was used

instead of our \right-de�nite". An example of a well-founded relation is the less-than

relation on the natural numbers. Expressed pointwise, (8.2) for this appli
ation is the

property that, for all subsets p of the natural numbers,

p=∅ ⇐ 〈∀m : m∈p : 〈∃n : n∈p : n<m〉〉 .
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Expressed slightly di�erently, this is the property that for all subsets p of the natural

numbers,

p=∅ ∨ 〈∃m : m∈p : 〈∀n : n∈p : n≥m〉〉 .

In words, every non-empty set of natural numbers has a least element.

We mention this example be
ause it illustrates the fa
t that left-de�nite and right-

de�nite are not (in general) the same: the su

essor relation on the natural numbers

(the 
onverse of the prede
essor relation) is not well-founded. Left- and right-de�nite

are the same for �nite graphs, as we shall see.

The less-than relation on natural numbers is the transitive 
losure of the prede
essor

relation (the 
onverse of the su

essor fun
tion, where the su

essor of m is m+1 ).

And, of 
ourse, the prede
essor relation is well-founded. This exempli�es a (well-known)

property, namely:

Lemma 8.6 Relation R is right-de�nite equivales relation R+
is right-de�nite. Sim-

ilarly for left-de�nite and for de�nite. Thus R is right-de�nite if and only if it satis�es

〈∀p :: p⊆⊥⊥ ⇐ p ⊆ (p ◦R+)>〉 .(8.7)

It is left-de�nite if and only if it satis�es

〈∀p :: p⊆⊥⊥ ⇐ p ⊆ (R+
◦p)<〉 .(8.8)

Proof Obviously, R⊆R+
. So, by lemma 8.5, R is right de�nite if R+

is right de�nite.

For the 
onverse, we have:

p ⊆ (p ◦R+)>

= { de�nition of set union }

p ∪ (p ◦R+)> ⊆ (p ◦R+)>

= { distributivity, R∗ = 1∪R+ }

(p ◦R∗)> ⊆ (p ◦R+)>

= { R+ = R∗
◦R , domains }

(p ◦R∗)> ⊆ ((p ◦R∗)> ◦R)> .

Moreover, sin
e ⊥⊥ is the zero of 
omposition and p⊆ (p ◦R∗)> ,

p⊆⊥⊥ ≡ (p ◦R∗)>⊆⊥⊥ .

Thus
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〈∀p :: p⊆⊥⊥ ⇐ p ⊆ (p◦R)>〉

⇒ { p := (p ◦R∗)> }

〈∀p :: (p ◦R∗)> ⊆ ⊥⊥ ⇐ (p ◦R∗)> ⊆ ((p ◦R∗)> ◦R)>〉

= { above }

〈∀p :: p⊆⊥⊥ ⇐ p ⊆ (p ◦R+)>〉 .

That is, R+
is right de�nite if R is right de�nite.

✷

Be
ause the ante
edent of (8.2) is formally stronger than the ante
edent of (8.7), it


an be easier to use de�nition 8.1 to establish that a relation is right-de�nite. On the

other hand, when it is known that a relation is right-de�nite, de�nition 8.6 may be easier

to use.

See [DBvdW97℄ for a detailed study of properties of R and R+
of whi
h lemma 8.6

is an instan
e.

Anti
ipating the de�nition of a
y
li
ity (de�nition 8.11), we rephrase right-de�niteness

in terms of atomi
 
ore
exives.

Lemma 8.9 For all R and all atomi
 
ore
exives a ,

a⊆R ≡ a ⊆ (a◦R)> .

Proof Suppose a is an atomi
 
ore
exive. Then, for all R ,

a ⊆ R

⇒ { a is 
ore
exive, so (a◦a)>=a ; monotoni
ity }

a ⊆ (a◦R)>

⇒ { a◦⊤⊤◦a=a , monotoni
ity }

a ⊆ a ◦⊤⊤ ◦ (a◦R)>

= { domains (spe
i�
ally, theorem 5.7(a)) }

a ⊆ a◦⊤⊤◦a◦R

⇒ { a◦⊤⊤◦a = a ⊆ I , monotoni
ity and transitivity }

a ⊆ R .

The lemma follows by mutual impli
ation.

✷

Lemma 8.10 If R is right-de�nite, then, for all atomi
 
ore
exives a ,

a⊆⊥⊥ ⇐ a⊆R+ .
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Proof Assume that R is right-de�nite. Then,

a ⊆ R+

= { lemma 8.9 with R :=R+ }

a ⊆ (a ◦R+)>

⇒ { assumption: R is right-de�nite, lemma 8.6 }

a ⊆ ⊥⊥ .

✷

We now de�ne a
y
li
ity:

Definition 8.11 (Acyclicity) A relation R is said to be a
y
li
 if

I ∩ R+ = ⊥⊥ .

A proper atomi
 
ore
exive a is said to be in a 
y
le of R if a⊆R+
.

✷

A proper atomi
 
ore
exive a that is in a 
y
le of R \witnesses" the fa
t that R is

not a
y
li
. Formally, we have:

Lemma 8.12

I ∩ R+ 6= ⊥⊥ ≡ 〈∃a : AC.a∧a 6=⊥⊥ : a⊆R+〉 .

Proof

I ∩ R+ 6= ⊥⊥

= { latti
e of relations is atomi
, de�nition 2.49 }

〈∃a : atom.a∧a 6=⊥⊥ : a ⊆ I∩R+〉

= { a ⊆ I∩R+ ≡ a⊆ I ∧ a⊆R+

trading and de�nition of atomi
 
ore
exive, AC }

〈∃a : AC.a∧a 6=⊥⊥ : a⊆R+〉 .

✷

A straightforward 
al
ulation shows that

I ∩ R+ = I ∩ (R
∪

)+ .

It follows that R is a
y
li
 equivales R
∪

is a
y
li
.

An alternative de�nition of relation R being a
y
li
 is |essentially| that the relation

R∗
is a partial ordering (i.e. anti-symmetri
 as well as transitive and re
exive). To be

pre
ise:
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Lemma 8.13 For all R , the relation R∗
is anti-symmetri
 (i.e. R∗∩ (R∗)∪ = I ) if R

is a
y
li
. Conversely, ¬I∩R is a
y
li
 if R∗
is anti-symmetri
. (Equivalently |sin
e

R∗
is re
exive and transitive| R∗

is a partial ordering if R is a
y
li
 and, 
onversely,

¬I∩R is a
y
li
 if R∗
is a partial ordering.)

Proof Suppose R is a
yli
. Then

R∗∩ (R∗)∪ = I

= { [ R∗ = I∪R+ ] , distributivity }

(I∩ (R∗)∪) ∪ (R+∩ (R∗)∪) = I

= { [ (R∗)∪=(R∪)∗ ] , [ I∩S∗ = I ] with S :=R∪

}

I ∪ (R+∩ (R∗)∪) = I

⇐ { ⊥⊥ is zero of supremum }

R+∩ (R∗)∪ ⊆ ⊥⊥

⇐ { modular law }

(R+
◦R∗ ∩ I) ◦ (R∗)∪ ⊆ ⊥⊥

= { [ R+
◦R∗ = R+ ] , symmetry of ∩ ,

⊥⊥ is zero of supremum }

(I∩R+) ◦ (R∗)∪ = ⊥⊥

= { R is a
y
li
, de�nition 8.11 }

true .

That is, R∗
is anti-symmetri
 if R is a
y
li
.

For the 
onverse, suppose that R∗
is anti-symmetri
. Then

I ∩ (¬I∩R)+ ⊆ ⊥⊥

⇐ { [ (¬I∩R)+ = (¬I∩R) ◦R∗ ] ,

modular law and ⊥⊥ is zero of 
omposition }

(¬I∩R)∪ ∩ R∗ ⊆ ⊥⊥

= { distributivity, (¬I)∪ = ¬I }

¬I∩R∪ ∩ R∗ ⊆ ⊥⊥

⇐ { [ R
∪⊆ (R∗)∪ ] , symmetry of union }

¬I∩ (R∗)∪ ∩ R∗ ⊆ ⊥⊥
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⇐ { assumption: R∗
is anti-symmetri


(i.e. (R∗)∪∩R∗ = I ) }

¬I∩ I ⊆ ⊥⊥

= { 
omplement }

true .

✷

De�nition 8.11 is meaningful for arbitrary relations but we instantiate it primarily

for �nite graphs. Re
all that nodes are points. (See de�nition 5.13.) So identifying a

node in a 
y
le of graph G establishes that G is not a
y
li
. Formally, we have:

Lemma 8.14 Suppose a is a point. Then a ◦R+
◦a = ⊥⊥ if relation R is a
y
li
.

Conversely, if a ◦R+
◦a 6= ⊥⊥ , R is not a
y
li
, as witnessed by a ; that is, a is a point

in a 
y
le of R .

Proof By lemma 5.15 and de�nition 5.13(
),

a ◦R+
◦a = a ∨ a ◦R+

◦a = ⊥⊥(8.15)

for all points a .

Assume R is a
y
li
. Then

a ◦R+
◦a = a

= { a is 
ore
exive, lemmas 5.27 (with p,b :=a,a ) and 8.9 }

a ⊆ I ∩ R+

⇒ { assumption: R is a
y
li
 (de�nition 8.11) }

a = ⊥⊥

⇒ { a is a point so a 6= ⊥⊥ }

false .

We 
on
lude that, if R is a
y
li
, a ◦R+
◦a = ⊥⊥ for all points a .

For the 
onverse, suppose a is an atomi
 
ore
exive and a ◦R+
◦a 6= ⊥⊥ . Then, by

(8.15), a ◦R+
◦a = a . It follows that a is proper and, applying de�nition 8.11, a is in

a 
y
le of R .

✷

We now show that, for �nite graphs, right- (or left-) de�niteness equivales a
y
li
ity.

Lemma 8.16 shows that �niteness is not required to show that right- (or left-) de�niteness

implies a
y
li
ity but the 
onverse is not always true for relations on in�nite sets. For

example, the less-than ordering on real numbers is a
y
li
 but it is not well-founded.
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Lemma 8.16 A right-de�nite relation is a
y
li
. Symmetri
ally, a left-de�nite relation

is a
y
li
.

Proof With a ranging over atomi
 
ore
exives, we have

rightdefinite.R

⇒ { de�nition 8.1 (with p :=a ) and lemma 8.10 }

〈∀a :: a⊆⊥⊥ ⇐ a⊆R+〉

⇒ { the latti
e of 
ore
exives is saturated, i.e. 〈∪a ::a〉 = I }

I ∩ R+ = ⊥⊥

= { de�nition 8.11 }

acyclic.R .

The symmetri
 property of left-de�niteness follows straightforwardly. (See the remarks

above about the relation between left-de�niteness of R
∪

and right-de�niteness of R .)

✷

We turn now to the proof that de�niteness follows from a
y
li
ity. Like lemma 8.16,

lemma 8.17 and 
orollary 8.18 below do not require �niteness of the relation R ; however,

their appli
ation in lemma 8.19, will for
e the restri
tion to �nite graphs.

Earlier we argued informally that right-de�niteness means the absen
e of in�nite

\des
ending" paths. Formally, we have:

Lemma 8.17 Suppose p is a 
ore
exive su
h that p 6=⊥⊥ and p ⊆ (p ◦R+)> . Suppose

a is a proper atomi
 
ore
exive su
h that a⊆p . Then, with dummy b ranging over

atomi
 
ore
exives, we have

〈∃b :: b 6=⊥⊥ ∧ b⊆p ∧ a ⊆ (b ◦R+)> ∧ (a ◦R+)> ⊆ (b ◦R+)>〉 .

Proof The proof of (8.17) is in two stages. First,

a ⊆ p

⇒ { assumption: p ⊆ (p ◦R+)> , transitivity }

a ⊆ (p ◦R+)>

= { saturation assumption: de�nition 2.50, distributivity }

a ⊆ 〈∪b : b⊆p : (b ◦R+)>〉

⇒ { a is a proper atom, irredu
ibility: lemma 2.63 }

〈∃b : b 6=⊥⊥ ∧ b⊆p : a ⊆ (b ◦R+)>〉 .
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Se
ond, assuming a ⊆ (b ◦R+)> ,

(a ◦R+)>

⊆ { assumption, monotoni
ity }

((b ◦R+)> ◦R+)>

= { domains (spe
i�
ally theorem 5.9) }

(b ◦R+
◦R+)>

⊆ { R+
is transitive, monotoni
ity }

(b ◦R+)> .

✷

Corollary 8.18 Suppose p is a 
ore
exive su
h that p 6=⊥⊥ and p ⊆ (p ◦R+)> . Then

it is possible to 
onstru
t an in�nite sequen
e of proper atomi
 
ore
exives ai su
h that

〈∀i : 0≤ i : ai⊆p〉 ∧ 〈∀ i,j : 0≤ i< j : ai ⊆ (aj ◦R
+)>〉 .

Proof The initial term a0 is an arbitrary element of p . That is, a0 ⊆ p . (For-

mally, we exploit the assumption that the latti
e of 
ore
exives is atomi
: see de�nition

2.49.) Subsequent nodes are 
onstru
ted by exploiting lemma 8.17 (with a,b :=ai,ai+1 ).

Be
ause, for all i ,

(ai ◦R
+)> ⊆ (ai+1 ◦R

+)>

it follows, by transitivity, that

〈∀ i,j : i< j : (ai ◦R
+)> ⊆ (aj ◦R

+)>〉 .

Combining this with the fa
t that, for all i , ai ⊆ (ai+1 ◦R
+)> , we have:

〈∀ i,j : 0≤ i< j : ai ⊆ (aj ◦R
+)>〉 .

✷

This is the point at whi
h we are obliged to introdu
e the �niteness assumption.

Lemma 8.19 Suppose G is a �nite graph. Then G is right-de�nite if G is a
y
li
.

Proof We prove the 
ontrapositive: if G is a �nite graph that is not right-de�nite,

then G is not a
y
li
.

Suppose G is not right-de�nite. Then there is a 
ore
exive p su
h that p 6=⊥⊥ and

p ⊆ (p ◦G+)> . Applying 
orollary 8.18 with R :=G , it is possible to 
onstru
t an in�nite

sequen
e of nodes ai su
h that

〈∀ i,j : 0≤ i< j : ai ⊆ (aj ◦G
+)>〉 .
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There is only a �nite number of nodes; so, for some m and n , m<n and am=an .

Thus

am ⊆ (am ◦G+)> .

Hen
e,

true

= { lemma 8.9 (with a,R :=am,G ) }

am ⊆ G+

⇒ { am = I∩am , monotoni
ity }

am ⊆ I∩G+

⇒ { ⊥⊥ 6=am , ⊥⊥ is the least element }

⊥⊥ 6= I∩G+ .

That is, G is not a
y
li
.

✷

Corollary 8.20 Suppose G is a �nite graph. Then G is de�nite if G is a
y
li
.

Proof Straightforward 
ombination of lemma 8.19 and properties of 
onverse. First,

true

= { lemma 8.19 }

〈∀G : finite.G : leftdefinite.G⇐ acyclic.G〉

= { 
onverse is a bije
tion }

〈∀G : finite.G
∪

: leftdefinite.G
∪ ⇐ acyclic.G

∪〉

= { finite.G
∪ = finite.G , leftdefinite.G

∪ = rightdefinite.G ,

acyclic.G
∪ = acyclic.G }

〈∀G : finite.G : rightdefinite.G⇐ acyclic.G〉 .

So

true

= { lemma 8.19 and above }

〈∀G : finite.G : leftdefinite.G⇐ acyclic.G〉

∧ 〈∀G : finite.G : rightdefinite.G⇐ acyclic.G〉
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= { predi
ate 
a
ulus }

〈∀G : finite.G : leftdefinite.G ∧ rightdefinite.G ⇐ acyclic.G〉

= { leftdefinite.G ∧ rightdefinite.G ≡ definite.G }

〈∀G : finite.G : definite.G⇐ acyclic.G〉 .

✷

To summarise, we have the following theorem.

Theorem 8.21 If G is a �nite graph, G is a
y
li
 equivales G is de�nite.

Proof Straightforward 
ombination of 
orollary 8.16 and 
orollary 8.20.

✷

Remark The term \de�nite" was, to our knowledge, �rst used by Carr�e [Car71℄.

Inspired by Conway's maxim [Con71, p.40℄ that any axiomatisation of a regular algebra

should extend to (�nite) matri
es, an algebrai
 formulation of \de�niteness" in a regular

algebra was introdu
ed in [Ba
75, BC75℄. (See se
tion 3.3 and, in parti
ular theorem

3.16.) This made it possible to establish a link between the notion of the \empty word

property" [Sal69℄ |of both languages and matri
es of languages| and the (well-known)

notion of singularity of matri
es in linear algebra. At that time no distin
tion was made

between the notions of left- and right-de�niteness, the sole appli
ation under 
onsidera-

tion being �nite matri
es (equivalently, �nite graphs) where |in view of theorem 8.21|

the two notions are indistinguishable..

The distin
tion between left- and right-de�niteness only emerged with the re
ogni-

tion that a regular algebra is an important sub
omponent of a relation algebra, and that,

in a relation algebra, right-de�niteness 
orresponds to the fundamental 
on
ept of well-

foundedness [DBvdW97℄ (and is distin
t from left-de�niteness). In the same way that

de�niteness in a regular algebra formulates Salomaa's (absen
e of the) empty word prop-

erty of a matrix of languages, the notion o�ers an alternative but equivalent algebrai


formulation of the a
y
li
ity of a �nite graph. The notions of left- and right-de�niteness

are, however, more general than a
y
li
ity, as we have seen in this se
tion. End of

Remark

8.2 Starth Root and Reflexive-Transitive Reduction

In this se
tion, we show that the re
exive-transitive redu
tion of a de�nite relation is the

least starth root of the graph. It follows that the same is true of a �nite, a
y
li
 graph.

Re
all the de�nition of re
exive-transitive redu
tion: de�nition 3.18. The de�nition

of the fun
tion red is quite 
ompli
ated, mu
h of the 
ompli
ation being due to the

need to eliminate self-loops. An a
y
li
 relation has no self-loops so the de�nition 
an

be simpli�ed:

Algorithmi
 Graph Theory April 8, 2022



141

Lemma 8.22 If R is a
y
li
, then R = R∩¬I . So

red.R = R∩¬(R ◦R+) .

Proof

R = R∩¬I

= { R ⊇ R∩¬I , anti-symmetry, R⊆R }

R⊆¬I

= { shunting rule (2.27) }

R∩I⊆⊥⊥

⇐ { R⊆R+
, monotoni
ity and transitivity }

R+∩ I ⊆ ⊥⊥

= { R is a
y
li
 }

true .

The formula for red.R follows by instantiating (3.19) and repla
ing R by R∩¬I .

✷

Theorem 8.23 The least starth root of a de�nite relation is its re
exive-transitive

redu
tion. That is, for all de�nite relations R ,

(red.R)∗ = R∗ ∧ 〈∀X : X∗=R∗ : red.R ⊆ X〉 .

In parti
ular, the least starth root of a �nite, a
y
li
 graph is its re
exive-transitive

redu
tion.

Proof Assume that R is de�nite. By theorem 3.22, it suÆ
es to prove the lefthand


onjun
t.

(red.R)∗ = R∗

= { red.R⊆R and R is de�nite, so red.R is right-de�nite (theorem 8.21)

uep of relation algebra: theorem 8.4 }

R∗ = I ∪ red.R ◦R∗

⇐ { R∗ = I ∪ R+
, Leibniz }

R+ = red.R ◦R∗

= { R is left-de�nite,
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uep of relation algebra: theorem 8.4 }

R+ = red.R ∪ R+
◦R

= { by lemma 8.16, R is a
y
li
; lemma 8.22 }

R+ = (R∩¬(R ◦R+)) ∪ R+
◦R

= { R ◦R+ = R+
◦R and absorption rule of set 
al
ulus }

R+ = R ∪ R+
◦R

= { �xed-point de�nition of transitive 
losure }

true .

The parti
ular 
ase of a �nite, a
y
li
 graph follows from 
orollary 8.20.

✷

Observe that the proof of theorem 8.23 uses both left- and right-de�niteness. The

lexi
ographi
 ordering on words over an alphabet of size at least two demonstrates that

just one of left- or right-de�niteness is not suÆ
ient: it is right-de�nite (i.e. well-founded)

but it is not left-de�nite (i.e. its 
onverse is not well-founded) and it does not have a

least starth root: see example 3.26.

Examples of non-�nite relations that are de�nite 
an be 
onstru
ted using one's

understanding of bound fun
tions (se
tion 6.8.6). An illustrative 
ase is the relation R

on integers de�ned by

〈∀m,n :: m[[R]]n ≡ even.m ∧ odd.n ∧ m<n〉 .

The bound fun
tion is the fun
tion even . Indeed,

R = even
∪

◦ (;) ◦ even ∧ 〈∀m,n :: m[[red.R]]n ≡ even.m ∧ n=m+1〉 .

where the symbol ; denotes the 
omplement of the only-if relation on booleans.

8.3 Minimal Nodes and Reachability

This se
tion is about formulating and proving the property that, given a right-de�nite

relation, the set of nodes \rea
hable" from a given set of nodes equals the set of nodes

\rea
hable" from a minimal subset of the given set of nodes.

Suppose G is a graph. To de�ne rea
hability we observe that node x is rea
hable

from a set of nodes A if there exists y∈A su
h that there is a path from y to x . That

there is a path from y to x 
an of 
ourse be expressed as y[[G∗]]x , so rea
hability of x

from A be
omes 〈∃y :y∈A :y[[G∗]]x〉 or by de�nition of 
omposition: 〈∃y :: y[[A◦G∗]]x〉 .

In the last expression we re
ognise the pointwise de�nition of the domain operator: if set
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A is represented by the 
ore
exive p , the expression is equivalent to x∈ (p◦G∗)> . Gener-

alising from graph G to an arbitrary relation R , the point-free de�nition of reachable.R.p

is therefore:

reachable.R.p = (p◦R∗)> .(8.24)

That a node x is a minimal element of a set of nodes A means that x is an element of

A and that, furthermore, there is no edge from a node in A to x. This is more formally

expressed as x∈A∧¬〈∃y :y∈A :y[[R]]x〉 . Alternatively, by again introdu
ing the domain

operator and representing set A by the 
ore
exive p , as x ∈ p∩ (p◦R)>• . Repla
ing the

interse
tion by a 
omposition of 
ore
exives, the set minimal.R.p of minimal elements of

p is thus de�ned as:

minimal.R.p = p ◦ (p◦R)>•(8.25)

The formal statement of the fa
t that the nodes rea
hable from set A 
oin
ide with the

nodes rea
hable from the minimal elements of A now be
omes:

Lemma 8.26 Suppose relation R is right-de�nite. Then, for all 
ore
exives p ,

reachable.R.p = reachable.R.(minimal.R.p) .(8.27)

More generally, for all 
ore
exives p and q ,

reachable.R.p ⊆ reachable.R.q ⇐ minimal.R.p ⊆ q .(8.28)

Proof Assume that R is right-de�nite. We prove (8.27) by mutual in
lusion. One

in
lusion is easy. From the de�nition (8.24) it is 
lear that reachable.R is a monotone

fun
tion. Furthermore from (8.25) we see that p 
ontains minimal.R.p . Therefore

reachable.R.p ⊇ reachable.R.(minimal.R.p) .

It remains to prove the other in
lusion. Somewhere we have to use the assumption of

right-de�niteness, but how? We have to prove that

reachable.R.p ⊆ reachable.R.(minimal.R.p) ,

whereof the righthand o

urren
e of reachable involves a re
exive-transitive 
losure.

This suggests that we use the uep of relation algebra. Furthermore, it turns out that the

expression minimal.R.p does not play a role. Therefore, we begin by deriving a 
ondition

implying

reachable.R.p ⊆ reachable.R.q

for arbitrary 
ore
exive q . (This turns out to be the property (8.28).) We begin by

exploiting (the dual of) lemma 7.11:
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reachable.R.p ⊆ reachable.R.q

= { de�nition rea
hables: (8.24) }

(p◦R∗)> ⊆ (q◦R∗)>

= { the fun
tion 〈p :: (p◦R∗)>〉 is a 
losure operator

(dual of lemma 7.11) and de�nition 2.44 }

p ⊆ (q◦R∗)> .

Now we 
an invoke the right-de�niteness of R . From the dis
ussion of theorem 8.4 on

the uep of relation algebra it follows that, for right-de�nite relation R , relation (q◦R∗)>

is the greatest �xed point of the fun
tion 〈X :: q∪ (X◦R)>〉 . Exploitation of this fa
t is

the main step in the following 
al
ulation.

p ⊆ (q◦R∗)>

= { R is right-de�nite: (q◦R∗)> = 〈νX :: q∪ (X◦R)>〉 ;

�xed-point indu
tion }

p ⊆ (q∪p◦R)>

= { domain operator is ∪ -jun
tive }

p ⊆ q∪ (p◦R)>

= { shunting (2.27) in the 
ore
exive latti
e }

p ◦ (p◦R)>• ⊆ q

= { de�nition (8.25) }

minimal.R.p ⊆ q .

With this 
al
ulation we have established the property (8.28). Instantiating q with

minimal.R.p in this formula then gives the desired result:

reachable.R.p ⊆ reachable.R.(minimal.R.p) .

This 
ompletes the proof of the theorem.

✷

An interesting observation 
an be made if we take a 
loser look at the ante
edent of

formula (8.28). After instantiating q to the empty relation and writing out the de�nition

of minimal.R it reads: p ◦ (p◦R)>• ⊆ ⊥⊥ . Now we 
an apply shunting in the 
ore
exive

latti
e and we get p ⊆ (p◦R)> . This expression is the ante
edent in (8.2). So, another

formulation of a relation R being right-de�nite is: for all 
ore
exives p ,

p⊆⊥⊥ ⇐ minimal.R.p ⊆ ⊥⊥ ,(8.29)
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or the equivalent 
ontrapositive (using that ⊥⊥ is the bottom of the latti
e): for all


ore
exives p ,

p 6=⊥⊥ ⇒ minimal.R.p 6= ⊥⊥ .(8.30)

This is the familiar 
hara
terisation \every non-empty set has a minimal element" of

well-foundedness.

Now we 
onsider the 
onverse of lemma 8.26. Is it true that a graph with property

(8.27) is right-de�nite? This question 
an be answered aÆrmatively and the proof is

simple. We show that a relation satisfying (8.27) also satis�es (8.29).

minimal.R.p = ⊥⊥

⇒ { Leibniz }

reachable.R.(minimal.R.p) = reachable.R.⊥⊥

= { assumption: reachable.R.(minimal.R.p) = reachable.R.p ;

de�nition of reachable : (8.24) }

reachable.R.p = (⊥⊥◦R∗)>

= { de�nition of reachable : (8.24);

⊥⊥ is zero of 
omposition }

(p◦R∗)> = ⊥⊥

⇒ { I⊆R∗ }

p ⊆ ⊥⊥ .

We thus 
on
lude:

Theorem 8.31 Relation R is right-de�nite equivales for all 
ore
exives p ,

reachable.R.p = reachable.R.(minimal.R.p) .

In parti
ular, that (�nite) graph G is a
y
li
 equivales for all 
ore
exives p

reachable.G.p = reachable.G.(minimal.G.p) .

✷

8.4 Topological Search

\Topologi
al" sear
h is an algorithm for visiting all the nodes in an a
y
li
 graph in

so-
alled \topologi
al" order.
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Definition 8.32 (Topological Order) A topologi
al ordering of a homogeneous

relation R of type A is a total, inje
tive fun
tion ord from A to the natural numbers

with the property that, for all elements a and b of A , ord.a<ord.b if a[[R+]]b .

✷

Expressed as a point-free formula, the requirement for the fun
tion ord to be a

topologi
al ordering of R is as follows:

IA = ord
∪

◦ord ∧ ord ◦ord
∪

⊆ IIN ∧ R+ ⊆ ord
∪

◦ less ◦ord .(8.33)

Here we have used \ less " to denote the less-than ordering on natural numbers rather

than the symbol \< ".

In order to verify the property of being a topologi
al ordering, or |more importantly|

to 
onstru
t a topologi
al ordering, it is useful to weaken the requirement, repla
ing R+

by R :

Lemma 8.34 Suppose ord is a total, inje
tive fun
tion of type IN←A and R is a

homogeneous relation of type A . Then ord is a topologi
al ordering of R equivales

R ⊆ ord
∪

◦ less ◦ord .

Proof The proof is a straightforward appli
ation of the de�nition of transitive 
losure

and �xed-point indu
tion:

R+ ⊆ ord
∪

◦ less ◦ord

⇐ { R+= 〈µx :: R∪x◦x〉 ; �xed-point indu
tion }

R ∪ ord∪

◦ less ◦ord ◦ord
∪

◦ less ◦ord ⊆ ord
∪

◦ less ◦ord

= { less ◦ord ◦ord
∪

◦ less

⊆ { ord ◦ord
∪ ⊆ I , monotono
ity }

less ◦ less

⊆ { less is transitive }

less ;

de�nition of set union and monotoni
ity of 
omposition }

R ⊆ ord
∪

◦ less ◦ord

⇐ { R⊆R+ }

R+ ⊆ ord
∪

◦ less ◦ord .
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✷

Lemma 8.34 means that the requirement (8.33) for the fun
tion ord to be a topo-

logi
al ordering of R 
an be simpli�ed to

IA = ord
∪

◦ord ∧ ord ◦ord
∪

⊆ IIN ∧ R ⊆ ord
∪

◦ less ◦ord .(8.35)

The less-than relation on natural numbers is, of 
ourse, well-founded | that is, right-

de�nite in the terminology used here. The fun
tion ord in the de�nition of a topologi
al

ordering thus a
ts like a so-
alled bound fun
tion for establishing termination of a loop

in a program. The relevant property is the following.

Lemma 8.36 Suppose ord is a total fun
tion of type IN←A for some A . Then

the homogeneous relation ord
∪

◦ less ◦ord (where less denotes the less-than relation on

natural numbers) is right-de�nite.

Proof Suppose p is a 
ore
exive of type A . Then

p ⊆ (p ◦ord
∪

◦ less ◦ord)>

⇒ { monotoni
ity (aiming to exploit the fun
tionality of ord ) }

(p ◦ord
∪)> ⊆ ((p ◦ord

∪

◦ less ◦ord)> ◦ord
∪)>

= { domains: (5.9) }

(p ◦ord
∪)> ⊆ (p ◦ord

∪

◦ less ◦ord ◦ord
∪)>

⇒ { ord is fun
tional, i.e. ord ◦ord∪ ⊆ I , monotoni
ity }

(p ◦ord
∪)> ⊆ (p ◦ord

∪

◦ less)>

⇒ { preparing for use of (8.2): (5.9) }

(p ◦ord
∪)> ⊆ ((p ◦ord

∪)> ◦ less+)>

⇒ { less is well-founded, i.e. right-de�nite: (8.2) }

(p ◦ord
∪)> ⊆ ⊥⊥

= { domains: (5.6) }

p ◦ord
∪ ⊆ ⊥⊥

⇒ { ord is total (i.e. I ⊆ ord
∪

◦ord ),

monotoni
ity and ⊥⊥ is zero of 
omposition }

p ⊆ ⊥⊥ .
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Thus, by de�nition, ord
∪

◦ less ◦ord is right-de�nite.

✷

Lemma 8.36 is the basis of the use of so-
alled \bound fun
tions" to establish ter-

mination of loops and re
ursion: the fun
tion ord \bounds" the number of iterations.

The only property of the relation less that is used in the proof of lemma 8.36 is that it

is well-founded (right-de�nite). So \bound fun
tions" 
an be used in 
onjun
tion with

other well-founded relations although in some 
ases it would be diÆ
ult to interpret the

fun
tion ord as a \bound". For example, the relation less 
ould be taken to be the

lexi
ographi
 ordering on words; the fun
tion ord would then map a state to a word.

Corollary 8.37 Suppose ord is a topologi
al ordering of the homogeneous relation

R . Then R is right-de�nite.

Proof Immediate from lemmas 8.5, 8.34 and 8.36.

✷

We now want to 
onsider the 
onverse of 
orollary 8.37. Is it the 
ase that every

right-de�nite relation 
an be topologi
ally ordered? The answer is: no, not in general.

(For example, the lexi
ographi
al ordering of words over a �nite alphabet is well-founded

but it is not possible to assign a number to ea
h word that de�nes its position in the

ordering.) The answer is, however, yes if we restri
t attention to �nite graphs. The proof

is 
onstru
tive. We assume that G is a �nite graph that is a
y
li
 and we present an

algorithm that 
onstru
ts a topologi
al ordering of the nodes of G .

The development of the algorithm pro
eeds as follows. Given a �nite graph G , the

requirement is to 
onstru
t a topologi
al ordering ord of all the nodes of G : spe
i�
ally,

the post
ondition that must be satis�ed is given by (8.35).

The obvious strategy is to order the nodes one-by-one, beginning with the empty set

of nodes and ending with all the nodes of G . In order to guarantee inje
tivity, an obvious


hoi
e is to assign to ea
h node the number of nodes that have already been ordered.

(Thus, the �rst node to be ordered is assigned the number 0 , the se
ond 1 , and so on.)

Introdu
ing the 
ore
exive variable seen to represent the nodes that have been ordered

(the nodes that have been \seen" in the sear
h of the graph) and the integer variable k

to 
ount the number of nodes in the set represented by seen , we design a loop that has

invariants

seen = ord
∪

◦ord ∧ ord ◦ord
∪

= {j |0≤ j<k} , and(8.38)

seen ◦G ◦ seen ⊆ ord
∪

◦ less ◦ord .(8.39)

The overbar notation used in (8.38) denotes the mapping from a set to its representation

as a 
ore
exive. The invariant (8.38) states that ord is fun
tional with right domain
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seen and it is inje
tive with left domain the set of natural numbers less than k . The

invariant (8.39) states that if there is an edge in G from a node a that has been \seen"

to a node b that has also been \seen" then ord.a<ord.b .

The invariants (8.38) and (8.39) are 
learly derived from (8.35) by the well-known,


orre
t-by-
onstru
tion design method of repla
ing a 
onstant by a variable: in this 
ase,

several o

urren
es of the (sometimes invisible) identity relation are repla
ed.

The development thus far is summarised below. The property (8.40) listed as an

invariant has yet to be derived. Also, queries (\???") have been added to indi
ate that

the 
riterion for 
hoosing node b is in
omplete.

{ acyclic.G }

seen ,ord , k := ⊥⊥ ,⊥⊥ , 0

; { Invariant: (8.38) ∧ (8.39) ∧ (8.40) }

while IA 6= seen do

begin


hoose arbitrary node b su
h that b⊆∼seen ∧ ???

; seen := seen∪b

; ord,k := ord ∪ {k}◦⊤⊤◦b , k+1

end

{ IA = seen = ord∪

◦ord ∧ ord ◦ord
∪ ⊆ IIN ∧ G ⊆ ord

∪

◦ less ◦ord }

The key element of the algorithm is how to 
hoose the next node to be ordered. It

is straightforward to verify that (8.38) is an invariant of the algorithm as shown. (See

lemma 8.41 below.) The 
hoi
e of node b must guarantee that (8.39) is maintained.

That is, we require that, for all b and seen ,

(seen∪b) ◦G ◦ (seen∪b) ⊆ (ord ∪ {k}◦⊤⊤◦b)∪ ◦ less ◦ (ord ∪ {k}◦⊤⊤◦b)

⇐ seen ◦G ◦ seen ⊆ ord
∪

◦ less ◦ord ∧ (8.38) ∧ b⊆∼seen ∧ (8.40)

where (8.40) has yet to be derived.

Using distributivity properties, the left side of the topmost subset ordering expands

to

seen ◦G ◦ (seen∪b) ∪ b ◦G ◦ (seen∪b)

and, omitting two terms, the right side of this ordering expands to

ord
∪

◦ less ◦ord ∪ ord
∪

◦ less ◦ {k} ◦⊤⊤ ◦b .
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(The two omitted terms are, in fa
t, equal to ⊥⊥ but this fa
t is not needed.) Taking

a

ount of domains (spe
i�
ally, seen = ord∪

◦ord and b⊆∼seen ), the invariant (8.39)

is thus maintained if

seen ◦G ◦ seen ⊆ ord
∪

◦ less ◦ord

∧ seen ◦G ◦b ⊆ ord
∪

◦ less ◦ {k} ◦⊤⊤ ◦b

∧ b ◦G ◦b = ⊥⊥

∧ b ◦G ◦ seen = ⊥⊥ .

The �rst 
onjun
t is identi
al to the �rst 
onjun
t on the right side of the impli
ation; so

it 
an be eliminated. The se
ond 
onjun
t follows from (8.38) and properties of the less-

than ordering. The third 
onjun
t is true be
ause G is assumed to be a
y
li
 and hen
e

has no self-loops. Finally, the fourth 
onjun
t enables us to identify the as-yet-unde�ned

invariant (8.40): spe
i�
ally,

∼seen ◦ G ◦ seen = ⊥⊥ .(8.40)

Of 
ourse, the introdu
tion of a new invariant implies a new design obligation: property

(8.40) is 
learly established by the initialisation seen :=⊥⊥ but we must guarantee that

it is maintained by the loop body. Doing so gives us the 
ondition for 
hoosing node b :

maintaining the invariant demands that, for all b , G and seen ,

∼(seen∪b) ◦G ◦ (seen∪b) = ⊥⊥ ⇐ ∼seen ◦G ◦ seen = ⊥⊥ ∧ 
hoi
e of b .

An easy 
al
ulation gives the 
ondition for 
hoosing b as:

∼(seen∪b) ◦G ◦b = ⊥⊥ .

This 
ondition 
an be strengthened to:

∼seen ◦G ◦b = ⊥⊥ .

In words, there are no edges in the graph G from an unseen node to node b . This


ompletes the derivation of the algorithm:

{ acyclic.G }

seen ,ord , k := ⊥⊥ ,⊥⊥ , 0

; { Invariant: (8.38) ∧ (8.39) ∧ (8.40) }

while IA 6= seen do

begin
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hoose arbitrary node b su
h that b⊆∼seen ∧ ∼seen◦G◦b = ⊥⊥

; seen := seen∪b

; ord,k := ord ∪ {k}◦⊤⊤◦b , k+1

end

{ IA = seen = ord∪

◦ord ∧ ord ◦ord
∪ ⊆ IIN ∧ G ⊆ ord

∪

◦ less ◦ord }

There is one more |vital| proof obligation: we have to verify that the 
ondition for


hoosing b 
an be satis�ed. This is where the assumption that G is a
y
li
, and hen
e

right-de�nite, is 
ru
ial: see lemma 8.45 below. (So far, we have only used the property

that G has no self-loops.) The formal veri�
ation of all the informal 
laims made above

now follows.

The algorithm 
learly terminates sin
e the size of the set represented by seen in-


reases by one at ea
h iteration.

In order to verify that the algorithm meets its spe
i�
ation, there are three tasks

remaining.

1. Establish that ea
h of (8.38), (8.40) and (8.39) is truthi�ed by the initialisation,

and that the truth of ea
h is invariant under exe
ution of the loop body.

2. Prove that it is possible to 
hoose a node b in a

ordan
e with the 
riterion for

its 
hoi
e.

3. Prove that the stated post
ondition is a logi
al 
onsequen
e of the invariant prop-

erty and the 
ondition for termination of the loop.

The �rst of these splits into three tasks, one for ea
h of the stated properties. These

tasks form lemmas 8.41, 8.42, and 8.43 below. The se
ond|the 
entral task both literally

and �guratively| is the topi
 of lemma 8.45, and the third is the topi
 of lemma 8.46.

Lemma 8.41 Property (8.38) is an invariant of the algorithm.

Proof Property (8.38) is 
learly true after the initial assignment seen,ord := ⊥⊥,⊥⊥ .

The veri�
ation 
ondition

(8.38) [seen,ord,k := seen∪b , ord ∪ {k}◦⊤⊤◦b , k+1]

⇐ (8.38) ∧ b⊆∼seen ∧ b 6=⊥⊥

is a straightforward 
onsequen
e of the proper atomi
ity of {k} and b (viz. {k}◦⊤⊤◦{k}= {k} ,

⊤⊤◦{k}◦⊤⊤=⊤⊤ , and similarly for b ). Spe
i�
ally,
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(ord ∪ {k}◦⊤⊤◦b)∪ ◦ (ord ∪ {k}◦⊤⊤◦b)

= { distributivity }

ord
∪

◦ord ∪ ord
∪

◦{k}◦⊤⊤◦b ∪ b◦⊤⊤◦{k}◦ord ∪ b◦⊤⊤◦{k}◦{k}◦⊤⊤◦b

= { ord∪
◦ {k}

= { assumption: (8.38) and domains }

ord ◦ {j |0≤ j<k} ◦ {k}

= { {j |0≤ j<k} ◦ {k} = ⊥⊥ }

⊥⊥ }

ord
∪

◦ord ∪ b◦⊤⊤◦{k}◦{k}◦⊤⊤◦b

= { assumption: (8.38);

by 
one rule: (4.16), and assumption: b 6=⊥⊥ ,

⊤⊤◦{k}◦{k}◦⊤⊤=⊤⊤ , b◦⊤⊤◦b=b }

seen∪b .

The veri�
ation of the se
ond 
onjun
t is very similar:

(ord ∪ {k}◦⊤⊤◦b) ◦ (ord ∪ {k}◦⊤⊤◦b)∪

= { distributivity, }

ord ◦ord
∪ ∪ ord◦b◦⊤⊤◦{k} ∪ {k}◦⊤⊤◦b◦ord

∪ ∪ {k}◦⊤⊤◦b◦b◦⊤⊤◦{k}

= { ord◦b

= { assumption: (8.38) and domains }

ord◦seen◦b

= { assumption: b⊆∼seen , i.e. b = ∼seen ◦b

seen ◦∼seen = ⊥⊥ }

⊥⊥ ,

so, also b◦ord
∪ = ⊥⊥ }

ord ◦ord
∪ ∪ {k}◦⊤⊤◦b◦b◦⊤⊤◦{k}

= { assumption: (8.38); b 6=⊥⊥ , 
one rule: (4.16) }

{j |0≤ j<k} ∪ {k}◦⊤⊤◦{k}

= { {k} is an atomi
 
ore
exive, so {k}◦⊤⊤◦{k}= {k} ,

properties of < relation on natural numbers }
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{j | 0≤ j<k+1} .

✷

Lemma 8.42 Property (8.40) is an invariant of the algorithm.

Proof Property (8.40) is 
learly truthi�ed by the initial assignment seen :=⊥⊥ . For

the loop body, we verify that

(8.40) [seen := seen∪b] ⇐ (8.40) ∧ ∼seen◦G◦b = ⊥⊥

is a theorem for all 
ore
exives b and seen and all relations G .

∼(seen∪b) ◦ G ◦ (seen∪b) = ⊥⊥

= { distributivity and ⊥⊥ is least element }

∼(seen∪b) ◦ G ◦ seen = ⊥⊥ ∧ ∼(seen∪b) ◦ G ◦ b = ⊥⊥

= { assumption (8.40): ∼seen ◦G ◦ seen = ⊥⊥


hoi
e of b : ∼seen ◦G ◦b = ⊥⊥

∼(seen∪b) ⊆ ∼seen and monotoni
ity }

true .

✷

Lemma 8.43 Property (8.39) is an invariant of the algorithm.

Proof Property (8.39) is 
learly true after the initial assignment seen,ord := ⊥⊥,⊥⊥ .

The veri�
ation 
ondition

(8.39) [seen,ord := seen∪b , ord ∪ {k}◦⊤⊤◦b]

⇐ b⊆∼seen ∧ (8.40) ∧ acyclic.G ∧ (8.38) ∧ (8.39)

is shown to be true for all seen , ord , b , k and G in several steps. First,

(ord ∪ {k}◦⊤⊤◦b)∪ ◦ less ◦ (ord ∪ {k}◦⊤⊤◦b)

⊇ { distributivity and ignoring two of the four terms }

ord
∪

◦ less ◦ord ∪ ord
∪

◦ less ◦ {k} ◦⊤⊤ ◦b

⊇ { assumption: (8.39) }

seen◦G◦seen ∪ ord
∪

◦ less ◦ {k} ◦⊤⊤ ◦b .

Se
ond,
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ord
∪

◦ less ◦ {k} ◦⊤⊤

= { assumption: (8.38), and domains }

ord
∪

◦ {j |0≤ j<k} ◦ less ◦ {k} ◦⊤⊤

= { property of less (spe
i�
ally [ 0≤ j<k⇒ j<k ] )

all-or-nothing rule }

ord
∪

◦ {j |0≤ j<k} ◦⊤⊤ ◦ {k} ◦⊤⊤

= { {k} 6=⊥⊥ , 
one rule: (4.16) }

ord
∪

◦ {j |0≤ j<k} ◦⊤⊤

= { assumption: (8.38), and domains }

seen ◦⊤⊤

⊇ { ⊤⊤⊇G and monotoni
ity }

seen ◦G .

Putting the 
al
ulations together, we get that

(ord ∪ {k}◦⊤⊤◦b)∪ ◦ less ◦ (ord ∪ {k}◦⊤⊤◦b)

⊇ { �rst 
al
ulation (assuming (8.39)) }

seen ◦G ◦ seen ∪ ord
∪

◦ less ◦ {k} ◦⊤⊤ ◦b

⊇ { se
ond 
al
ulation (assuming (8.38)) }

seen ◦G ◦ seen ∪ seen ◦G ◦b

= { distributivity }

seen ◦G ◦ (seen∪b) .

That is, assuming (8.39) and (8.38),

(ord ∪ {k}◦⊤⊤◦b)
∪

◦ less ◦ (ord ∪ {k}◦⊤⊤◦b) ⊇ seen◦G◦(seen∪b) .(8.44)

Our goal has thus be
ome to 
omplify the right side of (8.44) to

(seen∪b) ◦G ◦ (seen∪b)

whi
h, by distributivity, equals

seen ◦G ◦ (seen∪b) ∪ b ◦G ◦ (seen∪b) .

In order to a
hieve this goal, we must show that the rightmost term equals the empty

relation, ⊥⊥ . Lemma 8.14 (with the instantiation a,R :=b,G ) and the pre
ondition

that G is a
y
li
 establishes that b◦G◦b=⊥⊥ . That b◦G◦seen=⊥⊥ is a 
onsequen
e

of (8.40) and b⊆∼seen . Spe
i�
ally,
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b ◦G ◦ seen = ⊥⊥

⇐ { assumption: b⊆∼seen , ⊥⊥ is least element }

∼seen ◦G ◦ seen ⊆ ⊥⊥

= { assumption: (8.40) }

true .

In summary, we have:

(ord ∪ {k}◦⊤⊤◦b)∪ ◦ less ◦ (ord ∪ {k}◦⊤⊤◦b)

⊇ { (8.44) (assuming (8.39) and (8.38)) }

seen ◦G ◦ (seen∪b)

= { assumption: acyclic.G∧ (8.40). hen
e

b◦G◦b=⊥⊥ and b◦G◦seen=⊥⊥ (see above) }

seen ◦G ◦ (seen∪b) ∪ b ◦G ◦b ∪ b ◦G ◦ seen

= { distributivity }

(seen∪b) ◦G ◦ (seen∪b) .

We have thus veri�ed that (8.39) is an invariant of the loop body.

✷

We now establish that it is always possible to 
hoose a node b as spe
i�ed by the

algorithm. We exploit the pre
ondition that the graph G is a
y
li
, and hen
e de�nite.

Lemma 8.45 The set of nodes b su
h that b⊆∼seen and ∼seen ◦G ◦b = ⊥⊥ is

non-empty.

Proof For brevity, let g denote ∼seen ◦G . Then the 
hoi
e 
riteria be
ome b⊆∼seen

and g◦b=⊥⊥ .

We show that the node b 
an always be 
hosen to be any element of minimal.g.∼seen

and the latter is non-empty. First, note that g is a
y
li
 sin
e G is a
y
li
 and g⊆G .

Applying theorem 8.21, it follows that g is de�nite and, in parti
ular, right-de�nite.

Thus

minimal.g.∼seen 6= ⊥⊥

⇐ { (8.30) with R,p := g ,∼seen ; g is right-de�nite }

∼seen 6= ⊥⊥

= { 
ondition for exe
uting loop body: seen 6= IA , i.e. ∼seen 6= ⊥⊥ }

true .
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Clearly, by de�nition (8.25), minimal.R.p⊆p , for all relations R and 
ore
exives p . So,

we 
on
lude that

⊥⊥ 6= minimal.g.∼seen ⊆ ∼seen .

This means that minimal.g.∼seen is (the 
ore
exive representation of) a non-empty set

of nodes b su
h that b ⊆ ∼seen . Also,

g ◦ minimal.g.∼seen

= { de�nition of minimal : (8.25) }

g ◦∼seen ◦ (∼seen ◦g)>•

= { g = ∼seen ◦g }

g ◦∼seen ◦g>•

⊆ { ∼seen⊆ I , monotoni
ity }

g ◦g>•

= { domains: (5.11) }

⊥⊥ .

That is, nodes b in (the set represented by) minimal.g.∼seen also satisfy the 
hoi
e


riterion g◦b=⊥⊥ . (Formally, this is an appli
ation of the saturation axiom.)

✷

Lemma 8.46 The post
ondition

IA = ord
∪

◦ord ∧ ord ◦ord
∪

⊆ IIN ∧ G+ ⊆ ord
∪

◦ less ◦ord

is implied by the 
onjun
tion of (8.38) and (8.39) (the se
ond two 
onjun
ts of the loop

invariant) and IA= seen (the 
ondition for terminating the loop).

Proof It is obvious, from the de�nition of {j |0≤ j<k} and the transitivity of equality,

that the 
onjun
tion of (8.38), (8.39) and IA= seen implies

IA = ord
∪

◦ord ∧ ord ◦ord
∪

⊆ IIN ∧ G ⊆ ord
∪

◦ less ◦ord .

That this implies the post
ondition follows from lemma 8.34.

✷

The 
on
lusion of this se
tion is the following theorem.

Theorem 8.47 Suppose G is a �nite graph. Then that there is a topologi
al ordering

of G equivales G is a
y
li
.
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Proof The proof is by mutual impli
ation. The algorithm just dis
ussed establishes


onstru
tively that there is a topologi
al ordering of G if G is a
y
li
. For the 
onverse,

suppose that ord is a topologi
al ordering of G . Then

IA∩G
+

⊆ { de�nition of topologi
al ordering: (8.33), and monotoni
ity }

ord
∪

◦ord ∩ ord∪

◦ less ◦ord

= { by de�nition (8.33), ord is a total fun
tion; distributivity }

ord
∪

◦ (IIN∩ less) ◦ord

= { IIN∩ less=⊥⊥ ; ⊥⊥ is zero of 
omposition }

⊥⊥ .

That is, G is a
y
li
.

✷
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Chapter 9

Components

This 
hapter is a preliminary to later dis
ussion of the 
al
ulation of the so-
alled

\strongly 
onne
ted 
omponents" of a graph. The fo
us is on the algebrai
 properties,

whilst later se
tions present an algorithm to 
al
ulate strongly 
onne
ted 
omponents.

The strongly 
onne
ted 
omponents of graph G are the equivalen
e 
lasses of the

relation G∗∩ (G∪)∗ . The algebrai
 properties that we present in this se
tion are valid

for arbitrary (homogeneous binary) relations and not just for �nite graphs. However, we

sometimes provide informal interpretations in terms of (paths in) graphs.

We begin by giving a de�nition of a \
omponent" of a relation (de�nition 9.1) and

then explore its properties, �rst for relations in general, then for transitive relations

(se
tion 9.1), and �nally for transitive and symmetri
 relations (se
tion 9.2).

\Strongly 
onne
ted 
omponents" are de�ned in se
tion 9.3. Properties of strongly


onne
ted 
omponents are derived in se
tions 9.4, 9.5, 9.6 and 9.7. Se
tion 9.4 is about


onne
tivity properties of nodes within and without the same strongly 
onne
ted 
om-

ponent. Se
tion 9.5 re
ords the well-known property that every node is an element of

exa
tly one strongly 
onne
ted 
omponent. Finally, se
tion 9.7 formalises the stru
tural

de
omposition of a graph into a 
olle
tion of strongly 
onne
ted 
omponents and an

a
y
li
 graph that is \pathwise homomorphi
" to the given graph. The non-trivial proof

of this property is enabled by a lemma on starth roots of a given graph formulated and

presented in se
tion 9.6.

Definition 9.1 Suppose p is a 
ore
exive and R is a relation. We say that p is


onne
ted by R i� p◦⊤⊤◦p⊆R . We say that p is a 
omponent of R i� p is 
onne
ted

by R and 〈∀q : q◦⊤⊤◦q⊆R : p⊆q≡p=q〉 .

✷

Note that ⊥⊥ is, by de�nition, 
onne
ted by R . It is also a 
omponent of R in the


ase that the 
arrier of the latti
e of 
ore
exives is the empty set.

An obvious 
orollary of de�nition 9.1 is the following:
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Lemma 9.2

(a) Suppose q is a 
ore
exive and S is a relation. Then, q is 
onne
ted by S if (q⊆p

and p is 
onne
ted by R and R⊆S ).

(b) p is 
onne
ted by R∩S equivales p is 
onne
ted by both R and S .

(c) The following are all equivalent:

(i) p is 
onne
ted by R

(ii) p is 
onne
ted by R
∪

(iii) p is 
onne
ted by R∩R∪

(d) The following are all equivalent:

(i) p is a 
omponent of R

(ii) p is a 
omponent of R
∪

(iii) p is a 
omponent of R∩R∪

Proof (a) is obvious from the monotoni
ity of 
omposition.

(b) is immediate from the de�nition of in�ma, in parti
ular:

p◦⊤⊤◦p ⊆ R∩S ≡ p◦⊤⊤◦p⊆R ∧ p◦⊤⊤◦p⊆S .

(
) is obvious from the fa
t that p and p◦⊤⊤◦p are symmetri
. More spe
i�
ally:

p◦⊤⊤◦p ⊆ R

= { 
onverse }

(p◦⊤⊤◦p)∪ ⊆ R
∪

= { [ (R◦S)∪ = S
∪

◦R
∪

] , p
∪ =p , ⊤⊤

∪

=⊤⊤ }

p◦⊤⊤◦p ⊆ R
∪

.

This establishes the equivalen
e of (i) and (ii). That (i) implies (iii) is then established

by (b) (with S instantiated to R
∪

) and the 
onverse (iii) implies (i) is established by

(a).

(d) Trivial 
onsequen
e of (
) and the de�nition of 
omponent.

✷

Informally, p is 
onne
ted by R means that, when restri
ted to p , R equals the

universal relation. Formally:
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Lemma 9.3 For all 
ore
exives p and relations R ,

p◦⊤⊤◦p⊆R ≡ p◦⊤⊤◦p=p◦R◦p .

Proof This is proved by mutual impli
ation as follows.

p◦⊤⊤◦p⊆R

⇒ { p◦p=p , monotoni
ity of 
omposition }

p◦⊤⊤◦p⊆p◦R◦p

= { R⊆⊤⊤ , monotoni
ity of 
omposition, anti-symmetry }

p◦⊤⊤◦p=p◦R◦p

⇒ { p⊆ I , monotoni
ity of 
omposition, transitivity of ⊆ }

p◦⊤⊤◦p⊆R .

✷

9.1 Transitive Relations

Lemma 9.4 Distin
t 
omponents of a transitive relation are disjoint. Formally, sup-

pose T is a transitive relation and p and q are both 
omponents of T . Then

p=q ∨ p∩q=⊥⊥ .

Proof For 
ore
exives p and q , p◦q=p∩q=q◦p . This suggests applying the de�ni-

tion of a 
omponent in a way that introdu
es their produ
t:

p∩q=⊥⊥ ∨ p=q

= { idempoten
y of ∪ }

p∩q=⊥⊥ ∨ p=p∪q=q

⇐ { p⊆p∪q , p is a 
omponent of T ,

q⊆p∪q , q is a 
omponent of T }

p∩q=⊥⊥ ∨ (p∪q)◦⊤⊤◦(p∪q) ⊆ T

= { distributivity; p and q are both 
onne
ted by T }

p∩q=⊥⊥ ∨ (p◦⊤⊤◦q ⊆ T ∧ q◦⊤⊤◦p ⊆ T)

= { distributivity, p◦q=p∩q=q◦p }

(p◦q=⊥⊥ ∨ p◦⊤⊤◦q ⊆ T) ∧ (q◦p=⊥⊥ ∨ q◦⊤⊤◦p ⊆ T)
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⇐ { 
one rule: (4.16) with R :=p◦q and R :=q◦p :

i.e. p◦q=⊥⊥ ∨ ⊤⊤◦p◦q◦⊤⊤=⊤⊤ ,

and q◦p=⊥⊥ ∨ ⊤⊤◦q◦p◦⊤⊤=⊤⊤ }

p◦⊤⊤◦p◦q◦⊤⊤◦q ⊆ T ∧ q◦⊤⊤◦q◦p◦⊤⊤◦p ⊆ T

⇐ { T is transitive, transitivity of ⊆ }

p◦⊤⊤◦p◦q◦⊤⊤◦q ⊆ T ◦T ∧ q◦⊤⊤◦q◦p◦⊤⊤◦p ⊆ T ◦T

⇐ { p and q are 
onne
ted by T , 
omposition is monotoni
 }

true .

✷

Lemma 9.5 Suppose T is a transitive relation and p and q are both 
omponents of

T . Then

p◦T ◦q 6=⊥⊥ ∧ q◦T ◦p 6=⊥⊥ ⇒ p=q .

Proof

p◦T ◦q 6= ⊥⊥

⇒ { 
one rule: (4.16) }

⊤⊤◦p◦T ◦q◦⊤⊤ = ⊤⊤

⇒ { Leibniz }

p◦⊤⊤◦p◦T ◦q◦⊤⊤◦q = p◦⊤⊤◦q

= { p and q are both 
onne
ted by T ,

so, by lemma 9.3, p◦⊤⊤◦p=p◦T ◦p and q◦⊤⊤◦q=q◦T ◦q }

p◦T ◦p◦T ◦q◦T ◦q = p◦⊤⊤◦q

⇒ { p and q are 
ore
exives, so I⊇p and I⊇q

monotoni
ity and I is unit of 
omposition }

p◦T ◦T ◦T ◦q ⊇ p◦⊤⊤◦q

⇒ { T is a transitive relation, transitivity of ⊇ }

p◦T ◦q ⊇ p◦⊤⊤◦q

= { T ⊆⊤⊤ , monotoni
ity of 
omposition and anti-symmetry of ⊆ }

p◦T ◦q = p◦⊤⊤◦q .
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In summary,

p◦T ◦q 6=⊥⊥ ⇒ p◦T ◦q = p◦⊤⊤◦q .

Inter
hanging p and q , we get

q◦T ◦p 6=⊥⊥ ⇒ q◦T ◦p = q◦⊤⊤◦p .

So,

p◦T ◦q 6=⊥⊥ ∧ q◦T ◦p 6=⊥⊥

⇒ { above, and p and q are both 
onne
ted by T }

p◦T ◦q = p◦⊤⊤◦q ∧ q◦T ◦p = q◦⊤⊤◦p

∧ p◦T ◦p = p◦⊤⊤◦p ∧ q◦T ◦q = q◦⊤⊤◦q

⇒ { distributivity of 
omposition over ∪ , Leibniz }

(p∪q)◦T ◦(p∪q) = (p∪q)◦⊤⊤◦(p∪q)

⇒ { de�nition of 
onne
ted and lemma 9.3,

p⊆p∪q and q⊆p∪q , p and q are 
omponents of T ,

de�nition 9.1 }

p=p∪q=q .

✷

(The above proof parallels a pointwise proof. A pointwise proof would begin by

assuming that there are points u , v in p and x , y in q su
h that u T x and y T v .

Then the argument would be made that u is 
onne
ted by T to all points in q and,

similarly x is 
onne
ted by T to all points in p . In the point-free proof, it is not

ne
essary to introdu
e four additional variables.)

Taking the 
ontrapositive of lemma 9.5, we get:

Corollary 9.6 Suppose T is a transitive relation and p and q are both 
omponents

of T . Then

p◦T ◦q=⊥⊥ ∨ q◦T ◦p=⊥⊥ ⇐ p 6=q .

✷

Corollary 9.6 is the basis of the 
onstru
tion of a dire
ted a
y
li
 graph from the

strongly 
onne
ted 
omponents of a graph.
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9.2 Transitive and Symmetric Relations

Undire
ted graphs 
orrespond to symmetri
 relations. The transitive 
losure of relation

R , denoted by R+
, has the property that

(R+)
∪

=(R
∪

)+ .

(The proof of this property is a ni
e illustration of the fusion theorem: R+
is a least

�xed point and 
onverse is Galois 
onne
ted to itself and 
ommutes with the fun
tion

mapping x to x◦x .) It follows that

(R+)
∪

=R+ ⇐ R
∪

=R .

Here we 
onsider properties of transitive and symmetri
 relations.

A remarkable (and perhaps surprising) property is that every undire
ted graph or

its (undire
ted) 
omplement is 
onne
ted. We don't know any pra
ti
al signi�
an
e of

this property but its proof is an interesting appli
ation of point-free reasoning. So, as

an aside to the main development, this is proved in theorem 9.8 below.

Lemma 9.7 For all symmetri
 and transitive relations S and T ,

S=⊤⊤ ∨ T =⊤⊤ ⇐ S∪T =⊤⊤ .

Proof Assume that S and T are symmetri
 and transitive, and S∪T =⊤⊤ . Then

S=S∪

, T =T∪

, S⊇S◦S , T ⊇T ◦T , S⊇¬T and T ⊇¬S . So,

S=⊤⊤ ∨ T =⊤⊤

= { 
omplements (preparing for 
one rule) }

S=⊤⊤ ∨ ¬T =⊥⊥

⇐ { 
one rule: (4.16) }

S=⊤⊤ ∨ ⊤⊤ ◦¬T ◦⊤⊤ 6= ⊤⊤

⇐ { boolean algebra and S=⊤⊤ ≡ S⊇⊤⊤ }

S ⊇ ⊤⊤ ◦¬T ◦⊤⊤

= { assumption: S∪T =⊤⊤ }

S ⊇ (S∪T) ◦¬T ◦ (S∪T)

= { distributivity }

S ⊇ S ◦¬T ◦S ∪ S ◦¬T ◦T ∪ T ◦¬T ◦S ∪ T ◦¬T ◦ T

⇐ { S is transitive, so S ⊇ S◦S and S ⊇ S◦S◦S ,
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monotoni
ity of 
omposition }

S ⊇ ¬T ∪ ¬T ◦T ∪ T ◦¬T ∪ T ◦¬T ◦T

= { by assumption: S⊇¬T , suprema }

S ⊇ ¬T ◦T ∧ S ⊇ T ◦¬T ∧ S ⊇ T ◦¬T ◦ T

= { middle ex
hange rule, S=S∪

, T = T∪

}

T ⊇ ¬S ◦T ∧ T ⊇ T ◦¬S ∧ T ⊇ T ◦¬S ◦T

⇐ { T is transitive, so T ⊇ T ◦T and T ⊇ T ◦T ◦T ,

monotoni
ity of 
omposition }

T ⊇¬S

= { shunting rule (2.27) }

S∪T =⊤⊤ .

✷

Theorem 9.8 Suppose R is a symmetri
 relation. Then

R∗=⊤⊤ ∨ (¬R)∗=⊤⊤ .

Proof Suppose R is symmetri
. If ⊤⊤=⊥⊥ then ⊤⊤=S=⊥⊥ for all relations S and

the theorem is trivial. So assume that ⊥⊥ 6= ⊤⊤ . Then

R∗=⊤⊤ ∨ (¬R)∗=⊤⊤

⇐ { (¬R)∪=¬(R∪) and (R∗)∪=(R∪)∗ ;

lemma 9.7 with S,T := R∗ , (¬R)∗ }

R∗∪ (¬R)∗ = ⊤⊤

⇐ { for all S , S=⊤⊤ ≡ S⊇⊤⊤

R∗⊇R , (¬R)∗⊇¬R , transitivity of ⊇ }

R∪¬R = ⊤⊤

= { 
omplements }

true .

✷

We now 
ontinue our investigation.

Lemma 9.9 Suppose T is a transitive and symmetri
 relation. Then (T ◦p)< is


onne
ted by T if p is 
onne
ted by T .
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Proof We have

(T ◦p)< ◦⊤⊤ ◦ (T ◦p)<

= { theorem 5.7(a) and (
) }

T ◦p ◦⊤⊤ ◦p ◦T
∪

⊆ { assume p is 
onne
ted by T ;

de�nition 9.1 and monotoni
ity of 
omposition }

T ◦T ◦T
∪

⊆ { T is transitive and symmetri
 }

T .

The lemma follows by de�nition of is-
onne
ted-by.

✷

Theorem 9.10 Suppose T is a transitive and symmetri
 relation. Then p=(T ◦p)<

if p is a 
omponent of T .

Proof Assume T is transitive and symmetri
 and p is a 
omponent of T .

p = (T ◦p)<

⇐ { assumptions, lemma 9.9, and de�nition 9.1 of 
omponent }

p ⊆ (T ◦p)<

= { 
ore
exive-
ondition isomorphism }

p◦⊤⊤ ⊆ T ◦p◦⊤⊤

⇐ { p is a 
omponent of T , so p is 
onne
ted by T

i.e. p◦⊤⊤◦p ⊆ T

monotoni
ity of 
omposition and transitivity of ⊆ }

p◦⊤⊤ ⊆ p◦⊤⊤◦p◦p◦⊤⊤

= { p is a 
ore
exive, so p◦p=p , 
one rule: (4.16) }

p◦⊤⊤ ⊆ p◦⊤⊤◦p◦⊤⊤ ∧ (⊤⊤◦p◦⊤⊤=⊤⊤ ∨ p=⊥⊥)

= { distributivity of 
onjun
tion over disjun
tion

Leibniz and ⊥⊥ is zero of 
omposition and least element }

true .

✷
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Corollary 9.11 The 
omponents of an equivalen
e relation T are atoms in the latti
e

of �xed points of the fun
tion that maps 
ore
exive q to (T ◦q)< . That is, if T is an

equivalen
e relation and p is a 
omponent of T ,

(q⊆p ≡ q=p ∨ q=⊥⊥) ⇐ q = (T ◦q)< .

Proof Apply lemma 2.65 with f instantiated to the fun
tion that maps 
ore
exive q

to (T ◦q)< . This fun
tion is a 
omplementation-�xed 
losure operator by theorem 7.12.

✷

Theorem 9.12 Suppose p is a 
ore
exive, T is a transitive and symmetri
 relation

and q is a 
omponent of T . Then

p◦T ◦q=⊥⊥ ⇐ p◦q=⊥⊥ .

In parti
ular, the property holds when p and q are both 
omponents of T .

Proof

p◦T ◦q

= { property of domains: [ R = R< ◦R ] with R :=T ◦q }

p ◦ (T ◦q)< ◦T ◦q

= { theorem 9.10 with p :=q }

p◦q◦T ◦q

= { assume p◦q=⊥⊥ , ⊥⊥ is zero of 
omposition }

⊥⊥ .

✷

9.3 Strongly Connected Components

The notion of a \strongly 
onne
ted 
omponent" of a �nite graph is prominent in algo-

rithmi
 graph theory. This se
tion is about fundamental properties of strongly 
onne
ted


omponents. Sin
e the properties do not depend on the �niteness of graphs, we present

them for arbitrary relations.

Definition 9.13 (Strongly Connected Component) Core
exive p is said to be a

strongly 
onne
ted 
omponent of relation R if p is a 
omponent of R∗
.

✷
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Definition 9.14 The fun
tion equiv mapping arbitrary relations to equivalen
e rela-

tions is de�ned by, for all R ,

equiv.R = R∗∩ (R∗)
∪

.

It is a well-known fa
t that equiv.R is an equivalen
e relation (i.e. it is re
exive, transitive

and symmetri
). The straightforward (point-free) proof is omitted.

✷

Theorem 9.15 Suppose p is a strongly 
onne
ted 
omponent of R . Then p is a


omponent of equiv.R . Conversely, every 
omponent of equiv.R is a strongly 
onne
ted


omponent of R .

Proof Immediate from the de�nition of strongly-
onne
ted and lemma 9.2(d).

✷

Theorem 9.16 Suppose p is a strongly 
onne
ted 
omponent of R . Then

p = (equiv.R ◦p)<

Moreover, p is an atom in the latti
e of �xed points of the fun
tion that maps p to

(equiv.R ◦p)< .

Proof Immediate from the de�nition of strongly-
onne
ted, lemma 9.2, theorem 9.10

and 
orollary 9.11.

✷

9.4 Absolute Connectivity

This se
tion is about paths in a graph 
onne
ting two nodes in one and the same strongly


onne
ted 
omponent of the graph. We show that all nodes on su
h paths are elements

of the strongly 
onne
ted 
omponent.

As in se
tion 9.3, the �niteness of graphs is not used and the stated properties are

valid for arbitrary relations; nevertheless, we interpret the properties in terms of graphs.

Re
all that ∼p denotes the negation of p in the latti
e of 
ore
exives. For a �nite

graph, lemma 9.18 states that there are no paths from 
omponent p to itself that pass

through nodes not in p . The lemma is a 
orollary of lemma 9.17.

Lemma 9.17 Suppose p is a strongly 
onne
ted 
omponent of relation R . Then

p = (p ◦R∗)> ∩ (R∗
◦p)< .
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Proof Let us abbreviate (p ◦R∗)> ∩ (R∗
◦p)< to q . We have to prove that q=p . In

order to exploit the assumption that p is a a strongly 
onne
ted 
omponent of R , the

goal is to prove that q is 
onne
ted by R∗
.

q◦⊤⊤◦q

⊆ { q = (p ◦R∗)> ∩ (R∗
◦p)< , monotoni
ity }

(R∗
◦p)< ◦⊤⊤ ◦ (p ◦R∗)>

= { [ R< ◦⊤⊤ = R◦⊤⊤ ] with R := R∗
◦p ,

[ ⊤⊤ ◦R> = ⊤⊤◦R ] with R := p ◦R∗ }

R∗
◦p ◦⊤⊤ ◦p ◦R∗

= { p is strongly 
onne
ted by R ,

de�nitions 9.1 and 9.13, and lemma 9.3 }

R∗
◦p ◦R∗

◦p ◦R∗

⊆ { p⊆ I , monotoni
ity of 
omposition }

R∗
◦R∗

◦R∗

= { R∗ = R∗
◦R∗ }

R∗ .

That is, by de�nition 9.1, q is 
onne
ted by R∗
. Hen
e

p=q

⇐ { p is strongly 
onne
ted by R , de�nitions 9.13 and 9.1 }

q is 
onne
ted by R∗ ∧ p⊆q

= { above, de�nition of q }

p ⊆ (p ◦R∗)> ∩ (R∗
◦p)<

= { I⊆R∗
, monotoni
ity and properties of 
ore
exives }

true .

✷

Lemma 9.18 Suppose R is a relation and p is a strongly 
onne
ted 
omponent of

R . Then

p ◦R∗
◦∼p ◦R∗

◦p = ⊥⊥ .

Proof We have:
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p ◦R∗
◦∼p ◦R∗

◦p = ⊥⊥

= { domains }

p ◦R∗
◦ (p ◦R∗)> ◦∼p ◦ (R∗

◦p)< ◦R∗
◦p = ⊥⊥

⇐ { ⊥⊥ is zero of 
omposition }

(p ◦R∗)> ◦∼p ◦ (R∗
◦p)< = ⊥⊥

⇐ { [ p◦q=p∩q ] (for 
ore
exives p and q ), properities of interse
tion }

(p ◦R∗)> ∩ (R∗
◦p)< ⊆ p

= { lemma 9.17 }

true .

✷

Like lemma 9.18, lemma 9.19 below is valid for all relations but, for �nite graphs, it

formulates a property of paths between nodes in the same strongly 
onne
ted 
omponent:

in this 
ase, in terms of the edges that form the paths. The �rst term, p◦⊤⊤◦p , is the

relation that holds between all nodes in the same 
omponent p. The se
ond and third

terms 
apture the existen
e of paths de�ned by edges from the 
omponent p . The

third term is more 
omplex than the se
ond term; it is in
luded be
ause it expresses

more dire
tly that elements of strongly 
onne
ted 
omponent p are 
onne
ted by paths

formed of edges 
onne
ting elements of p. Spe
i�
ally, the term p◦R represents the edges

in R from a node in p , and the term p◦R◦p represents the edges of R that 
onne
t

nodes in p. So (p ◦R)∗ ◦p is interpreted as the relation between two nodes of whi
h

the se
ond is in p that are 
onne
ted by edges that are from nodes in p ; similarly,

p ◦ (p◦R◦p)∗ represents the relation between two nodes of whi
h the �rst is in p and

that are 
onne
ted by edges that 
onne
t nodes in p . The outer o

urren
es of \p " are

ne
essary be
ause (for all R ) R∗
in
ludes the identity relation.

Lemma 9.19 Suppose R is a relation and p is a strongly 
onne
ted 
omponent of

R . Then

p◦⊤⊤◦p = (p ◦R)∗ ◦p = p ◦ (p◦R◦p)∗ ◦p .

Proof The equality between the se
ond and third terms is straightforward:

p ◦ (p ◦R ◦p)∗

= { mirror rule: [ R ◦ (S◦R)∗ = (R◦S)∗ ◦R ] with R,S := p , p◦R }

(p ◦p ◦R)∗ ◦p

= { p is a 
ore
exive, so p◦p=p }

(p ◦R)∗ ◦p .
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It is somewhat more diÆ
ult to establish the equality between the �rst and se
ond terms,

whi
h we now do.

The relation R∗
represents paths to and from all nodes and not just nodes in p .

In order to separate out paths that are not to or not from nodes in p we begin by


omplifying R∗
:

R∗

= { p∪∼p = I }

((p∪∼p) ◦R ◦ (p∪∼p))∗

= { distributivity of 
omposition over union,

idempoten
y of set union and p∪∼p = I }

(p ◦R ◦p ∪ R ◦∼p ∪ ∼p ◦R)∗

= { star de
omposition }

(p ◦R ◦p)∗ ◦ ((R ◦∼p ∪ ∼p ◦R) ◦ (p ◦R ◦p)∗)∗ .

We have indeed 
onstru
ted a 
ompli
ated expression for R∗
. It is the 
omposition of

two terms; our goal is to show that the se
ond term 
an be eliminated when we 
onsider

p ◦R∗
◦p . So that the expressions don't be
ome too long, let us write the se
ond term in

the 
omposition as S∗ . That is,

S = (R ◦∼p ∪ ∼p ◦R) ◦ (p ◦R ◦p)∗ ∧ R∗ = (p ◦R ◦p)∗ ◦S∗ .(9.20)

We show that

p ◦S∗ ◦p = p .(9.21)

We have:

p ◦S∗ ◦p

= { S∗ = I ∪ S ◦S∗ ,

distributivity of 
omposition over union, et
. }

p ∪ p ◦S ◦S∗ ◦p

= { 1st 
onjun
t of (9.20), distributivity and p ◦∼p = ⊥⊥ }

p ∪ p ◦R ◦∼p ◦ (p ◦R ◦p)∗ ◦S∗ ◦p

= { 2nd 
onjun
t of (9.20) }

p ∪ p ◦R ◦∼p ◦R∗
◦p

= { R⊆R∗
, lemma 9.18 }

p .
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We 
an now 
omplete the 
al
ulation.

p◦⊤⊤◦p

= { p is a strongly 
onne
ted 
omponent of R ,

de�nition 9.13 and lemma 9.3 }

p ◦R∗
◦p

= { (9.20) }

p ◦ (p ◦R ◦p)∗ ◦S∗ ◦p

= { mirror rule: [ R ◦ (S◦R)∗ = (R◦S)∗ ◦R ] with R,S := p , p◦R , p◦p=p }

(p ◦R)∗ ◦p ◦S∗ ◦p

= { (9.21) }

(p ◦R)∗ ◦p .

✷

9.5 Saturation

Note that atomi
ity has not been used anywhere above. Saturated atomi
ity is ne
essary

to show that all nodes in a graph are elements of a strongly 
onne
ted 
omponent of the

graph. The 
al
ulations are straightforward:

Lemma 9.22 For all points a and relations R , (equiv.R ◦a)< is a strongly 
onne
ted


omponent of R . (Re
all de�nition 5.13 of a point.)

Proof We exploit theorem 9.15. A

ordingly, we have to show that (equiv.R ◦a)< is a


omponent of equiv.R . That is, (equiv.R ◦a)< is 
onne
ted by equiv.R and it is maximal

among su
h 
ore
exives.

First, we show that (equiv.R ◦a)< is 
onne
ted by equiv.R . For all points a and all

relations R , we have:

(equiv.R ◦a)< ◦⊤⊤ ◦ (equiv.R ◦a)<

= { domains (spe
i�
ally theorem 5.7(a)) }

equiv.R ◦a ◦⊤⊤ ◦ (equiv.R ◦a)∪

= { 
onverse }

equiv.R ◦a ◦⊤⊤ ◦a ◦ equiv.R

= { a◦⊤⊤◦a=a : de�nition 5.13(
) }
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equiv.R ◦a ◦ equiv.R

⊆ { a⊆ I , monotoni
ity }

equiv.R ◦ equiv.R

⊆ { equiv.R is transitive }

equiv.R .

Now we must show that, if a is a point,

〈∀q : q◦⊤⊤◦q ⊆ equiv.R : (equiv.R ◦a)< ⊆ q ≡ (equiv.R ◦a)< = q〉 .

Suppose q is a 
ore
exive su
h that q◦⊤⊤◦q ⊆ equiv.R . Then, by lemma 9.3,

q◦⊤⊤◦q = q ◦ equiv.R ◦q .

So,

(equiv.R ◦a)< ⊇ q

= { 
ore
exive-
ondition isomorphism }

equiv.R ◦a ◦⊤⊤ ⊇ q ◦⊤⊤

⇐ { q◦⊤⊤◦q ⊆ equiv.R }

q ◦⊤⊤ ◦q ◦a ◦⊤⊤ ⊇ q ◦⊤⊤

⇐ { monotoni
ity }

⊤⊤ ◦q ◦a ◦⊤⊤ ⊇ ⊤⊤

= { assume (equiv.R ◦a)< ⊆ q

then, sin
e I⊆ equiv.R , (I◦a)< ⊆ q

i.e. a ⊆ q and q ◦a=a }

⊤⊤ ◦a ◦⊤⊤ ⊇ ⊤⊤

= { a is a point, 
one rule (4.16) }

true .

We have thus shown that, if a is a point,

〈∀q : q◦⊤⊤◦q ⊆ equiv.R : (equiv.R ◦a)< ⊇ q ⇐ (equiv.R ◦a)< ⊆ q〉 .

The required equivalen
e is a straightforward 
onsequen
e of the anti-symmetry and

re
exivity of the subset relation.

✷

The 
onverse of lemma 9.22 is the following:
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Lemma 9.23 If p is a strongly 
onne
ted 
omponent of R , and a is a point su
h

that a⊆p , then p=(equiv.R ◦a)< .

Proof Assume p is a strongly 
onne
ted 
omponent of R , and a is a point su
h that

a⊆p . Then,

true

= { theorem 9.16 }

p = (equiv.R ◦p)<

⇒ { a⊆p , monotoni
ity of 
omposition and domains }

p ⊇ (equiv.R ◦a)<

⇒ { lemma 9.22, theorem 9.15 and de�nition 9.1 }

p = (equiv.R ◦a)< .

✷

Summarising, we have:

Theorem 9.24 Suppose R is a homogeneous relation. Then the strongly 
onne
ted


omponents of R are given by 〈∪a :point.a : {(equiv.R ◦a)<}〉 . The strongly 
onne
ted


omponents partition the set of all points

1

. That is, distin
t strongly 
onne
ted 
om-

ponents are disjoint and ea
h point is an element of a strongly 
onne
ted 
omponent

(spe
i�
ally, a is an element of (equiv.R ◦a)< ).

Proof Lemmas 9.22, 9.23, 9.4 and 7.13 (with R := equiv.R ).

✷

9.6 Starth Roots of the Equivalence Relation

We have de�ned equiv.R as R∗∩ (R∗)∪ . (See de�nition 9.14.) It is useful to express

it as E∗ where (for graph R ) E represents the edges in R that 
onne
t nodes in the

same strongly 
onne
ted 
omponent (i.e. nodes that are \E"quivalent under the relation

equiv.R ). This is the 
ontent of theorem 9.26.

One appli
ation of theorem 9.26 is theorem 9.28, whi
h states |with a minor quali�-


ation| that a graph G being a
y
li
 is equivalent to the relation equiv.G being the

identity relation. Appli
ation of theorem 9.26 is also an important step in the proof of

theorem 9.30 below, whi
h de
omposes paths in a graph into paths in an a
y
li
 graph


onne
ting strongly 
onne
ted 
omponents of the graph. First, a lemma:

1

When applied to graphs, \points" are \nodes".
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Lemma 9.25 For all relations R , U , V and W ,

R∗ ∩ U◦V◦W = R∗ ∩ U ◦ (R∗∩V) ◦W ⇐ U∪W⊆ (R
∪

)∗ .

(Note that 
omposition has pre
eden
e over interse
tion. The spa
ing of our formulae is

designed to make this 
lear.)

Proof We 
al
ulate the 
ondition on U and W as follows.

R∗ ∩ U◦V◦W = R∗ ∩ U ◦ (R∗∩V) ◦W

= { V ⊇ R∗∩V , monotoni
ity and anti-symmetry }

R∗ ∩ U◦V◦W ⊆ R∗ ∩ U ◦ (R∗∩V) ◦W

= { properties of ∩ }

R∗ ∩ U◦V◦W ⊆ U ◦ (R∗∩V) ◦W

⇐ { modularity rule (4.8) with R,S,T := U,V◦W ,R∗
,

and symmetri
 rule with R,S,T := W , V , U
∪

◦R∗ }

U ◦ (U∪

◦R∗
◦W

∪ ∩ V) ◦W ⊆ U ◦ (R∗∩V) ◦W

⇐ { monotoni
ity }

U
∪

◦R∗
◦W

∪ ∩ V ⊆ R∗∩V

⇐ { R∗
◦R∗

◦R∗ = R∗
, monotoni
ity }

U
∪⊆R∗ ∧ W

∪⊆R∗

= { (4.1) and (R∪)∗ = (R∗)∪ }

U⊆ (R∪)∗ ∧ W⊆ (R∪)∗ .

(The ante
edent in the statement of the lemma is, of 
ourse, equivalent to the last line

of the 
al
ulation.)

✷

Now, the theorem:

Theorem 9.26 For all relations R ,

equiv.R = (R
∪

∩R∗)∗ = (R∩ (R
∪

)∗)∗ .

Proof We begin by proving, by indu
tion on k , that, for all U and W ,

R∗ ∩ U◦(R
∪

)k◦W = R∗ ∩ U◦(R
∪

∩R∗)k◦W ⇐ U∪W⊆ (R
∪

)∗ .(9.27)

The basis, k= 0 is trivial sin
e X0= I , for all X . For the indu
tion step, assume U and

W are su
h that U∪W⊆ (R∪)∗ . Then,
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R∗ ∩ U ◦ (R∪∩R∗)k+1 ◦W

= { de�nition of (R∪ ∩R∗)k+1 }

R∗ ∩ U ◦ (R∪∩R∗)k ◦ (R∪∩R∗) ◦W

= { by assumption, U⊆ (R∪)∗ ; so U◦(R∪∩R∗)k⊆ (R∪)∗ ,

also, by assumption, W⊆ (R∪)∗

lemma 9.25 with U,V,W := U◦(R∪∩R∗)k , R∪

,W }

R∗ ∩ U ◦ (R∪∩R∗)k ◦R
∪

◦W

= { by assumption, W⊆ (R∪)∗ ; so R∪

◦W ⊆ (R∪)∗

also, by assumption, U⊆ (R∪)∗

indu
tion hypothesis (9.27) with W := R
∪

◦W }

R∗ ∩ U ◦ (R∪)k ◦ R
∪

◦W

= { de�nition of (R∪)k+1 }

R∗ ∩ U ◦ (R∪)k+1 ◦W .

By indu
tion, we have established (9.27) for all natural numbers k . Hen
e,

equiv.R

= { de�nition 9.14 }

R∗∩ (R∗)∪

= { (R∗)∪ =(R∪)∗ , de�nition of star as a sum of powers }

R∗ ∩
〈

∪k : 0≤k : (R∪)k
〉

= { distributivity }
〈

∪k : 0≤k : R∗ ∩ (R∪)k
〉

= { (9.27) with U,W := I,I }
〈

∪k : 0≤k : R∗ ∩ (R∪∩R∗)k
〉

= { distributivity }

R∗ ∩
〈

∪k : 0≤k : (R∪∩R∗)k
〉

= { de�nition of star as a sum of powers, R∗ ⊇ (R∪∩R∗)∗ }

(R∪∩R∗)∗ .

The �nal equality in the statement of the lemma follows by symmetry (formally, by

repla
ing R by R
∪

in the �rst equality and using the properties of 
onverse).
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✷

Given that theorem 9.26 expresses a property that some might regard as obvious,

the proof is surprisingly 
ompli
ated: the indu
tion hypothesis is non-trivial. It is also

unfortunate that the proof uses the de�nition of the star operator as a sum of powers

(and not as a least �xed point). A proof using �xed-point fusion would be preferable

|albeit by mutual in
lusion| but, so far, has eluded us.

The following theorem exploits theorem 9.26.

Theorem 9.28 If R is a
y
li
, equiv.R is the identity relation. That is,

I∩R+ = ⊥⊥ ⇒ equiv.R= I .

Conversely, if equiv.R is the identity relation, R∩¬I is a
y
li
. That is,

equiv.R = I ⇒ I∩ (R∩¬I)+ = ⊥⊥ .

(In terms of graphs, R∩¬I is the graph R with \self-loops" removed. )

Proof Suppose I∩R+ = ⊥⊥ . Then

equiv.R

= { theorem 9.26 }

(R∪∩R∗)∗

⊆ { modularity rule: (4.8), monotoni
ity }

(R∪

◦ (I ∩ R ◦R∗))∗

= { R ◦R∗ = R+
, assumption: I∩R+ = ⊥⊥ }

(R∪

◦⊥⊥)∗

= { ⊥⊥ is zero of 
omposition, ⊥⊥∗= I }

I .

That is, equiv.R⊆ I . Sin
e, I⊆ equiv.R , it follows by anti-symmetry of set in
lusion that

equiv.R= I .

For the 
onverse, we have:

I ∩ (R∩¬I)+

= { [ R+ = R ◦R∗ ] with R := R∩¬I , R∗=(R∩¬I)∗ }

I ∩ (R∩¬I) ◦R∗

⊆ { modularity rule: (4.8), I is unit of 
omposition }
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(R∩¬I) ◦ ((R∩¬I)∪ ∩ R∗)

⊆ { R∩¬I ⊆ ¬I , (R∩¬I)∪ ⊆R∪

, theorem 9.26,

[ R⊆R∗ ] with R := R∪ ∩ R∗

monotoni
ity (of 
onverse, 
omposition and star) }

¬I ◦ equiv.R .

Thus

equiv.R ⊆ I

⇒ { above, monotoni
ity of 
omposition and transitivity of ⊆ }

I∩ (R∩¬I)+ ⊆ ¬I ◦ I

= { I is unit of 
omposition, 
omplements,

idempoten
y of interse
tion }

I∩ (R∩¬I)+ = ⊥⊥ .

✷

Note that, although theorem 9.28 is valid for all relations, its signi�
an
e is primarily

when applied to �nite graphs; the more signi�
ant property of a non-�nite relation is

whether or not it is left- or right-de�nite (or both).

9.7 A Pathwise Homomorphism

A well-known property is that the strongly 
onne
ted 
omponents of a graph G de�ne

an a
y
li
 graph G ′
. The nodes of the graph G ′

are the strongly 
onne
ted 
omponents

of G , and the edges of G ′
are the edges of G that 
onne
t nodes of G in distin
t

strongly 
onne
ted 
omponents. Moreover, there is a path in G from node u to node v

equivales there is a path in G ′
from the strongly 
onne
ted 
omponent 
ontaining u to

the strongly 
onne
ted 
omponent 
ontaining v . The primary purpose of this se
tion is

to formalise this theorem.

Be
ause the nodes of G and G ′
are di�erent, it is ne
essary to use a typed algebra of

heterogeneous relations rather than the untyped algebra of homogeneous relations. As

remarked earlier, the rules that we have been using remain valid provided some 
aution

is exer
ised when overloading notation.

Suppose N is a set (of \nodes") and G is a relation of type N∼N (the \edges" of

the \graph"). As we have seen the fun
tion

〈a : a∈N : Set . (equiv.G ◦ a)<〉
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maps nodes to strongly 
onne
ted 
omponents. Let us denote this fun
tion by sc and

the set of strongly 
onne
ted 
omponents of G by C . Then sc has type C←N and, by

theorem 7.7,

equiv.G = sc
∪

◦ sc .(9.29)

The relation

sc ◦G ◦ sc
∪

∩ ¬IC

is a homogeneous relation on the strongly 
onne
ted 
omponents of G , i.e. a relation

of type C∼C . Informally, it is a graph obtained from the graph G by 
oales
ing the

nodes in a strongly 
onne
ted 
omponent of G into a single node whilst retaining the

edges of G that 
onne
t nodes in distin
t strongly 
onne
ted 
omponents. Theorem

9.30 establishes the formal relationship between its re
exive-transitive 
losure and G∗
.

Theorem 9.30 Let A denote sc ◦G ◦ sc
∪ ∩ ¬IC . Then,

G∗ = sc
∪

◦A∗
◦ sc .(9.31)

Moreover, A is a
y
li
. That is,

IC ∩ A+ = ⊥⊥ .(9.32)

It follows that A∗
is a partial ordering of the strongly 
onne
ted 
omponents of G .

Proof With theorem 9.26 in mind, we split G into two relations: D and E where D

is de�ned by

D = G ∩ ¬((G
∪

)∗)

and E is de�ned by

E = G ∩ (G
∪

)∗ .

The relation D 
aptures the edges of G that 
onne
t \D"istin
t strongly 
onne
ted


omponents. To be pre
ise:

sc ◦D ◦ sc
∪

⊆ ¬IC ,(9.33)

sin
e

sc ◦D ◦ sc
∪ ⊆ ¬IC

= { de�nition of D }

sc ◦ (G∩¬((G∪)∗)) ◦ sc∪ ⊆ ¬IC
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= { middle-ex
hange (4.18),

IC is unit of 
omposition, and 
omplements }

sc
∪

◦ sc ⊆ ¬G∪ (G∪)∗

⇐ { (9.29) }

equiv.G ⊆ (G∪)∗

= { equiv.G = G∗∩ (G∗)∪ and (G∗)∪ =(G∪)∗ }

true .

Conversely, the relation E 
aptures the edges of G that are in \E"qual strongly 
on-

ne
ted 
omponents:

sc ◦E ◦ sc
∪

⊆ IC ,(9.34)

sin
e

sc ◦E ◦ sc
∪

⊆ { E⊆E∗ and monotoni
ity }

sc ◦E∗ ◦ sc
∪

= { by (9.29) and theorem 7.7 with R :=G ,

E∗ = equiv.G = sc
∪

◦ sc }

sc ◦ sc
∪

◦ sc ◦ sc
∪

⊆ { sc is a fun
tion }

IC .

In order to prove (9.31) and (9.32) we need three additional properties of D . The �rst,

D
∪

∩G∗ = ⊥⊥ ,(9.35)

is obvious from the de�nition of D and properties of 
onverse and 
omplement:

D
∪∩G∗

= { de�nition of D }

(G∩¬((G∪)∗))∪∩G∗

= { distributivity properties of 
onverse and [ (G∪)∪=G ] }

G
∪ ∩¬(G∗)∩G∗

= { [ R∩¬S∩S = ⊥⊥ ] with R,S := G∪

,G∗ }

⊥⊥ .
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The se
ond,

G∗ = equiv.G ◦ (D ◦ equiv.G)∗ ,(9.36)

is proved as follows:

G∗

= { D∪E=G }

(D∪E)∗

= { star de
omposition }

E∗ ◦ (D ◦E∗)∗

= { by theorem 9.26 with R :=G , E∗= equiv.G }

equiv.G ◦ (D ◦ equiv.G)∗ .

The third property,

A = sc ◦D ◦ sc
∪

,(9.37)

is a 
ombination of (9.33) and (9.34):

A

= { de�nition of A , D∪E=G }

sc ◦ (D∪E) ◦ sc∪ ∩ ¬IC

= { distributivity }

(sc ◦D ◦ sc
∪ ∩ ¬IC) ∪ (sc ◦E ◦ sc

∪ ∩ ¬IC)

= { (9.33) and (9.34) }

sc ◦D ◦ sc
∪

.

We now prove (9.31).

G∗

= { (9.36) }

equiv.G ◦ (D ◦ equiv.G)∗

= { (9.29) }

sc
∪

◦ sc ◦ (D ◦ sc
∪

◦ sc)∗

= { mirror rule }
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sc
∪

◦ (sc ◦D ◦ sc
∪)∗ ◦ sc

= { (9.37) }

sc
∪

◦A∗
◦ sc .

It remains to prove that A is a
y
li
. We have:

IC∩A+

= { A+ = A◦A∗
and (9.37) }

IC ∩ sc ◦D ◦ sc
∪

◦ (sc ◦D ◦ sc
∪)∗

= { mirror rule and (9.29) }

IC ∩ sc ◦ (D ◦ equiv.G)∗ ◦D ◦ sc
∪

⊆ { modularity rule: (4.8) (applied in both forms) }

sc ◦ (sc∪ ◦ sc ◦D
∪ ∩ (D ◦ equiv.G)∗) ◦D ◦ sc

∪

= { (9.29) }

sc ◦ (equiv.G ◦D
∪ ∩ (D ◦ equiv.G)∗) ◦D ◦ sc

∪

⊆ { modularity rule: (4.8), and equiv.G=(equiv.G)∪ }

sc ◦ equiv.G ◦ (D∪ ∩ equiv.G ◦ (D ◦ equiv.G)∗) ◦D ◦ sc
∪

= { (9.36) }

sc ◦ equiv.G ◦ (D∪∩G∗) ◦D ◦ sc
∪

= { (9.35) and ⊥⊥ is zero of 
omposition }

⊥⊥ .

Property (9.32) follows from the fa
t that ⊥⊥⊆R , for all R , and anti-symmetry of the

subset relation.

✷

Theorem 9.30 is valid for all relations G and not just for graphs. (Nowhere have we

used the assumption that the set of nodes is �nite.) Its primary importan
e, however,

is that solving path problems 
an be de
omposed into solving the problems for ea
h

individual strongly 
onne
ted 
omponent and then 
ombining the results using a topo-

logi
al sear
h of an a
y
li
 graph. Perhaps surprisingly, it is also used when inverting

real matri
es in order to preserve sparsity. As shown in [BC75℄, the standard so-
alled

elimination te
hniques for inverting a matrix are algebrai
ally identi
al to algorithms

for 
onstru
ting paths in a graph. (Essentially, A−1=(1−(1−A))−1=(1−A)∗ . The

elimination algorithms exploit the star-de
omposition rule to de
ompose the 
omputa-

tion of A−1
into smaller 
omponents; the mirror rule is then used to evaluate A−1

for

Algorithmi
 Graph Theory April 8, 2022



183

row/
olumn matri
es.) In this appli
ation, a topologi
al sear
h is often 
alled \forward

substitution". See also [BC82℄ for more detailed dis
ussion of sparsity 
onsiderations.

(Of 
ourse, this does not mean that theorem 9.30 is valid for other interpretations

of the star operator. For example, if G is a matrix of languages, it is not valid. Many

steps in the 
al
ulation are valid in other interpretations but lemma 9.25 relies on the

modularity rule, whi
h is valid for relations but not for languages.)
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Chapter 10

Generic Algorithms

In 
hapters 11 and 13, we show how depth-�rst sear
h is used to 
ompute the strongly


onne
ted 
omponents of a �nite graph. There are two ways that depth-�rst sear
h 
an

be implemented. The �rst is an iterative algorithm that expli
itly maintains a sta
k

representing in
omplete sear
hes. The se
ond is a re
ursive algorithm.

In general, the implementation of a re
ursive algorithm involves maintaining a sta
k

representing in
omplete 
omputations but the algorithm itself typi
ally does not make

expli
it use of the sta
k. One way to reason about re
ursive algorithms is to make the

sta
k expli
it. In our analysis of depth-�rst sear
h we do not adopt that approa
h;

instead, we 
hoose to ta
kle the re
ursion head on using �xed-point indu
tion as the

primary tool. This poses signi�
ant 
hallenges 
on
erning how to present the 
al
ulations

in a way that truly supports understanding of the algorithms.

This 
hapter is a prelude to 
hapters 11 and 13 intended as a gentle introdu
tion to

the more 
omplex 
al
ulations of those 
hapters. In se
tion 10.1, we present a generi


graph-sear
hing algorithm of whi
h depth-�rst sear
h is an instan
e. The algorithm

determines the set of nodes that 
an be rea
hed in a graph from a given set of nodes.

Reasoning about the algorithm is a 
ombination of �xed-point indu
tion and a lemma,

lemma 10.1, that helps to 
hara
terise when a sear
h is 
omplete. As mentioned earlier,

depth-�rst sear
h is an instan
e of the generi
 algorithm; in this way, se
tion 10.1 is an

introdu
tion to 
hapter 11.

Then, in se
tion 10.2, we 
onsider repeated graph sear
hes: that is, starting from an

empty set of nodes, repeatedly initiating a new sear
h from a node that has not already

been \seen". Just as in se
tion 10.1, we 
onsider a generi
 algorithm whereby new

sear
hes are initiated using a 
hoi
e fun
tion. The 
hoi
e is re
orded in the algorithm

by the 
onstru
tion of a fun
tion that we 
all the \delegate" fun
tion: the \delegate" of

a node a is the node b from whi
h the sear
h that \sees" a was initiated.

Apart from being total and fun
tional, no other requirements are pla
ed on the 
hoi
e

of initiating nodes. We see, however, in 
hapter 13 how depth-�rst sear
h is used to
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onstru
t a 
hoi
e fun
tion with the property that the \delegate" of a node a is a

representative of the strongly 
onne
ted 
omponent of whi
h a is a member. In this

way, se
tion 10.2 is a ne
essary preliminary to se
tion 13.

10.1 A Generic Graph-Searching Algorithm

In se
tion 6.9, we presented a simple iterative algorithm for 
omputing the least �xed

point of a monotoni
 endofun
tion on a �nite, partially ordered set with a given least

element. This small theory is immediately appli
able to graph-sear
hing.

Given a set of nodes s and a graph G the nodes rea
hable from a node in s are

given by (s ◦G∗)> . Sin
e this is a least �xed point of the fun
tion 〈x :: s∪ (x◦G)>〉 , the

rea
hable nodes 
an be 
omputed as follows:

seen := ⊥⊥

; while seen 6= s∪ (seen◦G)> do

seen := s∪ (seen◦G)>

The name \ seen " 
onveys an operational interpretation of the algorithm: initially no

nodes have been \seen"; subsequently nodes that are rea
hable by a single edge from

nodes that have already been \seen" are also \seen" .

Remark As always, the use of 
ommon English words to name variables 
an be mislead-

ing. Elsewhere (for example, [AHU82, pp.222{226℄) the word \visited" is used instead of

our \seen". We have 
hosen to use \seen" primarily be
ause it is shorter. However, an-

other reason is that \visited" suggests an a
tion that has been 
ompleted. In the se
ond

phase of the strongly-
onne
ted-
omponents algorithm, it is important to distinguish

between when a sear
h from a given node has \started" and when it has \�nished". Our

use of the word \seen" rather than \visited" is intended to suggest that the sear
h has

started but may not have �nished. Nevertheless, it may be interpreted di�erently by

di�erent readers. Formal statements 
larify the pre
ise fun
tions of the variables. End

of Remark

The invariant property is that seen⊆ (s ◦G∗)> and the loop is guaranteed to termi-

nate whenever G is a �nite graph. On termination, seen=(s ◦G∗)> . That is, seen is

(a 
ore
exive representing) the set of nodes rea
hable from s .

This simple algorithm has the drawba
k that it is not very eÆ
ient: it involves

the 
omputation of (x◦G)> for an in
reasingly large set of nodes x and mu
h of this


omputation just repeats what has already been 
omputed. In order to eliminate this

re
omputation, we need a property that separates the new from the old. Su
h a property

is the following:
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Lemma 10.1 Let p be a 
ore
exive and R a homogeneous relation. Then

(p ◦R∗)> = p ∪ (p ◦R ◦∼p ◦R∗)>

(We use variables p and R to emphasise that no assumption of �niteness is made.)

Proof

(p ◦R∗)> = p ∪ (p ◦R ◦∼p ◦R∗)>

= { de�nition of R∗
, distributivity, p>=p }

p ∪ (p ◦R ◦R∗)> = p ∪ (p ◦R ◦∼p ◦R∗)>

= { ∼p⊆ I , monotoni
ity and reversing �rst step }

(p ◦R∗)> ⊆ p ∪ (p ◦R ◦∼p ◦R∗)>

⇐ { �xed-point indu
tion }

p ∪ ((p ∪ p ◦R ◦∼p ◦R∗) ◦R)> ⊆ p ∪ (p ◦R ◦∼p ◦R∗)>

⇐ { distributivity and monotoni
ity }

(p◦R)> ⊆ p ∪ (p ◦R ◦∼p ◦R∗)>

∧ (p ◦R ◦∼p ◦R∗
◦R)> ⊆ (p ◦R ◦∼p ◦R∗)>

= { R∗
◦R ⊆ R∗

and monotoni
ity }

(p◦R)> ⊆ p ∪ (p ◦R ◦∼p ◦R∗)>

⇐ { 
ase analysis: p∪∼p = I }

(p◦R)> ◦p ⊆ p

∧ (p◦R)> ◦∼p ⊆ (p ◦R ◦∼p ◦R∗)>

= { (p◦R)>⊆ I and monotoni
ity,

I⊆R∗
and domains (theorems 5.9 and 5.8) }

true .
✷

Lemma 10.1 suggests an alternative iterative algorithm for 
omputing rea
hable

nodes. Applying it to �nite graph G and set of nodes seen , we have:

(seen ◦G∗)> = seen ∪ (seen ◦G ◦∼seen ◦G∗)> .

The subexpression seen ◦G ◦∼seen represents a set of \unexplored" edges of G in the

sense that they are edges from a node that has been \seen" to a node that has not been

\seen". The nodes rea
hable from s 
an thus be 
omputed by initialising seen to s

and then subsequently 
hoosing an edge (a, b) in the set of \unexplored" edges; the

node b has not previously been \seen" and so 
an be added to seen .
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{ G is a �nite graph and s is a 
ore
exive representing a subset of the nodes }

seen := s

; { Invariant: (s ◦G∗)> = (seen ◦G∗)> }

while seen ◦G ◦∼seen 6= ⊥⊥ do

begin


hoose nodes a and b su
h that a◦⊤⊤◦b ⊆ seen ◦G ◦∼seen

{ b⊆∼seen }

; seen := seen∪b

end

{ (s ◦G∗)> = seen }

Obviously, the invariant is truthi�ed by the initialisation. Termination is guaranteed

by the fa
t that b⊆∼seen is a pre
ondition of the assignment seen := seen∪b in

the loop body. (Thus the assignment in
reases the number of nodes in seen by 1 and

so the number of times the loop body is exe
uted is at most the number of nodes in the

graph.) We prove this fa
t as follows:

true

= { 
hoi
e of a and b }

a◦⊤⊤◦b ⊆ seen ◦G ◦∼seen

⇒ { monotoni
ity }

(a◦⊤⊤◦b)> ⊆ (seen ◦G ◦∼seen)>

⇒ { a and b are atoms, so (a◦⊤⊤◦b)>=b

(seen ◦G ◦∼seen)> ⊆ ∼seen }

b ⊆ ∼seen .

Exe
ution of the loop body demands that there exist nodes a and b satisfying the


ondition

a◦⊤⊤◦b ⊆ seen ◦G ◦∼seen .

This is an immediate 
onsequen
e of the 
ondition for exe
uting the loop body. (For-

mally, we exploit the fa
t that the latti
e of relations is saturated.) It remains to show

that the invariant is maintained by the body of the loop, and the 
laimed post
ondition

is implied by the 
onjun
tion of the invariant and the 
ondition for terminating the loop.

We verify the invariant in the following lemma.
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Lemma 10.2 For all s , G , a and b ,

(((s ◦G∗)> = (seen ◦G∗)>)[seen := seen∪b] ≡ (s ◦G∗)> = (seen ◦G∗)>)

⇐ a◦⊤⊤◦b ⊆ seen ◦G ◦∼seen .

Proof We assume that nodes a and b satisfy a◦⊤⊤◦b ⊆ seen ◦G ◦∼seen .

((seen ◦G∗)>)[seen := seen∪b]

= { de�nition of substitution and distributivity }

(seen ◦G∗)> ∪ (b ◦G∗)>

= { (seen ◦G∗)>

⊇ { lemma 10.1 with p,R := seen,G }

(seen ◦G ◦∼seen ◦G∗)>

⊇ { 
hoi
e of a and b : a◦⊤⊤◦b ⊆ seen ◦G ◦∼seen }

(a ◦⊤⊤ ◦b ◦G∗)>

= { domains (spe
i�
ally (R◦S)>=(R> ◦S)> )

(a◦⊤⊤◦b)>=b }

(b ◦G∗)> }

(seen ◦G∗)> .

The lemma follows by the de�nition of substitution.

✷

That the post
ondition (s ◦G∗)> = seen is valid is an immediate 
onsequen
e of

lemma 10.1:

(s ◦G∗)> = (seen ◦G∗)> ∧ seen ◦G ◦∼seen = ⊥⊥

= { lemma 10.1 with p,R := seen,G }

(s ◦G∗)> = seen ∪ (seen ◦G ◦∼seen ◦G∗)> ∧ seen ◦G ◦∼seen = ⊥⊥

⇒ { Leibniz, ⊥⊥ is zero of 
omposition, ⊥⊥>=⊥⊥ }

(s ◦G∗)> = seen .

A 
on
rete implementation of the above graph-sear
hing algorithm involves 
hoos-

ing a suitable data stru
ture in whi
h to store the unexplored edges represented by

seen ◦G ◦∼seen . Breadth-�rst sear
h stores the edges in a queue (so newly added edges

are 
hosen in the order that they are added), whilst depth-�rst sear
h stores the edges

in a sta
k (so the most re
ently added edge is 
hosen �rst). Other variations enable the
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solution of more spe
i�
 path-�nding problems. For example, if edges are labelled by

distan
es, shortest paths from a given sour
e 
an be found by storing edges in a prior-

ity queue. Topologi
al sear
h (se
tion 8.4) is also an instan
e: edges from ea
h node

are grouped together and an edge from a given node is 
hosen when the node has no

unexplored in
oming edges. We do not go into details any further.

10.2 Repeated Search and Delegates

In this se
tion, we explore a property of repeated appli
ation of graph-sear
hing starting

with an empty set of \seen" nodes until all nodes have been seen.

The algorithmwe 
onsider is introdu
ed in se
tion 10.2.2 and further re�ned in se
tion

10.2.3. Roughly speaking, the algorithm repeatedly sear
hes a given graph starting from

a node 
hosen from among the nodes not yet seen so as to maximise a \
hoi
e fun
tion";

at ea
h iteration, the graph sear
hed is the given graph but restri
ted to edges 
onne
ting

nodes not yet seen. The algorithm re
ords the 
hosen nodes in a fun
tion that we 
all a

\delegate fun
tion", the \delegate" of a node a being the node from whi
h the sear
h

that \sees" a is initiated. The formal spe
i�
ation of the delegate fun
tion is given in

se
tion 10.2.1.

Our formulation of the notion of a \delegate" is inspired by Cormen, Leiserson and

Rivest's [CLR90, p.490℄ dis
ussion of a \forefather" fun
tion as used in depth-�rst sear
h

to 
ompute strongly 
onne
ted 
omponents of a graph. However, our presentation is

mu
h more general than theirs. In parti
ular, Cormen, Leiserson and Rivest assume

that the 
hoi
e fun
tion is inje
tive. We establish some 
onsequen
es of this assumption

in se
tion 10.2.4; this is followed in se
tion 10.2.5 by a 
omparative dis
ussion of our

a

ount and that of Cormen, Leiserson and Rivest.

10.2.1 Delegate Function

Suppose f is a total fun
tion of type IN←Node and suppose G is a graph. We 
all f

the 
hoi
e fun
tion.

A delegate fun
tion on G a

ording to f is a relation ϕ of type Node∼Node with

the properties that

ϕ ◦ϕ
∪

⊆ INode ⊆ ϕ
∪

◦ϕ , and(10.3)

ϕ ⊆ (G∗)
∪

∧ G∗ ⊆ (f◦ϕ)
∪

◦ ≥ ◦ f .(10.4)

The property (10.3) states that ϕ is a total fun
tion. Property (10.4), expressed point-

wise and in words, states that for all nodes a and b , node a is the delegate of node

b equivales the 
onjun
tion of (i) there is a path in G from b to a and (ii) among
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all nodes c su
h that there is a path from b to c , node a maximises the value of the


hoi
e fun
tion f .

Delegate fun
tions have a 
ouple of additional properties that we exploit later. These

are formulated and proved in the lemma below.

Lemma 10.5 If ϕ is a delegate fun
tion on G a

ording to f ,

I ⊆ G∗
◦ϕ ∧ G∗ ⊆ (f◦ϕ)

∪

◦ ≥ ◦ f ◦ϕ .

In words, there is a path in G from ea
h node to its delegate, and if there is a path in

G from node b to node c , the value of f at the delegate of b is at least the value of f

at the delegate of c .

Proof First,

I ⊆ G∗
◦ϕ

⇐ { ϕ is total, i.e. I ⊆ ϕ
∪

◦ϕ }

ϕ
∪ ⊆ G∗

= { 
onverse }

ϕ ⊆ (G∗)∪

= { (G∗)∪=(G∪)∗ and de�nition of delegate: (10.4) }

true .

Se
ond,

G∗ ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f ◦ϕ

⇐ { I ⊆ G∗
◦ϕ (see above) }

G∗
◦G∗

◦ϕ ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f ◦ϕ

⇐ { G∗
◦G∗ = G∗

, monotoni
ity }

G∗ ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f

= { de�nition of delegate: (10.4) }

true .

✷

Lemma 10.6 If ϕ is a delegate fun
tion on G a

ording to f ,

ϕ ⊆ f
∪

◦ ≥ ◦ f .

In words, the delegate of a node has f -value that is at least that of the node.
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Proof

true

= { de�nition: (10.3) and (10.4) }

ϕ ◦ϕ
∪ ⊆ I ∧ G∗ ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f

⇒ { I⊆G∗
and transitivity; 
onverse }

ϕ ◦ϕ
∪ ⊆ I ∧ I ⊆ ϕ

∪

◦ f
∪

◦ ≥ ◦ f

⇒ { ϕ◦I=ϕ , monotoni
ity of 
omposition and transitivity }

ϕ ⊆ f∪ ◦ ≥ ◦ f .

✷

10.2.2 Assigning Delegates

The basi
 stru
ture of the algorithm for 
omputing a delegate fun
tion is shown in �g.

10.1. It is a simple loop that initialises the 
ore
exive seen (representing a set of nodes)

to ⊥⊥ and then repeatedly 
hooses a node a that has the largest f -value among the

nodes that do not have a delegate and adds to seen the 
ore
exive ∼seen ◦ (G∗
◦a)< ;

this 
ore
exive represents the nodes that do not have a delegate and from whi
h there

is a path to a in the graph. Simultaneous with the assignments to seen , the variable

ϕ is initialised to ⊥⊥ and subsequently updated by assigning the value of ϕ to a at

all newly \delegated" nodes.

For brevity in the 
al
ulations below, the temporary variable s (short for \seen")

has been introdu
ed. The sequen
e of assignments

s := ∼seen ◦ (G∗
◦a)<

; ϕ,seen := ϕ ∪ a◦⊤⊤◦s , seen∪ s

is implemented by an adaptation of the graph-sear
hing algorithm dis
ussed in se
tion

10.1. The details of how this is done are given in se
tion 10.2.3.

Apart from being a total fun
tion, we impose no restri
tions on f . If f is a 
onstant

fun
tion (for example, if f.a=0 for all nodes a ), the \
hoi
e" is 
ompletely arbitrary.

The property

ϕ ⊆ (G
∪

∩ ϕ
∪

◦ϕ)∗

in the post
ondition is stronger than the requirement ϕ ⊆ (G∗)∪ in (10.4). It states that

there is a path from ea
h node to its delegate 
omprising nodes that all have the same

delegate. (More pre
isely, it states that there is a path from ea
h node to its delegate
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{ f ◦ f
∪ ⊆ IIN ∧ INode ⊆ f

∪

◦ f }

ϕ,seen := ⊥⊥,⊥⊥ ;

{ Invariant: (10.7) thru (10.14) }

while seen 6= INode do

begin


hoose node a su
h that a◦seen=⊥⊥ and ∼seen ◦⊤⊤ ◦a ⊆ f
∪

◦≤ ◦ f

; s := ∼seen ◦ (G∗
◦a)<

; ϕ,seen := ϕ ∪ a◦⊤⊤◦s , seen∪ s

end

{ ϕ ◦ϕ
∪ ⊆ INode ⊆ equiv.G ⊆ ϕ

∪

◦ϕ

∧ ϕ ⊆ (G∪ ∩ ϕ∪

◦ϕ)∗ ∧ G∗ ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f

∧ ϕ = ϕ◦ϕ }

Figure 10.1: Repeated Sear
h. Outer Loop

su
h that su

essive nodes on the path have the same delegate. The equivalen
e of these

two informal interpretations is formulated in lemma 10.36.)

Note the property ϕ = ϕ◦ϕ in the post
ondition. Cormen, Leiserson and Rivest

[CLR90, p.490℄ require that the fun
tion f is inje
tive and use this to derive the prop-

erty from the de�nition of a delegate (\forefather" in their terminology). We don't

require that f is inje
tive but show instead that it is a 
onsequen
e of the algorithm

used to 
al
ulate delegates. For 
ompleteness, we also show that it is a 
onsequen
e of

the de�nition of delegate under the assumption that f is inje
tive: see lemma 10.30.

Similarly, the property equiv.G ⊆ ϕ
∪

◦ϕ 
an be derived from the de�nition of a delegate

if f is assumed to be inje
tive. Again for 
ompleteness, we also show that it is a 
onse-

quen
e of the de�nition of delegate under the assumption that f is inje
tive: see lemma

10.31.

Termination of the loop is obvious: the 
ore
exive seen represents a set of nodes that

in
reases stri
tly in size at ea
h iteration. (The 
hosen node a is added at ea
h iteration.)

The number of iterations of the loop body is thus at most the number of nodes in the

graph, whi
h is assumed to be �nite. The prin
iple task is thus to verify 
onditional


orre
tness (
orre
tness assuming termination, often 
alled \partial" 
orre
tness).

The invariant properties of the algorithm are as follows:

ϕ> = seen ,(10.7)
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ϕ ◦ϕ
∪

⊆ seen ,(10.8)

ϕ ⊆ (G
∪

∩ ϕ
∪

◦ϕ)∗ ,(10.9)

ϕ = ϕ◦ϕ ,(10.10)

seen = (G∗
◦ seen)< ,(10.11)

seen ◦⊤⊤ ◦∼seen ⊆ (f◦ϕ)
∪

◦ ≥ ◦ f ,(10.12)

seen ◦G∗
◦ seen ⊆ (f◦ϕ)

∪

◦ ≥ ◦ f ,(10.13)

seen ◦ equiv.G ◦ seen ⊆ ϕ
∪

◦ ϕ .(10.14)

Before verifying the invariant properties, let us 
onsider the post
ondition. The post-


ondition

ϕ ◦ϕ
∪

⊆ INode ⊆ ϕ
∪

◦ϕ

expresses the fa
t that, on termination, ϕ is total and fun
tional; the 
laimed invariants

(10.7) and (10.8) state that intermediate values of ϕ are total on seen and fun
tional.

The invariants (10.9) and (10.10) are both 
onjun
ts of the post
ondition. The additional


onjun
t

equiv.G ⊆ ϕ
∪

◦ϕ

states that strongly 
onne
ted nodes have the same delegate. The invariant (10.14)

states that this is the 
ase for nodes that have been assigned a delegate. Like (10.7) and

(10.8), invariant (10.13) states that intermediate values of ϕ maximise f for those nodes

for whi
h a delegate has been assigned. It is therefore obvious that the post
ondition is

implied by the 
onjun
tion of the invariant and the termination 
ondition. The additional

invariants (10.11) and (10.12) are needed in order to establish the invarian
e of (10.13).

Sin
e, for all 
ore
exives p and q ,

p∪q = p ∪ ∼p ◦q ,

it is the 
ase that

seen ∪ ∼seen ◦ (G∗
◦a)< = seen∪ (G∗

◦a)< .(10.15)

Note that the left side of this equality is the right side of the assignment to seen in the

above algorithm. The right side is slightly simpler. A

ordingly, we use the right side

when reasoning about the invariant properties of seen . (The right side of the assignment

to ϕ 
annot be simpli�ed in this way.)

As usually happens, it is obvious that all of the 
laimed invariant properties are

true on initialisation (sin
e ⊥⊥ is the zero of 
omposition). It remains to establish the

veri�
ation 
ondition: for all ϕ , seen and a ,
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((10.7) thru (10.14)) [ϕ,seen := ϕ ∪ a◦⊤⊤◦s , seen∪ s]

⇐ ((10.7) thru (10.14))

∧ a◦seen=⊥⊥ ∧ ∼seen ◦⊤⊤ ◦a ⊆ f
∪

◦≤ ◦ f

where s = ∼seen ◦ (G∗
◦a)< . We 
onsider ea
h of the 
onjun
ts in the 
onsequent in turn,

invoking the premises when ne
essary. (The �rst line of premises is the 
onjun
tion of

all the 
laimed invariant properties and the se
ond line is the 
riterion used to 
hoose

a .) Be
ause of the large number of properties, the remainder of this se
tion is quite

long. Most of the 
al
ulations are, however, straightforward. An ex
eption is, perhaps,

the invarian
e of (10.9), proved in lemma 10.22.

We begin with a few lemmas on the 
onsequen
es of the invariant properties.

Lemma 10.16 Assuming properties (10.7), (10.8) and a◦seen=⊥⊥ , the following

properties also hold:

ϕ ◦ s = ⊥⊥ = s ◦ϕ ∧ ϕ ◦a = ⊥⊥ .

Proof These are all straightforward. First,

ϕ ◦ s

= { domains }

ϕ ◦ ϕ> ◦ s

= { (10.7) }

ϕ ◦ seen ◦ s

= { s = ∼seen ◦ (G∗
◦a)< }

ϕ ◦ seen ◦∼seen ◦ (G∗
◦a)<

= { 
omplements: seen ◦∼seen = ⊥⊥ }

⊥⊥ .

Se
ond,

s ◦ϕ

= { domains }

s ◦ϕ< ◦ϕ

⊆ { (10.8): ϕ< ⊆ seen }

s ◦ seen ◦ϕ
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= { s◦seen ⊆ ∼seen ◦ seen ⊆ ⊥⊥ }

⊥⊥ .

The third property is an immediate 
onsequen
e of ϕ◦s=⊥⊥ (the �rst property) and

a⊆ s (whi
h is a 
onsequen
e of the 
hoi
e of a ).

✷

Lemma 10.17 Assuming seen = (G∗
◦ seen)< (i.e. (10.11)) and a◦seen=⊥⊥ , the

following properties also hold:

∼seen ◦ G∗
◦ seen = ⊥⊥ ∧ ∼seen ◦G∗

◦a = (∼seen ◦G)∗ ◦a .

Proof First,

∼seen ◦G∗
◦ seen

= { domains: [ R = R< ◦R ] with R := G∗
◦ seen ;

seen = (G∗
◦ seen)< }

∼seen ◦ seen ◦G∗
◦ seen

= { ∼seen ◦ seen = ⊥⊥ }

⊥⊥ .

Se
ond,

∼seen ◦G∗
◦a

= { I = seen∪∼seen ; distributivity and star de
omposition:

[ (R∪S)∗ = R∗
◦ (S ◦R∗)∗ ] with R,S := seen ◦G , ∼seen ◦G }

∼seen ◦ (seen ◦G)∗ ◦ (∼seen ◦G ◦ (seen ◦G)∗)∗ ◦a

= { (seen◦G)∗ = I ∪ seen◦G◦(seen◦G)∗

distributivity and ∼seen ◦ seen = ⊥⊥ }

∼seen ◦ (∼seen ◦G ◦ (seen ◦G)∗)∗ ◦a

= { (seen◦G)∗ = I ∪ seen◦G◦(seen◦G)∗

distributivity and ∼seen ◦G∗
◦ seen = ⊥⊥

(when
e ∼seen ◦G ◦ seen = ⊥⊥ ) }

∼seen ◦ (∼seen ◦G)∗ ◦a

= { (∼seen ◦G)∗ = I ∪ ∼seen ◦G ◦ (∼seen ◦G)∗
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distributivity }

∼seen ◦a ∪ ∼seen ◦∼seen ◦G ◦ (∼seen ◦G)∗ ◦a

= { ∼seen ◦a = a and ∼seen ◦∼seen = ∼seen ,

(∼seen ◦G)∗ = I ∪ ∼seen ◦G ◦ (∼seen ◦G)∗

distributivity }

(∼seen ◦G)∗ ◦a .

✷

Lemma 10.18 Assuming properties (10.7) thru (10.14) and a◦seen=⊥⊥ ,

s = ((∼seen ◦G)∗ ◦a)< .

Proof

s

= { de�nition }

∼seen ◦ (G∗
◦a)<

= { domains: for all 
ore
exives p and all relations R ,

p ◦R< = (p◦R)< with p,R := ∼seen , G∗
◦a }

(∼seen ◦G∗
◦a)<

= { lemma 10.17 }

((∼seen ◦G)∗ ◦a)< .

✷

Lemma 10.19 Assuming properties (10.7) thru (10.14) and a◦seen=⊥⊥ ,

s = ((s◦G)∗ ◦a)< .

Proof Applying lemma 10.18, the task is to prove that

((∼seen ◦G)∗ ◦a)< = ((s◦G)∗ ◦a)< .

Clearly, sin
e s⊆∼seen , the left side of this equation is at least the right side. So it

suÆ
es to prove the in
lusion. This we do as follows.

((∼seen ◦G)∗ ◦a)< ⊆ ((s◦G)∗ ◦a)<

⇐ { �xed-point fusion }
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a ⊆ ((s◦G)∗ ◦a)<

∧ (∼seen ◦G ◦ ((s◦G)∗ ◦a)<)< ⊆ ((s◦G)∗ ◦a)<

= { �rst 
onjun
t is 
learly true ;

∼seen

= { 
ase analysis: I = (G∗
◦a)< ∪ (G∗

◦a)•< }

∼seen ◦ (G∗
◦a)< ∪ ∼seen ◦ (G∗

◦a)•<

= { de�nition of s }

s ∪ ∼seen ◦ (G∗
◦a)•< }

((s ∪ ∼seen ◦ (G∗
◦a)•<) ◦G ◦ ((s◦G)∗ ◦a)<)< ⊆ ((s◦G)∗ ◦a)<

= { domains: [ (R ◦S<)< = (R◦S)< ]

with R,S := (s ∪ ∼seen ◦ (G∗
◦a)•<) ◦G , (s◦G)∗ ◦a ;

distributivity }

(s ◦G ◦ (s◦G)∗ ◦a)< ⊆ ((s◦G)∗ ◦a)<

∧ (∼seen ◦ (G∗
◦a)•< ◦G ◦ (s◦G)∗ ◦a)< ⊆ ((s◦G)∗ ◦a)<

⇐ { �rst 
onjun
t is true (sin
e [ R◦R∗ ⊆ R∗ ] with R := s◦G );

se
ond 
onjun
t: G ◦ (s◦G)∗ ⊆ G∗
and domains }

(∼seen ◦ (G∗
◦a)•< ◦ (G∗

◦a)<)< ⊆ ((s◦G)∗ ◦a)<

= { 
omplements: (G∗
◦a)•< ◦ (G∗

◦a)< = ⊥⊥ }

true .

✷

We 
an now pro
eed to the veri�
ation of ea
h of the invariant properties.

Lemma 10.20 Property (10.7) is an invariant of the algorithm.

Proof It is 
learly true after initialisation of ϕ and seen . For the loop body, assume

(10.7) is true. Let s denote ∼seen ◦ (G∗
◦a)< . Then we have:

(ϕ ∪ a◦⊤⊤◦s)>

= { distributivity }

ϕ> ∪ (a◦⊤⊤◦s)>

= { assumption: (10.7) }

seen ∪ (a◦⊤⊤◦s)>
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= { s = ∼seen ◦ (G∗
◦a)< , domains }

seen ∪ (a ◦⊤⊤ ◦a ◦ (G∗)∪ ◦∼seen)>

= { a is an atom, so a◦⊤⊤◦a=a }

seen ∪ (a ◦ (G∗)∪ ◦∼seen)>

= { domains, s = ∼seen ◦ (G∗
◦a)< }

seen∪ s .

That is, (10.7) is an invariant of the algorithm.

✷

Lemma 10.21 Property (10.8) is an invariant of the algorithm.

Proof It is 
learly true after initialisation of ϕ and seen . For the loop body, assume

(10.8) is true. Let s = ∼seen ◦ (G∗
◦a)< . Then

(ϕ ∪ a◦⊤⊤◦s) ◦ (ϕ ∪ a◦⊤⊤◦s)∪ ⊆ seen∪ s

= { distributivity }

ϕ ◦ϕ
∪ ∪ a ◦⊤⊤ ◦ s ◦ϕ

∪ ∪ ϕ◦s◦⊤⊤◦a ∪ a◦⊤⊤◦s◦s◦⊤⊤◦a ⊆ seen∪ s

⇐ { de�nition of set union }

ϕ ◦ϕ
∪ ⊆ seen

∧ a ◦⊤⊤ ◦ s ◦ϕ
∪ ⊆ ⊥⊥

∧ ϕ ◦ s ◦⊤⊤ ◦a ⊆ ⊥⊥

∧ a◦⊤⊤◦s◦s◦⊤⊤◦a ⊆ s .

We 
onsider ea
h of the 
onjun
ts in turn. The �rst is (10.8) whi
h we assume to be

true. The se
ond and third are 
learly equivalent (be
ause a=a∪

, s= s∪ and ⊥⊥=⊥⊥
∪

)

and the third is obviously an immediate 
onsequen
e of lemma 10.16 (in parti
ular,

ϕ ◦ s = ⊥⊥ ). Finally,

a◦⊤⊤◦s◦s◦⊤⊤◦a

⊆ { ⊤⊤◦s◦s◦⊤⊤ ⊆ ⊤⊤ }

a◦⊤⊤◦a

= { a is a node (an atomi
 
ore
exive) }

a

⊆ { I⊆G∗
, monotoni
ity;
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hoi
e of a : a◦seen=⊥⊥ }

∼seen ◦ (G∗
◦a)<

= { de�nition }

s .

We have thus veri�ed that (10.8) is an invariant of the algorithm.

✷

Lemma 10.22 Property (10.9) is an invariant of the algorithm.

Proof We have to prove that

ϕ ∪ a◦⊤⊤◦s ⊆ (G
∪

∩ (ϕ ∪ a◦⊤⊤◦s)
∪

◦ (ϕ ∪ a◦⊤⊤◦s))∗

assuming (10.7) thru (10.14).

Clearly (by monotoni
ity)

ϕ ⊆ (G
∪

∩ (ϕ ∪ a◦⊤⊤◦s)
∪

◦ (ϕ ∪ a◦⊤⊤◦s))∗ ⇐ (10.9)

so it suÆ
es to prove that

a◦⊤⊤◦s ⊆ (G
∪

∩ (ϕ ∪ a◦⊤⊤◦s)
∪

◦ (ϕ ∪ a◦⊤⊤◦s))∗ .

As usual, we begin with the more 
ompli
ated side.

(G∪ ∩ (ϕ ∪ a◦⊤⊤◦s)∪ ◦ (ϕ ∪ a◦⊤⊤◦s))∗

⊇ { monotoni
ity }

(G∪ ∩ (a◦⊤⊤◦s)∪ ◦a ◦⊤⊤ ◦ s)∗

= { 
onverse; a is a node, so ⊤⊤ ◦a
∪

◦ a ◦ ⊤⊤ = ⊤⊤ }

(G∪ ∩ s◦⊤⊤◦s)∗

= { s is a 
ore
exive, so s= s<= s> ; domains }

(s ◦G∪

◦ s)∗

⊇ { I⊇ s }

(s ◦G∪

◦ s)∗ ◦ s

= { mirror rule, s◦s= s }

s ◦ (G∪

◦ s)∗

⊇ { s⊇a , monotoni
ity }
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a ◦ (G∪

◦ s)∗

= { a is a node, so a◦⊤⊤◦a=a

distributivity properties of 
onverse }

a ◦⊤⊤ ◦a ◦ ((s◦G)∗)∪

= { lemma 10.19 and domains }

a◦⊤⊤◦s .

✷

Lemma 10.23 Property (10.10) is an invariant of the algorithm.

Proof It is 
learly true after initialisation of ϕ . For the loop body, assume (10.10) is

true. Then

(ϕ ∪ a◦⊤⊤◦s)◦(ϕ ∪ a◦⊤⊤◦s)

= { distributivity }

ϕ◦ϕ ∪ ϕ◦a◦⊤⊤◦s ∪ a◦⊤⊤◦s◦ϕ ∪ a◦⊤⊤◦s◦a◦⊤⊤◦s

= { lemma 10.16 }

ϕ◦ϕ ∪ a◦⊤⊤◦s◦a◦⊤⊤◦s

= { by lemma 10.18, s◦a=a ;

so, by 
one rule (4.16): ⊤⊤◦s◦a◦⊤⊤=⊤⊤

hypothesis (10.10): ϕ◦ϕ=ϕ }

ϕ ∪ a◦⊤⊤◦s .

The property (10.10) is thus maintained by the body of the loop.

✷

Lemma 10.24 Property (10.11) is an invariant of the algorithm.

Proof It is 
learly true after initialisation of seen . For the loop body, assume (10.11)

is true. Then

(G∗
◦ (seen∪ (G∗

◦a)<))<

= { distributivity }

(G∗
◦ seen)< ∪ (G∗

◦ (G∗
◦a)<)<

= { assumption: (10.11) and domains }
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seen ∪ (G∗
◦G∗

◦a)<

= { G∗
◦G∗ = G∗ }

seen ∪ (G∗
◦a)< .

Re
alling property (10.15), it follows that (10.11) is an invariant of the algorithm.

✷

Lemma 10.25 Property (10.12) is an invariant of the algorithm.

Proof It is 
learly true after the initialisation of seen and ϕ . For the loop body,

assume (10.12) is true.

(seen∪ s) ◦⊤⊤ ◦∼(seen∪ s)

= { distributivity }

seen ◦⊤⊤ ◦∼(seen∪ s) ∪ s ◦⊤⊤ ◦∼(seen∪ s)

⊆ { assumption: (10.12) and domains }

(f◦ϕ)∪ ◦ ≥ ◦ f ∪ s ◦⊤⊤ ◦∼seen .

We 
ontinue with the se
ond term:

s ◦⊤⊤ ◦∼seen ⊆ s ◦⊤⊤ ◦a ◦ f
∪

◦≥ ◦ f

⇐ { 
hoi
e of a : ∼seen ◦⊤⊤ ◦a ⊆ f∪ ◦≤ ◦ f

i.e. a ◦⊤⊤ ◦∼seen ⊆ f
∪

◦≥ ◦ f }

s ◦⊤⊤ ◦∼seen ⊆ s ◦⊤⊤ ◦a ◦a ◦⊤⊤ ◦∼seen

= { a is a node (a non-empty atom), 
one rule: ⊤⊤◦a◦a◦⊤⊤=⊤⊤ }

true .

Combining the two 
al
ulations:

(seen∪ s) ◦⊤⊤ ◦∼(seen∪ s)

⊆ { monotoni
ity of set union }

(f◦ϕ)∪ ◦ ≥ ◦ f ∪ s ◦⊤⊤ ◦a ◦ f
∪

◦≥ ◦ f

= { distributivity }

(f ◦ (ϕ ∪ a◦⊤⊤◦s))∪ ◦ ≥ ◦ f .

That is, (10.12) is invariant under the assignment.

✷
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Lemma 10.26 Property (10.13) is an invariant of the algorithm.

Proof It is 
learly true after initialisation of seen . For the loop body, assume (10.13)

is true. The left side of (10.13) [seen := seen∪ s] expands into the union of four terms.

We 
onsider ea
h in turn.

First,

seen ◦G∗
◦ seen

⊆ { assumption: (10.13) }

(f◦ϕ)∪ ◦ ≥ ◦ f .

Se
ond,

s ◦G∗
◦ s

⊆ { G∗⊆⊤⊤ , monotoni
ity }

s◦⊤⊤◦s

= { de�nition of s , domains }

s ◦⊤⊤ ◦a ◦ (G∗)∪ ◦∼seen

⊆ { (G∗)∪⊆⊤⊤ , monotoni
ity }

s ◦⊤⊤ ◦a ◦⊤⊤ ◦∼seen

⊆ { 
hoi
e of a : ∼seen ◦⊤⊤ ◦a ⊆ f∪ ◦≤ ◦ f ; 
onverse and a◦a=a }

s ◦⊤⊤ ◦a ◦ f
∪

◦≥ ◦ f .

Third,

s ◦G∗
◦ seen

= { domains }

s ◦ (G∗
◦ seen)< ◦G∗

◦ seen

= { invariant: (10.11) }

s ◦ seen ◦G∗
◦ seen

= { de�nition of s , 
ore
exives 
ommute }

(G∗
◦a)< ◦∼seen ◦ seen ◦G∗

◦ seen

= { ∼seen ◦ seen = ⊥⊥ }

⊥⊥ .

Finally,
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seen ◦G∗
◦ s

⊆ { by de�nition and propertie of 
ore
exives, s⊆∼seen }

seen ◦G∗
◦∼seen

⊆ { G∗⊆⊤⊤ and lemma 10.25 }

(f◦ϕ)∪ ◦ ≥ ◦ f .

Putting the 
al
ulations together, we have:

(seen∪ s) ◦G∗
◦ (seen∪ s)

⊆ { distributivity and above 
al
ulations }

(f◦ϕ)∪ ◦ ≥ ◦ f ∪ s ◦⊤⊤ ◦a ◦ f
∪

◦≥ ◦ f

= { distributivity }

(f ◦ (ϕ ∪ a◦⊤⊤◦s))∪ ◦ ≥ ◦ f

That is, (10.13) is invariant under the assignment.

✷

Lemma 10.27 Property (10.14) is an invariant of the algorithm.

Proof It is 
learly true after initialisation of seen and ϕ . For the loop body, assume

(10.14) is true. Then

(ϕ ∪ a◦⊤⊤◦s)∪ ◦ (ϕ ∪ a◦⊤⊤◦s)

= { distributivity }

ϕ
∪

◦ϕ ∪ ϕ
∪

◦a ◦⊤⊤ ◦ s ∪ s◦⊤⊤◦a◦ϕ ∪ s◦⊤⊤◦a◦a◦⊤⊤◦s

= { lemma 10.16 }

ϕ
∪

◦ϕ ∪ s◦⊤⊤◦a◦a◦⊤⊤◦s

⊇ { 
one rule: ⊤⊤◦a◦a◦⊤⊤=⊤⊤

hypothesis (10.14) }

seen ◦ equiv.G ◦ seen ∪ s◦⊤⊤◦s

⊇ { by lemma 10.17, equiv.G⊆G∗
, and s⊆∼seen

seen ◦ equiv.G ◦ s = ⊥⊥ ;

so, using properties of 
onverse, s ◦ equiv.G ◦ seen = ⊥⊥ }

seen ◦ equiv.G ◦ seen ∪ s ◦ equiv.G ◦ s
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∪ s ◦ equiv.G ◦ seen ∪ seen ◦ equiv.G ◦ s

= { distributivity }

(seen∪s) ◦ equiv.G ◦ (seen∪s) .

The property (10.14) is thus maintained by the body of the loop.

✷

This 
ompletes the veri�
ation of the algorithm.

10.2.3 Incremental Computation

The algorithm shown in �g. 10.1 assigns to the variable s (the 
ore
exive representing)

all the nodes that do not yet have a delegate and 
an rea
h the node a . The variable ϕ

is also updated so that a be
omes the delegate of all the nodes in the set represented

by s . As mentioned then, the assignments are implemented by an adaptation of the

graph-sear
hing algorithm dis
ussed in se
tion 10.1. Fig. 10.2 shows the details.

The 
onse
utive assignments in the body of the loop in �g. 10.1 (to s , and to ϕ and

seen ) are implemented by an inner loop together with initialising assignments. The

assertions should enable the reader to verify that the two algorithms are equivalent: the

variables s , seen0 and ϕ0 are auxiliary variables used to express the property that

the inner loop 
orre
tly implements the two assignments that they repla
e in the outer

loop; in an a
tual implementation the assignments to these variables may be omitted

(or, preferably, in
luded but identi�ed as auxiliary statements that 
an be ignored by

the 
omputation proper).

It is straightforward to verify the 
orre
tness of this algorithm. For 
ompleteness, we

give the details below.

The auxiliary variable seen0 re
ords the initial value of seen . That

∼seen0 ◦G ◦ seen0 = ⊥⊥

is truthi�ed is a straightforward 
onsequen
e of (10.11):

Lemma 10.28

(∼seen0 ◦G ◦ seen0 = ⊥⊥)[seen0 := seen] ⇐ seen = (G∗
◦ seen)< .

Proof

(∼seen0 ◦G ◦ seen0)[seen0 := seen]

= { substitution }

∼seen ◦G ◦ seen
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{ a◦seen=⊥⊥ ∧ (10.7) thru (10.14) }

/∗ s , seen0 and ϕ0 are auxiliary variables ∗/

s,seen0,ϕ0 := a,seen,ϕ

{ ∼seen0 ◦G ◦ seen0 = ⊥⊥ }

; seen,ϕ := seen∪a , ϕ ∪ a◦⊤⊤◦a

; { Invariant: seen = s∪ seen0 ∧ ϕ = ϕ0 ∪ a◦⊤⊤◦s

Invariant: a ⊆ s ⊆ ∼seen0 ◦ (G
∗
◦a)< }

while ∼seen ◦G ◦ seen 6= ⊥⊥ do

begin


hoose node b su
h that b ⊆ ∼seen ◦ (G◦seen)<

{ b ⊆ ∼seen0 ◦ (G
∗
◦a)< }

; s := s∪b

; seen,ϕ := seen∪b , ϕ ∪ a◦⊤⊤◦b

end

{ s = ∼seen0 ◦ (G
∗
◦a)< ∧ seen = s∪ seen0 ∧ ϕ = ϕ0 ∪ a◦⊤⊤◦s }

{ seen = seen0∪ (G∗
◦a)< ∧ ϕ = ϕ0 ∪ a ◦⊤⊤ ◦∼seen0 ◦ (G

∗
◦a)< }

Figure 10.2: Repeated Sear
h. Inner Loop.

= { domains }

∼seen ◦ (G◦seen)< ◦G ◦ seen

⊆ { G⊆G∗
, monotoni
ity }

∼seen ◦ (G∗
◦ seen)< ◦G ◦ seen

= { assume: seen = (G∗
◦ seen)< (i.e. (10.11)) }

∼seen ◦ seen ◦G ◦ seen

= { ∼seen ◦ seen = ⊥⊥ }

⊥⊥

= { substitution }

⊥⊥[seen0 := seen] .

✷
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Now we must show that the invariants are truthi�ed by the initialisation. That

seen = seen0∪ s ∧ ϕ = ϕ0 ∪ a◦⊤⊤◦s

is truthi�ed is a straightforward appli
ation of the assignment axiom. That

a⊆ s

is truthi�ed is obvious. Finally, that

s ⊆ ∼seen0 ◦ (G
∗
◦a)<

is truthi�ed is a straightforward 
onsequen
e of the pre
ondition a◦seen=⊥⊥ :

Lemma 10.29

(s ⊆ ∼seen0 ◦ (G
∗
◦a)<)[seen0,s := seen,a] ⇐ a◦seen=⊥⊥ .

Proof

(s ⊆ ∼seen0 ◦ (G
∗
◦a)<)[seen0,s := seen,a]

= { substitution }

a ⊆ ∼seen ◦ (G∗
◦a)<

= { 
ore
exives }

a ⊆ ∼seen ∧ a ⊆ (G∗
◦a)<

⇐ { domains and I⊆G∗ }

seen◦a = ⊥⊥ ∧ a ⊆ a<

= { pre
ondition and a is a 
ore
exive }

true .

✷

The next step is to show that the invariants are maintained by the loop body. To do

this, we establish the assertion

b ⊆ ∼seen0 ◦ (G
∗
◦a)<

that follows the 
hoi
e of b . First, we must note that b 
an always be 
hosen, sin
e

∼seen ◦G ◦ seen 6= ⊥⊥ ≡ ∼seen ◦ (G◦seen)< 6= ⊥⊥ .

Then,,
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b

⊆ { 
hoi
e of b }

∼seen ◦ (G◦seen)<

⊆ { invariant: seen = s∪ seen0 and monotoni
ity }

∼seen0 ◦ (G ◦ (s∪ seen0))<

= { distributivity and lemma 10.28 }

∼seen0 ◦ (G ◦ s)<

⊆ { invariant: s ⊆ ∼seen0 ◦ (G
∗
◦a)< and monotoni
ity }

∼seen0 ◦ (G ◦ (G∗
◦a)<)<

⊆ { domains, G ◦G∗ ⊆ G∗
and monotoni
ity }

∼seen0 ◦ (G
∗
◦a)< .

It is now straightforward to 
he
k that ea
h of the invariants is maintained by the loop

body. We leave this task to the reader.

The �nal task is to verify that the post
ondition is a 
onsequen
e of the invariants

and the 
ondition for terminating the loop. Clearly it is only ne
essary to verify the

post
ondtion

s = ∼seen0 ◦ (G
∗
◦a)< .

This we do as follows:

s = ∼seen0 ◦ (G
∗
◦a)<

= { invariant: s ⊆ ∼seen0 ◦ (G
∗
◦a)< and anti-symmetry }

s ⊇ ∼seen0 ◦ (G
∗
◦a)<

= { shunting rule (2.27) }

s∪ seen0 ⊇ (G∗
◦a)<

⇐ { �xed-point indu
tion }

s∪ seen0 ⊇ a ∧ s∪ seen0 ⊇ (G◦(s∪ seen0))<

⇐ { invariants: a⊆ s and seen = s∪ seen0 }

seen ⊇ (G◦seen)<

= { domains }

∼seen ◦G ◦ seen = ⊥⊥ .
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Sin
e the property ∼seen ◦G ◦ seen = ⊥⊥ is the 
ondition for terminating the loop, we

are done.

10.2.4 Injective Choice

This se
tion is a preliminary to the dis
ussion in se
tion 10.2.5. Throughout the se
tion,

we assume that f has type IN←Node . Also, the symbol I denotes INode : the identity

relation on nodes.

Previous se
tions have established the existen
e of a delegate fun
tion ϕ a

ording to


hoi
e fun
tion f with the only proviso being that f is total and fun
tional. Moreover,

the property ϕ◦ϕ = ϕ is an invariant of the algorithm for 
omputing delegates. Cormen,

Leiserson and Rivest [CLR90℄ derive it from the other requirements assuming that f is

also inje
tive. For 
ompleteness, this is the point-free rendition of their proof.

Lemma 10.30 If f is a total, inje
tive fun
tion and ϕ is a delegate fun
tion a

ording

to f , then

ϕ◦ϕ = ϕ .

Proof

ϕ◦ϕ = ϕ

⇐ { assumption: f is total and inje
tive, i.e. f
∪

◦ f = I }

f◦ϕ◦ϕ = f◦ϕ

= { antisymmetry of ≥

and distributivity properties of total fun
tions }

I ⊆ (f◦ϕ◦ϕ)∪ ◦ ≤ ◦ f ◦ϕ

∧ I ⊆ (f◦ϕ◦ϕ)∪ ◦ ≥ ◦ f ◦ϕ .

We establish the truth of both 
onjun
ts as follows. First,

(f◦ϕ◦ϕ)∪ ◦ ≤ ◦ f ◦ϕ

= { 
onverse }

ϕ
∪

◦ (f◦ϕ)∪ ◦ ≤ ◦ f ◦ϕ

⊇ { G∗ ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f ◦ϕ (lemma 10.5)

i.e. (G∗)∪ ⊆ (f◦ϕ)∪ ◦ ≤ ◦ f ◦ϕ

(distributivity properties of 
onverse and (≥)∪ = (≤) ) }
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ϕ
∪

◦ (G∗)∪

⊇ { I ⊆ G∗
◦ϕ (lemma 10.5) and 
onverse }

I .

Se
ond,

(f◦ϕ◦ϕ)∪ ◦ ≥ ◦ f ◦ϕ

= { 
onverse }

ϕ
∪

◦ (f◦ϕ)∪ ◦ ≥ ◦ f ◦ ϕ

⊇ { de�nition of delegate: (10.4) and monotoni
ity }

ϕ
∪

◦G∗
◦ϕ

⊇ { I ⊆ G∗ }

ϕ
∪

◦ϕ

⊇ { ϕ is total (by de�nition: (10.3)) }

I .

✷

As also shown above, the property equiv.G ⊆ ϕ
∪

◦ϕ is an invariant of the algorithm.

However, if f is a total, inje
tive fun
tion, the property follows from the de�nition of a

delegate, as we show below.

Lemma 10.31 If f is a total, inje
tive fun
tion and ϕ is a delegate fun
tion a

ording

to f , strongly 
onne
ted nodes have the same delegate. That is

equiv.G ⊆ ϕ
∪

◦ϕ .

Proof

equiv.G

= { de�nition }

G∗∩ (G∗)∪

⊆ { lemma 10.5 }

(f◦ϕ)∪ ◦ ≥ ◦ f ◦ϕ ∩ ((f◦ϕ)∪ ◦ ≥ ◦ f ◦ϕ)∪

= { 
onverse }

(f◦ϕ)∪ ◦ ≥ ◦ f ◦ϕ ∩ (f◦ϕ)∪ ◦ ≤ ◦ f ◦ϕ

= { f and ϕ are total fun
tions, distributivity }
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(f◦ϕ)∪ ◦ (≥∩≤) ◦ f ◦ϕ

= { ≤ is antisymmetri
 }

ϕ
∪

◦ f
∪

◦ f ◦ϕ

= { f is inje
tive and total, i.e. f∪ ◦ f = I }

ϕ
∪

◦ϕ .

✷

The relation ϕ ◦G
∪

◦ϕ
∪

is a relation on delegates. Viewed as a graph, it is a ho-

momorphi
 image of the graph G
∪

formed by 
oales
ing all the nodes with the same

delegate into one node. Ex
luding self-loops, this graph is a
y
li
 and topologi
ally

ordered by f , as we now show.

Lemma 10.32 If f is a total, inje
tive fun
tion and ϕ is a delegate fun
tion a

ording

to f , the graph ϕ ◦G
∪

◦ϕ
∪ ∩ ¬I is a
y
li
 with f as a topologi
al ordering.

Proof By theorem 8.47, it suÆ
es to show that f is a topologi
al ordering. The fun
tion

f is, by assumption, a total, inje
tive fun
tion of type IN←Node . Thus, by assumption,

f satis�es the �rst requirement of being a topologi
al ordering. (See de�nition 8.32.)

Applying lemma 8.34, establishing the se
ond requirement is a
hieved by the following


al
ulation.

ϕ ◦G
∪

◦ϕ
∪ ∩ ¬I ⊆ f

∪

◦< ◦ f

= { shunting rule (2.27) }

ϕ ◦G
∪

◦ϕ
∪ ⊆ f

∪

◦< ◦ f ∪ I

= { f is total and inje
tive, i.e. I = f∪ ◦ f

distributivity and de�nition of ≤ }

ϕ ◦G
∪

◦ϕ
∪ ⊆ f

∪

◦≤ ◦ f

⇐ { ϕ is fun
tional, i.e. ϕ ◦ϕ
∪ ⊆ I

monotoni
ity, 
onverse and transitivity }

G
∪ ⊆ (f◦ϕ)∪ ◦≤ ◦ f ◦ϕ

= { 
onverse }

G ⊆ (f◦ϕ)∪ ◦≥ ◦ f ◦ϕ

⇐ { G⊆G∗
, transitivity }

G∗ ⊆ (f◦ϕ)∪ ◦≥ ◦ f ◦ϕ

= { lemma 10.5 }
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true .

✷

The algorithm presented in �g. 10.1 shows that, viewed as a spe
i�
ation of the

fun
tion ϕ , the equation (10.4) always has at least one solution. However, the algorithm

is non-deterministi
, whi
h means that there may be more than one solution. We now

prove that (10.4) has a unique solution in unknown ϕ if the fun
tion f is total and

inje
tive.

Lemma 10.33 Suppose f of type IN←Node is a total and inje
tive fun
tion, and ϕ

and ψ are both total fun
tions of type Node←Node . Then

ϕ=ψ

⇐ (ϕ ⊆ (G∗)∪ ∧ G∗ ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f)

∧ (ψ ⊆ (G∗)∪ ∧ G∗ ⊆ (f◦ψ)∪ ◦ ≥ ◦ f) .

Proof Suppose ψ is a total fun
tion of type Node←Node . Then

ψ ⊆ (G∗)∪ ∧ G∗ ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f

⇒ { 
onverse and transitivity }

ψ∪ ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f

= { ψ is total, i.e. I ⊆ ψ
∪

◦ψ }

I ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f ◦ψ .

Inter
hanging ϕ and ψ , and 
ombining the two properties thus obtained, we get that,

if ϕ and ψ are both total fun
tions of type Node←Node ,

(ϕ ⊆ (G∗)∪ ∧ G∗ ⊆ (f◦ψ)∪ ◦ ≥ ◦ f)

∧ (ψ ⊆ (G∗)∪ ∧ G∗ ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f)

⇒ { see above }

I ⊆ (f◦ψ)∪ ◦ ≥ ◦ f ◦ϕ

∧ I ⊆ (f◦ϕ)∪ ◦ ≥ ◦ f ◦ψ

= { f , ϕ and ψ are all total fun
tions,


onverse and distributivity }

I ⊆ (f◦ψ)∪ ◦ ((≤)∩ (≥)) ◦ f ◦ϕ

∧ I ⊆ (f◦ϕ)∪ ◦ ((≤)∩ (≥)) ◦ f ◦ψ

= { anti-symmetry of (≤ ) }
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I ⊆ (f◦ψ)∪ ◦ f ◦ϕ ∧ I ⊆ (f◦ϕ)∪ ◦ f ◦ψ

= { f and ψ are total fun
tions, anti-symmetry of subset }

f◦ψ = f◦ϕ

= { f is an inje
tive, total fun
tion }

ψ = ϕ .

The lemma follows by symmetry and asso
iativity of 
onjun
tion.

✷

Earlier, we stated that (10.9) formulates the property that there is a path from ea
h

node to its delegate on whi
h su

essive nodes have the same delegate. Combined with

(10.10) and the transitivity of equality, this means that there is a path from ea
h node

to its delegate on whi
h all nodes have the same delegate. We 
on
lude this se
tion with

a point-free proof of this 
laim. Sin
e the 
laim is not spe
i�
 to the delegate fun
tion,

we formulate the underlying lemmas (lemmas 10.34 and 10.35) in general terms. The

relevant property of the delegate fun
tion, lemma 10.36, is then a simple instan
e.

Should one wish to interpret lemma 10.34 pointwise, the key is to note that, for total

fun
tion h and arbitrary relation S , h
∪

◦h ∩ S relates two points x and y if they are

related by S and h.x=h.y . However, it is not ne
essary to do so: 
ompletion of the


al
ulation in lemma 10.35 demands the proof of lemma 10.34 and this is best a
hieved

by uninterpreted 
al
ulation. In turn, lemma 10.35 is driven by lemma 10.36 whi
h

expresses the delegate fun
tion ϕ as a least �xed point; 
ru
ially, this enables the use

of �xed-point indu
tion to reason about ϕ .

Lemma 10.34 If h is a total fun
tion,

h ∩ R◦(h
∪

◦h ∩ S) = h ∩ (h∩R)◦S

for all relations R and S .

Proof By mutual in
lusion:

h ∩ (h∩R)◦S

⊆ { modularity rule: (4.8) }

(h∩R) ◦ ((h∩R)∪ ◦h ∩ S)

⊆ { h∩R⊆h , monotoni
ity }

(h∩R) ◦ (h∪

◦h ∩ S)

⊆ { h is a total fun
tion, so h ◦h
∪

◦h = h

h∩R⊆h , distributivity and monotoni
ity }
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h ∩ R ◦ (h∪

◦h ∩ S)

= { idempoten
y (preparatory to next step) }

h ∩ h ∩ R ◦ (h∪

◦h ∩ S)

⊆ { modularity rule: (4.8) }

h ∩ (h ◦ (h∪

◦h ∩ S)∪ ∩ R) ◦ (h∪

◦h ∩ S)

⊆ { h is a total fun
tion, so h ◦h
∪

◦h = h

(h∪

◦h ∩ S)∪ ⊆ h
∪

◦h ,

distributivity and monotoni
ity }

h ∩ (h∩R)◦S .

✷

Lemma 10.35 If h is a total fun
tion,

h ∩ (h
∪

◦h ∩ R)∗ = 〈µX :: h∩ (I ∪ X◦R)〉

for all relations R .

Proof We derive the right side as follows.

h ∩ (h∪

◦h ∩ R)∗ = µg

⇐ { fusion theorem }

〈∀X :: h∩ (I ∪ X◦(h∪

◦h ∩ R)) = g.(h∩X)〉

= { distributivity, lemma 10.34 with R,S :=X,R }

〈∀X :: (h∩ I)∪ (h ∩ (h∩X)◦R) = g.(h∩X)〉

⇐ { strengthening: X :=h∩X }

〈∀X :: (h∩ I)∪ (h ∩ X◦R) = g.X〉

= { distributivity }

〈∀X :: h∩ (I ∪ X◦R) = g.X〉 .

✷

Lemma 10.36

ϕ =
〈

µX :: ϕ∩ (I ∪ X ◦G
∪

)
〉

.

Proof
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ϕ

= { lemma 10.22 (spe
i�
ally, ϕ ⊆ (G∪ ∩ ϕ∪

◦ϕ)∗ ) }

ϕ ∩ (G∪ ∩ ϕ∪

◦ϕ)∗

= { lemma 10.35 }

〈µX :: ϕ∩ (I ∪ X ◦G
∪)〉 .

✷

The signi�
an
e of the equality in lemma 10.36 is the in
lusion of the left side in the

right side. (The 
onverse is trivial.) Thus, in words, the lemma states that there is a

path from ea
h node to its delegate on whi
h every node has the same delegate.

10.2.5 Summary and Discussion

We summarise the results of this se
tion with the following theorem.

Theorem 10.37 (Delegate Function ) Suppose f of type IN←Node is a total fun
-

tion and G is a �nite graph. Then the equation

ϕ :: ϕ ◦ϕ
∪

⊆ INode ⊆ ϕ
∪

◦ϕ ∧ ϕ ⊆ (G∗)
∪

∧ G∗ ⊆ (f◦ϕ)
∪

◦ ≥ ◦ f

has a solution with the additional properties that the solution is a 
losure operator (i.e.

a delegate is its own delegate):

ϕ◦ϕ=ϕ ,

strongly 
onne
ted nodes have the same delegate:

equiv.G ⊆ ϕ
∪

◦ϕ

and there is a path from ea
h node to its delegate on whi
h su

essive nodes have the

same delegate:

ϕ ⊆ (G
∪

∩ ϕ
∪

◦ϕ)∗ .

More pre
isely, there is a path from ea
h node to its delegate on whi
h all nodes have

the same delegate:

ϕ =
〈

µX :: ϕ∩ (INode ∪ X ◦G
∪

)
〉

.

Moreover, a delegate has the largest f value

ϕ ⊆ f
∪

◦ ≥ ◦ f .
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If the fun
tion f is inje
tive, the solution is unique; in this 
ase, we 
all the unique

solution the delegate fun
tion on G a

ording to f . Moreover, f is a topologi
al ordering

of the nodes of the graph

ϕ ◦G
∪

◦ϕ
∪

∩ ¬INode

(the graph obtained from G
∪

by 
oales
ing all nodes with the same delegate and remov-

ing self-loops). This graph is therefore a
y
li
.

Proof As dis
ussed prior to lemma 10.33, the algorithm establishes the existen
e of at

least one solution, and lemma 10.33 shows that any solution is unique. The remaining

properties are proved in lemmas 10.30, 10.31, 10.22, 10.36, 10.6 and 10.32.

✷

As mentioned above, this se
tion is inspired by Cormen, Leiserson and Rivest's notion

of the \forefather" fun
tion and its use in applying depth-�rst sear
h to the 
omputation

of strongly 
onne
ted 
omponents [CLR90, pp.488{494℄. However, our presentation is

more general than theirs; in parti
ular, we do not assume that the 
hoi
e fun
tion is

inje
tive.

The motivation for our more general presentation is primarily to kill two birds with

one stone. As do Cormen, Leiserson and Rivest, we apply the results of this se
tion to


omputing strongly 
onne
ted 
omponents: see se
tion 13. This is one of the \birds".

The se
ond \bird" is represented by the 
ase that the 
hoi
e fun
tion is a 
onstant

fun
tion (for example, f.a=0 , for all nodes a ). In this 
ase, the 
hoi
e of node a in

the algorithm of �g. 10.1 redu
es to the one 
ondition a◦seen=⊥⊥ (in words, a has not

yet been seen) and the fun
tion f plays no role whatsoever. Despite this high level of

nondeterminism, the spe
i�
ation of a delegate (see se
tion 10.2.1) allows many solutions

that are not 
omputed by the algorithm. (For example, the identity fun
tion satis�es

the spe
i�
ation.) The analysis of se
tion 10.2.2 is therefore about the properties of a

fun
tion that re
ords the history of repeated sear
hes of a graph until all nodes have

been seen: the delegate fun
tion 
omputed by repeated graph sear
h re
ords for ea
h

node b , the node a from whi
h the sear
h that sees b was initiated.

This analysis reveals many properties of graph sear
hing that other a

ounts may

suggest are pe
uliar to depth-�rst sear
h. Most notable is the property that strongly


onne
ted nodes are assigned the same delegate. As shown in lemma 10.31, this is a

ne
essary property when the 
hoi
e fun
tion is inje
tive; otherwise, it is not a ne
essary

property but it is a property of the delegate fun
tion 
omputed by repeated graph sear
h,

whatever graph-sear
hing algorithm is used. The se
ond notable property of repeated

graph sear
h is that there is a path from ea
h node to its delegate on whi
h all nodes

have the same delegate. This is 
losely related to the property that Cormen, Leiserson

and Rivest 
all the \white-path theorem" [CLR90, pp.482℄, whi
h we dis
uss shortly.
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Our analysis shows that the property is a generi
 property of repeated graph sear
h and

not spe
i�
 to depth-�rst sear
h.

In order to dis
uss the so-
alled \white-path theorem", it is ne
essary to give a

preliminary explanation. Operational des
riptions of graph-sear
hing algorithms often

use the 
olours white, grey and bla
k to des
ribe nodes. A white node is a node that

has not been seen, a grey node is a node that has been seen but not all edges from the

node have been \pro
essed", and a bla
k node is a node that has been seen and all edges

from the node have been \pro
essed". The property \white", \grey" or \bla
k" is, of


ourse, time-dependent sin
e initially all nodes are white and on termination all nodes

are bla
k.

Now lemmas 10.18 and 10.19 express subtley di�erent versions of what is 
alled the

\white-path theorem". Suppose a sear
h from node a is initiated in the outer loop.

The sear
h �nds nodes on paths starting from a . There are three formally di�erent

properties of the paths that are found:

(i) The �nal node on the path is white at the time the sear
h from a is initiated.

(ii) All nodes on the path are white at the time the sear
h from a is initiated.

(iii) All nodes on the path are white at the time the sear
h from their prede
essor on

the path is initiated.

In general, if nodes are labelled arbitrarily white or non-white, the sets of paths

des
ribed by (i), (ii) and (iii) are di�erent. (They are ordered by the subset relation,

with (i) being the largest and (iii) the smallest.) However, in a repeated graph sear
h,

the sets of paths satisfying (i) and (ii) are equal. This is the informal meaning of lemma

10.17. Moreover, the right side of the assignment to s in �g. 10.1 is the set of nodes

rea
hed by paths satisfying (i); lemma 10.18 states that, in a repeated graph sear
h,

the nodes that are added by a sear
h initiated from node a are the nodes that 
an be

rea
hed by a path satisfying (ii).

We 
laim |without formal proof| that it is also the 
ase that, in a repeated graph

sear
h, all three sets of paths are equal. That is, the set of paths des
ribed by (iii) is also

equal to the set of paths des
ribed by (i). We don't give a proof be
ause it is not a fa
t

that we exploit and, without introdu
ing additional auxiliary variables, it is impossible

to express formally. Informally, it is 
lear from the implementation shown in �g. 10.2,

in parti
ular the 
hoi
e of nodes b and c . The introdu
tion of timestamps does allow

us to prove the 
laim formally for depth-�rst sear
h. See se
tion 14.2.

Cormen, Leiserson and Rivest's [CLR90, pp.482℄ \white-path theorem" states that it

is a property of depth-�rst sear
h that paths found satisfy (ii). Chara
teristi
 of depth-

�rst sear
h is that the property is true for all nodes, and not just nodes from whi
h a

sear
h is initiated in the outer loop. We dis
uss this in more detail later.
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Finally, let us brie
y remark on lemma 10.32. As we see later, not only 
an depth-�rst

sear
h be used to 
al
ulate the strongly 
onne
ted 
omponents of a graph, in doing so it

also 
omputes a topologi
al ordering of these 
omponents (more pre
isely a topologi
al

ordering of the 
onverse of the homomorphi
-image graph dis
ussed in se
tion 9.7).

Lemma 10.32 is more general than this. It states that, if the 
hoi
e fun
tion is inje
tive,

it is a topologi
al ordering of the 
onverse of the graph obtained by 
oales
ing all the

nodes with the same delegate and then omitting self-loops. In fa
t, this is also true of

the delegate fun
tion 
omputed as above. We leave its proof to the reader: remembering

that during exe
ution of the algorithm ϕ is partial with right domain ϕ>
, identify

and verify an invariant that states that f is a topologi
al ordering on a subgraph of

ϕ ◦G
∪

◦ϕ
∪ ∩ ¬I .
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Depth-First Search

In se
tion 10.1, we des
ribed a generi
 graph-sear
hing algorithm and 
on
luded with

the 
laim that depth-�rst sear
h is an instan
e of the algorithm whereby unexplored

edges are stored in a sta
k. The sta
k-based, iterative implementation was the basis of

Tarjan's [Tar72℄ seminal paper on depth-�rst sear
h. In this and later se
tions, we base

the dis
ussion on the (equivalent) re
ursive formulation of depth-�rst sear
h 
ommonly

presented in textbooks (for example, [AHU82, pp.222{226℄). The reason for this 
hoi
e

is that \timestamping" events during the sear
h (see se
tion 13.1) is easier to present.

On the other hand, reasoning about the re
ursive algorithm poses new 
hallenges. The


hallenges 
ould be over
ome by transforming the re
ursive implementation into the

equivalent sta
k-based iterative algorithm but we 
hoose to ta
kle them head on. This

se
tion introdu
es the basi
 graph-sear
hing algorithm as a relatively straightforward

illustration of how to reason about re
ursion. (Later se
tions are more 
ompli
ated.)

Given a �nite graph G , the following pro
edure initiates a depth-�rst sear
h at

sele
ted nodes of G until all nodes of the graph have been \seen" ( denoted by seen ).

Nodes are sele
ted arbitrarily from the set of nodes that have not yet been seen (denoted

by ∼seen ).

seen := ∅ ;

while ∼seen 6= ∅ do

begin


hoose node a su
h that a∈∼seen

; dfs(a)

end

(We use standard set-theory notation temporarily for reasons of familiarity. Shortly,

we swit
h to the notation of the point-free 
al
ulus.)
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The pro
edure dfs(a) for exe
uting a depth-�rst sear
h of the nodes rea
hable from

a is implemented as follows:

seen := seen ∪ {a}

; while there is an edge (a, b) su
h that b∈∼seen do

begin


hoose node b su
h that (a, b)∈G ∧ b∈∼seen

; dfs(b)

end

To see the 
onne
tion with se
tion 10.1 note that the 
riterion for 
hoosing b is

equivalent to the property

a◦⊤⊤◦b ⊆ seen ◦G ◦∼seen ,

the property that is key to an eÆ
ient implementation of graph sear
hing. As a 
onse-

quen
e, lemma 10.1 will also play an important part in reasoning about the re
ursive

implementation.

There is a large element of non-determinism in the exe
ution of depth-�rst sear
h.

Fig. 11.1 illustrates one parti
ular exe
ution sequen
e. The labels O1 thru O6 are the

nodes that initiate a sear
h in the outer loop; the numbers indi
ate the order in whi
h

they have been 
hosen. Sear
hes from the nodes that do not have su
h a label are initiated

in the inner loop. The edges (a, b) that are 
hosen in the inner loop are highlighted.

The pairs of numbers labelling ea
h node are \timestamps". We dis
uss the imple-

mentation and properties of these timestamps in detail in se
tion 13.1. For the moment,

we use them to illustrate some remarks we make. The �rst 
omponent of su
h a pair

gives the \time" at whi
h the sear
h from the node is started and the se
ond 
omponent

is the \time" at whi
h the sear
h is �nished. For example, the sear
h from the top-left

node (the node labelled O2) is begun at \time" 19 and �nished at \time" 20 ; the sear
h

from the node labelled O1 is begun at \time" 1 and �nished at \time" 18 . By 
hasing

the timestamps, it is possible to see whi
h 
hoi
es were made in the parti
ular exe
ution

shown in �g. 11.1.

Fig. 11.1 has been designed to illustrate a 
ouple of points about depth-�rst sear
h.

First, most a

ounts of depth-�rst sear
h emphasise the 
onstru
tion of a forest of so-


alled \spanning" trees. In �g. 11.1 only two trees are readily visible: the trees de�ned

by the highlighted edges. Note that the tree with root O1 \spans" a non-trivial strongly


onne
ted 
omponent of the graph. That is, the 
omponent has more than one node

and every node in the 
omponent is rea
hable by a path 
onsisting of tree edges from

O1; however, not all nodes in the tree are strongly 
onne
ted. Similarly, the tree with
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O2

O1

2,11

3,8 9,10

4,7

5,6

O4

O3

O5

O6

14,15

13,16

12,17

19,20

1,18

21,22

23,24 26,27

25,28

Figure 11.1: Timestamps

root O5 has two nodes, O5 and O6. Ea
h of these nodes forms a strongly 
onne
ted


omponent but the two nodes are not strongly 
onne
ted.

There are three additional trees: ea
h of the nodes O2, O3 and O4 is the root of a

tree with just one node. Thus, although the subgraph de�ned by the nodes O3, O4, O5

and O6 forms a \spanning" tree in the graph, it is not one of the forest of \spanning"

trees 
onstru
ted by this parti
ular exe
ution of depth-�rst sear
h.

The se
ond point to make about depth-�rst sear
h is that a 
all of dfs(a) does

not ne
essarily \see" all nodes rea
hable from node a . For example, the node with

timestamp 12 , 17 is rea
hable from the node with timestamp 2 , 11 but, as indi
ated by

the fa
t that 11<12 , the sear
h from the node with timestamp 2 , 11 is ended before

the sear
h from the node with timestamp 12 , 17 begins.

In the next se
tion, we formulate pre
isely what is meant by the informal statement

that depth-�rst sear
h is a graph-sear
hing algorithm. Essentially, we show that (the
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re
ursive implementation of) depth-�rst sear
h is an instan
e of repeated graph sear
h

(see se
tion 10.2). But we do more than this. We formulate pre
isely the di�eren
es

in properties of 
alls of dfs in the outer and inner loops as well as the properties that

are 
ommon to both. An important step in the analysis is to show that the pro
edure

dfs implements a fun
tion mapping a set of nodes to a set of nodes. This is done in

se
tion 11.3 following whi
h properties of the inner and outer loops are formally veri�ed

in se
tions 11.4 and 11.5. Se
tion 11.1 formulates these properties (without proof) whilst

se
tion 11.2 formulates pre
isely the (relational) semanti
s of the pro
edure dfs that we

assume in the formal veri�
ations.

The �nal se
tion serves as an introdu
tion to our later dis
ussion of applying depth-

�rst sear
h to the 
al
ulation of strongly 
onne
ted 
omponents. We show that, although

a 
all of dfs(b) in the inner loop does not \see" all the nodes that 
an be rea
hed from

b |in
luding nodes that 
an be rea
hed from b by paths along edges that have not

already been \seen"| it is the 
ase that all 
alls of dfs , whether from the outer or inner

loops, \see" every strongly 
onne
ted 
omponent of the input graph either in its entirety

or not at all; in other words, 
alls of dfs never \see" a non-empty, proper subset of the

nodes of a strongly 
onne
ted 
omponent of the graph.

11.1 Properties of Depth-First Search

As illustrated by �g. 11.1, a 
all of the pro
edure dfs does not always \see" all the nodes

that are rea
hable from a given node. This 
laim is, however, true of the sear
hes that are

initiated in the outer loop. Just as for the generi
 repeated-graph-sear
h algorithm that

we analysed in se
tion 10.2, the fun
tion of a 
all of the pro
edure dfs(a) , in general, is

to �nd all the nodes that are rea
hable from a along edges that have not already been

\seen". We make this pre
ise in this se
tion.

There are several elements to this 
laim. One is that the pro
edure dfs is always

guaranteed to terminate (provided the graph is �nite). The se
ond is an assertion about

the relation between the variable seen and the nodes rea
hable from a node in seen .

We shall prove that the property

(seen ◦G∗)> = seen(11.1)

is an invariant of the outer loop. In words, before and after ea
h iteration of the outer

loop, seen is 
losed under rea
hability in the graph G . In general, we shall prove that

dfs(a) implements the fun
tion D.a given by, for all 
ore
exives s and nodes a ,

D.a.s = s ∪ (a ◦ (G ◦∼s)∗)> .(11.2)
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This fa
t is 
riti
al to reasoning about depth-�rst sear
h be
ause it means that a 
all of

dfs(a) is equivalent to the assignment statement

seen := seen ∪ (a ◦ (G ◦∼seen)∗)> .(11.3)

The diÆ
ulty posed by the re
ursion has thus been 
onquered: subsequent reasoning 
an

use straightforward and well-known te
hniques for reasoning about iterative programs.

(The diÆ
ulties of re
ursion will, however, reappear when we 
onsider timestamps.)

We introdu
e the relations GE and GT on sets of nodes, de�ned by

s1[[GE]]s0 ≡ s1⊇ s0 , and

s1[[GT ]]s0 ≡ s1⊇ s0 ∧ s1 6= s0 .

The name \GE " is just another name for the 
ontainment relation (\⊇ ") on sets of

nodes, whi
h is re
exive and transitive. That is,

INode ⊆ GE ∧ GE ◦GE ⊆ GE .(11.4)

We introdu
e a new name be
ause, otherwise, the overloading of notation in (11.4) and

similar statements 
ould be 
onfusing. We 
ontinue to use the familiar mathemati
al

symbol where no 
onfusion 
an o

ur. See, for example, the use of the \⊆ " symbol

in (11.7) below. (Another way of resolving the problem is to adorn all o

urren
es

of relations like the subset relation with their type, but that would introdu
e a lot of

unne
essary noise in the formulae.)

Similarly, the name \GT " denotes \proper" 
ontainment. It is thus transitive (but

not re
exive) and GE is the re
exive 
losure of GT . That is,

GT ∗ = ISetOfNode ∪GT = GE .(11.5)

Be
ause equiv.G⊆G∗
, it is straightforward to show that (11.1) implies

(seen ◦ equiv.G)> = seen .(11.6)

Given that (11.1) is an invariant of the outer loop, we see from (11.6) that strongly


onne
ted 
omponents are added to seen as a whole and not in parts by 
alls of dfs

initiated in the outer loop. (A formal proof of this 
laim is given in 
orollary 11.25.)

More signi�
ant, however, is what happens when dfs is 
alled from the inner loop. We

show that the strongly 
onne
ted 
omponent p 
ontaining node a is added to seen by

a 
all of dfs(a) if a is the �rst node in p to be added to seen . See theorem 11.24.

As remarked earlier, (11.1) is not an invariant of the inner loop. So we are obliged to

seek a relation that is an invariant of both the inner and outer loops and whose invarian
e

implies (11.1) in the outer loop. The appropriate relation is suggested by lemma 10.1.
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The term seen ◦G ◦∼seen represents a subset of the set of edges of the graph G : the

edges at the \frontier" of the sear
h. To emphasise the importan
e of the frontier edges,

we introdu
e the fun
tion Fr of type

(SetOfNode∼SetOfNode) ← SetOfNode

de�ned by

Fr.s = s ◦G ◦∼s .(11.7)

We show that the subset relation on frontier edges is an invariant of the pro
edure dfs .

To be pre
ise, we show that the relation Fr
∪

◦ (⊆) ◦Fr of type SetOfNode∼SetOfNode

de�ned by

s1[[Fr
∪

◦ (⊆) ◦Fr]]s0 ≡ s1 ◦G ◦∼s1 ⊆ s0 ◦G ◦∼s0(11.8)

is an invariant relation of the pro
edure dfs .

Similarly, as remarked earlier, 
alls of dfs(b) in the inner loop do not \see" all the

nodes that 
an be rea
hed from node b along edges that have not already been \seen".

However, this is the 
ase for 
alls of dfs(a) . This is formalised by introdu
ing two

relations of type SetOfNode∼SetOfNode . The relation New where

s1[[New]]s0 ≡ s1 = s0 ∪ (s1 ◦∼s0 ◦ (G ◦∼s0)∗)>

is an invariant of the outer loop whereas the weaker relation NR , where

s1[[NR]]s0 ≡ s1 ◦∼s0 ⊆ (∼s0 ◦ (G ◦∼s0)∗)> ,

is an invariant of the inner loop.

The invariants of the outer and inner loops are do
umented in �gs. 11.2 and 11.3.

(The meaning of D.a being an invariant value of the inner loop will be dis
ussed in

detail later.) The remainder of this se
tion is about formally verifying the assertions

made in these �gures.

We invite the reader to 
ompare �g. 11.2 with �g. 10.1. When doing so, a warning

is in order: the repeated sear
h shown in �g. 10.1 is about sear
hing G
∪

, not G as

in �g. 11.2. So 
omparisons may be 
onfusing. (The reason for this di�eren
e is that

the 
al
ulation of strongly 
onne
ted 
omponents has two phases. In the �rst phase, a

depth-�rst sear
h of the graph G is used to 
onstru
t a fun
tion f ; in the se
ond phase,

the fun
tion f is used by the delegate algorithm in a sear
h of G
∪

; the output fun
tion

ϕ assigns to ea
h strongly 
onne
ted 
omponent of the graph a representative element

of the 
omponent.)

Apart from this di�eren
e, the two algorithms still look very di�erent. However,

supposing the 
hoi
e fun
tion f used in �g. 10.1 is a 
onstant fun
tion, all mention of
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seen := ⊥⊥ ;

{ Invariant Relation: New :: (SetOfNode∼SetOfNode)

where s1[[New]]s0 ≡ s1 = s0 ∪ (s1 ◦∼s0 ◦ (G ◦∼s0)∗)>

Invariant Property: Fr.seen=⊥⊥ ∧ (seen ◦G∗)> = seen

where Fr.s = s ◦G ◦∼s

Invariant Property: 〈∀p : scc.p : p◦seen=⊥⊥ ∨ p◦seen=p〉

where scc.p means p is a strongly 
onne
ted 
omponent of G }

while seen 6= INode do

begin


hoose node a su
h that a◦seen=⊥⊥

; { a ◦∼seen = a }

/∗ dfs(a) implements the fun
tion D.a ∗/

/∗ where D.a.s = s ∪ (a ◦ (G ◦∼s)∗)> . ∗/

/∗ So it is equal to the assignment seen := D.a.seen . ∗/

dfs(a)

end

Figure 11.2: Invariants of the Outer Loop

it 
an be elided. Also, ignore assignments to ϕ . Then, in �g. 11.2, the assignment to

seen is

seen := seen ∪ (a ◦ (G ◦∼seen)∗)>

whereas in �g. 10.1, it is

seen := seen ∪ ∼seen ◦ (G∗
◦a)< .

Lemma 10.18 states that the latter assignment is equivalent to the assignment

seen := seen ∪ ((∼seen ◦G)∗ ◦a)<

whi
h, using distributivity properties of 
onverse, is the same as

seen := seen ∪ (a ◦ (G
∪

◦∼seen)∗)> .
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{ a ◦∼seen = a }

{ Invariant Relation:

(Fr∪ ◦ (⊆) ◦Fr ∩ NR) :: (SetOfNode∼SetOfNode)

where Fr.s = s ◦G ◦∼s

and s1[[NR]]s0 ≡ s1⊇ s0 ∧ s1 ◦∼s0 ⊆ (∼s0 ◦ (G ◦∼s0)∗)> .

Invariant Value: D.a

where D.a.s = s ∪ (a ◦ (G ◦∼s)∗)> .

Invariant Property: 〈∀p : scc.p : p◦seen=⊥⊥ ∨ p◦seen=p〉

where scc.p means p is a strongly 
onne
ted 
omponent of G }

seen := seen ∪ a

{ a◦seen = a }

; { Invariant Property:

〈∀p : scc.p ∧ p 6=(a ◦ equiv.G)> : p◦seen=⊥⊥ ∨ p◦seen=p〉 }

while a ◦G ◦∼seen 6= ⊥⊥ do

begin


hoose node b su
h that a◦⊤⊤◦b ⊆ a ◦G ◦∼seen

; { b ◦∼seen = b }

dfs(b)

end

{ Input/Output Relation: D.a ∩ Fr
∪

◦ (⊆) ◦ Fr ∩ NR }

Figure 11.3: Invariants of the Pro
edure dfs

So, in the 
ase that the 
hoi
e fun
tion f is a 
onstant fun
tion, the two algorithms

are the same ex
ept for the repla
ement of G by G
∪

. By showing that dfs(a) im-

plements the fun
tion D.a we e�e
tively show that depth-�rst sear
h is an instan
e of

the generi
 repeated graph sear
h algorithm presented in se
tion 10.2. Consequently, we

may instantiate properties of repeated graph sear
h proved in se
tion 10.2.
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11.2 Semantics of the Basic Procedure

In order to reason formally about the sear
h pro
edure, we have to formalise its semanti
s.

Chapter 6 explained the semanti
s of the basi
 programming 
onstru
ts (assignment

statements, sequential 
omposition, et
.) but stopped short of explaining the semanti
s

of re
ursion.

Let us write DFS.a for the semanti
s of dfs(a) . This is a 
ombination of the

semanti
s of the 
omponent statements in its implementation (as dis
ussed in se
tion 6)

and the \equation" between the text \dfs(a) " and its implementation.

Let pre.a denote the 
ore
exive representing the assertion a ◦∼seen = a and let

S.a denote [[seen := seen ∪ a]] .

The semanti
s of the inner while statement is 
learly dependent on the parameter

a ; it also depends on DFS.b (the meaning of the 
all of dfs(b) in its body). In order

to formulate the semanti
s more pre
isely, we abstra
t from DFS and let W.d.a denote

the semanti
s of the while loop when the semanti
s of dfs(b) is generalised to d.b for

some fun
tion d of type

(SetOfNode∼SetOfNode)←Node .

Then we de�ne the semanti
s of dfs to be a least �xed point:

DFS = 〈µd :: 〈a :: W.d.a ◦S.a〉〉 .(11.9)

In words, DFS is the least �xed point of the fun
tion that maps a fun
tion d of ap-

propriate type into a fun
tion that maps node a into (the relation) W.d.a ◦S.a . Let

_⊆ denote the pointwise ordering on fun
tions from nodes to relations. That is, for all

nodes a and all fun
tions f and g mapping nodes to relations

f _⊆g ≡ 〈∀a :: f.a⊆g.a〉 .

Similarly, we extend 
omposition of relations to fun
tions from nodes to relations. Spe
if-

i
ally, if fun
tions f and g map nodes to relations, we de�ne f_◦g by

f_◦g = 〈a :: f.a ◦g.a〉 .

Using this notation, we 
an rewrite de�nition (11.9) as:

DFS = 〈µd :: W.d _◦S〉 .(11.10)

Re
all that S.a is the meaning of the assignment statement that adds a to seen.

(Another notation for it would be (∪a ).) The fun
tion W gives the meaning of the

inner while statement after abstra
ting from the 
all of dfs . That is,

W.d.a = t.a ◦ (〈∪b :: d.b ◦C.b.a〉 ◦ ∼t.a)∗(11.11)
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where, for all a and b , C.b.a is the 
riterion for 
hoosing b given a in the 
urrent

state and t.a is the 
ondition for terminating the while statement.

An important �rst step in our veri�
ation of our \obvious" property of depth-�rst

sear
h is to in
orporate the pre
ondition on 
alls of dfs into the �xed-point de�ni-

tion of DFS . Re
all that pre.a denotes the 
ore
exive representing the assertion

a ◦∼seen = a . Then we have:

Lemma 11.12

DFS _◦pre = 〈µd :: W.d _◦S _◦pre〉

Proof We use �xed-point fusion. See theorem 2.43. Re
all that 
omposition of relations

is the lower adjoint in a Galois 
onne
tion |spe
i�
ally (4.6)| it is easily proved that

the lifted 
omposition ( _

◦pre ) is also the lower adjoint in a Galois 
onne
tion. Thus we


an 
al
ulate as follows:

DFS _◦pre = 〈µd :: W.d _◦S _◦pre〉

= { de�nition (11.10) of DFS }

〈µd :: W.d _◦S〉 _◦pre = 〈µd :: W.d _◦S _◦pre〉

⇐ { �xed-point fusion: theorem 2.43 }

〈∀d :: W.d _◦S _◦pre = W.(d_◦pre) _◦S _◦pre〉

⇐ { Leibniz }

〈∀d :: W.d = W.(d_◦pre)〉 .

Continuing with the left side of the equality, we have, for all d and all a ,

W.d.a

= { (11.11) }

t.a ◦ (〈∪b :: d.b ◦C.b.a〉 ◦ ∼t.a)∗

= { C.b.a is a 
ore
exive representing the state

a◦⊤⊤◦b ⊆ seen ◦G ◦∼seen

thus b⊆∼seen , i.e. pre.b ◦C.b.a = C.b.a }

t.a ◦ (〈∪b :: d.b ◦pre.b ◦C.b.a〉 ◦ ∼t.a)∗

= { de�nition of lifted 
omposition }

t.a ◦ (〈∪b :: (d_◦pre).b ◦C.b.a〉 ◦ ∼t.a)∗

= { de�nition (11.11) of W }

W.(d_◦pre).a .
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Combining the two 
al
ulations 
ompletes the proof.

✷

11.3 The Function of a Depth-First Search

Our goal in this se
tion is to prove that, for ea
h node a , the pro
edure dfs(a) imple-

ments the fun
tion D.a of type SetOfNode←SetOfNode de�ned by equation (11.2).

Theorem 11.13 is the theorem that we des
ribed earlier as being 
ru
ial to under-

standing depth-�rst sear
h. Lemma 11.12 gives a relational semanti
s to depth-�rst

sear
h but theorem 11.13 shows that it is, in fa
t, a fun
tion from sets of nodes to sets

of nodes. Thus, in spite of the unlimited nondeterminism in the 
hoi
e of nodes in the

inner loop, the out
ome is always the same.

The proof of theorem 11.13 is unusual be
ause we are obliged to swit
h from the point-

free formulation of the relational semanti
s to pointwise reasoning about sets of nodes.

Sin
e point-free reasoning is less well-known, we begin the proof with the equivalent

pointwise rendition of the argument used whi
h we hope will make it more a

essible.

Theorem 11.13 The pro
edure dfs(a) implements the fun
tion D.a , where

D.a.s = s ∪ (a ◦ (G ◦∼s)∗)> .

That is, with pre
ondition pre.a de�ned to be the 
ore
exive representing the set of

states s su
h that

s◦a=⊥⊥ ,

then

DFS.a ◦pre.a = D.a ◦pre.a .

Proof Re
alling lemma 11.12, whi
h gives the semanti
s DFS.a of the pro
edure

dfs(a) , our task is to prove that, for all a ,

〈µd :: W.d _◦S _◦pre〉 = D _

◦pre .

The o

urren
e of a least �xed point on the left side of the equation immediately suggests

the use of �xed-point indu
tion. Now, D.a is a total fun
tion, and to prove that a

relation R is equal to a fun
tion f restri
ted to some right domain p , it suÆ
es to prove

that the right domain of R is p and R is a subset of f . (We leave the straightforward

veri�
ation of this 
laim to the reader.) That is, we have to prove that

〈µd :: W.d _◦S _◦pre〉 _⊆ D
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and

〈∀a :: (〈µd :: W.d _◦S _◦pre〉.a)> = pre.a〉 .

The proof of the se
ond property is mu
h more straightforward than it might look at �rst

sight. It is in fa
t a use of �xed-point fusion: the \apply to a " fun
tion (\( .a )") and

the right domain operator are both lower adjoints in Galois 
onne
tions of appropriate

type, and W.d.a and S.a are both total fun
tions. It follows that ((W.d _◦S _◦pre).a)>

equals pre.a , for all d , and hen
e its least �xed point is also pre.a , as required.

The proof of the inequation is more demanding. The basis of the proof is summarised

in the annotations added to dfs(a) in the text below.

{ a ◦∼seen = a ∧ seen= s0 }

seen := seen ∪ a

; { Invariant Property: a◦seen=a

Invariant Value: D.a }

while a ◦G ◦∼seen 6= ⊥⊥ do

begin


hoose node b su
h that a◦⊤⊤◦b ⊆ a ◦G ◦∼seen

; { b ◦∼seen = b }

dfs(b)

end

{ a◦seen=a ∧ D.a.seen=D.a.s0 ∧ a ◦G ◦∼seen = ⊥⊥ }

{ seen=D.a.s0 }

Note the pre
ondition seen= s0 and the post
ondition seen=D.a.s0 . The introdu
-

tion of the auxiliary variable s0 in this pre
ondition-post
ondition pair is a familiar

pointwise me
hanism for expressing the relation between the input value, s0 , of seen

and its output value.

The 
laim is that a◦seen=a is an invariant property and D.a is an invariant value

of the while statement. In point-free terms, their 
ombination is an interse
tion of

relations. The property a◦seen=a is represented by the 
ore
exive relation q.a where,

for all s0 and s,

s ′[[q.a]]s ≡ a◦s=a ∧ s ′= s .(11.14)

The invarian
e of the value D.a is expressed by the relation (D.a)∪ ◦D.a and their


onjun
tion is the relation

q.a ◦⊤⊤ ∩ (D.a)
∪

◦D.a .

Algorithmi
 Graph Theory April 8, 2022



233

(Equivalently, this is q.a ◦ (D.a)∪ ◦D.a . However, expressing it as an interse
tion allows

a simple de
omposition of the proof obligations.) The annotation asserts that both

relations are truthi�ed by the initial assignment S.a and maintained by the while

statement W.D.a . On termination, the 
ombination of the invariant and termination


ondition imply that the �nal value of seen is the result of applying the fun
tion D.a

to its initial value. Formally, we have:

〈µd :: W.d _◦S _◦pre〉 _⊆ D

⇐ { �xed-point indu
tion }

W.D _

◦S _◦pre _⊆ D

= { de�nition of pointwise operators }

〈∀a :: W.D.a ◦S.a ◦pre.a ⊆ D.a〉 .

Now, for all a ,

W.D.a ◦S.a ◦pre.a ⊆ D.a

⇐ { prelude to introdu
ing invariant

D.a is a fun
tion, so D.a ◦ (D.a)∪ ⊆ I }

W.D.a ◦S.a ◦pre.a ⊆ D.a ◦ (D.a)∪ ◦D.a

⇐ { introdu
e invariant q.a ◦⊤⊤ ∩ (D.a)∪ ◦D.a

monotoni
ity of 
omposition }

S.a ◦pre.a ⊆ q.a ◦⊤⊤

∧ S.a ◦pre.a ⊆ (D.a)∪ ◦D.a

∧ W.D.a ◦q.a ⊆ D.a

⇐ { W.D.a = t.a ◦ (〈∪b :: D.b ◦C.b.a〉 ◦ ∼t.a)∗

monotoni
ity of 
omposition }

S.a ◦pre.a ⊆ q.a ◦⊤⊤

∧ S.a ◦pre.a ⊆ (D.a)∪ ◦D.a

∧ (〈∪b :: D.b ◦C.b.a〉 ◦ ∼t.a)∗ ◦q.a ⊆ q.a ◦⊤⊤

∧ (〈∪b :: D.b ◦C.b.a〉 ◦ ∼t.a)∗ ⊆ (D.a)∪ ◦D.a

∧ t.a ◦q.a ◦ (D.a)∪ ◦D.a ⊆ D.a .

Noting that
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(〈∪b :: D.b ◦C.b.a〉 ◦ ∼t.a)∗ ⊆ (D.a)∪ ◦D.a

⇐ { �xed-point indu
tion }

I ⊆ (D.a)∪ ◦D.a

∧ (D.a)∪ ◦D.a ◦ (〈∪b :: D.b ◦C.b.a〉 ◦ ∼t.a) ⊆ (D.a)∪ ◦D.a

⇐ { �rst 
onjun
t: D.a is a total fun
tion;

se
ond 
onjun
t: monotoni
ity, distributivity }

〈∀b :: D.a ◦ D.b ◦ C.b.a ◦ ∼t.a ⊆ D.a〉 ,

we have derived from the formal semanti
s of DFS.a �ve veri�
ation 
onditions. Two

establish q.a as a post
ondition, one of S.a :

〈∀a :: S.a ◦pre.a ⊆ q.a ◦⊤⊤〉

and one of the while statement:

〈∀a :: (〈∪b :: D.b ◦C.b.a〉 ◦ ∼t.a)∗ ◦q.a ⊆ q.a ◦⊤⊤〉 .

Three veri�
ation 
onditions are properties of D : the veri�
ation 
ondition for the

initial assignment:

〈

∀a :: S.a ◦pre.a ⊆ (D.a)
∪

◦D.a
〉

,

the veri�
ation 
ondition for the body of the loop:

〈∀a,b :: D.a ◦ D.b ◦ C.b.a ◦ ∼t.a ⊆ D.a〉 ,

and the veri�
ation 
ondition for termination of the loop:

〈

∀a :: t.a ◦q.a ◦ (D.a)
∪

◦D.a ⊆ D.a
〉

.

Re
alling (11.14) |the de�nition of q.a| it is obvious that the �rst property is valid.

The se
ond property is less obvious but involves a straightforward appli
ation of the

fusion theorem and the property that s⊆D.b.s for all s ; we omit the details. We


omplete the proof by translating the �nal three point-free properties of relations into

pointwise boolean 
onditions relating su

essive states of the program variable seen .

This is done in lemmas 11.15, 11.16 and 11.17 below.

✷

Lemma 11.15 Suppose a is a node and s is a 
ore
exive representing a set of nodes.

Then

s◦a=⊥⊥ ⇒ D.a.s = D.a.(s∪a) .
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Proof

D.a.s = D.a.(s∪a)

= { anti-symmetry }

D.a.s ⊆ D.a.(s∪a) ∧ D.a.(s∪a) ⊆ D.a.s

= { de�nition of D (see (11.2)) and distributivity }

s ⊆ D.a.(s∪a)

∧ (a ◦ (G ◦∼s)∗)> ⊆ D.a.(s∪a)

∧ s∪a ⊆ D.a.s

∧ (a ◦ (G ◦∼(s∪a))∗)> ⊆ D.a.s .

With the ex
eption of the se
ond, it is easily 
he
ked that ea
h of these 
onjun
ts is

true . The se
ond 
onjun
t is where the 
ondition s◦a=⊥⊥ is needed:

(a ◦ (G ◦∼s)∗)> ⊆ D.a.(s∪a)

⇐ { de�nition of D , distributivity }

(a ◦ (G ◦∼s)∗)> ⊆ (a ◦ (G ◦∼s ◦∼a)∗)>

⇐ { �xed-point fusion }

a ⊆ (a ◦ (G ◦∼s ◦∼a)∗)>

∧ ((a ◦ (G ◦∼s ◦∼a)∗)> ◦G ◦∼s)> ⊆ (a ◦ (G ◦∼s ◦∼a)∗)>

= { �rst 
onjun
t is true sin
e I⊆ (G ◦∼s ◦∼a)∗ ;

domains }

(a ◦ (G ◦∼s ◦∼a)∗ ◦G ◦∼s)> ⊆ (a ◦ (G ◦∼s ◦∼a)∗)>

= { assumption: s◦a=⊥⊥ , hen
e ∼s = ∼s ◦∼a ∪ a

distributivity }

(a ◦ (G ◦∼s ◦∼a)∗ ◦G ◦a)> ⊆ (a ◦ (G ◦∼s ◦∼a)∗)>

∧ (a ◦ (G ◦∼s ◦∼a)∗ ◦G ◦∼s ◦∼a)> ⊆ (a ◦ (G ◦∼s ◦∼a)∗)>

= { �rst 
onjun
t: a is a node, so (a◦R◦a)>⊆a , for all R ,

a ⊆ (a ◦ (G ◦∼s ◦∼a)∗)>

se
ond 
onjun
t: de�nition of

∗ }

true .

✷
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Lemma 11.16 Suppose a and b are nodes and s is a 
ore
exive. Then

s◦b=⊥⊥ ∧ a◦G◦b=a◦⊤⊤◦b ⇒ D.a.(D.b.s) ⊆ D.a.s .

Proof We have:

D.a.(D.b.s) ⊆ D.a.s

= { de�nition of D and set union }

D.b.s ⊆ D.a.s ∧ (a ◦ (G ◦∼(D.b.s))∗)> ⊆ D.a.s .

We 
onsider the 
onjun
ts in order. First,

D.b.s

= { de�nition }

s ∪ (b ◦ (G ◦∼s)∗)>

= { assumption: a◦G◦b=a◦⊤⊤◦b , so (a◦G◦b)>=b , domains }

s ∪ (a ◦G ◦b ◦ (G ◦∼s)∗)>

⊆ { assumption: s◦b=⊥⊥ , so b⊆∼s }

s ∪ (a ◦G ◦∼s ◦ (G ◦∼s)∗)>

⊆ { [ R ◦R∗ ⊆ R∗ ] with R := G ◦∼s }

s ∪ (a ◦ (G ◦∼s)∗)>

= { de�nition }

D.a.s .

Se
ond,

(a ◦ (G ◦∼(D.b.s))∗)> ⊆ D.a.s

⇐ { de�nition, monotoni
ity }

∼(D.b.s) ⊆ ∼s

= { anti-monotoni
ity of 
omplementation }

s ⊆ D.b.s

= { de�nition, set union }

true .

✷
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Lemma 11.17 Suppose a is a node and s and s0 are 
ore
exives representing sets

of nodes. Then

a ◦G ◦∼s = ⊥⊥ ∧ a◦s=a ∧ D.a.s=D.a.s0 ⇒ s = D.a.s0 .

Proof

D.a.s0

= { assumption: D.a.s=D.a.s0 }

D.a.s

= { de�nition }

s∪ (a ◦ (G ◦∼s)∗)>

= { a ◦ (G ◦∼s)∗ = a ∪ a ◦G ◦∼s ◦ (G ◦∼s)∗

assumption: a ◦G ◦∼s = ⊥⊥ }

s∪a>

= { a is a node, so a>=a

assumption: a◦s=a }

s .

✷

11.4 Properties of the Inner Loop

A 
onsequen
e of theorem 11.13 is that GE is an invariant of the inner loop and dfs(a)

satis�es the relation GT . Although requiring formal proof, and used extensively below,

these are obvious properties. This se
tion is about less obvious properties.

From the de�nition of D.a.s , it is 
lear that no new frontier edges are added by a


all of dfs(a) . This is made pre
ise in lemma 11.18. An important 
orollary is the 
laim

that (11.1) is an invariant of the outer loop.

Lemma 11.18 A depth-�rst sear
h redu
es the set of frontier edges. That is, for all

a , s and G ,

D.a.s ◦G ◦∼(D.a.s) ⊆ s ◦G ◦∼s .

Proof

D.a.s ◦G ◦∼(D.a.s) ⊆ s ◦G ◦∼s
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= { de�nition, 
omplements and set union }

s ◦G ◦∼(D.a.s) ⊆ s ◦G ◦∼s

∧ (a ◦ (G ◦∼s)∗)> ◦G ◦∼s ◦ (a ◦ (G ◦∼s)∗)>• ⊆ s ◦G ◦∼s

⇐ { s⊆D.a.s , so ∼(D.a.s)⊆∼s , monotoni
ity;

⊥⊥ ⊆ s ◦G ◦∼s , transitivity }

(a ◦ (G ◦∼s)∗)> ◦G ◦∼s ◦ (a ◦ (G ◦∼s)∗)>• ⊆ ⊥⊥

⇐ { domains }

a ◦ (G ◦∼s)∗ ◦G ◦∼s ◦ (a ◦ (G ◦∼s)∗)>• ⊆ ⊥⊥

= { (G ◦∼s)∗ ◦G ◦∼s ⊆ (G ◦∼s)∗

de�nition of 
omplemented right domain }

true .

✷

It is useful to also observe that the nodes \newly" rea
hed by a 
all of the pro
edure

are 
onne
ted by paths between previously unrea
hed nodes. That is, we introdu
e the

relation NR of type SetOfNode∼SetOfNode and de�ned by

s1[[NR]]s0 ≡ s1⊇ s0 ∧ s1 ◦∼s0 ⊆ (∼s0 ◦ (G ◦∼s0)∗)>(11.19)

and show that it is an invariant relation of the pro
edure dfs .

Lemma 11.20 The relation NR is an invariant of the inner loop.

Proof The veri�
ation 
ondition is: for all s0 , s1 and s2 ,

s2 ◦∼s0 ⊆ (∼s0 ◦ (G ◦∼s0)∗)>

⇐ s1 ◦∼s0 ⊆ (∼s0 ◦ (G ◦∼s0)∗)> ∧ s2=D.b.s1 ∧ b◦s1=⊥⊥ ∧ s0⊆ s1

This we prove as follows.

s2 ◦∼s0 ⊆ (∼s0 ◦ (G ◦∼s0)∗)>

= { assumption: s2=D.b.s1 }

(s1 ∪ (b ◦ (G ◦∼s1)∗)>) ◦∼s0 ⊆ (∼s0 ◦ (G ◦∼s0)∗)>

⇐ { distributivity,

assumption: s1 ◦∼s0 ⊆ (∼s0 ◦ (G ◦∼s0)∗)> }

(b ◦ (G ◦∼s1)∗)> ◦∼s0 ⊆ (∼s0 ◦ (G ◦∼s0)∗)>

⇐ { assumption: b◦s1=⊥⊥ , i.e. b⊆∼s1 , monotoni
ity }
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(∼s1 ◦ (G ◦∼s1)∗)> ◦∼s0 ⊆ (∼s0 ◦ (G ◦∼s0)∗)>

= { s0⊆ s1 , i.e. ∼s1⊆∼s0 and monotoni
ity }

∼s0⊆ I

= { ∼s0 is a 
ore
exive }

true .
✷

11.5 Properties of the Outer Loop

Theorem 11.13 has important 
onsequen
es for reasoning about depth-�rst sear
h. Ef-

fe
tively, it says that the 
all of the pro
edure dfs(a) is equal to the assignment

seen := seen ∪ (a ◦ (G ◦∼seen)∗)> .

This se
tion is about its 
onsequen
es for the outer loop. We show, for example, that

(11.1) is an invariant of the outer loop. (Re
all that (11.1) is not an invariant of the

inner loop.)

Corollary 11.21 The property (11.1) is an invariant of the outer loop.

Proof Clearly the property

seen ◦G ◦∼seen = ⊥⊥(11.22)

is truthi�ed by the initial assignment seen := ⊥⊥ . Sin
e ⊥⊥ is the least element in the

subset ordering of relations, and ea
h 
all of dfs(a) has the e�e
t of assigning D.a.seen

to seen , it follows from lemma 11.18 that (11.22) is an invariant of the outer loop.

Consequently, by lemma 10.1 (with R,p :=G,seen ), property (11.1) is also an invariant

of the outer loop.

✷

The relation NR only establishes an upper bound on newly rea
hed nodes. In the

outer loop, the relation 
an be sharpened from a 
ontainment to an equality. This is

a
hieved by exploiting the property (11.1).

Lemma 11.23

〈∀ s1,s0

: s1 [[GE∩NR]] s0 ∧ (s1 ◦G∗)> = s1

: s1 = s0 ∪ (s1 ◦∼s0 ◦ (G ◦∼s0)∗)>

〉
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In words, ea
h iteration of the outer loop \
loses" seen under rea
hability by edges


onne
ting previously unseen nodes.

Proof

s1 = s0 ∪ (s1 ◦∼s0 ◦ (G ◦∼s0)∗)>

= { antisymmetry of the subset relation

assumption: s1 [[NR]] s0 and shunting (2.27) }

s1 ⊇ s0∪ (s1 ◦∼s0 ◦ (G ◦∼s0)∗)>

= { assumption: s1 [[GE]] s0 (i.e. s1⊇ s0 ) }

s1 ⊇ (s1 ◦∼s0 ◦ (G ◦∼s0)∗)>

= { assumption: (s1 ◦G∗)> = s1 }

(s1 ◦G∗)> ⊇ (s1 ◦∼s0 ◦ (G ◦∼s0)∗)>

= { ∼s0⊆ I , monotoni
ity }

true .

✷

11.6 Strongly Connected Components

We 
on
lude this se
tion with the theorem on strongly 
onne
ted 
omponents announ
ed

earlier: ea
h strongly 
onne
ted 
omponent is added in its entirety within a single 
all

of dfs .

Theorem 11.24 Suppose a and b are nodes and p is the 
ore
exive representing

the strongly 
onne
ted 
omponent 
ontaining b . That is, suppose p=(b ◦ equiv.G)> .

Then, if dfs(a) is exe
uted with pre
ondition p◦seen=⊥⊥ , and it terminates with

post
ondition b◦seen=b , it will terminate with post
ondition p◦seen=p .

Proof Suppose p=(b ◦ equiv.G)> and suppose s1 and s0 satisfy the relation GT ∩NR ;

furthermore, suppose p◦s0=⊥⊥ (the assumed pre
ondition for exe
uting dfs(a) ) and

b◦s1=b (the assumed post
ondition of dfs(a) ). We prove that p◦s1=p .

p◦s1=p

= { 
ore
exives }

p⊆ s1

= { assume: s1 [[GT ∩NR]] s0 , lemma 11.23 }
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p ⊆ s0 ∪ (s1 ◦∼s0 ◦ (G ◦∼s0)∗)>

⇐ { assumption: p◦s0=⊥⊥ , i.e. p⊆∼s0 );

assumption: b◦s1=b }

p ⊆ (b ◦p ◦ (G◦p)∗)>

= { absolute 
onne
tivity: lemma 9.19 }

p ⊆ (b ◦p ◦G∗
◦p)>

⇐ { b◦p=b ; equiv.G⊆G∗ }

p ⊆ (b ◦ equiv.G ◦p)>

⇐ { p = (b ◦ equiv.G)> , domains }

true .

✷

Corollary 11.25 An invariant property of the inner loop is

〈∀p : scc.p ∧ p 6=(a ◦ equiv.G)> : p◦seen=⊥⊥ ∨ p◦seen=p〉(11.26)

where scc.p is the property that p is a 
ore
exive representing a strongly 
onne
ted


omponent of the graph G . An invariant property of the outer loop is

〈∀p : scc.p : p◦seen=⊥⊥ ∨ p◦seen=p〉 .(11.27)

Proof The property (11.27) is 
learly truthi�ed by the initialisation seen :=⊥⊥ in the

outer loop. Then, assuming that (11.27) is a pre
ondition of a 
all of dfs(a) , (11.26)

remains true after the initialisation

seen := seen∪a .

(It is at this point that it be
omes 
lear why the 
ase

p = (a ◦ equiv.G)>

is ex
luded from the universal quanti�
ation.) The invarian
e of the property (11.26)

under exe
ution of dfs(b) in the inner loop is then immediate from theorem 11.24.

In the outer loop, (11.27) is a 
onsequen
e of (11.6). Spe
i�
ally, suppose p is

a 
ore
exive representing a strongly 
onne
ted 
omponent of G . Suppose also that

p◦seen 6=⊥⊥ . Then, with dummy a ranging over nodes of G , we have:

p◦seen 6=⊥⊥

= { theorem 9.24 }
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〈∃a : p=(a ◦ equiv.G)< : seen◦a=a〉

⇒ { Leibniz }

〈∃a : p=(a ◦ equiv.G)< : (seen ◦a ◦ equiv.G)> = (a ◦ equiv.G)>〉

= { seen and a are 
ore
exives, so seen◦a=a◦seen }

〈∃a : p=(a ◦ equiv.G)< : (a ◦ seen ◦ equiv.G)> = p〉

= { (11.6) and domains }

〈∃a : p=(a ◦ equiv.G)< : (a ◦ seen ◦ equiv.G ◦ seen)> = p〉

⇒ { domains [ seen⊇ (R◦seen)> ] with R := a ◦ seen ◦ equiv.G }

〈∃a : p=(a ◦ equiv.G)< : seen⊇p〉

= { 
ore
exives and theorem 9.24 }

p◦seen=p .

✷

Corollary 11.25 anti
ipates the use of depth-�rst sear
h in 
onstru
ting strongly 
on-

ne
ted 
omponents. As representative element of ea
h strongly 
onne
ted 
omponent,

one 
hooses the �rst node in the 
omponent that is \seen" by a depth-�rst sear
h. Tarjan

[Tar72℄, Sharir [Sha81℄ and Aho, Hop
roft and Ullman [AHU82℄ 
all the representative of

a strongly 
onne
ted 
omponent the \root" of the 
omponent, whilst Cormen, Leiserson

and Rivest [CLR90, p.482℄ 
all it the \forefather" of the 
omponent. (In a later edition,

Cormen, Leiserson, Rivest and Stein [CLRS09, p.619℄ have elided the expli
it dis
ussion

of the \forefather" of the 
ompenent; impli
itly, they also 
all the representative the

\root".) The problem is to identify whi
h nodes are \roots". This problem is solved

in se
tion 13. The solution involves \timestamping" sear
hes with both start and �nish

\times". The addition of �nish \times" means that we have to extend the semanti
s of

depth-�rst sear
h to in
lude the e�e
t of adding an assignment statement at the end of

ea
h 
all of the pro
edure dfs . This is the topi
 of the next se
tion.

Fig. 11.3 do
uments the properties we have established of the pro
edure dfs(a) .
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Chapter 12

An Induction Theorem for
Depth-First Search

The primary purpose of this se
tion is to formulate a general rule for reasoning about

di�erent implementations of depth-�rst sear
h. See theorem 12.5. Several 
hoi
es are

made in formulating the rule. In order to motivate the 
hoi
es, we show how to sharpen

the rea
hability property of depth-�rst sear
h; we also establish a property that is the

basis of a 
ru
ial 
lassi�
ation of the edges following a depth-�rst sear
h of a graph.

Spe
i�
ally, in se
tion 12.3, we show that whenever a 
all of dfs(a) is exe
uted, for

some node a , the node a is rea
hable from all nodes from whi
h the sear
h has started

but not �nished; moreover, there are no edges in the graph from a node from whi
h the

sear
h has �nished to a node from whi
h the sear
h has not started.

Both these properties involve augmenting the implementation with a variable that

re
ords the set of nodes from whi
h the sear
h has �nished. The form that the revised

implementation takes anti
ipates the implementation of timestamps in se
tion 13.

The generi
 implementation that we 
onsider is a 
omposition of three statements:

an initial assignment, whi
h we 
all S , a while statement, whi
h we 
all W , and a �nal

assignment statement, whi
h we 
all F . (See �g. 12.4 for an example.) A

ordingly, we

need to revise the de�nition (11.9). The appropriate de�nition is as follows.

DFS = 〈µd :: F _◦W.d _◦S〉(12.1)

where

W.d.a = t.a ◦ (〈∪b :: d.b ◦C.b.a〉 ◦ ∼t.a)∗ .(12.2)

(The de�nition of W has not 
hanged but is repeated here for 
onvenien
e.)

Fig. 12.1 may help the reader to better understand the development. It shows the

generi
 form of the pro
edure dfs(a) and the relevant do
umentation. The assertion

p.a is a pre
ondition on the exe
ution of the pro
edure dfs(a) ; note that p.b is a

Algorithmi
 Graph Theory 243 April 8, 2022



244

pre
ondition on the exe
ution of dfs(b) . The assertion q.a is a so-
alled intermediate

assertion. Use of the indu
tion theorem requires some 
reativity in the formulation of

both p and q . The 
ombination of the pre
ondition p and the invariant relation R is

the spe
i�
ation of the pro
edure; theorem 12.5 gives suÆ
ient 
onditions that guarantee

when an implementation meets the spe
i�
ation.

{ p.a }

{ Invariant Relation: R }

S.a

{ q.a }

; { Invariant Relation: R∗

Invariant Property: q.a }

while ∼t.a do

begin


hoose node b su
h that C.b.a

; { C.b.a ◦ ∼t.a ◦ q.a }

{ p.b }

dfs(b)

end

; { t.a ◦q.a }

F.a

Figure 12.1: Do
umenting Depth-First Sear
h Indu
tion

12.1 Formal Statement and Proof

In the following, we assume that p.a , q.a , ∼t.a and C.b.a are 
ore
exives and R ,

S.a and F.a are homogeneous relations on the state spa
e. In all the implementations

we 
onsider, S.a and F.a are assignment statements; that is, S.a and F.a are total

endofun
tions on the state spa
e.

Previously, lemma 11.12 was used to establish an indu
tion rule for DFS _◦pre (where

pre was the \obvious" pre
ondition). Theorem 12.5 below repla
es lemma 11.12. Un-

fortunately, the fusion theorem does not appear to be strong enough and we have been
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obliged to �nd a more spe
i�
 proof te
hnique based on the following two lemmas.

Lemma 12.3 For all relations T and 
ore
exives q ,

T ∗ ◦q = (T ◦q)∗ ◦q ⇐ T ◦q = q◦T ◦q .

Proof

T ∗ ◦q = (T ◦q)∗ ◦q

= { q⊆ I , monotoni
ity and anti-symmetry }

T ∗ ◦q ⊆ (T ◦q)∗ ◦q

⇐ { T ∗ ◦q is a least �xed point, indu
tion }

q ∪ T ◦ (T ◦q)∗ ◦q ⊆ (T ◦q)∗ ◦q

⇐ { (T ◦q)∗ = I ∪ T ◦q ◦ (T ◦q)∗

distributivity and monotoni
ity }

(T ◦q)∗ ◦q ⊆ q ◦ (T ◦q)∗ ◦q

= { q◦q=q (applied twi
e) and mirror rule }

(T ◦q)∗ ◦q ⊆ (q◦T ◦q)∗ ◦q

⇐ { Leibniz }

T ◦q = q◦T ◦q .

✷

Lemma 12.4 For all relations R and 
ore
exives p and q ,

R/p ◦q = R◦q ⇐ q=p◦q

Proof

R/p ◦q

⊆ { assume: q=p◦q , 
an
ellation of fa
tors }

R◦q

⊆ { p⊆ I , (anti-)monotoni
ity of fa
tors }

R/p ◦q .

The lemma follows by anti-symmetry.

✷

We are now in a position to formulate a theorem for reasoning about the generi
 form

of depth-�rst sear
h expressed by (12.1).
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Theorem 12.5 (Depth-First Search Induction) Suppose R is a relation on the

state spa
e of depth-�rst sear
h, and p.a and q.a are 
ore
exives representing subsets

of the state spa
e. Then

〈∀a :: DFS.a ◦p.a ⊆ R〉 ⇐ (12.6) ∧ (12.7) ∧ (12.8) ∧ (12.9)

where the premises (12.6), (12.7), (12.8) and (12.9) are de�ned as follows.

S _◦p = q _◦S _◦p .(12.6)

This spe
i�es the intermediate assertion q : when S is exe
uted with pre
ondition p ,

q is a valid post
ondition. Equivalently, q.a is at least the left domain of S.a ◦ p.a .

〈∀a,b :: C.b.a ◦ ∼t.a ◦ q.a ⊆ p.b〉 .(12.7)

This is the property that if the (inner) loop body is exe
uted with pre
ondition q.a

then the 
all of dfs(b) will be exe
uted with pre
ondition p.b .

K.R _◦q = q _◦K.R _◦q .(12.8)

(Re
all that K denotes the 
onstant 
ombinator.) This asserts that property q is

\maintained by" relation R .

F _

◦ t _

◦ K.R∗
_

◦ S _

◦ p _⊆ K.R .(12.9)

This asserts that exe
uting F after S with pre
ondition p maintains the relation R .

Proof We begin by proving that, assuming (12.6), (12.7) and (12.8),

DFS _◦p _⊆ K.R ⇐ F _◦W.(K.R) _◦S _◦p _⊆ K.R .(12.10)

We give a pointwise 
al
ulation (primarily be
ause giving a point-free 
al
ulation involves

introdu
ing additional notation that is used just on
e). Apart from the highlighted step,

the 
al
ulation below is straightforward.

DFS _◦p _⊆ K.R

= { de�nitions of pointwise operators }

〈∀a :: DFS.a ◦p.a ⊆ R〉

= { fa
tors }

〈∀a :: DFS.a ⊆ R/p.a〉

= { de�nition of pointwise ordering }

DFS _⊆ 〈a :: R/p.a〉
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⇐ { (12.1) and �xed point indu
tion }

F _◦ W.〈a :: R/p.a〉 _◦ S _⊆ 〈a :: R/p.a〉

= { de�nition of pointwise orderings, de�nition (12.2) of W }

〈∀a :: F.a ◦ t.a ◦ (〈∪b :: R/p.b ◦ C.b.a〉 ◦ ∼t.a)∗ ◦S.a ⊆ R/p.a〉

= { fa
tors }

〈∀a :: F.a ◦ t.a ◦ (〈∪b :: R/p.b ◦ C.b.a〉 ◦ ∼t.a)∗ ◦S.a ◦p.a ⊆ R〉

= { see below }

〈∀a :: F.a ◦ t.a ◦ (〈∪b ::R ◦C.b.a〉 ◦ ∼t.a)∗ ◦S.a ◦p.a ⊆ R〉

= { de�nition of W }

〈∀a :: F.a ◦W.(K.R).a ◦S.a ◦p.a ⊆ R〉

= { de�nitions of pointwise operators }

F _◦W.(K.R) _◦S _◦p _⊆ K.R .

The highlighted step above was to repla
e the term R/p.b by R . This apparently

inno
uous step is the most diÆ
ult step of all. In anti
ipation of later steps, we introdu
e

the 
ore
exive q.a into the 
al
ulation as follows:

R/p.b ◦ C.b.a ◦ ∼t.a ◦ q.a

= { assumption (12.7): C.b.a ◦ ∼t.a ◦ q.a ⊆ p.b

lemma 12.4 with p,q := p.b , C.b.a ◦ ∼t.a ◦ q.a }

R ◦ C.b.a ◦ ∼t.a ◦ q.a

= { 
ore
exives 
ommute }

R ◦ q.a ◦ C.b.a ◦ ∼t.a

= { assumption (12.8): R ◦q.a = q.a ◦R ◦q.a }

q.a ◦ R ◦ q.a ◦ C.b.a ◦ ∼t.a

= { reverse �rst two steps }

q.a ◦ R/p.b ◦ C.b.a ◦ ∼t.a ◦ q.a .

In summary, assuming (12.7) and (12.8),

R/p.b ◦ C.b.a ◦ ∼t.a ◦ q.a = q.a ◦ R/p.b ◦ C.b.a ◦ ∼t.a ◦ q.a .(12.11)

Now, for all a ,
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(〈∪b :: R/p.b ◦ C.b.a〉 ◦ ∼t.a)∗ ◦S.a ◦p.a

= { assumption (12.6): S.a ◦p.a = q.a ◦S.a ◦p.a }

(〈∪b :: R/p.b ◦ C.b.a〉 ◦ ∼t.a)∗ ◦q.a ◦S.a ◦p.a

= { distributivity }

〈∪b :: R/p.b ◦ C.b.a ◦ ∼t.a〉∗ ◦q.a ◦S.a ◦p.a

= { lemma 12.3 with T := 〈∪b :: R/p.b ◦ C.b.a ◦ ∼t.a〉 and q :=q.a

(appli
able be
ause of (12.11)), distributivity }

〈∪b :: R/p.b ◦ C.b.a ◦ ∼t.a ◦ q.a〉∗ ◦q.a ◦S.a ◦p.a

= { assumption (12.7): C.b.a ◦ ∼t.a ◦ q.a ⊆ p.b , lemma 12.4 }

〈∪b :: R ◦ C.b.a ◦ ∼t.a ◦ q.a〉∗ ◦q.a ◦S.a ◦p.a

= { assumption (12.8): R ◦q.a = q.a ◦R ◦q.a , distributivity

lemma 12.3 with T := 〈∪b :: R ◦ C.b.a ◦ ∼t.a〉 and q :=q.a }

〈∪b :: R ◦ C.b.a ◦ ∼t.a〉∗ ◦q.a ◦S.a ◦p.a

= { assumption (12.6): S.a ◦p.a = q.a ◦S.a ◦p.a }

(〈∪b ::R ◦C.b.a〉 ◦ ∼t.a)∗ ◦S.a ◦p.a .

This veri�es the postponed step (the step marked \see below") in the initial 
al
ulation

and 
on
ludes the proof of (12.10).

We now apply (12.10). Assume (12.6), (12.7) and (12.8). Then

DFS _◦p _⊆ K.R

⇐ { (12.10) and assumptions }

F _◦W.(K.R) _◦S _◦p _⊆ K.R

= { de�nition of pointwise operators }

〈∀a :: F.a ◦ t.a ◦ (〈∪b ::R ◦C.b.a〉 ◦ ∼t.a)∗ ◦S.a ◦p.a ⊆ R〉

⇐ { C.b.a and ∼t.a are 
ore
exives, monotoni
ity }

〈∀a :: F.a ◦ t.a ◦ 〈∪b ::R〉∗ ◦S.a ◦p.a ⊆ R〉

⇐ { 〈∪b ::R〉⊆R }

〈∀a :: F.a ◦ t.a ◦R∗
◦S.a ◦p.a ⊆ R〉

= { de�nition of pointwise operators }

F _

◦ t _

◦ K.R∗
_

◦ S _

◦ p _⊆ K.R .
✷
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12.2 Verification Conditions

In order to apply theorem 12.5, four veri�
ation 
onditions must be met: one for the

initial assignment S (that it truthi�es q ), one for the pre
ondition for exe
ution of

dfs(b) (that it is truthi�ed by the 
ondition for 
hoosing b ), one for the intermediate

assertion q (that it is invariant under R ), and �nally one for the 
ombination of the

initial assignment S and the �nal assignment F (that they maintain the invariant relation

R , assuming pre
ondition p and 
ondition for terminating the loop t ).

Fig. 12.2 summarises theorem 12.5. The symbol \σ " denotes the 
urrent state; the

notation p(σ,a) is used rather than the point-free p.a to signify the dependen
e of

pre
ondition p on the state, and the fa
t that p(σ,a) is a synta
ti
 expression. Two

ghost variables σ0 and σ1 help to relate the state at (respe
tively) the start of exe
ution

of the pro
edure and at the start of exe
ution of the while statement to its value at later

points during the exe
ution.

The initial assignment statement gives rise to a veri�
ation 
ondition. Applying the

assignment axiom, this is

〈∀σ,a :: q(S(σ,a) , a) ⇐ p(σ,a)〉 .(12.12)

The two instan
es of 
onse
utive assertions ea
h give rise to a veri�
ation 
ondition:

〈∀σ,a :: p(σ,b) ⇐ C(σ,b,a)∧∼t(σ,a)∧q(σ,a)〉 , and(12.13)

〈∀σ,σ1,a :: q(σ,a) ⇐ t(σ,a)∧q(σ1,a)∧σ [[R
∗]]σ1〉 .(12.14)

The �nal assignment statement also gives rise to a veri�
ation 
ondition.

〈∀σ,σ0,a :: F(σ,a)[[R]]σ0 ⇐ t(σ,a) ∧ σ [[R∗]]S(σ0,a) ∧ p(σ0,a)〉 .(12.15)

The sequen
e

{ p(σ,b) ∧ σ [[R∗]]σ1 }

dfs(b)

{ σ [[R∗]]σ1 }

in the loop body is the indu
tion hypothesis : �xed-point indu
tion enables the assump-

tion that this is valid.

Sometimes (12.9) is used in 
ombination with (12.6) and (12.8) in order to strengthen

the pre
ondition on F in (12.15) from t(σ,a) to t(σ,a)∧q(σ,a) as shown in �g. 12.2.

Formally, this is based on the theorem that, in the 
ontext of (12.6) and (12.8),

F _

◦ t _

◦ K.R∗
_

◦ S _

◦ p = F _

◦ t _◦ q _

◦ K.R∗
_

◦ q _

◦ S _

◦ p ,
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{ p(σ,a) ∧ σ=σ0 }

{ Invariant Relation R }

σ :=S(σ,a)

{ q(σ,a) ∧ σ=σ1 }

; { Invariant Relation R∗ }

while ∼t(σ,a) do

begin


hoose node b su
h that C(σ,b,a)

; { C(σ,b,a) ∧ ∼t(σ,a) ∧ q(σ,a) }

{ p(σ,b) ∧ σ [[R∗]]σ1 }

dfs(b)

{ σ [[R∗]]σ1 }

end

{ t(σ,a) ∧ q(σ1,a) ∧ σ [[R∗]]σ1 }

; { t(σ,a) ∧ q(σ,a) }

σ :=F(σ,a)

{ σ [[R]]σ0 }

Figure 12.2: Summary of the Indu
tion Theorem

and hen
e property (12.9) is equivalent to

F _

◦ t _◦ q _

◦ K.R∗
_

◦ q _

◦ S _

◦ p _⊆ K.R .(12.16)

For 
ompleteness, we give the proof:

F _◦ t _◦ K.R∗
_

◦S _

◦ p = F _◦ t _◦q _

◦ K.R∗
_

◦q _

◦ S _

◦ p

⇐ { assumption: (12.6) and q=q_◦q }

K.R∗
_

◦q = q _◦K.R∗
_

◦q

= { q⊆ I , domains }

(K.R∗
_

◦q)< ⊆ q

⇐ { �xed-point fusion and distributivity }
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q _∪ (K.R_◦q)< ⊆ q

= { distributivity, assumption: (12.8) and domains }

true .

Clearly the veri�
ation of (12.9) (or its equivalent (12.16)) is the most 
ompli
ated

task be
ause it involves 
onsidering the 
ombined e�e
t of the initial assignment S and

the �nal assignment F . Sometimes this is unavoidable but often it 
an be de
omposed

and/or simpli�ed using properties of the relation R .

Firstly, R is typi
ally transitive so that R∗
equals I∪R . In some 
ases, R is both

transitive and re
exive so that R∗
equals R . This allows a simpli�
ation of (12.9),

albeit with the additional obligation to show that R is indeed transitive (and possibly

re
exive), whereby R∗
is simpli�ed to I∪R (or just R if R is re
exive).

Se
ondly, R is typi
ally the interse
tion of several relations. By de�nition, R∩T is

transitive if

(R∩T)◦(R∩T) ⊆ R ∧ (R∩T)◦(R∩T) ⊆ T .

This proof obligation is often simpler than it looks be
ause one or both of R and T is

transitive. Some relations, su
h as set in
lusion, are obviously transitive and re
exive.

What we have 
alled \property invariants" and \value invariants" (see se
tion 6.8.4) are

also transitive and re
exive.

Assuming that R∩T is transitive, our proof obligation takes the form

F _◦ t _◦ K.(I∪(R∩T)) _◦ S _

◦ p _⊆ K.(R∩T) .

Letting α.R be F _◦ t _◦ K.(I∪R) _◦ S _

◦ p , this follows from the 
onjun
tion of

α.R _∩ α.T _⊆ K.R

and

α.R _∩ α.T _⊆ K.T .

Sometimes it suÆ
es to show that

α.R _⊆ K.R ∧ α.T _⊆ K.T

(if R and T are entirely independent) or

α.R _⊆ K.R ∧ α.R _∩ α.T _⊆ K.T

(R 
an be validated independently of T but the validity of T depends on the validity

of R .) This helps to eliminate unne
essary detail.

Algorithmi
 Graph Theory April 8, 2022



252

In some 
ases, a substantial simpli�
ation of (12.9) is possible. Spe
i�
ally,

(12.16) ⇐ F_◦t_◦q _⊆ K.R ∧ q_◦S_◦p _⊆ K.R

if R is re
exive and transitive. It follows that |sometimes| the veri�
ation 
ondition

(12.9) 
an be repla
ed by the two 
onditions

q_◦S_◦p _⊆ K.R(12.17)

and

F_◦t_◦q _⊆ K.R .(12.18)

In words, for some re
exive and transitive relations R , it is the 
ase that R is indepen-

dently an invariant of F and an invariant of S ; that is, it is not ne
essary to 
onsider the


ombined e�e
t of F and S to establish the invarian
e of R . Exploiting this simpli�
a-

tion is a reason for distinguishing between invariant relations, invariant properties and

invariant values: the te
hnique is typi
ally applied to invariant properties and values but

not to other relations. The downside is that more 
are needs to be taken in formulating

the intermediate assertion q sin
e its role be
omes more pronoun
ed.

12.3 “Grey” Paths and Impossible Edges

In this se
tion, we return to the implementation of depth-�rst sear
h do
umented in

�gs. 11.2 and 11.3, adding a new variable that re
ords the set of nodes from whi
h a

depth-�rst sear
h has �nished. This addition anti
ipates the 
omputation of timestamps

in se
tion 13. The indu
tion theorem, theorem 12.5, is used to establish a number of

properties that are 
ru
ial to 
al
ulating strongly 
onne
ted 
omponents. (See se
tion

13.)

We 
all the new variable fnd (short for \�nished") and begin by adding its initiali-

sation to the outer loop. See �g. 12.3.

The invariant relation New has been repla
ed by the relation GE2 : the state spa
e

is now a 
artesian produ
t of two sets of nodes, and GE2 is likewise the 
artesian produ
t

of two instan
es of GE , whi
h is 
learly a subset of the relation New . (The extra detail

supplied by New was used to prove theorem 11.24; we don't need the information here.)

Thus, the 
laim is that both seen and fnd are in
reasing. The frontier fun
tion Fr has

been rede�ned so that it depends only on the state of the seen nodes. A new invariant

property has been added as well. Finally, the pre
ondition on the 
all of dfs(a) has also

been augmented with an additional 
onjun
t.

The invariant property has, in total, four 
onjun
ts, divided into two pairs of two,

but there is some (obvious) redundan
y in the 
onjun
ts. They have been stated in this
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seen,fnd := ⊥⊥,⊥⊥ ;

{ Invariant Relation: GE2 ∩ Fr
∪

◦ (⊆) ◦Fr

where (s ′, f ′) [[GE2]] (s, f) ≡ s ′⊇ s ∧ f ′⊇ f

and Fr(s,f) = s ◦ (⊆) ◦∼s

Invariant Property:

fnd⊆ seen ∧ fnd ◦G ◦∼seen = ⊥⊥

Invariant Property:

seen ◦∼fnd = ⊥⊥ ∧ fnd ◦G∗
◦∼seen = ⊥⊥ }

while ∼seen 6=⊥⊥ do

begin


hoose node a su
h that a ◦∼seen = a

; { a ◦∼seen = a ∧ seen ◦∼fnd ◦⊤⊤ ◦a ⊆ (seen ◦∼fnd ◦G)∗ }

dfs(a)

end

Figure 12.3: Grey Paths and Impossible Edges. Outer Loop

way in order to 
larify di�eren
es between the invariants of the outer and the inner loops.

Spe
i�
ally, the �rst pair is also an invariant of the inner loop, but the se
ond is not.

It is easy to 
he
k that all are truthi�ed by the initial assignment to seen and fnd .

Thus, to say they are \invariant" means that their true value is un
hanged before ea
h

iteration of the loop body. The meaning of the �rst, fnd⊆ seen , is obvious. In the

third 
onjun
t, the term seen ◦∼fnd represents the set of nodes from whi
h a sear
h

has started but has not �nished. The assertion

seen ◦∼fnd = ⊥⊥(12.19)

states that this set is empty at every iteration of the outer loop; this is not ne
essarily

the 
ase when exe
uting the inner loop. The 
ombination of fnd⊆ seen and (12.19)

implies fnd= seen . The 
onjun
t

fnd ◦G ◦∼seen = ⊥⊥(12.20)

asserts that there are no edges in G from nodes from whi
h the sear
h has �nished to

nodes that have not been seen. (These are the \impossible edges" referred to in the title
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of this se
tion.) As we shall see, this property is 
ru
ial to the use of depth-�rst sear
h

in determining the strongly 
onne
ted 
omponents of a graph. The �nal 
onjun
t

fnd ◦G∗
◦∼seen = ⊥⊥(12.21)

asserts that there are no unseen nodes that are rea
hable from the set of �nished nodes.

Like (12.19), this is a property of the outer loop but not the inner loop.

Many des
riptions of depth-�rst sear
h use 
olours to distinguish nodes and edges of

the graph at di�erent stages of the sear
h. The nodes represented by ∼seen are 
alled

white nodes, those represented by seen ◦∼fnd are 
alled grey nodes and, �nally, those

represented by fnd are 
alled bla
k nodes. The property fnd⊆ seen , whi
h we shall

establish to be an invariant at all stages, implies that all nodes are either white, grey or

bla
k (as is easily shown). The property (12.20) asserts that there are no edges from a

bla
k node to a white node. The invariant (12.21) asserts that there are no paths from

a bla
k node to a white node (in the outer loop).

The property (12.21) 
learly subsumes (12.20). Indeed, sin
e fnd= seen in the outer

loop, (12.20) is equivalent to the property

seen ◦G ◦∼seen = ⊥⊥

whi
h we established in 
orollary 11.21. The importan
e of (12.20) is that it is also an

invariant of the inner loop, whereas (12.19) and (12.21) may be false when exe
uting

the inner loop. This is one way in whi
h this se
tion sharpens the results of se
tion 11.1.

The se
ond way is the additional pre
ondition on the 
all of dfs(a) :

seen ◦∼fnd ◦⊤⊤ ◦a ⊆ (seen ◦∼fnd ◦G)∗ .(12.22)

This assertion is trivially true in the outer loop given that fnd= seen . However, the

boolean (12.19) is not an invariant of the inner loop, whi
h means that (12.22) is non-

trivial.

The next step is to add 
ode to the pro
edure dfs that updates fnd whenever a


all is 
ompleted, and to add the appropriate do
umentation. This is shown in �g. 12.4.

First note that an assignment to fnd has been added following the while statement;

as in the outer loop, the invariant has been weakened to the relation GT on su

essive

values of seen and then extended to GT 2 in order to in
lude fnd ; the invariant GE

of the inner loop is similarly extended. Now note that

fnd⊆ seen ∧ fnd ◦G ◦∼seen = ⊥⊥(12.23)

is asserted to be an invariant property of both the pro
edure dfs and the inner loop;

the assertion about

seen ◦∼fnd(12.24)
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{ Invariant Relation: GT 2 ∩ Fr
∪

◦ (⊆) ◦Fr

Invariant Property: fnd⊆ seen ∧ fnd ◦G ◦∼seen = ⊥⊥

Invariant Value: seen ◦∼fnd }

{ a◦seen=⊥⊥ ∧ seen ◦∼fnd ◦⊤⊤ ◦a ⊆ (seen ◦∼fnd ◦G)∗ }

seen := seen ∪ a

{ Invariant Relation: GE2 ∩ Fr
∪

◦ (⊆) ◦Fr

Invariant Property:

fnd⊆ seen ∧ fnd ◦G ◦∼seen = ⊥⊥

∧ a ◦ seen ◦∼fnd = a

∧ seen ◦∼fnd ◦⊤⊤ ◦a ⊆ (seen ◦∼fnd ◦G)∗

Invariant Value: seen ◦∼fnd }

; while a ◦G ◦∼seen 6= ⊥⊥ do

begin


hoose node b su
h that a◦⊤⊤◦b ⊆ a ◦G ◦∼seen

; { fnd⊆ seen ∧ fnd ◦G ◦∼seen = ⊥⊥

∧ b◦seen=⊥⊥ ∧ seen ◦∼fnd ◦⊤⊤ ◦b ⊆ (seen ◦∼fnd ◦G)∗ }

dfs(b)

end

{ fnd⊆ seen ∧ fnd ◦G ◦∼seen = ⊥⊥

∧ a ◦ seen ◦∼fnd = a

∧ a ◦G ◦∼seen = ⊥⊥ }

; fnd := fnd ∪ a

Figure 12.4: Grey Paths and Impossible Edges. The Pro
edure dfs(a) .
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is that it is an invariant value. Sin
e the distin
tion between invariant \relation", \prop-

erty" and \value" is un
ommon, the reader may wish to take the opportunity to review

the dis
ussion in se
tions 6.8.4 and 12.2. When applying theorem 12.5, the relation R

is instantiated to

GT 2 ∩ Fr
∪

◦ (⊆) ◦ Fr ∩ H1
∪

◦ (⇐) ◦H1 ∩ Grey
∪

◦Grey

where H1(s,f) is the boolean

f⊆ s ∧ f ◦G ◦∼s = ⊥⊥

and Grey(s,f) is the set of nodes represented by the 
ore
exive

s ◦∼f .

(That is, Grey(s,f) is the set of nodes that are \grey" at a given time.) See se
tion 12.2

for dis
ussion of how we break down the veri�
ation 
ondition (12.9).

Assertion (12.23) is a boolean expression (i.e. has value true or false ) but we want

to show that it is an invariant \property", i.e. the fa
t that it has the value true is

un
hanging. In su
h 
ases, additional arguments must be given to establish that the

value is truthi�ed appropriately. This means that the pre
ondition of the 
all of dfs(a)

is the 
onjun
tion of (12.23) and the 
ondition that immediately pre
edes the assignment

to seen :

fnd⊆ seen ∧ fnd ◦G ◦∼seen = ⊥⊥

∧ a◦seen=⊥⊥ ∧ seen ◦∼fnd ◦⊤⊤ ◦a ⊆ (seen ◦∼fnd ◦G)∗ .

In order to fa
ilitate the appli
ation of theorem 12.5, we denote the 
ore
exive 
orre-

sponding to this pre
ondition by p.a . For the same reason, we denote the assertion that

immediately follows the assignment to seen , viz.

fnd⊆ seen ∧ fnd ◦G ◦∼seen = ⊥⊥

∧ a ◦ seen ◦∼fnd = a ∧ seen ◦∼fnd ◦⊤⊤ ◦a ⊆ (seen ◦∼fnd ◦G)∗ ,

by q.a .

The assertion p.b (that is, the assertion denoted p.a above but with a repla
ed

by b ) pre�xes the 
all of dfs(b) in the inner loop. The �rst two 
onjun
ts, whi
h are

independent of a or b , are also listed as invariant properties of the pro
edure dfs .

They are truthi�ed by the initial assignment to seen and fnd in the outer loop. We

shall show that their true value remains un
hanged at every point in the exe
ution of

the algorithm. The validity of the third 
onjun
t is easily veri�ed. The fourth 
onjun
t

seen ◦∼fnd ◦⊤⊤ ◦a ⊆ (seen ◦∼fnd ◦G)∗(12.25)
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asserts that there is a path from all \grey" nodes to the node from whi
h the sear
h

is about to start; moreover, ea
h edge on su
h a path is from a \grey" node. (Re
all

that \grey" nodes are the nodes represented by seen ◦∼fnd .) In the outer loop, this


ondition is 
learly implied by the invariant (12.19). The proof that this is also the 
ase

in the inner loop is provided here for two reasons: it helps to explain the requirements

used in the formulation of the basi
 indu
tion theorem (theorem 12.5) for reasoning

about depth-�rst sear
h, and it is needed in 
hapter 13.

The assignment to fnd does not have an expli
it post
ondition. It is impli
it in

the invariants of the pro
edure dfs : the post
ondition is that (12.23) and (12.24) are

un
hanged from their initial values. Similarly, the 
all dfs(b) is not do
umented by a

post
ondition; when reasoning about it, we exploit the \indu
tion hypothesis" that the

relations GT 2 , Fr
∪

◦ (⊆) ◦Fr , (12.23) and (12.24) are invariants of dfs . That assertion

(12.25) is also an invariant is an immediate 
onsequen
e of the fa
t that (12.24) is an

invariant value.

Let us use theorem 12.5 to prove that ea
h of the 
laimed invariants in �g. 12.4 is

indeed invariant.

12.3.1 Truthifying the Intermediate Assertion

The 
ore
exives p.a and q.a were de�ned earlier. Thus property (12.6) is equivalent

to

{ fnd⊆ seen ∧ fnd ◦G ◦∼seen = ⊥⊥

∧ a◦seen=⊥⊥ ∧ seen ◦∼fnd ◦⊤⊤ ◦a ⊆ (seen ◦∼fnd ◦G)∗ }

seen := seen∪a

{ fnd⊆ seen ∧ fnd ◦G ◦∼seen = ⊥⊥

∧ a ◦ seen ◦∼fnd = a ∧ seen ◦∼fnd ◦⊤⊤ ◦a ⊆ (seen ◦∼fnd ◦G)∗ }

whose validity 
an be veri�ed using the assignment axiom.

12.3.2 The Precondition in the Inner Loop

Property (12.7) involves establishing that four 
onjun
ts follow from the 
onjun
tion

of q.a , the 
ondition for exe
uting the loop body and the 
riterion for 
hoosing b.

Detailed inspe
tion of what is required reveals that two of the 
onjun
ts are immediate.

The remaining two follow from the veri�
ation 
ondition:

〈∀a,b,s,f

: a◦⊤⊤◦b ⊆ s ◦∼f ◦G ◦∼s ∧ s ◦∼f ◦⊤⊤ ◦a ⊆ (s ◦∼f ◦G)∗
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: b◦s=⊥⊥ ∧ s ◦∼f ◦⊤⊤ ◦b ⊆ (s ◦∼f ◦G)∗

〉 .

The only non-trivial part of verifying this theorem is 
overed by the following simple


al
ulation.

a◦⊤⊤◦b ⊆ s ◦∼f ◦G ◦∼s ∧ s ◦∼f ◦⊤⊤ ◦a ⊆ (s ◦∼f ◦G)∗

⇒ { monotoni
ity }

s ◦∼f ◦⊤⊤ ◦a ◦a ◦⊤⊤ ◦b ⊆ (s ◦∼f ◦G)∗ ◦ s ◦∼f ◦G ◦∼s

⇒ { a 6=⊥⊥ , so ⊤⊤◦a◦a◦⊤⊤=⊤⊤ ; ∼s is a 
ore
exive }

s ◦∼f ◦⊤⊤ ◦b ⊆ (s ◦∼f ◦G)∗ ◦ s ◦∼f ◦G

⇒ { [ R∗
◦R ⊆ R∗ ] , transitivity }

s ◦∼f ◦⊤⊤ ◦b ⊆ (s ◦∼f ◦G)∗ .

12.3.3 Maintaining the Intermediate Assertion

Che
king (12.8) is trivial. We have to show that the property q.a is maintained by

the stated invariants. But q.a is the 
omposition of the 
ore
exive 
orresponding to

(12.23), whi
h is an invariant property, and

a ◦ seen ◦∼fnd = a ∧ seen ◦∼fnd ◦⊤⊤ ◦a ⊆ (seen ◦∼fnd ◦G)∗ ,

whi
h is obviously invariant be
ause the value of seen ◦∼fnd is invariant. That is, q.a

is maintained, as required. (We still have to 
he
k that the value of seen ◦∼fnd is

indeed invariant but this is independent of property (12.8). We also still have to 
he
k

that (12.23) is an invariant property.)

12.3.4 Invariant Relations

We now 
onsider ea
h of the 
laimed invariant relations, values and properties in turn.

We begin with the invariant relation

GT 2 ∩ Fr
∪

◦ (⊆) ◦ Fr

be
ause the fa
t that it is invariant is needed when verifying the remaining invariants.

Apart from the repla
ement of NR by GT 2 and the rede�nition of the frontier fun
-

tion Fr (ne
essitated by the addition of the assignment to fnd ) that this relation is

invariant was dis
ussed in se
tion 11.1. We leave the reader the straightforward task

of 
he
king the validity of the repla
ements. (The main task is to use theorem 12.5 to

formally 
he
k that the assignment to fnd 
auses its value to stri
tly in
rease. Just as

for seen this is straightforward.)
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12.3.5 Invariant Value

We now show that seen ◦∼fnd is a value invariant. This means literally that the value

of seen ◦∼fnd remains un
hanged by a 
all of dfs. To show that this is the 
ase, we

de�ne the fun
tion Grey by Grey(s,f) = s ◦∼f and we instantiate R in (12.9) with

Grey
∪

◦Grey . (The relation Grey
∪

◦Grey asserts an equality between two evaluations

of the fun
tion Grey . That is,

(s ′, f ′)[[Grey
∪

◦Grey]](s, f) ≡ s ′ ◦∼f ′ = s ◦∼f .)

We have

〈∀a :: Grey
∪

◦Grey ◦S.a ◦p.a ⊆ (F.a)∪ ◦Grey
∪

◦Grey〉

⇐ { de�nitions of p , F , Grey and S }

〈∀a,s ′,f ′,s,f : s ′ ◦∼f ′ = (s∪a) ◦∼f ∧ s◦a=⊥⊥ : s ′ ◦∼(f ′∪a) = s ◦∼f〉 .

Now,

s ′ ◦∼(f ′∪a)

= { distributivity }

s ′ ◦∼f ′ ◦∼a

= { assume: s ′ ◦∼f ′ = (s∪a) ◦∼f }

(s∪a) ◦∼f ◦∼a

= { distributivity and 
ommutativity of 
ore
exives }

a ◦∼a ◦∼f ∪ s ◦∼f ◦∼a

= { a ◦∼a = ⊥⊥ }

s ◦∼f ◦∼a

= { assume: a◦s=⊥⊥ , equivalently ∼a ◦ s = s }

s ◦∼f .

This 
ompletes the veri�
ation.

12.3.6 Invariant Properties

We now 
he
k that (12.23) is an invariant property.

Visual inspe
tion of the 
ode in �g. 12.4 suggests that veri�
ation of the 
onjun
t

fnd⊆ seen is straightforward. Indeed, this is the 
ase. Rather than establish (12.9),
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we verify (12.17) and (12.18). That is, we establish that the property is maintained

independently by the assignments S and F .

The veri�
ation of (12.17) 
orresponds to verifying the validity of

{ fnd⊆ seen }

seen := seen∪a

{ fnd⊆ seen }

and the veri�
ation of (12.18) 
orresponds to verifying the validity of

{ fnd⊆ seen ∧ a◦seen=a }

fnd := fnd∪a

{ fnd⊆ seen } .

Both are easy appli
ations of the assignment axiom.

Note that the veri�
ation of (12.18) is slightly more 
omplex than that of (12.17)

be
ause of the additional 
onjun
t in the pre
ondition. That the additional 
onjun
t is

needed demonstrates why it is ne
essary to prove that the relation GT 2 is an invariant

of 
alls of dfs : the property a◦seen=a is truthi�ed by the initial assignment to seen

but we need to be sure that it is not falsi�ed by subsequent 
alls of dfs .

We now 
he
k the 
onjun
t

fnd ◦G ◦∼seen = ⊥⊥ .

First, it is an invariant of the initial assignment to seen :

(fnd ◦G ◦∼seen = ⊥⊥)[seen := seen∪a]

= { substitution and distributivity }

fnd ◦G ◦∼seen ◦∼a = ⊥⊥

⇐ { ∼a⊆ I , ⊥⊥ is least }

fnd ◦G ◦∼seen = ⊥⊥

Se
ond, it is an invariant of the assignment to fnd :

(fnd ◦G ◦∼seen = ⊥⊥)[fnd := fnd∪a]

= { substitution and distributivity }

fnd ◦G ◦∼seen = ⊥⊥ ∧ a ◦G ◦∼seen = ⊥⊥

= { assume t.a , i.e. a ◦G ◦∼seen = ⊥⊥

and q.a , in parti
ular fnd ◦G ◦∼seen = ⊥⊥ }

true .
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12.3.7 Invariants of the Outer Loop

Our last task is to verify the assertions in the outer loop (�g. 12.3).

That the relation GE2 ∩ Fr∪ ◦ (⊆) ◦Fr is an invariant of the while statement is im-

mediate from the fa
t that it is an invariant of 
alls of dfs .

For the invariant property, re
all that it suÆ
es to establish the three 
onjun
ts

fnd⊆ seen ∧ seen ◦∼fnd = ⊥⊥ ∧ fnd ◦G∗
◦∼seen = ⊥⊥ .

The initialisation of seen and fnd to ⊥⊥ 
learly truthi�es ea
h of the 
onjun
ts.

Sin
e fnd⊆ seen is an invariant of the pro
edure dfs , as is the value seen ◦∼fnd ,

it follows that the �rst two 
onjun
ts are invariants of the while statement so long

as we 
an prove that, together with the 
ondition for 
hoosing a , they guarantee the

pre
ondition for exe
uting dfs(a) . But this is trivially true.

That the third 
onjun
t is also an invariant of the while statement now follows from

the property (11.1) proved earlier. Spe
i�
ally,

fnd ◦G∗
◦∼seen

= { fnd⊆ seen ∧ seen ◦∼fnd = ⊥⊥

hen
e fnd= seen }

seen ◦G∗
◦∼seen

= { domains and (11.1) }

seen ◦G∗
◦ seen ◦∼seen

= { seen ◦∼seen = ⊥⊥ }

⊥⊥ .

This 
ompletes the veri�
ation.
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Chapter 13

Calculating Strongly Connected
Components

In this 
hapter, we establish the 
orre
tness of an algorithm to 
al
ulate the strongly


onne
ted 
omponents of a �nite graph. The algorithm is based on the one des
ribed in

[AHU82, pp.222{226℄.

Algorithms for 
al
ulating strong 
omponents are well 
ited. Invariably they are

based on depth-�rst sear
h. The algorithm presented here sear
hes the graph in two


onse
utive phases. In the �rst phase depth-�rst sear
h is used but in the se
ond phase

any sear
h algorithm 
an be used. By presenting a formal proof of 
orre
tness, we hope

to 
larify the key properties.

We assume that G is the edge relation of a �nite (dire
ted) graph. The algorithm


al
ulates a (total) fun
tion ϕ that assigns to ea
h node a of the graph a representative

of the strongly 
onne
ted 
omponent at a . Formally, ϕ has the properties

ϕ ◦ϕ
∪

⊆ INode ∧ ϕ
∪

◦ϕ = equiv.G .

The �rst phase 
al
ulates a fun
tion f that is then used in the se
ond phase as the 
hoi
e

fun
tion in the delegate algorithm dis
ussed in se
tion 10.2. The fun
tion f re
ords the

order in whi
h the depth-�rst sear
hes in the �rst phase �nish: the representative of a

strongly 
onne
ted 
omponent p is the node in p from whi
h the depth-�rst sear
h in

the �rst phase �nishes last.

13.1 Timestamps

Timestamps 
omprise two fun
tions s (for \start") and f (for \�nish") that re
ord the

order in whi
h sear
hes are started and �nished. The spe
i�
ation is thus a relation of

type

〈ΠNode : finite.Node : (IN←Node)× (IN←Node) ∼ (Node∼Node)〉
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su
h that, for a given graph G , the 
onstru
ted values s and f , both of whi
h have

type IN←Node , are total, inje
tive fun
tions. To ensure totality, the �rst phase takes

the following form:

f,s := ⊥⊥,⊥⊥ ;

while s>• 6=⊥⊥ do

begin


hoose node a su
h that a ◦ s> = ⊥⊥

; dfs(a)

end

We refer to this part of the implementation as the outer loop. Compared to the

implementation in �g. 12.3, the variables seen and fnd have been removed: the nodes

that have been \seen" (i.e. from whi
h a sear
h has been started) are the nodes repre-

sented by s> |the nodes that have a start time|, and the nodes have not been \seen"

|previously ∼seen| is represented by s>• . In pra
ti
e, a boolean array seen indexed

by nodes would be added to the implementation with the invariant property that seen

and s> represent the same set, namely the set of nodes for whi
h the fun
tion s is

de�ned. It helps to keep the a

ount shorter if we don't do so. Similarly, an auxiliary

variable fnd might be added to the implementation with the invariant property that

fnd equals f> (and ∼fnd equals f>• ) but we don't do so for reasons of e
onomy. How-

ever, we do translate all the properties established in previous se
tions of seen and fnd

into properties of s> and f> .

The implementation of dfs(a) is as follows:

s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a

; while a ◦G ◦ s>• 6= ⊥⊥ do

begin


hoose node b su
h that a ◦⊤⊤ ◦b ⊆ a ◦G ◦ s>•

; dfs(b)

end

; f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a

Thewhile statement is bra
keted by two statements that set the value of the fun
tions

s and f at a . The notation MAX.s denotes the maximum value of the fun
tion s ,

and similarly for MAX.f . If s=⊥⊥ , the value of MAX.s is de�ned to be 0 . The value
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MAX.s↑MAX.f 
ounts the number of times that an assignment to s or f has been

made; in this way, the assignment

s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a

re
ords the \time" that the sear
h from node a is initiated. The assignment to f is

similarly interpreted.

The 
ore
exive s> represents the set of nodes from whi
h a sear
h has been started,

i.e. the nodes that have been \seen". As already mentioned, a depth-�rst sear
h from

a is only initiated when a ◦ s> = ⊥⊥ . This guarantees that the property that s is

fun
tional is invariant; the fa
t that (MAX.s↑MAX.f)+1 is distin
t from any existing

value of s guarantees that the property that s is inje
tive is also invariant. Similarly, the


ore
exive f> represents the set of nodes from whi
h a sear
h has �nished |previously

represented by the variable fnd (see �g. 12.4)| and the assignment to f guarantees

that its fun
tionality and inje
tivity remain invariant.

Apart from the repla
ement of ∼seen by s>• , thewhile statement itself is un
hanged

from se
tion 11.

The reader may wish to look at �g. 11.1 again as an example of the 
al
ulation of

timestamps. Re
all that the �rst element of the pair of numbers labelling a node is

the timestamp of the start of the sear
h from that node and the se
ond element is the

timestamp of the �nish of the sear
h from that node. Re
all also that the labels O1 thru

O6 indi
ate the nodes from whi
h a sear
h has been started in the outer loop.

For the purpose of 
al
ulating strongly 
onne
ted 
omponents, the start timestamp

s is not needed in its entirety: 
omputations in the �rst phase make use of just s> and

only the fun
tion f is used in the se
ond phase. Thus a pra
ti
al implementation would

introdu
e a boolean variable seen , as outlined earlier, and do
ument s as an auxiliary

variable.

13.1.1 Specification

The timestamps s and f have a number of properties that are 
ru
ial to the su

ess-

ful use of f in the se
ond phase to 
ompute representatives of the strongly 
onne
ted


omponents. Fig. 13.1 do
uments the outer loop with the relevant properties

1

.

For the moment, note parti
ularly the post
ondition. The �rst 
onjun
t states for-

mally that s and f are total, inje
tive fun
tions (the property mentioned earlier). The

se
ond and third 
onjun
ts relate s and f to the given graph G ; take 
are to note that

G is on the left of an in
lusion in the se
ond 
onjun
t and on the right in the third


onjun
t. The �nal 
onjun
t is a 
hara
teristi
 property of depth-�rst sear
h.

1

Stronger properties are dis
ussed in 
hapter 14.
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{ G is a �nite graph }

f,s := ⊥⊥,⊥⊥ ;

{ Invariant Relation: ME2 ∩ Fr
∪

◦ (⊆) ◦Fr ∩ sInc

where (s ′, f ′) ME2 (s, f) ≡ s ′>⊇ s> ∧ f ′>⊇ f>

and Fr(s,f) = s> ◦G ◦ s>•

and (s ′, f ′) sInc (s, f) ≡ s>• ◦ s ′
∪

◦≤ ◦ s = ⊥⊥

Invariant Property: (13.1) ∧ (13.2) ∧ (13.3) ∧ (13.5) ∧ (13.4) }

while s> 6= INode do

begin


hoose node a su
h that a ◦ s> = ⊥⊥

; dfs(a)

end

{ f> = f∪ ◦ f = s> = s∪ ◦ s = INode ∧ s ◦ s
∪ ⊆ IIN ∧ f ◦ f

∪ ⊆ IIN

∧ G
∪ ⊆ s

∪

◦≤ ◦ f

∧ s∪ ◦≤ ◦ s ∩ f∪ ◦≥ ◦ f ⊆ G∗

∧ s
∪

◦≤ ◦ s ∩ f
∪

◦< ◦ f = f
∪

◦< ◦ s }

Figure 13.1: Timestamps: Outer Loop

In this se
tion, we prepare the ground for applying the indu
tion theorem, theorem

12.5, to establish these properties of the implementation of timestamps. That is, we

formulate an invariant relation R , pre
ondition p and intermediate assertion q that

pre
isely 
apture the exe
ution of depth-�rst sear
h.

In se
tion 11, we proved formally that the set of \seen" nodes is stri
tly in
reased by


alls of the pro
edure dfs. This and other elements of the invariants studied there need

to be adapted, repla
ing the variable seen by s> and the variable fnd by f> . Fig.

13.1 do
uments the fa
t that the relation ME2 ∩ Fr
∪

◦ (⊆) ◦Fr is an invariant, where

the de�nitions of relations ME and Fr are suitably modi�ed versions of the relations

GE and the frontier fun
tion Fr of �g. 12.3. These are supplemented in �g. 13.1 by the

relation sInc where, for all s ′ , f ′ , s and f

(s ′, f ′) sInc (s, f) ≡ s>• ◦ s ′ ◦≤ ◦ s = ⊥⊥ .

This relation expresses the property that, at ea
h iteration of the outer loop body, no

newly started node has a starting timestamp that is at most the starting timestamp of
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a node from whi
h the sear
h has already been started. (The equivalent 
ontrapositive

of this is that nodes from whi
h a sear
h is newly started by an exe
ution of the body

of the outer loop have a timestamp that is stri
tly greater than the timestamp of nodes

from whi
h a sear
h has already been started.)

The invariant properties of the outer loop are formulated below. A

ompanying ea
h

is a verbal explanation.

At the start of ea
h iteration of the outer loop body, f and s are inje
tive fun
tions

with equal right domains (but they are not total until termination of the loop): that is

f> = f
∪

◦ f = s> = s
∪

◦ s ∧ s ◦ s
∪

⊆ IIN ∧ f ◦ f
∪

⊆ IIN .(13.1)

For ea
h node in the right domain of f , the start timestamp is less than the �nish

timestamp:

f> ⊆ s
∪

◦< ◦ f .(13.2)

There are no edges from nodes from whi
h the sear
h has �nished to nodes from whi
h

the sear
h has either not started or started at a later time:

f> ◦G ◦ s>• = ⊥⊥ = f
∪

◦< ◦ s ∩ G .(13.3)

For all nodes a and b , if the sear
h from a starts before the start of the sear
h from

b , and the sear
h from a �nishes after the sear
h from b �nishes there is a path from

a to b :

s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f ⊆ G∗ .(13.4)

(Property (13.4) asserts an in
lusion only. The in
lusion 
an, in fa
t, be strengthened to

an equality by appropriately modifying the right side. See 
hapter 14 for dis
ussion on

this and the \white-path theorem". Property (13.4) is suÆ
ient for our 
urrent goals.)

For all nodes a and b , if the sear
h from a starts before the start of the sear
h

from b and �nishes before the �nish of the sear
h from b , the sear
h from a �nishes

before the sear
h from b starts.

s
∪

◦< ◦ s ∩ f
∪

◦< ◦ f = f
∪

◦< ◦ s .(13.5)

It is straightforward to 
he
k that the stated post
ondition is implied by the 
onjun
tion

of the termination 
ondition and the above invariant properties | with the ex
eption of

the se
ond 
onjun
t:

G
∪

⊆ s
∪

◦≤ ◦ f .(13.6)
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This is a 
onsequen
e of the invariant (13.3), as the following 
al
ulation shows

2

.

⊥⊥ = f
∪

◦< ◦ s ∩ G

= { shunting rule (2.27) }

f
∪

◦< ◦ s ⊆ ¬G

= { middle-ex
hange rule (4.18) }

f ◦G ◦ s
∪ ⊆ ¬(<)

= { not less-than relation on numbers is at-least }

f ◦G ◦ s
∪ ⊆ (≥)

= { on termination, f and s are total fun
tions }

G ⊆ f
∪

◦≥ ◦ s

= { 
onverse }

G
∪ ⊆ s

∪

◦≤ ◦ f .

In order to 
he
k that the additional properties (13.1), (13.2) (13.3), (13.4) and (13.5)

are indeed maintained invariant by the body of the outer loop, we need to provide details

of the implementation of dfs(a) , whi
h we now do.

As demonstrated in se
tion 11.1, properties that hold in the outer loop may not hold

in the inner loop. Su
h properties must be weakened in the inner loop, but properties

added to guarantee the stronger properties in the outer loop.

For 
onvenien
e, we summarise the properties in the following de�nition.

Definition 13.7 (Specification of Timestamped Depth-First Search) Suppose

G is a relation of type Node∼Node where Node is a �nite set. Suppose also that s , f ,

s ′ and f ′ are all fun
tions of type IN←Node . The invariant property of a depth-�rst

sear
h from an arbitrary node, whi
h we abbreviate to Inv(s,f) , is the 
onjun
tion of

the following properties:

f> = f
∪

◦ f ⊆ s> = s
∪

◦ s ∧ s ◦ s
∪

⊆ IIN ∧ f ◦ f
∪

⊆ IIN ,(13.8)

f> ⊆ s
∪

◦< ◦ f ,(13.9)

2

E�e
tively, the 
al
ulation shows that |on termination of the outer loop| the negation of f
∪

◦< ◦ s

is f
∪

◦≥ ◦ s . When reasoning pointwise, it is tempting to dismiss this as an obvious property of the

less-than ordering on numbers. However, the proven equality is only valid on termination sin
e, during

exe
ution, s and f are partial fun
tions and the negation of f
∪

◦< ◦ s relates 
ertain nodes on whi
h

f and/or s are unde�ned. It is in
orre
t to assert that the property G
∪ ⊆ s

∪

◦≤ ◦ f is an invariant of

depth-�rst sear
h.
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f> ◦G ◦ s>• = ⊥⊥ = f
∪

◦< ◦ s ∩ G ,(13.10)

f>• ◦ s
∪

◦≤ ◦ s ⊆ G∗
,(13.11)

s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f ⊆ G∗
,(13.12)

s
∪

◦≤ ◦ s ∩ f
∪

◦< ◦ f = f
∪

◦< ◦ s ◦ f> .(13.13)

Formally, Inv(s,f) is de�ned to be

(13.8) ∧ (13.9) ∧ (13.10) ∧ (13.11) ∧ (13.12) ∧ (13.13) .

Also, P(a,s,f) is de�ned to be

a ◦ s>• = a ∧ s> ◦ f>• ◦⊤⊤ ◦a ⊆ (s> ◦ f>• ◦G)∗

and Q(a,s,f) is de�ned to be

a ◦ s> ◦ f>• = a

∧ f> ◦ s
∪

◦< ◦ s ◦a = f
∪

◦< ◦ s ◦a

∧ a ◦ s
∪

◦< ◦ s ◦ f>• = ⊥⊥

∧ f>• ◦ s> ◦⊤⊤ ◦a ⊆ (s> ◦ f>• ◦G)∗ .

Finally, Invrel is de�ned by

Invrel = MT 2 ∩ Fr
∪

◦ (⊆) ◦Fr ∩ Grey
∪

◦Grey ∩ Inv
∪

◦ (⇐) ◦ Inv ∩ sInc

where, for all s , f , s ′ and f ′ ,

(s ′, f ′) [[MT 2]] (s, f) ≡ s ′>⊇ s> ∧ f ′>⊇ f> ∧ s ′> 6= s> ∧ f ′> 6= f> ,

Fr(s,f) = s> ◦G ◦ s>• ,

Grey(s,f) = s> ◦ f>• , and

(s ′, f ′) [[sInc]] (s, f) ≡ s>• ◦ s ′
∪

◦≤ ◦ s = ⊥⊥ .

✷
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The reader is invited to 
ompare invariant properties (13.8) thru (13.13) with invari-

ant properties (13.1) thru (13.5) of the outer loop. Properties (13.12) and (13.4) are

identi
al; the remainder are almost identi
al with some small di�eren
es.

Property (13.8) is weaker than (13.1): the equality f>= s> has been weakened to

f>⊆ s> . This is the same weakening made in se
tion 11.1 where the equality fnd= seen

was weakened to fnd⊆ seen .

The property (13.11) is missing from the invariant properties of the outer loop. It

asserts that there is a path from node a to node b if a is grey and the sear
h from a

started before the sear
h from b . In the outer loop s> ◦ f>• = ⊥⊥ |it is the invariant

seen ◦∼fnd = ⊥⊥ dis
ussed in se
tion 11.1| so (13.11) is easily shown to be true.

Finally, (13.13) di�ers from (13.5) in that it in
ludes an additional domain restri
tion

\ f> ". In the outer loop, the domain restri
tion is super
uous be
ause s> and f> are

equal.

The property P(a,s,f) should be 
ompared with the properties used to instantiate

p.a when reasoning about the implementation of depth-�rst sear
h shown in �g. 12.3.

They are identi
al but for the repla
ement of seen by s> , ∼seen by s>• and ∼fnd by

f>• . We exploit this fa
t later.

The relations MT 2 , Fr
∪

◦ (⊆) ◦Fr and Grey
∪

◦Grey have been 
onsidered in depth

in se
tion 11.1 |albeit before the repla
ement of the variable seen by s> and fnd

by f>| . Consequently, we mention their veri�
ation only brie
y below. (The term

Grey
∪

◦Grey expresses the property that the value of s> ◦ f>• is an invariant value; this

is equivalent to the invarian
e of the value of seen ◦∼fnd dis
ussed in se
tion 12.3.)

The term Inv
∪

◦ (⇐) ◦ Inv states that Inv is an invariant property. The invariant

Inv is di�erent from the invariant property in se
tion 12.3 be
ause it expresses properties

of the orderings on start and �nish times. Nevertheless, we use the same te
hniques to

verify its validity.

Fig. 13.2 summarises the implementation of dfs(a) with assertions bra
keting ea
h

statement.

Conditional 
orre
tness is established using the indu
tion theorem, theorem 12.5.

The term p.a in theorem 12.5 is instantiated to the 
ore
exive 
orresponding to the

property P(a,s,f)∧ Inv(s,f) ; similarly, the term q.a is the 
ore
exive 
orresponding

to the property Q(a,s,f)∧ Inv(s,f) . The relation R is instantiated to Invrel (see

de�nition 13.7). The task is thus to verify (12.6), (12.7), (12.8) and (12.9) with these

instantiations.

Be
ause of the number of 
lauses that have to be established, a large number of


al
ulations have to be 
arried out. We begin with (12.9). Although it is typi
ally

the hardest to verify, the groundwork that we have done in se
tion 11 means that it is

relatively easy to verify.
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{ Invariant Relation: MT 2 ∩ Fr
∪

◦ (⊆) ◦ Fr ∩ sInc

Invariant Property: Inv(s,f)

Invariant Value: s> ◦ f>•

Invariant Value: s∪ ◦≤ ◦ s ◦ f>• }

{ P(a,s,f) ∧ Inv(s,f) }

s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a

{ Inner Loop Invariant: Q(a,s,f) ∧ Inv(s,f) }

; while a ◦G ◦ s>• 6= ⊥⊥ do

begin


hoose node b su
h that a ◦⊤⊤ ◦b ⊆ a ◦G ◦ s>•

; { P(b,s,f) ∧ Inv(s,f) }

dfs(b)

{ Q(a,s,f) ∧ Inv(s,f) }

end

{ a ◦G ◦ s>• = ⊥⊥ ∧ Q(a,s,f) ∧ Inv(s,f) }

; f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a

Figure 13.2: Timestamps: The Pro
edure dfs(a)
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13.1.2 The Relation Invrel

Comparing the relation Invrel with the invariant relation dis
ussed in se
tion 12.3, the


hanges that have been made are the addition of the the relation sInc , and the 
hanges

to the invariant properties 
aptured by Inv . In this se
tion, we verify (12.9) for sInc .

(The veri�
ation of (12.9) for the relation Inv
∪

◦ (⇐) ◦ Inv is the subje
t of later

se
tions: be
ause it is re
exive and transitive,

F _◦ t _◦ K.(Inv∪ ◦ (⇐) ◦ Inv)∗ _◦ S _

◦ p _⊆ K.(Inv∪ ◦ (⇐) ◦ Inv)

⇐ F _◦ t _◦q _⊆ K.(Inv∪ ◦ (⇐) ◦ Inv) ∧ S _◦p _⊆ K.(Inv∪ ◦ (⇐) ◦ Inv) .

That is, we show that Inv(s,f) is an invariant property of the �nal assignment to f and

of the initial assignment to s , assuming the pre
onditions t _◦q and p .)

We �rst show that (in 
ombination with other relations) sInc is re
exive and transi-

tive. This means that the veri�
ation of (12.9) for this new relation 
an be de
omposed

into verifying that the initial assignment to s maintains the relation, and that the �nal

assignment to f also maintains the relation. The latter is trivially true (be
ause sInc

is independent of f ) so only the simple proof of the former is required.

We have already seen that the relations MT 2 , Fr
∪

◦ (⊆) ◦ Fr and Inv
∪

◦ (⇐) ◦ Inv are

transitive. The remaining relation, sInc , is not transitive. However, in 
ombination

with the other relations, it is:

Lemma 13.14 When restri
ted to states (s, f) su
h that s is fun
tional, the relation

sInc ∩MT 2

is transitive. With the same restri
tion, the relation

sInc ∩ (I∪MT 2)

is re
exive and transitive. (The relation ( I∪MT 2 ) is ME2 where ME is the superset

relation on 
ore
exives.)

Proof The relation sInc is re
exive sin
e

I⊆ sInc

= { type of sInc }

〈∀ s,f :: s>• ◦ s
∪

◦≤ ◦ s = ⊥⊥〉

= { s
∪ = s> ◦ s

∪

}

〈∀ s,f :: s>• ◦ s> ◦ s
∪

◦≤ ◦ s = ⊥⊥〉

= { s>• ◦ s> = ⊥⊥ , ⊥⊥ is zero of 
omposition }

true .

Algorithmi
 Graph Theory April 8, 2022



273

The relation I∪MT 2 is also re
exive. It follows that the interse
tion of the two relations

is re
exive.

That sInc ∩MT 2 is transitive follows from the following 
al
ulation.

s0>• ◦ s2
∪

◦≤ ◦ s0

= { I = s1>∪ s1>• }

s0>• ◦ s1> ◦ s2
∪

◦≤ ◦ s0 ∪ s0>• ◦ s1>• ◦ s2
∪

◦≤ ◦ s0

⊆ { assume: s0 ⊆ s1 }

s0>• ◦ s1> ◦ s2
∪

◦≤ ◦ s0 ∪ s0>• ◦ s1>• ◦ s2
∪

◦≤ ◦ s1

= { assume: s1>• ◦ s2
∪

◦≤ ◦ s1 = ⊥⊥ }

s0>• ◦ s1> ◦ s2
∪

◦≤ ◦ s0

⊆ { domains (spe
i�
ally [ R> = I ∩ R∪

◦R ] with R := s1 ) }

s0>• ◦ s1
∪

◦ s1 ◦ s2
∪

◦≤ ◦ s0

⊆ { assume: s1⊆ s2 }

s0>• ◦ s1
∪

◦ s2 ◦ s2
∪

◦≤ ◦ s0

⊆ { (13.8) (spe
i�
ally, s2 is fun
tional) and monotoni
ity }

s0>• ◦ s1
∪

◦≤ ◦ s0

= { assume: s0>• ◦ s1
∪

◦≤ ◦ s0 = ⊥⊥ }

⊥⊥ .

Summarising, we have shown that, for all s0 , s1 , s2 , f0 , f1 and f2

(s2, f2) [[sInc]] (s0, f0)

⇐ (s2, f2) [[sInc]] (s1, f1) ∧ (s1, f1) [[sInc]] (s0, f0)

∧ s0⊆ s1⊆ s2 ∧ s2> = s2∪

◦ s2 .

Sin
e MT 2 is transitive, it follows that sInc∩MT 2 is transitive under the stated re-

stri
tion. (The �nal 
onjun
t, s2> = s2∪

◦ s2 , is the reason for introdu
ing the type

restri
tion.)

✷

Lemma 13.14 requires that the variable s in the de�nition of sInc is fun
tional. This

is a 
onsequen
e of the property Inv(s,f) whi
h we show to be an invariant property in

the subse
tions that follow this one.

Corollary 13.15 The relation Invrel is transitive.
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Proof The interse
tion of transitive relations is transitive. (This is well-known. Its easy

(point-free) proof is left as an exer
ise for the reader.) Thus, 
ombining lemma 13.14

with the known transitivity of MT 2 , Fr
∪

◦ (⊆) ◦Fr , Grey∪

◦Grey and Inv
∪

◦ (⇐) ◦ Inv ,

we 
on
lude that Invrel is transitive.

✷

Lemma 13.16 The property (12.9) is valid with R instantiated to sInc∩ME2 . To

be pre
ise,

F _◦ K.Invrel _◦ S _

◦ p _⊆ K.sInc

where F and S are the timestamp assignments to s and f , respe
tively, and p.a is the


ore
exive 
orresponding to the assertion P(a,s,f)∧ Inv(s,f) .

Proof We begin by showing that

K.Invrel _◦ S _

◦ p _⊆ K.sInc .

With m denoting (MAX.s0 ↑MAX.f0)+1 , we have:

(s1, f1)[[Invrel ◦S.a ◦p.a]](s0, f0)

⇒ { de�nitions of F , S and p }

(s1, f1)[[Invrel]](s0 ∪ m ◦⊤⊤ ◦a , f0)

∧ s0>• ◦∼a ◦ s1
∪

◦≤ ◦ (s0 ∪ m ◦⊤⊤ ◦a) = ⊥⊥

∧ s0◦a=⊥⊥ ∧ Inv(s0,f0)

⇒ { distributivity and properties of ⊥⊥ }

(s1, f1)[[Invrel]](s0 ∪ m ◦⊤⊤ ◦a , f0)

∧ s0>• ◦∼a ◦ s1
∪

◦≤ ◦ s0 = ⊥⊥

∧ s0◦a=⊥⊥ ∧ Inv(s0,f0) .

Also,

(s1, f1)[[K.sInc]](s0, f0) ≡ s0>• ◦ s1
∪

◦≤ ◦ s0 = ⊥⊥ .

Our goal is thus to prove that, for all a , m , s0 , s1 , f0 and f1 ,

(s1, f1)[[Invrel]](s0 ∪ m ◦⊤⊤ ◦a , f0)

∧ s0>• ◦∼a ◦ s1
∪

◦≤ ◦ s0 = ⊥⊥

∧ s0◦a=⊥⊥ ∧ Inv(s0,f0)

⇒ s0>• ◦ s1
∪

◦≤ ◦ s0 = ⊥⊥ .
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Unusually, we begin with the simpler side (be
ause it is not immediately 
lear whi
h


omponents of Invrel are required).

s0>• ◦ s1
∪

◦≤ ◦ s0 = ⊥⊥

⇐ { 
ase analysis on ∼a∪a }

s0>• ◦∼a ◦ s1
∪

◦≤ ◦ s0 = ⊥⊥

∧ s0>• ◦a ◦ s1
∪

◦≤ ◦ s0 = ⊥⊥

⇐ { introdu
e assumption: s0◦a=⊥⊥ ;

equivalently, s0>• ◦a = a }

s0>• ◦∼a ◦ s1
∪

◦≤ ◦ s0 = ⊥⊥

∧ a ◦ s1
∪

◦≤ ◦ s0 = ⊥⊥

∧ s0◦a=⊥⊥

⇐ { 1st 
onjun
t: monotoni
ity;

2nd 
onjun
t: introdu
e assumption s1◦a = m◦⊤⊤◦a }

s0>• ◦ s1
∪

◦≤ ◦ s0 = ⊥⊥

∧ a ◦⊤⊤ ◦m ◦≤ ◦ s0 = ⊥⊥

∧ s0◦a=⊥⊥ ∧ s1◦a = m◦⊤⊤◦a

= { by de�nition of m , m ◦≤ ◦ s0 = ⊥⊥ }

s0>• ◦ s1
∪

◦≤ ◦ s0 = ⊥⊥

∧ s0◦a=⊥⊥ ∧ s1◦a = m◦⊤⊤◦a

⇐ { lemma 5.49 with f,h := m◦⊤⊤◦a , s1◦a

(m◦⊤⊤◦a is fun
tional with right domain a ,

so too is s1◦a is if s1 is fun
tional) }

s0>• ◦ s1
∪

◦≤ ◦ s0 = ⊥⊥

∧ s0◦a=⊥⊥

∧ s1 ⊇ m◦⊤⊤◦a ∧ s1 ◦ s1
∪ = s1< .

Comparing the goal with what has just been established, we have to prove that

(s1, f1)[[Invrel]](s0 ∪ m ◦⊤⊤ ◦a , f0) ∧ Inv(s0,f0)

⇒ s1⊇m◦⊤⊤◦a ∧ s1 ◦ s1
∪ = s1< .
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The �rst 
onjun
t follows from the MT 2 
omponent of Invrel , and the se
ond and third


onjun
ts follow from the Inv
∪

◦ (⇐) ◦ Inv 
omponent of Invrel , in parti
ular (13.8).

That we 
an now dedu
e that

F _◦ K.Invrel _◦ S _

◦ p _⊆ K.sInc

is a straightforward 
onsequen
e of the property

(s1, f1)[[F]](s0, f0) ⇒ s1= s0 ,

for all s1 , f1 , s0 and f0 , and sInc(s,f) is independent of f . (The details are left to

the reader.)

✷

The following theorem summarises the results of this se
tion.

Theorem 13.17 The veri�
ation 
ondition (12.9) is valid if it is valid for the invariant

properties expressed by Inv . That is,

(12.9)[R := MT 2 ∩ Fr
∪

◦ (⊆) ◦Fr ∩ Grey
∪

◦Grey ∩ sInc]

and it remains to prove

(12.9)[R := Inv
∪

◦ (⇐) ◦ Inv] .

Proof The relations MT 2 , Fr
∪

◦ (⊆) ◦Fr and Grey
∪

◦Grey involve only the right

domains of s and f and, 
onsequently, that (12.9) is valid for them was established in

se
tion 12.3 (with seen and fnd taking the pla
e of s> and f> , respe
tively). Lemma

13.16 establishes (12.9) for the relation sInc . (Re
all the dis
ussion in se
tion 12.2 of

how the proof obligations are broken down.)

✷

13.1.3 Assigning Start Times

The spe
i�
ation of the assignment to s is that, assuming pre
ondition P , it truthi�es

the property Q whilst maintaining the invariant property Inv . That is, we must verify

that

{ P(a,s,f) ∧ Inv(s,f) }

s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a

{ Q(a,s,f) ∧ Inv(s,f) }
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for all a , s and f .

Be
ause of the number of 
onjun
ts in the post
ondition (ten in total!), the 
al
ulation

is inevitably long.

We begin with a lemma on the e�e
t of the assignment on subterms of Q and Inv .

Lemma 13.18

(s∪ ◦≤ ◦ s)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] = s
∪

◦≤ ◦ s ∪ (s> ∪ a)◦⊤⊤◦a ,

(s∪ ◦< ◦ s)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] = s
∪

◦< ◦ s ∪ s> ◦⊤⊤ ◦a , and

(s>)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] = s>∪a .

Proof In the 
al
ulations below, we use m to denote (MAX.s↑MAX.f)+1 ; that is, m
is a 
ore
exive representing a natural number that is stri
tly greater than MAX.s↑MAX.f .
It is thus a proper atom and

m ◦≤ ◦ s = ⊥⊥ = m ◦< ◦ s

∧ s
∪

◦≤ ◦m = s> ◦⊤⊤ ◦m = s
∪

◦< ◦m

∧ m ◦≤ ◦m = m .

We have:

(s∪ ◦≤ ◦ s)[s := s ∪ m ◦⊤⊤ ◦a]

= { de�nition of substitution and distributivity,

a and m are 
ore
exives, so a=a∪

and m=m∪

}

s
∪

◦≤ ◦ s ∪ a ◦⊤⊤ ◦m ◦≤ ◦ s

∪ s
∪

◦≤ ◦m ◦⊤⊤ ◦a ∪ a ◦⊤⊤ ◦m ◦≤ ◦m ◦⊤⊤ ◦a

= { de�ning properties of m (see above) }

s
∪

◦≤ ◦ s ∪ s> ◦⊤⊤ ◦m ◦⊤⊤ ◦a ∪ a ◦⊤⊤ ◦m ◦⊤⊤ ◦a

= { m 6=⊥⊥ , 
one rule and distributivity }

s
∪

◦≤ ◦ s ∪ (s> ∪ a)◦⊤⊤◦a .

Similarly, we have:.
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(s∪ ◦< ◦ s)[s := s ∪ m ◦⊤⊤ ◦a]

= { de�nition of substitution and distributivity,

a and m are 
ore
exives, so a=a∪

and m=m∪

}

s∪ ◦< ◦ s ∪ a ◦⊤⊤ ◦m ◦< ◦ s

∪ s
∪

◦< ◦m ◦⊤⊤ ◦a ∪ a ◦⊤⊤ ◦m ◦< ◦m ◦⊤⊤ ◦a

= { de�ning properties of m (see above) }

s
∪

◦< ◦ s ∪ s> ◦⊤⊤ ◦m ◦⊤⊤ ◦a

= { m 6=⊥⊥ , 
one rule and distributivity }

s
∪

◦< ◦ s ∪ s> ◦⊤⊤ ◦a .

(It is also possible to derive the se
ond assertion from the �rst using the obvious rela-

tion between less-than and at-most. The 
opy-and-paste we have just used is qui
ker.)

Finally,

(s>)[s := s ∪ m ◦⊤⊤ ◦a]

= { de�nition of substitution and distributivity }

s> ∪ (m ◦⊤⊤ ◦a)>

= { domains }

s> ∪ (⊤⊤◦m◦⊤⊤◦a)>

= { m 6=⊥⊥ , 
one rule, domains and a is 
ore
exive }

s> ∪ a .

✷

Lemma 13.19 The property Q(a,s,f) is truthi�ed by the assignment to s . That is,

(Q(a,s,f))[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] ⇐ P(a,s,f)∧ Inv(s,f) .

Proof There are four 
onjun
ts in the de�nition of Q(a,s,f) :

a ◦ s> ◦ f>• = a

∧ f> ◦ s
∪

◦< ◦ s ◦a = f
∪

◦< ◦ s ◦a

∧ a ◦ s
∪

◦< ◦ s ◦ f>• = ⊥⊥

∧ f>• ◦ s> ◦⊤⊤ ◦a ⊆ (s> ◦ f>• ◦G)∗ .
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(Be
ause they depend only on the domains s> and f>• , the �rst and last 
onjun
ts have

e�e
tively been veri�ed already in se
tion 12.3. Nevertheless, we repeat the proofs here

to show the additional elements in the 
al
ulation.)

The validity of the post
ondition a ◦ s> ◦ f>• = a is straightforward:

(a ◦ s> ◦ f>•)[s := s ∪ m ◦⊤⊤ ◦a]

= { de�nition of substitution, distributivity }

a ◦ s> ◦ f>• ∪ a ◦ (m ◦⊤⊤ ◦a)>

= { domains }

a ◦ s> ◦ f>• ∪ a◦a

= { assumption: P(a,s,f) , hen
e a ◦ s> = ⊥⊥ ;

a is a 
ore
exive, so a◦a=a }

a .

That is (for arbitrary m ),

(a ◦ s> ◦ f>• = a)[s := s ∪ m ◦⊤⊤ ◦a] ⇐ a ◦ s>• ◦ f>• = a

as required.

That the se
ond is truthi�ed is also obvious

3

. With m denoting (MAX.s↑MAX.f)+1 ,
we have:

(f> ◦ s
∪

◦< ◦ s ◦a = f
∪

◦< ◦ s ◦a)[s := s ∪ m ◦⊤⊤ ◦a]

= { substitution and lemma 13.18,

assumption: P(a,s,f) , hen
e a ◦ s> = ⊥⊥ }

f> ◦ s> ◦⊤⊤ ◦a = f
∪

◦< ◦m ◦⊤⊤ ◦a

= { assumption: Inv(s,f) , in parti
ular f>⊆ s> ;

by de�nition of m , f
∪

◦< ◦m = f> ◦⊤⊤ ◦m }

f> ◦⊤⊤ ◦a = f> ◦⊤⊤ ◦m ◦⊤⊤ ◦a

= { ⊤⊤◦m◦⊤⊤=⊤⊤ }

true .

That the third is truthi�ed is slightly less obvious:

3

This is perhaps not obvious in the point-free form. This is one 
ase where the pointwise formulation

is 
learer.
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(a ◦ s
∪

◦< ◦ s ◦ f>•)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { substitution and lemma 13.18 }

a ◦ (s∪ ◦< ◦ s ∪ s> ◦⊤⊤ ◦a) ◦ f>•

= { distributivity and domains }

a ◦ s> ◦ (s∪ ◦< ◦ s ∪ s> ◦⊤⊤ ◦a) ◦ f>•

= { assumption: P(a,s,f) , hen
e a ◦ s> = ⊥⊥ }

⊥⊥ .

The validity of the fourth is established as follows.

(f>• ◦ s> ◦⊤⊤ ◦a ⊆ (s> ◦ f>• ◦G)∗)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { substitution and lemma 13.18 }

f>• ◦ (s>∪a) ◦⊤⊤ ◦a ⊆ ((s>∪a) ◦ f>• ◦G)∗

⇐ { distributivity, suprema }

f>• ◦ s> ◦⊤⊤ ◦a ⊆ (s> ◦ f>• ◦G)∗ ∧ f>• ◦a ◦⊤⊤ ◦a ⊆ (a ◦ f>• ◦G)∗

⇐ { a◦⊤⊤◦a=a , a⊆ I , f>•⊆ I , I⊆G∗
, and monotoni
ity }

f>• ◦ s> ◦⊤⊤ ◦a ⊆ (s> ◦ f>• ◦G)∗

⇐ { assumption: P(a,s,f) ,

in parti
ular f>• ◦ s> ◦⊤⊤ ◦a ⊆ (s> ◦ f>• ◦G)∗ }

true .
✷

We now 
onsider in turn ea
h of the 
onjun
ts of Inv(s,f) and show that they are

invariants of the assignment to s .

Lemma 13.20 The property (13.8) is an invariant of the assignment to s .

Proof We leave this to the reader. The 
al
ulation is very similar to the one in lemma

10.21.

✷

Lemma 13.21 The property (13.9) is an invariant of the assignment to s .

Proof This a trivial 
onsequen
e of the theorem s⊆ s∪a for all s and a .

✷

Lemma 13.22 The property (13.10) is an invariant of the assignment to s . Spe
i�-


ally,
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(13.10) [s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] ⇐ (13.10) ∧P(a,s,f) .

Proof Obviously

(f> ◦G ◦ s>• = ⊥⊥)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] ⇐ f> ◦G ◦ s>• = ⊥⊥ .

(Formally, monotoni
ity is the key: the assignment in
reases s and de
reases s>• .) For

the se
ond 
onjun
t, we have

(⊥⊥ = f
∪

◦< ◦ s ∩ G)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

⇐ { de�nition of substitution and (13.10) }

⊥⊥ = f
∪

◦< ◦ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a ∩ G

= { property of MAX : (f∪ ◦< ◦ (MAX.s↑MAX.f)+1)< = f> ,

domains }

⊥⊥ = f> ◦G ◦a

= { assumptions: P(a,s,f) , so a⊆ s>• , and (13.10) }

true .

✷

Lemma 13.23 The property (13.11) is an invariant of the assignment to s . Spe
i�-


ally,

(13.11) [s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] ⇐ (13.11) ∧ P(a,s,f) .

Proof

(f>• ◦ s
∪

◦≤ ◦ s)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { de�nition of substitution and lemma 13.18 }

f>• ◦ (s∪ ◦≤ ◦ s ∪ (s>∪a)◦⊤⊤◦a)

= { distributivity, a◦⊤⊤◦a=a }

f>• ◦ s
∪

◦≤ ◦ s ∪ f>• ◦ s> ◦⊤⊤ ◦a ∪ f>• ◦a

⊆ { assumption: P(a,s,f)

in parti
ular, f>• ◦ s> ◦⊤⊤ ◦a ⊆ G∗

and f>• ◦a = a }

f>• ◦ s
∪

◦≤ ◦ s ∪ f>• ◦ s> ◦G∗
◦a ∪ a

⊆ { assumption: (13.11),
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a , f>• and s> are all 
ore
exives }

G∗ ∪ G∗ ∪ I

= { de�nition of G∗
, idempoten
y of union,

substitution }

(G∗)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] .

✷

Lemma 13.24 Property (13.12) is an invariant of the assignment to s . Spe
i�
ally,

(13.12) [s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] ⇐ (13.12) ∧ a ◦ s>• ◦ f>• = a .

Proof It suÆ
es to prove that the left side of (13.12) is invariant under the assignment.

(s∪ ◦≤ ◦ s ∩ f
∪

◦≥ ◦ f)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f

assuming that a ◦ s>• ◦ f>• = a .

(s∪ ◦≤ ◦ s ∩ f
∪

◦≥ ◦ f)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { de�nition of substitutivity and lemma 13.18 }

(s∪ ◦≤ ◦ s ∪ (s∪ ∪ a)◦⊤⊤◦a) ∩ f
∪

◦≥ ◦ f

= { distributivity }

(s∪ ◦≤ ◦ s ∩ f
∪

◦≥ ◦ f) ∪ ((s∪ ∪ a)◦⊤⊤◦a ∩ f
∪

◦≥ ◦ f)

= { domains

(spe
i�
ally R∩S = R ◦S> ∩ S and (f∪ ◦≥ ◦ f)> ⊆ f> ) }

(s∪ ◦≤ ◦ s ∩ f
∪

◦≥ ◦ f) ∪ ((s∪ ∪ a) ◦⊤⊤ ◦a ◦ f> ∩ f
∪

◦≥ ◦ f)

= { assumption: a ◦ s>• ◦ f>• = a , hen
e a ◦ f> = ⊥⊥ }

s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f .

The lemma now follows from the de�nition of substitution.

✷

Lemma 13.25 Property (13.13) is an invariant of the assignment to s . Spe
i�
ally,
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(13.13) [s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] ⇐ (13.13) ∧ a ◦ s>• ◦ f>• = a .

Proof For brevity, we use m to denote (MAX.s↑MAX.f)+1 .

(13.13) [s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { de�nition of substitutivity and lemma 13.18 }

(s∪ ◦≤ ◦ s ∪ (s∪ ∪ a)◦⊤⊤◦a) ∩ f
∪

◦< ◦ f = f
∪

◦< ◦ (s ∪ m◦⊤⊤◦a) ◦ f>

⇐ { distributivity and assumption: (13.13) }

(s∪ ∪ a)◦⊤⊤◦a ∩ f
∪

◦< ◦ f = f
∪

◦< ◦m ◦⊤⊤ ◦a ◦ f>

= { domains }

(s∪ ∪ a) ◦ f∪ ◦< ◦ f ◦a = f
∪

◦< ◦m ◦⊤⊤ ◦a ◦ f>

= { assumption: a ◦ s>• ◦ f>• = a , hen
e a ◦ f> = ⊥⊥ }

⊥⊥=⊥⊥

= { re
exivity }

true .
✷

In summary:

Lemma 13.26 The 
laimed post
ondition in the program segment

{ P(a,s,f) ∧ Inv(s,f) }

s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a

{ Q(a,s,f) ∧ Inv(s,f) }

is indeed valid.

✷

13.1.4 The Precondition

Next we 
onsider the pre
ondition P of a 
all of dfs . That is, we establish 
ondition

12.7 of the depth-�rst sear
h indu
tion theorem, theorem 12.5.

Re
all our earlier remark that the property P is e�e
tively identi
al to the the prop-

erty used to instantiate p.a when reasoning about the implementation of depth-�rst

sear
h shown in �g. 12.3: one is obtained from the other by repla
ing seen by s> ,

∼seen by s>• and ∼fnd by f>• . The reasoning used in se
tion 12.3 (and more spe
i�-


ally se
tion 12.3.2) is therefore appli
able here with only minor 
hanges.
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The pro
edure dfs is 
alled from two pla
es: the outer and the inner loops. Also,

P(a,s,f) is de�ned to be

a ◦ s>• = a ∧ s> ◦ f>• ◦⊤⊤ ◦a ⊆ (s> ◦ f>• ◦G)∗ .

The validity of P(a,s,f) when dfs(a) is 
alled in the outer loop follows from properties

established in se
tion 12.3. In the outer loop, f>= s> is an invariant |it is the property

fnd= seen established in 12.3| and the 
hoi
e of a is a ◦ s> = ⊥⊥ . Thus a ◦ s>• = a

follows immediately. The se
ond 
onjun
t follows be
ause the invariant f>= s> implies

that f>• ◦ s> = ⊥⊥ .

When dfs(b) is 
alled in the inner loop, the validity of the two 
onjun
ts was estab-

lished in se
tion 12.3.2. The 
al
ulation given there 
an be repeated here by repla
ing

seen by s> , ∼seen by s>• and ∼fnd by f>• .

This 
ompletes the proof that the property P holds when dfs is 
alled from either

the outer or the inner loop.

13.1.5 Maintaining the Invariant of the Inner Loop

Re
all that our task is to apply theorem 12.5 with the term q.a instantiated to the


ore
exive 
orresponding to the property labelled \Inner Loop Invariant" in �g. 13.2.

That is, for all s ′ , f ′ , s and f ,

(s ′, f ′)[[q.a]](s, f) ≡ s ′= s ∧ f ′= f ∧ Q(a,s,f) ∧ Inv(s,f) .

The relation R is instantiated to Invrel (see de�nition 13.7). In this se
tion, we 
onsider

the task of verifying (12.8) with these instantiations. Spe
i�
ally, we show that, for all

a , s0 , f0 , s1 and f1 ,

Q(a,s1,f1) ∧ Inv(s1,f1)

⇐ Q(a,s0,f0) ∧ Inv(s0,f0) ∧ (s1, f1) [[Invrel]] (s0, f0) .

In words, q.a is maintained by Invrel .

That the property Inv is maintained by Invrel is immediate: one of the terms in

the de�nition of Invrel is Inv
∪

◦ (⇐) ◦ Inv . The task is thus to show that the 
ore
exive


orresponding to the boolean fun
tion 〈s,f ::Q(a,s,f)〉 is maintained by Invrel , with the

additional assumption that Inv is both a valid pre
ondition and post
ondition. That

is, we prove that

Q(a,s1,f1)

⇐ Inv(s1,f1) ∧ Q(a,s0,f0) ∧ Inv(s0,f0) ∧ (s1, f1) [[Invrel]] (s0, f0) .
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The predi
ate Q 
aptures properties of a that 
annot be strengthened further. For

example, the 
onjun
t

a ◦ s
∪

◦< ◦ s ◦ f>• = ⊥⊥(13.27)


annot be strengthened to

f>• ◦ s
∪

◦< ◦ s ◦ f>• = ⊥⊥ .

Property (13.27) asserts that, at the beginning of ea
h iteration of the inner loop, node

a is the last node from whi
h a sear
h has started but not �nished. It is weaker than

the property

a ◦ s
∪

◦< ◦ s = ⊥⊥ ,

whi
h we showed to be established by the assignment to s (see lemma 13.26). The

introdu
tion of the term \ f>• " is ne
essary be
ause, during exe
ution of dfs(a) , sear
hes

from other nodes are started and �nished. Be
ause the assertion is weaker, it is 
learly

true initially. That it is maintained by subsequent exe
utions of dfs(b) in the inner

loop is an immediate 
onsequen
e of Invrel , in parti
ular the properties that s> ◦ f>• is

invariant and s is in
reasing. This is proven in lemma 13.31. Similarly, it is shown that

the other 
onjun
ts of Q are maintained by the inner loop in lemmas 13.28, 13.30 and

13.32.

The �rst lemma is easy:

Lemma 13.28 For all a , s0 , f0 , s1 and f1 ,

a ◦ s1> ◦ f1>• = a

⇐ a ◦ s0> ◦ f0>• = a ∧ (s1, f1) [[Invrel]] (s0, f0) .

Proof This is immediate from the 
onjun
t s1> ◦ f1>• = s0> ◦ f0>•
in the de�nition of

Invrel . (See de�nition 13.7.)

✷

Some of the remaining lemmas are not so easy. The following lemma is used repeat-

edly in the 
al
ulations.

Lemma 13.29 For all a , s0 , f0 , s1 and f1 ,

s1 = s0 ∪ s1 ◦ s0>• ∧ f1 = f0 ∪ f1 ◦ f0>• ∧ s1◦a = s0◦a ∧ s1 ◦ s0> = s0

⇐ a ◦ s0> = a ∧ (s1, f1) [[Invrel]] (s0, f0) .

Proof For the �rst 
onjun
t, we exploit the key is that s1⊇ s0 and both s0 and s1

are inje
tive and fun
tional.
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s1 = s0 ∪ s1 ◦ s0>•

= { anti-symmetry }

s1 ⊆ s0 ∪ s1 ◦ s0>• ∧ s1 ⊇ s0 ∪ s1 ◦ s0>•

= { assumption: (s1, f1) [[Invrel]] (s0, f0) ,

in parti
ular s1⊇ s0 ;

also I⊇ s0>• }

s1 ⊆ s0 ∪ s1 ◦ s0>•

⇐ { I = s0>∪ s0>•
, distributivity }

s1 ◦ s0> ⊆ s0

= { assumption: (s1, f1) [[Invrel]] (s0, f0) ,

in parti
ular s0> = s0∪

◦ s0 }

s1 ◦ s0
∪

◦ s0 ⊆ s0

⇐ { monotoni
ity }

s1 ◦ s0
∪ ⊆ I

⇐ { assumption: (s1, f1) [[Invrel]] (s0, f0) ,

in parti
ular s1> = s1∪

◦ s1 ,

s1>⊆ I }

s0
∪⊆ s1∪

= { assumption: (s1, f1) [[Invrel]] (s0, f0) ,

in parti
ular s0⊆ s1 ; monotoni
ity }

true .

The se
ond 
onjun
t is proved in the same way. The �nal two 
onjun
ts are straightfor-

ward.

s1◦a

= { s1 = s0 ∪ s1 ◦ s0>•
, distributivity }

s0◦a ∪ s1 ◦ s0>• ◦a

= { assumption: a ◦ s0> = a , so s0>• ◦a = ⊥⊥ }

s0◦a .

Similarly,
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s1 ◦ s0>

= { s1 = s0 ∪ s1 ◦ s0>•
, distributivity }

s0 ◦ s0> ∪ s1 ◦ s0>• ◦ s0>

= { s0 ◦ s0> = s0 , s0>• ◦ s0> = ⊥⊥ }

s0 .

✷

We now pro
eed to establish the maintenan
e properties as explained earlier.

Lemma 13.30 For all a , s0 , f0 , s1 and f1 ,

f1> ◦ s1
∪

◦< ◦ s1 ◦a = f1
∪

◦< ◦ s1 ◦a

⇐ a ◦ s0> ◦ f0>• = a ∧ f0> ◦ s0
∪

◦< ◦ s0 ◦a = f0
∪

◦< ◦ s0 ◦a

∧ Inv(s1,f1) ∧ Inv(s0,f0) ∧ (s1, f1) [[Invrel]] (s0, f0) .

Proof

f1> ◦ s1
∪

◦< ◦ s1 ◦a = f1
∪

◦< ◦ s1 ◦a

= { s1◦a = s0◦a (see lemma 13.29) }

f1> ◦ s1
∪

◦< ◦ s0 ◦a = f1
∪

◦< ◦ s0 ◦a

⇐ { I = s0>∪ s0>•
and distributivity }

f1> ◦ s0> ◦ s1
∪

◦< ◦ s0 ◦a = s0> ◦ f1
∪

◦< ◦ s0 ◦a

∧ f1> ◦ s0>• ◦ s1
∪

◦< ◦ s0 ◦a = s0>• ◦ f1
∪

◦< ◦ s0 ◦a

= { s1 ◦ s0> = s0 (see lemma 13.29) }

f1> ◦ s0
∪

◦< ◦ s0 ◦a = s0> ◦ f1
∪

◦< ◦ s0 ◦a

∧ f1> ◦ s0>• ◦ s1
∪

◦< ◦ s0 ◦a = s0>• ◦ f1
∪

◦< ◦ s0 ◦a

= { f1 ◦ f0> = f0 (see lemma 13.29) }

f0> ◦ s0
∪

◦< ◦ s0 ◦a = f0
∪

◦< ◦ s0 ◦a

∧ f1> ◦ f0>• ◦ s0
∪

◦< ◦ s0 ◦a = s0> ◦ f0>• ◦ f1
∪

◦< ◦ s0 ◦a

∧ f1> ◦ s0>• ◦ s1
∪

◦< ◦ s0 ◦a = s0>• ◦ f1
∪

◦< ◦ s0 ◦a

= { assumption: f0> ◦ s0
∪

◦< ◦ s0 ◦a = f0
∪

◦< ◦ s0 ◦a }

f1> ◦ f0>• ◦ s0
∪

◦< ◦ s0 ◦a = s0> ◦ f0>• ◦ f1
∪

◦< ◦ s0 ◦a

∧ f1> ◦ s0>• ◦ s1
∪

◦< ◦ s0 ◦a = s0>• ◦ f1
∪

◦< ◦ s0 ◦a

= { assumption: (s1, f1) [[Invrel]] (s0, f0) ;
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in parti
ular (s1, f1) [[sInc]] (s0, f0) , i.e. s0>• ◦ s1
∪

◦≤ ◦ s0 = ⊥⊥ }

f1> ◦ f0>• ◦ s0
∪

◦< ◦ s0 ◦a = s0> ◦ f0>• ◦ f1
∪

◦< ◦ s0 ◦a

∧ ⊥⊥ = s0>• ◦ f1
∪

◦< ◦ s0 ◦a

⇐ { assumption: (s1, f1) [[Invrel]] (s0, f0) ,

in parti
ular s0> ◦ f0>• = s1> ◦ f1>•
,

f1> ◦ f1>• = ⊥⊥ and ⊥⊥ is zero of 
omposition }

⊥⊥=⊥⊥ ∧ ⊥⊥ = s0>• ◦ f1
∪

◦< ◦ s0

⇐ { assumption: Inv(s1,f1) ; in parti
ular f1> ⊆ s1
∪

◦< ◦ f1 }

s0>• ◦ s1
∪

◦< ◦ f1 ◦ f1
∪

◦< ◦ s0 ⊆ ⊥⊥

⇐ { f1 ◦ f1
∪ ⊆ I , < is transitive }

s0>• ◦ s1
∪

◦< ◦ s0 ⊆ ⊥⊥

= { assumption: (s1, f1) [[Invrel]] (s0, f0) ;

in parti
ular (s1, f1) [[sInc]] (s0, f0) , i.e. s0>• ◦ s1
∪

◦≤ ◦ s0 = ⊥⊥ }

true .

✷

Lemma 13.31 For all a , s0 , f0 , s1 and f1 ,

a ◦ s1
∪

◦< ◦ s1 ◦ f1>• = ⊥⊥

⇐ a ◦ s0> = a ∧ (s1, f1) [[Invrel]] (s0, f0) ∧ a ◦ s0
∪

◦< ◦ s0 ◦ f0>• = ⊥⊥ .

Proof

a ◦ s1
∪

◦< ◦ s1 ◦ f1>•

= { by lemma 13.29 and 
onverse, a ◦ s1
∪ = a ◦ s0

∪

,

also s1 = s1 ◦ s1> }

a ◦ s0
∪

◦< ◦ s1 ◦ s1> ◦ f1>•

= { assumption: (s1, f1) [[Invrel]] (s0, f0) ,

in parti
ular s1> ◦ f1>• = s0> ◦ f0>• }

a ◦ s0
∪

◦< ◦ s1 ◦ s0> ◦ f0>•

= { s1 ◦ s0> = s0 (see lemma 13.29) }

a ◦ s0
∪

◦< ◦ s0 ◦ f0>•
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= { assumption: a ◦ s0
∪

◦< ◦ s0 ◦ f0>• = ⊥⊥ }

⊥⊥ .

✷

Lemma 13.32 For all a , s0 , f0 , s1 and f1 ,

f1>• ◦ s1> ◦⊤⊤ ◦a ⊆ G∗

⇐ f0>• ◦ s0> ◦⊤⊤ ◦a ⊆ G∗ ∧ (s1, f1) [[Invrel]] (s0, f0) .

Proof This is immediate from the 
onjun
t s1> ◦ f1>• = s0> ◦ f0>•
in the de�nition of

Invrel . (See de�nition 13.7.)

✷

13.1.6 Postcondition of Inner Loop

Now we 
onsider the stated post
ondition of the inner loop. Comparing the 
onjun
ts

with those of the loop invariant, one 
onjun
t has been added, viz.

a ◦G ◦ s>• = ⊥⊥ .

This is the 
ondition for the termination of the loop. We 
on
lude, therefore, that the

post
ondition of the inner loop is valid.

For later referen
e, we state this as a lemma.

Lemma 13.33 On termination of the inner loop, the assertion

a ◦G ◦ s>• = ⊥⊥

∧ a ◦ s> ◦ f>• = a ∧ a ◦ s
∪

◦< ◦ s ◦ f>• = ⊥⊥

∧ s> ◦ f>• ◦⊤⊤ ◦a ⊆ G∗ ∧ Inv(s,f)

is valid.

Proof As remarked above, the �rst 
onjun
t is the 
ondition for terminating the inner

loop. See subse
tion 13.1.5 for the validity of the remaining 
onjun
ts.

✷
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13.1.7 Assigning Finish Times

Now we turn to the �nal assignment to f . The task is to show that the property

Inv is maintained by the assignment. Again we begin by 
onsidering the e�e
t of the

assignment on various subterms.

Lemma 13.34

(f
∪

◦≥ ◦ f)[f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] = f
∪

◦≥ ◦ f ∪ a ∪ a ◦⊤⊤ ◦ f> ,

(f>)[f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] = f> ∪ a , and

(f>•)[f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] = f>• ◦∼a .

Proof For brevity, we let m denote (MAX.s↑MAX.f)+1 .

(f∪ ◦≥ ◦ f)[f := f ∪ m ◦⊤⊤ ◦a]

= { de�nition of substitution and distributivity,

a and m are 
ore
exives, so a=a∪

and m=m∪

}

f
∪

◦≥ ◦ f ∪ a ◦⊤⊤ ◦m ◦≥ ◦ f

∪ f∪ ◦≥ ◦m ◦⊤⊤ ◦a ∪ a ◦⊤⊤ ◦m ◦≥ ◦m ◦⊤⊤ ◦a

= { by de�nition of m , m ◦≥ ◦ f< = m ◦⊤⊤ ◦ f< and f< ◦≥ ◦m = ⊥⊥ ;

also m ◦≥ ◦m = m◦⊤⊤◦m }

f
∪

◦≥ ◦ f ∪ a ◦⊤⊤ ◦m ◦⊤⊤ ◦ f ∪ a ◦⊤⊤ ◦m ◦⊤⊤ ◦m ◦⊤⊤ ◦a

= { m 6=⊥⊥ , 
one rule and distributivity }

f
∪

◦≥ ◦ f ∪ a◦⊤⊤◦(f∪a)

= { distributivity, a=a◦⊤⊤◦a , ⊤⊤◦f = ⊤⊤ ◦ f> }

f
∪

◦≥ ◦ f ∪ a ∪ a ◦⊤⊤ ◦ f> .

Also,

(f>)[f := f ∪ m ◦⊤⊤ ◦a]

= { de�nition of substitution }

(f ∪ m ◦⊤⊤ ◦a)>

= { distributivity }

f> ∪ (m ◦⊤⊤ ◦a)>

= { domains }
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f> ∪ (⊤⊤ ◦m ◦⊤⊤ ◦a)>

= { 
one rule (m 6=⊥⊥ ) and (⊤⊤ ◦a)>=a }

f> ∪ a .

The �nal equality follows straightforwardly from f>•=∼(f>) and the properties of 
om-

plements.

✷

Lemma 13.35 The property (13.8) is an invariant of the assignment to f .

Proof As for lemma 13.20, we leave this straightforward 
al
ulation to the reader.

✷

Lemma 13.36 The property (13.9) is an invariant of the assignments to f .

Proof The invarian
e of the �rst 
onjun
t is straightforward.

(f> ⊆ s
∪

◦< ◦ f)[f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { substitution and lemma 13.34 }

f> ∪ a ⊆ s
∪

◦< ◦ (f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a)

⇐ { assumption: f> ⊆ s
∪

◦< ◦ f }

a ⊆ s
∪

◦< ◦ (MAX.s↑MAX.f)+1 ◦ ⊤⊤ ◦ a

⇐ { a⊆ I and monotoni
ity }

a ⊆ a ◦ s
∪

◦< ◦ (MAX.s↑MAX.f)+1 ◦ ⊤⊤ ◦ a

⇐ { a=a◦⊤⊤◦a and a = a ◦ s> (so a = a ◦ s> ◦⊤⊤ ◦a ) }

s> ◦⊤⊤ ⊆ s
∪

◦< ◦ (MAX.s↑MAX.f)+1 ◦⊤⊤

= { by de�nition of MAX ,

s> ◦⊤⊤ ⊆ s
∪

◦< ◦ (MAX.s↑MAX.f)+1 ◦⊤⊤ }

true .

The properties of MAX exploited in the last step are well known; we omit a formal

proof of their validity.

✷

Lemma 13.37 The property (13.10) is an invariant of the assignment to f .

Proof First,
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(f> ◦G ◦ s>•)[f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { substitution and lemma 13.34 }

(f>∪a) ◦G ◦ s>•

= { assume: f> ◦G ◦ s>• = ⊥⊥ , distributivity }

a ◦G ◦ s>•

= { termination of inner loop: lemma 13.33 }

⊥⊥ .

Se
ond,

(f∪ ◦< ◦ s ∩ G)[f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { substitution, distributivity and assumption: f
∪

◦< ◦ s ∩ G = ⊥⊥ }

((MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a)∪ ◦< ◦ s ∩ G

= { 
onverse }

a ◦⊤⊤ ◦ (MAX.s↑MAX.f)+1 ◦< ◦ s ∩ G

= { (MAX.s↑MAX.f)+1 ◦< ◦ s=⊥⊥ }

⊥⊥ .

✷

Lemma 13.38 The property (13.11) is an invariant of the assignment to f .

Proof This is obvious:

(f>• ◦ s
∪

◦≤ ◦ s)[f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { substitution and lemma 13.34 }

∼a ◦ f>• ◦ s
∪

◦≤ ◦ s

⊆ { ∼a⊆ I and assumption: (13.11) }

G∗

= { subsitution }

(G∗)[f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] .

✷

Lemma 13.39 The property (13.12) is an invariant of the assignment to f . Spe
i�-


ally,
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(13.12) [f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] ⇐ (13.11) ∧ (13.12) ∧ a ◦ f>• = a .

Proof

( s∪ ◦≤ ◦ s ∩ f∪ ◦≥ ◦ f ) [f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { de�nition of substitution and lemma 13.34 }

s
∪

◦≤ ◦ s ∩ (f∪ ◦≥ ◦ f ∪ a ∪ a ◦⊤⊤ ◦ f>)

= { distributivity, s
∪

◦≤ ◦ s ∩ a = a }

(s∪ ◦≤ ◦ s ∩ f
∪

◦≥ ◦ f) ∪ a ∪ (s∪ ◦≤ ◦ s ∩ a ◦⊤⊤ ◦ f>)

⊆ { assume: (13.12) }

G∗ ∪ a ∪ (s∪ ◦≤ ◦ s ∩ a ◦⊤⊤ ◦ f>)

= { a⊆ I⊆G∗
, domains }

G∗ ∪ a ◦ s
∪

◦≤ ◦ s ◦ f>

⊆ { assumption: a ◦ f>• = a , i.e. a⊆ f>• }

G∗ ∪ f>• ◦ s
∪

◦≤ ◦ s ◦ f>

⊆ { (13.11) }

G∗ ∪ G∗
◦ f>

= { f>•⊆ I , idempoten
y and substitution }

(G∗)[f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] .

✷

Lemma 13.40 The property (13.13) is an invariant of the assignment to f . Spe
i�-


ally,

(13.13) [f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] ⇐ (13.13) ∧ Q(a,s,f) .

(See the proof below for the spe
i�
 
onjun
t of Q(a,s,f) that is needed.)

Proof

( s
∪

◦≤ ◦ s ∩ f
∪

◦< ◦ f ) [f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { de�nition of substitution and lemma 13.34 }

s
∪

◦≤ ◦ s ∩ (f∪ ◦< ◦ f ∪ f> ◦⊤⊤ ◦a)

= { distributivity and domains }

(s∪ ◦≤ ◦ s ∩ f
∪

◦< ◦ f) ∪ f> ◦ s
∪

◦≤ ◦ s ◦a
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= { assumption: (13.13) }

f
∪

◦< ◦ s ◦ f> ∪ f> ◦ s
∪

◦≤ ◦ s ◦a

= { s is inje
tive, assumption: f> ◦a = ⊥⊥ }

f∪ ◦< ◦ s ◦ f> ∪ f> ◦ s∪ ◦< ◦ s ◦a

Also, letting m denote (MAX.s↑MAX.f)+1 ,

( f∪ ◦< ◦ s ◦ f> ) [f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { de�nition of substitution and lemma 13.34 }

(f ∪ m ◦⊤⊤ ◦a)∪ ◦< ◦ s ◦ (f>∪a)

= { distributivity }

f
∪

◦< ◦ s ◦ (f>∪a) ∪ a ◦⊤⊤ ◦m ◦< ◦ s ◦ (f>∪a)

= { by de�nition of m , m ◦< ◦ s=⊥⊥ }

f
∪

◦< ◦ s ◦ (f>∪a)

= { distributivity }

f
∪

◦< ◦ s ◦ f> ∪ f
∪

◦< ◦ s ◦a .

So,

(13.13) [f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

⇐ { above and assumption: (13.13) }

f> ◦ s
∪

◦< ◦ s ◦a = f∪ ◦< ◦ s ◦a

⇐ { de�nition }

Q(a,s,f) .
✷

This 
ompletes the proof that timestamped depth-�rst sear
h meets the spe
i�
ation

given in de�nition 13.7 using theorem 12.5. The veri�
ation of (12.6) was 
ompleted in

subse
tion 13.1.3, that of (12.7) in subse
tion 13.1.4, that of (12.8) in subse
tion 13.1.5

and, �nally, the veri�
ation of (12.9) was 
ompleted in subse
tion 13.1.2 and (for the

relation Inv
∪

◦ (⇐) ◦ Inv ) in subse
tions 13.1.3 and 13.1.7.

13.2 Calculating a Representative

The 
on
lusion of this se
tion on 
al
ulating strongly 
onne
ted 
omponents is quite

short. It suÆ
es to observe that the delegate fun
tion on G a

ording to the timestamp

f is a representative fun
tion for the strongly 
onne
ted 
omponents of G .
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Suppose ϕ is the delegate fun
tion on G a

ording to the timestamp f . From

theorem 10.37, we know that

equiv.G ⊆ ϕ
∪

◦ϕ .

It remains to show that

ϕ
∪

◦ϕ ⊆ equiv.G .

We do this by showing that ϕ⊆ equiv.G . That is, we show that the delegate of a node

a

ording to f is strongly 
onne
ted to the node. The key is to use indu
tion, the main

diÆ
ulty being to identify a suitable indu
tion hypothesis. This is done in the following

lemma. Its proof 
ombines two properties of delegates: (i) for ea
h node, there is a path

to its delegate on whi
h all nodes have the same delegate and (ii) the delegate has the

largest f -value.

Lemma 13.41

ϕ ⊆
〈

µX :: f
∪

◦≥ ◦ f ∩ (I ∪ X ◦G
∪

)
〉

.

Proof

ϕ

= { lemma 10.36 }

〈µX :: ϕ∩ (I ∪ X ◦G
∪)〉

⊆ { theorem 10.37 (spe
i�
ally, ϕ ⊆ f
∪

◦≥ ◦ f )

and monotoni
ity }

〈µX :: f
∪

◦≥ ◦ f ∩ (I ∪ X ◦G
∪)〉 .

✷

Lemma 13.41 enables us to use �xed-point indu
tion to establish a key lemma:

Lemma 13.42

ϕ ⊆ s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f .

Proof

ϕ ⊆ s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f

⇐ { lemma 13.41 }

〈µX :: f
∪

◦≥ ◦ f ∩ (I ∪ X ◦G
∪)〉 ⊆ s

∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f

⇐ { �xed-point indu
tion }
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f
∪

◦≥ ◦ f ∩ (I ∪ (s∪ ◦≤ ◦ s ∩ f
∪

◦≥ ◦ f) ◦G∪) ⊆ s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f

⇐ { [ R∪S = R∪ (¬R∩S) ] with R,S := I , s
∪

◦≤ ◦ s ◦G
∪

and distributivity }

f∪ ◦≥ ◦ f ∩ I ⊆ s∪ ◦≤ ◦ s

∧ f
∪

◦≥ ◦ f ∩ ¬I ∩ (s∪ ◦≤ ◦ s ∩ f
∪

◦≥ ◦ f) ◦G∪ ⊆ s
∪

◦≤ ◦ s

= { ≤ is re
exive and s is total, so I ⊆ s
∪

◦≤ ◦ s

f is inje
tive, so f
∪

◦≥ ◦ f ∩ ¬I = f
∪

◦> ◦ f }

f
∪

◦> ◦ f ∩ (s∪ ◦≤ ◦ s ∩ f
∪

◦≥ ◦ f) ◦G∪ ⊆ s
∪

◦≤ ◦ s .

We 
ontinue with the left-hand side of the in
lusion.

f
∪

◦> ◦ f ∩ (s∪ ◦≤ ◦ s ∩ f
∪

◦≥ ◦ f) ◦G∪

⊆ { assumption (13.6): G
∪ ⊆ s

∪

◦≤ ◦ f }

f
∪

◦> ◦ f ∩ (s∪ ◦≤ ◦ s ∩ f
∪

◦≥ ◦ f) ◦ (s∪ ◦≤ ◦ f)

⊆ { [ R∩S⊆R ] with R,S := s
∪

◦≤ ◦ s , f
∪

◦≥ ◦ f

and monotoni
ity }

f
∪

◦> ◦ f ∩ s
∪

◦≤ ◦ s ◦ s
∪

◦≤ ◦ f

⊆ { s is fun
tional, so s ◦ s
∪ ⊆ I , ≤ is transitive }

f
∪

◦> ◦ f ∩ s
∪

◦≤ ◦ f

= { assumption : (13.5), i.e. (taking 
onverse and 
omplements)

s
∪

◦≤ ◦ f = s
∪

◦≤ ◦ s ∪ f
∪

◦≤ ◦ f }

f
∪

◦> ◦ f ∩ (s∪ ◦≤ ◦ s ∪ f
∪

◦≤ ◦ f)

= { f
∪

◦> ◦ f ∩ f
∪

◦≤ ◦ f = ⊥⊥ }

f
∪

◦> ◦ f ∩ s
∪

◦≤ ◦ s

⊆ { monotoni
ity }

s
∪

◦≤ ◦ s .

Combining the two 
al
ulations, the proof is 
omplete.

✷

Now we 
an pro
eed to show that every node is strongly 
onne
ted to its delegate.

Lemma 13.43 Suppose ϕ is the delegate fun
tion on G a

ording to the timestamp

f . Then

ϕ⊆ equiv.G .
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Proof

ϕ⊆ equiv.G

= { de�nition of equiv.G , distributivity }

ϕ⊆G∗ ∧ ϕ⊆ (G∗)∪

= { by de�nition of delegate (see theorem 10.37), ϕ⊆ (G∗)∪ }

ϕ⊆G∗

⇐ { (13.4) is a post
ondition of repeated depth-�rst sear
h }

ϕ ⊆ s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f

⇐ { lemma 13.42 }

true .

✷

Theorem 13.44 The delegate fun
tion on G a

ording to the timestamp f is a

representative fun
tion for strongly 
onne
ted 
omponents of G . That is, if ϕ denotes

the delegate fun
tion,

ϕ
∪

◦ϕ = equiv.G .

Proof

ϕ
∪

◦ϕ = equiv.G

= { anti-symmetry }

equiv.G ⊆ ϕ
∪

◦ϕ ∧ ϕ
∪

◦ϕ ⊆ equiv.G

⇐ { theorem 10.37, lemma 13.43 }

true ∧ (equiv.G)∪ ◦ equiv.G ⊆ equiv.G

= { ( equiv.G ) is symmetri
 and transitive }

true .

✷
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Chapter 14

A Short Comparison

Our analysis of timestamps and their use in 
onstru
ting strongly 
onne
ted 
omponents

has been in
uen
ed by Tarjan's [Tar72℄ and Cormen, Leiserson and Rivest's [CLR90℄

thorough but informal proofs. This 
hapter explains the 
onne
tion. Se
tion 14.1 ex-

plains how the di�erent types of edge identi�ed by Tarjan are expressed using times-

tamps. Se
tions 14.2 and 14.3 delve further into Cormen, Leiserson and Rivest's [CLR90℄

so-
alled \white path theorem". Finally, se
tion 14.4 formulates and proves a lemma said

by Lengauer and Tarjan [LT79℄ to be 
ru
ial to a \dominators" algorithm.

14.1 Classifying Edges

Tarjan's a

ount of depth-�rst sear
h [Tar72℄ 
lassi�es edges of the given graph into four


ategories: tree edges, an
estor edges, fronds and vines .

In order to make the 
lassi�
ation pre
ise, we formulate how the edges may be iden-

ti�ed during exe
ution of depth-�rst sear
h. In the �rst instan
e, we 
onsider the im-

plementation shown in �g. 12.4. Suppose Wt is a relation on nodes su
h that node a

is related by Wt to b if b is in ∼seen at the time that dfs(a) is 
alled. Similarly,

suppose Gy relates node a to node b if b is in seen ◦∼fnd and suppose Bk relates

node a to node b if b is in fnd at the time that dfs(a) is 
alled. \Wt " abbreviates

\White", \Gy " abbreviates \Grey" and \Bk " abbreviates \Bla
k": the 
olours used

in (eg.) Cormen, Leiserson and Rivest's [CLR90℄ a

ount of depth-�rst sear
h. Note


arefully that Wt , Gy and Bk are relations.

Be
ause fnd⊆ seen is an invariant property, there are no other possibilities. That

is,

Wt∩Gy = Gy∩Bk = Bk∩Wt = ⊥⊥ ∧ Wt∪Gy∪Bk = ⊤⊤ .

Now, the identity

G = (G∩Wt)∪ (G∩¬Wt)
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splits the edges into two types: the edges represented by the relation G∩Wt are tree

or an
estor edges. These are the edges from a node a to nodes that have not been seen

at the time that dfs(a) is 
alled. Tree edges were highlighted in �g. 11.1. Whether an

edge be
omes a tree edge or an an
estor edge may depend on the order in whi
h edges

are 
hosen in the inner loop: a tree edge is an edge that is indeed 
hosen.

Next, the identity

G∩¬Wt = (G∩Gy)∪ (G∩Bk)

splits the se
ond type of edge into two types: the edges represented by the relation

G∩Gy are 
alled fronds . In the iterative sta
k-based implementation of depth-�rst

sear
h, these are edges from a to nodes that are on the sta
k at the time that dfs(a)

is 
alled. An important property of depth-�rst sear
h is that there is a path from node

b to node a in the graph if the edge from node a to node b is a frond. This is the

invariant property (12.25).

Finally, the edges represented by the relation G∩Bk are 
alled vines .

Be
ause of the temporal nature of the 
lassi�
ation of nodes as white, grey or bla
k

|every node is initially white but eventually bla
k| it is impossible to re
e
t the


lassi�
ation of edges in the post
ondition of the implementation shown in �g. 12.4.

When timestamps are added this is (partially) possible.

First, we 
an split the edges a

ording to start times: the edges represented by the

relation

G ∩ s
∪

◦≤ ◦ s

are either tree or an
estor edges. It is not possible to use timestamps to distinguish

between these types of edges

1

; the distin
tion re
e
ts the non-determinism in the imple-

mentation and is, in fa
t, irrelevant. Next, we 
an split the remaining edges a

ording

to �nish times: the edges represented by the relation

G ∩ s
∪

◦> ◦ s ∩ f
∪

◦< ◦ f

are fronds, and the edges represented by the relation

G ∩ s
∪

◦> ◦ s ∩ f
∪

◦> ◦ f

are vines. A 
ru
ial property of depth-�rst sear
h is the property (13.5). Applying this

property, the vines are represented by the relation

G ∩ s
∪

◦> ◦ f .

1

As for many informal statements, this is not 
ompletely 
orre
t: self-loops are an
estor edges.
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In words, a vine is an edge from a node a to a node b su
h that the sear
h from a

started after the sear
h from b �nished.

Just as important as the above 
lassi�
ation of edges is the property expressed by

the post
ondition

G ⊆ f
∪

◦≥ ◦ s .

Whenever there is an edge from node a to node b , the sear
h from a �nishes after the

sear
h from b starts; 
onversely, there are no edges from a node a to a node b su
h that

the sear
h from a �nishes before the sear
h from b starts. This property was identi�ed

as a 
ru
ial 
hara
teristi
 property by Tarjan [Tar72℄. See also [CLR90, exer
ise 23.3-4,

p.484℄ (after 
orre
tion to in
lude self-loops as in [CLRS09, exer
ise 22.3-5, p.611℄).

When illustrating depth-�rst sear
h, the layout of nodes and edges is typi
ally in-

formed as mu
h as possible by the pra
ti
e of reading Latin s
ript from left to right and

top to bottom. So tree and an
estor edges are most often (but not always) depi
ted by

arrows pointing downwards, and vines are depi
ted by arrows pointing from right to left

(and possibly downwards), thus suggesting the order in whi
h the nodes are pro
essed

during the sear
h. This extends to the display of strongly 
onne
ted 
omponents: the

top-to-bottom, left-to-right layout suggests the order in whi
h they are re
ognised. We

have adopted this pra
ti
e in �g. 11.1. See also [AHU82, �g. 6.37℄ and [CLR90, �g. 23.4℄.

14.2 The White-Path Theorem

Se
tion 11.3, in parti
ular theorem 11.13, identi�es the fun
tion implemented by dfs(a)

as D.a , where

D.a.seen = seen ∪ (a ◦ (G ◦∼seen)∗)> .

When dfs(a) is 
alled, the nodes represented by ∼seen are \white" relative to node a

and the relation (a ◦ (G ◦∼seen)∗)> represents nodes that 
an be rea
hed from a by a

so-
alled \white" path. Theorem 11.13 is therefore a formal statement of what Cormen,

Leiserson and Rivest [CLR90℄ 
all the \white path theorem"

2

. Introdu
ing timestamps

gives a di�erent way of formulating the theorem. Spe
i�
ally, on termination of the outer

loop, the fun
tions s and f re
ord the history of the sear
h in the sense that the nodes

that were \white" at the time the sear
h from node a is initiated are represented by

(a ◦ s
∪

◦≤ ◦ s)>

2

More pre
isely, this is our interpretation of the \white path theorem" as stated by Cormen, Leiser-

son and Rivest. Be
ause of their informal, operational a

ount, their statements are open to di�erent

interpretations and we may have inadvertently 
hosen an interpretation that was not intended.

Algorithmi
 Graph Theory April 8, 2022



302

and the nodes that 
ould be rea
hed by a \white path" at that time are represented by

(a ◦ (G ◦ (a ◦ s
∪

◦≤ ◦ s)>)∗)> .

The nodes newly \seen" by the 
all of dfs(a) are represented by

(a ◦ (s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f))> ,

so the \white path theorem" is the theorem that, for all nodes a ,

(a ◦ (s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f))> = (a ◦ (G ◦ (a ◦ s
∪

◦≤ ◦ s)>)∗)> .(14.1)

We do not prove the 
orre
tness of this reformulation of theorem 11.13 be
ause it is not

needed to establish the 
orre
tness of the algorithm for 
al
ulating strongly 
onne
ted


omponents

3

. Be
ause of the two o

urren
es of \a " in the right side of (14.1), it


annot be dire
tly restated in point-free form. Theorem 14.4 reformulates (14.1) and, in

so doing, adds greater insight into the 
laim.

First we need a lemma on domains and a lemma on �xed points.

Lemma 14.2 For all atomi
 
ore
exives a and relations R and S ,

a◦(R∩S) = a◦R ∩ a◦S = a ◦R ◦ (a◦S)> .

Proof The �rst equality is immediate from the fa
t that a is 
ore
exive. Spe
i�
ally,

a◦(R∩S) = a◦R ∩ a◦S

= { R∩S⊆R and R∩S⊆S }

a◦(R∩S) ⊇ a◦R ∩ a◦S

⇐ { modularity rule: (4.8) }

a◦(R∩S) ⊇ a◦(R ∩ a∪

◦a ◦S)

⇐ { monotoni
ity }

I ⊇ a
∪

◦a

= { a is 
ore
exive }

true .

The se
ond equality is proved by mutual in
lusion. First we note that

3

It should be possible to modify the statement and proof of theorem 11.13 appropriately but we have

not 
he
ked that this is the 
ase at the time of writing. We do establish the 
orre
tness of a stronger

\white-path theorem" in se
tion 14.3.
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a ◦⊤⊤ ◦ (a◦S)>

= { domains }

a◦⊤⊤◦a◦S

= { a is an atomi
 
ore
exive, so a=a◦⊤⊤◦a }

a◦S .

Now for the 
ontainment, we have:

a◦R ∩ a◦S ⊇ a ◦R ◦ (a◦S)>

= { distributivity, I⊇ (a◦S)> and monotoni
ity }

a◦S ⊇ a ◦R ◦ (a◦S)>

⇐ { ⊤⊤⊇R and monotoni
ity }

a◦S ⊇ a ◦⊤⊤ ◦ (a◦S)>

= { see above }

true .

Se
ondly, for the in
lusion we have

a ◦R ◦ (a◦S)>

= { domains }

a◦R ∩ ⊤⊤◦a◦S

⊇ { ⊤⊤⊇ I }

a◦R ∩ a◦S .

✷

Lemma 14.3 Suppose a is an atomi
 
ore
exive and R and S are arbitrary relations.

Then

a ◦ (R ◦ (a◦S)>)∗ = a ◦ 〈µX :: I∪ (X◦R∩S)〉 .

Proof

a ◦ (R ◦ (a ◦S)>)∗ = a ◦ 〈µX :: I∪ (X◦R∩S)〉

= { [ R ◦S∗ = 〈µX :: R ∪ X◦S〉 ] with R,S := a , R ◦ (a ◦S)> }

〈µX :: a ∪ X ◦R ◦ (a◦S)>〉 = a ◦ 〈µX :: I∪ (X◦R∩S)〉

⇐ { (a◦
) is a lower adjoint, theorem 2.43 }
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〈∀X :: a ∪ a◦X◦R◦(a◦S)> = a ◦ (I∪ (X◦R∩S))〉

⇐ { distributivity and Leibniz }

〈∀X :: a◦X◦R◦(a◦S)> = a◦X◦R ∩ a◦S〉

⇐ { lemma 14.2 with R,S := X◦R , S }

true .
✷

Theorem 14.4 Assuming the validity of (14.1),

s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f =
〈

µX :: I ∪ (X◦G ∩ s
∪

◦< ◦ s)
〉

.

Proof We have:

s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f

= { saturation axiom }

〈∪a :: a ◦ (s∪ ◦≤ ◦ s ∩ f
∪

◦≥ ◦ f)〉

= { assumption: (14.1) }

〈∪a :: a ◦ (a ◦ (G ◦ (a ◦ s
∪

◦≤ ◦ s)>)∗)>〉

= { lemma 14.3 with R,S := G , s∪ ◦≤ ◦ s }

〈∪a :: a ◦ 〈µX :: I ∪ (X◦G ∩ s∪ ◦≤ ◦ s)〉>〉

= { absorption rule, s
∪

◦≤ ◦ s ∩ ¬I = s
∪

◦< ◦ s

saturation axiom }

〈µX :: I ∪ (X◦G ∩ s∪ ◦< ◦ s)〉 .
✷

The expression 〈µX :: I ∪ (X◦G ∩ s∪ ◦< ◦ s)〉 is the relation between nodes a and b

su
h that there is a path in G from a to b on whi
h every node is \white" at the time

that the sear
h from a is initiated. So theorem 14.4 is a formal statement of the \white-

path theorem". If we interpret the relation s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f as the an
estor relation,

the property is that an
estor equals white path. Pointwise, node a is an an
estor of

node b in a depth-�rst sear
h if and only if there is a path from a to b on whi
h ea
h

node is white at the time that the sear
h from a starts.

14.3 Ancestor Paths

In the previous se
tion, we gave a pre
ise formulation of the \white-path theorem": the

property that, in a depth-�rst sear
h of a �nite graph, there is a path from node a to a
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node b in a graph 
omprising nodes that are white at the time that the sear
h from a

starts exa
tly when node a is an an
estor of b in the sear
h (i.e. the sear
h from node

a starts before and �nishes after the start of the sear
h from node b ).

A stronger statement is that, for ea
h node a , a 
all of dfs(a) 
al
ulates all nodes

that 
an be rea
hed from a by a path 
onsisting of edges 
onne
ting nodes with stri
tly

in
reasing start times. This is a smaller set of paths than the \white paths". For example,

in �g. 11.1, it does not in
lude the path from the node with start time 2 via the node

with start time 9 to the node with start time 4 (this being nevertheless a \white" path

be
ause the nodes with start times 9 and 4 are both white relative to the node with

start time 2 ); it does in
lude the path via the node with start time 3 .

In this se
tion, we prove that for all nodes a , a 
all of dfs(a) 
al
ulates all nodes

that 
an be rea
hed from a by a path 
onsisting of \tree/an
estor" edges.

The proof is in two steps. We begin by proving that, on termination of depth-�rst

sear
h,

s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f = (s
∪

◦< ◦ s ∩ G)∗ .(14.5)

This is stronger than theorem 14.4 be
ause the right side of the equality des
ribes paths

formed of edges whereby ea
h node is white with respe
t to its prede
essor on the path

(as opposed to white with respe
t to the initial node on the path). Its proof involves

strengthening the assertions made about depth-�rst sear
h; in this way it gives greater

understanding of the algorithm. Then, we 
an infer the formally stronger property

s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f = (s
∪

◦< ◦ s ∩ f
∪

◦> ◦ f ∩ G)∗(14.6)

by a straightforward 
al
ulation. See theorem 14.21. In words, this is the property that

a node a is an an
estor of node b in the sear
h exa
tly when there is a path from a to

b of whi
h ea
h edge is a tree or an
estor edge.

In order to prove (14.5), the pre
ondition for exe
uting a depth-�rst sear
h, the

invariant, and the intermediate assertion must all be strengthened. The pre
ondition,

P(a,s,f) , for exe
uting dfs(a) is strengthened with the 
onjun
t

f>• ◦ s> ◦⊤⊤ ◦a ⊆ (s
∪

◦< ◦ s ∩ G)∗ ◦G .(14.7)

(This strengthens the pre
ondition f>• ◦ s> ◦⊤⊤ ◦a ⊆ G∗
.) The invariant is strengthened

by adding three 
onjun
ts:

f> ◦ (G ∩ s
∪

◦< ◦ s)∗ ◦ f> = s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f(14.8)

(a strengthening of s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f ⊆ G∗
),

f> ◦ (G ∩ s
∪

◦< ◦ s) ◦ f>• = ⊥⊥(14.9)
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(a supplement to f> ◦G ◦ s>• = ⊥⊥ ) and

f>• ◦ (G ∩ s
∪

◦< ◦ s)∗ ◦ f> = f>• ◦ s
∪

◦≤ ◦ s ◦ f> .(14.10)

Finally, the intermediate assertion, Q(a,s,f) , is strengthened by adding the 
onjun
t:

f>• ◦ s> ◦⊤⊤ ◦a ⊆ (s
∪

◦< ◦ s ∩ G)∗ .(14.11)

It is an immediate 
onsequen
e of (14.8) that (14.5) holds on termination of the outer

loop: on termination, f>= I . Properties (14.9) and (14.10) are needed to establish (14.8):

see the proof of lemma 14.14 below.

The veri�
ation of these properties pro
eeds as follows. It is obvious that the three

invariants (14.8), (14.9) and (14.10) are truthi�ed by the initialisation in the outer loop

(be
ause the initial values of s> and f> are both ⊥⊥ ).

In the outer loop, f>= s> is an invariant property; it follows that in the outer loop,

the truth of (14.9) and (14.10) is guaranteed. The remaining invariant, (14.8) is obviously

truthi�ed by the initialisation of s and f ; so we must show that it is maintained by


alls of dfs .

The pre
ondition (14.7) is 
learly satis�ed when dfs(a) is 
alled in the outer loop:

the left side is ⊥⊥ be
ause f>= s> ). It is also satis�ed when dfs(b) is 
alled be
ause of

the 
ombination of (14.10) and the 
ondition for 
hoosing b .

a◦⊤⊤◦b ⊆ s> ◦ f>• ◦G ◦ s>• ∧ s> ◦ f>• ◦⊤⊤ ◦a ⊆ (s∪ ◦< ◦ s ∩ G)∗

⇒ { monotoni
ity }

s> ◦ f>• ◦⊤⊤ ◦a ◦a ◦⊤⊤ ◦b ⊆ (s∪ ◦< ◦ s ∩ G)∗ ◦ s> ◦ f>• ◦G ◦ s>•

⇒ { a 6=⊥⊥ , so ⊤⊤◦a◦a◦⊤⊤=⊤⊤ ; s>• is a 
ore
exive }

s> ◦ f>• ◦⊤⊤ ◦b ⊆ (s∪ ◦< ◦ s ∩ G)∗ ◦ s> ◦ f>• ◦G ◦ s>•

⇒ { [ R∗
◦R ⊆ R∗ ] , transitivity }

s> ◦ f>• ◦⊤⊤ ◦b ⊆ (s∪ ◦< ◦ s ∩ G)∗ ◦G .

(This is just a repeat of the 
al
ulation in se
tion 12.3.1 but with the strengthened

pre
ondition.)

Verifying the strengthened intermediate assertion (in parti
ular, the 
onjun
t (14.11))

is a straightforward appli
ation of the assignment axiom. It is also ne
essary to show that

(14.11) is maintained by subsequent sear
hes. (Formally, we have to establish (12.8).)

As before, the 
ru
ial fa
t is that f>• ◦ s> is an invariant value. Thus the left side of

(14.11) is invariant whilst the right side in
reases (be
ause s in
reases).

This leaves the veri�
ation of ea
h of the new invariants. This is done by showing

that they are invariant properties of both the assignment to s and the assignment to f .
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(Formally, we split the veri�
ation of (12.9) into the veri�
ation of (12.17) and (12.18),

as we did with other invariant properties.)

Be
ause the subterm (G ∩ s∪ ◦< ◦ s)∗ o

urs in two of the invariants, we separate it

out:

Lemma 14.12

((G ∩ s∪ ◦< ◦ s)∗)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= (G ∩ s∪ ◦< ◦ s)∗ ◦ (I ∪ s> ◦G ◦a) .

Proof

((G ∩ s∪ ◦< ◦ s)∗)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { lemma 13.18 }

(G ∩ (s∪ ◦< ◦ s ∪ s> ◦⊤⊤ ◦a))∗

= { distributivity and star de
omposition }

(G ∩ s∪ ◦< ◦ s)∗ ◦ (s> ◦G ◦a ◦ (G ∩ s∪ ◦< ◦ s)∗)∗

= { R∗ = I ∪ R ◦R∗
with R := G ∩ s∪ ◦< ◦ s ,

a ◦ s> = ⊥⊥ (so a ◦ s
∪ = ⊥⊥ ) }

(G ∩ s∪ ◦< ◦ s)∗ ◦ (s> ◦G ◦a)∗

= { R∗ = I ∪ R∗
◦R with R := s> ◦G ◦a

distributivity, mirror rule and a ◦ s> = ⊥⊥ }

(G ∩ s∪ ◦< ◦ s)∗ ◦ (I ∪ s> ◦G ◦a) .
✷

Lemma 14.13 Property (14.8) is an invariant of the assignment to s .

Proof

(f> ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ f>)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { substitution and lemma 14.12 }

f> ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ (I ∪ s> ◦G ◦a) ◦ f>

= { distributivity and a ◦ f> = ⊥⊥ }

f> ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ f> .

By lemma 13.24 |the value of s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f is invariant under the assignment to

s| , invarian
e under the assignment to s follows.

✷
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Lemma 14.14 Property (14.8) is an invariant of the assignment to f .

Proof We begin by showing that (14.9) is equivalent to

f> ◦ (G ∩ s
∪

◦< ◦ s)∗ ◦ f>• = ⊥⊥ .(14.15)

We have:

f> ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ f>• = ⊥⊥

= { (
omplemented) domains }

(f> ◦ (G ∩ s∪ ◦< ◦ s)∗)> ⊆ f>

⇐ { fusion theorem: theorem 2.43 }

(f> ∪ f> ◦ (G ∩ s∪ ◦< ◦ s))> ⊆ f>

= { distributivity }

(f> ◦ (G ∩ s∪ ◦< ◦ s))> ⊆ f>

= { (
omplemented) domains }

f> ◦ (G ∩ s∪ ◦< ◦ s) ◦ f>• = ⊥⊥

⇐ { R⊆R∗
with R := G ∩ s∪ ◦< ◦ s and monotoni
ity }

f> ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ f>• = ⊥⊥ .

Now we 
an pro
eed to establish the invarian
e of (14.9).

(f> ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ f>)[f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { lemma 13.34 }

(f>∪a) ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ (f>∪a)

= { distributivity }

f> ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ f> ∪ a ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦a

∪ a ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ f> ∪ f> ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦a

= { a is an atom;

(14.10) and a ◦ f>• = a ; (14.15) and a ◦ f>• = a }

f> ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ f> ∪ a ∪ a ◦ s
∪

◦≤ ◦ s ◦ f> .

Also,

(s∪ ◦≤ ◦ s ∩ f
∪

◦≥ ◦ f)[f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]
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= { lemma 13.34 }

s
∪

◦≤ ◦ s ∩ (f∪ ◦≥ ◦ f ∪ a ∪ a ◦⊤⊤ ◦ f>)

= { distributivity }

(s∪ ◦≤ ◦ s ∩ f∪ ◦≥ ◦ f) ∪ a ∪ a ◦ s∪ ◦≤ ◦ s ◦ f>

= { assumption: (14.8) }

f> ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ f> ∪ a ∪ a ◦ s
∪

◦≤ ◦ s ◦ f> .

The lemma follows by the de�nition of substitution.

✷

Lemma 14.16 Property (14.9) is an invariant of the assignment to s .

Proof

(f> ◦ (G ∩ s∪ ◦< ◦ s) ◦ f>•)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { lemma 13.18 }

f> ◦ (G∩ (s∪ ◦< ◦ s ∪ s> ◦⊤⊤ ◦a)) ◦ f>•

= { distributivity and assumption: (14.9), f> ◦ s> = f> }

f> ◦G ◦a

⊆ { a ◦ s>• = a }

f> ◦G ◦ s>•

= { invariant (13.10) }

⊥⊥ .

✷

Lemma 14.17 Property (14.9) is an invariant of the assignment to f .

Proof

(f> ◦ (G ∩ s∪ ◦< ◦ s) ◦ f>•)[f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { lemma 13.34 }

(f>∪a) ◦ (G ∩ s∪ ◦< ◦ s) ◦ f>• ◦∼a

= { distributivity and assumption: (14.9) }

a ◦ (G ∩ s∪ ◦< ◦ s) ◦ f>• ◦∼a

⊆ { lemma 13.19, in parti
ular a ◦ s
∪

◦< ◦ s ◦ f>• = ⊥⊥ ,
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and se
tion 13.1.5 }

⊥⊥ .

✷

Lemma 14.18 Property (14.10) is an invariant of the assignment to s .

Proof For the left side of (14.10), we have:

(f>• ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ f>)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { substitution and lemma 14.12 }

f>• ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ (I ∪ s> ◦G ◦a) ◦ f>

= { a ◦ f> = ⊥⊥ }

f>• ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ f> .

Also, for the right side, we have:

(f>• ◦ s
∪

◦≤ ◦ s ◦ f>)[s := s ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { lemma 13.18 }

f>• ◦ (s∪ ◦≤ ◦ s ∪ s> ◦⊤⊤ ◦a) ◦ f>

= { distributivity and a ◦ f> = ⊥⊥ }

f>• ◦ s
∪

◦≤ ◦ s ◦ f> .

Both sides are thus un
hanged by the assignment and so their equality is invariant.

✷

In order to establish that (14.10) is an invariant of the assignment to f , we need

to reformulate the intermediate property (14.11) as an equality. This is done in the

following lemma.

Lemma 14.19 Suppose s> ◦a = a . Then

f>• ◦ s> ◦⊤⊤ ◦a ⊆ (s∪ ◦< ◦ s ∩ G)∗

⇒ f>• ◦ s
∪

◦≤ ◦ s ◦a = f>• ◦ (s∪ ◦< ◦ s ∩ G)∗ ◦a .

(The ante
edent of this impli
ation is the property (14.11).)

Proof
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f>• ◦ (s∪ ◦< ◦ s ∩ G)∗ ◦a

= { assumption: s> ◦a = a , s> ◦ s
∪ = s∪ , s ◦ s> = s ,

mirror rule and distributivity property of 
ore
exives }

f>• ◦ s> ◦ (s∪ ◦< ◦ s ∩ G)∗ ◦a

⊆ { s
∪

◦< ◦ s ∩ G ⊆ s
∪

◦< ◦ s and monotoni
ity }

f>• ◦ s> ◦ (s∪ ◦< ◦ s)∗ ◦a

= { the less-than relation is transitive and s is fun
tional

so (s∪ ◦< ◦ s)∗ = s∪ ◦≤ ◦ s

(simple formal proof left to reader) }

f>• ◦ s> ◦ s
∪

◦≤ ◦ s ◦a

⊆ { assumption: f>• ◦ s> ◦⊤⊤ ◦a ⊆ (s∪ ◦< ◦ s ∩ G)∗

f>• ◦ s> and a are 
ore
exives, p◦p=p for all 
ore
exives p }

f>• ◦ s> ◦ (s∪ ◦< ◦ s ∩ G)∗ ◦a

= { �rst step reversed }

f>• ◦ (s∪ ◦< ◦ s ∩ G)∗ ◦a .

The lemma follows by the anti-symmetry of the subset relation 
ombined with s> ◦ s
∪ = s∪ .

✷

Lemma 14.20 Property (14.10) is an invariant of the assignment to f .

Proof The key step is the use of lemma 14.19. It is appli
able be
ause s> ◦a = a and

(14.11) are both valid when the assignment is exe
uted (as shown earlier).

(f>• ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ f>)[f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a]

= { lemma 13.34 }

f>• ◦∼a ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ (f>∪a)

= { 
ore
exives 
ommute and distributivity }

∼a ◦ f>• ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦ f> ∪ ∼a ◦ f>• ◦ (G ∩ s∪ ◦< ◦ s)∗ ◦a

= { (left summand) assumption: (14.10)

(right summand) assumption: (14.11) and lemma 14.19 }

∼a ◦ f>• ◦ s
∪

◦≤ ◦ s ◦ f> ∪ ∼a ◦ f>• ◦ s
∪

◦≤ ◦ s ◦a
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= { distributivity }

∼a ◦ f>• ◦ s
∪

◦≤ ◦ s ◦ (f>∪a)

= { 
ore
exives 
ommute and lemma 13.34 }

(f>• ◦ s∪ ◦≤ ◦ s ◦ f>)[f := f ∪ (MAX.s↑MAX.f)+1 ◦⊤⊤ ◦a] .

✷

We summarise the results of this se
tion in the following theorem. We 
all it the

\an
estor paths" theorem be
ause it asserts that, for all nodes a and b , the sear
h

from node a starts before and �nishes after node b |i.e. a is an \an
estor" of node

b| equivales there is a path from a to b formed of edges ea
h of whi
h is from an

\an
estor" to a \des
endant".

Theorem 14.21 (Ancestor Paths) On termination of depth-�rst sear
h,

s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f = (s
∪

◦< ◦ s ∩ G)∗ = (s
∪

◦< ◦ s ∩ f
∪

◦> ◦ f ∩ G)∗ .

Proof That

s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f = (s
∪

◦< ◦ s ∩ G)∗

on termination is immediate from the invariant property (14.8) and the termination

property f>= I . Now

s
∪

◦< ◦ s ∩ G

= { ⊤⊤IN = (<)∪ IIN∪ (>) , and f∪ ◦ f = I ,

so ⊤⊤Node = f
∪

◦< ◦ f ∪ INode ∪ f
∪

◦> ◦ f ;

distributivity and s
∪

◦< ◦ s ∩ INode = ⊥⊥ }

(s∪ ◦< ◦ s ∩ f
∪

◦< ◦ f ∩ G) ∪ (s∪ ◦< ◦ s ∩ f
∪

◦> ◦ f ∩ G)

= { invariant: (13.5) }

(f∪ ◦< ◦ s ∩ G) ∪ (s∪ ◦< ◦ s ∩ f
∪

◦> ◦ f ∩ G)

= { invariant: (13.3) }

s
∪

◦< ◦ s ∩ f
∪

◦> ◦ f ∩ G .

The theorem follows by Leibniz's rule.

✷

We now return to theorem 14.4. Re
all that theorem 14.4 assumes the validity of

(14.1) whi
h we have not proved. It is straightforward to show that theorem 14.4 is

implied by theorem 14.21. For 
ompleteness,we give the proof below.

The following lemma, whi
h is relatively obvious, forms the 
ore of the argument.
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Lemma 14.22 Suppose T is a re
exive and transitive relation. Then, for all relations

R ,

(R∩T)∗ ⊆ 〈µX :: I ∪ (X◦R∩T)〉 ⊆ T .

Proof We begin by proving that

〈µX :: I ∪ (X◦R∩T)〉 ⊆ T .

We have

〈µX :: I ∪ (X◦R∩T)〉 ⊆ T

⇐ { �xed-point indu
tion }

I ∪ (T ◦R∩T) ⊆ T

= { de�nition of supremum }

I⊆T ∧ T ◦R∩T ⊆ T

= { assumption: T is re
exive (i.e. I⊆ T )

property of in�mum }

true .

Using the above, we 
an infer that

(R∩T)∗ ⊆ 〈µX :: I ∪ (X◦R∩T)〉 .

Introdu
ing the abbreviation M for 〈µX :: I ∪ (X◦R∩T)〉 , we have:

(R∩T)∗ ⊆ 〈µX :: I ∪ (X◦R∩T)〉

= { de�nition of M }

(R∩T)∗ ⊆ M

⇐ { �xed-point indu
tion }

I ∪ M ◦ (R∩T) ⊆ M

= { by (�xed-point) 
omputation rule, M= I ∪ (M◦R∩T) }

I ∪ M ◦ (R∩T) ⊆ I ∪ (M◦R∩T)

⇐ { monotoni
ity of ( I∪ ) }

M ◦ (R∩T) ⊆ M◦R∩T

= { de�nition of in�mum }

M ◦ (R∩T) ⊆ M◦R ∧ M ◦ (R∩T) ⊆ T
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⇐ { monotoni
ity and assumption: T is transitive }

M ◦ (R∩T) ⊆ T ◦T

⇐ { property of in�mum, monotoni
ity and de�nition of M }

〈µX :: I ∪ (X◦R∩T)〉 ⊆ T

= { see above }

true .

✷

Theorem 14.23 On termination of depth-�rst sear
h,

s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f

= (s∪ ◦< ◦ s ∩ G)∗

= (s∪ ◦< ◦ s ∩ f
∪

◦> ◦ f ∩ G)∗

= 〈µX :: I ∪ (X◦G ∩ s∪ ◦< ◦ s)〉 .

(As remarked earlier, 〈µX :: I ∪ (X◦G ∩ s∪ ◦≤ ◦ s)〉 is the relation between nodes a and

b expressing the existen
e of a path from a to b on whi
h every node is \white" at the

time that the 
all of dfs(a) is made. See the remarks pre
eding theorem 14.21 for the

interpretation of the other terms in the 
ontinued equality.)

Proof The �rst two equalities are as in theorem 14.21. We now prove that the �rst

and last terms are equal. The proof is by mutual in
lusion.

Instantiating lemma 14.22 with R,T := G , s
∪

◦≤ ◦ s (and noting that s
∪

◦≤ ◦ s is

re
exive and transitive be
ause the at-most relation is re
exive and transitive and s is

a total fun
tion)

(G ∩ s
∪

◦≤ ◦ s)∗ ⊆
〈

µX :: I ∪ (X◦G ∩ s
∪

◦≤ ◦ s)
〉

⊆ s
∪

◦≤ ◦ s .

Moreover, (G ∩ s∪ ◦≤ ◦ s)∗=(s∪ ◦< ◦ s ∩ G)∗ . (This is be
ause R∗=(¬I∩R)∗ for all R ,

and the less-than relation is the interse
tion of the not-equal and the at-most relation.)

So

(s
∪

◦< ◦ s ∩ G)∗ ⊆
〈

µX :: I ∪ (X◦G ∩ s
∪

◦≤ ◦ s)
〉

⊆ s
∪

◦≤ ◦ s .

Comparing with theorem 14.21, it remains to prove that

〈

µX :: I ∪ (X◦G ∩ s
∪

◦≤ ◦ s)
〉

⊆ f
∪

◦≥ ◦ f .

Now,
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〈µX :: I ∪ (X◦G ∩ s∪ ◦≤ ◦ s)〉 ⊆ f
∪

◦≥ ◦ f

⇐ { �xed-point indu
tion, f
∪

◦≥ ◦ f is re
exive }

f
∪

◦≥ ◦ f ◦G ∩ s
∪

◦≤ ◦ s ⊆ f
∪

◦≥ ◦ f

= { shunting rule (2.27) }

f
∪

◦≥ ◦ f ◦G ∩ s
∪

◦≤ ◦ s ∩ f∪ ◦< ◦ f ⊆ ⊥⊥

⇐ { on termination of depth-�rst sear
h

s
∪

◦≤ ◦ s ∩ f
∪

◦< ◦ f = f
∪

◦< ◦ s

and G ⊆ f
∪

◦≥ ◦ s }

f
∪

◦≥ ◦ f ◦ f
∪

◦≥ ◦ s ∩ f
∪

◦< ◦ s ⊆ ⊥⊥

⇐ { ≥ is transitive, f is a total fun
tion }

f
∪

◦≥ ◦ s ∩ f
∪

◦< ◦ s ⊆ ⊥⊥

= { f and s are total fun
tions, (≥)∩ (<) = ⊥⊥ }

true .

✷

A yet stronger theorem than theorem 14.21 is expressed by the invariant property

s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f = Tree∗

where Tree is the subset of G 
apturing the \tree" edges: the edges a◦⊤⊤◦b 
hosen by

the sele
tion 
riterion

a ◦⊤⊤ ◦b ⊆ a ◦G ◦ s>•

in the pro
edure dfs(a) (see �g. 12.4). Re
all, however, that it is impossible to distin-

guish tree and an
estor edges using timestamps. Thus we are unable to ex
lude (non-tree)

an
estor edges in the statement of theorem 14.21. Of 
ourse, it would be straightfor-

ward to augment the implementation to re
ord tree edges and then prove the stronger

theorem using the te
hniques we have presented. The distin
tion between \tree" and

\an
estor" edges is, however, irrelevant |it re
e
ts the nondeterminism in the 
hoi
e of

edges rather than being of intrinsi
 importan
e| and, in any 
ase, the full strength of

theorem 14.21 is not needed to establish the 
orre
tness of the algorithm for 
onstru
ting

strongly 
onne
ted 
omponents: only the in
lusion of the left side of the equality in the

right side is needed, as we have shown in earlier se
tions.
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14.4 Common Ancestors

Lengauer and Tarjan [LT79, Lemma 1℄ assert a property of depth-�rst sear
h that is use-

ful in 
al
ulating \dominators". We do not dis
uss algorithms for 
omputing dominators

here; see [SMC12℄ for a point-free formulation of the fundamental properties of domi-

nan
e. Here we restri
t attention to formulating and validating Lengauer and Tarjan's

assertion.

Slightly adapted to �t the terminology used here, the assertion is the following:

If a and b are nodes of G su
h that s.a≤ s.b , then any path from a to b

must 
ontain a 
ommon an
estor of a and b in Tree .

Our formulation is as follows.

Theorem 14.24 If a and b are nodes of G su
h that a◦⊤⊤◦b ⊆ s
∪

◦≤ ◦ s , then any

path from a to b must 
ontain a node c su
h that c Anc a and c Anc b where the

an
estor relation Anc is de�ned by

Anc = (s
∪

◦< ◦ s ∩ f
∪

◦> ◦ f ∩ G)∗ .

✷

Our theorem is slightly weaker than Lengauer and Tarjan's assertion in that our \an-


estor relation" is not the relation Tree∗ . (The relation Tree is a subset of the relation

s
∪

◦< ◦ s ∩ f
∪

◦> ◦ f ∩ G .) See the remarks following theorem 14.21 for an explanation

of what is involved in strengthening the theorem.

The theorem 
learly demands a 
onstru
tive proof: an algorithm that 
omputes for a

given path a 
ommon an
estor of the two end-nodes of the path. The pre
ondition of the

algorithm is the post
ondition of depth-�rst sear
h. Theorem 14.23 plays a signi�
ant

role: in the proof we use the equivalent de�nition

Anc = s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f .

Unlike elsewhere in this do
ument, our proof is not 
ompletely formal. We have not

formalised the notion of a \path", or being \on" a path. This means that some assertions

are not formally justi�ed. The te
hniques used in [SMC12℄ are appli
able to �lling this

gap.

The algorithm is very simple: in the 
ase that a=b , the \
ommon an
estor" is


hosen to be a and, in the 
ase that a 6=b , the \
ommon an
estor" c in the statement

of the theorem is 
hosen to be the node on the given path that minimises the value of

the fun
tion s . That is, for all nodes d on the path,

c◦⊤⊤◦d ⊆ s
∪

◦≤ ◦ s .
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(The pointwise equivalent is s.c≤ s.d .)

The 
ase analysis on a=b or a 6=b turns out to be useful for the argument below:

in the 
ase that a=b the given path may be non-empty, and it is simpler not to have

to 
onsider this possibility. Clearly the 
hoi
e of the 
ommon an
estor in the 
ase that

a=b is 
orre
t be
ause the an
estor relation is re
exive. From now on, we assume that

a 6=b .

The 
hoi
e of any node c on the given path divides the path into a path from a to

c and a path from c to b ; the spe
i�
 
hoi
e of c has the impli
ation that

c◦⊤⊤◦b ⊆
〈

µX :: I ∪ (X◦G ∩ s
∪

◦≤ ◦ s)
〉

.

In words, the part of the given path from c to b is su
h that every node d on it satis�es

s.c≤ s.d . Equivalently |just use the absorption rule to repla
e at-most by less-than|

c◦⊤⊤◦b ⊆
〈

µX :: I ∪ (X◦G ∩ s
∪

◦< ◦ s)
〉

.

Applying theorem 14.23, it follows that c Anc b as required.

It remains to show that c Anc a . If a=c , this is trivially true. So assume that

a 6=c . Now c Anc b (whi
h we have just proved) is, by theorem 14.23, the property

c◦⊤⊤◦b ⊆ s
∪

◦≤ ◦ s ∩ f
∪

◦≥ ◦ f .

We also have, by assumption,

a◦⊤⊤◦b ⊆ s
∪

◦< ◦ s

and, by the 
hoi
e of c ,

c◦⊤⊤◦a ⊆ s
∪

◦< ◦ s .

(Re
all the assumptions that a 6=b and a 6=c .) Now there are just two possibilities:

either b◦⊤⊤◦a ⊆ f
∪

◦> ◦ f or a◦⊤⊤◦b ⊆ f
∪

◦> ◦ f . In the �rst 
ase,

true

= { assumptions and 
hoi
e of c }

c◦⊤⊤◦a ⊆ s
∪

◦< ◦ s ∧ c◦⊤⊤◦b ⊆ f
∪

◦≥ ◦ f ∧ b◦⊤⊤◦a ⊆ f
∪

◦> ◦ f

⇒ { monotoni
ity and transitivity of f
∪

◦≥ ◦ f }

c◦⊤⊤◦a ⊆ s
∪

◦< ◦ s ∧ c◦⊤⊤◦a ⊆ f
∪

◦> ◦ f

⇒ { de�nition of Anc and theorem 14.23 }

c Anc a .

In the se
ond 
ase,
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c◦⊤⊤◦a ⊆ f
∪

◦< ◦ f

= { assumption: c◦⊤⊤◦a ⊆ s
∪

◦< ◦ s }

c◦⊤⊤◦a ⊆ s
∪

◦< ◦ s ∩ f∪ ◦< ◦ f

= { on termination of depth-�rst sear
h (see (13.5))

s
∪

◦< ◦ s ∩ f
∪

◦< ◦ f = f
∪

◦< ◦ s }

c◦⊤⊤◦a ⊆ f
∪

◦< ◦ s

= { assumption: a◦⊤⊤◦b ⊆ s
∪

◦< ◦ s , monotoni
ity and transitivity }

c◦⊤⊤◦b ⊆ f
∪

◦< ◦ s ◦ s
∪

◦< ◦ s

⇒ { s is fun
tional, <◦s⊆<◦f and less-than is transitive }

c◦⊤⊤◦b ⊆ f
∪

◦< ◦ f

= { c Anc b (proved above), so c◦⊤⊤◦b ⊆ f
∪

◦≥ ◦ f }

c◦⊤⊤◦b ⊆ f
∪

◦< ◦ f ∩ f
∪

◦≥ ◦ f

= { f is fun
tional, <∩≥=⊥⊥ , c◦⊤⊤◦b 6=⊥⊥ }

false .

We 
on
lude that

c◦⊤⊤◦a ⊆ f
∪

◦≥ ◦ f .

Combined with the 
hoi
e of c , in parti
ular c◦⊤⊤◦a ⊆ s
∪

◦≤ ◦ s , we have thus shown

that c Anc a .

(The property <◦s⊆<◦f used in the impli
ation step is the point-free formulation of

the property that, for all nodes d , s.d<f.d . In words, the start time of ea
h node is less

than its �nish time. More pre
isely, it is the point-free formulation of the property that,

for all numbers m and all nodes d , m<s.d⇒ m<f.d . We haven't a
tually proved

this property! To do so it suÆ
es to add the property

< ◦ s ◦ f> ⊆ < ◦ f

to the invariants of depth-�rst sear
h. Its veri�
ation is straightforward.)

Note that the full extent of theorem 14.23 is used to establish theorem 14.24; the

white-path theorem on its own is inadequate.
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The goal of this text has been to demonstrate the e�e
tiveness of point-free relation

algebra in reasoning about graph algorithms. We hope that our work may form the basis

for an investigation into the e�e
tiveness of 
ontemporary ma
hine-supported veri�
ation

systems.

Some readers may 
on
lude that our experiment has failed. In spite of our 
laim that

point-free reasoning 
ombines 
on
ision with pre
ision, the length of this do
ument may

lead some to argue otherwise. Certainly, 
ompared to informal proofs our 
al
ulations

are substantially longer.

Aho, Hop
roft and Ullman [AHU82, pp. 219{226℄ present depth-�rst sear
h, its

appli
ation to 
omputing a topologi
al ordering of the nodes in an a
y
li
 graph as well

as to 
omputing the strongly 
onne
ted 
omponents of an arbitrary graph, all within less

than ten pages. Their dis
ussion of the 
orre
tness of the strongly-
onne
ted-
omponents

algorithm takes less than one page. Cormen, Leiserson and Rivest [CLR90, pp.465{497℄


over the same ground in less than forty pages. Their a

ount of the 
orre
tness of the

algorithm for 
omputing strongly 
onne
ted 
omponents |whi
h is mu
h more thorough

than that of Aho, Hop
roft and Ullman| amounts to �ve pages. The formal veri�
ation

we have given is modelled on these two a

ounts but totals more than 100 pages. One

may question whether this represents progress.

It has long been known that formal, axiomati
 proofs are substantially longer than

informal proofs in natural language. One reason is that formal proofs are ne
essarily

more 
omplete and are less prone to the sin of omission. More often than their formal


ounterparts, informal proofs tend to omit details that are 
onsidered \obvious" but

nevertheless are essential to the argument. (An example is the property that the times-

tamps in depth-�rst sear
h are total, inje
tive fun
tions.) Informal proofs undergo what

has been 
alled a \so
ial pro
ess" before they be
ome a

epted as legitimate: they rely

on the agreement of suÆ
iently many experts that all steps are 
orre
t and have been

adequately substantiated. (Undoubtedly, the graph algorithms dis
ussed here have long

ago passed this test and there is no question about their 
orre
tness.) Informal proofs

a
hieve 
on
ision at the expense of pre
ision.

We would argue that the formal proofs we have given do 
ombine pre
ision with


on
ision. This 
ombination is evident in the do
umentation that we provide. See, for

example, �g. 13.1 in whi
h properties of depth-�rst sear
h are fully do
umented. An

experien
ed, well-trained programmer will study the do
umentation in order to gain

a full understanding of the implementation. Formal do
umentation of this nature 
an

also be \exe
uted" as a means of testing the implementation. Indeed, a well-trained

programmer should be able to 
he
k for themself the vera
ity of the do
umentation,

using it to design tests in 
ases of doubt.

Of 
ourse, mathemati
al formulae are less \readable" than natural language (at least

to those for whom the natural language in use is the mother tongue) but natural lan-
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guage 
an be misleading: mathemati
al verna
ular tends to be 
hosen so that it mimi
s

everyday language but its familiarity 
an be de
eptive

4

. Our point-free formulae will be

even less readable to those unfamiliar with them but, we would argue, it is just a ques-

tion of pra
ti
e to gain the ne
essary reading and writing skills. Traditional pointwise

formulae name variables that do not need to be named, and sometimes involve several

layers of universal and existential quanti�
ations.

For 
on
rete instan
es of the extra pre
ision |without loss of 
on
ision| we refer

the reader to our dis
ussion of the \white-path theorem" in se
tions 10.2.5 and 14.3. As

we explained in se
tion 10.2.5, the notion of a \white path" 
an have di�erent de�ni-

tions. The point-free 
al
ulus used here enables us to make the distin
tion 
on
isely and

pre
isely | as we did in se
tion 14.3. The 
al
ulus also allows us to identify exa
tly

whi
h properties are ne
essary to establish the 
orre
tness of the algorithm for 
omputing

strongly 
onne
ted 
omponents: theorem 14.21 on \an
estor paths" does add to a proper

understanding of depth-�rst sear
h but weaker properties suÆ
e for understanding how

it is exploited.

Textbook a

ounts of graph algorithms typi
ally rely on an informal, operational

understanding of program statements. We have presented a basi
 \Algol-like" language

to whi
h we have given a simple non-operational relational semanti
s. In this way,

we have met the goal of 
larifying the basis of our formal arguments. The (now well-

known) relevan
e of regular algebra to reasoning about simple loops has been prominent

throughout; 
hapter 12 goes mu
h further in demonstrating the appli
ation of �xed-point


al
ulus in reasoning about so-
alled \re
ursive" programs.

As mentioned in the introdu
tion, our next step is to explore how good 
ontemporary

veri�
ation systems are in the task of verifying non-trivial graph algorithms. For exam-

ple, to what extent is it possible to supply su
h a system with the formal do
umentation

and then have it 
he
ked without human intervention? Many of the 
al
ulations in
luded

here are straightforward, leading to the hope that they might be automati
ally re
on-

stru
ted. If so, then the seemingly overwhelming explosion in the length of do
uments

like this one may not be so inevitable after all.

4

For example, we 
hoose to use the term \
onditional 
orre
tness" rather \partial 
orre
tness" be
ause

being \partially" 
orre
t may also be interpreted as partially in
orre
t. We use the term \
orre
tness" re-

lu
tantly be
ause it suggests something absolute. We prefer to say that a program \meets its spe
i�
ation",

thus allowing for the possibility that the spe
i�
ation is 
awed.
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