Elements of Algorithmic Graph Theory
An Exercise in Combining Precision with
Concision

Working Document

Roland Backhouse!
with contributions by Henk Doornbos?,
Roland Gliick® and Jaap van der Woude*

April 8, 2022

1School of Computer Science, University of Nottingham, UK

2Questance, Groningen, The Netherlands

3Deutsches Zentrum fiir Luft- und Raumfahrt, Augsburg, Germany
“Vakgroep Informatica, Technische Universiteit Eindhoven, The Netherlands

Algorithmic Graph Theory April 8, 2022

Contents

1 Introduction 1
I Mathematical Foundations 3
2 Elements of Lattice Theory 5
2.1 Partial Orderings e e e 5
2.2 Pseudo-Complements. 7
2.3 Complements e 12
2.4 Galois Connections and Fixed-Point Calculus 15
2.5 Closure Operators i i i i i i e e 19
2.6 Atoms, Saturation and Powersets L. 21
2.7 The Lattice of Fixed Points 31

3 Regular Algebra 39
3.1 The AXIOomS 39
3.2 Reflexive, Transitive Closure 40
3.3 The Unique Extension Property 42
3.4 Reflexive-Transitive Reduction 44

4 Relation Algebra 51
4.1 The AXIOMS e e e e e e e e e 52
4.1.1 Operator Precedence 55

4.1.2 Modularity Rule and Cone Rule 55

4.2 SUMMATYT . . ¢ v v v e e v v e e e e e e e e e e e e e e e 60

5 Coreflexives, Heterogeneous Relations and Functions 61
5.1 The Domain Operators. 64
5.2 Points and Extensionality 68
5.2.1 Propertiesof Points 73

5.2.2 Unicity e 7

Algorithmic Graph Theory 3 April 8, 2022

5.3 Functionality and Totality
5.4 Heterogeneous Relations
5.5 The Interface Between Formal and Informal
5.6 Bibliographic Remarks

II Semantics of Imperative Programs

6 Imperative Programming

6.1 Specifications oo
6.2 Structures
6.3 Assertions
6.4 Verification Conditions
6.5 Assignment Statementso
6.6 Sequential Composition,
6.7 Choice Statementso
6.8 LOOpS e e e
6.8.1 Invariant Relations
6.8.2 Conditional Correctness
6.8.3 Totality and Termination
6.8.4 Invariant Properties and Invariant Values

6.8.5 Truthifying and Maintaining Invariant Properties

6.8.6 Bound Functions
6.9 Calculating a Least Fixed Point

IIT Components and Acyclicity

7 Equivalence Relations and Partitions

7.1 Partitions
7.2 Properties of the Partition Function

8 Acyclic Graphs

8.1 Definiteness and Acyclicity
8.2 Starth Root and Reflexive-Transitive Reduction
8.3 Minimal Nodes and Reachability
8.4 Topological Search

Algorithmic Graph Theory

April 8, 2022

9 Components

9.1 Transitive Relations
9.2 Transitive and Symmetric Relations
9.3 Strongly Connected Components
9.4 Absolute Connectivity
9.5 Saturation. o L.
9.6 Starth Roots of the Equivalence Relation
9.7 A Pathwise Homomorphism

IV Graph Searching

10 Generic Algorithms

10.1 A Generic Graph-Searching Algorithm
10.2 Repeated Search and Delegates
10.2.1 Delegate Function
10.2.2 Assigning Delegates
10.2.3 Incremental Computation
10.2.4 Injective Choice
10.2.5 Summary and Discussion

11 Depth-First Search

11.1 Properties of Depth-First Search
11.2 Semantics of the Basic Procedure
11.3 The Function of a Depth-First Search
11.4 Properties of the Inner Loop
11.5 Properties of the Outer Loop
11.6 Strongly Connected Components

12 An Induction Theorem for Depth-First Search

12.1 Formal Statement and Proof
12.2 Verification Conditions
12.3 “Grey” Paths and Impossible Edges

12.3.1 Truthifying the Intermediate Assertion

12.3.2 The Precondition in the Inner Loop

12.3.3 Maintaining the Intermediate Assertion

12.3.4 Invariant Relations
12.3.5 Invariant Value
12.3.6 Invariant Properties
12.3.7 Invariants of the Outer Loop

Algorithmic Graph Theory

April 8, 2022

13 Calculating Strongly Connected Components 263
13.1 Timestamps e e e e e e e e e e 263
13.1.1 Specificationo 265

13.1.2 The Relation Invrel L. 272

13.1.3 Assigning Start Times L oL 276

13.1.4 The Precondition Lo 283

13.1.5 Maintaining the Invariant of the Inner Loop 284

13.1.6 Postcondition of Inner Loopo L 289

13.1.7 Assigning Finish Times 290

13.2 Calculating a Representative 294

14 A Short Comparison 299
14.1 Classifying Edges e 299
14.2 The White-Path Theorem 301
14.3 Ancestor Paths 304
14.4 Common Ancestors L 316

V Concluding Remarks 319

Algorithmic Graph Theory April 8, 2022

List of Figures

3.1 Distinct minimal starth roots of the universal relation 49
3.2 Subgraph of word order and its transitive reduction 50
10.1 Repeated Search. Outer Loop 195
10.2 Repeated Search. Inner Loop. 208
11.1 Timestamps o e e e e e e e e e e 223
11.2 Invariants of the Outer Loop 227
11.3 Invariants of the Procedure dfs 228
12.1 Documenting Depth-First Search Induction 244
12.2 Summary of the Induction Theorem 250
12.3 Grey Paths and Impossible Edges. Outer Loop 253
12.4 Grey Paths and Impossible Edges. The Procedure dfs(a). 255
13.1 Timestamps: Outer Loop 266
13.2 Timestamps: The Procedure dfs(a) 271

Algorithmic Graph Theory 7 April 8, 2022

Algorithmic Graph Theory April 8, 2022

Abstract

Algorithmic graph theory —as taught in many university courses— focuses on the
notions of acyclicity and strongly connected components of a graph, and the related
search algorithms. This document is about combining mathematical precision and con-
cision in the context of algorithmic graph theory. Specifically, we use point-free reasoning
about paths in graphs (as opposed to pointwise reasoning about paths between nodes
in graphs), resorting to pointwise reasoning only where this is unavoidable. Our aim is
to use the calculations as the basis of a machine-supported formal verification of graph
algorithms in order to assess the current state of automated verification systems.

This document extends joint work with Henk Doornbos, Roland Gliick and Jaap van
der Woude published in [BDGv22].

Algorithmic Graph Theory April 8, 2022

ii

Algorithmic Graph Theory April 8, 2022

Chapter 1

Introduction

This document is about formal calculations in an axiom system representing proper-
ties of graphs. Algorithmic graph theory is a subject that is extremely well known and
there is little novelty in the content of the theorems that are presented. (That is, when
appropriately interpreted, almost all the theorems can be found in undergraduate-level
textbooks.) We use the calculations to illustrate the combination of concision and pre-
cision that is effected by the use of point-free reasoning. Our thesis is that this is a vital
step towards making machine-verified proofs a practical reality.

The presentation is divided into four parts. The first part, comprising chapters 2 to
5 presents the axiomatic framework that we use in later chapters, and the final part,
comprising chapters 10 to chapter 13, presents a detailed analysis of graph-searching
algorithms, including topological search of an acyclic graph and depth-first search.

Formal analysis of the algorithms we present is based on point-free relation algebra
rather than the commonly used pointwise reasoning about relations. In other words,
we reason directly about relations rather than about whether or not a relation holds
of a pair of points. Of course, pointwise reasoning is sometimes necessary. Chapter 6
gives a relational semantics to a simple imperative language as well as formulating an
interface between pointwise and point-free calculations. Chapters 7 to 9 present well-
known properties of relations almost exclusively in point-free form.

Theorems and lemmas are typically stated without proof in the initial chapters (in
particular, chapters 2 to 5). Proofs are given, however, of properties that do not already
appear in extant literature. (The reason for not including proofs is to maintain a balance
between the lengths of the initial chapters and the chapters on graph algorithms. To
make the paper self-contained we may include all proofs at a later date.)

This work is part of an ongoing endeavour to make the mathematics of program
construction much more calculational than is customary in traditional mathematical
documents. In order to achieve our goals, we often deviate from traditional mathemat-
ical practice, in particular with respect to notational conventions. For example, we use

Algorithmic Graph Theory 1 April 8, 2022

a uniform syntax for denoting all quantifications rather than the many different nota-
tions frequently seen in mathematics texts. The notational conventions we do adopt
are strongly influenced by the work of Edsger W. Dijkstra. We refer the reader to
[Bac03, Bacl1] for specific details and raison d’étre.

An Apology It is common to include up-to-date citations in scientific publications.
With a small number of exceptions, we do not do so here for a number of reasons.
First, the graph algorithms and properties of graphs discussed in the paper are now
common knowledge having found their way into undergraduate curricula at least forty
years ago — so long ago that we have forgotten where we ourselves learned about them.
(We make no claim to novelty on this score.) Second, the foundations for the point-free
calculations presented in the paper were first laid more than forty years ago [Bac75, BC75]
and completed more than twenty years ago (eg. [ABH * 92, Mat95, Do096, DBvdW97)).
That writing the paper would make a worthwhile contribution to current research, in
particular our conviction that point-free calculations are vital to overcoming some of
the challenges faced by modern theorem-proving systems, was inspired by Glick’s work
[Gliil7] to which we refer the reader for more recent literature.

End of Apology

Algorithmic Graph Theory April 8, 2022

Part 1

Mathematical Foundations

Algorithmic Graph Theory 3 April 8, 2022

Chapter 2

Elements of Lattice Theory

This is the first of several chapters in which we provide an introduction to relation
algebra, the axiomatic calculus of relations due to (among others) De Morgan, Schroder
and Tarski. Full accounts appear in several monographs (see, for example, [SS93, TG87));
we will make do with just a summary of precisely those properties we need in our
calculations.

Relation algebra is very rich, so much so that, for the novice, it can be daunting.
Our approach is to separate out different substructures and the interfaces between these
substructures. Briefly, we present relation algebra as a hierarchy of three substructures:
a complete lattice, a regular algebra and finally relation algebra. This chapter is about
complete lattices.

2.1 Partial Orderings

A (heterogeneous) binary relation between two sets A and B is a subset of the cartesian
product AxB. In other words, a relation is an element of the powerset 24*5 .

In general, a powerset (the set of subsets of a set) is partially ordered by the sub-
set relation; it is also “complete” and “completely distributive”, it has “complements”
and its elements (sets) themselves have elements. This section is about axiomatising
such properties of partial orderings. Section 2.6 is about axiomatising properties of the
element-of relation.

A complete lattice is a partially ordered set equipped with unrestricted supremum
and infimum operators. Let us assume the set is denoted by A and the ordering is
denoted by C. (Later, when we specialise the discussion to power sets, we switch to
using the conventional subset symbol C but, for the moment, we don’t do so in order
to emphasise the greater generality of the discussion.) Of course, we assume that the
ordering is reflexive, transitive and anti-symmetric.

Algorithmic Graph Theory 5 April 8, 2022

That the ordering is complete means that every function f with target .4 has a
supremum, denoted by LI, satisfying the property

(2.1) (Wx = UfFCx = (Vu:zfulx))
and an infimum, denoted by rif , satisfying the property
(22) (W = xCnf = (VuuzxCfu))

Properties (2.1) and (2.2) specialise to binary suprema and infima, which we denote in
the usual way by infix operators. That is,

(2.3) (Yxy,z = yzCx = yCxAzLCx)
and

(2.4) (Vxy,z = xCyhiz

xCy AxCz) .

We often use the definitions of supremum and infimum in our calculations without ex-
plicity citing the rules.

Aside In many cases, we want to use a function without giving it a specific name. In
such cases, we use the notation (x: E) rather than the more conventional x—E or
Ax.E. We also write (Lx :: E) rather than the strictly correct Li(x::E). (The motivation
for this is to avoid additional parentheses.) The expression (Vu : f.u C x) used in (2.1)
is an example: the universal quantifier, denoted by V, is the infimum operator in the
complete lattice of booleans ordered by implication. The “x” in (x: E) is a bound
variable, and the scope of the binding is delimited by the angle brackets. The “E” is
any well-defined expression of appropriate type. An expression of the form (@®x : E) is
called a quantified expression, the function denoted by ¢ being called the quantifier.
Typically, we omit type information in quantified expressions relying on the context to
make the types clear. (For example, the dummy u in (Vu: fau C x) is assumed to
range over the source type of the function f; the information is not provided because it
is not relevant.) Occasionally we do include type information in expressions of the form
(Ux:R:E) , where R is some expression. The expression R is called the range and the
expression E is called the term of the quantification.

The advantage of using a consistent notation for quantification is that it is possible
to formulate calculational rules based on assumed properties of the quantifier. We only
use the quantifier notation when the binary form of @ is associative and symmetric. We
assume that the reader is familiar with the calculational rules.

As the reader may already have surmised, we use an infix dot to denote function
application — as in “f.u”. The dot is omitted when the argument is parenthesised;
function application is then denoted by juxtaposition.) End of Aside

Algorithmic Graph Theory April 8, 2022

A complete lattice has a top (a greatest element, the infimum of the unique function
with source the empty set), which we denote by TT , and a bottom (a least element, the
supremum of the unique function with source the empty set), which we denote by LL.
That is,

(2.6) (Vx:u LLCxCTT)

(We use the notation TT and 1l rather than the more common T and | because T is
easily confused with T.) More generally, we say that a partially ordered set is bounded
if it has both a top, 7T, and a bottom, Ll , satisfying (2.5).

A complete lattice is said to be completely distributive iff for all sets 7 and K and
all functions f of type A+ JxK, the following equality and its dual hold:

(Mj jed : (Uk: kel : f(4,k))) = (Ug:geK—T : (Mj:j€T : f(j,9))) .

(The dual equality is obtained by swapping the infimum and supremum operators.)

The reader may want to instantiate the above formula with V as the infimum operator
and d as the supremum operator; the resulting formula is a statement of the axiom of
choice in predicate calculus.

A powerset ordered by set inclusion is a complete, completely distributive lattice
but the full power of the distributivity property is rarely used; so-called “universal
distributivity” most often suffices. Formally, a complete lattice is said to be universally
distributive if

(Vx,f = xU(Df) = (M =xUfg) A xM(Uf) = (U = xM1fj))

We frequently apply universal distributivity without specific reference to the rule. Par-
ticular examples that we use frequently are xM L =11 and xUTT =TT.

2.2 Pseudo-Complements

Suppose x is an element of a partially ordered set with top element TT and bottom
element 1l . A complement of x is an element y such that xly=TT and xMy=_1L.
A partially ordered set is said to be complemented if it is bounded and every element
of the set has a complement.

In our earlier work (see, for example, [ABH * 92, DBvdW97]) we explicitly avoided
the use of complementation. This was because our goal was to develop a (point-free)
relational theory of datatypes in which complementation has no role. In the current
application —a theory of finite graphs— complementation does play a significant role.
An example is acyclicity of graphs: defined as not having cycles.

Algorithmic Graph Theory April 8, 2022

A powerset ordered by set inclusion is complemented but, as for complete distribu-
tivity, the existence of complements is sometimes unnecessary. The weaker notion of
“pseudo-complementation” is a consequence of universal distributivity. This section ex-
plores its properties. Throughout the section, we assume that (.A,C) is a partially
ordered set. We assume the existence of a bottom element |l and top element TT , and
binary suprema and infima. We also assume finite distributivity of infima over suprema
and suprema over infima.

Definition 2.6 (Pseudo-Complement) Suppose (.A,C) is a partially ordered set
with bottom element 1l and finite infima. A pseudo-complement of an element p of
A 1is a solution of the equation

(2.7) x = (Vg qCx=qrp=_1L)
]

A simple calculation shows that an element p has at most one pseudo-complement:
Suppose x and y both satisfy (2.7). Then!

xCvy
= { assumption: y is a pseudo-complement of p,
(2.7) with gq,x:=x,y }
xMp=_1L
& { assumption: x is a pseudo-complement of p,
(2.7) with gq,x:=x,x }
xLCx

= { reflexivity of =}
true

Interchanging x and y, we get yLC x; combining the two inequalities, we get x=y.

Pseudo-complements may not exist — even when the poset is bounded and complete.
However, in the case that the poset is bounded, the pseudo-complements of the top and
bottom elements are guaranteed to exist. Indeed,

(2.8) ~1L=TT A ~TT=11L

1See, for example, [DS90, Bac03, Bacl1] for explanation of our notational choices and style of calcu-
lation. Briefly, the equality of booleans is denoted both by the symbol “=" and the symbol “=". The
use of two symbols is helpful to disambiguate the overloading of the “ =" symbol, whilst also emphasising
its most fundamental property. We do not use the symbol “ &’ for boolean equality because it empha-
sises its anti-symmetry instead. So-called “continued” relations —three or more expressions connected by
relations, as in this calculation— should always be read conjunctionally.

Algorithmic Graph Theory April 8, 2022

since (as is easily verified)
(Vq = qCTT =qnll=11) A (Vg = qC 1L =qnTT=1L) .

(The first conjunct is (2.7) instantiated with p:= 1l and the second is (2.7) instantiated
with p:=TT.)

If p has a pseudo-complement, we denote it by ~p. Instantiating (2.7), the axiom
defining ~p is thus

(29) (Vg = qE~p = qhp=_11)

Several properties are immediate from (2.9). By instantiating (2.9) with q:=~p, we
get:

(2.10) ~pMp = LL .

(This instantiation was used in the calculation above.) An immediate consequence is the
“anti-monotonicity” property?

(2.11) ~pC~q & qCp

since
= { (2.9) with p,q:=q,~p }
~prq = 1L

= { (2.10), LL is the least element of the ordering }

~prq C~pMp
& { monotonicity of ((~p)r1) }

qtp .
Instantiating (2.9) with p,q := ~p,p and applying (2.10), we also get:
(212) pC ~~p .

The combination of (2.11) and (2.12) then gives ~~~p C ~p. But, for the converse,
we have:

2An endofunction f on the partially ordered set (.A,C) is “anti-monotonic” if it is a monotonic
function from (A4,3J) to (A,C).

Algorithmic Graph Theory April 8, 2022

10

~p E ~oronp
= { (29) with p,q:=~~p,~p }
~plf~~p = 1L
= { symmetry of M}
~~pll~p = UL
= { (29) with p,q:=~p,~~p }
~p Eep
= { reflexivity }
true .
By anti-symmetry of the T relation, we conclude that
(2.13) ~~~p = ~p .

The existence of pseudo-complements is guaranteed by the assumption that the partially

ordered set (\A,LC) is a complete, universally distributive lattice. (This is an application

of the theory of Galois connections discussed later in section 2.4: see corollary 2.32.)
Assuming distributivity of finite infimum over finite supremum, we can show that

(2.14) ~(pUq) = ~pli~q
Specifically, for all r,

r C ~(pUq)

= { (2.9) with p,q:=pUq,r }
mM(pUq) = LL

= { assumption: finite distributivity }

mp = 1L A Mg = 1L

— { (2.9) with p,q:=p,r and p,q:=q,r }
TC~p A TC~q

= { definition of binary infimum }
T ~pll~q .

Property (2.14) follows by the rule of indirect equality. A similar calculation establishes
that:

(2.15) ~(pU~p) = 1L .
Specifically, for all r,

Algorithmic Graph Theory April 8, 2022

11

r T ~(pU~p)
= { (2.9) with p,q .= pU~p,r }
rh(pU~p) = 1L
= { distributivity and (2.9) with p,q:=p,r and p,q := ~p,r }
TC~p A TC~~p
= { definition of infimum and (2.10) with p:=~p }
rC 1L .

Thus (2.16) follows by the rule of indirect equality.
Combining (2.15) and (2.8) we get:

(2.16) ~~(pU~p) = TT .

Dual to the notion of pseudo-complement is the notion of pseudo-cocomplement —
the pseudo-cocomplement of element p in the partially ordered set (.A,C) is the
pseudo-complement of p in the partially ordered set (.A,J). Formally, the pseudo-
cocomplement of p, denoted by -p, has the property

(2.17) (Vq = qdwp = qup="TT) .

We leave it to the reader to dualise the above properties of pseudo-complement. For our
purposes, it suffices to note that (assuming universal distributivity), for all p,

(2.18) ~pC -p

since

~Pp

= { TT is greatest element }
~prTT

= { dual of (2.10) }
~pM(pU-p)

C { assumption: distributivity,

and gqMrCr with q,r:= ~p,-p }

(~pTp)LUp

- [(210)
L Uwp

Algorithmic Graph Theory April 8, 2022

12

{ 1L is the least element }
v\p .

In general, the pseudo-complement and pseudo-cocomplement may be different (even
when both exist). A simple example is the 3-element set { LL,0, 7T} ordered by LL COC TT .
The pseudo-complement of 0 is I and its pseudo-cocomplement is TT .

2.3 Complements

In this section we define complements in terms of pseudo-complements and pseudo-
cocomplements and then show that this is equivalent to a simpler (and possibly more
familiar) direct definition. (The reason for beginning with the more complicated def-
inition is that we want to isolate properties that rely only on the weaker notion of
pseudo-complement.) The section is concluded by a list of properties that are exploited
frequently later.

Definition 2.19 (Complement) Suppose (\A,LC) is a partially ordered set. A com-
plement of an element p of A is an element of A that is simultaneously the pseudo-
complement and pseudo-cocomplement of p. The poset is complemented if all of its
elements have a complement. Formally, the poset is complemented iff it is pseudo-
complemented and pseudo-cocomplemented and

(Vp = ~p = p)

(where ~p and «p denote, respectively, the pseudo-complement and pseudo-cocomplement
of the element p).
O

Lemma 2.20 Suppose (A, C) is both pseudo-complemented and pseudo-cocomplemented.
Then that it is complemented equivales

(2.21) (¥p = pU~p =TTT)
(where ~p denotes the pseudo-complement of p).
Proof

(A,C) is complemented
= { definition 2.19 }

(Vp = ~p =p)

Algorithmic Graph Theory April 8, 2022

13

= { (2.18) and anti-symmetry }
(Vp = ~p 3 p)
= { (2.17) with p,q:=p,~p }
(Vp = ~pUp=TT) .
O
Aside It is perhaps worth briefly mentioning that the difference between so-called “clas-
sical” and “constructive logic” is that negation in classical logic is a complement whereas
in constructive logic it is a pseudo-complement operator. (In both logics, the ordering
relation is everywhere-implication, || is the Boolean predicate false and TT is the
Boolean predicate true.) In the context of classical versus constructive logic, property
(2.21) is called the law of the ezcluded middle. So, in words, a complemented lattice is
a lattice that is both pseudo-complemented and pseudo-cocomplemented and in which
the law of the excluded middle is universally valid.

Those familiar with constructive logic will recognise (2.16) as a weak form of the law
of the excluded middle: property (2.16) (with supremum replaced by disjunction and the
top element replaced by true) is valid in both constructive and classical logic whereas
the law of the excluded middle is not generally valid in constructive logic.

Property (2.16) is an example of a meta-law relating classical and constructive logic:
the double negation of any valid property in classical logic is a valid property of con-
structive logic. In constructive logic, the basic assumption is the so-called “Curry-
Howard isomorphism” which is stronger than the assumption of the existence of pseudo-
complements. In our formalism, the Curry-Howard isomorphism is the assumption that,
for all p, the endofunction (IMp) has an upper adjoint. The assumption is thus that
there is a (binary) function = such that, for all p, q and r,

gqmpCr = qLC (p=1) .

The definition of pseudo-complement is the instance of this property when r=11. In
general, it is not possible to express p=r as ~por for some (binary) function @ .
For example, take the 4-element set {11,0,1,TT} ordered by LLCOCT1CETT. Then
~0=~1=_11, but it is required that 1=0 =0 and 0=0 = TT . That is, if, for all p
and r, p=r=~por, we must have ~000=1100=0 and ~100= 1100 =TT,
which is impossible.

End of Aside

An alternative, more direct (and possibly more familiar) definition of complements
is given by the following lemma.

Lemma 2.22 Assuming finite distributivity, a complement of p is a solution of the
equation

(2.23) x = xMp=L1L A xUp=TT .

Algorithmic Graph Theory April 8, 2022

14

Proof By definition, a complement of p is a pseudo-complement of p and a pseudo-
cocomplement of p; so a complement of p satisfies the equation (2.23).
Conversely, suppose x satisfies (2.23). Then
(Vq = qCx=qlp=_11)
= { mutual implication }
(Vq = qCx=qlp=1L) N (Vq : qCx & qlp=_1L)
= { x satisfies (2.23) (in particular xMp=_11)
and monotonicity }

(Vq = qEx & qrp=11)

= q
= { qCTT forall q }
qrTr
= { x satisfies (2.23) (in particular xLip=TT) }
qri(xp)
= { distributivity }
(qrm) L (qrtp)

Leibniz and Ll is zero of supremum }
(Vq = qixCx & qrip=_11)
= { definition of infimum }

true .

(The penultimate step in the above calculation uses Leibniz’s rule: the rule sometimes
called “substitution of equals for equals” identified by Gottfried Wilhelm Leibniz as the
first rule of logic. Often —in common with conventional mathematical practice— we use
Leibniz’s rule without specific mention; often however, we do mention the rule explicitly,
giving “Leibniz” as hint. Here it is mentioned because the antecedent of the implication
is the equality between qMp and Ll , and this equality has been used in combination
with the subcalculation to simplify the consequent.)

That is, x satisfies definition 2.6 of the pseudo-complement of p. Dualising the
calculation, x also satisfies the definition of the pseudo-cocomplement of p. Since
pseudo-complements and pseudo-cocomplements are the unique solutions of their defin-
ing equations, it follows that every element p has a pseudo-complement and a pseudo-
cocomplement and both are equal.

Algorithmic Graph Theory April 8, 2022

15

O

We assume various properties of complements in a complete, universally distributive,
complemented lattice. First, complements are unique. We denote the unique comple-
ment of element x by —x. (This notation is temporary: we want to retain the distinction
between pseudo-complement and complement until the end of this chapter. After then,
we blur the distinction.) Second, complementation is an order isomorphism of (.4,C)
and (.A,3). Specifically, for all x and y in A,

(2.24) —(—x)=x and
(225) —xCy = xJd—y .

(Property (2.24) is a consequence of the fact that —x=~x=x and (2.12) and the dual
property of «x. Property (2.25) then follows from (2.24) and the anti-monotonicity
of pseudo-complements: property (2.11).) It follows that complementation distributes
through infima and suprema: for all f,

(2.26) —(Mx:fx) = (Uxu—(fx)) A —(Ux:zfx) = (Mxz—(f.x))
Finally, we have the shunting rule: for all x, y and z,
(2.27) xNMyCz = xC—yUz .

We leave the verification of the shunting rule to the reader: use excluded middle —see
lemma 2.20— and its dual (2.10) (and, of course, that —y is both the pseudo-complement
and pseudo-cocomplement of y).

No doubt the rules we have mentioned in this section are familiar to the reader (even
more so were we to replace “C” by “C”, “U” by “U” and “M” by “N”). It would
take too much space to enumerate all the properties we assume. Where a property is
assumed that we have not explicitly stated, the reader should be able to derive it from
this short summary.

2.4 Galois Connections and Fixed-Point Calculus

We assume familiarity with Galois connections and fixed-point calculus. See [Bac02,
DBO02]| for an introduction and [Bac00| for a detailed account of their properties. For
ease of reference we summarise the most fundamental properties below.

A Galois connection involves two partially ordered sets (.4, <) and (B, <) and two
functions, Fe A«B and Ge B+ A. These four components together form a Galois
connection iff for all xeB and ye.A the following holds

(2.28) Fx<y=x=G.y .

Algorithmic Graph Theory April 8, 2022

16

We refer to F as the lower adjoint and to G as the upper adjoint.

Examples of Galois connections are the definitions of supremum and infimum (2.1)
and (2.2), the special cases (2.3) and (2.4), the order isomorphism (2.25) and the shunting
rule (2.27). It is straightforward to see that (2.25) and (2.27) are Galois connections (in
the case of (2.27), the lower and upper adjoints are (My) and ((~y)U), respectively)
but, as is commonly the case, it is not immediately obvious that (2.1) and (2.2) fit the
definition of a Galois connection. Some practice is needed to be able to readily spot that
a function is an adjoint in a Galois connection. The skill is, however, well worthwhile
acquiring. See, for example, the discussion of irreducibility in section 2.6.

Perhaps the most frequently used property is that a (left or right) adjoint is mono-
tonic. That is, the lower adjoint F in (2.28) has the property that

(2.29) Fx<Fz&x=<z

and similarly for the upper adjoint G. Of course, it is not the case that all monotonic
functions are left or right adjoints.

Perhaps the most significant property (of which monotonicity is a corollary) is that
lower adjoints preserve suprema and upper adjoints preserve infima. The theorem in the
form that we use it here (thus not in its most general form) is the following.

Theorem 2.30 Suppose Fe A—B and G & B«.A are the lower and upper adjoints
in a Galois connection of complete lattices (A, <) and (B, =<). Then, for all functions
h and k of appropriate type,
F.(ngh) = UA(FOh) YA\ G(|_|Ak) = |_|B(G0k) .

O

The theorem predicts, for example, that the distributivity law (2.26) follows from the
order isomorphism (2.25). Subscripts have been added to the supremum and infimum
operators because the types of F and G may be significant. (See, for example, lemma
2.64.)

In fact, theorem 2.30 can be strengthened to an equivalence: the converse is that
universal distributivity implies the existence of an upper adjoint.

Theorem 2.31 (Fundamental Existence Theorem) Suppose that A is a poset and
B is a complete poset. A function Fe A«B is a lower adjoint in a Galois connection
equivales F is supremum-preserving (i.e. for all functions h of appropriate type, F.(Lizh)
satisfies the definition of the supremum in A of the function Foh).

Dually, suppose that B is a poset and A is a complete poset. A function G &€ B+—A
is an upper adjoint in a Galois connection equivales G is infimum-preserving (i.e. for all
functions k of appropriate type, G.(M4k) satisfies the definition of the infimum in B
of the function Gek).

O

Algorithmic Graph Theory April 8, 2022

17

We mentioned earlier that the existence of pseudo-complements is guaranteed by
universal distributivity. This is a corollary of the above fundamental existence theorem:

Corollary 2.32 A complete, universally distributive lattice is pseudo-complemented
and pseudo-cocomplemented (but not necessarily complemented).

Proof Suppose (A, C) is complete and universally distributive. Then by definition of
universal distributivity, for each element p of A, the endofunction (pr) is supremum
preserving. By the fundamental existence theorem, theorem 2.31, it has an upper adjoint.
Denoting the upper adjoint by (pr)*, define ~p to be (pr1)*LL. Then, for all q,

qL ~p

= { definition of ~p }
q C (pr)fLL

= { definition of upper adjoint }
prig C 1L

= { 1l is the least element }
prq = 1L .

That is, ~p satisfies definition 2.6 of the pseudo-complement of p. Similarly, the
lower adjoint (pLJ)’TT of the endofunction (plLI) satisfies the definition of the pseudo-
cocomplement of p.

The 3-element set {11,0, 7T} ordered by 1L COLC TT is an example of a complete,
universally distributive lattice that is not complemented.
O

Finally, the theorem that is sometimes described as the most interesting property is
the theorem that we call the “unity of opposites”. The theorem in the form that we use
it here is as follows.

Theorem 2.33 (Unity of Opposites) Suppose Fe A—B and GeB+—.A are the
lower and upper adjoints in a Galois connection of posets (.4, <) and (B,=<). Then
F.B and G.A are isomorphic posets. Moreover, if one of A or B is complete, F.5 and
G.A are also complete. Assuming B is complete, the infimum and supremum operators
are given by

ﬂg_Ah — |_|Bh
Ugah = G.(FLgh)
Mesk = FM(Gok)

|—|F.Bk = F.UB(GOk) .
0

Algorithmic Graph Theory April 8, 2022

18

We now turn to fixed points. Suppose A= (A,C) is a partially ordered set and
suppose f is a monotonic endofunction on A. Then a prefiz point of f is an element
x of the carrier set A such that f.xCx. A least prefiz point of f is a solution of the
equation

x: fxCx A (My:fyCy:xCy) .

A least prefix point of f is thus a prefix point of f that is smaller than all other prefix
points of f. A least fizred point of f is a solution of the equation

(2.34) x: fx=x A {(My:fy=y:xCy)

We use the notation Pre.f to denote the set of prefix points of f and Fix.f to denote
the set of fixed points of f.

Theorem 2.35 (Least Prefix Point) Suppose (A,C) is an ordered set and the
function f of type (A,C)« (A,C) is monotonic. Then f has at most one least prefix
point, uf, characterised by the two properties:

(2.36) f.uf C uf

and, for all x€A,

(2.37) ufCx & fxCx .

Moreover, a least prefix point of f is a fixed point of f:

(2.38) f.uf =puf .
]

Theorem 2.39 (Greatest Postfix Point) Suppose (A,C) is an ordered set. Sup-
pose, also, that the function f of type (A,C)« (A,C) is monotonic. Then f has at
most one greatest postfix point, vf, characterised by the two properties:

(2.40) vf C f.vf

and, for all xeA,

(2.41) xCvf & xCfx .

Moreover, the greatest postfix point of f is a fixed point of f:

(2.42) f.ovf=vf .
O

Algorithmic Graph Theory April 8, 2022

19

Theorems 2.35 and 2.39 do not assert the existence of least or greatest fixed points.
Indeed, a simple example suffices to show that fixed points need not exist: Suppose
A is the set {0,1} and suppose the ordering T is the equality relation. Define the
endofunction f by f.0=1 and f.1=0. Then f is monotonic but does not have any
fixed points.

Theorems that do guarantee the existence of least and greatest functions are well
known — and are applicable to the algebras discussed later in this document. For
brevity, we omit the details and generally assume their existence.

A least fixed point of a monotonic function is, as we have seen in theorem 2.35,
characterised by two properties. It is a fixed point, and it is least among all prefix points
of the functions. This gives us two calculational rules for reasoning about a least fixed
point uf of monotonic function f: the computation rule

uf = f.uf
and the induction rule: for all x,

ufCx & fxCx .
Theorem 2.43 (p-fusion) Suppose f€ A« B is the lower adjoint in a Galois con-
nection between the posets (A, C) and (B, <). Suppose also that g€ (B, <)« (B, <)

and he (A, C)«+ (A, C) are monotonic functions. Suppose g and h both have least
fixed points, nug and ph, respectively. Then

(a) f.ug C ph & (Vx : f.(g.x) Ch.(f.x)) , and
(b) f.ug = ph & (vx = f.(g.x) =h.(f.x)) .
Indeed, if the condition fog=hof, i.e.

(Vx = f.(g.x)=h.(fx)) ,

holds, f is the lower adjoint in a Galois connection between the posets (Pre.h, C) and
(Pre.g, <).
O

2.5 Closure Operators

Definition 2.44 An endofunction f on a partially ordered set A is a closure operator
if

(Vx,y = xCfy = fxCAf.y)

Algorithmic Graph Theory April 8, 2022

20

In words, f is a closure operator if, for all y, the set of elements at most f.y is “closed”
under application of the function f.
O

Closure operators frequently arise from Galois connections. If F and G are lower
and upper adjoints in a Galois connection then GoF is a closure operator.
It is easy to show that a closure operator is ezxtensive

(Vx = xCf.x)
monotonic

(Vx,y = fxCfy &< xCy)
and zdempotent

(Vx : f.x = f.(f.x))

Examples of closure operators that will be discussed later are the reflexive closure, sym-
metric closure and the transitive closure of a relation.

Definition 2.45 Suppose f and g are both endofunctions of the same type. Then
we say that the fized points of f are closed under g iff

(Vx = f.(g.x)=gx & fx=x)

The function f is said to be g-tdempotent iff fogoef =gof.
O

Lemma 2.46 Suppose f and g are both endofunctions of the same type and f is
a closure operator. Then the fixed points of f are closed under g if and only if®* f is
g-idempotent.

Proof First, assume f is g-idempotent. Then, for all x,

fx=x

= { Leibniz }
g.(f.x)=g.x

= { assumption: f is g-idempotent }
g.(fx)=gx A f.(g.(fx)) = g.(fx)

= { Leibniz (apply leftmost equality to rightmost term) }
f.(g.x) = g.x .

3We use “if and only if” and “equivales” interchangeably, but most often the latter. We use “if and
only if” when the proof is by mutual implication — as here. The abbreviation “iff” —pronounced “if”—
is sometimes used in definitions.

Algorithmic Graph Theory April 8, 2022

21

That is, the fixed points of f are closed under g.
Now to establish the converse, assume the fixed points of f are closed under g.
Then, for all x,

f.(g.(f.x)) = g.(f.x)
& { assumption: (vx = f.(g.x)=g.x & fx=x) with x:=fx }
f.(fx) = fx

{ f is a closure operator, idempotence property }

true .

That is (by extensionality) fogof = gof.
O

The only use we have for definition 2.45 and lemma 2.46 is when the function g
is pseudo-complementation. For ease of reference, we instantiate definition 2.45 and
lemma 2.46 for this case below. In definition 2.47 and lemma 2.48, we assume that A is
a pseudo-complemented, partially ordered set and f is an endofunction on A.

Definition 2.47 The function f is said to be pseudo-complementation fized iff
(Vx = f(~x)=~x & fx=x) .
The function f is said to be pseudo-complementation idempotent iff

(Vx i f.(~(FX) = ~(FX)
O

Lemma 2.48 Suppose f is a closure operator. Then f is pseudo-complementation
fixed equivales f is pseudo-complementation idempotent.

Proof Instantiate the function g in lemma 2.46 in the obvious way.
O

2.6 Atoms, Saturation and Powersets

A powerset forms a complete, universally distributive, complemented lattice under the
subset ordering. However, these properties do not characterise the properties of the
elements of the sets in the powerset. For this, we need the notion of a “saturated”,
“atomic” lattice: elements of a set are modelled by so-called “atoms”. We avoid the use
of saturated atomicity wherever possible. However, there are some circumstances where
its use is unavoidable.

Algorithmic Graph Theory April 8, 2022

22

Throughout this section, we assume that .4 is a complete lattice. (This means that
we can use the supremum and infimum operators without caveats on their existence.)
For brevity, we sometimes omit to say that .4 is complete. Variables p and q range
over arbitrary elements of .A. For the moment, we continue to use T for the ordering
relation on elements of A. A proper element is an element different from LI .

Definition 2.49 (Atom and Atomicity) The element p is an atom iff

(Vg = qCp = q=p V q=11)

Note that Ll is an atom according to this definition. If p is an atom that is different
from 1l we say that it is a proper atom. A lattice is said to be atomic if

(Vq = q#1L = (Ja:atom.aAa#1ll:alCq))

In words, a lattice is atomic if every proper element includes a proper atom.
O

Definition 2.50 (Saturated) A complete lattice is saturated iff

(Vp = p = (Ua:atomaANaCp:a))

Elsewhere the word “full” is sometimes used instead of our “saturated”. Other au-
thors also sometimes use “atomic” to mean both atomic (according to definition 2.49)
and saturated.

The following theorem [ABH 92, theorem 6.43] is central to the use of saturated
lattices as a model of powersets.

Theorem 2.51 Suppose A is a complete, universally distributive lattice. Then the
following statements are equivalent.

(a) A is saturated,
(b) A is atomic and complemented,

(c) A is isomorphic to the powerset of its atoms.
]

We don’t use theorem 2.51 directly. We use it indirectly in the sense that our ax-
iomatisation of relation algebra postulates a complete, universally distributive, saturated
lattice. In this section, we consider consequences of the definitions that allow point-
wise reasoning akin to conventional reasoning about sets and, in particular, membership
properties. Specifically, for lattice element p and proper atom a, the assertion aCp

Algorithmic Graph Theory April 8, 2022

23

effectively means acp. For example, the booleans —(aCp) and aC ~p are equal?;
this models the commonly used property of set membership: the boolean —(a€cp) is
equal to ae~p. See lemma 2.52. Other lemmas, such as lemmas 2.60 and 2.63, have
a similar role. The section is concluded by a proof of theorem 2.51; hopefully, the proof
clarifies how the notion of saturation models the notion of powerset in a way that avoids
the use of the membership relation.

We begin by exploring the notion of saturation. First, the above-mentioned lemma
expressing how we mimic the defining property of the complement of a set:

Lemma 2.52 Suppose A is a complete, pseudo-complemented lattice. Then for all
elements p of .4 and all proper atoms a of A,

(2.53) —(aCp) = al~p .
Proof Suppose a is an atom. Then, for all p,

true
= { a is an atom and alpCa,
definition 2.49 with p,q := a,alp }
alfip=1L Vallp=a
= { A is a pseudo-complemented lattice, (2.9) withp,q:=p,a ;
definition of infimum }

aC~p V alp .
That is, for all p, =(aCp) = aC ~p. For the converse, we have:

aE~p = —(atp)
= { predicate calculus }
—(aC~p A alp)
= { definition of infimum }
—(a E ~pyp)
= { (2.15): ~pMNp =1L, forall a, 1L Ca }
a1l .

“In this informal introduction, ~p can be read as the complement of p. Later we prove the rule with
~p defined to be the pseudo-complement of p. The existence of complements is not required although,
of course, for set membership complements do indeed exist.

Algorithmic Graph Theory April 8, 2022

24

Combining the two calculations, we get the lemma.
O

The universal quantification in the definition of saturated can be eliminated:

Lemma 2.54 A complete, universally distributive lattice is saturated iff its greatest
element is saturated, i.e. iff

TT = (Ua:atom.a:a) .

Proof The proof is by mutual implication. One implication is a straightforward
consequence of the definition of saturation. (Just instantiate p to TT in definition
2.50.) For the other, first note that a complete, universally distributive lattice is pseudo-
complemented. (See corollary 2.32.) This means that lemma 2.52 is applicable. So, for
all p,

TT = (Ua:atom.a:a)
= { case analysis and range disjunction }
TT = (Ua:atom.aNaCp:a)U (Ua:atomaA—=(alp):a)
= { lemma 2.52 }
TT = (Ua:atom.aNaCp:a)U (Ua:atoma A al~p : a)
= { p=TITp, universal distributivity }
p = (Ua:atom.aANaCp:alp) U (Ua : atoma A al~p : alp)

= { (Ua : atom.a A aC~p : alp)

I

{ monotonicity }
(Ua : atom.a A aC~p : ~pMp)
= { pseudo-complements: (2.10) }
(Ua : atom.a AaC~p : L)
= { U(K.LL) = 1l (where K is the constant combinator) }
RN
p = (Ua:atom.aANaCp:allp) .

That is, TT is saturated implies p is saturated, for all p.
O

Another consequence of TT being saturated is the existence of complements:

Lemma 2.55 Suppose A is a complete lattice, and both pseudo-complemented and
pseudo-cocomplemented. Then it is complemented if its greatest element, TT , is satu-
rated.

Algorithmic Graph Theory April 8, 2022

25

Proof We apply lemma 2.20.
A is complemented
= { assumption: A is complete, pseudo-complemented
and pseudo-cocomplemented, lemma 2.20 }
(Vp = pU~p =TT)
= { assumption: TT is saturated; TT is the greatest element }
(Vp = (Ua:atoma AN a#l1l:a) C pU~p)
= { definition of supremum }
(Vp,a : atom.a AN a#1L : aCpU~p)
But, for all p and proper atoms a,
al pU~p
= { double negation }
——(aEpU~p)
= { lemma 2.52, specifically (2.53) with p,a := pU~p,a }
~(a E ~(pU~p))
= { pseudo-complement: (2.15) }
~(aE1L)
= { assumption: a# 1l }

true .
O

Now we turn to the notion of atomicity. The assumption of universal distributivity
gives an alternative definition:

Lemma 2.56 Suppose A is universally distributive. Then A is atomic equivales
(Vq = q=1L = (Ua:atom.a:a)fq = 1L)

Proof Comparing the lemma with the definition of atomicity (see definition 2.49), we
have to prove that

(Vq = —(Ja:atom.aNa#1l:aCq) = (Ua:atom.a:a)fq = L)
That is, we must show that
(Vq = (Va:atom.aAa#1l:—=(aCq)) = (Ua:atom.a:a)fq = L)

We have, for all q,

Algorithmic Graph Theory April 8, 2022

26

(Va : atom.aNa# 1L : =(aCq))
= { trading }
(Va : atom.aNalCq: a=1l)
= { a=1l=aC 11, definition of supremum }
(Ua :atom.aNaCq:a) = 1L
= { aCq = a=alq, Leibniz }
(Ua : atom.a A a=allq : allq) = 1L
= { U(K.LL) = 11 (where K is the constant combinator) }
(Ua : atom.a A a=allq : allq) = 1L
A (Ua : atom.a A LL=alq : afq) = LL
= { arlqC a; so, by definition 2.49, a=allq V LlL=allq
(=) range disjunction and idempotence of supremum
(<) range disjunction and Ll is the least element }
(Ua :atom.a:aflq) = 1L
= { assumption: A is universally distributive }

(Ua :atom.a:a)fq = 1L .
O
We are now part way to establishing theorem 2.51:

Corollary 2.57 Suppose A is complete and universally distributive. Then A is
atomic if A is saturated.

Proof

A is atomic
= { lemma 2.56 }
(Vp = p=1L = (Ua:atom.a:a)Mp = L)
& { Leibniz }
(Vp = (Ua:atom.a:a)p = p)
= { assumption: A is complete, universally distributive and

saturated, lemma 2.54 }

(vp = TTTp = p)

Algorithmic Graph Theory April 8, 2022

27

= { TT is the greatest element }

true .
O
We continue with some more technical lemmas. The following lemma gives a useful
characterisation of proper atoms.

Lemma 2.58

atom.a = (Vq:aflq#1L:aCq) .

atom.a AN a#1l = (Vq: anNq#ll=alCq) .
Proof First,

atom.a

= { definition 2.49 with p:=a }
(Vg : qCa = q=a V q=11)

— { & s trivial |}
(Vg : qCa:q=aV q=1.)

— { qCa = (Irzq=alr) }
(Vq: (Irzgq=amr) :q=aV q=1L)

= { range disjunction }
(Vgr:q=ar: q=a V q=11)

= { one-point rule }
(Vr =2 alfr=a V alr=_11)

= { trading rule and afr=a=al7r }
(Vr :almr#1L : aCr) .

The lemma follows by renaming the bound variable r. Second,

atom.a N\ a# 1L

= { above and aCq=allg=a }
(Vqg:angq#1ll:aCq) N\ (Vq:aCq:alq#L1L)

= { trading and mutual implication }

(Vq = alq# 1L =aCq) .

Algorithmic Graph Theory April 8, 2022

28

O
Lemma 2.59 For all atoms a and all elements p, plia is an atom.

Proof We apply the definition: for all ¢,

qCpra
= { infima }
qEp A qCa
= { a is an atom, definition 2.49 with p:=a }
qcp N (QC LV q=a)
= { distributivity, qC 1L = q=1L, lLCp }
q=1L V (qCp N q=q)
= { by Leibniz’s rule, q=a = (qCp =a=pMfa) }
g=l1L V g=plla
= { case analysis, Ll Cplfa and pflaCpfa }
gCpla .
It follows by mutual implication that, for all q, qCpla = q=1L V q=pria. The

lemma follows by definition of an atom.
O

Lemma 2.60 If p#1l and b is an atom, then p=b=pLCb. Also, if a and b are
both proper atoms, a=b = alb# LL.

Proof First,

p=>b

= { assumption: p# 1L, predicate calculus }
(p=b Vp=1L) Ap#lL

= { assumption: b is an atom, definition 2.49 with p,q:=p,b }
pEb A p#LL

= { assumption: p# 1L }
pEb .

Algorithmic Graph Theory April 8, 2022

29

Second,

arb# L1
= { assumption: atom.a /\ a# 1L
lemma 2.58 with a,q:=a,b }
alb .

Similarly, applying lemma 2.58 with a,q:=b,a, we get the symmetric property
arMb#1l =bCa .

Combining the two using anti-symmetry of the partial ordering
armtb# 1l = a=Db .

The converse implication is clearly true given the assumption that a and b are both
proper atoms. So the lemma follows by mutual implication.
O

We are now well on the way to establishing theorem 2.51:

Corollary 2.61 Suppose A is complete and universally distributive. Then A is
saturated if and only if A is atomic and complemented.

Proof Suppose A is complete and universally distributive.
First, by corollary 2.32, A is pseudo-complemented and pseudo-cocomplemented.
So, by corollary 2.57 and lemma 2.55, it is atomic and complemented if it is saturated.
Conversely, suppose A is atomic and complemented. Then
A is saturated
& { lemma 2.54 }
TT = (Ua:atom.a:a)
& { assumption: A is complemented,
double negation: (2.24) and —LL =TT }
1l = —(UJa:atom.a:a)
= { assumption: A is atomic, lemma 2.56 with q:=11L }
(Ua:atom.a:a) M —(Ua:atom.a:a) = 1L
= { complements are pseudo-complements, (2.10) }

true .

Algorithmic Graph Theory April 8, 2022

30

O

Lemma 2.52 establishes the existence of a Galois connection, albeit slightly disguised.
Specifically, suppose A is a complete, complemented lattice. Then we have, for all
elements p of A, all proper atoms a of A and all booleans b,

2.62) (aCp)=>b = CifbsTTO-b—~afi .
P p

(The simple proof that this is equivalent to (2.53) is left to the reader; of course, (2.25)
must be invoked as well.) Applying theorem 2.30, we deduce that atoms are irreducible
in the following sense.

Lemma 2.63 Suppose A is a complete, universally distributive, saturated lattice and
a is a proper atom of A. Then, for all subsets S of the proper atoms of A,

al (LUb:beS:b) = (Fb:beS:a=D)
Proof

a C (Ub:beS:b)
= { (2.62) and theorem 2.30 with F:=(aC) and A:=(Bool,=) }
(Fb: beS: alCb)
= { a is a proper atom, dummy b ranges over proper atoms,
lemma 2.60 }
(Fb:beS:a=bVa=1l) .
O
Let us now return to theorem 2.51. Corollary 2.61 establishes that 2.51(a) and 2.51(b)
are equivalent. So it remains to establish that, if A is a complete and universally
distributive, A is isomorphic to a powerset if and only if it is atomic, complemented
and saturated.
If S is a set, the powerset 25 is the set of all subsets of S. Set theory postulates that
25 is a complete, universally distributive lattice under the usual subset ordering. The
proper atoms of 25 are the singleton sets {a} where dummy a ranges over the elements

of S; its top and bottom elements are S and the empty set (), and the supremum
operator is set union. Set theory postulates that, for any subset p of S,

aep = {a}Cp
and

p = (Ua:aep:{a}) .

Algorithmic Graph Theory April 8, 2022

31

That is, set theory postulates that 25 is saturated. By corollary 2.61 it is thus atomic
and complemented: the complement —p of the set p is, of course,

—p = (Ua:—(aep) :{a}) .
Thus, if A is isomorphic to a powerset, it is atomic, complemented and saturated.
Conversely, if A is a complete, universally distributive, saturated lattice, define S

to be the carrier set of A. Define the mapping set from A to 2° by, for all elements p
of A,

set.p = (Ua :atoma AN a#L1llL AaCp : {a})

(where a ranges over elements of A). A straightforward consequence of the definition
of atoms, definition 2.49, is that proper atoms a of A are then mapped to {a}, which
is a proper atom of 2%; the bottom element 1l is mapped to () and the top element
TT is mapped to S. Then, assuming A is saturated, for all p in the carrier set of A,
we have

(Ua:atom.a A a#1L AaCp:set.a)
= { by the definition of set and definition 2.49,
a# 1l ANaCp = set.a={a} }
(Ua:atom.a AN a#1L AaCp:{a})
= { definition of set }
set.p
= { assumption: A is saturated }
set.(Ja :atoma AN a#1lL AaCp:a) .

That is, assuming A is complete, universally distributive and saturated, the function
set is an isomorphism of the lattice A and the powerset 2° (ordered by set inclusion).

As mentioned at the beginning of this section, the exploitation of properties of atoms
is a mechanism for mimicking pointwise reasoning within an axiomatic formulation of
powersets. Because we want to avoid pointwise reasoning, we avoid the use of atoms
except where this is absolutely essential (for example to show that every node in a graph
is contained in a strongly connected component of the graph).

2.7 The Lattice of Fixed Points

Throughout this section, f is a monotonic endofunction on a partially ordered set A.
Recall that we use Fix.f to denote the fixed points of f. This section is about showing
the extent to which Fix.f inherits algebraic properties of A.

Algorithmic Graph Theory April 8, 2022

32

The set Fix.f is a subset of the set .4 and thus inherits its partial ordering. The
following well-known lemma is often attributed to Alfred Tarski.

Lemma 2.64 Suppose the partially ordered set A is a complete lattice. Suppose f
is a closure operator on the lattice . A. Then Fix.f is complete. Specifically, if h is a
function with range Fix.f then

Mexth = Mgh A Upyesh = fllgh
In particular,

—|_|—Fix.f - —|_|—A 74\ J_LFix_f = f.J_LA .

Proof This is an application of the unity-of-opposites theorem (theorem 2.33). We note
that a closure operator is the lower adjoint in a Galois connection: letting v denote the
“forgetful” function of type A+ Fix.f (so called because it “forgets” that its argument
is a fixed point), the definition 2.44 can be written as, for all x€A and all y € Fix.f,

xCuy = fxCy .
The lemma follows by applying theorem 2.33 with the instantiations

ABF,G := Fix.f, A, f,L .
O

Effectively, lemma 2.64 states that the infimum in A of a function h with range
Fix.f is a fixed point of f. On the other hand, the supremum Li4h of a function h with
range Fix.f is not necessarily a fixed point of f. Instantiating the unity-of-opposites
theorem is complicated by the type information: the formulae given in the lemma for
the infimum and the supremum “forget” the “forgetful” function. The lemma can easily
be verified independently without reference to the unity-of-opposites theorem.

Our goal now is to show that if 4 is saturated then Fix.f is also saturated. Great
care needs to be taken in doing so. The difficulty is that, although the partial ordering
is the same for both sets, the supremum of a function with range Fix.f in A is not the
same as the supremum of the function in Fix.f. In particular, the least element of A is
not the same as the least element of Fix.f. Overloading the symbol “ 1L ” is therefore
ambiguous! Similarly, distributivity properties can also be ambiguous, or incorrect, if
care is not taken to make clear which suprema are intended.

To avoid the clutter and the ambiguity, we use the unsubscripted symbol “ 11"
exclusively for Ll 4; similarly, occurrences of LI denote supremum in 4. Because the
greatest elements of A and Fix.f coincide, subscripts are unnecessary for TT ; similarly
subscripts are unnecessary on occurrences of . Occasionally it is necessary to recall
that f.1l denotes Llpf,; but sometimes we re-introduce subscripts for greater clarity.

Algorithmic Graph Theory April 8, 2022

33

Lemma 2.65 Suppose A is a complete, universally distributive lattice. Suppose f
is a closure operator on the lattice .A and suppose f is pseudo-complementation fixed.
Then f.a is an atom of Fix.f if a is an atom of A.

Proof First, corollary 2.32 establishes that A is pseudo-complemented. Suppose that
a is an atom of A. By the idempotency property of closure operators, f.a is a fixed
point of f. Now, suppose p is an element of Fix.f. That is, p is an element of A and
p=f.p. Then,

pLf.a

= { predicate calculus }
aCpCf.a V (—(aCp) ApLCf.a) .
We now consider each disjunct in turn. First,
aCpCf.a
= { f is a closure operator and so is monotonic }

aCp A f.aCfp N pCf.a

= { p="f.p, Leibniz and anti-symmetry of C }

aCp N p=f.a
= { f is a closure operator, extensivity }
p=f.a .

(Note that no use has yet been made of the assumption that a is an atom of A.) The
second disjunct is split into two cases: a= 11 and a# 1L . In the first case,

—(LLCp) ApLCf.lL = false

(since LI Cp=true). In the second case, a is, by definition, a proper atom of A. So

—(aCp) N\ pCf.a
= { assumption: A is complete, universally distributive and saturated;
a is a proper atom of A, lemma 2.52 }
aC~p A pCf.a
= { f is a closure operator and so is monotonic }

f.aCf.(~p) A\ pCf.a

Algorithmic Graph Theory April 8, 2022

34

= { p=f.p and f is pseudo-complementation fixed, so ~p="f.(~p) }
f.aC~p A\ pCf.a

= { anti-monotonicity: (2.11) }
~~p C ~(f.a) A pCf.a

= { double negation: (2.12), transitivity and infimum }
p C ~(f.a)nf.a

= { pseudo-complement: (2.10) }
ptll

= { 1l isleast element, a# 1L }
—(aCp) AN pCf.a .

We conclude that, when a# 11,

—(aCp) AN pCfia = pCLL .

Substituting the results of the three cases in the initial calculation, we have established
that

pCf.a = p=f.aVpCllL .

Since, as already mentioned, f.a is a fixed point of f, it is, by definition 2.49, an atom
of Fix.f.
O

Lemma 2.66 Suppose A is a complete, universally distributive lattice. Suppose f
is a closure operator on the lattice .4 and suppose f is pseudo-complementation fixed.
Then

TTeixt = F.TTa4 = TTa AN Lpwr = flly = 1L .

Proof The first conjunct is immediate from lemma 2.64 and the extensivity of a closure
operator. For the second conjunct, we have:

follg= 1l 4
= { 1L =~TT (see (2.8)) }
f(~TT4) =~TT 4
& { assumption: f is pseudo-complementation idempotent

lemma 2.48 and definition 2.47 }

Algorithmic Graph Theory April 8, 2022

35

£TT 4= TT 4
= { TT is the greatest element of A, so f.TT C 7T, anti-symmetry }

TT 4 EAf.TT 4
= { assumption: f is a closure operator and hence extensive }
true .

|

Lemma 2.67 Suppose f is a pseudo-complementation idempotent closure operator.
Then Fix.f is pseudo-complemented. Specifically, the pseudo-complement of fixed point
x of f in Fix.f is its pseudo-complement in A .

Proof Suppose y is a fixed point of f (i.e. y=f.y) and suppose ~y is the pseudo-
complement of y in A. We show that ~y is the pseudo-complement of y in Fix.f.
Instantiating definition 2.6 with A,p := Fix.f,y, we must show that

(Vq : qeFix.f : qC~y = qiiy=_LLpxs) .

But this is immediate from (2.9) (with p:=y) and lemma 2.66 (specifically, the second
conjunct). Note that implicit use is made of the fact that the ordering relation and
infima are the same in A and Fix.f.

O

Lemma 2.65 identifies a subset of the atoms of Fix.f. We now strengthen the lemma
to an equality.

Lemma 2.68 Suppose A is a complete, universally distributive, saturated lattice.
Suppose f is a closure operator on the lattice A and suppose f is pseudo-complementation
fixed. Then, for all a,

atomgyr.a = (db:atomy.b:a=f.Db) .
Moreover, Fix.f is saturated.

Proof Under the given assumptions, A is pseudo-complemented by corollary 2.32.
Lemma 2.65 then establishes the implication

atomgr.a < (3b:atomy.b:a=~fb) .
For the converse, we first observe that
(2.69) (Usb:atomy.b:f.b) = TTexs -

The proof is straightforward:

Algorithmic Graph Theory April 8, 2022

36

TTa
3 { definition of top element }
(Lgb :atomy.b : f.b)
J { f is a closure operator, so bCf.b }

(Uab:atomy.b:b)
= { assumption: A is saturated }

T4 .

Thus, by anti-symmetry, TT 4 = (L4 b:atom4.b:f.b). Property (2.69) follows immedi-
ately from the fact that TT 4= TT gy (see lemma 2.64).

Now we can establish the converse implication. Suppose a is an atom in Fix.f.
There are two cases. If a= 11, ¢, then a=f.1l 4 by lemma 2.64. In the second case,
a# llgys. Then

a

= { definition of top, assumption: a € Fix.f }
all TT Fr

— { (269))

an (Usb:atomy.b: f.b)
= { assumed universal distributivity property of A }
(Uab : atomy.b : alf.b)
= { 11 4 is zero of suprema }
(Uab @ atomyb A fo# 1Ly : allf.b)
= { assumption: a is a proper atom of Fix.f,
by lemma 2.65, f.b is an atom of Fix.f,
lemma 2.60 (applied to atoms of Fix.f) }
(Lgb : atomy.b A a=f.b : alf.b)
= { Leibniz and idempotence of infimum }

(Lgb : atomy.b A a=fb: a) .
Summarising,

a# llgxr A a= (Ugb:atomyg.b A a=fb: a)

Algorithmic Graph Theory April 8, 2022

37

Now assume —(3b :atomy.b: a=1f.b). Then, by the definition of supremum,
aij—l—Fix.f N a:J—l—A .

But llg,s=1l4 (lemma 2.66). So we have a contradiction, and we conclude that
(3b : atom4.b : a=f.b) as required.

Finally, in order to show that Fix.f is saturated, it suffices to prove that TTg, ¢ is
saturated. (See lemma 2.54.) That is, we have to prove that TTg, is the supremum of
the atoms of Fix.f. Specifically, we have to prove that

(2.70) (Upir@:atomeys.a:a) = Tlexr -
We have:

TTFixf
J { definition of top and supremum }
(UFixf @ : atomegp s.a @ @)
= { lemma 2.64 }
f.(Uqa: atomeys.a: a)
J { properties of suprema, f is monotonic }
(Uqa:atomgys.a: f.a)
= { atomgys.a = f.a=a }

(Uqa:atompys.a: a)

I

{ assumptions on A and f:
so, by lemma 2.65, (Vb:atom4.b:atomgy.(f.0)) }
(Uab :atomy.b: f.b)
- [(269)
TRt -
The required property (2.70) now follows by anti-symmetry of the ordering relation.

O
We conclude this section with a summary of the properties we have established.

Theorem 2.71 Suppose A is a complete, universally distributive, saturated lat-
tice. Suppose f is a closure operator on the lattice A and suppose f is pseudo-
complementation fixed. Then Fix.f is a complete, saturated lattice. The atoms in
Fix.f are given by {b:atom 4.b:f.b}.

Algorithmic Graph Theory April 8, 2022

38

Proof This is a combination of lemmas 2.68 and 2.64.
O

Note that we haven’t proved that Fix.f is universally distributive. (Currently we do
not know whether or not this is always the case.) So we cannot apply theorem 2.51 in
order to claim that Fix.f is isomorphic to the powerset of its atoms.

Algorithmic Graph Theory April 8, 2022

Chapter 3

Regular Algebra

Regular algebra (sometimes also known as “Kleene algebra”) is the algebra of three
operators central to programming: composition, choice and iteration. As such, it is
perhaps the most fundamental algebraic structure in computing science.

This chapter summarises fundamental properties of a regular algebra. Since the
properties are typically well known, proofs are omitted. Some of the most important
properties are given names for future reference

3.1 The Axioms

Algebraically, program composition is modelled by a monoid and choice by binary
suprema in a lattice. Iteration is modelled by a particular form of fixed point.

Definition 3.1 A monoid is a triple (\A,-,1), where A is a set, - is a binary operator
and 1 is an element of A, satisfying the properties:

(3.2) 1x=x=x1for all x€A,
and
(3.3) x-(y-z) = (xy)-z for all x,y,z€ A.

The element 1 is called the un:t of the monoid, and the operator - is called the product
operator.
O

(The raised dot used to denote a product operator throughout this chapter should not
be confused with the non-raised dot used to denote function application. The only use
of the non-raised dot in this chapter is in the expression “red.A” introduced in (3.19).)

A monoid is such a simple algebraic structure that little can be said at this stage.
(Perhaps one thing that can be said is that monoids are truly ubiquitous — but then

Algorithmic Graph Theory 39 April 8, 2022

40

a theory of everything is a theory of nothing!) Monoids only become interesting when
combined with other algebraic structures.

Definition 3.4 (Regular Algebra) A regular algebra is a tuple (A,-, + ,<,0,1)
where

(a) (A,-,1) is a monoid,

(b) (A,<,+,0) isa complete lattice with least element 0 and binary supremum
operator + ,
(c) for all a€A, the endofunctions (a-) and (-a) are both lower adjoints in Galois

connections between (.A,<) and itself.

A regular algebra is said to be universally distributive if the underlying lattice (see
(b)) is universally distributive.
O

Aside The assumption of a complete lattice means that all infima exist (as well as all
suprema). However, discussions of regular algebra often ignore the existence of infima,
and there is no standard notation for the infimum operator in a regular algebra or even
the greatest element. In cases where infima are relevant, the choice of the “+” symbol
for the binary supremum operator is unfortunate. Shortly, therefore, we switch to using
set notation. End of Aside

Our definition of a regular algebra does not postulate the existence of a star operator.
A universally distributive regular algebra is what Conway [Con71] calls a “standard
Kleene algebra”. (Instead of (c), Conway postulates a universal distributivity rule which,
together with other axioms, is equivalent to (c).)

The upper adjoints of (a-) and (-a) are called the factorisation operators. Although
these operators are important, we seldom use them directly; more often, we use only the
fact that they exist.

Following Conway, we sometimes refer to the elements of the carrier set of a regular
algebra as events.

3.2 Reflexive, Transitive Closure

In this section, properties of the “star” operator are briefly summarised. For more details
on this section, see [Mat95]. The star operator models iteration.

There are several different definitions of the star operator in a regular algebra. Pos-
sibly the best known definition is

(3.5) a*=(Zi:0<i:a') .

Algorithmic Graph Theory April 8, 2022

41

Another definition is
(3.6) a" = (ux:=T+a+xx)

This definition states that a* is the reflexive, transitive closure of a: specifically, the
induction rule for least prefix points establishes that it is reflexive:

1 < (ux:l+a+xx) ,
it includes a:
a < (ux=Tl+a+xx)
and it is transitive:
(ux = 1T+a+xx) - (ux = T4+a+xx) < (ux = 1+a+xx)

It then follows that the star operator is a closure operator.
Two other commonly used definitions are in terms of left and right iteration. Specif-
ically, left iteration is defined by

(3.7) a" = (ux = 1+ax)
and right iteration by
(3.8) a"=(uxxz1+xa) .

It is easily shown that all of these definitions are equivalent. Choosing one or other
definition gives different induction rules; deciding which to use in specific circumstances
requires some practice. We use all four different definitions at some stage below.

Note that the equivalence of (3.5) with, for example, (3.7) is proved using the universal
distributivity of (a-) over supremum (property (c) in definition 3.4). Othe axiomatisa-
tions of so-called “Kleene algebra” (for example, ones studied by Conway [ConT71]) are
oriented towards one particular application: the equality of regular expressions when in-
terpreted as languages. To this end, they typically postulate properties of composition,
choice and iteration but the properties of composition are not as strong as 3.4(c). It is
not possible to prove this property with weaker axiom systems making them inadequate
for reasoning about path problems in graphs.

Consequences of the above definitions are that

(3.9) a"b=(ux:b+ax)
(which is most easily proved using (3.7), and

(3.10) b-a* = (ux = b+x-a)

Algorithmic Graph Theory April 8, 2022

42

(which is most easily proved using (3.8)). An immediate corollary is that a*-b and b-a*
are fized points of the relevant functions:

(3.11) b+a:(a®b)=a"b ,
(3.12) b+ (b-a*)-a=Db-a" .

The transitive closure of a is denoted by a®. Like the reflexive, transitive closure it
has several equivalent definitions, the most commonly used being:

(3.13) a' =(fi:1<i:a")
and
(3.14) a = (uxza+xx) = (uix:a+xa) = (ux = a+ax) .

Also like the reflexive, transitive closure, these different definitions give rise to different
induction rules.
Other properties of the star operator are as follows:

(a) a-b*<c*-a & ab<ca

(b) c*a<a-b* & ca<ab

(c) a-(b-a)*=(ab)*-a

(d) (a+b)* =b*-(a-b*)* = (b*-a)*-b*

Properties (a) and (b) are called leapfrog rules (because a “leapfrogs” from one side
of a star term to the other). Both have the immediate corollary that * is monotonic
(by taking a to be 1). Properties (c) and (d) are called the mairror rule and star-
decomposition rule, respectively.

There are many other properties of the star operator that we use without further ado.

3.3 The Unique Extension Property

In the previous section we saw that a-b* is the least solution of the equation
x:Xx=a+xb .

Here we consider its largest solution (vx : a+x-b). In particular, we do so for a lattice
that is universally distributive, so that among other things (y+) and (+vy) distribute
over all infima and, hence, are upper adjoints. Then v-fusion (the dual of p-fusion)
yields a simple proof of the following theorem.

Algorithmic Graph Theory April 8, 2022

43

Theorem 3.15 If (y+) is an upper adjoint, then we have, for all a and b,
(vx ta+xb) = y+(vxux-b) & y=a+yb

As a consequence, in a universally distributive regular algebra, the largest solution
of the equation x: x = a+x-b is the sum (i.e. supremum) of an arbitrary solution
and the largest solution of the equation x:: x=x-b. Note that a special choice for y in
theorem 3.15is y = a-b*.

An immediate corollary of theorem 3.15 is that if (vx::x-b) =0, function (x : a+x-b)
has a unique fixed point. The combination of this property and its converse is the rule
we call the unique extension property (uep) of regular algebra.

Theorem 3.16 (The unique extension property (uep)) Suppose b is an element
of a universally distributive regular algebra. Then

(vxuxb)=0 = (Vx,a = x=a-b* = x=a+xDb)
Proof Only-if is an immediate consequence of theorem 3.15. Specifically,
(vxux-b) =0
= { theorem 3.15 }
(Vy,a = (vxta+xb) =y & y=a+yb)
= { y:=a-b* ;(3.12) with a,b:=b,a }
(Vy,a = (vxta+xb) =y & y=a+yb)
A (vxza+xb) = a-b*
= { Leibniz (and dummy renaming) }
(Vx,a = a-b*=x & x=a+xb)
= { (3.12) with a,b:=b,a }
(Vx,a = x=a-b* = x=a+xb) .
The converse is straightforward:
(Vx,a = x=a-b* = x=a+xb)
= { a:=0, properties of 0 }
(Vx = x=0 = x=xD)
= { by definition of v, (vx:x-b)=(vx:x-b)-b
x:=(vxuxb) }

(vxuxb) =0 .

Algorithmic Graph Theory April 8, 2022

44

O

Theorem 3.16 was postulated as an axiom of regular algebra in [Bac75, BC75|. Here,
a proof is needed because the star operator is not a primitive but defined in terms of
least fixed points.

The uep draws attention to the importance of property (vx:x-b)=0. In language
theory, it is equivalent to ¢&Zb since if, on the contrary, x is a non-empty set such that
x=x-b, the length of the shortest word in x must be equal to the length of the shortest
word in x plus the length of the shortest word in b. That is, the length of the shortest
word in b is zero. The terminology that is often used is “b does not possess the empty-
word property”. In relation algebra, we say “b is well-founded”: the property expresses
that there are no infinite sequences of b-related elements (thus, if relation b represents
a finite directed graph, (vx:x-b)=0 means that the graph is acyclic).

(We remarked earlier that other axiomatisations of regular algebra do not demand
the existence of factorisation operators, making them inadequate for reasoning about
path-finding problems. The requirement of universal distributivity is also commonly not
made. However, the uep is a vital tool in the context of acyclic graphs and the omission
of universal distributivity would render the theory inadequate for our purposes.)

In the context of relation algebra, there are several equivalent ways of defining well-
foundedness, the one referred to above being perhaps less well known. This is discussed
further in section 8.1.

3.4 Reflexive-Transitive Reduction

The reflexive-transitive reduction of a relation is an important concept. For example, it
underlies the display of (small, finite) posets by means of a so-called Hasse diagram: the
relation displayed in such a diagram is not the partial ordering but its reflexive-transitive
reduction. The concept is important in other applications. For example, the basis of
the Knuth-Morris-Pratt pattern matching algorithm (and its generalisations [KMP77,
Wei73, ACT75]) is the “factor graph” of a regular language defined by the pattern, and
the “factor graph” is the reflexive-transitive reduction of Conway’s “factor matrix” of
the language [BL77, Bac16]. This section introduces the concept in this broader context;
calculations update and expand on previously published work.

We assume that the algebra under consideration is complemented; we denote the
complement operator by the prefix operator “—”. (See theorem 2.51.)

Because the primary application is relation algebra, and because we want to make
extensive use of the infimum operator, we now switch to using set notation: that is we
use the symbol “C” to denote the ordering, “U” for the supremum operator and “N”

Algorithmic Graph Theory April 8, 2022

45

for the infimum operator. Also, because it fits in with relation algebra, we use “I1” for
the unit.

It should not be supposed that relation algebra is the sole application of the results
of this section. An important application is to a “matrix” (powerset) algebra. Such an
algebra has carrier set the set of functions with source AxA, for some A, and range a
powerset algebra; the product operator is defined as is usual for matrices and the other
operators are defined by a pointwise “lifting” of the operators of the powerset algebra.
For more details see [Bac06].

Definition 3.17 (Starth Root) Suppose U is an event of a regular algebra. A starth
root of U is any event V that satisfies V*=U"; it is minimal if no smaller event has
this property. It is least if it is at most all starth roots. Formally, V is a minimal
starth root of U if

vi=ur A (YW : WCVAW=U:W=YV)
and V is the least starth root of U if

vi=ur N (YW: W'=U":VCW) .
O
Definition 3.18 and the lemmas and theorems that follow assume a complemented
regular algebra. We use the notation —U to denote the complement of event U. This
should, of course, not be confused with the notation for the complement of a predicate:
the context should make clear which is intended.

Definition 3.18 (Reflexive and Transitive Reduction) Let A and B be events
in a complemented regular algebra with unit I. Then AN—I is called the reflerive
reduction of A and BN—(B-B") is called the transitive reduction of B. The transitive
reduction of the reflexive reduction of A is called the refiexive-transitive reduction of
A.

O

(Definitions 3.17 and 3.18 abstract from Brzozowski’s theorem asserting the existence
of a “unique irreducible generating set” of a “monoid with length” [Brz67, Theorem 2].)
We denote the reflexive-transitive reduction of A by red.A. That is,

(3.19) redA = ANn—-IN—((ANn—-I)-(AN—-I)7) .

If G represents the edges of a graph, the reflexive-transitive reduction red.G “reduces”
G by eliminating self-loops and edges connecting distinct nodes that are subsumed by
paths of edge-length two or more and not involving self-loops. (Self-loops are edges from
a node to itself. The multiple occurrences of “N—I" in (3.19) serve to eliminate such
edges, leaving only edges connecting distinct nodes.)

A couple of lemmas on reflexive reduction prove useful later:

Algorithmic Graph Theory April 8, 2022

46

Lemma 3.20 Let X be an event in a complemented regular algebra with unit I.
Then

X = (Xn—=D)* .

(In words, the reflexive reduction of X is a starth root of X.)

Proof
X* = (XN—=I)*
& { X D XN—I, monotonicity of star }
X* C (XN—I)*
= { * is a closure operator }
X C (XN—I)*

{ [IUYCY* with Y:=XNn—-I }
X C IU(Xn—I)

= { absorption rule }
X C TuX

= { set calculus }
true .

|

Lemma 3.21 Let X and Y be events in a complemented regular algebra with unit
[. Then

XCY" = (Xn—=D)" C(Yn=D)* |
X=Y" = Xn-I)" =(Yn-0)* .
Proof First,

(XN=D)* C (Yn=D)*

= { * is a closure operator }
XNn—=I C (Yn—=D)F

= { complements }
X C (Yn=)T UI

= { forall Z, ZtUl=Z7Z* with Z:=Yn—I,

Algorithmic Graph Theory April 8, 2022

47

lemma 3.20 with X:=Y }
Xy
= { * is a closure operator }
XCY* .
The second property follows immediately from the anti-symmetry of set inclusion.

|

Theorem 3.22 (Least Starth Root) Let A be an event in a complemented regular
algebra with unit I. Then

A" = (redA)" = (VX : X"'=A" 1 red ACX) .

That is, if the reflexive-transitive reduction of A is a starth root of A, it is the least
starth root of A.

Proof Assume that A* = (red.A)* and X*=A*. Let B=AN—-I, C=BnNn—(B-B")
and Y = XN—I. By applying lemma 3.20 and including the two assumptions, we have

A=B"=C"=X"=Y" .
Next we note that
C
= { definition of C and B }
AN—-IN—(B-B")
= { idempotency and symmetry of infimum }
(AN—-IN—=(B-B*)) N —I
= { definition of C and B }
cn—I.
It follows that we can apply lemma 3.21 with X;Y:=A,C and X,Y:=C,X to deduce that
B*=C"=Y" .
We can now proceed with the calculation.
BN—(B-B") C X
{ BN—=(B-B*)=C=CnCr=CnY* }
BN—=(B-B")nY" C X

Algorithmic Graph Theory April 8, 2022

48

= { shunting rule (2.27) }
BNY" € XUB-B*
& { BNY*CY" }
Yt C XUB-Bf
& { YE=YUY-Y" }
YCX A Y-Y" C B-B*
— { Y=XNn-1 1}
Y-Y® C B-B*
— { [X-XT =X"-XT] with X:=B
(well-known property, simple proof left to reader) }
Y+.Y+* C B+.B*
- { BT=Y": see above }

true .
O
Theorem 3.22 postulates a candidate for a least starth root. In some cases, the
candidate is indeed a least starth root, as illustrated by example 3.23 below, but this is
not always the case, as illustrated by example 3.24. (In the case of example 3.23, the
“graph” is not infinite.) Fortunately, the candidate is indeed a starth root in the case
relevant to the current discussion: when A is a finite acyclic graph.

Example 3.23 Consider the at-most relation on integers. This is normally denoted by
the symbol “<” but it is more convenient here to use the symbol atmost. The at-most
relation is, of course, reflexive and transitive. That is, atmost=atmost*. Instantiating
the variable A in theorem 3.22 with atmost, the relation B is the less-than relation.
This is normally denoted by the symbol “<” but let us write less instead. The reader
may easily verify that the relation lessn—(lessoless”) is the predecessor relation, pred,
given by, for all integers i and j,

i[pred]j = i+1=j .

The theorem states that, if the predecessor relation is a starth root of the at-most relation,
then it is the least starth root of that relation. And, indeed, pred®* =atmost. So, we
conclude that

(VR : R* =atmost : pred CR) .
]

Algorithmic Graph Theory April 8, 2022

49

Example 3.24 Suppose we consider the universal relation on the set {1,2,3}. Fig.
3.1(a) depicts the relation as a graph. Figs. 3.1(b) and (c) depict starth roots of the
relation; they are both minimal but are distinct.

) — 3]

(a) Universal relation

YR VAN

(b) Minimal starth root (c) Minimal starth root

Figure 3.1: Distinct minimal starth roots of the universal relation

Denoting the universal relation on {1,2,3} by TT and the identity relation on {1,2,3}
by I, the relation TTN—=IN—=((TT N—=I)o(TT N—=I)") is the empty relation and the
reflexive-transitive closure of the empty relation is the identity relation. Thus, it is
not a starth root of the universal relation.

O

Example 3.25 The converse of theorem 3.22 is not valid since a relation may have a
least starth root that is not its reflexive-transitive reduction. This is demonstrated by
the following example.

Suppose R is the relation {(1,2),(2,1)}. Then R* is the universal relation on {1,2}
and red.R is the empty relation. Thus, for all X, red.RCX; however, R*# (red.R)*.
Indeed, the least starth root of R is R itself.

O

Example 3.26 The lexicographic ordering on words over a finite alphabet is well-
founded. However, if the alphabet has at least two elements, it has no least starth root.

We can gain insight into why this is the case by considering a simpler case. Suppose
we consider the alphabet {a,b} and the set of words

{k:1 gk:ak} U {k:1 gk:b“} .

Algorithmic Graph Theory April 8, 2022

50

That is, each word is either a string of as or a string of bs. Fig. 3.2(a) depicts the
(reflexive reduction of the) lexicographic ordering on words in this set of length at most
three. The transitive reduction of the latter relation is depicted in fig. 3.2(b). Note, in
particular the diagonal edge from aaa to b.

(a) Lexicographic ordering (b) Transitive reduction

Figure 3.2: Subgraph of word order and its transitive reduction

Now imagine what happens when “three” is generalised to an arbitrary number and
then consider what happens in the limit. The (reflexive-)transitive reduction of the
lexicographic ordering on the infinite set of words relates a* to a**' and b* to b**' for
each k but does not relate a* to b for any values of j and k. It is thus not a starth
root of the lexicographic ordering. Indeed, any starth root of the lexicographic ordering
must relate a* to b for an infinite number of values of k. But, given such a starth root,
the removal of any one value of k is also a starth root. There is thus no least starth
root.

O

Algorithmic Graph Theory April 8, 2022

Chapter 4

Relation Algebra

This chapter discusses the algebra of binary relations: relation algebra for short. Our
axiomatisation is point-free as opposed to pointwise. A pointwise axiomatisation defines
the operators of a relation algebra in terms of Boolean values xRy ; the variables of the
axiomatisation are thus relations, R, and points, x and y. This is the more conventional
means of defining operators on relations. A point-free axiomatisation omits the points;
the variables in the axiomatisation are exclusively relations.

The advantage of a point-free axiomatisation is increased concision. This is invaluable
to the goal of establishing general properties of relations. A disadvantage is that when one
comes to apply such general properties to particular relations, like the at-most relation,
it is particular Boolean values, like m <n, that are of interest. In addition to the
point-free axioms we therefore need to give a pointwise interpretation of each of the
operators. That is, we need to say, for each operator that we introduce, how the operator
defines a set of pairs. Such an interpretation is often called a (set-theoretic) model of
the axiom system. In giving the interpretation we use the notation [E] to mean “the
interpretation of E”. Thus we write x[R]y instead of xRy ; this enhances readability
and also emphasises the difference between the objects of an abstract relation algebra
and the interpretation of such objects as binary relations. Note that the expression E is
most often a relation, but is sometimes an ordering between relations.

A possible source of error is the interface between interpretation and the abstract
algebra. That is, errors may be introduced either when formulating informal statements
in the abstract algebra or, vice-versa, when interpreting expressions in the abstract
algebra. It is impossible to avoid all such errors but, in order to minimise the risk, we
formalise the process of interpreting point-free formulae in a way that narrows the gap
between the formal and informal.

Algorithmic Graph Theory 51 April 8, 2022

52

4.1 The Axioms

Relation algebra is a rich algebraic structure involving a large number of operators.
There is a down-side as well as an up-side to its richness. On the one hand it is very
expressive, on the other hand calculations within the algebra can be difficult because of
the sheer abundance of calculational rules. In order to make the algebra more tractable
we present it as a number of units with interfaces between the units. Each unit is a
well-understood and well-documented mathematical structure of sufficiently small size
to be easily comprehended.

The first unit in relation algebra is a lattice structure. Specifically, let (.A4,C) be a
partially-ordered set. We postulate that A forms a complete, universally distributive
lattice. The infimum and supremum operators will be denoted by N and U, respectively.
The top and bottom elements of the lattice will be denoted by TT and Ll , respectively.
We will call elements of A relations and denote them by variables R, S and T.

As suggested by the choice of notation, the interpretation of C is the subset ordering,
the interpretation of N is set intersection, and the interpretation of U is set union.
Formally,

[RSS] = (Yy:x[Rly:x[S]y) ,

x[RNS]y = x[Rly Ax[S]y ,
and

x [RUS]y = x[R]y vV x[S]y

This is the most complicated unit in the framework but one which should be familiar to
the reader.

Every binary relation has a converse. At the point level the converse operator, denoted
by a postfix “u” symbol, is defined by

x[R°]y = y[R]x

for all x and y. At the point-free level we postulate the existence of a (total) unary
function from relations to relations such that, for all relations R and S

(4.1) R’CS = RCS" .

The Galois connection (4.1) is all that is necessary to define the converse operator and its
interface with the lattice structure. Its being a Galois connection makes it so attractive.
Because the converse operator is its own upper and lower adjoint we can immediately
infer that it is universally N-junctive (since it is its own upper adjoint) and universally

Algorithmic Graph Theory April 8, 2022

53

U-junctive (since it is its own lower adjoint). We most often use such distributivity
properties in the case of finite suprema and infima. Specifically,

=TT,

and
17 =11,

and, for all relations R and S,
(RNS)” = R"NS” , and
(RUS)” = R’US" .

The fact that converse is its own upper and lower adjoint yields yet more. The two
standard cancellation properties of Galois connections yield the inclusions RC (R”)”
and (R”)” CR whence by anti-symmetry of the ordering relation we conclude

R=(R")" .
Converse is thus a bijection from relations to relations that is its own inverse. Further-

more, it is a poset isomorphism; substituting S” for S in (4.1) and simplifying using
S=(S8")" we have

R'CS” = RCS .
Finally, a property that often comes in handy is:
R=R’ = RCR" .

The property is a trivial consequence of the defining Galois connection.
The set of binary relations over some universe includes the identity relation, I, defined
at the point level by

XMy = x=y

for all x and y. Relations may also be composed via the binary composition operator,
o, defined at the point level by

x[ReS]z = (Fy:x[R]y Ay[S]z)

We capture these two notions in our algebraic framework by demanding the existence of
a relation I and a binary operator, o , mapping a pair of relations to a relation, such
that (.A,0,1) is a monoid. That is, composition is associative

(4.2) (RoS)oT=Ro(SeT) ,

Algorithmic Graph Theory April 8, 2022

54

for all relations R, S and T, and I is a left and right unit of composition
(4.3) RoI=R=IR ,

for all relations R.

There are two interfaces to be specified: that with the lattice structure and that
with the converse operator. The interface with the converse operator is soon dealt with.
Bearing in mind the intended relational interpretations of converse and composition we
postulate

(4.4) (ReS)” = S"oR” |

for all relations R and S.
From (4.4), it is easy to deduce that

(45) I'=1 .

For the interface with the lattice structure we postulate that a relation algebra is a
regular algebra. In particular, we postulate that for all relations R the functions (Ro)
and (oR) distribute universally over suprema.

By the fundamental theorem of Galois connections, this is equivalent to postulating
the existence of two binary operators \ and / satisfying the properties

(4.6) RoSCT = SCR\T ,
and
(4.7) RSCT = RCT/S .

These two operators are called the factoring, or division, operators. We suggest that
they be pronounced “under” and “over”, respectively.

The meaning of R\T expressed in terms of points can be recovered from (4.6) by
instantiating S to the relation {(x,y)}. Formally, we have:

x [R\T]y

= { definition }
{6,y CRAT

= { (46) }

Re{Ooy)p €T
= { interpretation of C }

(Vuv:uwRe{(x,y)}]v:u[T]v)

Algorithmic Graph Theory April 8, 2022

55

= { interpretation of composition and the relation {(x,y)} }
(Vuv: (Gw s u[Rlw Aw=x Av=y) : u[T]v)
= { one-point rule }

(Vu: ufRlx - u[Tly)
That is,

x[R\T]y = (Vu:u[R]x:u[T]y)
Similarly,

x[T/S]ly = (vu:y[SJu:x[T]u)

Just as the use of the composition operator avoids the use of existential quantifications,
the use of the division operators avoids the use of universal quantifications in point-free
reasoning.

4.1.1 Operator Precedence

We have now introduced quite a large number of operators. In order to reduce the
number of parentheses in formulae we should agree on a precedence between the different
operators.

A general rule we use throughout is that all prefix and postfix operators as well as
subscripting and superscripting take precedence over infix operators and infix operators
in turn take precedence over multifix operators. When both prefix and postfix operators
are applied to an expression, we use parentheses to clarify the order of evaluation. Thus
we only need to discuss the relative precedence of the infix operators.

For infix operators, the general rule is that metaoperators (operators like = and
/\) have the lowest precedence. Next come relations like < and C. The operators
of relation algebra have the next highest precedence, and function application —when
explicitly written as an infix operator— has the highest precedence of all.

Among the infix operators of relation algebra the precedence is: intersection and
union have the same, lowest precedence, next is composition and the highest precedence
is given to the division operators. Thus the expression RoS\T N U is parenthesised as
(Ro(S\T))NU. (Note how white space is added in order to suggest the correct parsing.)

4.1.2 Modularity Rule and Cone Rule

We have postulated that composition distributes through suprema. We have not pos-
tulated that composition distributes through infima. Were we to do so then the binary

Algorithmic Graph Theory April 8, 2022

56

relations would not form a model of our algebraic framework. The lack of such a law,
however, poses severe problems. We know that, for each R, the function (R-) is mono-
tonic (since it is universally U-junctive) and hence

Ro(SNT) € ReS N ReT .

Thus we are in a position to reason with infima of compositions so long as they appear
on the bigger side of an inclusion. But we have no means of working with such a term
when it appears on the smaller side of an inclusion. Something more is needed to afford
the manipulative freedom we need.

The rule we now introduce to overcome this difficulty acts as an interface between
all three units of the framework. J. Riguet [Rig48] named the rule after the famous
mathematician J.W.R. Dedekind (he called it “la relation de Dedekind”) because of
its resemblance to the modular identity, a property of normal subgroups discovered by
Dedekind. Schmidt and Strohlein [SS88, SS93| have adopted Riguet’s terminology (they
refer to “die Dedekind Formel”, the Dedekind formula) whereas Freyd and S¢edrov [Fv90]
call it the law of modularity (possibly for the same reason as Riguet). We call it the
modularity rule.

The modularity rule is that, for all relations R, S and T,

(4.8) RoSNT C Ro(SNRT) .

At first sight, this is a difficult rule to appreciate and to use. A little analysis of its
structure helps. Note that the term on the smaller side of the inclusion is an infimum
of two terms and the term on the larger side is a composition of two terms. None of
the rules given so far cater for either of these situations. Note also that R is the only
repeated variable on the larger side. Viewing composition as a multiplication operator
and infimum as addition, it is as if R” is the inverse of R, it being cancelled when R is
multiplied through on the righthand side in order to obtain the lefthand side.

These hints may help the reader to understand and remember the rule. However, the
best way to get to grips with it is to use it. Let’s work through a few simple examples.

The easiest way to begin is to look for some obvious simplifications. Not all are
interesting but some may prove to be.

One simplification is to eliminate the intersection operator on the right side. This we
can do by the assignment S:=TT . We obtain

(4.9) RoTTNT CRoR"6T .

This property has two interesting consequences. The right side can be simplified by
instantiating T to I. We get

RoTT NI C RoR” .

Algorithmic Graph Theory April 8, 2022

57

Hence
RoTTNI € RoR" NI .

But, by monotonicity, since TT D R~ we have
RoTTNI D ReR" NI .

We conclude

(4.10) RoTTNI = RoR" NI .

Property (4.10) was obtained by choosing T so as to simplify the right side of (4.9). The
second interesting consequence is obtained by choosing T=R thus simplifying its left
side. We obtain (since ReTT N R =R)

(4.11) RC RoR"6R .

As a final, preliminary, example of the use of the modularity rule let us see what it
predicts about the distribution of composition of cap. We have

(ReS) N (ReT) = Ro(SNT)

= { (ReS)N(RT) 2 Re(SNT) }
(RoS) N (ReT) C Ro(SNT)

& { modularity rule: (4.8)

with R,S,T := R,S,RoT '}

Ro (S M R"ReT) C Ro(SNT)

& { monotonicity of composition }
SN RRT C SNT

& { monotonicity of (SN) }
R7¥R-TC T .

By symmetry, S and T may be interchanged everywhere. So we conclude:
(4.12) (ReS)N(ReT) = Ro(SNT) & RoReTC TV R0ReSCS .

Because converse is a lattice isomorphism, all rules we obtain have a dual constructed
by turning compositions around. The modularity rule itself has the dual form

(4.13) SoRNT C (SN ToR)R .

Algorithmic Graph Theory April 8, 2022

58

and the rules (4.10) and (4.12) have the duals

(4.14) TToRNI = R"oRNT .

and

(4.15) (SeR)N(TeR) = (SNT)eR & ToRoR? C T V SoReR"CS .

(Property (4.11) is self-dual.) The reader is invited check these claims for themself. In
the future, we sometimes make claims of the form “the converse-dual of x is y”.

The rule sometimes called “Tarski’s rule” is called the “cone rule” below: for all
relations R,

(4.16) TTeReTT=TT V R=1L .

The cone rule expresses the universality of the relation TT . Its significance becomes
evident in section 5.2 where it is used in combination with the “all or nothing” rule to
model reasoning about relations as sets of pairs.

The set of homogeneous binary relations on the empty set is, of course, the carrier set
of a relation algebra. The empty relation, the identity relation and the universal relation
are all equal and so the algebra is completely trivial. In order to exclude this model,
the cone rule is sometimes reformulated as an exclusive-or rather than an inclusive-or (a
disjunction). The rule is then, for all R:

R=1l # TToRTT =TT .
(Equivalently,
R£LL = TTeReTT =TT)

The reader can easily check that this is equivalent to the conjunction of the standard
cone rule and 1l # TT . Not excluding the trivial model becomes vital when the rule is
extended to heterogeneous relations. See section 5.4.

Axiom systems for relation algebra often include a complementation (negation) oper-
ator and, instead of the modularity rule, the so-called Schroder rule is postulated. Our
formulation of Schroder’s rule is slightly different from standard accounts, as we now
explain.

Suppose we consider an algebra that obeys all the axioms of relation algebra except
for the modular identity. Suppose that the algebra is complemented (i.e. every relation
has a complement). Consider the rule:

(4.17) R = —-I/—R ,

Algorithmic Graph Theory April 8, 2022

59

and the middle-exchange rule:
(4.18) Ro—=XoS C =Y = R7oYoS” C X .

The rules (4.17) and (4.18) are both equivalent to the modularity rule.

One way of proving the equivalence —left to the reader— is to show that (4.17)
implies (4.18), that (4.18) implies the modularity rule and that the modularity rule
implies (4.17). A step on the way is to prove the divergence rule,

(4.19) ReS C —I = SeRC —I ,
and the not- R-verse rule:
(4.20) —(R”) = (—R)” .

The middle-exchange rule gets its name from the fact that the middle term in a compo-
sition is exchanged with the right side of an inclusion. It has an attractive, symmetric
form, making it easy to remember in spite of having four free variables. The divergence
rule gets its name from the interpretation of —I: the relation that holds between two
values if and only if they “diverge” from each other, i.e. are unequal. The name “not-
R-verse” rule is borrowed from the way the famous mathematician Augustus de Morgan
denoted the combination of complementation and converse. He literally wrote “not- R-
verse” pointing out that it didn’t matter whether one read this as (not R) converse or
not (R converse). In our notation we would write —R” and (deliberately) omit speci-
fying a precedence of one operator over the other. This justifies the combination of a
prefix operator for negation and a postfix operator for converse. In general, combining
prefix operators with postfix operators is not to be recommended since, if the operand
(R above) is any other than a variable or constant, it is extremely difficult to parse the
formulae. Even so, we don’t follow this recommendation and stick to standard notation
— with the consequence that we have just warned about!

Instead of the middle-exchange rule, many publications state two rules, each with
three variables, due to Schroder. The rules are equivalent to the conjunction of the two
equivalences: for all R, S and T,

(4.21) ReSC —T" = SoT C —R”
and
(4.22) RSCT = ToRC —S” .

We call these rules the rotation rules (because of the way the variables are rotated).

Algorithmic Graph Theory April 8, 2022

60

4.2 Summary

This concludes our discussion of the algebraic framework. In a few sentences, a rela-
tion algebra is a complete, universally distributive lattice on which is defined a monoid
structure and a unary converse operator. Composition on the left and on the right
both have upper adjoints, the division operators. Converse is a lattice isomorphism that
preserves the unit of composition and distributes contravariantly through composition.
Finally, the lattice structure, converse and the monoid structure are all interrelated via
the modularity and cone rules.

Algorithmic Graph Theory April 8, 2022

Chapter 5

Coreflexives, Heterogeneous
Relations and Functions

When one writes a computer program there are many important details, mostly to do
with efficiency, that play a major réle. Ignoring all these details, the most primitive
description that we can give of a sequential program is that it is a binary relation on the
so-called “state space”. (The state space of a program is the set of all values that can be
assumed by the program variables.)

According to this view of programs, a programming language is a mechanism for
describing and structuring binary relations that can be implemented: that is, descriptions
of binary relations to which an “operational semantics” can be given detailing how the
description can be interpreted as instructions controlling the execution of a machine.

Programming languages are normally so constrained that they only describe the
relations that are implementable but, in order to support program construction, it is vital
that an algebra be able to express relations that are not necessarily implementable or
directly implementable. The notion of a “guard” on a guarded statement is an example.
A guard acts as a filter on the domain of execution of a statement. Operationally it can
be viewed as a partial skip. Mathematically, a guard is just a device that enables sets
—subsets of the state space— to be incorporated into program statements.

In the relation calculus there are several mechanisms for viewing sets as relations,
and thus modelling guards, each of which has its own merits. One is via “conditions”
and another is via “coreflexives”!. Axiomatically these have the following definitions.
First, we say that relation R is a corefiezive if and only if RCI. Second, we say that
relation R is a right condition if and only if R="TToR. Finally, we say that R is a left
condition if and only if R=RoTT .

1“Coreflexives” are also called “monotypes” [ABH * 92, BW93, DBvdW97] or “tests” [Gliil7], depend-
ing on the intended interpretation; the name “partial identity” is also used (eg. [Voe99]). We now prefer
the application-neutral terminology used by Freyd and Séedrov [Fv90].

Algorithmic Graph Theory 61 April 8, 2022

62

In the relational model, we assume, for example, that the universe ¢/ contains two
unequal values true and false. The coreflerive representation of the set boolean is then
defined to be the relation

{(true, true), (false, false)} .
The right condition representation of the set boolean is the relation
{x:x€lU: (x, true)} U {x:x€lU: (x, false)}

It is clear that for any given universe U/ there is a one-to-one correspondence between
the subsets of ¢/ and the coreflexives. Specifically, the set A is represented by the
coreflexive p where x[p]Jy = x=y/Ay€cA. Equally clear is the existence of a one-to-one
correspondence between the subsets of ¢/ and the right conditions on /. That is, if A
is some set then the right condition defined by A is that relation A, such that for all x
and y, x[A,Jy=y€A . Similarly, the left condition corresponding to A is that relation
A such that for all x and y, x[AJy=x€A.

Using coreflexives to represent subsets of ¢/ as relations, a guard on a relation is
modelled by composition of the relation, either on the left or on the right, with such a
coreflexive. Thus, if R and S are relations and p is a coreflexive then poR and Sep
are both relations, the first being relation R after restricting elements in its left domain
to those in p and the second being the relation S after restricting elements in its right
domain to those in p. Using conditions, a guard on the left domain of relation R is
modelled by the intersection of R with a left condition, and a guard on the right domain
of R by its intersection with a right condition. In principle, this poses a dilemma on the
choice of representation of sets in the relation calculus. Should one choose coreflexives
or conditions?

We choose coreflexives, there being several reasons for doing so. One is the simple
fact that guarding both on the left and on the right of a relation is accomplished in
one go with coreflexives. Moreover, coreflexives have simple and convenient properties.
Specifically, for all coreflexives p and

p=INp=p =pp
and
peq = qop =pNq .

The most compelling reason, however, for choosing to represent sets by coreflexives is the
dominant position occupied by composition among programming primitives. Introducing
a guard in the middle of a sequential composition of relations is a frequent activity that
is easy to express in terms of coreflexives but clumsy to express with conditions.

Algorithmic Graph Theory April 8, 2022

63

Nevertheless, conditions do have their place from time to time. They too have at-
tractive calculational properties. In particular, they form a sublattice of the lattice
of relations (that is they are closed under union and intersection) and —unlike the
coreflexives— they are closed under negation. However, from the above it is clear that
there is a one-to-one correspondence between coreflexives and both types of conditions
which we document formally below. Exploitation of this correspondence is central to
many calculations in the relation calculus. See [DBvdW97] for detailed examples.

Distributivity properties are used extensively in our calculations. In relation algebra,
composition does not distribute through intersection — in general. In specific cases it
does. One such case is composition with a coreflexive. Specifically, for all coreflexives p
and all relations R and S,

(5.1) pe(RNS) = poRNS = poRNpoS .
The first equality is proved as follows.
pe(RNS) = peRNS
= { anti-symmetry }
pe(RNS) € peRNS A po(RNS) 2 peRNS
= { 1st conjunct: distributivity, p C1 and monotonicity }
pe(RNS) D peRNS
& { modularity rule: (4.8) }
pe(RNS) 2 po(RNp~eS)
= { p €I, monotonicity }
true .

Now, for the second equality, we apply the first equality:

peRNS
= { p :pop }
popeRNS
= { [po(RNS) = peRNS | with R:=poR }
pe(peRNS)
= { symmetry of intersection }
po(SNp-R)

= { [pe(RNS) = peRNS | with RS := S, peR

Algorithmic Graph Theory April 8, 2022

64

symmetry of intersection }

PeRNpeS .

5.1 The Domain Operators

In this section, we introduce two operators mapping relations to coreflexives, the so-called
domain operators. They play an extremely important réle in the theory to follow.

We call the two operators the left-domain operator and the right-domain operator.
We might have chosen to call one of them the “domain operator” and the other the “range
operator”, but this would have introduced an unwelcome direction in the interpretation
of relations. (One of the elements in a pair satisfying a given relation would have to
be designated the input and the other the output.) We prefer to make no commitment
about the “direction” of a relation for as long as possible. The left- and right-domain
operators are denoted by the postfix symbols “<” and “>”, respectively.

Definition 5.2 (Right Domain) The right domain of a relation R is the coreflexive
denoted by R-> and defined by

R>=1INTTeR .
Dually, the left domain of a relation R is the coreflexive denoted by R< and defined by

R<=1INRTT .

We restrict our attention here to the right-domain operator. The reader is requested
to dualise the results to the left-domain operator.

The intended interpretation of R> (read R “right”) for relation R is {x|(Jy::y[R]x)}.
Two ways we can reformulate this requirement without recourse to points are formulated
in the following theorem.

Theorem 5.3 (Right Domain) For all relations R and coreflexives p,

(5.4) R-Cp = RCTTep and
(5.5) R-Cp = R=Rep .

|

Algorithmic Graph Theory April 8, 2022

65

The characterisations (5.4) and (5.5) predict a number of useful calculational prop-
erties of the right domain operator. Some are immediate, some involve a little bit of
work for their verification. Immediate from (5.4) —a Galois connection— is that the
right domain operator is universally U-junctive, and (TTo) is universally distributive
over infima of coreflexives. In particular,

TTe(pNg) = (TTep)N(TTeq) ,

(RUS)> = R-US> |
and

l>=11 .
The last of these can in fact be strengthened to
(5.6) R-=1l = R=11 .

The proof is straightforward: use (5.4) in combination with TToll =11 .

From (5.4) we may also deduce a number of cancellation properties. But, in combina-
tion with the modularity rule, the cancellation properties can be strengthened. We leave
their proofs together with a couple of other interesting applications of Galois connections
as exercises.

Theorem 5.7 For all relations R, S and T
(a) TToR>=TT<R ,

(b) RN SeTTeT = S<oRoT> |

() (R)-=R-,

(d) (RNSeT)>=(SRNT)> ,

(€) (ReTTeS)>=S> & R#LL .

O

We complete this section by documenting the isomorphism between coreflexives and
conditions. Recall that the right conditions are, by definition, the fixed points of the
function (TTo).

Theorem 5.8 The coreflexives are the fixed points of the right domain operator. That
is, for all R,

Algorithmic Graph Theory April 8, 2022

66

(a) R=R>=RCI .
Also, for all coreflexives p and all right conditions C,

(b) (TTep)>=p ,and
(c) TTC>=C .

Moreover, for all relations R and S,
(d) R>CS> = TTeRCTTeS .
Hence,

(e) R>=8> = TToR=TTeS .

The right-domain operator is thus a poset isomorphism mapping the set of right
conditions to the set of coreflexives and its inverse is the function (TTo).
]

Some powerful and far from obvious theorems about coreflexives are proved by map-
ping the theorems to statements about conditionals and then exploiting the characteristic
properties of TT — TT DR for all R, and TT =TT~ — to prove these statements. An
illustration of the technique is afforded by the proof of the following lemma.

(5.9) (RoS)>=(R>0S)> .
We begin the proof by invoking theorem 5.8
(ReS)> = (R=0S)-
= { theorem 5.8(e) }
TToReS = TT oR>0S§
= { TToR>= TToR }
TToReS = TToReS
= { reflexivity }
true .
Another useful property is:
(5.10) X=1L =X>=11 .
The proof is by mutual implication. First,

X=1L = {Leibniz} X-=1l> = {ll>-=11} Xs>=1L .

Algorithmic Graph Theory April 8, 2022

67

= { 1L is least relation }
X>C 1L
= { theorem 5.3 }
[INTTeX C 1L
= { monotonicity of composition,
preparing for use of the modularity rule }
(INXeTT)eTT C 1L
= { modularity rule: (4.8), TT=TT" }
TTNXC 1L
= { TT is greatest relation, |l is least relation }
X=1L .
For modelling programming statements, in particular conditionals, complemented

domains are necessary. We assume that the lattice of coreflexives is complemented and
let R» denote the complement of R>. That is,

R>UR»=1 and R-NR== 11 .
Then, for relations R and coreflexives p,
(5.11) R« D p = Rep=_1L .
Moreover, for all R,
(5.12) (R>)» = Rw» = (R»)>

Note that (5.11) is a slightly disguised Galois connection since the right side can be
rewritten as RC 1L /p. (See (4.7).) The equation defines Rx» as the largest coreflexive p
such that restricting the right domain of R to p yields the empty relation. A consequence
is the distributivity property

(RUS)= = ReNS- .

Just as for the non-complemented domain operator, it is difficult to simplify (RNS)-.

Algorithmic Graph Theory April 8, 2022

68

5.2 Points and Extensionality

In this section, our goal is to capture the notion that a relation is a set with elements
pairs of points. We begin with the definition of a “point”2? and then postulate an “ex-
tensionality” axiom similar to the notion of saturation discussed in section 2.6.

Definition 5.13 (Point) A homogeneous relation a of type A is a point iff it has
the following three properties.

(a) a#lL
(b) aCl ,and
(c) a=acTTea

In words, a point is a proper, coreflexive rectangle.
O

As in definition 5.13, we use lower case letters a, b and c to denote points.
Lemma 5.14 A point is an atom. That is, if a is a point then, for all b,
bCa = b=1lL V b=a .

Proof Suppose a is a point and b is a relation of the same type as a. The proof that
a is an atom is by mutual implication. “If” is straightforward. For “only if”, assume
that bCa and b# 1l . We have to prove that b=a. This we do as follows.

b

= { assumptions: bC a C1I, property of coreflexives }
aobea

= { assumption: a=acTlTea }
ao TToaoboao TTeoa

= { assumptions: bC a C1, property of coreflexives }
ao [ToboTToa

= { assumption: b+ 1L ; cone rule }
aoTTea

= { assumption: a=acTlTea }
a .

2The definitions and lemmas in this section are due to Ed Voermans.

Algorithmic Graph Theory April 8, 2022

69

O

The following property was introduced by [Glil7]. Pairs (a,b) in classical formu-
lations of relations are captured in our system by events of the form a-TTob where a
and b are points (proper atomic coreflexives). The catchy name given to the lemma
expresses the property that membership of a relation is a boolean.

Lemma 5.15 (All or Nothing) Suppose a and b are points. Then
(VR = aeRob=_11 V @oReb=aoTTob) .
Proof Suppose acReb# 11 . We have to prove that acReb=acTTob.
acReb
= { assumptions: a=acTToa and b=boTTob }
aoTToaoReboTTob
= { assumption: acRoeb# 1l , cone rule }
acllTob .

O

In general, if a is a point of type A and b is a point of type B, the relation a-TTob
represents the pair (a,b); given a relation R of type A~B and points a and b of type
A and B, respectively, the statement

aclTob C R

has the interpretation that the pair a and b are related by R. Specifically, for all
relations R and points a and b of appropriate type,

(5.16) (acRob # 11) = (acTTeb CR) = (acTTeb = acRob) .

(In conformance with long-standing mathematical practice, property (5.16) should be
read conjunctionally: that is as the equality of three terms. In this case, each term is
boolean. The property is a straightforward corollary of the all-or-nothing rule.)

The following lemma motivates the all-or-nothing rule. That “pairs” aoTTob are
atoms is equivalent to the all-or-nothing rule.

Lemma 5.17 Suppose a and b are atomic coreflexives. Then
(VR = aeRob=_11 V @oReb=aoTTeb) = atomic.(a°TTeb) .

Proof Suppose p and (are coreflexives. Then, for all R,

Algorithmic Graph Theory April 8, 2022

70

R C poTTeq
= { set theory }
R = RN peolleq
= { domains (specifically theorem 5.7(b)),
p and q are coreflexives, so p=p< and q=q> }
R = poReq .
We conclude that

R C pelleq = R =7poReq .

We shall only need to apply this property in the case that p and q are atomic coreflex-

ives. Now, assume a and b are atomic coreflexives and acReb= 11 V aocRob=acTTob.
Then

R C aoTTob
= { above with p,q:=a,b }
R = aoReb
= { assumption and Leibniz }
R=11L V R=aocTTob .
We conclude, by definition 2.49 of atomic,
(VR = aeRob=_11 V aoReb=aoTTeb) = atomic.(a-TTeb) .

In words, if the all-or-nothing rule is universally valid for atomic coreflexives a and b,
then aoTTob is atomic. Now, suppose aoTTob is an atom. Then, for all R,

acReb C aoTTeb
= { aoTTob is an atom, definition 2.49 }
acReb=_11 V aecTTeb=acReb .

That is, if acTTob is an atom, the all-or-nothing rule applies to acReb, for all R.
O

Combining lemmas 5.15 and 5.17, we get:

Lemma 5.18 For all points a and b, a-TTob is atomic.

|

Algorithmic Graph Theory April 8, 2022

71

Lemma 5.19 For all proper coreflexives p and (q,
pelTeq C 1 = p=qg
Proof
pelTeq C 1
= { monotonicity and unit of composition }
popeTTeq S p /A poTleqeq € ¢
= { p is coreflexive, so p=pep=p>, similarly for q
monotonicity and domains }
(peTTeq)> € p A (poTTeq)< C q
= { domains (specifically theorem 5.7(e)),

p and q are non-empty coreflexives }

qcp N pCEq
= { anti-symmetry }
P=q .

O
An immediate corollary of lemma 5.19 is that, for all points a and b,

(56.20) acTTebC I = a=b .

(Folows-from is immediate from the definition of a point. Implies is an instance of lemma
5.19.)

Definition 5.21 (Extensional) Suppose A is a type. The lattice of coreflexives of
type A is said to be eztensional iff for all coreflexives p of type A,

p = (Ua:point.aNaCp:a)

We conclude with a theorem stating conditions under which the lattice of relations
(of a given type) is saturated and atomic. The proper atoms are events of the form
aoTTob where a and b are points; such an event models the pair (a,b) in conventional
pointwise formulations of relation algebra.

Theorem 5.22 Suppose, for types A and B, the lattices of coreflexives of types A
and B are both complete, universally distributive and extensional. Then the lattice of
relations of type A~B is a saturated, atomic lattice; the atoms are elements of the form

Algorithmic Graph Theory April 8, 2022

72

a°TTob where a and b are atoms of the lattice of coreflexives (of types A and B,
respectively). It follows that, if the lattice of relations of type A~B is complete and
universally distributive, it is isomorphic to the powerset of the set of elements of the
form aoTTob where a and b are atoms of the lattices of coreflexives of types A and
B, respectively.

Proof By lemma 5.15, it suffices to prove that the lattice of relations of type A~B is
saturated. This is easy: for all R of type A~B,

R
= { I is unit of composition,
lattices of coreflexives of types A and B are extensional }
(Ua:point.a:a)eRo (Ub:point.b:b)
= { distributivity of composition over U }
(Ua,b : point.a/\point.b : acRob)
= { all-or-nothing rule: lemma 5.15, | is zero of supremum }
(Ua,b : point.a A point.b /\ acReb # LL : aoTTob)

That the lattice of relations is a powerset follows from theorem 2.51.
O

Henceforth, we assume that, for each type A, the lattice of coreflexives of type A
is complete, universally distributive and saturated. That is, recalling theorem 2.51,
we assume that the coreflexives of a given type form a powerset. Theorem 5.22 then
states that, for each pair of types A and B, the lattice of relations of type A~B is
a powerset with atoms of the form a-TTob where a and b are points of type A and
B, respectively. In view of theorem 2.51, we use C for the ordering relation and ~
for the complement operator on coreflexives. We use — for the complement operator
on relations. Thus, for coreflexive p, ~p = IN—p. Later, when the relations represent
graphs, we use “node” as a synonym for “point”. Standard properties of powersets —the
properties of set union, intersection and complementation— will be assumed, sometimes
without specific mention and sometimes with the hint “set theory”.

We use p and q to range over coreflexives and a and b to range over points.

Summarising, the saturation property is that

(5.23) (VR = R=(Ua,b:acTTebCR: acTTeb))

The irreducibility property is that, if R is a function with range relations of type A~B
and source K, then, for all points a and b of appropriate type,

(5.24) aoTTeb C UR = (Tk:keK: aoTTsbCRK) .

Algorithmic Graph Theory April 8, 2022

73

The identity relation 1o of type A has the property that, for all points a and a’ of
type A,

(5.25) aoTToa’ C Ip = a=a’ .

Other than its definition, the crucial property of the complement operator on coreflexives
is that, for all points a and coreflexives p,

~(aCp) = aC~p .

See lemma 2.52.

5.2.1 Properties of Points
This section documents properties of points with respect to domains and factors.
Lemma 5.26 For all relations R and points a and b (of appropriate type),
a CR< = (aeR)># 1L , and
bCR> = (Reb)< # 1L .
Proof We prove the second equation.
(Reb)< # 1L
= { cone rule: (4.16) }
TTo(Reb)<o TT = TT

— { [R<oTT = RoTT] with R:=Rob }
TToRobo IT = TT
— { [TTeR-=TTR] }

TToR>0boTT = TT
= { cone rule: (4.16) }
R>ob # 1L
— { R-sbCb ;
so, by atomicity of b, R=cb=Db V R>ob = 1L ;
also, b # 1L}
R>ob =D
= { R>ob =R-Nb }
bCR> .

Algorithmic Graph Theory April 8, 2022

74

O
For a point b the square RoboR" represents the set of all points a such that a and
b are related by R. This is made precise in lemma 5.27 and its corollary, lemma 5.28.

Lemma 5.27 For all relations R of type A~B , all coreflexives p of type A~A and
all points b of type B,

p € RoboR” = poTTeb C R .

Symmetrically, for all relations R of type A~B , all coreflexives q of type B~B and
all points a of type A,

q - RuoaoR = ao—|_|—oq - R .
Proof By mutual implication:

p € RoboR"”

= { monotonicity }
poTTob C RoboR"6TTob

= { RYTT CTT)
poTTob C RoboTTob

= { b is a point: so, by definition 5.13, boTTob=b and bCI }
peTTob C R

= { converse and monotonicity }
poTToboboTTop” C RoboR”

= { b is a point: so beb=b and TToboTT =TT

p is a coreflexive, so p” =p ; monotonicity }

peTTop C RoboR”

= { ICTI and pep=p }

p € RoboR” .
O
Property (5.16) is the most basic formulation of membership of pairs in a relation. It
can also be formulated in terms of squares and in terms of domains:

Lemma 5.28 For all relations R and points a and b (of appropriate type),

(a € RoboR”) = (aTTebCR) = (b C R’cacR) .

Algorithmic Graph Theory April 8, 2022

75

Proof Straightforward instantiation of lemma 5.27:

a C RoboR"

— { lemma 5.27 with p:=a }
aoTTob C R

— { lemma 5.27 with p:=b }

b C RVsboR .
O

Lemma 5.29 For all relations R and points a and b (of appropriate type),

(@ C (Reb)-) = (asTTeb CR) = (b C (aR)) .

Proof

aTTeb C R
= { monotonicity and a is a coreflexive, so aca=a }
acTeb C aoR
= { monotonicity }
(aeTTob)> C (aoR)>
= { domains abd }
b C (aoR)>
= { monotonicity }
a°TTeb C aoTT o(aoR)>
= { domains: [TT oR> = TToR] with R:=a-R }
acTeb C aoTTeacR

= { a is a point, so acTTea=a }
acTTeb C aeR

= { a is a coreflexive, monotonicity }
aclTob C R .

That is, we have shown by mutual implication that

aTTob CR = b C (acR)> .

Algorithmic Graph Theory April 8, 2022

76

A symmetric calculation establishes that

aoTTeb CR = a C (Reb)< .

O
Combined with property (5.16), lemmas 5.28 and 5.29 give six alternative ways of
formulating the membership relation aoTTob C R. All are useful.

Lemma 5.30 For all relations R and points a (of appropriate type),
aCR< = (Fb:bCR>:acTTeb CR)
Also, for all relations R and points b (of appropriate type),
bCR> = (da:aCR<:acTTob CR) .
Proof We prove the first equation:
a C R<
= { lemma 5.26 }
(asR)> # LL
= { lemma 5.32 }
(3b :: b C (acR)>)
= { lemma 5.29 }
(b acTTeb C R)
= { domains (specifically, acTTob CR=bCR>) }

(Fb:bCR>:aeTTeb C R)

O
Lemma 5.31 gives a pointwise interpretations of the factor operators. Although we
typically try to avoid pointwise reasoning, the lemma is sometimes indispensable.

Lemma 5.31 For all relations R of type A~C and S of type B~C (for some A, B
and C) and all points a and b,

aTTob CR/S = (boS)> C (acR)> .
Dually, for all relations R of type C~A and S of type C~B, and all points a and b,

aoTTeb CR\S = (Rea)< C (Sob)< .

Proof By mutual implication:

Algorithmic Graph Theory April 8, 2022

7

aoTTob C R/S
= { definition of factor }
aoTToboS C R
= { a and b are points, monotonicity and domains

(see initial steps in proof of lemma 5.29) }
(bsS)- C (asR)-
= { monotonicity }
aoTTo(beS)> C aoTTlo(acR)>
= { domains }
aoTTebeS C aoTToacR
= { a is a point (so acTTea=a) }
aoTToboS C aoR
= { a is a coreflexive }
aoTToboS C R
= { definition of factor }
aoTTob C R/S .
The second equivalence is proved similarly.
aoTTob C R\S
= { definition of factor }
RoaoTTob C S
= { monotonicity and coreflexives
(see initial steps in proof of lemma 5.29) }
(Roa)- C (Sob)-
= { (as in above calculation) }

aoTTob C R\S .
O

5.2.2 Unicity

Sometimes we want to define functions indirectly via a property relating input and output
values. The property is formalised and then it is shown that the formal specification

Algorithmic Graph Theory April 8, 2022

78

relates each input value to exactly one output value. That is, the formal specification
relates each input value to at most one and at least one output value. In order to reason
within our axiom system, we then want to conclude that output values are points. See,
for example, section 5.3, where we define the meaning of functionality and exhibit an
expression that formulates, in very general terms, the result of applying a function to an
argument.

Although the process seems to be obvious, we want to stick to our goal of validating
every step within our axiom system. For this reason, we now present the technical
justification. As just mentioned, we refer the reader to section 5.3 for a concrete example.

In the following lemmas, p is a coreflexive relation and dummies a and a’ are points
of the same type as p.

We begin with the consequence of showing that specification p has at least one
solution.

Lemma 5.32
p#ll = (Ja:zalp)
Proof
p#LL
= { cone rule: (4.16) }
TTopeTT = TT

= { saturation property: (5.23) }
TTe(Ua:aCp:a)eTT = TT
= { distributivity }
(Ua:aCp:TTeaeTT) = TT
= { a ranges over points, so a# L, cone rule: (4.16) }
(Ua:aCp:TT) = TT
= { (Ua:false: TT)=11 and LL#TT }
(JazaCp)
= { a ranges over points: so 1l #a

predicate calculus, (details left to the reader) }

p#LL .
O

Next we formulate the consequence of showing that specification p has at most one
solution.

Algorithmic Graph Theory April 8, 2022

79

Lemma 5.33
(Va:aCp:a=p) = (Vaa':aCpAadCp:a=d) .
Proof

(Va:aCp:a=p)

= { anti-symmetry }
(Va:aCp:a2p)

= { extensionality assumption: definition 5.21 }
(Va:aCp:a2(Ua:a'Cp:a’))

= { suprema |}
(Va:aCp:(Va':ad’'Cp:a>da’))

& { reflexivity of the subset relation }
(Ma:aCp:(Va':ad'Cp:a=a’))

= { nesting of quantifications }
(Va,a’ : aCpAad'Cp:a=da’)

& { Leibniz and predicate calculus }
(Va:aCp:a=p)

O

Theorem 5.34 Suppose p is a coreflexive relation. Then p is a point equivales
(JazaClp) N (Va,a':aCpAad'Cp:a=d) .

(As above, dummies a and a’ range over points of the same type as p.)
In words, a specification p defines a point iff it has at least one solution and at most
one solution.

Proof In the following dummy g ranges over coreflexives of the same type as p and
a ranges over points of the same type as p.

p is atomic
= { definition 2.49 }

(Vg:qCp:q=pVq=1L)
= { trading }

Algorithmic Graph Theory April 8, 2022

80

(Vq:qCpAq#LlL:q=p)
= { lemma 5.32 }
(Vg:qCp/A(JazaCq):q=p)
= { distributivity (of conjunction over disjunction),
range disjunction }
(Vga:aSqCp:q=p)
& { anti-symmetry }
(Va:aCp:a=p)
= { lemma 5.33 }
Va,a’ : aCpAad'Cp:a=d) .
Also,
p is atomic
= { definition 2.49 }
(Vq:qCp:q=pVq=1l)
= { points a and a’ are coreflexives, weakening }
(Va,a’ :aCpAad'Cp:(a=pVa=1ll)A(a'=pVa=1L))
= { points are proper (i.e. a# 1l and a’#1l) }
(Va,a’:aCpAa'Cp:a=pAa=p)
= { transitivity of equality }
Va,a’:aCpAa'Cp:a=a’) .
Combining the two calculations, we have established by mutual implication that
(5.35) pisatomic = (Va,a’':aCpAa'Cp:a=a’) .
It follows that, for all coreflexives p,
p is a point
= { definitions 2.49 and 5.13, assumption: p is coreflexive }
p# 1L /A p is atomic
= { lemma 5.32 and (5.35) }
(JazaCp) N (Va,a’ :aCpAad'Cp:a=da’) .
O

Algorithmic Graph Theory April 8, 2022

81

5.3 Functionality and Totality

A subset of the relations is formed by the functions, which can be seen as deterministic
relations. There are a number of ways to characterise them. Because we want to stress
the importance of Galois connections we choose the following.

Definition 5.36 (Functional Relation) A relation f is said to be functional if and
only if it has the property that for all relations R and S:

(5.37) Rof>C Sof = Rof' C S .
O

Note: The converse-dual of (5.37) could equally have been chosen as the definition
of functional. It is at this point that we are obliged to commit to a “direction” when
giving pointwise interpretations to relations. Specifically, we interpret the left domain of
a relation as the possible “outputs” of the relation and the right domain as the possible
“inputs”. (See also section 5.4.) This choice is consistent with the use of the symbol “o”
to denote both composition of relations and composition of functions.

The definition of functional is almost a Galois connection, but not quite: the right
domain on the lefthand side spoils it. However, it is a Galois connection if we restrict our
attention to total functions, that is functional relations with right domain the identity
relation. Another way of turning the definition into a Galois connection is by considering
the set of relations with right domain contained in f>. It can be shown that these
relations form a complete lattice with 1l as bottom element, relation TT of> as top
and the intersection and union operators as meet and join. It is not difficult to verify
that the functions (of) and (o(f”)) form a Galois connection between this lattice and the
lattice of the relations. As a consequence, the function (of) distributes over non-empty
intersections of relations, a property that is expected from pointwise considerations.

In this section, we deviated from our practice of starting with a pointwise interpreta-
tion. So, we now have to check whether the definition captures the idea of functionality.
The characterising property of a function is that it is single-valued (also known as Leib-
niz’s rule), i.e. if y[f]x and z[f]x then y is equal to z. This is written as:

(Vy,z : (3xay[fx A z[f]x) : y[I]z)

After rewriting the existential quantification using relation composition and subsequently
the universal quantification using the definition of relation inclusion, we obtain (the much
more concise):

(5.38) fof C1 .

Algorithmic Graph Theory April 8, 2022

82

Expression (5.38) follows easily from definition 5.36 by instantiation of R to f and S to
[. It is also not difficult to derive condition (5.37) from (5.38), in other words, expression
(5.38) is an alternative definition of the notion of functionality.

As is often the case with important concepts, there is a number of equivalent defini-
tions of functionality. We mention a third:

(5.39) fof’ =f< .

This is obtained by rewriting (5.38) as fof” = I N fof’ and noting that the righthand
side of the latter formula is equal to the left domain of f (this uses the dual of (4.14)).

The notion dual to functionality, viz. injectivity, is now of course easy to define as: f
is injective if and only if f~ is functional. A relation that is both injective and functional
is called a bijection.

The standard notion of a partial function is a relation that defines a unique output
value for each input value in its domain. In our axiom system we have the following
theorem.

Theorem 5.40 Suppose relation R has type A~B. Then
(5.41) RoR” C Iy = (Vb:bCR-:point.(ReboR")) .

Moreover, if f is a relation of type A~B and fof” C I, the relation fobof"” is a point
of type A and

(5.42) (Va,b : bCf> : acTTobCf = a = fobof’) .
Proof We prove (5.41) by mutual implication. First,
RoR” C I
= { domains }
RoR-0RY C I
= { extensionality assumption: definition 5.21 }
Ro(Ub : bCR-: b)oR” C I,
= { distributivity }
(Vb : bCR- : RoboR" C In)
& { definition 5.13 of a point }
(Vb : bCR>: point.(ReboR"))

Thus we have established the “if” part of the equivalence. Now, for the “only-if”, assume
R © RU Q IA .

Algorithmic Graph Theory April 8, 2022

83

We first note that, for all b such that b CR>, the equation
(5.43) a: point.a: acTTob C R
has at most one solution since, for all points a and a’ of type A,
acTTob C R A a’oTTob C R
= { converse and monotonicity }
aoTTobobo TToa’ C RoRY
= { b is a point, so TToboboTT =TT }
a°TToa’ € RoR”
= { assumption: RoR” C I, , transitivity of the subset relation }
acTTea’ C Ix
= { a and a’ are points: (5.25) }
a=a’
That is,
(5.44) (Vb : bCR>: (Va,a’ : aTTob CR A a’oTTeb CR: a=a'))

By lemma 5.26, equation (5.43) has at least one solution for all points b such that
b CR>. That is,

(5.45) (Yb:bCR>:(Jda: aTTeb C R)) .
Thus equation (5.43) has ezactly one solution for all points b such that b Cf-. So:

(Vb : bCR>: point.(ReboR"))

— { RoboR"
C { assumption: b CR>, monotonicity }
RoR>0R"
= { domains }
RoR”
C { assumption: RoR” C Iy }

I ,
theorem 5.34 with p := RoboR” }
(Vb:bCR>:(Ja = a C RoboRY))

Algorithmic Graph Theory April 8, 2022

84

A (Yb:bCR>:(Va,a’:a CRoboR” A a’ CRoboR”:a=a’))
= { lemma 5.28 }
(Vb :bCR>:(Ja: acTTeb C R))
A (Yb:bCR>:(Va,a’:aTTeb CR A a’oTTeb C R:a=a’))
= { (5.44)and (5.45) }
true .

This concludes the proof of (5.41).
Now, assuming that fof” C I, it follows from (5.41) (with R:=f) that fobof” isa
point. Also, for all points a and b (of types A and B, respectively),
bCf A aTTeb C f
= { lemma 5.29 (aiming to eliminate first conjunct) }
bCf> A bC(aef)> A\ aeTTeb C f
= { monotonicity and lemma 5.29 }
aoTTob C f
= { lemma 5.28 }
aC fobof"
= { fobof” is a point, definitions 5.13 and 2.49 }
a="fobof’ .,
O
In words, theorem 5.40 states that f is functional iff, for all points b in the right

domain of f, the relation fobof~ defines a unique point of type A . This is the point
that we denote by f.b. The defining property of f.b is thus

(5.46) (Va,b : bCf> : aTlebCf = a=f.b) .

A consequence of the unicity property expressed by (5.46) is the property that, for all
functional relations f of type C~A and g of type C~B, and all points a and b,

(5.47) aoTTobC f'og = aCf-Af.a=gbAbClg- .

When introducing the modularity rule in section 4.1.2, we emphasised the importance
of distributivity properties. A distributivity property that possibly goes unnoticed in
pointwise calculations but must be used explicitly in point-free calculations is the dis-
tributivity of functions over intersection: for all relations R and S and all functional
relations f,

(5.48) (RNS)of = RofMSof .

Algorithmic Graph Theory April 8, 2022

85

The property is an application of (4.15) combined with (5.38).

Besides functionality and injectivity, there are two other dual notions which relations
may enjoy: totality and surjectivity. We only spell out what it means for a relation to
be total, because surjectivity can be defined in terms of totality: relation R is surjective
iff its converse R” is total.

Relation R is total means that it can accept every element of the universe as an
input. Formally, relation R is total iff R>=1. An equivalent formulation is: I C R"oR.
From this, it can be seen that surjectivity is, in a sense, also dual to injectivity: relation
R is injective can be expressed as I D R"oR.

We conclude this section with a useful lemma on establishing the equality of two
functional relations.

Lemma 5.49 Suppose f and h are functional relations of the same type. Then
f=h = fCh A f>=h-

Proof Clearly, the left side implies the right side and it suffices to prove follows-from.

hCf
= { domains: (5.5), and assumption: f>=h- }
hof>C f
= { assumption: f is a function and (5.37) }
hof’ C 1
& { assumption: fCh, monotonicity and transitivity }
hoh” C 1
= { assumption: h is a function and (5.38) }
true .

The required implication follows from the anti-symmetry of the subset relation.
O

5.4 Heterogeneous Relations

A heterogeneous relation R has a type given by two sets A and B, which we call the
target and source of R. We use the notation A~B to denote the type of a relation.
Formally, a relation of type A~B is a subset of AxB. (Equivalently, it is a function

Algorithmic Graph Theory April 8, 2022

86

with domain AxB and range Bool.) A homogeneous relation is a relation of type A~A
for some A.

The target and source of a relation should not be confused with its left domain and
right domain. If R has type A~B then its left domain R< has type A~A and its right
domain R> has type B~B. As always, R< and R-> are coreflexives, but this property
is expressed formally as R<C Iy and R>C Iy, where 15 denotes the identity relation of
type A~A (and similarly for Iy).

The operators in the algebra of heterogeneous relations are typed. For example, the
composition of two relations R and S, denoted as always by RoS, is only defined when
the source of R equals the target of S. Moreover, the target of RoS is the target of R
and the source of RoS is the source of S. That is, if R has type A~B and S has type
B~C then RoS has type A~C. We assume the reader is familiar with such rules.

As mentioned earlier, the rules of the untyped calculus are applicable in the typed
calculus, with some restrictions on types. For example, the rule R = R<oR remains
valid without restriction. Restrictions are necessary on types for the middle-exchange
and rotation rules (see section 4). For example, the inclusion ReS C—T" is only defined
if R has type A~B, S has type B~C and T has type C~A, for some sets A, B
and C. (The converse T~ of T then has type A~C, which equals the type of —T"
and RoS.) With these type restrictions, SoT C—R" is also well-defined, and the two
inclusions RoS C—T"” and SoT C—R" are equal as per the rotation rule.

It is now possible to see why the choice of an inclusive-or in the statement of the cone
rule (4.16) is vital: the rule, for all R:

R=11 # TToReTT =TT

is invalid in the case that the type of R is)~ and, as good programmers are very well
aware, such extreme cases can and do occur in practice.
The care that must be exercised with overloading is exemplified by the rule

RoTT = R<oTT .

Recall that, if R has type A~B, R< has type A~A. Thus the notation “TT” on
the left side of the equation denotes the universal relation of type B~C, for some type
C; on the other hand, the notation “ TT ” on the right side of the equation denotes the
universal relation of type A~C. Rather than overload the notation in this way, we could
decorate every occurrence of TT with its type. For example, we could rephrase the rule
as

ROB—H—C — R<0A—|_|—C .

We prefer not to do so because the type information is usually easy to infer. (An
exception is that we occasionally decorate the identity relation I with its type: Ia

Algorithmic Graph Theory April 8, 2022

87

denotes the identity relation of type A~A.) Nevertheless, we urge the reader to check
types, particularly where notation is overloaded.

Typed relation algebra, as briefly summarised above, extends category theory to what
has been called allegory theory. See Freyd and Séedrov [Fv90] for more details.

5.5 The Interface Between Formal and Informal

In order to narrow the gap between conventional pointwise reasoning and the formal
axiomatic reasoning in this paper, this section explains how to proceed from one to the
other.

Theorem 5.22 enables more familiar pointwise reasoning. For example, we can derive
the standard pointwise definition of the composition of relations. With dummies a, b,
¢ and d ranging over proper atomic coreflexives, we have:

RoS
= { theorem 5.22 }
(Ua,b : acReb## 1L : acTTeb) o (Uc,d : coSed# LL : coTTed)
= { distributivity and nesting of quantifications }
(Ua,b,c,d : acRob # LL A coSed# 1L : aoTTobocoTTed)
= { boc= 1l & b+#c, one-point rule and beb=b; }
(Ua,b,d : acReb# 1L /A boSed# 1L : @aoTToboTTod)
= { cone rule: (4.16),and b# 1l }
(Ua,b,d : acReb# 1L /A boSed# 1L : aoTTed)
= { disjunction rule of the quantifier calculus }

(Ua,d : (db = acReb# LL A boeSed## LL) : acTTed)
That is, with dummies a, b and d ranging over proper atomic coreflexives,
(5.560) ReS = (Ua,d: (Ib = acRob# LL A boSed# LL) : acTTed)
A similar calculation gives the standard pointwise definition of the converse of a relation.
(5.51) R” = (Ua,b: acReb=# LI : boTTeqa) .

In these calculations, the boolean acReb# Ll plays the role of a[R]b in conventional
reasoning. Atomic coreflexives a and b thus play the role of points and an event of
the form aoTTob models the pair (a,b) in conventional pointwise reasoning. In this

Algorithmic Graph Theory April 8, 2022

88

way, pointwise statements in conventional reasoning can be mechanically translated into
statements in our formal axiomatic system.

In the opposite direction, translating point-free statements into pointwise statements
involves exploiting the fact that the lattice of relations is saturated and atomic. This
allows a relation to be rewritten as the supremum of set of atoms a-TTob in the same
way that in conventional reasoning a relation is expressed as the union of a set of pairs.
Typically (as illustrated above) this involves the introduction of quantifiers, including
universal and/or existential quantifiers.

As in example, this is how (5.38) is justified within the formal system we have pre-
sented.

fof”
= { theorem 5.22 }
(Ua,b : aofof’ob # LL : aoTTob)
= { pointwise definitions: (5.50) and (5.51)
and quantifier calculus (range disjunction) }

(Ua,b,c : aofoc # LI /A bofoc # 1L : aoTTob)

So,
(Va,b : (Jc = aofoc # LL A bofoc % 11) : a=D)
= { range disjunction }
(Va,b,c : aofoc # 1L A bofoc # LI : a=Db)
— { (520))
(Va,b,c : acfoc # LI A bofoc # 1L : aoTTob C1I)
= { above and property of supremum }
fof"C1 .

Of course, it is impossible to avoid pointwise reasoning. All the meta-reasoning we
do is pointwise —the “points” are the events in our axiom system— and, within our
axiom system, it is sometimes necessary to exploit saturation and atomicity.

When reasoning about algorithms in later sections, much of the reasoning becomes
pointwise. The “points” are states of the program and properties of the states are
expressed pointwise in terms of the values of the program variables. For this reason, it
is important to consider the different ways that properties are formulated.

Just as, in conventional reasoning, a[R]b and (a,b)€R have the same meaning
—implicitly exploiting the isomorphism between a subset of a power set and its charac-
teristic (boolean-valued) function— the two expressions acReb# 1L and acReb=acTTob

Algorithmic Graph Theory April 8, 2022

89

have the same meaning. Indeed, there are many different but equivalent expressions in
conventional pointwise reasoning; similarly, there are often different, but equivalent ways
of translating informal expressions into the formal calculus.

When formulating proof rules for reasoning about algorithms, we typically choose to
represent guards and assertions by coreflexives. See, for example, the induction theorem
for reasoning about depth-first search presented in chapter 12. However, guards and
assertions in programs are invariably expressed as boolean functions of the state space.
Consequently, when applying the proof rules we need a formal mechanism for translating
between the language of coreflexive relations and boolean functions. Below we formulate
the translation.

The type Bool has two elements true and false. Let us use TRUE and FALSE to
denote points of type Bool~Bool representing the subsets {true} and {false}, respectively.
Suppose State is a set. The name is chosen on account of the application: State is the
state space of a program segment. Then the function

(P :: (TRUE-P)>)

maps a function P of type Bool«State into a coreflexive of type State~State that
represents the set of states o for which P.o is true. Conversely, the function

(p = TRUEeTTop U FALSETT op=)

maps a coreflexive p of type State~State into a (total) function of type Bool«State.
(Note that pe=~(p>)=~p.)

Lemma 5.52 Suppose P is a total function of type Bool«State. Then
(TRUEoP)» = (FALSE-P)-
and
(FALSEoP)» = (TRUE-P)> .
Proof By mutual inclusion. First,
(TRUE-P)» O (FALSE-P)-
= { definition of complemented domain: (5.11) }
TRUEoPo(FALSE-P)> = 1L
= { (5.6) with “>” replaced by “<” }
(TRUEoPo(FALSEoP)>)< = 1L
= { (5.9) and 5.7(c) }

Algorithmic Graph Theory April 8, 2022

90

(TRUEoPoP” o FALSE)- = 1L

= { (5.6) with “>” replaced by “<” }
TRUEoPoP"” o FALSE = 1L

& { assumption: P is a function, so PoP” C Igoe }
TRUE-FALSE = 1L

= { FALSE=~TRUE }
true .

Second,

(TRUE-P)» C (FALSE-P)-

= { complements }
(TRUE©P)=o(FALSEoP)» C 1L

= { complements, ~1l. =1 }
(TRUE©P)>U (FALSEoP)> D I

= { distributivity }
((TRUEUFALSE)oP)> D Igtate

= { TRUEUFALSE =1Igoe }

P>) IState
— { assumption: P is total }
true .

Combining the two calculations, we have proved the first equation. The second is ob-
tained by interchanging TRUE and FALSE.
O

Theorem 5.53 For all coreflexives p of type State~State,

P = (TRUEo(TRUE-TTep U FALSEoTT op))>
and for all total functions P of type Bool«+State

P = TRUEoTTo(TRUE.P)> U FALSEoTT o(TRUE<-P)= .
That is, the functions

(P :: (TRUE-P)>) |

Algorithmic Graph Theory April 8, 2022

91

which maps a function P of type Bool+State into a coreflexive of type State~State,
and

(p = TRUEsTTop U FALSEoTT ops) |

which maps a coreflexive p of type State~State into a total function of type Bool«State,
are inverses of each other.

Proof

(TRUEo (TRUEsTTop U FALSEo TT op=))-
= { distributivity and TRUE-FALSE=11 }

(TRUE.TRUE-TT op)>
= { TRUE 1is a proper coreflexive, so TRUE. TRUE=TRUE # LL
5.7(e) }
P>
= { p is a coreflexive }
P .

TRUEs TT o (TRUEsP)> U FALSETT o (TRUEP)-

= { 5.7(a) and lemma 5.52 }
TRUE-TToTRUEoP U FALSEoTT «FALSE-P

= { TRUE and FALSE are points, definition 5.13(c) }
TRUE-P U FALSE-P

— [distributivity, TRUEUFALSE =Igoy }

P .
O

Theorem 5.53 is the formal basis for switching between functions of type Bool«State
and coreflexives of type State~State to represent assertions and conditions in programs.
See also section 6.8.5.

5.6 Bibliographic Remarks

Relation algebra was first developed in the 19th century by De Morgan [DM60], Peirce
[Pei70] and Schroder [Sch95], and further developed in the mid 20th century by Tarski

Algorithmic Graph Theory April 8, 2022

92

[Tar41] and his students. Histories of its development are by Maddux [Mad91] and Pratt
[Pra92].

Our presentation has its origins in a research project aimed at developing a relational
theory of datatypes [ABH ™ 92]|. See also [DBvdW97|, [Hoo97| and [Voe99]. The all-or-
nothing rule and the notions of complementation-idempotent and complementation-fixed
closure operator are from [Glil7].

Algorithmic Graph Theory April 8, 2022

Part 11

Semantics of Imperative Programs

Algorithmic Graph Theory 93 April 8, 2022

Chapter 6

Imperative Programming

In later chapters, we derive several graph algorithms. The algorithms are presented as
imperative programs and their correctness is formulated using standard techniques. We
assume that the reader has already seen several examples. For introductions, see (for
example) [Gri81, Bac03]. This chapter is about expressing the semantics of the programs
in relation algebra. In order not to burden the reader with details that are not relevant
later, some simplifications have been made, particularly with respect to the discussion
of program termination and the difference between so-called “angelic” and “demonic”
nondeterminism. See [BW93| for more details.

Programs are syntactic entities, the chosen syntax depending on the choice of pro-
gramming language. Here we use a Pascal-like language comprising assignment state-
ments, sequential composition, while statements, conditional statements and choice
statements. For us assertions —a mechanism for documenting a program— also form
an integral part of the syntax of a programming language. We often refer to components
of a program as program segments. For example, the composition of an assignment
statement and a while statement might be referred to as a program segment.

We also admit so-called “recursive” programs. A recursive program is a program that
is defined by an “equation” in which the left side of the “equation” is the name of the
program and the right side is a program segment that includes the name of the program.
That is, the name of the program “recurs” in its definition.

The basic unit of syntax is an identifier; identifiers are the names given to constants
and variables. Program segments are parameterised by constants, which include items
that are normally understood as “constants”, like the number 0, but also other items like
the type Node, the less-than ordering relation on numbers and the subset ordering on
subsets of Node, and functions like set union, etc. A “constant” is thus any entity named
implicitly or explicitly in the program segment that is unchanged by execution of the
program segment. Variables are named entities whose value changes during execution.

The variables that are in scope in a program segment determine its state space. For

Algorithmic Graph Theory 95 April 8, 2022

96

brevity, we omit explicit declarations of variables and their scope. Inspection of the vari-
ables referred to in a program is usually sufficient to determine the state space. For ex-
ample, if a program segment refers to variables a of type Node and s of type SetOfNode
then the state space of the program is the cartesian product Node x SetOfNode. (The
program may also refer to a constant G of type Graph.)

Choice statements augment the state space by introducing one or more variables
that satisfy a given specification (the choice criterion). The scope of these variables is
delimited by begin-end bracketing.

Assertions also sometimes extend the state space by the introduction of ghost vari-
ables. Ghost variables help to document the relation between input and output values
at certain points in the execution of the code. In order to distinguish ghost variables
from other variables we use subscripting as in, for example, o,. Typically, the ghost
variable o, would be used to relate the value of program variable o at some point in
the execution of the program to its initial value. Ghost variables o;, 0,, etc. might be
used to relate the value of o to its value at certain intermediate points in the execution
of the program.

Occasionally it is necessary to introduce additional auziliary variables. Auxiliary
variables play no role in the computation itself but, like ghost variables, are an aid to
documenting a program. Auxiliary variables differ from ghost variables in that they do
appear on the left side of assignment statements whereas ghost variables do not.

If a program segment P depends on variables xs, we often write P(xs). This no-
tation does mot denote function application. Instead, it is used to express syntactic
substitution. For example, suppose we have an assertion x+y=x*. In order to rea-
son about the assertion, we might give it the name p(x,y). Then by (for example)
p(x+1,y), we mean the syntactic entity (x+1)+y=(x+1)* obtained by substituting
every occurrence of the symbol “x” in the assertion by “(x+1)”.

6.1 Specifications

Programs are often described as defining an “input-output” relation. This suggests that
the semantics of a program is a heterogeneous relation of type Out~In for some types
Out and In. This is not how we define the semantics of a program.

Programs are invariably parameterised by a number of entities which define the input
of the program. Typically, some of the variables in a program are input parameters.
The use of the word “variable” is then arguably misleading: the input “variables” are
constants in the sense that their values are unchanged by execution of the program.
A program may also be parameterised by other entities that are not normally called
“variables”; these include types and relations. The state space of the program is defined

Algorithmic Graph Theory April 8, 2022

97

by the variables that are not constants and the output of the program is specified as the
final values of some subset of the state-space variables.

For example, we consider in section 6.9 an algorithm to calculate the least fixed point
of a function of type A« A for some partially ordered set (.4,=<). The algorithm
employs two variables, F and x, the value of F being constant whilst the value of x is
continually updated during execution of the algorithm. Thus F is an input parameter
and x defines the state space. The partially ordered set (A, <) is also a parameter of
the algorithm.

A simple syntactic check enables the distinction between “constants” and truly vary-
ing “variables” in a program: the constants are the “variables” that do not occur on the
left side of any assignment statement. Sometimes, however, programs are written that do
assign to input variables, ghost variables then being necessitated in order to specify the
program. We avoid this practice. Indeed, so that the reader can more easily distinguish
constants from variables, our practice is to use lower-case identifiers (like “seen”) to
name variables; symbols (like “<") and identifiers beginning with an upper-case letter
are used to name constants.

When defining the semantics of a program, it is desirable to clearly separate the
issue of termination from other issues. Whether or not a program terminates for given
input values is governed by its so-called operational semantics: how the program is
interpreted and executed. We do not present an operational semantics of programs but
we do show how to determine whether or not individual program segments terminate.
Termination of composite programs is defined to be demonic: that is, a program is
guaranteed to terminate only if all segments of the program are guaranteed to terminate.
We specify the semantics of programs only for terminating programs, by which we mean
programs that are guaranteed to terminate for all inputs satisfying a given specification.

Formally, the semantics of a program segment is a function with target

StateU{L} ~ State

where State is the type of the state space (typically a cartesian product of the types of
the program variables) and | expresses non-termination; the source of the function is
a (typically quite complex) collection of types, operators, relations and values satisfying
certain properties. A terminating program segment is one that is guaranteed to always
terminate; the semantics of a terminating program segment is thus a function that maps
the parameters of the program to a homogeneous relation on the state space. Less
formally, a (terminating) program segment is a possibly non-deterministic, parameterised
state transformer.

This view of program segments as parameterised state transformers allows us to
restrict attention to homogeneous relations. In this way, we avoid the clutter of type
checking. In what follows, the parameters will be implicit. Whenever we formulate a

Algorithmic Graph Theory April 8, 2022

98

rule, it is to be understood that the rule is universally quantified over all possible values
of the parameters. See section 6.4 on verification conditions for further discussion.

A specification is a triple (Context,P,R) where Context specifies properties of the
input parameters —including the state space State— , P is a (parameterised) pred-
icate of type Bool«State, and R is a (parameterised) homogeneous relation of type
State~State.

Specifications are typically non-deterministic —for given input values, different out-
put values may be acceptable— but program segments typically resolve some of the
non-determinacy, if not all. (In the extreme cases, functional programs are determinis-
tic: each input value yields exactly one output value.) Program segments are relations
that can be expressed in a restricted language. A program segment Prog with meaning
[Prog] is said to meet specification (Context,P,R) if, for all possible parameter values
satisfying the predicate Context, it is conditionally correct, i.e. [Prog]e[P] CR (where
[P] is the coreflexive corresponding to the predicate P) and it is guaranteed to terminate.

The type of the semantics of a program segment is most often a so-called “dependent
type”. For example, the fixed-point algorithm mentioned above has three inputs: a type
A, and an ordering relation and a function both of whose types depend on A. The
precise details form what we have called the “context” of the algorithm. Typically, the
context embodies a great amount of detail most of which is implicit in informal accounts.
When program verification is made formal and/or automated it becomes necessary to be
explicit about the context. For example, programs that manipulate variables declared
as “integers” often rely on properties of the less-than relation on natural numbers, these
properties being implicit in the specification but vital to formal proof. The level of detail
that is required is just too much for human consumption, and much of it is well known
in any case. This is why we choose to define the semantics of program segments as
parameterised state transformers whereby the parameters are left implicit.

We call P the precondition of the specification. It is common to combine the con-
text and the precondition into one; previously, we have also done so. We now prefer to
distinguish the two in order to emphasise that Context specifies properties that remain
true throughout execution of the program segment. “Preconditions” (and “postcondi-
tions”) are properties that hold only at certain points during the execution. Because the
context is a constant of any implementation, it is most often an implicit parameter of
the discussion that follows.

6.2 Structures

In order to present the semantics of program segments without making the context
explicit, we exploit the insights on “structures” introduced by Dijkstra and Scholten

Algorithmic Graph Theory April 8, 2022

99

[DS90]. A “structure” is simply an expression that denotes a parameterised value where
the parameters are not made explicit. As observed by Dijkstra and Scholten, reasoning
about “structures” requires more care than is usual in traditional mathematics with
regard to the overloading of operators, in particular the equality symbol. Specifically,
given two structures A and B, the expression “ A =B ” might denote a boolean structure
or a boolean scalar.

For example, suppose A and B are vectors of the same (implicit) type and dimen-
sion. Then A =B can be interpreted in two ways. Interpreting it as a structure, A=B
denotes a boolean vector of the same dimension as A and B, the entries in the vectors
being true or false depending on whether or not the corresponding entries in A and B
are equal. Interpreting it as a scalar, A =B is a boolean: it is true or false depending
on whether or not A and B are everywhere equal (i.e. all corresponding entries in A
and B are equal.)

Traditional practice in mathematics is to assume that A =B denotes a boolean scalar.
However, as argued by Dijkstra and Scholten [DS90], this practice is undesirable if the
goal is to combine precision with concision in calculational reasoning. Their solution is
straightforward as well as aesthetically pleasing. The expression A =B is defined to
be a structure (of the same shape as A and B) and [A=B] is the boolean scalar.
The square brackets are called “everywhere” brackets, and [A=B] is read as “A is
everywhere equal to B”, or simply “everywhere A =B"”. The same device is applied
to other operators. For example, if A and B are boolean vectors, A < B is a boolean
vector and [A < B] is a boolean scalar. Similarly, if A and B are integer vectors,
A <B is a boolean vector and [A <B] is a boolean scalar.

A potential drawback is that “everywhere” brackets become ubiquitous, particularly
in formal calculations. Dijkstra and Scholten [DS90] avoid this by introducing conven-
tions in the format of proofs that enable everywhere brackets to be omitted. We use the
same conventions here. Another drawback is the unfamiliarity of most readers with the
use of “everywhere” brackets. In order to avoid the dangers of misinterpretation that
this may cause —see [BN98|— , we avoid the use of “everywhere” brackets when reason-
ing about concrete algorithms. This entails the introduction of new “pointed” operator
symbols for each of the classical operator symbols in the context of the algorithm. For
example, in our discussion of the semantics of depth-first search in section 11.2, we define
the operators C and ¢ as pointwise extensions of the subset relation and composition,
respectively. See definition 6.6 for an example where the everywhere brackets eliminate
this notational burden.

Dijkstra and Scholten presented a predicate-transformer semantics of imperative pro-
grams. We present a relational semantics. Returning to our earlier discussion, we for-
mulate the definition of a program segment meeting a specification below. In doing so,
we carry out our intention of making the specification of the input parameters —the

Algorithmic Graph Theory April 8, 2022

100

Context component of a specification— implicit. That is, in the definition, the meaning
of a program segment is a function of the context, and the square “everywhere” brackets
denote universal quantification over all input variables satisfying the Context predicate.
(If P is a predicate on the context, many authors would prefer to write Context F P
rather than [P].)

Definition 6.1 Suppose (Context,P,R) is a specification. Suppose p denotes the
coreflexive corresponding to precondition P. The meaning [S] of a program segment
S with state space State in the context Context is a homogeneous relation on State.
The program segment S meets the relation R under precondition P iff:

(i) It is conditionally correct. That is,
[[S]ep € R]

(ii) It is total. That is,
[pCI[SI-]

(iii) It is (everywhere) terminating.
]

“Conditionally correct” is often called “partially correct”. We prefer to use “con-
ditional” because to say that something is “partially” correct suggests that it is also
partially incorrect. Totality becomes an issue primarily when choice statements are
used. See section 6.7. Termination becomes an issue when program segments involve
loops and/or recursion. It is often established by introducing a so-called bound func-
tion. That is, some finiteness assumption is made about the input parameters and this
is used to predict an upper bound on the number of operations used when executing the
algorithm. In the case of the algorithms we present in this document, termination is rel-
atively easy to verify and most effort is expended on establishing conditional correctness.
For further discussion of the formal basis of bound functions, see section 6.8.6.

6.3 Assertions

We use assertions both to document programs and to document the structure of the
verification that a program meets its specification.

Assertions are (parameterised) predicates on the state space. That is, they are func-
tions of type Bool«+State. Given predicates P and Q (the so-called precondition and
postcondition, respectively)

Qe ()P

Algorithmic Graph Theory April 8, 2022

101

is a (parameterised) relation of type State~State. Specifically, it is the relation R defined
by

[(Vo,0' 20’ Ro = (Q.0' & P.o))]

The combination of two predicates P and Q (in a given context) thus determines a
specification where the precondition is P and the relation is R as defined above.
Of course, not all homogeneous relations can be expressed in this way. So-called
“ghost variables” are used to circumvent this limitation. See the example below.
Suppose S is a program segment. Suppose predicates P and Q are formulated by
the expressions pre(o) and post(o), respectively. (So the meaning of pre(o) is the
predicate P, and similarly for post(c).) Then the expression

{ pre(o) }
S
{ post(o) }

has meaning S meets the relation Q"o («)oP under precondition P. That is, [S] is
conditionally correct, total and terminating. (See definition 6.1.) Expressed pointwise,
the conditional correctness of S is the theorem

(Vo0 : [pre(@)] Ao'[Slo : [post(a")] & [pre(o)])]
which is equivalent to
[(Vo,0" : [pre(o)] Ao'[SJo : [post(c’)])]

(Note that o’ is on the left in o’[S]oc and o is on the right. This is a matter of
convention. For us, the “output” of a relation is on the left and its “input” is on the
right. The syntax of assertions is that the output is at the bottom and the input is
at the top.) The point-free formulation of S meeting the relation Q"¢ (<)oP under
precondition P is the theorem

[[S](TRUEsP)- C Q"o(&)oP]
Just like the pointwise formulation, this has an equivalent form, namely:
(6.2) [([S]eP"°TRUE)< C (TRUE-Q)>]

A program segment may meet several different specifications. For example, the assign-
ment i: =141 meets the greater-than relation on numbers, as well as the at-least relation
and the relation given by the pair (1,0) (that is, if i has initial value O, after the as-
signment it has value 1). Using the ghost variable iy to capture the initial state, we
can document the first of these by

Algorithmic Graph Theory April 8, 2022

102

{ i=i }
1:=1+1
{ i>1i }

and the last by

{ i=0 }
1:=1+1
{ i=1 1}

The input parameters in this case are the integers, the addition operator and greater-than
relation on integers, and the constants 0 and 1. We regard them as parameters because
a formal verification of the program segment will necessarily be based on assumptions
about their algebraic properties, thus allowing other interpretations of the parameters.

6.4 Verification Conditions

Suppose that we want to show that a program segment S meets a given specification.
Often this involves establishing one or more verification conditions. Suppose the spec-
ification is expressed by the assertions pre(o) and post(o) and suppose we document
the program segment as follows:

{ pre(o) }
S
{ post(o) }

Then, in the simpler cases, it is possible to compute a so-called “weakest precondi-
tion” wp(o) guaranteeing the postcondition post after execution of S. By definition
of “weakest precondition” that S meets the specification is equivalent to proving the
theorem

(6.3) [(Vo : [pre(o)] : [wp(o)])]

The formula (6.3) is called a verification condition. We sometimes document the con-
struction of verification conditions as follows:

{ pre(o) }
{ wp(o) }
S

{ post(o) }

Algorithmic Graph Theory April 8, 2022

103

Where two assertions are juxtaposed as here, the meaning is that the upper assertion im-
plies the lower assertion everywhere. That is, the meaning of a juxtaposition of assertions
is the verification condition (6.3).

6.5 Assignment Statements

An assignment statement is the imperative syntax for a function. If xs is a list of
distinct variables and Es is a list of expressions of the same length as xs, then a first
approximation to the meaning of the assignment xs:=Es is the function (xs:Es).

Recall, however, that the state space of a program segment is typically a cartesian
product, and the individual variables of the segment refer to specific components of the
product. An assignment statement is a convenient mechanism for specifying a function of
type State«State that affects only certain components of the product. For example, the
assignment i:=FE, where i is a variable of type IN may be a segment in a program with
state space NxZ whereby the second component is referenced by an additional variable,
x say. In such a context, the assignment is equivalent to the assignment i,x:=E,x
and its meaning is the function (i:E) x Iz (equivalently, ((i,x):(E,x))). That is, an
assignment statement xs:=Es is the identity function on those components that are not
named in the list xs and the function (xs:Es) on the components that are named.

We don’t give any guidance on what are allowable expressions on the right side of an
assignment except to say that the expressions must be implementable in a conventional
programming language, and their evaluation (for particular input values) must be guar-
anteed to terminate — typically, but not necessarily, in “constant time”. We rely on the
reader’s programming experience to decide whether or not this is the case.

Most often assignment statements are total functions. In general, the right domain
is the subset of the state space on which the right side of the assignment is defined.
For example, the assignment i:=1+j is defined on state spaces such that the value of
variable j is non-zero.

Because assignments are functional, it is easy to derive the assignment aziom. (See
below.) Specifically, the assignment axiom states that

{ post(E) }
o:=E
{ post(o) }

is a theorem (i.e. it is true everywhere for all o). Here post(E) denotes the expression
obtained by replacing all occurrences of o in the expression post(o) by the expression
“(E)". (We use quotation marks in order to emphasise that this is a syntactic sub-

Algorithmic Graph Theory April 8, 2022

104

stitution. The parentheses are necessary to avoid any error that might be caused by
precedence conventions.)

Normally the assignment axiom is used to construct a verification condition. Suppose
the assignment statement is documented as follows:

{ pre(o) }

o:=EL

{ post(o) }

Then we augment the documentation with the expression post(E):

{ pre(o) }

{ post(E) }

o:=E

{ post(o) }

This then gives the verification condition:

(6.4) [(Yo : [pre(o)] : [post(E)])]

(The point-free justification of the assignment axiom proceeds as follows. Suppose f
is a function of type State«State and suppose P and Q are predicates on the state,
i.e. functions of type Bool«State. Then that f meets the relation Q" o(«<)oP under
precondition P is, by (6.2),

[(feP”oTRUE)< C (TRUE-Q)>]
But,

(foP”"oTRUE)< C (TRUE-Q)>

= { isomorphism of coreflexives and conditions }
foPoTRUE-TT C Q“oTRUE-TT

= { f is a function }
P“oTRUE-TT C f?0Q”oTRUE-TT

= { converse and isomorphism of coreflexives and conditions }
(TRUEeP)> C (TRUE-Q-of)>

The coreflexive (TRUE-P)> corresponds to the set of states for which P holds, and
(TRUE-Q-of)> corresponds to the set of states o for which Q holds of f.o. The property

[(TRUE-P)> C (TRUE-Qof)>]

is the point-free formulation of the verification condition (6.4).)

Algorithmic Graph Theory April 8, 2022

105

6.6 Sequential Composition

The meaning of the sequential composition S1; S2 is the so-called demonic composition
of the meanings of S1 and S2. Formally,

[S15S2] = [S2] - [S1] - [S1]\[S2]-

where [ST]\ [S2]> is a coreflexive. How this coreflexive is defined is not needed here.
Its réle is to restrict the right domain of S1 to values that guarantee that execution of
S1 results in values that are elements of the right domain of S2. (See [BW93] for full
details.)

In practice, the complications of the definition of demonic composition are avoided
by establishing that [S1]< C [S2]~, in which case it equals the so-called angelic com-
position

[S2]-[ST]

The difference between demonic and angelic composition only becomes apparent when
we consider choice statements.
Note the switch in the order of S1 and S2 (S1; S2 versus [S2]-[S1]).

6.7 Choice Statements

Program segments in the algorithms we present commonly include choice statements,
whereby a new variable is introduced and assigned —possibly non-deterministically— a
value that satisfies some criterion.

As for composition, choice statements have a demonic (as opposed to angelic) se-
mantics. (Again, see [BW93] for full details.) However, we avoid the complication by
imposing a restriction on when the meaning of a choice statement is defined. Specifically,
the meaning of the choice statement

begin
choose x such that q(x,0)
N

end

is a relation with right domain restricted to states that allow the criterion q to be
satisfied; in this case, it is defined to be a supremum:

(Ux: [q(x,0)] - [ST)

Algorithmic Graph Theory April 8, 2022

106

A choice statement introduces a new local variable with scope delimited by the begin-
end bracketing; the state space of the statement S is thus assumed to be extended
appropriately. This means that x is allowed to be a free variable in assertions about
segments of S. However, assertions about the choice statement itself may not refer to
the variable x.

Just as for expressions on the right side of assignment statements, choice criteria
must be implementable in a conventional programming language, and their evaluation
(for particular input values) must be guaranteed to terminate.

The operational meaning of a choice statement is that the variable x is assigned an
initial value that satisfies the criterion q; then the program segment S is executed. We
document a choice statement by adding assertions as shown below. The precondition
pre and postcondition post document the specification of the choice statement and are
assumed to be given. Note that the precondition of the program segment S depends on
the state 0 and on x —reflecting the fact that the state space has been augmented— ;
on the other hand, the postcondition does not depend on x.

{ pre(o) }
begin

choose x such that q(x,0)
; { pre(o) Ag(x,0))

S

{ post(o) }
end

{ post(o) }

In order to guarantee that such a choice statement meets a given specification, it is
necessary to establish totality. (See definition 6.1(ii).) Supposing that the precondition
is defined in the usual way by a predicate pre, the totality requirement becomes

[Ipre(o)] = (Gx:[a(x,0)])]
The choice may be entirely deterministic: in particular, a statement of the form
begin
choose x such that x=E
i S

end

Algorithmic Graph Theory April 8, 2022

107

introduces a new local variable x that is initialised to the value of the expression E and
has scope the program segment S. In this case, totality is immediate (except in less
common cases where E may sometimes be undefined). When using such a deterministic
choice statement, we omit the words “choose” and “such that” and write the choice in
the standard way as an assignment statement. (A frequent occurrence is the initialisation
of the program variables.)

6.8 Loops

So far, we have considered so-called “straight-line programs”: programs where termi-
nation is always guaranteed. In this section, we consider “loops” in the form of while
statements.

The meaning of a while statement is the least fixed point of a so-called “recursive”
equation. Depth-first search uses a more complex form of recursion; its meaning is
discussed in section 11.2 and, more generally, in section 12. The loops we consider in
this section are simpler because they are defined using the star operator of a regular
algebra.

The meaning [B] of a guard B is a coreflexive, and the meaning of the statement
while B do S is

~[B]- ([S]-[B])"
That is, it is the least solution of the equation
W: [W D ~[B] UWo.]S] - [B]]

This equation corresponds to the operational meaning of a while statement: the guard
B is used to choose between terminating without a change of state —the operational
meaning of the coreflexive ~[B]—- or executing S and then “looping” back to execute
the while statement again.

Termination of while statements is discussed in section 6.8.3.

(Although we haven’t discussed it here, a parameterised fixed point is a fixed point.
This is a fundamental property of fixed points — so fundamental indeed that it is almost
invariaby taken for granted. For reasons of expediency, we have omitted the relevant
theory for now but we may include it at a later date.)

6.8.1 Invariant Relations

Given a specification comprising a relation R and a (coreflexive representation of a)
precondition p, the key to constructing a loop implementing the specification is the

Algorithmic Graph Theory April 8, 2022

108

invention of an invariant Inv. In the most general case, invariants are relations on the
state space; in more specific cases, they are values or properties. In this subsection, we
consider the most general case, whilst invariant values and properties are considered in
subsection 6.8.4.

An invariant Inv is chosen in such a way that it satisfies three properties. First,
the invariant can be “established” by some initialisation Init. Second, the combination
of the initialisation the invariant, and some termination Term satisfies the specification
Spec. Third, the invariant is “maintained by” some loop body Body whilst making
progress towards termination.

These informal requirements can be made precise in a concise way. The components
Inv, Init, Term and Body are all homogeneous binary relations on the (parameterised)
state space, just like the specification Spec. Below we discuss how the tasks involved in
showing that the implementations of these components meet the specification is achieved.

6.8.2 Conditional Correctness
The first requirement is that the invariant relation is total. That is,
[p C Inv-]

Often this requirement is met trivially and needs no further discussion.
“Establishing” the invariant is the requirement that

[Initep CInv |

In words, for all states o’ and o such that o satisfies the precondition p, if o’ is
related by Init to o then o’ is also related by the invariant relation to o.

That the combination of the termination and invariant satisfies the relation R is the
requirement that

[TermeInv C R]
This is the requirement that for all states o and o”,
[(Vo': 0" Term o’ Ao’ Inv 0: ¢” Spec o) |

(Here we see again the convention of placing input values on the right and output values
on the left.)
Finally, that the invariant is maintained by the loop body is expressed by

[BodyeInv C Inv |
Pointwise this is

[(Vo,0’,0” : ¢” Body 0’ Ao’ Inv o : ¢” Inv o) |

Algorithmic Graph Theory April 8, 2022

109

So Body maps states o’ related by the invariant Inv to o to states o” that are also
related by Inv to o.
Together these three properties guarantee that

[TermeBody*eInitep C R]

since

) { [Termelnv CR] }
Termelnv
D { [BodyeInv U Inv C Inv |
hence [Body*eInv C Inv | }
TermeoBody*oInv
D { [InitepCInv] }

Terme (Bodyeb)* o Initep .

6.8.3 Totality and Termination

Our account of invariants needs to be further refined if we are to relate it to the imple-
mentation of loops by a while statement. Recall that Body specifies the body of the
loop, and Term specifies the termination of the computation. The implementation of
TermeoBody* by a while statement demands that both relations Term and Body are
partial and, more specifically, that their right domains are complementary.

Letting b denote the right domain of Body and ~b its complement (thus

[bUNb:IState /\ meb:J_l_] y

where Isi.e i the coreflexive of type State~State representing the entire state space),
we have

[Term = Termo~b A Body=Body-b |
Hence,

[TermeBody® o Init = Terme~bo(Bodyob) o Init |
The statement

while b do
S

Algorithmic Graph Theory April 8, 2022

110

is the implementation of ~bo(Bodyeb)* provided that S implements the relation Body
under precondition® b. If [S]ob is (everywhere) well-founded, ~bo ([S]ob)* is, by the
unique extension property of regular algebra, the unique solution of the equation:

Wi [W = ~b U Wo[S]eb]
Executing this equation is equivalent to executing the “recursive” program
W = if b then (S;W) .

The well-foundedness of [S]ob guarantees that the execution of the while statement
will always terminate. It also guarantees that the implementation is total, provided that
Term and Body have complementary right domains, and the initialisation Init is total.
Specifically, we have:

(TermeBody*oInit)> = Init-
= { domain calculus }
((TermeBody*)>oInit)> = Init-
& { I is the identity of composition }
(TermeBody*)> = 1
= { (TermeBody*)> is the unique solution of the equation
p: p=Term-U(p-Body)> }
I = Term- U (I-Body)-
= { by assumption,
Term and Body have complementary right domains.
In particular, I = Term>UBody> }

true .
The penultimate step needs further justification. The claim is that the equation
p: [p=Term-U(poBody)> |

has a unique solution provided that Body is (everywhere) well-founded. This is easily
derived from the uep of regular algebra (theorem 3.16). Specifically, for all homogeneous
relations R, we have:

(6.5) R is well-founded = (VS,;T = T=SUTR = T = SoR")

(See section 8.1 for more details.) Indeed, for all coreflexives p,

1Strictly, b is a coreflexive and what is meant here is the predicate corresponding to b.

Algorithmic Graph Theory April 8, 2022

111

p = Term->U (pe°Body)>
= { domain calculus.
Specifically, (TTop)>=p and TToR = TToR> }
TTop = TlTeTerm U TTepoBody
= { Body is well-founded, (6.5) }
TTop = TT o Termeo Body*
= { domain calculus (as above) }

p=(TermeoBody*)> .

That is, (TermeoBody*)> is the unique solution of the above equation in p.

6.8.4 Invariant Properties and Invariant Values

In general, invariants are relations on the (parameterised) state space. Special cases of
invariants are invariant properties and invariant values. Invariant properties will be
familiar to many readers and invariant values possibly less so. Nevertheless, we begin
with values because formally they are simpler.

Consider a simple example: Suppose the state space is a cartesian product of two
sets ranged over by program variables x and y. Then, obviously, an assignment x := E
has no effect on the value of program variable y. We say that the value of y is an
invariant of the assignment. A slightly more complex example is given by the assignment
XYy = x+1,y+1 (with state space IntxInt); in this case the value of x—y is an invariant
of the assignment.

In general, a “value” is given by a total function on the state space. Let us denote such
a function by h. Then that the “value” is an invariant of program segment S equivales
the relation h”oh is an invariant of S. Thatis, [S C h"oh]. Equivalently, [heSCh];
alternatively, if o and o’ denote successive states during execution of S (i.e. o’[S]o),
h.o’=h.o. For example, the “value” x—y is given by the function mapping the pair
(x,y) to x—y. This function is an invariant “value” of the assignment x,y := x+1,y-+1
because (x+1)—(y+1)=x—y is a theorem of arithmetic.

If h is a total function on the state space, the relation h”oh is reflexive and transi-
tive. This is an important property of invariant values when reasoning about loops and
recursion. (In fact, h”oh is an equivalence relation. However, in this context symmetry
is not relevant.)

Let us now turn to invariant “properties”. Suppose h is a boolean function of the
state space (a function of type Bool«State) and let S be a relation (typically, the

Algorithmic Graph Theory April 8, 2022

112

semantics of a program segment). Then h is an invariant property of S if
[S € ho(e)on]

Expressed pointwise, h is an znvariant property of S if
[(Vo',o:0'[S]o: h.o’ &h.o)]

Follows-from of boolean-function values is obviously a reflexive and transitive relation. It
follows that, if h is a total boolean function of the state space, the relation h”o(&)oh
is also reflexive and transitive. More generally, if h is a total function and R is a
homogeneous relation on the range of h, the relation h”oRoh isreflexive if R is reflexive
and transitive if R is transitive. As for invariant values, this is important when reasoning
about loops and recursion.

Invariant properties sometimes occur naturally but, more commonly, are introduced
artificially through the use of so-called “ghost” variables. A “ghost” variable records the
state before execution of a program segment S but, unlike auxiliary variables, a “ghost”
variable is not made explicit in the program code. Instead, the convention is that a
subscript “0” is used to denote the initial value of variable.

6.8.5 Truthifying and Maintaining Invariant Properties

When reasoning about loops, we often say that a property is “truthified” by the initial-
isation, and “maintained” by the body of the loop. Let us formulate these concepts.

Definition 6.6 Suppose P has type Bool«State. Then a relation S truthifies P if
[S< C (TRUE<P)>]
The relation S maintains P if
[So(TRUEeP)> C P o(&)oP |
(Equivalently, relation S maintains P if
[So(TRUEoP)> C P”o(«)oPo(TRUECP)- |
since, for all relations S and R and all coreflexives p,
[Sop C R = Sop C Rop]

The easy proof of the equivalence by mutual implication is left to the reader.)
O

Algorithmic Graph Theory April 8, 2022

113

Typically definition 6.6 is used with S instantiated to the meaning of a program
segment. The square brackets denote universal quantification over the context of the
program segment. Were we not to use the everywhere brackets, we would be obliged
to introduce new symbols for all five operators in the definition. We would also have
to write K.TRUE (the function that always returns TRUE) in the definition in order to
distinguish it from TRUE (the scalar boolean value) as used, for example, in the hints in
the proof of the lemma below. See the discussion of the semantics of depth-first search
in section 11.2 for how so-called “lifted” operators are defined.

Lemma 6.7 Suppose P has type Bool«+State. Then
[(P”o(&)oPo(TRUECP)>)< C (TRUE-P)- }
Proof
(P”o(&)oPo(TRUE.P)>)<
= { domains: theorem 5.7(c), and dual of (5.9) }
(PYo(&)oPoP o TRUE)-<
C { P is functional }
(P70 (&) °TRUE)<
= { Igoot = FALSEUTRUE
FALSEo(&)-TRUE = 1L
TRUEs(<)-TRUE = TRUE }
(PYo TRUE)-
= { domains: theorem 5.7(c) and converse }
(TRUE-P)- .

O

Lemma 6.8 Suppose P has type Bool«+State. Suppose S1 truthifies P and S2
maintains P. Then S$20S1 truthifies P.

Proof We have:
S20(TRUEoP)> C P o(&)oP A Sl< C (TRUEoP)-
= { S1< € (TRUE-P)> = S1=(TRUE<P)--S1 }
S20(TRUEoP)> C P o(&)oP A (S2:S1)< = (S20(TRUE<P)>051)<

= { monotonicity }

Algorithmic Graph Theory April 8, 2022

114

(S2:S1)< C (P7o(&)oPo(TRUECP)>)<
= { lemma 6.7 and transitivity }
(S2:S1)< C (TRUE-P)> .
O

Lemma 6.9 Suppose P has type Bool+State. Suppose Init is a program segment
that truthifies P. Suppose T is a function of type Bool«State and t=(TRUE-T)>. (So
t is a coreflexive representing the set of all states satisfying the termination condition
T.) Suppose Body is a program segment such that Bodyoc~t maintains P. Then
(Bodyo~t)* maintains P and (Bodye~t)*oInit truthifies P. It follows that

to(Bodye~t)*oInit
truthifies PAT.
Proof The first step of the proof applies definition 6.6 and simultaneously “strengthens
the induction hypothesis” ready for use of fixed-point induction

(Bodyo~t)* maintains P

= { definition 6.6 and domain calculus }

[(Bodyo~t)*o(TRUEoP)> C P”o(&)oPo(TRUESP)>]
But

(Bodyo~t)*o(TRUE-P)> C P”o(&)oPo(TRUE-P)>
& { fixed-point induction }
(TRUE<P)> C P“o(«&)oPo(TRUE-P)-
/A Bodyo~toP”o(&)oPo(TRUECP)> C PYo(&)oPo(TRUECP)=-
= { domain calculus }
(TRUEsP)> C PYo(&)oP
/A Bodyo~toP”o(&)oPo(TRUECP)> C PYo(&)oP
& { TRUE C Igoo ; (&) is reflexive, i.e. Igool € (&) ;
lemma 6.7 }
P- C PYoP
/A Bodyo~to(TRUEoP)> C P o(&)oP
& { domains (specifically P> = IN P~ cP);

Algorithmic Graph Theory April 8, 2022

115

assumption: Bodyec~t maintains P}
true .
That (Bodyeo~t)*cInit truthifies P now follows from lemma 6.8 and the assumption

that Init truthifies P.
O

Lemma 6.9 justifies the way that invariant properties are used in practice. To docu-
ment the code, we suppose that the specification is decomposed into precondition pre(o)
and postcondition post(o); then we add assertions:

{ pre(o) }
Init
{ Imvariant property: P }
; while ~t do
{ PA=T }
S
{ P}
{ PAT }
{ post(o) }

from which we can extract the three verification conditions:

{ pre(o) }
Init
{ P}

(the initialisation truthifies P),

{ PA-T }
S
P

(the loop body maintains P), and

{PAT}
{ post(o) }

Algorithmic Graph Theory April 8, 2022

116

(the postcondition is implied by the conjunction of the invariant and the condition for
terminating the loop).

A final remark is that, although conditional correctness is most often established
using invariant properties and values, relations are vital to establishing termination of
loops and other forms of recursion. Section 6.9 gives an example.

6.8.6 Bound Functions

As we have seen in section 6.8.3, the use of while statements in programs entails estab-
lishing that the body of the loop maintains an invariant that is a well-founded relation.
This is usually done by means of a so-called bound function.

Formally, the use of bound functions generalises the use of invariant properties to
invariant relations. Suppose < is a well-founded relation on some set A, and suppose
h is a function from the state space to A (i.e. a function of type .A+State). Then,
establishing that a while statement with body Body and termination condition t is
guaranteed to terminate is achieved by showing that

[Bodyo~t C h'o(<)ch |

The function h is called the bound function; the well-founded ordering is usually im-
plicit in the type of h.

The theorem that is being exploited here is that h™o(<)oh is a well-founded relation
if < is well-founded. (See the discussion following lemma 8.36.) Note the resemblance
of this expression to the notion of an invariant property: the ordering relation in the
case of an invariant property is the “if” relation on predicates. When we discuss concrete
algorithms, we see this pattern occurring repeatedly in the invariants we formulate.

6.9 Calculating a Least Fixed Point

As illustration, we present an iterative algorithm for calculating a least fixed point.
The least fixed point of a monotonic endofunction F on a finite, partially ordered set
(A, %) with least element 0 can be computed by a simple iterative algorithm:

x:=0
; while x#F.x do
x = Fx

An invariant property of the algorithm is that x <uF ; the algorithm is guaranteed
to terminate if the relation > is well-founded (in particular, if A is finite) since x is
strictly increased at each iteration. On termination, x=F.x. That is, x is a fixed point

Algorithmic Graph Theory April 8, 2022

117

of F. Since uF is the least fixed point and, at all times, x < uF, we conclude that, on
termination, x =puF.

In order to relate this brief, informal account with the discussion above, we must
identify the individual components of the algorithm. The program is parameterised by
the partially ordered set (A4, =), the function F of type (A, =<X)«(A,=) (the set of
monotonic endofunctions on .4) and the constant 0; its state space is A. All of these
constitute what we have called the context of the specification. Note that, even for such
a simple algorithm, the context is quite complex. It includes, for example, the fact that
the constant < is a reflexive, transitive and anti-symmetric relation.

The precondition of the specification is true and the relation is the relation R of type
A~A defined by, for all x and x, of type A,

x Rxg = x=uF .

(The function F and the partially ordered set (.A4,=<) are implicit parameters of R,
as explained above.) By the assumed anti-symmetry of the ordering relation, and the
fixed-point induction rule,

[x=uF & x=<XuF A x=Fx]

(Here and elsewhere, the everywhere brackets denote a universal quantification over the
input parameters and the state x.) Noting that x=F.x is the condition for terminating
the loop, conditional correctness thus amounts to showing that the algorithm truthifies
the postcondition x < pF, for all monotonic functions F of the given type. This suggests
the use of lemma 6.9, with the property x < uF as invariant. That is, we show that the
initialisation truthifies x < uF and the loop body maintains x < uF.

Establishing that, in addition, the loop always terminates demands that we add the
additional conjunct x <F.x. By showing that this property is also invariant we infer that
the loop body —which is just the function F— combined with the precondition for its
execution

x=<Fx Ax#Fx ,

i.e. x<F.x, is a subset of the relation >. The guarantee of termination follows from the
assumption that this relation is well-founded.

Thus the remaining task is to show that the initialisation truthifies, and the loop
body maintains the property

x=<Fx Ax=<uF .

This gives rise to two verification conditions. Making use of the assignment axiom, the
verification condition for the initialisation is:

[0<F.OA 0= uF]

Algorithmic Graph Theory April 8, 2022

118

and that for the loop body is:
[Fx=2F(Fx) AFx<uF & x<FxAx=<pF A x#Fx |

Given the assumptions made about the input parameters (implicit in the everywhere
brackets), both of these are true and the (“total”) correctness of the algorithm has been
established. (Note that the guard on executing the loop body, x # F.x, is not needed for
the conditional correctness but is needed for the guarantee of termination.)

Algorithmic Graph Theory April 8, 2022

Part 111

Components and Acyclicity

Algorithmic Graph Theory 119 April 8, 2022

Chapter 7

Equivalence Relations and Partitions

In this chapter we explore properties of equivalence relations, some of which are well
known. Section 7.1 formulates the well-known correspondence between partitions of a
set and equivalence classes in a point-free style and section 7.2 explores properties of the
equivalence-class function, in particular with respect to complementation.

7.1 Partitions

An equivalence relation is a relation that is reflexive, transitive and symmetric. As
is well known, an equivalence relation partitions the set on which it is defined into a
number of so-called equivalence classes. More formally, if R is an equivalence relation
on a set A, there is a set C and a surjective function f of type C+A, such that, for
all a and b in A,

(71) a[R]b = f.a=fb .

(It is common to use square brackets to denote the function f. So, instead of writing
f.a, one writes [a], or [al; if it is thought necessary to make the equivalence relation
explicit.)

Conversely, given sets A and C and a total function f of type C+A, we can use
equation (7.1) to define a homogeneous relation R on A. The relation R is then an
equivalence relation.

Equation (7.1) is expressed more succinctly by the point-free equation

(72) R=f"of .

Point-free formulations of functionality, totality, surjectivity and injectivity then support
effective point-free calculation. Here, for example, is the proof that it is transitive (in
every detail, including the use of the associativity of composition).

Algorithmic Graph Theory 121 April 8, 2022

122

(f7ef)o(f o f)

= { composition is associative }
flo(fof?)of

C { f is functional, i.e. fof” C I,

monotonicity of composition }
frolcof
= { Ic is identity of composition }
foof .

The converse proposition is that if R is an equivalence relation on set A, the function
f of type 2"« A defined to be

(a : Set.(Rea)<)

maps (coreflexive) atoms a to equivalence classes of R (where Set is a so-called “cast”
that maps a coreflexive of type A~A, for some A, to the atomic coreflexive of type 2%
representing the same subset of A). That is, R = f’of. The proof is straightforward,
although somewhat long. See theorem 7.7 below.

Lemma 7.3 If R is an equivalence relation, then for all proper atomic coreflexives a
and b,

(Rea)< = (Rob)< = @oReb = aoTTob .
Proof By lemma 5.27 with R,p,b:=R,a,b,
(74) a C (Reb)< = aoReb = aoTTob .
Second,

(Rea)< C (Reb)-

= { assuming R is reflexive, a C (Rea)< }
a C (Reb)<
= { monotonicity }

(Roa)< C (Ro(Reb)<)<
= { domains: (5.9) }
(Roa)< C (RoRob)<
= { assuming R is transitive, Ro-R CR; monotonicity }

(Rea)< C (Reb)-< .

Algorithmic Graph Theory April 8, 2022

123

That is, if R is reflexive and transitive,

(75) a C (Reb)< = (Rea)< C (Rob)< .

Moreover, if R is symmetric and a and b are coreflexives,
(7.6) @oRob = acTTob = boRea = beTTea .

Thus, if R is an equivalence relation,

(Rea)< = (Reb)-

= { anti-symmetry }

(Rea)< C (Rob)< A (Reb)< C (Rea)<
— (@8)

a C (Reb)< A b C (Rea)<
- (4)

acReb = aoTTeb /A boRea = boTTea
— (8)

aoRob = aoTTob .
O

Theorem 7.7 Suppose R is an equivalence relation. Let the function f be defined
to be

(a = Set.(Reoa)<) .
Then

R = fof
and

f=foR .

Proof Suppose R is an equivalence relation on set A . By the definition of f, for all
points a of type A and points c of type 24,

(7.8) coTTea € f = ¢ = Set.(Rea)< .

Thus, with dummies a and b ranging over points of type A, and dummy c ranging
over points of type 2*, we have:

Algorithmic Graph Theory April 8, 2022

124

= { saturation assumption: theorem 5.22
and all-or-nothing rule }

(Ua,b : acReb=acTTob : acTTeb)

= { assumption: R is an equivalence relation, corollary 7.3 }
(Ua,b : (Rea)< = (Rob)< : aoTTob)

= { Set casts a coreflexive of type A~A to a point of 2* }
(Ua,b : Set.(Rea)< = Set.(Reb)< : aoTTeb)

= { definition of f: (7.8), and (5.47) }

foof
and
foR
= { above }
fof of
= { f is a function, so fof” C I and hence fof’ = f< }
f<of
= { domains (specifically theorem 5.3) }
f .
O

7.2 Properties of the Partition Function

In section 7.1, the function (a :: Set.(Rca)<) was shown to map a proper atom a into
the set of proper atoms equivalent to a under the (equivalence) relation R. This section
is about exploring the properties of the endofunction (p:p CI:(Rep)<). We show that
it is a complementation-fixed closure operator.

To avoid clutter, we use the convention that lower case identifiers p and q range
over coreflexives. So the function of interest is (p: (Rop)<).

Recalling definition 2.47 of complementation-fixed and noting that, for all relations
R, Re=~(R<), we explore conditions under which

(Ro(ReS)e)< = (ReS)e

beginning with the inclusion.

Algorithmic Graph Theory April 8, 2022

125

Lemma 7.9 For arbitrary relations R and S,
(Ro(RoS)e&)< C (RoS)es & R2RCR .

Proof Note how the calculation below is used to determine simpler conditions on R
for which the more complicated inclusion holds. The use of the isomorphism between
conditionals and domains in the first step is driven by the fact that the negation of a
condition is a condition. The use of middle-exchange then becomes obvious.

(Re(ReS)e)< C (ReS)e
= { theorem 5.8(e) }
Ro(ReS)eo TT C (RoS)eo TT
= { property of negated left domain }
Ro—(ReSoTT) C —(ReSoTT)
= { middle-exchange rule (4.18)
with R,X,S,Y := R, ReSoTT ,I,ReSoTT }
RY6RoSoTT C RoSoTT
& { monotonicity of composition }

R7oR C R .
]

Corollary 7.10 If R is an equivalence relation, for all S,
(Re(ReS)e)< = (ReS)= .

In words, if R is an equivalence relation, (RoS)e is a fixed point of the function mapping
coreflexive p to (Rep)-.

Proof We have:

(R (ReS)e)-

- { R is an equivalence relation, so R“.R C R, lemma 7.9 }
(R:5)~

= { [is unit of composition; (Re)<=Re for all R, with R:=RoS }
(Te (RoS)e) <

C { R is an equivalence relation, so ICR,

monotonicity of composition and domains }

(Re (ReS)e)< .

Algorithmic Graph Theory April 8, 2022

126

The equality thus follows by the anti-symmetry of C.
O

Lemma 7.11 If R is reflexive and transitive, the function (p:(Rep)<) is a closure
operator.

Proof The equivalence in definition 2.44 of a closure operator is established by mutual
implication. Implication:

(Req)=
- { assume q C (Rop)<, monotonicity of (Re) and < }
(Re (Rop)-)-
= { domains (dual of theorem 5.9) }
(ReR=p)-
C { R is transitive }
(Rep)=

and follows-from:

q C (Rop)=<
& { assume (Roq)< C (Rop)<, transitivity of C }
q C (Req)=
& { R is reflexive, i.e. ICR; monotonicity of (oq) and < }
q C (Ieq)<
= { domains: theorem 5.8, and assumption: ¢ is coreflexive }
true

Theorem 7.12 If R is an equivalence relation, the function (p:p CI:(Rep)<) is a
complementation-fixed and complementation-idempotent closure operator.

Moreover, if R is an equivalence relation on a complete, universally distributive,
saturated lattice, the set of coreflexives Fix.(p:(Rop)<) is a complete, saturated lattice,
its atoms being the set of coreflexives (Roa)< where a is an atom of the lattice of all
coreflexives.

Proof An equivalence relation R is reflexive (I C R), symmetric (R=R") and transitive
(RoRCR). So the function (p:(Rep)<) is a closure operator by lemma 7.11 and, hence,

Algorithmic Graph Theory April 8, 2022

127

complementation-idempotent by corollary 7.10. It is thus also complementation-fixed by
lemma 2.48.

If R is an equivalence relation on a complete, universally distributive lattice, the
completeness and saturation properties are given by theorem 2.71.
O

Lemma 7.13 Suppose R is an equivalence relation on a saturated atomic lattice.
Then

(Ua : atom.a: (Rea)<) = 1 .
Proof

(Ua : atom.a : (Rea)<)
= { the functions < and (Re) are lower adjoints
and so are universally distributive }
(Ro (Ua:atom.a : a))<
= { the lattice of coreflexives is saturated, i.e. (Ua:atom.a:a) =1 }
(R 1)-
= { R<CI, for all R;

R is reflexive, i.e. ICR; < is monotonic and I<=1. }

O

Note that, as already observed, the function (p:(Rep)<) is the lower adjoint in a
Galois connection of the coreflexives (ordered by the subset relation) with itself. Thus,
if R is an equivalence relation, the function is universally distributive, as well as being
a complementation-fixed and complementation-idempotent closure operator.

Finally, note that all the properties stated and proven in this section can be dualised to
properties of the function (p:(peR)>). This is important, for example when we consider
the notions of left- and right-definiteness of a relation in section 8.1. The function
(R Set.(p:(Rop)<)) is akin to what Bird and De Moor [BdM97] call the “existential
image” functor. The function (a :: Set.(Roa)<) (where a ranges over proper atoms)
is what they call the “power-transpose” of R. This terminology is more relevant to
applications where relations are viewed as set-valued functions.

Algorithmic Graph Theory April 8, 2022

128

Algorithmic Graph Theory April 8, 2022

Chapter 8

Acyclic Graphs

This chapter begins our presentation of algorithmic graph theory in point-free relation
algebra. From now on, a graph G is simply a homogeneous “edge” relation of type
Node~Node where Node is a finite set. A proper atom a in the lattice of coreflexives
of type Node is a mode of the graph. Then, if a and b are both nodes, the boolean
aoGob # 11 represents the existence of an edge from a to b; if indeed acGeob## LI,
the edge itself is the atom acTTob (in the poset of relations of type Node~Node). The
existence of a path from a to b isrepresented by the boolean aoG*ob # 1L . (The path
itself is a sequence of nodes.) In this way, relation algebra is the appropriate vehicle for a
study of the algorithmic properties of the ezistence of paths in graphs. (Regular algebra
is the appropriate vehicle for studying more general properties of paths in graphs.)

Acyclic graphs (graphs without cyclic paths) form an important subclass of graphs.
This is not just because they naturally occur in practical problems —they correspond
to partial orderings on finite sets— but also because all graphs comprise a collection
of so-called “strongly connected components” that are connected by an acyclic graph.
This structural property of graphs —formalised in theorem 9.30— is important in path-
finding algorithms as well as the seemingly unrelated problem of efficiently representing
the inverse of a real matrix. (See the discussion following theorem 9.30 for further
discussion.)

Subsection 8.1 defines acyclicity in the conventional way in terms of paths. At
the same time, a less well-known property, which we call “definiteness” is introduced.
Whereas acyclicity is particularly appropriate to reasoning about graphs, definiteness is
more general. For finite graphs, the two notions coincide, as shown in this section.

Subsection 8.2 is about showing that the reflexive-transitive reduction of a definite
relation is its least starth root. Equivalently, every partial ordering on a finite set has a
unique so-called “Hasse diagram”.

Subsection 8.3 develops a formal proof of the following fact from graph theory: in
an acyclic graph, the nodes reachable from set A coincide with the nodes reachable

Algorithmic Graph Theory 129 April 8, 2022

130

from the minimal elements of A. The theorem is a corollary of a much more general
theorem about “right-definiteness” of a relation. In more conventional terminology, it is
the theorem that, given a well-founded relation on a set S, every non-empty subset of
S has a minimal element (with respect to the well-founded relation).

The final subsection in this section, subsection 8.4, is about how a “topological search”
of an acyclic graph assigns to the nodes of the graph a so-called “topological ordering”.
The definition of a topological ordering and the algorithm for topological search are
formulated in point-free relation algebra.

Many properties we prove are valid for arbitrary relations and not just for graphs.
That is, the assumption of finiteness is not required. Nevertheless, we sometimes use
graph terminology — partly because this is the primary application here but also because
it is more “graphic” in the sense of being easier to explain with the aid of diagrams. In
order to make the level of generality clear, we use R to denote an arbitrary relation and
G to denote a graph — that is, a relation over a finite set of nodes.

8.1 Definiteness and Acyclicity

We have to define the meaning of a graph being acyclic. Obviously, a cycle gives rise to
an infinite path in the graph. But, conversely, an infinite path in a finite graph contains
a cycle (because the number of vertices is finite). Therefore, acyclicity in finite graphs
is the same as the absence of infinite paths, to which we give the name “(left- or right-)
definite”.

Definition 8.1 ((Right/Left) Definite) Relation R is said to be right-definite if
and only if it satisfies

(8.2) (VpupCll < pC(pR)) .
It is said to be left-definite if and only if it satisfies
(8.3) (VpupCll < pC(Rp)) .

It is said to be definite if it is both left- and right-definite.
O

Informally, right-definiteness means the absence of infinite “descending” paths. That
is, there is not a non-empty set of atoms, represented by the coreflexive p, such that,
for all atoms a in p, it is always possible to find an atom b in p such a is in the set
represented by (boR)>, i.e. b[R]a. Were this possible, the process can be repeated ad
infinitum; in graphs, this means the existence of paths comprising an infinite number
of edges. (See lemmas 8.17 and 8.19 for the formalisation of this argument.)

Algorithmic Graph Theory April 8, 2022

131

Note that R is right-definite equivales that its converse R" is left-definite. So left-
definiteness means the absence of infinite “ascending” paths. A hint on how to remember
which is which is that left-definiteness is defined in terms of the left domain operator
and right-definiteness in terms of the right domain operator.

The importance of the concept of definiteness is what we have called the unique
extenston property (uep) of relation algebra.

Theorem 8.4 (Uep of Relation Algebra) Suppose R is a right-definite relation.
Then, for all coreflexives p and q,

p = (pR>Uq = p=(qeR)> .
Also, for all relations X and S,
X = XeRUS = X =SoR" .

Dually, if R is a left-definite relation, for all coreflexives p and (q,

p=(Rp-UqG = p=(Req-,
and, for all relations X and S,

X = RoXUS = X=R"S .

A proof of theorem 8.4 can be found in [DBvdW97, section 7]. Effectively, in relation
algebra theorem 8.4 is equivalent to the unique extension property of regular algebra
presented in section 3.3. (See theorem 3.16.) Note that [DBvdW97] uses the terminology
“well-founded” rather than “right-definite” in order to fit with the standard terminology
of the principle application considered in the paper.

For later use, we note the following simple lemma.

Lemma 8.5 Suppose R is right-definite and RDOS. Then S is right-definite. The
same is true with “left” replacing “right”.

Proof Immediate from the monotonicity of transitive closure, composition and the
domain operators.
O

As mentioned earlier, in [DBvdW97] the better-known term “well-founded” was used
instead of our “right-definite”. An example of a well-founded relation is the less-than
relation on the natural numbers. Expressed pointwise, (8.2) for this application is the
property that, for all subsets p of the natural numbers,

p=0 & (Ym:mep: (In:nep:n<m)) .

Algorithmic Graph Theory April 8, 2022

132

Expressed slightly differently, this is the property that for all subsets p of the natural
numbers,

p=0V (Im:mep:(Vn:nep:n>m)) .

In words, every non-empty set of natural numbers has a least element.

We mention this example because it illustrates the fact that left-definite and right-
definite are not (in general) the same: the successor relation on the natural numbers
(the converse of the predecessor relation) is not well-founded. Left- and right-definite
are the same for finite graphs, as we shall see.

The less-than relation on natural numbers is the transitive closure of the predecessor
relation (the converse of the successor function, where the successor of m is m+1).
And, of course, the predecessor relation is well-founded. This exemplifies a (well-known)
property, namely:

Lemma 8.6 Relation R is right-definite equivales relation R* is right-definite. Sim-
ilarly for left-definite and for definite. Thus R is right-definite if and only if it satisfies

(87) (vp:upCll < pC(poR')) .
It is left-definite if and only if it satisfies

(88) (vp:upCll <= pC(Rep)s) .
Proof Obviously, RCR*. So, by lemma 8.5, R is right definite if R™ is right definite.
For the converse, we have:

p C (peR")-

= { definition of set union }
pU(peRY)- C (poR¥)-

= { distributivity, R* = TUR" }
(poR*)> C (poR+)>

- { R* = R*oR, domains }
(peR*)- C ((poR*)-°R)- .

Moreover, since Ll is the zero of composition and p C (poR*)>,
pCll = (peR*)>C1L .

Thus

Algorithmic Graph Theory April 8, 2022

133

(Vp = pCLL & p C (pR)>)
= { p=(@pR) }

(Vp (poR*)>C 1L & (poR*)>C ((poR*)=0R)>)
= { above }

(VpupCll & p C (peRY)) .

That is, R" is right definite if R is right definite.
O

Because the antecedent of (8.2) is formally stronger than the antecedent of (8.7), it
can be easier to use definition 8.1 to establish that a relation is right-definite. On the
other hand, when it is known that a relation is right-definite, definition 8.6 may be easier
to use.

See [DBvdW97]| for a detailed study of properties of R and R* of which lemma 8.6
is an instance.

Anticipating the definition of acyclicity (definition 8.11), we rephrase right-definiteness
in terms of atomic coreflexives.

Lemma 8.9 For all R and all atomic coreflexives a,
aCR = aC (aeR)- .

Proof Suppose a is an atomic coreflexive. Then, for all R,

a CR

= { a is coreflexive, so (aca)>=a; monotonicity }
a C (aeR)>

= { aoTToa=a, monotonicity }
a C aoTTo(aeR)>

{ domains (specifically, theorem 5.7(a)) }
a C aolTeacR
= { acTTea = a C I, monotonicity and transitivity }

aCR .

The lemma follows by mutual implication.
O

Lemma 8.10 If R is right-definite, then, for all atomic coreflexives a,

aCll & aCR' .

Algorithmic Graph Theory April 8, 2022

134

Proof Assume that R is right-definite. Then,
a C R
= { lemma 8.9 with R:=R* }
a C (aoR*%)>
= { assumption: R is right-definite, lemma 8.6 }

aC 1l .
O
We now define acyclicity:

Definition 8.11 (Acyclicity) A relation R is said to be acyclic if
INRY = 1L .

A proper atomic coreflexive a is said to be in a cycle of R if a CR".
O

A proper atomic coreflexive a that is in a cycle of R “witnesses” the fact that R is
not acyclic. Formally, we have:

Lemma 8.12
INRY # 11 = (Ja:AC.aNa#1l:aCR") .
Proof
INR" # 1L
= { lattice of relations is atomic, definition 2.49 }
(Ja : atom.aNa#L1L : a CINR")
— { a CINR" = aCIA aCR*"
trading and definition of atomic coreflexive, AC }
(Ja: AC.aNa# 1L :aCR") .

O
A straightforward calculation shows that

INRY = IN(R)" .

It follows that R is acyclic equivales R” is acyclic.

An alternative definition of relation R being acyclic is —essentially— that the relation
R* is a partial ordering (i.e. anti-symmetric as well as transitive and reflexive). To be
precise:

Algorithmic Graph Theory April 8, 2022

135

Lemma 8.13 For all R, the relation R* is anti-symmetric (i.e. R*N(R*)” =1) if R
is acyclic. Conversely, =INR is acyclic if R* is anti-symmetric. (Equivalently —since
R* is reflexive and transitive— R* is a partial ordering if R is acyclic and, conversely,
—INR is acyclic if R* is a partial ordering.)

Proof Suppose R is acylic. Then

R*N(R*)” =1
= { [R* =IURT], distributivity }
(IN(R)Y) U (RFA(RYY) = 1
= { [(R)"=R")*], [InS*=1] with S:=R” }
IU (R"N(RY”) =1
& { 11 is zero of supremum }
R*N(R*)” C 1L
& { modular law }
(RfoR*NI)o(R*)” C LL
= { [RToR* = R"], symmetry of N,
1l is zero of supremum }
(INRM)o(R*)” = 1L
= { R is acyclic, definition 8.11 }
true .
That is, R* is anti-symmetric if R is acyclic.
For the converse, suppose that R* is anti-symmetric. Then
INn(-INR)T C 1L
& { [(=INR)" = (=INR)oR*],
modular law and |l is zero of composition }
(=INR)uNR* C 1L
= { distributivity, (—I)v=—-1 }
—INR"NR* C 1L
& { [R"C(R*)”], symmetry of union }
—INn(R*)"NR* C 1L

Algorithmic Graph Theory April 8, 2022

136

& { assumption: R* is anti-symmetric
(i.e. (RH"NR*=1) }
—INnI C 1L
= { complement }
true .

O

Definition 8.11 is meaningful for arbitrary relations but we instantiate it primarily
for finite graphs. Recall that nodes are points. (See definition 5.13.) So identifying a
node in a cycle of graph G establishes that G is not acyclic. Formally, we have:

Lemma 8.14 Suppose a is a point. Then aoR"oa = 1L if relation R is acyclic.
Conversely, if acRToa # 11, R is not acyclic, as witnessed by a; that is, a is a point
in a cycle of R.

Proof By lemma 5.15 and definition 5.13(c),
(8.15) acR"ea=a V aoRToa= 1L

for all points a.
Assume R is acyclic. Then

a°Rfea=a

= { a is coreflexive, lemmas 5.27 (with p,b:=a,a) and 8.9 }
a CINR*

= { assumption: R is acyclic (definition 8.11) }
a= 1l

= { a is a point so a # 1L}
false .

We conclude that, if R is acyclic, acR"oa = 1L for all points a.

For the converse, suppose a is an atomic coreflexive and aoR"oa # 1L . Then, by
(8.15), aeRToa = a. It follows that a is proper and, applying definition 8.11, a is in
a cycle of R.

O

We now show that, for finite graphs, right- (or left-) definiteness equivales acyclicity.

Lemma 8.16 shows that finiteness is not required to show that right- (or left-) definiteness

implies acyclicity but the converse is not always true for relations on infinite sets. For
example, the less-than ordering on real numbers is acyclic but it is not well-founded.

Algorithmic Graph Theory April 8, 2022

137

Lemma 8.16 A right-definite relation is acyclic. Symmetrically, a left-definite relation
is acyclic.

Proof With a ranging over atomic coreflexives, we have

rightdefinite.R
= { definition 8.1 (with p:=a) and lemma 8.10 }
(Va = aCll & aCRY)
= { the lattice of coreflexives is saturated, i.e. (Uaza) =1 }
INRT = 1L
= { definition 8.11 }
acyclic.R .

The symmetric property of left-definiteness follows straightforwardly. (See the remarks

above about the relation between left-definiteness of R” and right-definiteness of R.)
O

We turn now to the proof that definiteness follows from acyclicity. Like lemma 8.16,
lemma 8.17 and corollary 8.18 below do not require finiteness of the relation R; however,
their application in lemma 8.19, will force the restriction to finite graphs.

Earlier we argued informally that right-definiteness means the absence of infinite
“descending” paths. Formally, we have:

Lemma 8.17 Suppose p is a coreflexive such that p# LI and p C (poR")>. Suppose
a is a proper atomic coreflexive such that a Cp. Then, with dummy b ranging over
atomic coreflexives, we have

(Ib = b£1L A bCp A aC (boR")> A (aoR")> C (boR")>)
Proof The proof of (8.17) is in two stages. First,

aCp

= { assumption: p C (poR")>, transitivity }
ac (peR")-

= { saturation assumption: definition 2.50, distributivity }
a C (Ub:bCp:(boR¥)>)

= { a is a proper atom, irreducibility: lemma 2.63 }

(Fb:b#1L AbCp:aC (boR™)>)

Algorithmic Graph Theory April 8, 2022

138

Second, assuming a C (boR")>,

(a-R*)-

C { assumption, monotonicity }
(boR*)-oR")-

= { domains (specifically theorem 5.9) }
(boR*oR*)-

C { R* is transitive, monotonicity }
(boR¥)- .

|

Corollary 8.18 Suppose p is a coreflexive such that p# 1L and p C (poR")>. Then
it is possible to construct an infinite sequence of proper atomic coreflexives a; such that

(Vi:0<i:a;Cp) A (Vi,j: 0<i<j:a; € (ajoR")>)

Proof The initial term a, is an arbitrary element of p. That is, ay Cp. (For-
mally, we exploit the assumption that the lattice of coreflexives is atomic: see definition
2.49.) Subsequent nodes are constructed by exploiting lemma 8.17 (with a,b:=a;,a;i;7).
Because, for all 1,

(0:oR")- € (a1oRY)-

it follows, by transitivity, that
(Vi,j:1<j:(a;°R")> C (a@joR7)>)

Combining this with the fact that, for all 1, a; C (ai;1°R")>, we have:
(Vi,j: 0<i<j:a; C (@joR")>)

O
This is the point at which we are obliged to introduce the finiteness assumption.

Lemma 8.19 Suppose G is a finite graph. Then G is right-definite if G is acyclic.

Proof We prove the contrapositive: if G is a finite graph that is not right-definite,
then G is not acyclic.

Suppose G is not right-definite. Then there is a coreflexive p such that p# Ll and
p C (poG™')>. Applying corollary 8.18 with R:=G, it is possible to construct an infinite
sequence of nodes a; such that

(Vij:0<i<j:a; C (ajoGh)-) .

Algorithmic Graph Theory April 8, 2022

139

There is only a finite number of nodes; so, for some m and n, m<n and a,=a,.
Thus

an C (ameGh)> .

Hence,

true

= { lemma 8.9 (with a,R:=a,,,G) }
a, C G*

= { an = INa,,, monotonicity }
an, € ING*

= { 1l #an,, LL is the least element }
1L AINGT .

That is, G is not acyclic.
O

Corollary 8.20 Suppose G is a finite graph. Then G is definite if G is acyclic.

Proof Straightforward combination of lemma 8.19 and properties of converse. First,

true

= { lemma 8.19 }
(VG : finite.G : leftdefinite.G < acyclic.G)

= { converse is a bijection }
(VG : finite.G" : leftdefinite.G"~ & acyclic.G")

= { finite.G” = finite.G, leftdefinite.G” = rightdefinite.G,

acyclic.G” = acyclic.G }
(VG : finite.G : rightdefinite.G < acyclic.G) .
So

true
= { lemma 8.19 and above }
(VG : finite.G : leftdefinite.G < acyclic.G)
/A (VG : finite.G : rightdefinite.G < acyclic.G)

Algorithmic Graph Theory April 8, 2022

140

= { predicate caculus }
: Tinite.G : leftaefinite. rightaerinite.G < acyclic.
VG : finite.G : leftdefinite.G A rightdefinite.G lic.G
= { leftdefinite.G /\ rightdefinite.G = definite.G }

(VG : finite.G : definite.G < acyclic.G) .
O
To summarise, we have the following theorem.

Theorem 8.21 If G is a finite graph, G is acyclic equivales G is definite.

Proof Straightforward combination of corollary 8.16 and corollary 8.20.
O

Remark The term “definite” was, to our knowledge, first used by Carré [Car71].
Inspired by Conway’s maxim [Con71, p.40] that any axiomatisation of a regular algebra
should extend to (finite) matrices, an algebraic formulation of “definiteness” in a regular
algebra was introduced in [Bac75, BC75]. (See section 3.3 and, in particular theorem
3.16.) This made it possible to establish a link between the notion of the “empty word
property” [Sal69] —of both languages and matrices of languages— and the (well-known)
notion of singularity of matrices in linear algebra. At that time no distinction was made
between the notions of left- and right-definiteness, the sole application under considera-
tion being finite matrices (equivalently, finite graphs) where —in view of theorem 8.21—
the two notions are indistinguishable..

The distinction between left- and right-definiteness only emerged with the recogni-
tion that a regular algebra is an important subcomponent of a relation algebra, and that,
in a relation algebra, right-definiteness corresponds to the fundamental concept of well-
foundedness [DBvdW97] (and is distinct from left-definiteness). In the same way that
definiteness in a regular algebra formulates Salomaa’s (absence of the) empty word prop-
erty of a matrix of languages, the notion offers an alternative but equivalent algebraic
formulation of the acyclicity of a finite graph. The notions of left- and right-definiteness
are, however, more general than acyclicity, as we have seen in this section. End of
Remark

8.2 Starth Root and Reflexive-Transitive Reduction

In this section, we show that the reflexive-transitive reduction of a definite relation is the
least starth root of the graph. It follows that the same is true of a finite, acyclic graph.

Recall the definition of reflexive-transitive reduction: definition 3.18. The definition
of the function red is quite complicated, much of the complication being due to the
need to eliminate self-loops. An acyclic relation has no self-loops so the definition can
be simplified:

Algorithmic Graph Theory April 8, 2022

141

Lemma 8.22 If R is acyclic, then R=RnN—I. So

redR = RN—(RoR") .

Proof
R=RnN-I
= { R D RN—I, anti-symmetry, RCR }
RC—I
= { shunting rule (2.27) }
RAIC 1L

& { RCR", monotonicity and transitivity }
RtNIC 1L
= { R is acyclic }

true .

The formula for red.R follows by instantiating (3.19) and replacing R by RN—I.
O

Theorem 8.23 The least starth root of a definite relation is its reflexive-transitive
reduction. That is, for all definite relations R,

(red.R)* =R* A (VX :X*=R*:red.R C X)

In particular, the least starth root of a finite, acyclic graph is its reflexive-transitive
reduction.

Proof Assume that R is definite. By theorem 3.22, it suffices to prove the lefthand
conjunct.

(red.R)* = R*
= { red.RCR and R is definite, so red.R is right-definite (theorem 8.21)
uep of relation algebra: theorem 8.4 }
R* = I U red.RoR*
S { R* =1 U R", Leibniz }
R* = red.RoR*
= { R is left-definite,

Algorithmic Graph Theory April 8, 2022

142

uep of relation algebra: theorem 8.4 }
RT = red.R U RToR
= { by lemma 8.16, R is acyclic; lemma 8.22 }
Rt = (RN—(RoR*)) U R*<R
= { RoR"™ = R"oR and absorption rule of set calculus }
R™ = R U R"oR
= { fixed-point definition of transitive closure }

true .

The particular case of a finite, acyclic graph follows from corollary 8.20.
O

Observe that the proof of theorem 8.23 uses both left- and right-definiteness. The
lexicographic ordering on words over an alphabet of size at least two demonstrates that
just one of left- or right-definiteness is not sufficient: it is right-definite (i.e. well-founded)
but it is not left-definite (i.e. its converse is not well-founded) and it does not have a
least starth root: see example 3.26.

Examples of non-finite relations that are definite can be constructed using one’s
understanding of bound functions (section 6.8.6). An illustrative case is the relation R
on integers defined by

(Vmmn : m[Rln = even.m Aoddn Am<n) .
The bound function is the function even. Indeed,
R = even'o(#)oeven A (Vmm = mfred.Rln = evenm An=m+1) .

where the symbol # denotes the complement of the only-if relation on booleans.

8.3 Minimal Nodes and Reachability

This section is about formulating and proving the property that, given a right-definite
relation, the set of nodes “reachable” from a given set of nodes equals the set of nodes
“reachable” from a minimal subset of the given set of nodes.

Suppose G is a graph. To define reachability we observe that node x is reachable
from a set of nodes A if there exists ycA such that there is a path from y to x. That
there is a path from y to x can of course be expressed as y[G*]x , so reachability of x
from A becomes (Jy:ycA:y[G*]x) or by definition of composition: (Jy :: y[A-G*]x).
In the last expression we recognise the pointwise definition of the domain operator: if set

Algorithmic Graph Theory April 8, 2022

143

A isrepresented by the coreflexive p, the expression is equivalent to x € (pG*)>. Gener-
alising from graph G to an arbitrary relation R, the point-free definition of reachable.R.p
is therefore:

(8.24) reachable.R.p = (poR*)> .

That a node x is a minimal element of a set of nodes A means that x is an element of
A and that, furthermore, there is no edge from a node in A to x. This is more formally
expressed as x€ A A—(Jy:ycA:y[R]x). Alternatively, by again introducing the domain
operator and representing set A by the coreflexive p, as x € pN(peR)=». Replacing the
intersection by a composition of coreflexives, the set minimal.R.p of minimal elements of
p is thus defined as:

(8.25) minimal.R.p = po(peR)=

The formal statement of the fact that the nodes reachable from set A coincide with the
nodes reachable from the minimal elements of A now becomes:

Lemma 8.26 Suppose relation R is right-definite. Then, for all coreflexives p,
(8.27) reachable.R.p = reachable.R.(minimal.R.p) .
More generally, for all coreflexives p and (q,

(8.28) reachable.R.p C reachable.R.q < minimal.R.p C q .

Proof Assume that R is right-definite. We prove (8.27) by mutual inclusion. One
inclusion is easy. From the definition (8.24) it is clear that reachable.R is a monotone
function. Furthermore from (8.25) we see that p contains minimal.R.p. Therefore

reachable.R.p D reachable.R.(minimal.R.p) .

It remains to prove the other inclusion. Somewhere we have to use the assumption of
right-definiteness, but how? We have to prove that

reachable.R.p C reachable.R.(minimal.R.p) ,

whereof the righthand occurrence of reachable involves a reflexive-transitive closure.
This suggests that we use the uep of relation algebra. Furthermore, it turns out that the
expression minimal.R.p does not play a role. Therefore, we begin by deriving a condition
implying

reachable.R.p C reachable.R.q

for arbitrary coreflexive q. (This turns out to be the property (8.28).) We begin by
exploiting (the dual of) lemma 7.11:

Algorithmic Graph Theory April 8, 2022

144

reachable.R.p C reachable.R.q
= { definition reachables: (8.24) }
(peR*)> € (qoR")~
= { the function (p::(poR*)>) is a closure operator
(dual of lemma 7.11) and definition 2.44 }
p C (qeR")- .

Now we can invoke the right-definiteness of R. From the discussion of theorem 8.4 on
the uep of relation algebra it follows that, for right-definite relation R, relation (qoR*)-
is the greatest fixed point of the function (X: qU (XR)>). Exploitation of this fact is
the main step in the following calculation.

p < (q°R")-
= { R is right-definite: (qeR*)> = (vX: qU (XeR)>);

fixed-point induction }

p C (qQUPpeR)-
— { domain operator is U-junctive }
p € qU(peR)-

= { shunting (2.27) in the coreflexive lattice }

pe(pR)» € ¢
= { definition (8.25) }
minimal.R.p C q .

With this calculation we have established the property (8.28). Instantiating q with
minimal.R.p in this formula then gives the desired result:

reachable.R.p C reachable.R.(minimal.R.p)

This completes the proof of the theorem.
O

An interesting observation can be made if we take a closer look at the antecedent of
formula (8.28). After instantiating q to the empty relation and writing out the definition
of minimal.R it reads: po(peR)» C 1l . Now we can apply shunting in the coreflexive
lattice and we get p C (peR)>. This expression is the antecedent in (8.2). So, another
formulation of a relation R being right-definite is: for all coreflexives p,

(8.29) pCll <« minimal.Rp C LI ,

Algorithmic Graph Theory April 8, 2022

145

or the equivalent contrapositive (using that Ll is the bottom of the lattice): for all
coreflexives p,

(8.30) p#LlL = minimal.R.p # 1L

This is the familiar characterisation “every non-empty set has a minimal element” of
well-foundedness.

Now we consider the converse of lemma 8.26. Is it true that a graph with property
(8.27) is right-definite? This question can be answered affirmatively and the proof is
simple. We show that a relation satisfying (8.27) also satisfies (8.29).

minimal.R.p = 1L
= { Leibniz }
reachable.R.(minimal.R.p) = reachable.R.LL
= { assumption: reachable.R.(minimal.R.p) = reachable.R.p;
definition of reachable: (8.24) }
reachable.R.p = (_LLoR*)>
= { definition of reachable: (8.24);

11 is zero of composition }

(peR?)> = LL
= { ICR" }
pC Ll .

We thus conclude:
Theorem 8.31 Relation R is right-definite equivales for all coreflexives p,
reachable.R.p = reachable.R.(minimal.R.p) .
In particular, that (finite) graph G is acyclic equivales for all coreflexives p

reachable.G.p = reachable.G.(minimal.G.p) .

8.4 Topological Search

“Topological” search is an algorithm for visiting all the nodes in an acyclic graph in
so-called “topological” order.

Algorithmic Graph Theory April 8, 2022

146

Definition 8.32 (Topological Order) A topological ordering of a homogeneous
relation R of type A is a total, injective function ord from A to the natural numbers
with the property that, for all elements a and b of A, ord.a<ord.b if a[R*]b.

O

Expressed as a point-free formula, the requirement for the function ord to be a
topological ordering of R is as follows:

(8.33) In =ord cord A ordeord” CIy A R" Cord olessoord .

Here we have used “less” to denote the less-than ordering on natural numbers rather
than the symbol “<”.

In order to verify the property of being a topological ordering, or —more importantly—
to comstruct a topological ordering, it is useful to weaken the requirement, replacing R*
by R:

Lemma 8.34 Suppose ord is a total, injective function of type N+—A and R is a
homogeneous relation of type A. Then ord is a topological ordering of R equivales

R C ord clesscord .

Proof The proof is a straightforward application of the definition of transitive closure
and fixed-point induction:
R™ C ord”olesscord
& { R* = (ux :: RUxox) ; fixed-point induction }

R U ord”clessocordecord”clesscord C ord”olessoord

= { lessoordoord” oless
- { ordoord” C I, monotonocity }
less o less
C { less is transitive }
less

definition of set union and monotonicity of composition }
R C ord”clessoord
& | RCR* '}

R* C ord”clesscord .

Algorithmic Graph Theory April 8, 2022

147

O
Lemma 8.34 means that the requirement (8.33) for the function ord to be a topo-
logical ordering of R can be simplified to

(8.35) In =ord ecord A ordeord” CIy A R Cord clesscord .

The less-than relation on natural numbers is, of course, well-founded — that is, right-
definite in the terminology used here. The function ord in the definition of a topological
ordering thus acts like a so-called bound function for establishing termination of a loop
in a program. The relevant property is the following.

Lemma 8.36 Suppose ord is a total function of type N«—A for some A. Then
the homogeneous relation ord”clesscord (where less denotes the less-than relation on
natural numbers) is right-definite.

Proof Suppose p is a coreflexive of type A. Then

p C (poord’elesscord)>
= { monotonicity (aiming to exploit the functionality of ord) }
(poord”)> C ((poord’clesscord)>oord”)>
= { domains: (5.9) }
(poord”)> C (poord clesscordoord”)>
= { ord is functional, i.e. ordoord” C I, monotonicity }
(poord”)> C (poord”oless)-
= { preparing for use of (8.2): (5.9) }
(poord”)> C ((peord”)>cless™)-
= { less is well-founded, i.e. right-definite: (8.2) }
(poord”)> C LL
= { domains: (5.6) }
poord” C L
= { ord is total (i.e. I C ord”cord),
monotonicity and 1L is zero of composition }

pCll .

Algorithmic Graph Theory April 8, 2022

148

Thus, by definition, ord”clessoord is right-definite.
O

Lemma 8.36 is the basis of the use of so-called “bound functions” to establish ter-
mination of loops and recursion: the function ord “bounds” the number of iterations.
The only property of the relation less that is used in the proof of lemma 8.36 is that it
is well-founded (right-definite). So “bound functions” can be used in conjunction with
other well-founded relations although in some cases it would be difficult to interpret the
function ord as a “bound”. For example, the relation less could be taken to be the
lexicographic ordering on words; the function ord would then map a state to a word.

Corollary 8.37 Suppose ord is a topological ordering of the homogeneous relation
R. Then R is right-definite.

Proof Immediate from lemmas 8.5, 8.34 and 8.36.
O

We now want to consider the converse of corollary 8.37. Is it the case that every
right-definite relation can be topologically ordered? The answer is: no, not in general.
(For example, the lexicographical ordering of words over a finite alphabet is well-founded
but it is not possible to assign a number to each word that defines its position in the
ordering.) The answer is, however, yes if we restrict attention to finite graphs. The proof
is constructive. We assume that G is a finite graph that is acyclic and we present an
algorithm that constructs a topological ordering of the nodes of G.

The development of the algorithm proceeds as follows. Given a finite graph G, the
requirement is to construct a topological ordering ord of all the nodes of G : specifically,
the postcondition that must be satisfied is given by (8.35).

The obvious strategy is to order the nodes one-by-one, beginning with the empty set
of nodes and ending with all the nodes of G. In order to guarantee injectivity, an obvious
choice is to assign to each node the number of nodes that have already been ordered.
(Thus, the first node to be ordered is assigned the number 0, the second 1, and so on.)
Introducing the coreflexive variable seen to represent the nodes that have been ordered
(the nodes that have been “seen” in the search of the graph) and the integer variable k
to count the number of nodes in the set represented by seen, we design a loop that has
invariants

(8.38) seen = ord’cord A ordeord” = {jl0<j<k} , and
(8.39) seenoGoseen C ord clesscord .

The overbar notation used in (8.38) denotes the mapping from a set to its representation
as a coreflexive. The invariant (8.38) states that ord is functional with right domain

Algorithmic Graph Theory April 8, 2022

149

seen and it is injective with left domain the set of natural numbers less than k. The
invariant (8.39) states that if there is an edge in G from a node a that has been “seen”
to a node b that has also been “seen” then ord.a<ord.b.

The invariants (8.38) and (8.39) are clearly derived from (8.35) by the well-known,
correct-by-construction design method of replacing a constant by a variable: in this case,
several occurrences of the (sometimes invisible) identity relation are replaced.

The development thus far is summarised below. The property (8.40) listed as an
invariant has yet to be derived. Also, queries (“???”) have been added to indicate that
the criterion for choosing node b is incomplete.

{ acyclic.G }
seen,ord,k := 1L, 11,0
; { Invariant: (8.38) A (8.39) A\ (8.40) }
while I, #seen do
begin
choose arbitrary node b such that b C~seen /A 777
7 seen := seenUDb
. ord,k := ord U {k}oTTob , k+1
end
{ In=seen =ord’cord A ordoord” CIy A\ G Cord clessocord }
The key element of the algorithm is how to choose the next node to be ordered. It
is straightforward to verify that (8.38) is an invariant of the algorithm as shown. (See

lemma 8.41 below.) The choice of node b must guarantee that (8.39) is maintained.
That is, we require that, for all b and seen,

(seenUb)oGo(seenUb) C (ord U {kJoTTob) olesso (ord U {k}o TTob)
& seenoGoseen C ord olesscord A (8.38) A bC~seen A (8.40)

where (8.40) has yet to be derived.
Using distributivity properties, the left side of the topmost subset ordering expands
to

seenoGo(seenUb) U boGo(seenUDb)
and, omitting two terms, the right side of this ordering expands to

ord”clesscord U ord”olesso{k}oTTob .

Algorithmic Graph Theory April 8, 2022

150

(The two omitted terms are, in fact, equal to Ll but this fact is not needed.) Taking
account of domains (specifically, seen = ord”cord and b C ~seen), the invariant (8.39)
is thus maintained if
seenoGoseen C ord olesscord

A seenoGob C ord”clesso{k}oTTob

A boGeb = 1L

AN boGoseen = 1L .
The first conjunct is identical to the first conjunct on the right side of the implication; so
it can be eliminated. The second conjunct follows from (8.38) and properties of the less-
than ordering. The third conjunct is true because G is assumed to be acyclic and hence

has no self-loops. Finally, the fourth conjunct enables us to identify the as-yet-undefined
invariant (8.40): specifically,

(8.40) ~seeno Goseen = Ll .

Of course, the introduction of a new invariant implies a new design obligation: property
(8.40) is clearly established by the initialisation seen:= LI but we must guarantee that
it is maintained by the loop body. Doing so gives us the condition for choosing node b:
maintaining the invariant demands that, for all b, G and seen,

~(seenUb)oGo(seenUb) = 1l & ~seenoGoseen = 1L A choiceof b .
An easy calculation gives the condition for choosing b as:

~(seenUb)oGob = 1l .
This condition can be strengthened to:

~seenocGoeb = 1l .

In words, there are no edges in the graph G from an unseen node to node b. This
completes the derivation of the algorithm:

{ acyclic.G }
seen,ord,k := 1L, 11,0

; { Invariant: (8.38) A (8.39) A (8.40) }
while I, #seen do

begin

Algorithmic Graph Theory April 8, 2022

151

choose arbitrary node b such that b C ~seen /\ ~seenoGob = 1L
; seen := seenUb
. ord,k := ord U {kloTTeb , k+1
end

{ In=seen =ord’cord A ordeoord” CIy A\ G Cord clessocord }

There is one more —vital— proof obligation: we have to verify that the condition for
choosing b can be satisfied. This is where the assumption that G is acyclic, and hence
right-definite, is crucial: see lemma 8.45 below. (So far, we have only used the property
that G has no self-loops.) The formal verification of all the informal claims made above
now follows.

The algorithm clearly terminates since the size of the set represented by seen in-
creases by one at each iteration.

In order to verify that the algorithm meets its specification, there are three tasks
remaining.

1. Establish that each of (8.38), (8.40) and (8.39) is truthified by the initialisation,
and that the truth of each is invariant under execution of the loop body.

2. Prove that it is possible to choose a node b in accordance with the criterion for
its choice.

3. Prove that the stated postcondition is a logical consequence of the invariant prop-
erty and the condition for termination of the loop.

The first of these splits into three tasks, one for each of the stated properties. These
tasks form lemmas 8.41, 8.42, and 8.43 below. The second —the central task both literally
and figuratively— is the topic of lemma 8.45, and the third is the topic of lemma 8.46.

Lemma 8.41 Property (8.38) is an invariant of the algorithm.

Proof Property (8.38) is clearly true after the initial assignment seen,ord := 1L, 1l .
The verification condition

(8.38) [seen,ord,k := seenUb , ord U {k}oTTob , k+1]
& (8.38) AN bCr~seen A b#LL

is a straightforward consequence of the proper atomicity of {k} and b (viz. {k}oTTo{k}={k},
TTo{k}oTT =TT, and similarly for b). Specifically,

Algorithmic Graph Theory April 8, 2022

152

(ord U {kJoTTob)" o (ord U {k}oTTob)
= { distributivity }
ord”cord U ord”s{k}oTTob U beTTo{k}oord U boTTo{k}o{k}oTTob
= { ord” o{k}
= { assumption: (8.38) and domains }
ord e {jl0<j<k}e {i}
= { f§loSj<ke{) =1L }
SRR
ord”cord U beTTo{k}o{k}oTTob
= { assumption: (8.38);
by cone rule: (4.16), and assumption: b# LI,
TTo{k}o{k}e TT =TT, boTTeb=b }
seenUb .
The verification of the second conjunct is very similar:
(ord U {k}oTTob)o (ord U {kJoTTob)"
= { distributivity, }
ordoord” U ordebeTTo{k} U {kleTTobeord” U {k}oTToboboTTo{k}

= { ordeb
= { assumption: (8.38) and domains }
ordeseemncb
= { assumption: bC ~seen, i.e. b = ~seenob
seeno~seen = 1l }
SEE

so, also beord” = 1L}
ordoord” U {k}oTToboboTTo{k}
= { assumption: (8.38); b# LL, cone rule: (4.16) }
G10<j < U {kleTTo{k}
= { [k} is an atomic coreflexive, so {k}oTTo{k}={k],

properties of < relation on natural numbers }

Algorithmic Graph Theory April 8, 2022

153

GT0<j<k+17} .
O

Lemma 8.42 Property (8.40) is an invariant of the algorithm.

Proof Property (8.40) is clearly truthified by the initial assignment seen:= Ll . For
the loop body, we verify that

(8.40) [seen := seenUb] <« (8.40) A ~seenoGob = LI
is a theorem for all coreflexives b and seen and all relations G.

~(seenUb) o G o (seenUb) = LI
= { distributivity and L is least element }
~(seenUb)o Goseen = 1l A ~(seenUb)oGeb = LI
= { assumption (8.40): ~seenoGoseen = 1L
choice of b: ~seenocGoeb = 1L
~(seenUb) C ~seen and monotonicity }
true .
O

Lemma 8.43 Property (8.39) is an invariant of the algorithm.

Proof Property (8.39) is clearly true after the initial assignment seen,ord := 1L, 1l .
The verification condition

(8.39) [seen,ord = seenUb , ord U {kJoTTob]
& bCr~seen A (8.40) A acyclic.G /A (8.38) /A (8.39)

is shown to be true for all seen, ord, b, k and G in several steps. First,

(ord U {kJoTTob)" o lesso (ord U {kJo TTob)

) { distributivity and ignoring two of the four terms }
ord”clessoord U ord”clesso{k}o TT ob

2 { assumption: (8.39) }
seenoGoseen U ord”clesso{k}o TTob .

Second,

Algorithmic Graph Theory April 8, 2022

154

ord”olesso{k}o TT
= { assumption: (8.38), and domains }
ord”o{j|0<j<k}olesso{k}o TT
= { property of less (specifically [0<j<k=j<k])
all-or-nothing rule }
ord”o{jl0<j<k}oTT o{k}oTT
= { (k}# 1L, cone rule: (4.16) }
ord”o{jl0<j<k}oTT
= { assumption: (8.38), and domains }
seeno [T
D { TT D G and monotonicity }
seenoG .
Putting the calculations together, we get that
(ord U {kJoTTob)" o less o (ord U {k}oTTob)
2 { first calculation (assuming (8.39)) }

seenoGoseen U ord”oclesso{k}oTT ob

V)

{ second calculation (assuming (8.38)) }
seenoGoseen U seenoGob
= { distributivity }
seenoGo(seenUb) .
That is, assuming (8.39) and (8.38),
(8.44) (ord U {kJoTTob)" o less o (ord U (k}oTTob) D seenoGo(seenUb) .
Our goal has thus become to complify the right side of (8.44) to
(seenUb)oGo(seenUb)
which, by distributivity, equals
seencGo(seenUb) U boGo(seenUb) .

In order to achieve this goal, we must show that the rightmost term equals the empty
relation, 1l . Lemma 8.14 (with the instantiation a,R:=b,G) and the precondition
that G is acyclic establishes that boGeb= 11 . That boGeseen= 1l is a consequence
of (8.40) and b C ~seen. Specifically,

Algorithmic Graph Theory April 8, 2022

155

boGoseen = 1L

& { assumption: b C ~seen, 1L is least element }
~seenoGoseen C 1l

= { assumption: (8.40) }
true .

In summary, we have:

(ord U {kJoTTob)" o less o (ord U {k}oTTob)

2 { (8.44) (assuming (8.39) and (8.38)) }
seenoGeo(seenUDb)

= { assumption: acyclic.G A\ (8.40). hence

boGeb=_11 and boGeseen= 1l (see above) }

seenoGo(seenUb) U boGob U boGoseen

= { distributivity }
(seenUb)oGo(seenUb) .

We have thus verified that (8.39) is an invariant of the loop body.
O

We now establish that it is always possible to choose a node b as specified by the
algorithm. We exploit the precondition that the graph G is acyclic, and hence definite.

Lemma 8.45 The set of nodes b such that bC ~seen and ~seenoGob = 1l is
non-empty.

Proof For brevity, let g denote ~seen-G. Then the choice criteria become b C ~seen
and geb=_11.
We show that the node b can always be chosen to be any element of minimal.g.~seen
and the latter is non-empty. First, note that g is acyclic since G is acyclic and gCG.
Applying theorem 8.21, it follows that g is definite and, in particular, right-definite.
Thus

minimal.g.~seen # 11

& { (8.30) with R,p := g,~seen ; g is right-definite }

~seen # 11
= { condition for executing loop body: seen=#1I,, i.e. ~seen # 11}
true .

Algorithmic Graph Theory April 8, 2022

156

Clearly, by definition (8.25), minimal.R.p Cp, for all relations R and coreflexives p. So,
we conclude that

1l # minimal.g.~seen C ~seen .

This means that minimal.g.~seen is (the coreflexive representation of) a non-empty set
of nodes b such that b C ~seen. Also,

g o minimal.g.~seen

= { definition of minimal: (8.25) }
gor~seeno(~seenog)s

= { g=rseencg |}

g or~Seeno gx

C { ~seen C I, monotonicity }
geg=

= { domains: (5.11) }
L.

That is, nodes b in (the set represented by) minimal.g.~seen also satisfy the choice
criterion gob= 1l . (Formally, this is an application of the saturation axiom.)
]

Lemma 8.46 The postcondition
[, =ord”cord A ordeord” CIy A G C ord olessoord

is implied by the conjunction of (8.38) and (8.39) (the second two conjuncts of the loop
invariant) and I, =seen (the condition for terminating the loop).

Proof It is obvious, from the definition of {j|0 <j <k} and the transitivity of equality,
that the conjunction of (8.38), (8.39) and I, =seen implies

[, =ord’cord A ordeord’ CIny A G C ord’clesscord .

That this implies the postcondition follows from lemma 8.34.
O
The conclusion of this section is the following theorem.

Theorem 8.47 Suppose G is a finite graph. Then that there is a topological ordering
of G equivales G is acyclic.

Algorithmic Graph Theory April 8, 2022

157

Proof The proof is by mutual implication. The algorithm just discussed establishes
constructively that there is a topological ordering of G if G is acyclic. For the converse,
suppose that ord is a topological ordering of G. Then

IANG™*

C { definition of topological ordering: (8.33), and monotonicity }
ord”cord N ord”clessoord

= { by definition (8.33), ord is a total function; distributivity }
ord” o (I Nless)cord

= { InNless=_11; 1L is zero of composition }

1L

That is, G is acyclic.
O

Algorithmic Graph Theory April 8, 2022

158

Algorithmic Graph Theory April 8, 2022

Chapter 9

Components

This chapter is a preliminary to later discussion of the calculation of the so-called
“strongly connected components” of a graph. The focus is on the algebraic properties,
whilst later sections present an algorithm to calculate strongly connected components.

The strongly connected components of graph G are the equivalence classes of the
relation G*N(G”)*. The algebraic properties that we present in this section are valid
for arbitrary (homogeneous binary) relations and not just for finite graphs. However, we
sometimes provide informal interpretations in terms of (paths in) graphs.

We begin by giving a definition of a “component” of a relation (definition 9.1) and
then explore its properties, first for relations in general, then for transitive relations
(section 9.1), and finally for transitive and symmetric relations (section 9.2).

“Strongly connected components” are defined in section 9.3. Properties of strongly
connected components are derived in sections 9.4, 9.5, 9.6 and 9.7. Section 9.4 is about
connectivity properties of nodes within and without the same strongly connected com-
ponent. Section 9.5 records the well-known property that every node is an element of
exactly one strongly connected component. Finally, section 9.7 formalises the structural
decomposition of a graph into a collection of strongly connected components and an
acyclic graph that is “pathwise homomorphic” to the given graph. The non-trivial proof
of this property is enabled by a lemma on starth roots of a given graph formulated and
presented in section 9.6.

Definition 9.1 Suppose p is a coreflexive and R is a relation. We say that p is
connected by R iff poTTop CR. We say that p is a component of R iff p is connected
by R and (Vq:qeTTeqCR:pCq=p=q).

]

Note that LI is, by definition, connected by R. It is also a component of R in the
case that the carrier of the lattice of coreflexives is the empty set.
An obvious corollary of definition 9.1 is the following:

Algorithmic Graph Theory 159 April 8, 2022

160

Lemma 9.2

(a) Suppose q is a coreflexive and S is a relation. Then, q is connected by S if (qCp
and p is connected by R and RCS).

(b) p is connected by RNS equivales p is connected by both R and S.
(c) The following are all equivalent:

(i) p is connected by R
(ii) p is connected by R”
(iii) p is connected by RNR"

(d) The following are all equivalent:

(i) p is a component of R
(ii) p is a component of R”

(iii) p is a component of RNR"

Proof (a) is obvious from the monotonicity of composition.
(b) is immediate from the definition of infima, in particular:

peTTop CRNS = poTTepCR A polTepCS .
c) is obvious from the fact that p and poTTeop are symmetric. More specifically:
P p P

pellop & R

= { converse |}
(peTTop)” € R”

= { [(ReS)” = SYoR"], p’=p, TT =TT }
poTTop C RY .

This establishes the equivalence of (i) and (ii). That (i) implies (iii) is then established
by (b) (with S instantiated to R”) and the converse (iii) implies (i) is established by
(a).
(d) Trivial consequence of (c) and the definition of component.
]

Informally, p is connected by R means that, when restricted to p, R equals the
universal relation. Formally:

Algorithmic Graph Theory April 8, 2022

161

Lemma 9.3 For all coreflexives p and relations R,
po—l_l—opgR = po—[—rop :poRop .

Proof This is proved by mutual implication as follows.

poTTepCR
= { Pep =p, monotonicity of composition }
poTTep CpoRop
= { RCTT, monotonicity of composition, anti-symmetry }

po—[—[_op :poRop
= { p CI, monotonicity of composition, transitivity of C }

pollTopCR .

9.1 Transitive Relations

Lemma 9.4 Distinct components of a transitive relation are disjoint. Formally, sup-
pose T is a transitive relation and p and q are both components of T. Then

p=q V pnq=1L .

Proof For coreflexives p and q, peq=pNq=qep. This suggests applying the defini-
tion of a component in a way that introduces their product:

pNq=1L V p=q
= { idempotency of U }
png=1L V p=pUq=q
& { p<CpuUq, p is a component of T,
qCpUq, q is a component of T }
pRg=LL V (pUq)eTTe(puq) €T
= { distributivity; p and q are both connected by T }
pAg=LL V (poTTeq CT A qoTTeop € T)
= { distributivity, p.q=pNgq=qep }
(peq=LLV peTleg € T) A (qep=1LV qTTop C T)

Algorithmic Graph Theory April 8, 2022

162

& { cone rule: (4.16) with R:=poq and R:=qop:
i.e. poq=_LL \V TTopoqeTT =TT,
and qop=_L1L V TToqopeTT =TT }
peTTopeqeTTeq C T /A qoTTeqepeTTop C T
& { T is transitive, transitivity of C }
poTTopoqeTTeq C ToT A qoTTogqopeTTop C ToT
& { p and q are connected by T, composition is monotonic }

true .
O

Lemma 9.5 Suppose T is a transitive relation and p and q are both components of
T. Then

peleq# L A qeTop# L = p=q .
Proof

peleq # LL
= { cone rule: (4.16) }
TTopoToqeTT = TT
= { Leibniz }
poTTopoToqoTToq = poTToq
= { p and g are both connected by T,
so, by lemma 9.3, peTTep=peTep and qeTTeq=qecTeq }
poTopoTeqoTeq = poTToq
= { p and q are coreflexives, so IDp and [Dq
monotonicity and I is unit of composition }
peToToToq D poTloq
= { T is a transitive relation, transitivity of O }
peTeq 2 peTTeg
= { T CTT, monotonicity of composition and anti-symmetry of C }

poToq = po—|_|—oq .

Algorithmic Graph Theory April 8, 2022

163

In summary,

peleq# LL = poToq = poTTeq .
Interchanging p and q, we get

qoTep# LL = qoTop = qoTTop .
So,

peleq# LL A qoTop # LL
= { above, and p and q are both connected by T }
peTeq =peTTeq /A goTop = qoTTop
/N peTep = poTTep /A goTeq = qoTTeq

= { distributivity of composition over U, Leibniz }
(pUq)oTe(pUq) = (pUq)TTe(pUq)
= { definition of connected and lemma 9.3,

pCpuUq and qCpuUq, p and q are components of T,
definition 9.1 }

p=puUq=q .

O

(The above proof parallels a pointwise proof. A pointwise proof would begin by
assuming that there are points u,v in p and x, y in q such that uTx and y T v.
Then the argument would be made that u is connected by T to all points in q and,
similarly x is connected by T to all points in p. In the point-free proof, it is not
necessary to introduce four additional variables.)

Taking the contrapositive of lemma 9.5, we get:

Corollary 9.6 Suppose T is a transitive relation and p and q are both components
of T. Then

peTeq=1LV geTop=1L & p#q .

Corollary 9.6 is the basis of the construction of a directed acyclic graph from the
strongly connected components of a graph.

Algorithmic Graph Theory April 8, 2022

164

9.2 Transitive and Symmetric Relations

Undirected graphs correspond to symmetric relations. The transitive closure of relation
R, denoted by R™, has the property that

(R =R)" .

(The proof of this property is a nice illustration of the fusion theorem: R™ is a least
fixed point and converse is Galois connected to itself and commutes with the function
mapping x to xox.) It follows that

(RH)’=R" & R’=R .

Here we consider properties of transitive and symmetric relations.

A remarkable (and perhaps surprising) property is that every undirected graph or
its (undirected) complement is connected. We don’t know any practical significance of
this property but its proof is an interesting application of point-free reasoning. So, as
an aside to the main development, this is proved in theorem 9.8 below.

Lemma 9.7 For all symmetric and transitive relations S and T,
S=TT V T=1TT & SulT=TT .

Proof Assume that S and T are symmetric and transitive, and SUT=TT. Then
§=S8", T=T", SDSeS, TDOToT, SO—T and TDO—S. So,
S=TT VvV T=TT
= { complements (preparing for cone rule) }
S=TT V —T=1L
& { cone rule: (4.16) }
S=TT V TTo=ToTT # TT
& { boolean algebra and S=TT = SO TT }
S D TToe=ToTl
= { assumption: SUT=TT }
S O (SUT)e—To(SUT)
{ distributivity }
S DO So=ToeS USe—=TeT U To=TeS U To—ToT
& { S is transitive, 50 S O SoS and S D SoSoS,

Algorithmic Graph Theory April 8, 2022

165

monotonicity of composition }
S DO ~TU-TeTUToe=TUTo=ToT
= { by assumption: SO —T, suprema }
SO—-ToT N SDOTo=T A SDOTo—ToT
= { middle exchange rule, S=S", T=T" }
TDO-SeT A TDOTo=S A TDTo—=SoT
= { T is transitive,so T D ToT and T D ToToT,

monotonicity of composition }

TD>-=S
- { shunting rule (2.27) }
SUT=TT .

O

Theorem 9.8 Suppose R is a symmetric relation. Then
R*=TT V (—=R)*=TT .

Proof Suppose R is symmetric. If TT =11 then TT =S=_1l for all relations S and
the theorem is trivial. So assume that 1l # TT . Then
R*=TT V (=R)*=TT
< { (R7==(R") and (R)"=(R")";
lemma 9.7 with S,T :=R*,(—=R)* }
R*U(=R)* =TT
& { forall S, S=TT = SO TT
R*DR, (—R)* D—R, transitivity of O }
RU—R =TT
= { complements }

true .
O
We now continue our investigation.

Lemma 9.9 Suppose T is a transitive and symmetric relation. Then (Tep)< is
connected by T if p is connected by T.

Algorithmic Graph Theory April 8, 2022

166

Proof We have
(To‘p)< o —|_|— o (To‘p)<
— { theorem 5.7(a) and (c) }
T o‘p o —|_|— op o TU

N

{ assume p is connected by T;
definition 9.1 and monotonicity of composition }
ToToT"
C { T is transitive and symmetric }

T.

The lemma follows by definition of is-connected-by.
O

Theorem 9.10 Suppose T is a transitive and symmetric relation. Then p=(Tep)<
if p is a component of T.

Proof Assume T is transitive and symmetric and p is a component of T.

p = (Top)=

& { assumptions, lemma 9.9, and definition 9.1 of component }
p € (Tep)=

= { coreflexive-condition isomorphism }
peTT C TopeTT

& { p is a component of T, so p is connected by T
ie. peTTop C T
monotonicity of composition and transitivity of C }
pe T C poTTepepeTl
= { p is a coreflexive, so pep=p, cone rule: (4.16) }
poTT C poTTopeTT A (TTopeTT =TT V p=_11)
= { distributivity of conjunction over disjunction
Leibniz and L is zero of composition and least element }

true .
O

Algorithmic Graph Theory April 8, 2022

167

Corollary 9.11 The components of an equivalence relation T are atoms in the lattice
of fixed points of the function that maps coreflexive q to (Teq)< . That is, if T is an
equivalence relation and p is a component of T,

(qCp = q=p V q=1) & q=(Teq)< .

Proof Apply lemma 2.65 with f instantiated to the function that maps coreflexive q
to (Toq)<. This function is a complementation-fixed closure operator by theorem 7.12.
]

Theorem 9.12 Suppose p is a coreflexive, T is a transitive and symmetric relation
and q is a component of T. Then

poToq:J_L <:poq:J_|_ .

In particular, the property holds when p and q are both components of T.

Proof
peTeq
= { property of domains: [R=R<ocR] with R:=Toq }
pe(Teq)<eTeq
= { theorem 9.10 with p:=q }
peqeTeq
= { assume peq=_1l, Ll is zero of composition }
1.
]

9.3 Strongly Connected Components

The notion of a “strongly connected component” of a finite graph is prominent in algo-
rithmic graph theory. This section is about fundamental properties of strongly connected
components. Since the properties do not depend on the finiteness of graphs, we present
them for arbitrary relations.

Definition 9.13 (Strongly Connected Component) Coreflexive p is said to be a
strongly connected component of relation R if p is a component of R*.
O

Algorithmic Graph Theory April 8, 2022

168

Definition 9.14 The function equiv mapping arbitrary relations to equivalence rela-
tions is defined by, for all R,

equiv.R = R*N(R*)" .

It is a well-known fact that equiv.R is an equivalence relation (i.e. it is reflexive, transitive
and symmetric). The straightforward (point-free) proof is omitted.
O

Theorem 9.15 Suppose p is a strongly connected component of R. Then p is a
component of equiv.R. Conversely, every component of equiv.R is a strongly connected
component of R.

Proof Immediate from the definition of strongly-connected and lemma 9.2(d).
]

Theorem 9.16 Suppose p is a strongly connected component of R. Then

p = (equiv.Rop)<

Moreover, p is an atom in the lattice of fixed points of the function that maps p to
(equiv.Rep)=<.

Proof Immediate from the definition of strongly-connected, lemma 9.2, theorem 9.10
and corollary 9.11.
O

9.4 Absolute Connectivity

This section is about paths in a graph connecting two nodes in one and the same strongly
connected component of the graph. We show that all nodes on such paths are elements
of the strongly connected component.

As in section 9.3, the finiteness of graphs is not used and the stated properties are
valid for arbitrary relations; nevertheless, we interpret the properties in terms of graphs.

Recall that ~p denotes the negation of p in the lattice of coreflexives. For a finite
graph, lemma 9.18 states that there are no paths from component p to itself that pass
through nodes not in p. The lemma is a corollary of lemma 9.17.

Lemma 9.17 Suppose p is a strongly connected component of relation R. Then

p = (peR)> 1N (R*ep)< .

Algorithmic Graph Theory April 8, 2022

169

Proof Let us abbreviate (poR*)> N (R*op)< to q. We have to prove that q=p. In
order to exploit the assumption that p is a a strongly connected component of R, the
goal is to prove that q is connected by R*.

qeTTeq
- { q = (poR*)> N (R*op)<, monotonicity }
(R*op)<oTT o (poR")-
= { [R<oTT =RoTT | with R:= R*op,
[TToR> = TToR | with R:=poR* }
R*opoTT opoR*

= { p is strongly connected by R,
definitions 9.1 and 9.13, and lemma 9.3 }

R*opoR*opoR*

C { p CI, monotonicity of composition }
R* o R* o R*

_ (R* — R*oR*)
R* .

That is, by definition 9.1, q is connected by R*. Hence
P=q
& { p is strongly connected by R, definitions 9.13 and 9.1 }
q is connected by R* A pCq
= { above, definition of q }
p C (peR")= N (Rep)<
= { I CR*, monotonicity and properties of coreflexives }

true .

|

Lemma 9.18 Suppose R is a relation and p is a strongly connected component of
R. Then

poR*ONpoR*op :J_L .

Proof We have:

Algorithmic Graph Theory April 8, 2022

170

poR*ONpoR*op = J_|_
= { domains }
poR*o(poR*)>0Npo(R*op)<oR*op = J_|_
& { 1L is zero of composition }
(poR*)=e~po(RPep)s = LL
& { [peq=pNq] (for coreflexives p and q), properities of intersection }

(peR*)> N (R*ep)< C p
- { lemma 9.17 }

true .

O

Like lemma 9.18, lemma 9.19 below is valid for all relations but, for finite graphs, it
formulates a property of paths between nodes in the same strongly connected component:
in this case, in terms of the edges that form the paths. The first term, poTTop, is the
relation that holds between all nodes in the same component p. The second and third
terms capture the existence of paths defined by edges from the component p. The
third term is more complex than the second term; it is included because it expresses
more directly that elements of strongly connected component p are connected by paths
formed of edges connecting elements of p. Specifically, the term p<R represents the edges
in R from a node in p, and the term poRop represents the edges of R that connect
nodes in p. So (peR)*op is interpreted as the relation between two nodes of which
the second is in p that are connected by edges that are from nodes in p; similarly,
pe(poRep)* represents the relation between two nodes of which the first is in p and
that are connected by edges that connect nodes in p. The outer occurrences of “p” are
necessary because (for all R) R* includes the identity relation.

Lemma 9.19 Suppose R is a relation and p is a strongly connected component of
R. Then

pelTep = (peR)"ep = po(peRep)’ep .

Proof The equality between the second and third terms is straightforward:

pe(peRep)”

= { mirror rule: [Ro(SeR)* = (RoS)*oR | with R,S:=p,peR }
(pepeR)"ep

= { p is a coreflexive, so pep=p }
(peR)"ep .

Algorithmic Graph Theory April 8, 2022

171

It is somewhat more difficult to establish the equality between the first and second terms,
which we now do.

The relation R* represents paths to and from all nodes and not just nodes in p.
In order to separate out paths that are not to or not from nodes in p we begin by
complifying R*:

R*
(pU~p)eRe(pU~p))
= { distributivity of composition over union,

idempotency of set union and pU~p =1 }
(poRep U Ro~p U ~poR)”
= { star decomposition }
(peRep) e ((Ro~p U ~poR)e(peReop)’)” .
We have indeed constructed a complicated expression for R*. It is the composition of
two terms; our goal is to show that the second term can be eliminated when we consider

poR*op. So that the expressions don’t become too long, let us write the second term in
the composition as S*. That is,

(9.20) S=(Re~p U ~poR)e(poRep)” A R*=(poRep)oS" .
We show that
(9.21) poS*op=p .
We have:
peStop
= { §S* = 1TUSoS*,
distributivity of composition over union, etc. }
pUPpeSeStep
= { 1st conjunct of (9.20), distributivity and po~p = 1L}
pUpeRe~po(poRep)eSTep
= { 2nd conjunct of (9.20) }
P U poRONpoR*op
= { RCR*, lemma 9.18 }
P .

Algorithmic Graph Theory April 8, 2022

172

We can now complete the calculation.
poTTep
= { p is a strongly connected component of R,

definition 9.13 and lemma 9.3 }

peR™ep
= { (920) }
pe(peRep) oSTep
= { mirror rule: [Ro(SeR)* = (ReS)*oR | with R,S :=p,peR, pop=p }
(poR)*epeStep
= { (021) }
(peR)"ep .

9.5 Saturation

Note that atomicity has not been used anywhere above. Saturated atomicity is necessary
to show that all nodes in a graph are elements of a strongly connected component of the
graph. The calculations are straightforward:

Lemma 9.22 For all points a and relations R, (equiv.Rea)< is a strongly connected
component of R. (Recall definition 5.13 of a point.)

Proof We exploit theorem 9.15. Accordingly, we have to show that (equiv.Rca)< is a
component of equiv.R. That is, (equiv.Roa)< is connected by equiv.R and it is maximal
among such coreflexives.

First, we show that (equiv.Roa)< is connected by equiv.R. For all points a and all
relations R, we have:

(equiv.Rea)<oTT o (equiv.Roa)<

= { domains (specifically theorem 5.7(a)) }
equiv.Roao TT o (equiv.Roa)”

= { converse |}
equiv.Roao TT caoequiv.R

= { aoTToa=a: definition 5.13(c) }

Algorithmic Graph Theory April 8, 2022

173

equiv.Roaoequiv.R

C { aC1I, monotonicity }
equiv.Roequiv.R

C { equiv.R is transitive }
equiv.R .

Now we must show that, if a is a point,
(Vq : qoTTeq C equiv.R : (equiv.Rea)< C q = (equiv.Rca)< = q)
Suppose q is a coreflexive such that qoTToq C equiv.R. Then, by lemma 9.3,
geTTeq = geoequiv.Req .
So,
(equiv.Rea)< D ¢
= { coreflexive-condition isomorphism }
equiv.Reac TT D qo 1T
&= { qeTToq C equiv.R }
qoTToqoacTT D qoTT
& { monotonicity }
TToqoae T D TT
= { assume (equiv.Rca)< C q
then, since I Cequiv.R, (Ieca)< C q
ie. aCq and qea=a }
TToaeTT D TT
= { a is a point, cone rule (4.16) }
true .
We have thus shown that, if a is a point,
(Vq : qoTTeq C equiv.R : (equiv.Roa)< O q < (equiv.Reoa)< C q)

The required equivalence is a straightforward consequence of the anti-symmetry and
reflexivity of the subset relation.
O

The converse of lemma 9.22 is the following:

Algorithmic Graph Theory April 8, 2022

174

Lemma 9.23 If p is a strongly connected component of R, and a is a point such
that a Cp, then p=(equiv.Roa)=.

Proof Assume p is a strongly connected component of R, and a is a point such that
aCp. Then,

true

= { theorem 9.16 }

p = (equiv.Rop)=<

= a Cp, monotonicity of composition and domains }

{
p 2 (equiv.Rca)<
= { lemma 9.22, theorem 9.15 and definition 9.1 }

p = (equiv.Roa)< .

Summarising, we have:

Theorem 9.24 Suppose R is a homogeneous relation. Then the strongly connected
components of R are given by (Ua:point.a:{(equiv.Roa)<}). The strongly connected
components partition the set of all points!. That is, distinct strongly connected com-
ponents are disjoint and each point is an element of a strongly connected component
(specifically, a is an element of (equiv.Rea)<).

Proof Lemmas 9.22,9.23, 9.4 and 7.13 (with R:=equiv.R).
O

9.6 Starth Roots of the Equivalence Relation

We have defined equiv.R as R*N(R*)”. (See definition 9.14.) It is useful to express
it as E* where (for graph R) E represents the edges in R that connect nodes in the
same strongly connected component (i.e. nodes that are “E”quivalent under the relation
equiv.R). This is the content of theorem 9.26.

One application of theorem 9.26 is theorem 9.28, which states —with a minor qualifi-
cation— that a graph G being acyclic is equivalent to the relation equiv.G being the
identity relation. Application of theorem 9.26 is also an important step in the proof of
theorem 9.30 below, which decomposes paths in a graph into paths in an acyclic graph
connecting strongly connected components of the graph. First, a lemma:

When applied to graphs, “points” are “nodes”.

Algorithmic Graph Theory April 8, 2022

175

Lemma 9.25 For all relations R, U, V and W,
R* N UoVeW = R* N Uo(R*NV)eW & UUWC (R .

(Note that composition has precedence over intersection. The spacing of our formulae is
designed to make this clear.)

Proof We calculate the condition on U and W as follows.
R* N UeVeW = R* N Uo(R*NV)o W
= { V D R*NV, monotonicity and anti-symmetry }
R* N UeVoW C R* N Uo(R*NV)e W
= { properties of N}
R* N UeVoW C Uo(R*NV)e W
& { modularity rule (4.8) with R,S,T := U, VoW R*,
and symmetric rule with R,S,T := W,V ,U"-R* }
Uo(UoR*W” N V)oW C Uo(R*NV)oW
& { monotonicity }
U’oR*-W”" NV C RNV
& { R*oR*oR* = R*, monotonicity }
U’ CR* A W-CR*
- { (aland RY)" = (R)”)
UC(RY)T A WC(RY) .
(The antecedent in the statement of the lemma is, of course, equivalent to the last line

of the calculation.)
]

Now, the theorem:
Theorem 9.26 For all relations R,
equiv.R = (R"NR** = (RN(R)*)* .
Proof We begin by proving, by induction on k, that, for all U and W,
(9.27) R* N Uo(R”)*W = R* N Us(R"NR*)*W & UUWC (R)* .

The basis, k=0 is trivial since X°=1, for all X. For the induction step, assume U and
W are such that UUW C (R”)*. Then,

Algorithmic Graph Theory April 8, 2022

176

R* N Uo(RVNR*)k ToW
{ definition of (R"NR*)*1 1}
R* N Us(RUNR*) o (RARY) e W
{ by assumption, UC (R")*; so Uo(RNR*)*C (RY)*,
also, by assumption, W C (R")*
lemma 9.25 with U,V,W := Us(R"NR*)* R W }
R N Us(R°ARYKR oW
{ by assumption, W C (R”)*; so R7-W C (R”)*
also, by assumption, U C (R”)*
induction hypothesis (9.27) with W := R"eW }
R* N Us(RY)ko R oW
{ definition of (RV)*1 }
R N Uo (R oW .

By induction, we have established (9.27) for all natural numbers k. Hence,

equiv.R
{ definition 9.14 }
R*N(R*)"
{ (R*)”=(R")*, definition of star as a sum of powers }

R*N (Uk:0<k: (RY)¥)
{ distributivity }
(Uk : 0<k : R* N (RV)¥)
{ (9.27) with UW:=11 }
(Uk : 0<k : R* N (RYNRY)X)
{ distributivity }
R* N (Uk : 0<k : (R“NR*)¥)
{ definition of star as a sum of powers, R* O (R"NR*)* }

(RTNR*)*

The final equality in the statement of the lemma follows by symmetry (formally, by
replacing R by R” in the first equality and using the properties of converse).

Algorithmic Graph Theory April 8, 2022

177

O

Given that theorem 9.26 expresses a property that some might regard as obvious,
the proof is surprisingly complicated: the induction hypothesis is non-trivial. It is also
unfortunate that the proof uses the definition of the star operator as a sum of powers
(and not as a least fixed point). A proof using fixed-point fusion would be preferable
—albeit by mutual inclusion— but, so far, has eluded us.

The following theorem exploits theorem 9.26.

Theorem 9.28 If R is acyclic, equiv.R is the identity relation. That is,
INR" =1L = equiv.R=1I .

Conversely, if equiv.R is the identity relation, RN —I is acyclic. That is,
equv.R=1 = INRN-)" =1L .

(In terms of graphs, RN—I is the graph R with “self-loops” removed.)

Proof Suppose INR" = 11. Then

equiv.R
= { theorem 9.26 }
(RYNR*)*

N

{ modularity rule: (4.8), monotonicity }
(R7o(I N RoR*))*
= { RoR* = R", assumption: INRT = 1L }
(RVo LL)*
= { 11 is zero of composition, 1L*=1 }
I .
That is, equiv.RCI. Since, [Cequiv.R, it follows by anti-symmetry of set inclusion that
equiv.R=1.
For the converse, we have:
INnRN-D*T
= { [Rt =RoR* | with R:=RnN—I, R*=(RN—-I)* }
I N (RN—I)oR*

- { modularity rule: (4.8), I is unit of composition }

Algorithmic Graph Theory April 8, 2022

178

(RN—=I) o ((RN—I)” N R*)

C { RN—I C —I, (RN—I)”CR", theorem 9.26,
[RCR*] with R:=R"NR*
monotonicity (of converse, composition and star) }
—I o equiv.R .
Thus
equiv.R C I
= { above, monotonicity of composition and transitivity of C }

IN(RN=D)" C —I-I
= { I is unit of composition, complements,
idempotency of intersection }

IN(RN=D)" =1L .
O
Note that, although theorem 9.28 is valid for all relations, its significance is primarily
when applied to finite graphs; the more significant property of a non-finite relation is
whether or not it is left- or right-definite (or both).

9.7 A Pathwise Homomorphism

A well-known property is that the strongly connected components of a graph G define
an acyclic graph G’. The nodes of the graph G’ are the strongly connected components
of G, and the edges of G’ are the edges of G that connect nodes of G in distinct
strongly connected components. Moreover, there is a path in G from node u to node v
equivales there is a path in G’ from the strongly connected component containing u to
the strongly connected component containing v. The primary purpose of this section is
to formalise this theorem.

Because the nodes of G and G’ are different, it is necessary to use a typed algebra of
heterogeneous relations rather than the untyped algebra of homogeneous relations. As
remarked earlier, the rules that we have been using remain valid provided some caution
is exercised when overloading notation.

Suppose N is a set (of “nodes”) and G is a relation of type N~N (the “edges” of
the “graph”). As we have seen the function

(a : aeN : Set.(equiv.G o a)<)

Algorithmic Graph Theory April 8, 2022

179

maps nodes to strongly connected components. Let us denote this function by sc and
the set of strongly connected components of G by C. Then sc has type C+—N and, by
theorem 7.7,

(9.29) equiv.G = sc’osc .
The relation
scoGosc” N —lc¢

is a homogeneous relation on the strongly connected components of G, i.e. a relation
of type C~C. Informally, it is a graph obtained from the graph G by coalescing the
nodes in a strongly connected component of G into a single node whilst retaining the
edges of G that connect nodes in distinct strongly connected components. Theorem
9.30 establishes the formal relationship between its reflexive-transitive closure and G*.

Theorem 9.30 Let A denote scoGosc” N —Ic. Then,

(9.31) G* = sc oAosc .

Moreover, A is acyclic. That is,

(9.32) Icn A" = 1L .

It follows that A* is a partial ordering of the strongly connected components of G.

Proof With theorem 9.26 in mind, we split G into two relations: D and E where D
is defined by

D = GNn—((G)")
and E is defined by
E = GNn(G)* .

The relation D captures the edges of G that connect “D”istinct strongly connected
components. To be precise:

(9.33) scoDosc” C —I¢
since

scoDosc” C —I¢
= { definition of D }
sco (GN—((G”)*))osc” C —I¢

Algorithmic Graph Theory April 8, 2022

180

= { middle-exchange (4.18),
Ic is unit of composition, and complements }
sc osc € ~GU(G")*
& (929)
equiv.G C (G")*
= { equiv.G = G*N(G*)” and (G*)"=(G")* }
true .

Conversely, the relation E captures the edges of G that are in “E”qual strongly con-
nected components:

(9.34) scoEosc” C I¢
since
scoEosc”
C { ECE* and monotonicity }
scoE*osc”
= { by (9.29) and theorem 7.7 with R:=G,
E* = equiv.G =sc”osc }

u u
SCoSC oSCoSC

N

{ sc is a function }
Ic .
In order to prove (9.31) and (9.32) we need three additional properties of D . The first,
(9.35) D"NG* = 1L ,
is obvious from the definition of D and properties of converse and complement:
D" NG*
= { definition of D }
(GN=((G")") NG
= { distributivity properties of converse and [(G”)"=G] }
G N—(G*)NG*
= { [RN—=SNS = 1L] with R,S:=G",G* }
L.

Algorithmic Graph Theory April 8, 2022

181

The second,
(9.36) G* = equiv.Go(Doequiv.G)"

is proved as follows:

G*
= { DUE=G }
(DUE)*
= { star decomposition }
E*o(DoE)*

= { by theorem 9.26 with R:=G, E*=equiv.G }
equiv.G o (D oequiv.G)* .
The third property,
(9.37) A = scoDosc
is a combination of (9.33) and (9.34):
A
= { definition of A, DUE=G }
sco(DUE)osc” N —Ic
= { distributivity }
(scoDosc” N —Ic) U (scoEosc” N —l¢)
= { (9.33)and (9.34) }

scoDosc” .

We now prove (9.31).

G*

— { (936))
equiv.G o (D cequiv.G)*

— { (929))

sc”osco(Dosc”osc)*

= { mirror rule }

Algorithmic Graph Theory April 8, 2022

182

sc”o(scoDosc”)*osc

R NCEL N
sc o A*osc .

It remains to prove that A is acyclic. We have:

IcNA*

= { At = Ao A* and (9.37) }
Ic N scoDosc”o(scoDosc”)*

= { mirror rule and (9.29) }
Ic N sco(Doequiv.G)*oDosc”

C { modularity rule: (4.8) (applied in both forms) }
sco(sc”oscoD” N (Deoequiv.G)*)oDosc”

— { (929))
sco (equiv.Go D" N (D cequiv.G)*) e Dosc”

- { modularity rule: (4.8), and equiv.G = (equiv.G)” }

scoequiv.Go (D" N equiv.G o (D cequiv.G)*) o Dosc”
—((93))
scoequiv.Go (D" NG*)oDosc”
= { (9.35) and Ll is zero of composition }
1.

Property (9.32) follows from the fact that LI CR, for all R, and anti-symmetry of the
subset relation.
O

Theorem 9.30 is valid for all relations G and not just for graphs. (Nowhere have we
used the assumption that the set of nodes is finite.) Its primary importance, however,
is that solving path problems can be decomposed into solving the problems for each
individual strongly connected component and then combining the results using a topo-
logical search of an acyclic graph. Perhaps surprisingly, it is also used when inverting
real matrices in order to preserve sparsity. As shown in [BC75], the standard so-called
elimination techniques for inverting a matrix are algebraically identical to algorithms
for constructing paths in a graph. (Essentially, A~'=(1—(1—A))"'=(1—A)*. The
elimination algorithms exploit the star-decomposition rule to decompose the computa-
tion of A~ into smaller components; the mirror rule is then used to evaluate A~' for

Algorithmic Graph Theory April 8, 2022

183

row/column matrices.) In this application, a topological search is often called “forward
substitution”. See also [BC82] for more detailed discussion of sparsity considerations.

(Of course, this does not mean that theorem 9.30 is valid for other interpretations
of the star operator. For example, if G is a matrix of languages, it is not valid. Many
steps in the calculation are valid in other interpretations but lemma 9.25 relies on the
modularity rule, which is valid for relations but not for languages.)

Algorithmic Graph Theory April 8, 2022

184

Algorithmic Graph Theory April 8, 2022

Part 1V

Graph Searching

Algorithmic Graph Theory 185 April 8, 2022

Chapter 10

Generic Algorithms

In chapters 11 and 13, we show how depth-first search is used to compute the strongly
connected components of a finite graph. There are two ways that depth-first search can
be implemented. The first is an iterative algorithm that explicitly maintains a stack
representing incomplete searches. The second is a recursive algorithm.

In general, the implementation of a recursive algorithm involves maintaining a stack
representing incomplete computations but the algorithm itself typically does not make
explicit use of the stack. One way to reason about recursive algorithms is to make the
stack explicit. In our analysis of depth-first search we do not adopt that approach;
instead, we choose to tackle the recursion head on using fixed-point induction as the
primary tool. This poses significant challenges concerning how to present the calculations
in a way that truly supports understanding of the algorithms.

This chapter is a prelude to chapters 11 and 13 intended as a gentle introduction to
the more complex calculations of those chapters. In section 10.1, we present a generic
graph-searching algorithm of which depth-first search is an instance. The algorithm
determines the set of nodes that can be reached in a graph from a given set of nodes.
Reasoning about the algorithm is a combination of fixed-point induction and a lemma,
lemma 10.1, that helps to characterise when a search is complete. As mentioned earlier,
depth-first search is an instance of the generic algorithm; in this way, section 10.1 is an
introduction to chapter 11.

Then, in section 10.2, we consider repeated graph searches: that is, starting from an
empty set of nodes, repeatedly initiating a new search from a node that has not already
been “seen”. Just as in section 10.1, we consider a generic algorithm whereby new
searches are initiated using a choice function. The choice is recorded in the algorithm
by the construction of a function that we call the “delegate” function: the “delegate” of
a node a is the node b from which the search that “sees” a was initiated.

Apart from being total and functional, no other requirements are placed on the choice
of initiating nodes. We see, however, in chapter 13 how depth-first search is used to

Algorithmic Graph Theory 187 April 8, 2022

188

construct a choice function with the property that the “delegate” of a node a is a
representative of the strongly connected component of which a is a member. In this
way, section 10.2 is a necessary preliminary to section 13.

10.1 A Generic Graph-Searching Algorithm

In section 6.9, we presented a simple iterative algorithm for computing the least fixed
point of a monotonic endofunction on a finite, partially ordered set with a given least
element. This small theory is immediately applicable to graph-searching.

Given a set of nodes s and a graph G the nodes reachable from a node in s are
given by (soG*)>. Since this is a least fixed point of the function (x :: sU(x°G)>), the
reachable nodes can be computed as follows:

seen = 1l
; while seen # sU (seen-G)> do
seen := sU(seen-G)-

4

The name “seen” conveys an operational interpretation of the algorithm: initially no
nodes have been “seen”; subsequently nodes that are reachable by a single edge from
nodes that have already been “seen” are also “seen” .

Remark As always, the use of common English words to name variables can be mislead-
ing. Elsewhere (for example, [AHU82, pp.222-226]) the word “visited” is used instead of
our “seen”. We have chosen to use “seen” primarily because it is shorter. However, an-
other reason is that “visited” suggests an action that has been completed. In the second
phase of the strongly-connected-components algorithm, it is important to distinguish
between when a search from a given node has “started” and when it has “finished”. Our
use of the word “seen” rather than “visited” is intended to suggest that the search has
started but may not have finished. Nevertheless, it may be interpreted differently by
different readers. Formal statements clarify the precise functions of the variables. End
of Remark

The invariant property is that seen C (s G*)> and the loop is guaranteed to termi-
nate whenever G is a finite graph. On termination, seen=(soG*)>. That is, seen is
(a coreflexive representing) the set of nodes reachable from s.

This simple algorithm has the drawback that it is not very efficient: it involves
the computation of (xcG)> for an increasingly large set of nodes x and much of this
computation just repeats what has already been computed. In order to eliminate this
recomputation, we need a property that separates the new from the old. Such a property
is the following:

Algorithmic Graph Theory April 8, 2022

189

Lemma 10.1 Let p be a coreflexive and R a homogeneous relation. Then
(peR")> = p U (poRe~poRY)-
(We use variables p and R to emphasise that no assumption of finiteness is made.)
Proof
(peR*)> = p U (peRe~peR’)-
= { definition of R*, distributivity, p>=p }
p U (peReR")> = p U (peRe~poR")-
= { ~p C 1, monotonicity and reversing first step }
(poR*>> g P U (poRONpoR*)>
& { fixed-point induction }
pU((p UpoRopoR)eR)> C p U (peRo~peRY)>
& { distributivity and monotonicity }
(peR)> € p U (poRe~poR?)-
/\ (poRow‘poR*oR)> g (poRow‘poR*)>
= { R*oR C R* and monotonicity }
(peR)> € p U (peRe~poR7)-
& { case analysis: pU~p=1 }
(peR)=op C p
/\ (poR)>0N‘p g (‘poRowpoR*)>

{ (peR)>C 1 and monotonicity,
[CR* and domains (theorems 5.9 and 5.8) }
true .
]

Lemma 10.1 suggests an alternative iterative algorithm for computing reachable
nodes. Applying it to finite graph G and set of nodes seen, we have:

(seenoG*)> = seen U (seenoGo~seenoG*)> .

The subexpression seencGo~seen represents a set of “unexplored” edges of G in the
sense that they are edges from a node that has been “seen” to a node that has not been
“seen”. The nodes reachable from s can thus be computed by initialising seen to s
and then subsequently choosing an edge (a,b) in the set of “unexplored” edges; the
node b has not previously been “seen” and so can be added to seen.

Algorithmic Graph Theory April 8, 2022

190

{ G is a finite graph and s is a coreflexive representing a subset of the nodes }
seen = s
; { Invariant: (soG*)> = (seenoG*)> }
while seenoGo~seen # 11 do
begin
choose nodes a and b such that a-cTTob C seenoGo~seen
{ bC~seen }
; seen := seenUDb
end
{ (soG*)> = seen }
Obviously, the invariant is truthified by the initialisation. Termination is guaranteed
by the fact that b C ~seen is a precondition of the assignment seen := seenUb in
the loop body. (Thus the assignment increases the number of nodes in seen by 1 and

so the number of times the loop body is executed is at most the number of nodes in the
graph.) We prove this fact as follows:

true
= { choice of a and b }
acTTob C seenoGo~seen
= { monotonicity }
(aoTTeb)> C (seenoGo~seen)>
= { a and b are atoms, so (a-TTeb)>=Db
(seenoGo~seen)> C ~seen }
b C ~seen .

Execution of the loop body demands that there exist nodes a and b satisfying the
condition

acTTob C seenoGo~seen .

This is an immediate consequence of the condition for executing the loop body. (For-
mally, we exploit the fact that the lattice of relations is saturated.) It remains to show
that the invariant is maintained by the body of the loop, and the claimed postcondition
is implied by the conjunction of the invariant and the condition for terminating the loop.
We verify the invariant in the following lemma.

Algorithmic Graph Theory April 8, 2022

191

Lemma 10.2 Forall s, G, a and b,

(((s°G*)> = (seenoG*)>)[seen := seenUb] = (soG*)> = (seeno-G*)>)

& aollTob C seenoGo~seen .

Proof We assume that nodes a and b satisfy acTTob C seenoGo~seen.

((seenoG*)>)[seen := seenUD]
= { definition of substitution and distributivity }
(seenoG*)> U (boG*)>
= { (seenoG*)>
D { lemma 10.1 with p,R:=seen,G }
(seenoGon~seenoG*)>
D { choice of a and b: aoTTob C seenocGo~seen }
(ao—[ToboG*)>
= { domains (specifically (ReS)>=(R>0S)>)
(aoTTeb)>=b }
(boG)-]
(seenoG*)> .

The lemma follows by the definition of substitution.
O

That the postcondition (soG*)> = seen is valid is an immediate consequence of
lemma 10.1:

(soG*)> = (seenoG*)> /A seenoGo~seen = 1|
= { lemma 10.1 with p,R:=seen,G }
(soG*)> = seen U (seenoGor~seenoG*)> /\ seenoGo~seen = LI
= { Leibniz, 1l is zero of composition, Il>=11 }
(soG*)> = seen .
A concrete implementation of the above graph-searching algorithm involves choos-
ing a suitable data structure in which to store the unexplored edges represented by
seenoGo~seen. Breadth-first search stores the edges in a queue (so newly added edges

are chosen in the order that they are added), whilst depth-first search stores the edges
in a stack (so the most recently added edge is chosen first). Other variations enable the

Algorithmic Graph Theory April 8, 2022

192

solution of more specific path-finding problems. For example, if edges are labelled by
distances, shortest paths from a given source can be found by storing edges in a prior-
ity queue. Topological search (section 8.4) is also an instance: edges from each node
are grouped together and an edge from a given node is chosen when the node has no
unexplored incoming edges. We do not go into details any further.

10.2 Repeated Search and Delegates

In this section, we explore a property of repeated application of graph-searching starting
with an empty set of “seen” nodes until all nodes have been seen.

The algorithm we consider is introduced in section 10.2.2 and further refined in section
10.2.3. Roughly speaking, the algorithm repeatedly searches a given graph starting from
a node chosen from among the nodes not yet seen so as to maximise a “choice function”;
at each iteration, the graph searched is the given graph but restricted to edges connecting
nodes not yet seen. The algorithm records the chosen nodes in a function that we call a
“delegate function”, the “delegate” of a node a being the node from which the search
that “sees” a is initiated. The formal specification of the delegate function is given in
section 10.2.1.

Our formulation of the notion of a “delegate” is inspired by Cormen, Leiserson and
Rivest’s [CLR90, p.490] discussion of a “forefather” function as used in depth-first search
to compute strongly connected components of a graph. However, our presentation is
much more general than theirs. In particular, Cormen, Leiserson and Rivest assume
that the choice function is injective. We establish some consequences of this assumption
in section 10.2.4; this is followed in section 10.2.5 by a comparative discussion of our
account and that of Cormen, Leiserson and Rivest.

10.2.1 Delegate Function

Suppose f is a total function of type N«<—Node and suppose G is a graph. We call f
the choice function.

A delegate function on G according to f is a relation ¢ of type Node~Node with
the properties that

(10.3) @o@ CInoge € @ o@ ,and
(10.4) @ C(G")” A G* C (fo@) o>of .

The property (10.3) states that ¢ is a total function. Property (10.4), expressed point-
wise and in words, states that for all nodes a and b, node a is the delegate of node
b equivales the conjunction of (i) there is a path in G from b to a and (ii) among

Algorithmic Graph Theory April 8, 2022

193

all nodes c such that there is a path from b to ¢, node a maximises the value of the
choice function f.

Delegate functions have a couple of additional properties that we exploit later. These
are formulated and proved in the lemma below.

Lemma 10.5 If ¢ is a delegate function on G according to f,
[C Gop A G C (fo@) o>ofoq .

In words, there is a path in G from each node to its delegate, and if there is a path in
G from node b to node c, the value of f at the delegate of b is at least the value of f
at the delegate of c.

Proof First,
[C Gep
& { @ is total,ie. I C @ o }
¢ C G
= { converse }
¢ C(G*)
(G)”

Il
—

(G”)* and definition of delegate: (10.4) }

true .
Second,

G* C (fe@) e >ofoq

& { [C G*o@ (see above) }
G* oG o C (fo@) o >ofoq

& { G*oG* = G*, monotonicity }
G* C (fop) o >of

= { definition of delegate: (10.4) }
true .

|

Lemma 10.6 If ¢ is a delegate function on G according to f,
@ Cfo>of .

In words, the delegate of a node has f-value that is at least that of the node.

Algorithmic Graph Theory April 8, 2022

definition: (10.3) and (10.4) }
o’ CIT A G* C (fop)o>of

IC G* and transitivity; converse }

{
P
{
@e@” CT N TC @ of’o>0f
{ @°I = ¢, monotonicity of composition and transitivity }
-

fPo>of .
O

10.2.2 Assigning Delegates

The basic structure of the algorithm for computing a delegate function is shown in fig.
10.1. It is a simple loop that initialises the coreflexive seen (representing a set of nodes)
to Ll and then repeatedly chooses a node a that has the largest f-value among the
nodes that do not have a delegate and adds to seen the coreflexive ~seenc(G*ca)<;
this coreflexive represents the nodes that do not have a delegate and from which there
is a path to a in the graph. Simultaneous with the assignments to seen, the variable
¢ 1is initialised to 1l and subsequently updated by assigning the value of @ to a at
all newly “delegated” nodes.

For brevity in the calculations below, the temporary variable s (short for “seen”)
has been introduced. The sequence of assignments

s = ~seenc(G*oa)<

; @,seen = @ UaollTos, seenUs

is implemented by an adaptation of the graph-searching algorithm discussed in section
10.1. The details of how this is done are given in section 10.2.3.
Apart from being a total function, we impose no restrictions on f. If f is a constant
function (for example, if f.a=0 for all nodes a), the “choice” is completely arbitrary.
The property

PeC (G No o)

in the postcondition is stronger than the requirement ¢ C (G*)" in (10.4). It states that
there is a path from each node to its delegate comprising nodes that all have the same
delegate. (More precisely, it states that there is a path from each node to its delegate

Algorithmic Graph Theory April 8, 2022

195

{ fof CIn A Inoge C fof }
@,seen := 1l,1l;
{ Invariant: (10.7) thru (10.14) }
while seen # Iyoge do
begin
choose node a such that acseen=_1l and ~seencTloa C f'o<of
;s = ~seenec(G*oa)<
7 @,seen = @ U aoTTos, seenUs
end
{ @o@” C Inode € equiv.G C @ o ¢
N @C (G Neop) N G C (fop) o>of
N @=gop }

Figure 10.1: Repeated Search. Outer Loop

such that successive nodes on the path have the same delegate. The equivalence of these
two informal interpretations is formulated in lemma 10.36.)

Note the property @ = @o@ in the postcondition. Cormen, Leiserson and Rivest
[CLR90, p.490] require that the function f is injective and use this to derive the prop-
erty from the definition of a delegate (“forefather” in their terminology). We don’t
require that f is injective but show instead that it is a consequence of the algorithm
used to calculate delegates. For completeness, we also show that it is a consequence of
the definition of delegate under the assumption that f is injective: see lemma 10.30.
Similarly, the property equiv.G C ¢" o ¢ can be derived from the definition of a delegate
if f is assumed to be injective. Again for completeness, we also show that it is a conse-
quence of the definition of delegate under the assumption that f is injective: see lemma
10.31.

Termination of the loop is obvious: the coreflexive seen represents a set of nodes that
increases strictly in size at each iteration. (The chosen node a is added at each iteration.)
The number of iterations of the loop body is thus at most the number of nodes in the
graph, which is assumed to be finite. The principle task is thus to verify conditional
correctness (correctness assuming termination, often called “partial” correctness).

The invariant properties of the algorithm are as follows:

(10.7) @> = seen ,

Algorithmic Graph Theory April 8, 2022

196

(10.8) @o@” Cseen

(10.9) @ C(G N o)

(10.10) @ = 9o

(10.11) seen = (G*oseen)< ,

(10.12) seeno TTo~seen C (fop) o >of |
(10.13) seenoG*oseen C (fop) o >of |
(10.14) seenocequiv.Goseen C @ o @

Before verifying the invariant properties, let us consider the postcondition. The post-
condition

0@ Clnode S 0@

expresses the fact that, on termination, ¢ is total and functional; the claimed invariants
(10.7) and (10.8) state that intermediate values of ¢ are total on seen and functional.
The invariants (10.9) and (10.10) are both conjuncts of the postcondition. The additional
conjunct

equiv.G C @ o

states that strongly connected nodes have the same delegate. The invariant (10.14)

states that this is the case for nodes that have been assigned a delegate. Like (10.7) and

(10.8), invariant (10.13) states that intermediate values of ¢ maximise f for those nodes

for which a delegate has been assigned. It is therefore obvious that the postcondition is

implied by the conjunction of the invariant and the termination condition. The additional

invariants (10.11) and (10.12) are needed in order to establish the invariance of (10.13).
Since, for all coreflexives p and q,

pUq =pU~peq ,
it is the case that
(10.15) seen U ~seeno (G oa)< = seenU (G oa)< .

Note that the left side of this equality is the right side of the assignment to seen in the
above algorithm. The right side is slightly simpler. Accordingly, we use the right side
when reasoning about the invariant properties of seen. (The right side of the assignment
to ¢ cannot be simplified in this way.)

As usually happens, it is obvious that all of the claimed invariant properties are
true on initialisation (since 1l is the zero of composition). It remains to establish the
verification condition: for all ¢, seen and a,

Algorithmic Graph Theory April 8, 2022

197

((10.7) thru (10.14)) [p,seen := @ U acTTos , seenUs]
= ((10.7) thru (10.14))

/A acseen=_11 /A ~seenocTloa C f'o<of
where s = ~seeneo(G*oa)<. We consider each of the conjuncts in the consequent in turn,
invoking the premises when necessary. (The first line of premises is the conjunction of
all the claimed invariant properties and the second line is the criterion used to choose
a.) Because of the large number of properties, the remainder of this section is quite
long. Most of the calculations are, however, straightforward. An exception is, perhaps,

the invariance of (10.9), proved in lemma 10.22.
We begin with a few lemmas on the consequences of the invariant properties.

Lemma 10.16 Assuming properties (10.7), (10.8) and acseen= 11, the following
properties also hold:

@os =1l =so@ N @oa= 11 .
Proof These are all straightforward. First,
Pos
= { domains }
@o@>os
- (w7)
(poseencs
= { s = ~seenc(G*oa)< }

@oseenc~seenc(G*oa)<

= { complements: seeno~seen = 11 }

1.
Second,

)

— { domains }
So (p<o (p

C { (10.8): @< C seen }
Soseenoc @

Algorithmic Graph Theory April 8, 2022

198

= { soseen C ~seenoseen C 11}
1.
The third property is an immediate consequence of @os= 11 (the first property) and

aCs (which is a consequence of the choice of a).
]

Lemma 10.17 Assuming seen = (G*oseen)< (i.e. (10.11)) and aecseen=_Lll, the
following properties also hold:

~seeno G*oseen = 1l A ~seenoG*oa = (~seencG)*ca .

Proof First,

~seenoG*oseen
= { domains: [R = R<oR] with R:= G*oseen ;
seen = (G*oseen)< }
~seenoseenocG*oseen
= { ~seenoseen = 11}

AL .
Second,

~seenoG*eoa
= { [= seenU ~seen; distributivity and star decomposition:
[(RUS)* =R*o(SoR*)*] with R,S := seen-G, ~seen-G }
~seeno (seenoG)*o(~seenoGo(seenoG)*)*oa
= { (seenoG)* = I U seenoGo(seen-G)*
distributivity and ~seenoseen = 1L}
~seeno (~seenoGeo(seencG)*)*oa
= { (seenoG)* = I U seenoGo(seen-G)*
distributivity and ~seenoG*oseen = 1L
(whence ~seenoGoseen = 11) }
~seeno (~seenoG)*oa

= { (~seenoG)* = I U ~seencGo(~seenoG)*

Algorithmic Graph Theory April 8, 2022

199

distributivity }
~seenoca U ~seeno~seenoGo(~seencG)* oa
= { ~seenca = a and ~seenc~seen = ~seen
(~seenoG)* = I U ~seencGo(~seenoG)*
distributivity }
(~seencG)*ca .

|

Lemma 10.18 Assuming properties (10.7) thru (10.14) and aoseen= 11,

s = ((~seen-G)*oa)< .

= { definition }
~seeno(G*oa)<
= { domains: for all coreflexives p and all relations R,
poR< = (peR)< with p,R := ~seen, G*eca }
(~seenoG*oa)<
= { lemma 10.17 }
((~seenoG)*oa)< .

|

Lemma 10.19 Assuming properties (10.7) thru (10.14) and aoseen= 11,
s = ((s°G)"ca)< .

Proof Applying lemma 10.18, the task is to prove that
((~seenoG)* eca)< = ((soG)*ca)< .

Clearly, since s C ~seen, the left side of this equation is at least the right side. So it
suffices to prove the inclusion. This we do as follows.

((~seenoG)*ca)< C ((s°G)*oa)<

& { fixed-point fusion }

Algorithmic Graph Theory April 8, 2022

200

a C ((s°G)"ea)s
AN\ (~seenoGo((soG)*ca)<)< C ((seG)*ca)=<
= { first conjunct is clearly true;
~seen
= { case analysis: I = (G*ca)< U (G*oa)e }
~seeno(G*oa)< U ~seeno(G*oa)s
= { definition of s}
s U ~seenc(G*oa)e }
((s U ~seeno(G*oa)e)oGo((soG)*ea)<)< C ((soG)*ca)<
— { domains: [(ReS<)< = (RoS)<]
with R,S := (s U ~seenc(G*ca)«)oG, (soG)*ca ;
distributivity }
(s0oGo(soG)*oa)< C ((s0G)*oa)<
N (~seenc(G*ea)eoGo(seG)*oa)< C ((soG)*ea)<
& { first conjunct is true (since [ReR* C R* | with R:=5:G);
second conjunct: Geo(seG)* C G* and domains }
(~seeno(G*eca)eo(G*oa)<)< C ((s°G)*oa)<
— { complements: (G*ca)eo(G*ca)< =1L }

true .
O
We can now proceed to the verification of each of the invariant properties.

Lemma 10.20 Property (10.7) is an invariant of the algorithm.

Proof It is clearly true after initialisation of ¢ and seen. For the loop body, assume
(10.7) is true. Let s denote ~seeno(G*ca)<. Then we have:
(@ U aoTTes)>
= { distributivity }
¢@> U (ao‘|‘|’os)>
= { assumption: (10.7) }
seen U (aoTTos)>

Algorithmic Graph Theory April 8, 2022

201

= { s = ~seeno(G*oa)<, domains }
seen U (ac TT oao(G*)”o~seen)>

— { a is an atom, so acTTea=a }
seen U (ao(G*)”o~seen)>

= { domains, s = ~seenc(G*ca)< }

seenuUs .

That is, (10.7) is an invariant of the algorithm.
O

Lemma 10.21 Property (10.8) is an invariant of the algorithm.

Proof It is clearly true after initialisation of ¢ and seen. For the loop body, assume
(10.8) is true. Let s = ~seenc(G*oa)<. Then

(@ UaoTTes)o(p U aoTlToes)” C seenUs
= { distributivity }
@o@” U aoTlToso@” U @osoTToa U aoTTosesoTToa C seenUs
& { definition of set union }
@o@” C seen
A aoTlToso@” C 1L
AN @osoTllToa C 1L
/A aoTTososoTToa C s
We consider each of the conjuncts in turn. The first is (10.8) which we assume to be
true. The second and third are clearly equivalent (because a=a", s=s" and 1l =11")
and the third is obviously an immediate consequence of lemma 10.16 (in particular,
@os = 1l). Finally,
ao [Tososo [Toa
- { TToseso IT C TT }

aolToa

= { a is a node (an atomic coreflexive) }
a

- { I C G*, monotonicity;

Algorithmic Graph Theory April 8, 2022

202

choice of a: acseen=11 }
~seeno(G*oa)<
= { definition }

S .

We have thus verified that (10.8) is an invariant of the algorithm.
]

Lemma 10.22 Property (10.9) is an invariant of the algorithm.

Proof We have to prove that
@ UaTTes C (G” N (@ UaeTTes) o(@ U acTTos))*

assuming (10.7) thru (10.14).
Clearly (by monotonicity)

© C(G'N(pUacTTos) o(@ U asTTes))* « (10.9)
so it suffices to prove that
aoTTos C (G N (@ U acTTos) o(p U asTTos))*
As usual, we begin with the more complicated side.
(G N (@ UaoTTes) o(@ U asTToes))*
D) { monotonicity }
(G” N (aeTTos) oao TT o)*
= { converse; a is anode,so TToa oao 1T = TT

(G” N soTTos)*

= { s is a coreflexive, so s=s<=s> ; domains }
(s0 G os)*

D) { I2s }
(oG os)*0os

= { mirror rule, ses=s }
so(G os)*

) { s O a, monotonicity }

}

Algorithmic Graph Theory

April 8, 2022

203

ao(G"os)*
= { a is a node, so acTTeca=a
distributivity properties of converse }
aoTToao((s0G)*)"
= { lemma 10.19 and domains }
aolTos .
O

Lemma 10.23 Property (10.10) is an invariant of the algorithm.

Proof It is clearly true after initialisation of ¢ . For the loop body, assume (10.10) is
true. Then
(@ U aoTTos)o(@ U aoTTos)
= { distributivity }
@o@ U @oac [Tos U aclToeso U aclToseacTTos
= { lemma 10.16 }
@o@ U aoTTosoao TTos
= { by lemma 10.18, sca=a ;
so, by cone rule (4.16): TToscacTT =TT
hypothesis (10.10): @op=¢ }
@ Uaolloes .

The property (10.10) is thus maintained by the body of the loop.
O

Lemma 10.24 Property (10.11) is an invariant of the algorithm.

Proof It is clearly true after initialisation of seen. For the loop body, assume (10.11)
is true. Then

(G*o(seenU (G*oa)<))<
= { distributivity }
(G*eseen)- U (G*+(G"oa))-

= { assumption: (10.11) and domains }

Algorithmic Graph Theory April 8, 2022

204

seen U (G*oG*oa)<
= { G*%G*=G")
seen U (G*oa)< .

Recalling property (10.15), it follows that (10.11) is an invariant of the algorithm.
O

Lemma 10.25 Property (10.12) is an invariant of the algorithm.

Proof It is clearly true after the initialisation of seen and ¢ . For the loop body,
assume (10.12) is true.

(seenUs)o TT o~(seenUs)
= { distributivity }

seeno TT o~(seenUs) U so Tl o~ (seenUs)

N

{ assumption: (10.12) and domains }
(fo@)” o >0of U soTlo~seen .
We continue with the second term:
soTTo~seen C sofloaof o>of
& { choice of a: ~seencTToa C f'o<of
ie. aocTTo~seen C flo>of }
sollTo~seen C solloaocaoc [l o~seen
= { a is a node (a non-empty atom), cone rule: TToacaoTT =TT }
true .

Combining the two calculations:

(seenUs)o TT o~(seenUs)

N

{ monotonicity of set union }
(fo(p)U o>of U solloaof o>of
= { distributivity }

(fo(@ UaeTToes)) o >of .

That is, (10.12) is invariant under the assignment.
]

Algorithmic Graph Theory April 8, 2022

205

Lemma 10.26 Property (10.13) is an invariant of the algorithm.

Proof It is clearly true after initialisation of seen. For the loop body, assume (10.13)
is true. The left side of (10.13) [seen := seenUs| expands into the union of four terms.
We consider each in turn.

First,

seenoG*oseen

- { assumption: (10.13) }
(fop) o >of .

Second,

soG*os

C { G* CTT, monotonicity }
So [T os

= { definition of s, domains }

soTToao(G*) o~seen

C { (G*)” CTT, monotonicity }
soTToao [T o~seen
C { choice of a: ~seenoTToa C f o<of; converse and aca=a }
sofToaofo>of .
Third,
soG*oseen
= { domains }
so(G*oseen)<oG*oseen
= { invariant: (10.11) }
soseenoG*oseen
= { definition of s, coreflexives commute }
(G*oa)<o~seenocseenoG*oseen
= { ~seenoseen = 11}
1.
Finally,

Algorithmic Graph Theory April 8, 2022

206

seenoG*os

C { by definition and propertie of coreflexives, s C ~seen }
seenoG*o~seen

C { G*CTT and lemma 10.25 }
(fog) oo .

Putting the calculations together, we have:

(seenUs)oG*o(seenUs)

C { distributivity and above calculations }
(fo@)" o>of U soTToaof o>of

= { distributivity }
(fo(@ U aoTToes))” o >of

That is, (10.13) is invariant under the assignment.
]

Lemma 10.27 Property (10.14) is an invariant of the algorithm.

Proof It is clearly true after initialisation of seen and ¢ . For the loop body, assume
(10.14) is true. Then
(@ UaoTTes)” o (@ U aoTTos)
= { distributivity }
@ o@ U @ oaoTTos U soTToacq U soTToaoao TTos
= { lemma 10.16 }
@ o@ U soTToacao TTos
) { cone rule: TToacao TT =TT
hypothesis (10.14) }
seenoequiv.Goseen U soTTos
) { by lemma 10.17, equiv.G C G*, and s C ~seen
seencequiv.Gos = 11 ;
so, using properties of converse, scequiv.Goseen = 1L}

seenoequiv.Geseen U scequiv.Gos

Algorithmic Graph Theory April 8, 2022

207

U soequiv.Goseen U seencequiv.Gos
= { distributivity }

(seenUs)cequiv.Go (seenUs) .

The property (10.14) is thus maintained by the body of the loop.
O

This completes the verification of the algorithm.

10.2.3 Incremental Computation

The algorithm shown in fig. 10.1 assigns to the variable s (the coreflexive representing)
all the nodes that do not yet have a delegate and can reach the node a. The variable ¢
is also updated so that a becomes the delegate of all the nodes in the set represented
by s. As mentioned then, the assignments are implemented by an adaptation of the
graph-searching algorithm discussed in section 10.1. Fig. 10.2 shows the details.

The consecutive assignments in the body of the loop in fig. 10.1 (to s, and to ¢ and
seen) are implemented by an inner loop together with initialising assignments. The
assertions should enable the reader to verify that the two algorithms are equivalent: the
variables s, seeny and @, are auxiliary variables used to express the property that
the inner loop correctly implements the two assignments that they replace in the outer
loop; in an actual implementation the assignments to these variables may be omitted
(or, preferably, included but identified as auxiliary statements that can be ignored by
the computation proper).

It is straightforward to verify the correctness of this algorithm. For completeness, we
give the details below.

The auxiliary variable seen, records the initial value of seen. That

~seengo Goseenyg = LI
is truthified is a straightforward consequence of (10.11):
Lemma 10.28

(~seengoGoseeny = LL)[seeny := seen] & seen = (G*oseen)< .
Proof

(~seenyo Goseeny)[seeny := seen]
= { substitution }

~seenoGoseen

Algorithmic Graph Theory April 8, 2022

208

{ acseen=_1L A (10.7) thru (10.14) }
/x s, seeny and @, are auxiliary variables */
s,seeng, @y = a,seemn,@
{ ~seengoGoseeny = 1L }
i seen,@ = seenUa, @ UacllTea
i { Invariant: seen = sUseeny /A @ = @y U aoTTos
Invariant: a Cs C ~seengo(G*oa)< }
while ~seenoGoseen # 1L do
begin
choose node b such that b C ~seenc(Geseen)-<
{ bC ~seengo(G*oa)< }
;s == sUDb
; seen,@ = seenUb, @ UacTTob
end
{ s = ~seengo(G*oa)< /\ seen = sUseeny A\ @ = @oU aoTTos }

{ seen = seengU(G*ca)< A @ = @y U acTlTo~seenge(G*ea)< }

Figure 10.2: Repeated Search. Inner Loop.

= { domains }
~seeno (Goseen)<oGoseen

C { G C G*, monotonicity }
~seeno (G*oseen)<oGoseen

= { assume: seen = (G*oseen)< (i.e. (10.11)) }
~seenoseencGoseen

= { ~seenoseen = 1L}
1L

= { substitution }
1l [seeny := seen]

O

Algorithmic Graph Theory April 8, 2022

209

Now we must show that the invariants are truthified by the initialisation. That
seen = seengUs /A @ = @y U acTTos
is truthified is a straightforward application of the assignment axiom. That
aCs
is truthified is obvious. Finally, that
s C ~seengo(G*eoa)<

is truthified is a straightforward consequence of the precondition aecseen= 11 :

Lemma 10.29

(s C ~seengo(G*oa)<)[seeny,s := seen,a] < acseen=_11 .
Proof

(s C ~seengo(G*oa)<)[seeny,s := seen,q]

{ substitution }
a C ~seeno(G*ca)<
= { coreflexives }
aC ~seen A a C (G*oa)<
& { domains and IC G* }
seenca = 11 A a C a<
= { precondition and a is a coreflexive }

true .

O
The next step is to show that the invariants are maintained by the loop body. To do

this, we establish the assertion
b C ~seengo (G oa)<

that follows the choice of b. First, we must note that b can always be chosen, since
~seenoGoseen # 1l = ~seeno(Goseen)< # Ll .

Then,,

Algorithmic Graph Theory April 8, 2022

210

C { choice of b}

~seeno (Goseen)<

- { invariant: seen = sUseeny and monotonicity }
~seengyo (Go(sUseeny))<

= { distributivity and lemma 10.28 }
~seengo (Gos)=<

- { invariant: s C ~seengo(G*oa)< and monotonicity }
~seengo (G o (G*ea)<)=<

C { domains, GoG* C G* and monotonicity }

~seengo(G*oa)< .

It is now straightforward to check that each of the invariants is maintained by the loop
body. We leave this task to the reader.

The final task is to verify that the postcondition is a consequence of the invariants
and the condition for terminating the loop. Clearly it is only necessary to verify the
postcondtion

s = ~seengo (G oa)< .
This we do as follows:

s = ~seenge(G*eoa)<
= { invariant: s C ~seengo(G*ca)< and anti-symmetry }
s D ~seengo(G*oa)<
= { shunting rule (2.27) }
sUseeny D (G*oa)<
& { fixed-point induction }
sUseeny 2 a /\ sUseeny O (Geo(sUseeny))=<
& { invariants: aCs and seen = sUseeny |
seen O (Goseen)<
= { domains }

~seenoGoseen = 1l .

Algorithmic Graph Theory April 8, 2022

211

Since the property ~seenoGoseen = 1l is the condition for terminating the loop, we
are done.

10.2.4 Injective Choice

This section is a preliminary to the discussion in section 10.2.5. Throughout the section,
we assume that f has type N«Node. Also, the symbol I denotes Iynoge: the identity
relation on nodes.

Previous sections have established the existence of a delegate function ¢ according to
choice function f with the only proviso being that f is total and functional. Moreover,
the property @o@ = @ is an invariant of the algorithm for computing delegates. Cormen,
Leiserson and Rivest [CLR90| derive it from the other requirements assuming that f is
also injective. For completeness, this is the point-free rendition of their proof.

Lemma 10.30 If f isatotal, injective function and ¢ is a delegate function according
to f, then

PP =9 .
Proof
P =@
& { assumption: f is total and injective, i.e. f of =1 }
fo(po(p = fo(p
= { antisymmetry of >

and distributivity properties of total functions }
I C (fopog)” o <ofog
AT C (fopop)” o >ofoq
We establish the truth of both conjuncts as follows. First,
(fo(po(p)U o S o fo(p
= { converse |}
(on<fo(p>U o S o fo(p
D { G* C (fo@)” o > o fo@ (lemma 10.5)
ie. (G*)” C (fop) o< ofoq

(distributivity properties of converse and (>)” = (<)) }

Algorithmic Graph Theory April 8, 2022

212

(pUO<G*>U
D) { [C G*o@ (lemma 10.5) and converse }
I .

Second,

(fo(po(p)U o>o fo(p
= { converse |
(puo(fo(p)UoZofo(p
2 { definition of delegate: (10.4) and monotonicity }
@ oG o@
> { IcG }
P o
2 { ¢ is total (by definition: (10.3)) }

O

As also shown above, the property equiv.G C ¢" o is an invariant of the algorithm.
However, if f is a total, injective function, the property follows from the definition of a
delegate, as we show below.

Lemma 10.31 If f is atotal, injective function and ¢ is a delegate function according
to f, strongly connected nodes have the same delegate. That is

equiv.G C @ o .
Proof

equiv.G
= { definition }
G*N(G*)”
C { lemma 10.5 }
(‘["o(p)U o Z o fo(p M ((fo(p)U o Z ofo (p)U
= { converse |}
(fo(p)UoZofo(p M (fo(p)uogofo(p
= { f and ¢ are total functions, distributivity }

Algorithmic Graph Theory April 8, 2022

213

(fop) e (=N<) o fop

= { < is antisymmetric }
@ of ofoq

= { f is injective and total, i.e. f'of =1 }
OREYOR

O

The relation @oG"”o@" is a relation on delegates. Viewed as a graph, it is a ho-
momorphic image of the graph G° formed by coalescing all the nodes with the same
delegate into one node. Excluding self-loops, this graph is acyclic and topologically
ordered by f, as we now show.

Lemma 10.32 If f is atotal, injective function and ¢ is a delegate function according
to f, the graph @oG"o ¢~ N —I is acyclic with f as a topological ordering.

Proof By theorem 8.47, it suffices to show that f is a topological ordering. The function
f is, by assumption, a total, injective function of type N«—Node. Thus, by assumption,
f satisfies the first requirement of being a topological ordering. (See definition 8.32.)
Applying lemma 8.34, establishing the second requirement is achieved by the following
calculation.
QoG o’ N—I C flo<of
= { shunting rule (2.27) }
@oGo@” C flo<of U I
= { f is total and injective, i.e. I=f"of
distributivity and definition of < }
oG lop” C flo<of
& { @ 1is functional, i.e. o~ C I
monotonicity, converse and transitivity }
G” C (fop) o<ofoq
= { converse |}
G C (fg) o=ofoq
& { G C G*, transitivity }
G* C (fo@) o>ofoq

{ lemma 10.5 }

Algorithmic Graph Theory April 8, 2022

214

true .
O
The algorithm presented in fig. 10.1 shows that, viewed as a specification of the
function ¢, the equation (10.4) always has at least one solution. However, the algorithm
is non-deterministic, which means that there may be more than one solution. We now
prove that (10.4) has a unique solution in unknown ¢ if the function f is total and
injective.

Lemma 10.33 Suppose f of type N«Node is a total and injective function, and ¢
and { are both total functions of type Node«—Node. Then

=1
= (@ C(G")” N G* C (fop)’ o >of)
A (WP C(G)” A G C (foap)’o>of)

Proof Suppose 1V is a total function of type Node«—Node. Then
Y C(G)" A G C (fop) o>0of
= { converse and transitivity }
Y7 C (fop) o> of
= { P is total, i.e. IC P o }
[C (fo@) o >0ofo .

Interchanging ¢ and 1, and combining the two properties thus obtained, we get that,
if @ and 1 are both total functions of type Node+Node,

(0 C(G)" A G C (foh)”o>o1)
A (b C(G)” A G C (fop)” o >0f)
= { see above |}
I C (fah)”e=ofop
A TC (fop)’ o> o fo
= { f, @ and P are all total functions,
converse and distributivity }
I C (fo) = (()N(2)) = Fop
A TC (fop) o ((S)N(2)) o Fop

— { anti-symmetry of (<) }

Algorithmic Graph Theory April 8, 2022

215

[C (fap) ofoq AT C (fo)” o forp

= { f and 1 are total functions, anti-symmetry of subset }
foap = fo

= { f is an injective, total function }
=0 .

The lemma follows by symmetry and associativity of conjunction.
O

Earlier, we stated that (10.9) formulates the property that there is a path from each
node to its delegate on which successive nodes have the same delegate. Combined with
(10.10) and the transitivity of equality, this means that there is a path from each node
to its delegate on which all nodes have the same delegate. We conclude this section with
a point-free proof of this claim. Since the claim is not specific to the delegate function,
we formulate the underlying lemmas (lemmas 10.34 and 10.35) in general terms. The
relevant property of the delegate function, lemma 10.36, is then a simple instance.

Should one wish to interpret lemma 10.34 pointwise, the key is to note that, for total
function h and arbitrary relation S, h"och NS relates two points x and y if they are
related by S and h.x=h.y. However, it is not necessary to do so: completion of the
calculation in lemma 10.35 demands the proof of lemma 10.34 and this is best achieved
by uninterpreted calculation. In turn, lemma 10.35 is driven by lemma 10.36 which
expresses the delegate function ¢ as a least fixed point; crucially, this enables the use
of fixed-point induction to reason about ¢ .

Lemma 10.34 If h is a total function,
hNRe(h’ohNS) = hn (hNR)S

for all relations R and S.

Proof By mutual inclusion:

h N (hNR)eS
{ modularity rule: (4.8) }
(hNR) o ((hNR)”eh N S)
C { hNR Ch, monotonicity }
(hNR)e(h”"oh N S)
C { h is a total function, so hoh”och =h

N

hNR Ch, distributivity and monotonicity }

Algorithmic Graph Theory April 8, 2022

216

h N Re(h"oh N S)
= { idempotency (preparatory to next step) }
hNhNRe(h’oh N S)
{ modularity rule: (4.8) }
h N (he(h"ech N'S)” N R)o(h’oh N S)
{ h is a total function, so hoh"och =h
(h"sh N S)” C h¥oh,

N

N

distributivity and monotonicity }

h N (hNR)eS .
0

Lemma 10.35 If h is a total function,
hn(h"ehNR)* = (uX = hN(I U XeR))
for all relations R.

Proof We derive the right side as follows.

hn(h’ehNR)* = ug
& { fusion theorem }
(VX :hnN(IUXe(h’oeh NR)) = g.(hnX))
= { distributivity, lemma 10.34 with R,S:=X,R }
(VX (hnD)U(h N (hnX)eR) = g.(hNX))
& { strengthening: X:=hnNX }
(VX (hnI)U(h N XeR) = g.X)
= { distributivity }
(VX hn(IUXeR) = g.X) .

O
Lemma 10.36

¢ = (X=zenN(I U XG)) .
Proof

Algorithmic Graph Theory April 8, 2022

217

- { lemma 10.22 (specifically, @ C (G" N @ c@)*) }
¢N(G N o)
= { lemma 10.35 }

(WX = eNn(I U XeG")) .
O
The significance of the equality in lemma 10.36 is the inclusion of the left side in the
right side. (The converse is trivial.) Thus, in words, the lemma states that there is a
path from each node to its delegate on which every node has the same delegate.

10.2.5 Summary and Discussion

We summarise the results of this section with the following theorem.

Theorem 10.37 (Delegate Function) Suppose f of type N«Node is a total func-
tion and G is a finite graph. Then the equation

(L (po(pugINodeg(puo(P A (PQ(G*)U N G* g (fo(p)UoZof

has a solution with the additional properties that the solution is a closure operator (i.e.
a delegate is its own delegate):

Peo=0¢ ,
strongly connected nodes have the same delegate:
equiv.G C @ o

and there is a path from each node to its delegate on which successive nodes have the
same delegate:

@ C(GNeeop)r.

More precisely, there is a path from each node to its delegate on which all nodes have
the same delegate:

@ = (uX: @N(Inode U XoG7)) .
Moreover, a delegate has the largest f value

@ Cfo>of .

Algorithmic Graph Theory April 8, 2022

218

If the function f is injective, the solution is unique; in this case, we call the unique
solution the delegate function on G according to f. Moreover, f is a topological ordering
of the nodes of the graph

o GU °© (pU N _'INode

(the graph obtained from G° by coalescing all nodes with the same delegate and remov-
ing self-loops). This graph is therefore acyclic.

Proof As discussed prior to lemma 10.33, the algorithm establishes the existence of at
least one solution, and lemma 10.33 shows that any solution is unique. The remaining
properties are proved in lemmas 10.30, 10.31, 10.22, 10.36, 10.6 and 10.32.

O

As mentioned above, this section is inspired by Cormen, Leiserson and Rivest’s notion
of the “forefather” function and its use in applying depth-first search to the computation
of strongly connected components [CLR90, pp.488—494|. However, our presentation is
more general than theirs; in particular, we do not assume that the choice function is
injective.

The motivation for our more general presentation is primarily to kill two birds with
one stone. As do Cormen, Leiserson and Rivest, we apply the results of this section to
computing strongly connected components: see section 13. This is one of the “birds”.
The second “bird” is represented by the case that the choice function is a constant
function (for example, f.a=0, for all nodes a). In this case, the choice of node a in
the algorithm of fig. 10.1 reduces to the one condition acseen= 11 (in words, a has not
yet been seen) and the function f plays no role whatsoever. Despite this high level of
nondeterminism, the specification of a delegate (see section 10.2.1) allows many solutions
that are not computed by the algorithm. (For example, the identity function satisfies
the specification.) The analysis of section 10.2.2 is therefore about the properties of a
function that records the history of repeated searches of a graph until all nodes have
been seen: the delegate function computed by repeated graph search records for each
node b, the node a from which the search that sees b was initiated.

This analysis reveals many properties of graph searching that other accounts may
suggest are peculiar to depth-first search. Most notable is the property that strongly
connected nodes are assigned the same delegate. As shown in lemma 10.31, this is a
necessary property when the choice function is injective; otherwise, it is not a necessary
property but it is a property of the delegate function computed by repeated graph search,
whatever graph-searching algorithm is used. The second notable property of repeated
graph search is that there is a path from each node to its delegate on which all nodes
have the same delegate. This is closely related to the property that Cormen, Leiserson
and Rivest call the “white-path theorem” [CLR90, pp.482|, which we discuss shortly.

Algorithmic Graph Theory April 8, 2022

219

Our analysis shows that the property is a generic property of repeated graph search and
not specific to depth-first search.

In order to discuss the so-called “white-path theorem”, it is necessary to give a
preliminary explanation. Operational descriptions of graph-searching algorithms often
use the colours white, grey and black to describe nodes. A white node is a node that
has not been seen, a grey node is a node that has been seen but not all edges from the
node have been “processed”, and a black node is a node that has been seen and all edges
from the node have been “processed”. The property “white”, “grey” or “black” is, of
course, time-dependent since initially all nodes are white and on termination all nodes
are black.

Now lemmas 10.18 and 10.19 express subtley different versions of what is called the
“white-path theorem”. Suppose a search from node a is initiated in the outer loop.
The search finds nodes on paths starting from a. There are three formally different
properties of the paths that are found:

(i) The final node on the path is white at the time the search from a is initiated.
(ii) All nodes on the path are white at the time the search from a is initiated.

(iii) All nodes on the path are white at the time the search from their predecessor on
the path is initiated.

In general, if nodes are labelled arbitrarily white or non-white, the sets of paths
described by (i), (ii) and (iii) are different. (They are ordered by the subset relation,
with (i) being the largest and (iii) the smallest.) However, in a repeated graph search,
the sets of paths satisfying (i) and (ii) are equal. This is the informal meaning of lemma
10.17. Moreover, the right side of the assignment to s in fig. 10.1 is the set of nodes
reached by paths satisfying (i); lemma 10.18 states that, in a repeated graph search,
the nodes that are added by a search initiated from node a are the nodes that can be
reached by a path satisfying (ii).

We claim —without formal proof— that it is also the case that, in a repeated graph
search, all three sets of paths are equal. That is, the set of paths described by (iii) is also
equal to the set of paths described by (i). We don’t give a proof because it is not a fact
that we exploit and, without introducing additional auxiliary variables, it is impossible
to express formally. Informally, it is clear from the implementation shown in fig. 10.2,
in particular the choice of nodes b and c. The introduction of timestamps does allow
us to prove the claim formally for depth-first search. See section 14.2.

Cormen, Leiserson and Rivest’s [CLR90, pp.482] “white-path theorem” states that it
is a property of depth-first search that paths found satisfy (ii). Characteristic of depth-
first search is that the property is true for all nodes, and not just nodes from which a
search is initiated in the outer loop. We discuss this in more detail later.

Algorithmic Graph Theory April 8, 2022

220

Finally, let us briefly remark on lemma 10.32. As we see later, not only can depth-first
search be used to calculate the strongly connected components of a graph, in doing so it
also computes a topological ordering of these components (more precisely a topological
ordering of the converse of the homomorphic-image graph discussed in section 9.7).
Lemma 10.32 is more general than this. It states that, if the choice function is injective,
it is a topological ordering of the converse of the graph obtained by coalescing all the
nodes with the same delegate and then omitting self-loops. In fact, this is also true of
the delegate function computed as above. We leave its proof to the reader: remembering
that during execution of the algorithm ¢ is partial with right domain ¢>, identify
and verify an invariant that states that f is a topological ordering on a subgraph of
QoG o " N—I.

Algorithmic Graph Theory April 8, 2022

Chapter 11

Depth-First Search

In section 10.1, we described a generic graph-searching algorithm and concluded with
the claim that depth-first search is an instance of the algorithm whereby unexplored
edges are stored in a stack. The stack-based, iterative implementation was the basis of
Tarjan’s [Tar72] seminal paper on depth-first search. In this and later sections, we base
the discussion on the (equivalent) recursive formulation of depth-first search commonly
presented in textbooks (for example, [AHUS82, pp.222-226]). The reason for this choice
is that “timestamping” events during the search (see section 13.1) is easier to present.
On the other hand, reasoning about the recursive algorithm poses new challenges. The
challenges could be overcome by transforming the recursive implementation into the
equivalent stack-based iterative algorithm but we choose to tackle them head on. This
section introduces the basic graph-searching algorithm as a relatively straightforward
illustration of how to reason about recursion. (Later sections are more complicated.)

Given a finite graph G, the following procedure initiates a depth-first search at
selected nodes of G until all nodes of the graph have been “seen” (denoted by seen).
Nodes are selected arbitrarily from the set of nodes that have not yet been seen (denoted
by ~seen).

seen := 0;
while ~seen#(do
begin
choose node a such that ae€~seen
; dfs(a)

end

(We use standard set-theory notation temporarily for reasons of familiarity. Shortly,
we switch to the notation of the point-free calculus.)

Algorithmic Graph Theory 221 April 8, 2022

222

The procedure dfs(a) for executing a depth-first search of the nodes reachable from
a is implemented as follows:

seen := seen U {a}
; while there is an edge (a,b) such that b€ ~seen do
begin
choose node b such that (a,b)eG /A be&~seen
; dfs(b)
end

To see the connection with section 10.1 note that the criterion for choosing b is
equivalent to the property

aoTTeb C seenoGo~seen ,

the property that is key to an efficient implementation of graph searching. As a conse-
quence, lemma 10.1 will also play an important part in reasoning about the recursive
implementation.

There is a large element of non-determinism in the execution of depth-first search.
Fig. 11.1 illustrates one particular execution sequence. The labels O1 thru O6 are the
nodes that initiate a search in the outer loop; the numbers indicate the order in which
they have been chosen. Searches from the nodes that do not have such a label are initiated
in the inner loop. The edges (a,b) that are chosen in the inner loop are highlighted.

The pairs of numbers labelling each node are “timestamps”. We discuss the imple-
mentation and properties of these timestamps in detail in section 13.1. For the moment,
we use them to illustrate some remarks we make. The first component of such a pair
gives the “time” at which the search from the node is started and the second component
is the “time” at which the search is finished. For example, the search from the top-left
node (the node labelled O2) is begun at “time” 19 and finished at “time” 20; the search
from the node labelled O1 is begun at “time” 1 and finished at “time” 18. By chasing
the timestamps, it is possible to see which choices were made in the particular execution
shown in fig. 11.1.

Fig. 11.1 has been designed to illustrate a couple of points about depth-first search.
First, most accounts of depth-first search emphasise the construction of a forest of so-
called “spanning” trees. In fig. 11.1 only two trees are readily visible: the trees defined
by the highlighted edges. Note that the tree with root O1 “spans” a non-trivial strongly
connected component of the graph. That is, the component has more than one node
and every node in the component is reachable by a path consisting of tree edges from
O1; however, not all nodes in the tree are strongly connected. Similarly, the tree with

Algorithmic Graph Theory April 8, 2022

223

Figure 11.1: Timestamps

root O5 has two nodes, O5 and O6. Each of these nodes forms a strongly connected
component but the two nodes are not strongly connected.

There are three additional trees: each of the nodes O2, O3 and O4 is the root of a
tree with just one node. Thus, although the subgraph defined by the nodes O3, O4, O5
and O6 forms a “spanning” tree in the graph, it is not one of the forest of “spanning”
trees constructed by this particular execution of depth-first search.

The second point to make about depth-first search is that a call of dfs(a) does
not necessarily “see” all nodes reachable from node a. For example, the node with
timestamp 12,17 is reachable from the node with timestamp 2,11 but, as indicated by
the fact that 11 <12, the search from the node with timestamp 2,11 is ended before
the search from the node with timestamp 12,17 begins.

In the next section, we formulate precisely what is meant by the informal statement
that depth-first search is a graph-searching algorithm. Essentially, we show that (the

Algorithmic Graph Theory April 8, 2022

224

recursive implementation of) depth-first search is an instance of repeated graph search
(see section 10.2). But we do more than this. We formulate precisely the differences
in properties of calls of dfs in the outer and inner loops as well as the properties that
are common to both. An important step in the analysis is to show that the procedure
dfs implements a function mapping a set of nodes to a set of nodes. This is done in
section 11.3 following which properties of the inner and outer loops are formally verified
in sections 11.4 and 11.5. Section 11.1 formulates these properties (without proof) whilst
section 11.2 formulates precisely the (relational) semantics of the procedure dfs that we
assume in the formal verifications.

The final section serves as an introduction to our later discussion of applying depth-
first search to the calculation of strongly connected components. We show that, although
a call of dfs(b) in the inner loop does not “see” all the nodes that can be reached from
b —including nodes that can be reached from b by paths along edges that have not
already been “seen”— it is the case that all calls of dfs, whether from the outer or inner
loops, “see” every strongly connected component of the input graph either in its entirety
or not at all; in other words, calls of dfs never “see” a non-empty, proper subset of the
nodes of a strongly connected component of the graph.

11.1 Properties of Depth-First Search

As illustrated by fig. 11.1, a call of the procedure dfs does not always “see” all the nodes
that are reachable from a given node. This claim is, however, true of the searches that are
initiated in the outer loop. Just as for the generic repeated-graph-search algorithm that
we analysed in section 10.2, the function of a call of the procedure dfs(a), in general, is
to find all the nodes that are reachable from a along edges that have not already been
“seen”. We make this precise in this section.

There are several elements to this claim. One is that the procedure dfs is always
guaranteed to terminate (provided the graph is finite). The second is an assertion about
the relation between the variable seen and the nodes reachable from a node in seen.
We shall prove that the property

(11.1) (seenoG*)> = seen
is an invariant of the outer loop. In words, before and after each iteration of the outer

loop, seen is closed under reachability in the graph G. In general, we shall prove that
dfs(a) implements the function D.a given by, for all coreflexives s and nodes a,

(11.2) D.a.s = sU (ao(Go~s)*)> .

Algorithmic Graph Theory April 8, 2022

225

This fact is critical to reasoning about depth-first search because it means that a call of
dfs(a) is equivalent to the assignment statement

(11.3) seen := seen U (ao(Go~seen))> .

The difficulty posed by the recursion has thus been conquered: subsequent reasoning can

use straightforward and well-known techniques for reasoning about iterative programs.

(The difficulties of recursion will, however, reappear when we consider timestamps.)
We introduce the relations GE and GT on sets of nodes, defined by

s1[GE]sO = s12s0 , and
s1[GT]sO = s12s0 As1#s0 .

The name “GE” is just another name for the containment relation (“2”) on sets of
nodes, which is reflexive and transitive. That is,

(11.4) Inoge C GE A GEoGE C GE .

We introduce a new name because, otherwise, the overloading of notation in (11.4) and
similar statements could be confusing. We continue to use the familiar mathematical
symbol where no confusion can occur. See, for example, the use of the “C” symbol
in (11.7) below. (Another way of resolving the problem is to adorn all occurrences
of relations like the subset relation with their type, but that would introduce a lot of
unnecessary noise in the formulae.)

Similarly, the name “GT” denotes “proper” containment. It is thus transitive (but
not reflexive) and GE is the reflexive closure of GT. That is,

(11.5) GT" = Isetofode UGT = GE .
Because equiv.G C G*, it is straightforward to show that (11.1) implies
(11.6) (seencequiv.G)> = seen .

Given that (11.1) is an invariant of the outer loop, we see from (11.6) that strongly
connected components are added to seen as a whole and not in parts by calls of dfs
initiated in the outer loop. (A formal proof of this claim is given in corollary 11.25.)
More significant, however, is what happens when dfs is called from the inner loop. We
show that the strongly connected component p containing node a is added to seen by
a call of dfs(a) if a is the first node in p to be added to seen. See theorem 11.24.
As remarked earlier, (11.1) is not an invariant of the inner loop. So we are obliged to
seek a relation that is an invariant of both the inner and outer loops and whose invariance
implies (11.1) in the outer loop. The appropriate relation is suggested by lemma 10.1.

Algorithmic Graph Theory April 8, 2022

226

The term seenoGo~seen represents a subset of the set of edges of the graph G: the
edges at the “frontier” of the search. To emphasise the importance of the frontier edges,
we introduce the function Fr of type

(SetOfNode~SetOfNode) «— SetOfNode
defined by
(11.7) Fr.s = soGors .

We show that the subset relation on frontier edges is an invariant of the procedure dfs.
To be precise, we show that the relation Fr’o(C)oFr of type SetOfNode~SetOfNode
defined by

(11.8) s1[Fr'o(C)oFr]s0 = sloGo~sl C s00Gon~s0

is an invariant relation of the procedure dfs.

Similarly, as remarked earlier, calls of dfs(b) in the inner loop do not “see” all the
nodes that can be reached from node b along edges that have not already been “seen”.
However, this is the case for calls of dfs(a). This is formalised by introducing two
relations of type SetOfNode~SetOfNode. The relation New where

sI[New[sO = sl = sOU (sTo~s0o(Gon~s0)")>
is an invariant of the outer loop whereas the weaker relation NR, where
SI[NRJsO = slo~s0 C (~s00(Gors0)")> ,

is an invariant of the inner loop.

The invariants of the outer and inner loops are documented in figs. 11.2 and 11.3.
(The meaning of D.a being an invariant value of the inner loop will be discussed in
detail later.) The remainder of this section is about formally verifying the assertions
made in these figures.

We invite the reader to compare fig. 11.2 with fig. 10.1. When doing so, a warning
is in order: the repeated search shown in fig. 10.1 is about searching G”, not G as
in fig. 11.2. So comparisons may be confusing. (The reason for this difference is that
the calculation of strongly connected components has two phases. In the first phase, a
depth-first search of the graph G is used to construct a function f; in the second phase,
the function f is used by the delegate algorithm in a search of G”; the output function
¢ assigns to each strongly connected component of the graph a representative element
of the component.)

Apart from this difference, the two algorithms still look very different. However,
supposing the choice function f used in fig. 10.1 is a constant function, all mention of

Algorithmic Graph Theory April 8, 2022

227

seen (= 1l ;
{ Imnvariant Relation: New :: (SetOfNode~SetOfNode)
where s1[New]s0 = sl = s0U (s1o~s0c(Gors0)*)>
Invariant Property: Fr.seen=_11L /\ (seen-G*)> = seen
where Fr.s = soGors
Invariant Property: (Vp : scc.p : peseen=_1L V peseen=p)
where scc.p means p is a strongly connected component of G}

while seen # Iyoge do
begin
choose node a such that acseen=_11
: { ao~seen=a }
/+ dfs(a) implements the function D.a «*/
/* where D.a.s = sU (aeo(Gors)*)> . x/

/* So it is equal to the assignment seen := D.a.seen . x/
dfs(a)

end

Figure 11.2: Invariants of the Outer Loop

it can be elided. Also, ignore assignments to ¢ . Then, in fig. 11.2, the assignment to
seen 1is

seen := seen U (ao(Geo~seen)’)>

whereas in fig. 10.1, it is
seen := seen U ~seeno(G"oa)< .

Lemma 10.18 states that the latter assignment is equivalent to the assignment
seen := seen U ((~seenoG)*ca)<

which, using distributivity properties of converse, is the same as

seen := seen U (ao (G o~seen)*)> .

Algorithmic Graph Theory April 8, 2022

228

{ ao~seen=a }
{ Invariant Relation:
(Fr'o(C)oFr N NR) :: (SetOfNode~SetOfNode)
where Fr.s = soGors
and s1[NR]sO = s12s0 A slo~sO0 C (~s0o(Gon~s0)*)> .
Invariant Value: D.a
where D.a.s = sU (ao(Gors)*)> .
Invariant Property: (Vp : scc.p : peseen=_1L V peseen=p)
where scc.p means p is a strongly connected component of G}
seen (= seen U a
{ aoseen=a }
i { Invariant Property:
(Vp : scc.p Ap#(acequiv.G)> : peseen=_11 V poseen=p) }
while aocGo~seen # 1L do
begin
choose node b such that aoTlTeb C aocGo~seen
i { bo~seen=D>b }
dfs(b)
end

{ Input/Output Relation: D.a N Fr”o(C)oFr N NR }

Figure 11.3: Invariants of the Procedure dfs

So, in the case that the choice function f is a constant function, the two algorithms
are the same except for the replacement of G by G”. By showing that dfs(a) im-
plements the function D.a we effectively show that depth-first search is an instance of
the generic repeated graph search algorithm presented in section 10.2. Consequently, we
may instantiate properties of repeated graph search proved in section 10.2.

Algorithmic Graph Theory April 8, 2022

229

11.2 Semantics of the Basic Procedure

In order to reason formally about the search procedure, we have to formalise its semantics.
Chapter 6 explained the semantics of the basic programming constructs (assignment
statements, sequential composition, etc.) but stopped short of explaining the semantics
of recursion.

Let us write DFS.a for the semantics of dfs(a). This is a combination of the
semantics of the component statements in its implementation (as discussed in section 6)
and the “equation” between the text “dfs(a)” and its implementation.

Let pre.a denote the coreflexive representing the assertion ao~seen = a and let
S.a denote [seen := seen U a].

The semantics of the inner while statement is clearly dependent on the parameter
a; it also depends on DFS.b (the meaning of the call of dfs(b) in its body). In order
to formulate the semantics more precisely, we abstract from DFS and let W.d.a denote
the semantics of the while loop when the semantics of dfs(b) is generalised to d.b for
some function d of type

(SetOfNode~SetOfNode) «— Node .
Then we define the semantics of dfs to be a least fixed point:
(11.9) DFS = (ud: (a: W.d.a-S.a))

In words, DFS is the least fixed point of the function that maps a function d of ap-
propriate type into a function that maps node a into (the relation) W.d.a-S.a. Let
C denote the pointwise ordering on functions from nodes to relations. That is, for all
nodes a and all functions f and g mapping nodes to relations

fCg = (Vaz:f.aCg.a) .

Similarly, we extend composition of relations to functions from nodes to relations. Specif-
ically, if functions f and g map nodes to relations, we define fog by

fog = (a:f.acg.a) .
Using this notation, we can rewrite definition (11.9) as:
(11.10) DFS = (pd = W.dsS) .

Recall that S.a is the meaning of the assignment statement that adds a to seen.
(Another notation for it would be (Ua).) The function W gives the meaning of the
inner while statement after abstracting from the call of dfs. That is,

(11.11) W.d.a = t.ao((Ub = d.boC.b.a) o ~t.a)*

Algorithmic Graph Theory April 8, 2022

230

where, for all a and b, C.b.a is the criterion for choosing b given a in the current
state and t.a is the condition for terminating the while statement.

An important first step in our verification of our “obvious” property of depth-first
search is to incorporate the precondition on calls of dfs into the fixed-point defini-
tion of DFS. Recall that pre.a denotes the coreflexive representing the assertion
ao~seen = a. Then we have:

Lemma 11.12
DFSepre = (ud = W.doSsopre)

Proof We use fixed-point fusion. See theorem 2.43. Recall that composition of relations
is the lower adjoint in a Galois connection —specifically (4.6)— it is easily proved that
the lifted composition (spre) is also the lower adjoint in a Galois connection. Thus we
can calculate as follows:

DFSépre = (ud = W.doSspre)
= { definition (11.10) of DFS }
(ud = W.dsS)spre = (ud = W.dsSspre)
& { fixed-point fusion: theorem 2.43 }
(Vd = W.deSspre = W.(dspre)sSepre)
& { Leibniz }
(Vd = W.d = W.(depre)) .
Continuing with the left side of the equality, we have, for all d and all a,
W.d.a
= { (111 }
t.ao((Ub :: d.boC.b.a) o ~t.a)*
= { C.b.a is a coreflexive representing the state
aclTob C seenoGo~seen
thus b C ~seen, i.e. pre.boC.b.a = C.b.a }
t.ao((Ub :: d.bepre.boC.b.a) o ~t.a)*
= { definition of lifted composition }
t.ao((Ub = (depre).boC.b.a) o ~t.a)*
= { definition (11.11) of W}
W.(dspre).a .

Algorithmic Graph Theory April 8, 2022

231

Combining the two calculations completes the proof.
O

11.3 The Function of a Depth-First Search

Our goal in this section is to prove that, for each node a, the procedure dfs(a) imple-
ments the function D.a of type SetOfNode « SetOfNode defined by equation (11.2).

Theorem 11.13 is the theorem that we described earlier as being crucial to under-
standing depth-first search. Lemma 11.12 gives a relational semantics to depth-first
search but theorem 11.13 shows that it is, in fact, a function from sets of nodes to sets
of nodes. Thus, in spite of the unlimited nondeterminism in the choice of nodes in the
inner loop, the outcome is always the same.

The proof of theorem 11.13 is unusual because we are obliged to switch from the point-
free formulation of the relational semantics to pointwise reasoning about sets of nodes.
Since point-free reasoning is less well-known, we begin the proof with the equivalent
pointwise rendition of the argument used which we hope will make it more accessible.

Theorem 11.13 The procedure dfs(a) implements the function D.a, where
D.a.s = sU (ac(Gors)*)> .

That is, with precondition pre.a defined to be the coreflexive representing the set of
states s such that

sca=11 ,
then
DFS.aopre.a = D.acpre.a .

Proof Recalling lemma 11.12, which gives the semantics DFS.a of the procedure
dfs(a), our task is to prove that, for all a,

(nd :: W.doSepre) = Dopre .

The occurrence of a least fixed point on the left side of the equation immediately suggests
the use of fixed-point induction. Now, D.a is a total function, and to prove that a
relation R is equal to a function f restricted to some right domain p, it suffices to prove
that the right domain of R is p and R is a subset of f. (We leave the straightforward
verification of this claim to the reader.) That is, we have to prove that

(ud = W.déSopre) € D

Algorithmic Graph Theory April 8, 2022

232

and
(Va: ((pd = W.dsSepre).a)> = pre.a) .

The proof of the second property is much more straightforward than it might look at first
sight. It is in fact a use of fixed-point fusion: the “apply to a” function (“(.a)”) and
the right domain operator are both lower adjoints in Galois connections of appropriate
type, and W.d.a and S.a are both total functions. It follows that ((W.dsSépre).a)-
equals pre.a, for all d, and hence its least fixed point is also pre.a, as required.

The proof of the inequation is more demanding. The basis of the proof is summarised
in the annotations added to dfs(a) in the text below.

{ ao~seen=a /\ seen=s0 }
seen := seen U a
; { Invariant Property: acseen=a
Invariant Value: D.a }
while acGo~seen # 11 do
begin
choose node b such that acTTob C aoGo~seen
: { bo~seen=D>b }
dfs(b)
end
{ acseen=a A D.a.seen=D.a.s0 A\ aocGo~seen = 1L }
{ seen=D.a.s0 }

Note the precondition seen=s0 and the postcondition seen=D.a.s0. The introduc-
tion of the auxiliary variable sO in this precondition-postcondition pair is a familiar
pointwise mechanism for expressing the relation between the input value, sO, of seen
and its output value.

The claim is that acseen=a is an invariant property and D.a is an invariant value
of the while statement. In point-free terms, their combination is an intersection of
relations. The property aoseen=a is represented by the coreflexive relation q.a where,
for all sO and s,

(11.14) s'[q.a]s = ass=aAs'=s .

The invariance of the value D.a is expressed by the relation (D.a)”"oD.a and their
conjunction is the relation

g.acTT N (D.a)”+D.a .

Algorithmic Graph Theory April 8, 2022

233

(Equivalently, this is q.a-(D.a)”oD.a. However, expressing it as an intersection allows
a simple decomposition of the proof obligations.) The annotation asserts that both
relations are truthified by the initial assignment S.a and maintained by the while
statement W.D.a. On termination, the combination of the invariant and termination
condition imply that the final value of seen is the result of applying the function D.a
to its initial value. Formally, we have:

(ud = W.dsSépre) € D

& { fixed-point induction }
W.D:Sépre € D

= { definition of pointwise operators }

(Va = W.D.aoS.aepre.a C D.a) .
Now, for all a,

W.D.aoS.aepre.a C D.a
& { prelude to introducing invariant
D.a is a function, so D.ae(D.a)”" C 1 }
W.D.aoS.aopre.a C D.ao(D.a)’°D.a
& { introduce invariant q.aoTT N (D.a)”°D.a
monotonicity of composition }
S.aepre.a C q.ao 1T
/A S.aepre.a C (D.a)”oD.a
A W.D.acq.a C D.a
& { W.D.a = t.ao((Ub = D.boC.b.a) o ~t.a)*
monotonicity of composition }
S.aepre.a C q.ao 1T
S.aopre.a C (D.a)’°D.a
((Ub = D.boC.b.a) o ~t.a)*oq.a C q.acTT
((Ub = D.boC.b.a) o ~t.a)* C (D.a)’°D.a
A t.acg.ao(D.a)”’°D.a C D.a

> > >

Noting that

Algorithmic Graph Theory April 8, 2022

234

((Ub = D.boC.b.a) o ~t.a)* C (D.a)’°D.a
& { fixed-point induction }
[C (D.a)’°D.a
A (D.a)”eD.ac({Ub :: D.beC.b.a) e ~t.a) C (D.a)”>D.a
& { first conjunct: D.a is a total function;
second conjunct: monotonicity, distributivity }

(Vb = D.aeD.boC.b.ao~t.a C D.a) ,

we have derived from the formal semantics of DFS.a five verification conditions. Two
establish g.a as a postcondition, one of S.a:

(Va = S.aopre.a C g.aoTT)
and one of the while statement:
(Va = ((Ub = D.boC.b.a) o ~t.a)*oq.a C q.aeTT) .

Three verification conditions are properties of D : the verification condition for the
initial assignment:

(Va = S.aepre.a C (D.a)’<D.a) ,

the verification condition for the body of the loop:
(Va,b = D.aoD.beC.b.ao~t.a C D.a) ,

and the verification condition for termination of the loop:
(Va : t.acq.ao(D.a)’eD.a C D.a) .

Recalling (11.14) —the definition of q.a— it is obvious that the first property is valid.
The second property is less obvious but involves a straightforward application of the
fusion theorem and the property that s CD.b.s for all s; we omit the details. We
complete the proof by translating the final three point-free properties of relations into
pointwise boolean conditions relating successive states of the program variable seen.
This is done in lemmas 11.15, 11.16 and 11.17 below.

O

Lemma 11.15 Suppose a is anode and s is a coreflexive representing a set of nodes.
Then

sca=1l = D.a.s = D.a.(sUa) .

Algorithmic Graph Theory April 8, 2022

235

Proof

D.a.s = D.a.(sUa)
= { anti-symmetry }
D.a.s C D.a.(sUa) A D.a.(sUa) C D.a.s
= { definition of D (see (11.2)) and distributivity }
s C D.a.(sUa)
N (ac(Ger~s)*)> C D.a.(sUa)
/A sUaC D.a.s
N (ae(Ge~(sUa))*)> C D.a.s

With the exception of the second, it is easily checked that each of these conjuncts is
true. The second conjunct is where the condition sca= 11 is needed:

(ao(Go~s)*)> C D.a.(sUa)
& { definition of D, distributivity }
(a2(Goms))- € (as(Gorsorna)’)-
& { fixed-point fusion }
aC (ao(Gersona)®)-
A ((ao(Gonsoma)*)=oGons)> C (ao(Gonso~a)®)-
= { first conjunct is true since [C (Gorso~a)*;
domains }
(ae(Gorso~a) oGons)> C (ae(Gorvsona)®)>
= { assumption: sca=_1l, hence ~s = ~so~a U a
distributivity }
(ac(Gorso~a)ocGea)> C (ao(Gorson~a))>
N (ao(Gornso~a)oGornsor~a)> C (ao(Gorsora)®)>
= { first conjunct: a is a node, so (acRea)>Ca, for all R,
aC(ae(Gorsona)®)>
second conjunct: definition of * }

true .
O

Algorithmic Graph Theory April 8, 2022

236

Lemma 11.16 Suppose a and b are nodes and s is a coreflexive. Then

sob=_11L A aeGeb=acTTeb = D.a.(D.b.s) C D.a.s .

Proof We have:

D.a.(D.b.s) C D.a.s
= { definition of D and set union }

D.b.s C D.a.s A (ao(Ge~(D.b.s))*)> C D.a.s .
We consider the conjuncts in order. First,

D.b.s
= { definition }
sU (bo(Gorvs)*)>
= { assumption: acGeb=acTTeb, so (a°Geb)>=b, domains }

sU(aeGobo(Gors)*)>

N

{ assumption: scb=11,80 bC~s }
sU (aeGorso(Gons)*)>

{ [RoR* C R* | with R:= Go~s }
sU (ao(Gorvs)*)>
= { definition }
D.a.s .

N

Second,

(ao(Go~(D.b.s))*)> C D.a.s

& { definition, monotonicity }
~(D.b.s) C ~s

= { anti-monotonicity of complementation }
s C D.b.s

= { definition, set union }
true .

|

Algorithmic Graph Theory April 8, 2022

237

Lemma 11.17 Suppose a is a node and s and sO are coreflexives representing sets
of nodes. Then

aoGor~s =11 N aes=a N D.a.s=D.a.s0 = s=D.a.sO .

Proof
D.a.s0
= { assumption: D.a.s=D.a.s0 }
D.a.s
= { definition }
sU(ao(Gonrvs)*)>
= { ac(Gors)* = a U aocGorso(Gonrvs)*
assumption: acGo~s = 11 }
sUa>
= { a is a node, so a>=a
assumption: aes=a }
S
O

11.4 Properties of the Inner Loop

A consequence of theorem 11.13 is that GE is an invariant of the inner loop and dfs(a)
satisfies the relation GT. Although requiring formal proof, and used extensively below,
these are obvious properties. This section is about less obvious properties.

From the definition of D.a.s, it is clear that no new frontier edges are added by a
call of dfs(a). This is made precise in lemma 11.18. An important corollary is the claim
that (11.1) is an invariant of the outer loop.

Lemma 11.18 A depth-first search reduces the set of frontier edges. That is, for all
a, s and G,

D.a.seGe~(D.a.s) € soGors .
Proof

D.a.soGo~(D.a.s) C soGors

Algorithmic Graph Theory April 8, 2022

238

= { definition, complements and set union }
soGor(D.a.s) C soGors
AN (ae(Gors)*)>0Gonso(ao(Gons)*)s C soGorvs
& { sCD.a.s, so ~(D.a.s) C ~s, monotonicity;
1l C soGonrs, transitivity }
(ao(Gorvs)*)>oGorso(ae(Gons)*)» C 1L
& { domains }
ao(Gors) oGorvso(ao(Gors)*)s C 1L
= { (Gor~s) oGons C (Gorvs)*
definition of complemented right domain }

true .
O
It is useful to also observe that the nodes “newly” reached by a call of the procedure
are connected by paths between previously unreached nodes. That is, we introduce the
relation NR of type SetOfNode~SetOfNode and defined by

(11.19) s1[NR]sO0 = s12s0 A slo~sO0 C (~s0o(Go~s0)*)>
and show that it is an invariant relation of the procedure dfs.
Lemma 11.20 The relation NR is an invariant of the inner loop.
Proof The verification condition is: for all sO, s1 and s2,
§20~s0 C (~s00(Gors0)*)>
& slors0 C (~s00(Gorvs0)*)> A s2=D.b.sT A bosl =1L A s0Csl
This we prove as follows.
s20~s0 C (~s00(Gors0)*)>
= { assumption: s2=D.b.s1 }
(sTU (bo(Gonsl)*)>)orsO0 C (~s0o(Gors0)*)>
& { distributivity,
assumption: slo~s0 C (~s0o(Go~s0)*)> 1}
(bo(Gorvsl)*)>orns0 C (~s0o(Gors0)*)>

& { assumption: bosl=_11,ie. bC~sl, monotonicity }

Algorithmic Graph Theory April 8, 2022

239

(~s1o(Gorsl)*)>ors0 C (~s0o(Gors0)*)>

= { s0Csl,ie. ~s1C~s0 and monotonicity }
~s0C1

= { ~s0 is a coreflexive }
true .

11.5 Properties of the Outer Loop

Theorem 11.13 has important consequences for reasoning about depth-first search. Ef-
fectively, it says that the call of the procedure dfs(a) is equal to the assignment

seen := seen U (ao(Go~seen))> .

This section is about its consequences for the outer loop. We show, for example, that
(11.1) is an invariant of the outer loop. (Recall that (11.1) is not an invariant of the
inner loop.)

Corollary 11.21 The property (11.1) is an invariant of the outer loop.

Proof Clearly the property
(11.22) seenoGo~seen = LI

is truthified by the initial assignment seen := 1l . Since 1l is the least element in the
subset ordering of relations, and each call of dfs(a) has the effect of assigning D.a.seen
to seen, it follows from lemma 11.18 that (11.22) is an invariant of the outer loop.
Consequently, by lemma 10.1 (with R,p:=G,seen), property (11.1) is also an invariant
of the outer loop.
O

The relation NR only establishes an upper bound on newly reached nodes. In the
outer loop, the relation can be sharpened from a containment to an equality. This is
achieved by exploiting the property (11.1).

Lemma 11.23
(Vs1,s0
sT[GENNR]sO A (s1oG*)> = sl
sl = s0OU (sTe~s0o(Gons0))>

Algorithmic Graph Theory April 8, 2022

240

In words, each iteration of the outer loop “closes” seen under reachability by edges
connecting previously unseen nodes.

Proof

sl = sOU (slo~s0o(Gonrs0)*)>
= { antisymmetry of the subset relation
assumption: s1[NR]sO and shunting (2.27) }
s1 O s0U(sTo~s0o(Gonrs0)*)>
= { assumption: s1[GE]sO (i.e. s12s0) }
s1 DO (slo~s0o(Gonrs0)*)>
= { assumption: (s1oG*)> = sl }
(s10G*)> D (sTo~s0o(Gonrs0)*)>
— { ~s0C1, monotonicity }

true .

11.6 Strongly Connected Components

We conclude this section with the theorem on strongly connected components announced
earlier: each strongly connected component is added in its entirety within a single call
of dfs.

Theorem 11.24 Suppose a and b are nodes and p is the coreflexive representing
the strongly connected component containing b. That is, suppose p=(beequiv.G)>.
Then, if dfs(a) is executed with precondition peoseen=_1l, and it terminates with
postcondition beseen=>b, it will terminate with postcondition poseen=p.

Proof Suppose p=(becequiv.G)> and suppose s1 and sO satisfy the relation GTNNR;
furthermore, suppose pesO= 1L (the assumed precondition for executing dfs(a)) and
bos1=b (the assumed postcondition of dfs(a)). We prove that pesl=p.

pesl=p
= { coreflexives }
p Csl
= { assume: s1[GTNNR]sO, lemma 11.23 }

Algorithmic Graph Theory April 8, 2022

241

P C sOU (sTo~s0o(Gons0)*)>
& { assumption: posO= 11, i.e. pC~s0);
assumption: besl=b }
p C (bepo(Gop))-
= { absolute connectivity: lemma 9.19 }
p C (bepeGop)-
& { bep=>b; equiv.GC G* }
p C (boequiv.Gop)-
& { p = (boequiv.G)>, domains }
true .

O

Corollary 11.25 An invariant property of the inner loop is
(11.26) (¥p : scc.p \ p#(acequiv.G)> : peseen=_1L V poseen=p)

where scc.p is the property that p is a coreflexive representing a strongly connected
component of the graph G. An invariant property of the outer loop is

(11.27) (¥p : scc.p : peseen=_11 V poseen=p) .

Proof The property (11.27) is clearly truthified by the initialisation seen:= Ll in the
outer loop. Then, assuming that (11.27) is a precondition of a call of dfs(a), (11.26)
remains true after the initialisation

seen := seenua .
(It is at this point that it becomes clear why the case
p = (acequiv.G)->

is excluded from the universal quantification.) The invariance of the property (11.26)
under execution of dfs(b) in the inner loop is then immediate from theorem 11.24.

In the outer loop, (11.27) is a consequence of (11.6). Specifically, suppose p is
a coreflexive representing a strongly connected component of G. Suppose also that
peseen# L1 . Then, with dummy a ranging over nodes of G, we have:

poseen# 1L
= { theorem 9.24 }

Algorithmic Graph Theory April 8, 2022

242

(Ja:p=(acequiv.G)< : seenca=a)
= { Leibniz }
(Ja:p=(acequiv.G)<: (seenoaoequiv.G)> = (a-equiv.G)>)
= { seen and a are coreflexives, so seenca=aoseen }
(Ja : p=(acequiv.G)<: (aoseencequiv.G)> = p)
= { (11.6) and domains }
(Ja : p=(acequiv.G)<: (acseencequiv.Geseen)> = p)
= { domains [seen D (Reseen)> | with R:= aoseencequiv.G }
(Ja : p=(acequiv.G)< : seen D p)
= { coreflexives and theorem 9.24 }

peseen=p .

O

Corollary 11.25 anticipates the use of depth-first search in constructing strongly con-
nected components. As representative element of each strongly connected component,
one chooses the first node in the component that is “seen” by a depth-first search. Tarjan
[Tar72], Sharir [Sha81] and Aho, Hopcroft and Ullman [AHU82] call the representative of
a strongly connected component the “root” of the component, whilst Cormen, Leiserson
and Rivest [CLR90, p.482] call it the “forefather” of the component. (In a later edition,
Cormen, Leiserson, Rivest and Stein [CLRS09, p.619] have elided the explicit discussion
of the “forefather” of the compenent; implicitly, they also call the representative the
“root”.) The problem is to identify which nodes are “roots”. This problem is solved
in section 13. The solution involves “timestamping” searches with both start and finish
“times”. The addition of finish “times” means that we have to extend the semantics of
depth-first search to include the effect of adding an assignment statement at the end of
each call of the procedure dfs. This is the topic of the next section.

Fig. 11.3 documents the properties we have established of the procedure dfs(a).

Algorithmic Graph Theory April 8, 2022

Chapter 12

An Induction Theorem for
Depth-First Search

The primary purpose of this section is to formulate a general rule for reasoning about
different implementations of depth-first search. See theorem 12.5. Several choices are
made in formulating the rule. In order to motivate the choices, we show how to sharpen
the reachability property of depth-first search; we also establish a property that is the
basis of a crucial classification of the edges following a depth-first search of a graph.
Specifically, in section 12.3, we show that whenever a call of dfs(a) is executed, for
some node a, the node a is reachable from all nodes from which the search has started
but not finished; moreover, there are no edges in the graph from a node from which the
search has finished to a node from which the search has not started.

Both these properties involve augmenting the implementation with a variable that
records the set of nodes from which the search has finished. The form that the revised
implementation takes anticipates the implementation of timestamps in section 13.

The generic implementation that we consider is a composition of three statements:
an initial assignment, which we call S, a while statement, which we call W, and a final
assignment statement, which we call F. (See fig. 12.4 for an example.) Accordingly, we
need to revise the definition (11.9). The appropriate definition is as follows.

(12.1) DFS = (ud = FoW.dsS)
where
(12.2) W.d.a = t.ao((Ub : d.boC.b.a) o ~t.a)" .

(The definition of W has not changed but is repeated here for convenience.)

Fig. 12.1 may help the reader to better understand the development. It shows the
generic form of the procedure dfs(a) and the relevant documentation. The assertion
p.a is a precondition on the execution of the procedure dfs(a); note that p.b is a

Algorithmic Graph Theory 243 April 8, 2022

244

precondition on the execution of dfs(b). The assertion q.a is a so-called intermediate
assertion. Use of the induction theorem requires some creativity in the formulation of
both p and . The combination of the precondition p and the invariant relation R is
the specification of the procedure; theorem 12.5 gives sufficient conditions that guarantee
when an implementation meets the specification.

{ pa }

{ Invariant Relation: R }
S.a

{ qa }

; { Invariant Relation: R*
Invariant Property: q.a }
while ~t.a do
begin
choose node b such that C.b.a
i { Cb.ae~tacq.a }
{ pb }
dfs(b)
end
i { tacq.a }
F.a

Figure 12.1: Documenting Depth-First Search Induction

12.1 Formal Statement and Proof

In the following, we assume that p.a, q.a, ~t.a and C.b.a are coreflexives and R,
S.a and F.a are homogeneous relations on the state space. In all the implementations
we consider, S.a and F.a are assignment statements; that is, S.a and F.a are total
endofunctions on the state space.

Previously, lemma 11.12 was used to establish an induction rule for DFScpre (where
pre was the “obvious” precondition). Theorem 12.5 below replaces lemma 11.12. Un-
fortunately, the fusion theorem does not appear to be strong enough and we have been

Algorithmic Graph Theory April 8, 2022

245

obliged to find a more specific proof technique based on the following two lemmas.
Lemma 12.3 For all relations T and coreflexives q,
Treq = (Teq)"eq <= Teq =qeTeq .
Proof
Treq = (Toq)"°q
= { q C 1, monotonicity and anti-symmetry }
Treq C (Toq)eq
& { T*oq is a least fixed point, induction }
qUTo(Teq)>oq S (Toq)*eq
< 1 (Teq)" = TUTeqo(Teq)"
distributivity and monotonicity }
(Teq)*eq S qo(T°q)"~q
= { dqeq=q (applied twice) and mirror rule }
(Teq)*eq S (qoTeq) g
& { Leibniz }

Toq = quoq .
O

Lemma 12.4 For all relations R and coreflexives p and q,

R/peq = Req <= q=peq

Proof
R/peq
- { assume: q=peq, cancellation of factors }
Roq
- { p CI, (anti-)monotonicity of factors }
R/peq .

The lemma follows by anti-symmetry.
O

We are now in a position to formulate a theorem for reasoning about the generic form
of depth-first search expressed by (12.1).

Algorithmic Graph Theory April 8, 2022

246

Theorem 12.5 (Depth-First Search Induction) Suppose R is a relation on the
state space of depth-first search, and p.a and q.a are coreflexives representing subsets
of the state space. Then

(Va = DFS.aep.a C R) & (12.6) A (12.7) A (12.8) A (12.9)
where the premises (12.6), (12.7), (12.8) and (12.9) are defined as follows.
(12.6) Sop = qoSop .

This specifies the intermediate assertion q: when S is executed with precondition p,
g is a valid postcondition. Equivalently, q.a is at least the left domain of S.a - p.a.

(12.7) (Va,b : C.b.ae ~t.aoq.a C p.b) .

This is the property that if the (inner) loop body is executed with precondition q.a
then the call of dfs(b) will be executed with precondition p.b.

(12.8) K.Rsq = qsK.Req .

(Recall that K denotes the constant combinator.) This asserts that property q is
“maintained by” relation R.

(12.9) Fit o KR*6Sop C KR .

This asserts that executing F after S with precondition p maintains the relation R.
Proof We begin by proving that, assuming (12.6), (12.7) and (12.8),

(12.10) DFSép € K.R & TFiW.(K.R)Sop € K.R .

We give a pointwise calculation (primarily because giving a point-free calculation involves
introducing additional notation that is used just once). Apart from the highlighted step,
the calculation below is straightforward.

DFSép € K.R

= { definitions of pointwise operators }
(Va = DFS.aep.a C R)

= { factors }
(Va = DFS.a € R/p.a)

= { definition of pointwise ordering }

DFS C (a:xzR/p.a)

Algorithmic Graph Theory April 8, 2022

247

& { (12.1) and fixed point induction }
FoWl{azR/p.a)eS C (a:zR/p.a)
= { definition of pointwise orderings, definition (12.2) of W }
(Va : Faot.ae((Ub = R/p.b o C.b.a) o ~t.a)*=S.a C R/p.a)
= { factors }
(Va = Fact.ae((Ub = R/p.b o C.b.a) o ~t.a)*oS.acp.a C R)
= { see below }
(Va = Fact.ae((UbzRoC.b.a) o ~t.a)*oS.aep.a C R)
= { definition of W}
(Va = F.aeW.(K.R).aeS.aep.a C R)
= { definitions of pointwise operators }

FSW.(K.R)6Sop € K.R .

The highlighted step above was to replace the term R/p.b by R. This apparently
innocuous step is the most difficult step of all. In anticipation of later steps, we introduce
the coreflexive g.a into the calculation as follows:

R/p.bo C.b.aec ~t.acqg.a
= { assumption (12.7): C.b.ao ~t.aoq.a C p.b
lemma 12.4 with p,q := p.b, C.b.aoc~t.acq.a }
Ro C.b.aec~t.aoq.a
= { coreflexives commute }
Rog.ao C.b.ao~t.a
= { assumption (12.8): Req.a = g.a°Req.a }
g.acRoq.aecCb.aoc~ta
= { reverse first two steps }

g.aoR/p.boC.b.aec~t.acq.a .
In summary, assuming (12.7) and (12.8),
(12.11) R/p.bo C.b.ae ~t.aocq.a = g.a°R/p.boC.b.ac~t.acq.a .

Now, for all a,

Algorithmic Graph Theory April 8, 2022

248

((Ub = R/p.b e C.b.a) o ~t.a)*oS.aep.a

= { assumption (12.6): S.aep.a = q.acS.aep.a }
((Ub = R/p.b o C.b.a) o ~t.a)*oq.aeS.acp.a

= { distributivity }
(Ub :: R/p.boChb.ac~t.a)’oq.acS.aop.a

= { lemma 12.3 with T:=(Ub = R/p.b o C.b.ac ~t.a) and q:=q.a

(applicable because of (12.11)), distributivity }
(Ub :: R/p.boChb.ac~t.acq.a)og.aeS.aep.a

= { assumption (12.7): C.b.ao ~t.acq.a C p.b , lemma 12.4 }

(Ub : RoC.b.ao~t.aoq.a)’og.acS.aop.a

= { assumption (12.8): Req.a = g.acReq.a, distributivity

lemma 12.3 with T := (Ub = Ro C.b.a o ~t.a) and q:=q.a }

(Ub = Ro C.b.ao~t.a)oqg.acS.aop.a
= { assumption (12.6): S.aep.a = g.acS.aep.a }
((Ub:RoC.b.a) o ~t.a)*oS.acp.a .

This verifies the postponed step (the step marked “see below”) in the initial calculation

and concludes the proof of (12.10).
We now apply (12.10). Assume (12.6), (12.7) and (12.8). Then

DFSép € K.R
& { (12.10) and assumptions }
FSW.(K.R)6Sép C K.R
= { definition of pointwise operators }
(Va = Fact.ae((UbzRoC.b.a) o ~t.a)*eS.aep.a C R)
& { C.b.a and ~t.a are coreflexives, monotonicity }
(Va :: Faoct.ac(UbzR) oS.acp.a C R)
& { (UbzR)CR }
(Va : F.act.asR*eS.aep.a C R)
= { definition of pointwise operators }

FitoKR 6Sop C KR .
O

Algorithmic Graph Theory

April 8, 2022

249

12.2 Verification Conditions

In order to apply theorem 12.5, four verification conditions must be met: one for the
initial assignment S (that it truthifies q), one for the precondition for execution of
dfs(b) (that it is truthified by the condition for choosing b), one for the intermediate
assertion ¢ (that it is invariant under R), and finally one for the combination of the
initial assignment S and the final assignment F (that they maintain the invariant relation
R, assuming precondition p and condition for terminating the loop t).

Fig. 12.2 summarises theorem 12.5. The symbol “o” denotes the current state; the
notation p(o,a) is used rather than the point-free p.a to signify the dependence of
precondition p on the state, and the fact that p(o,a) is a syntactic expression. Two
ghost variables o, and o7 help to relate the state at (respectively) the start of execution
of the procedure and at the start of execution of the while statement to its value at later
points during the execution.

The initial assignment statement gives rise to a verification condition. Applying the
assignment axiom, this is

(12.12) (Vo,a = q(S(0,a),a) < p(o,a))
The two instances of consecutive assertions each give rise to a verification condition:
(12.13) (Vo,a = p(o,b) & C(o,b,a) A~t(o,a)/\q(o,a)) , and
(12.14) (Vo,07,a = q(o,a) < t(o,a)ANq(or,a) Ao [R*]or)
The final assignment statement also gives rise to a verification condition.
(12.15) (V 0,00,a :: F(o,a)[R]oy < t(o,a) A o[R*]S(0o,a) A p(0p,a))
The sequence
{ p(o,b) ANo[R*]or }
dfs(b)
{ o[R*]or }

in the loop body is the induction hypothesis: fixed-point induction enables the assump-
tion that this is valid.

Sometimes (12.9) is used in combination with (12.6) and (12.8) in order to strengthen
the precondition on F in (12.15) from t(o,a) to t(o,a)Aq(o,a) as shown in fig. 12.2.
Formally, this is based on the theorem that, in the context of (12.6) and (12.8),

FotoKR 6Sep = Fotoqs KR 6qoSsp

Algorithmic Graph Theory April 8, 2022

250

{ p(o,a) No=o0p }
{ Invariant Relation R }
0:=S(0,a)
{ q(o,a) No=o07 }
i { Invariant Relation R* }
while ~t(o,a) do
begin
choose node b such that C(o,b,a)
i { C(o,b,a) N\ ~t(o,a) N ¢(o,a) }
{ p(o,b) A o[R*]oy }
dfs(b)
{ o[R]or }
end
{ t(o,a) N\ q(o1,a) A o[R*]oy }
i { t(oy,a) A q(o,a) }
0:=F(o,a)

{ o[R]oy }
Figure 12.2: Summary of the Induction Theorem

and hence property (12.9) is equivalent to
(12.16) Fs tsq s KR*6q o Sép C KR .
For completeness, we give the proof:
FotoKR*sSop = FotoqoK.R*eqoSop
& { assumption: (12.6) and q=qsq }
K.R*oq = qoK.R*oq
= { qCI, domains }
(K.R*eq)< € ¢
& { fixed-point fusion and distributivity }

Algorithmic Graph Theory April 8, 2022

251

qU (KRsq)< C ¢
= { distributivity, assumption: (12.8) and domains }
true .

Clearly the verification of (12.9) (or its equivalent (12.16)) is the most complicated
task because it involves considering the combined effect of the initial assignment S and
the final assignment F. Sometimes this is unavoidable but often it can be decomposed
and/or simplified using properties of the relation R.

Firstly, R is typically transitive so that R* equals IUR. In some cases, R is both
transitive and reflexive so that R* equals R. This allows a simplification of (12.9),
albeit with the additional obligation to show that R is indeed transitive (and possibly
reflexive), whereby R* is simplified to IUR (or just R if R is reflexive).

Secondly, R is typically the intersection of several relations. By definition, RNT is
transitive if

(RAT)(RNT) € R A (RAT)(RNT) C T .

This proof obligation is often simpler than it looks because one or both of R and T is
transitive. Some relations, such as set inclusion, are obviously transitive and reflexive.
What we have called “property invariants” and “value invariants” (see section 6.8.4) are
also transitive and reflexive.

Assuming that RNT is transitive, our proof obligation takes the form

FotoK.(IURNT)) 6Sep C K.(RAT) .
Letting «.R be Fot o K.(IUR) ¢S sp, this follows from the conjunction of
aRNaT C KR
and
«RANaT C KT .
Sometimes it suffices to show that
aR C KR A T C KT
(if R and T are entirely independent) or
«RC KR A aRNaT C KT

(R can be validated independently of T but the validity of T depends on the validity
of R.) This helps to eliminate unnecessary detail.

Algorithmic Graph Theory April 8, 2022

252

In some cases, a substantial simplification of (12.9) is possible. Specifically,
(12.16) & Fotéq € K.R A qiSép € K.R

if R is reflexive and transitive. It follows that —sometimes— the verification condition
(12.9) can be replaced by the two conditions

(12.17) qsSép € K.R
and
(12.18) Fstsq € K.R .

In words, for some reflexive and transitive relations R, it is the case that R is indepen-
dently an invariant of F and an invariant of S; that is, it is not necessary to consider the
combined effect of F and S to establish the invariance of R. Exploiting this simplifica-
tion is a reason for distinguishing between invariant relations, invariant properties and
invariant values: the technique is typically applied to invariant properties and values but
not to other relations. The downside is that more care needs to be taken in formulating
the intermediate assertion since its role becomes more pronounced.

12.3 “Grey” Paths and Impossible Edges

In this section, we return to the implementation of depth-first search documented in
figs. 11.2 and 11.3, adding a new variable that records the set of nodes from which a
depth-first search has finished. This addition anticipates the computation of timestamps
in section 13. The induction theorem, theorem 12.5, is used to establish a number of
properties that are crucial to calculating strongly connected components. (See section
13.)

We call the new variable fnd (short for “finished”) and begin by adding its initiali-
sation to the outer loop. See fig. 12.3.

The invariant relation New has been replaced by the relation GE?: the state space
is now a cartesian product of two sets of nodes, and GE? is likewise the cartesian product
of two instances of GE, which is clearly a subset of the relation New. (The extra detail
supplied by New was used to prove theorem 11.24; we don’t need the information here.)
Thus, the claim is that both seen and fnd are increasing. The frontier function Fr has
been redefined so that it depends only on the state of the seen nodes. A new invariant
property has been added as well. Finally, the precondition on the call of dfs(a) has also
been augmented with an additional conjunct.

The invariant property has, in total, four conjuncts, divided into two pairs of two,
but there is some (obvious) redundancy in the conjuncts. They have been stated in this

Algorithmic Graph Theory April 8, 2022

253

seen,fnd := 1L, Il ;
{ Invariant Relation: GE? N Fr¢(C)oFr
where (s’,f') [GE?] (s,f) = s'Ds Af'Df
and Fr(s,f) = so(C)ors
Invariant Property:
fndCseen A fndoGo~seen = 1L
Invariant Property:
seeno~fnd = 1L /A fndoG*o~seen = 1L }
while ~seen# 1l do
begin
choose node a such that ac~seen =a
i { ac~seen=a A seenoc~fndoTToa C (seeno~fndoG)* }
dfs(a)

end

Figure 12.3: Grey Paths and Impossible Edges. Outer Loop

way in order to clarify differences between the invariants of the outer and the inner loops.
Specifically, the first pair is also an invariant of the inner loop, but the second is not.

It is easy to check that all are truthified by the initial assignment to seen and fnd.
Thus, to say they are “invariant” means that their true value is unchanged before each
iteration of the loop body. The meaning of the first, fnd Cseen, is obvious. In the
third conjunct, the term seeno~fnd represents the set of nodes from which a search
has started but has not finished. The assertion

(12.19) seeno~fnd = 1L

states that this set is empty at every iteration of the outer loop; this is not necessarily
the case when executing the inner loop. The combination of fnd Cseen and (12.19)
implies fnd =seen. The conjunct

(12.20) fnde Go~seen = L

asserts that there are no edges in G from nodes from which the search has finished to
nodes that have not been seen. (These are the “impossible edges” referred to in the title

Algorithmic Graph Theory April 8, 2022

254

of this section.) As we shall see, this property is crucial to the use of depth-first search
in determining the strongly connected components of a graph. The final conjunct

(12.21) fndoG*o~seen = 1L

asserts that there are no unseen nodes that are reachable from the set of finished nodes.
Like (12.19), this is a property of the outer loop but not the inner loop.

Many descriptions of depth-first search use colours to distinguish nodes and edges of
the graph at different stages of the search. The nodes represented by ~seen are called
white nodes, those represented by seeno~fnd are called grey nodes and, finally, those
represented by fnd are called black nodes. The property fnd C seen, which we shall
establish to be an invariant at all stages, implies that all nodes are either white, grey or
black (as is easily shown). The property (12.20) asserts that there are no edges from a
black node to a white node. The invariant (12.21) asserts that there are no paths from
a black node to a white node (in the outer loop).

The property (12.21) clearly subsumes (12.20). Indeed, since fnd =seen in the outer
loop, (12.20) is equivalent to the property

seenoGo~seen = 1|

which we established in corollary 11.21. The importance of (12.20) is that it is also an
invariant of the inner loop, whereas (12.19) and (12.21) may be false when executing
the inner loop. This is one way in which this section sharpens the results of section 11.1.
The second way is the additional precondition on the call of dfs(a):

(12.22) seeno~fnde TToa C (seeno~fndoG)* .

This assertion is trivially true in the outer loop given that fnd=seen. However, the
boolean (12.19) is not an invariant of the inner loop, which means that (12.22) is non-
trivial.

The next step is to add code to the procedure dfs that updates fnd whenever a
call is completed, and to add the appropriate documentation. This is shown in fig. 12.4.

First note that an assignment to fnd has been added following the while statement;
as in the outer loop, the invariant has been weakened to the relation GT on successive
values of seen and then extended to GT? in order to include fnd; the invariant GE
of the inner loop is similarly extended. Now note that

(12.23) fnd Cseen A\ fndoGo~seen = 1L

is asserted to be an invariant property of both the procedure dfs and the inner loop;
the assertion about

(12.24) seeno~fnd

Algorithmic Graph Theory April 8, 2022

255

{ Invariant Relation: GT? N Fr’c(C)oFr
Invariant Property: fndCseen /A fndoGo~seen = 1L
Invariant Value: seeno~fnd }
{ acseen=11 A seeno~fndeTToa C (seeno~fndoG)* }
seen := seen U a
{ Invariant Relation: GE? N Fr’c(C)oFr
Invariant Property:
fndCseen /A fndoGo~seen = 1L
/AN acseenoc~fnd =a
/N seeno~fndeTT ca C (seeno~fndoG)*
Invariant Value: seeno~fnd }
; while acGo~seen # 1L do
begin

choose node b such that acTTob C aoGo~seen

0 | fndCseen /A fndeGo~seen = 1L
/A boeseen=_1L A seeno~fndeTTob C (seenc~fndoG)* }
dfs(b)
end
{ fndCseen A fndoeGo~seen = 1l

/A aoseeno~fnd = a
/AN aoGo~seen = 11 }
;0 fnd:=fdUa

Figure 12.4: Grey Paths and Impossible Edges. The Procedure dfs(a).

Algorithmic Graph Theory April 8, 2022

256

” {3

is that it is an invariant value. Since the distinction between invariant “relation”, “prop-
erty” and “value” is uncommon, the reader may wish to take the opportunity to review
the discussion in sections 6.8.4 and 12.2. When applying theorem 12.5, the relation R
is instantiated to

GT?> N Fr'o(C)oFr N HI1%e(&)oH1 N Grey o Grey
where HI1(s,f) is the boolean
fCs N foGo~ns = 1L
and Grey(s,f) is the set of nodes represented by the coreflexive
so~f .

(That is, Grey(s,f) is the set of nodes that are “grey” at a given time.) See section 12.2
for discussion of how we break down the verification condition (12.9).

Assertion (12.23) is a boolean expression (i.e. has value true or false) but we want
to show that it is an invariant “property”, i.e. the fact that it has the value true is
unchanging. In such cases, additional arguments must be given to establish that the
value is truthified appropriately. This means that the precondition of the call of dfs(a)
is the conjunction of (12.23) and the condition that immediately precedes the assignment
to seen:

fndCseen /A fndoGo~seen = 1L

/N acseen=_1L /\ seeno~fndeTToa C (seenoc~fndoG)* .

In order to facilitate the application of theorem 12.5, we denote the coreflexive corre-
sponding to this precondition by p.a. For the same reason, we denote the assertion that
immediately follows the assignment to seen, viz.

fmdCseen /A fndoGo~seen = 1l

/N acseeno~fnd =a A seeno~fndeTToa C (seeno~fndeG)* |

by q.a.
The assertion p.b (that is, the assertion denoted p.a above but with a replaced

by b) prefixes the call of dfs(b) in the inner loop. The first two conjuncts, which are
independent of a or b, are also listed as invariant properties of the procedure dfs.
They are truthified by the initial assignment to seen and fnd in the outer loop. We
shall show that their true value remains unchanged at every point in the execution of
the algorithm. The validity of the third conjunct is easily verified. The fourth conjunct

(12.25) seeno~fnde TTeoa C (seenc~fndoG)*

Algorithmic Graph Theory April 8, 2022

257

asserts that there is a path from all “grey” nodes to the node from which the search
is about to start; moreover, each edge on such a path is from a “grey” node. (Recall
that “grey” nodes are the nodes represented by seeno~fnd.) In the outer loop, this
condition is clearly implied by the invariant (12.19). The proof that this is also the case
in the inner loop is provided here for two reasons: it helps to explain the requirements
used in the formulation of the basic induction theorem (theorem 12.5) for reasoning
about depth-first search, and it is needed in chapter 13.

The assignment to fnd does not have an explicit postcondition. It is implicit in
the invariants of the procedure dfs: the postcondition is that (12.23) and (12.24) are
unchanged from their initial values. Similarly, the call dfs(b) is not documented by a
postcondition; when reasoning about it, we exploit the “induction hypothesis” that the
relations GT?, Fr”o(C)oFr, (12.23) and (12.24) are invariants of dfs. That assertion
(12.25) is also an invariant is an immediate consequence of the fact that (12.24) is an
invariant value.

Let us use theorem 12.5 to prove that each of the claimed invariants in fig. 12.4 is
indeed invariant.

12.3.1 Truthifying the Intermediate Assertion

The coreflexives p.a and q.a were defined earlier. Thus property (12.6) is equivalent
to

{ fndCseen A fndoGo~seen = LI

/A acseen=_1L /\ seeno~fndeTTca C (seenc~fndoG)* }
seen:=seenUa
{ fndCseen /\ fndoGo~seen = 1l

/A aoseeno~fnd =a A seenc~fndoeTToa C (seeno~fndeG)* }

whose validity can be verified using the assignment axiom.

12.3.2 The Precondition in the Inner Loop

Property (12.7) involves establishing that four conjuncts follow from the conjunction
of g.a, the condition for executing the loop body and the criterion for choosing b.
Detailed inspection of what is required reveals that two of the conjuncts are immediate.
The remaining two follow from the verification condition:

(V a,b,s,f
o TTob C so~foGorns A so~foTToa C (sonfoG)*

Algorithmic Graph Theory April 8, 2022

258

bos=1L A so~foTTob C (so~foG)*
)

The only non-trivial part of verifying this theorem is covered by the following simple
calculation.

aoTTob C so~foGons A sonfoTlToa C (sonfoG)*
= { monotonicity }
so~foTToaoaoTTob C (so~foG)*osonfoGors
= { a#1l,s0 TToaeacTT =TT ; ~s is a coreflexive }
so~foTTob C (sonfoG)* osonfoG
= { [R*oR C R*], transitivity }
sonfoTTob C (sonfoG)* .

12.3.3 Maintaining the Intermediate Assertion

Checking (12.8) is trivial. We have to show that the property q.a is maintained by
the stated invariants. But q.a is the composition of the coreflexive corresponding to
(12.23), which is an invariant property, and

acseenc~fnd = a /\ seeno~fndoTloa C (seenc~fndoG)*

which is obviously invariant because the value of seeno~fnd is invariant. That is, q.a
is maintained, as required. (We still have to check that the value of seeno~fnd is
indeed invariant but this is independent of property (12.8). We also still have to check
that (12.23) is an invariant property.)

12.3.4 Invariant Relations

We now consider each of the claimed invariant relations, values and properties in turn.
We begin with the invariant relation

GT? N Fr'o(C)oFr

because the fact that it is invariant is needed when verifying the remaining invariants.

Apart from the replacement of NR by GT? and the redefinition of the frontier func-
tion Fr (necessitated by the addition of the assignment to fnd) that this relation is
invariant was discussed in section 11.1. We leave the reader the straightforward task
of checking the validity of the replacements. (The main task is to use theorem 12.5 to
formally check that the assignment to fnd causes its value to strictly increase. Just as
for seen this is straightforward.)

Algorithmic Graph Theory April 8, 2022

259

12.3.5 Invariant Value

We now show that seeno~fnd is a value invariant. This means literally that the value
of seeno~fnd remains unchanged by a call of dfs. To show that this is the case, we
define the function Grey by Grey(s,f) = so~f and we instantiate R in (12.9) with
Grey oGrey. (The relation Grey~oGrey asserts an equality between two evaluations
of the function Grey. That is,

(s, f)[Grey o Grey](s,f) = s'o~f =so~f .)
We have

(Va :: Grey”oGreyoS.acp.a C (Fa)’oGrey”oGrey)
& { definitions of p, F, Grey and S }
(Va,s',f')s,f : s'o~f' = (sUa)o~f A sca=_1L : s’o~(f'Ua) = so~f) .

Now,

s’ o~ (f'Ua)
= { distributivity }
s'o~f'o~a
= { assume: s'o~f' = (sUa)o~f }
(sUa)o~fora
= { distributivity and commutativity of coreflexives }
ao~ao~f U so~for~a

= { ac~a= 11 }

SONfo ~Qa
= { assume: aos= 1l , equivalently ~aocs=s }
so~Tf |

This completes the verification.

12.3.6 Invariant Properties

We now check that (12.23) is an invariant property.
Visual inspection of the code in fig. 12.4 suggests that verification of the conjunct
fnd C seen is straightforward. Indeed, this is the case. Rather than establish (12.9),

Algorithmic Graph Theory April 8, 2022

260

we verify (12.17) and (12.18). That is, we establish that the property is maintained

independently by the assignments S and F.
The verification of (12.17) corresponds to verifying the validity of

{ fmdCseen }
seen:=seenUa
{ fndCseen }
and the verification of (12.18) corresponds to verifying the validity of
{ fmndCseen A acseen=a }
fnd:=fndUa
{ fndCseen }

Both are easy applications of the assignment axiom.

Note that the verification of (12.18) is slightly more complex than that of (12.17)
because of the additional conjunct in the precondition. That the additional conjunct is
needed demonstrates why it is necessary to prove that the relation GT? is an invariant
of calls of dfs: the property acseen=a is truthified by the initial assignment to seen

but we need to be sure that it is not falsified by subsequent calls of dfs.
We now check the conjunct

fndeGo~seen = 1L .
First, it is an invariant of the initial assignment to seen:
(fndeGo~seen = Ll)[seen:=seenUaq]
= { substitution and distributivity }
fndeGo~seeno~a = L1
& { ~aCI, 1L isleast }
fndeGo~seen = 1L
Second, it is an invariant of the assignment to fnd:
(fndeGo~seen = 1l)[fnd:=fnduUq]
= { substitution and distributivity }
fndeGo~seen = 1L /A aocGo~seen = 1L
= { assume t.a, i.e. acGo~seen = 1L
and d.a, in particular fndoGo~seen = 1L}

true .

Algorithmic Graph Theory

April 8, 2022

261

12.3.7 Invariants of the Outer Loop

Our last task is to verify the assertions in the outer loop (fig. 12.3).

That the relation GE? N Fr”o(C)oFr is an invariant of the while statement is im-
mediate from the fact that it is an invariant of calls of dfs.

For the invariant property, recall that it suffices to establish the three conjuncts

fndCseen N seeno~fnd = 1L A fndoG*o~seen = LI .

The initialisation of seen and fnd to 1L clearly truthifies each of the conjuncts.
Since fnd C seen is an invariant of the procedure dfs, as is the value seen-~fnd,
it follows that the first two conjuncts are invariants of the while statement so long
as we can prove that, together with the condition for choosing a, they guarantee the
precondition for executing dfs(a). But this is trivially true.
That the third conjunct is also an invariant of the while statement now follows from
the property (11.1) proved earlier. Specifically,
fndoG*o~seen
= { fndCseen /\ seeno~fnd = 1L
hence fnd=seen }
seenoG*o~seen
= { domains and (11.1) }
seenoG*oseenc~seen
= { seeno~seen = 1L}

AL

This completes the verification.

Algorithmic Graph Theory April 8, 2022

262

Algorithmic Graph Theory April 8, 2022

Chapter 13

Calculating Strongly Connected
Components

In this chapter, we establish the correctness of an algorithm to calculate the strongly
connected components of a finite graph. The algorithm is based on the one described in
[AHU82, pp.222-226].

Algorithms for calculating strong components are well cited. Invariably they are
based on depth-first search. The algorithm presented here searches the graph in two
consecutive phases. In the first phase depth-first search is used but in the second phase
any search algorithm can be used. By presenting a formal proof of correctness, we hope
to clarify the key properties.

We assume that G is the edge relation of a finite (directed) graph. The algorithm
calculates a (total) function ¢ that assigns to each node a of the graph a representative
of the strongly connected component at a. Formally, ¢ has the properties

(pO(PU C INode AN (PUO(P = equiv.G .

The first phase calculates a function f that is then used in the second phase as the choice
function in the delegate algorithm discussed in section 10.2. The function f records the
order in which the depth-first searches in the first phase finish: the representative of a
strongly connected component p is the node in p from which the depth-first search in
the first phase finishes last.

13.1 Timestamps

Timestamps comprise two functions s (for “start”) and f (for “finish”) that record the
order in which searches are started and finished. The specification is thus a relation of

type
(TINode : finite.Node : (N« Node) x (N« Node) ~ (Node~Node))

Algorithmic Graph Theory 263 April 8, 2022

264

such that, for a given graph G, the constructed values s and f , both of which have
type N« Node, are total, injective functions. To ensure totality, the first phase takes
the following form:

fys := L1, 11
while s»# 11 do
begin
choose node a such that aos>= 11
; dfs(a)

end

We refer to this part of the implementation as the outer loop. Compared to the
implementation in fig. 12.3, the variables seen and fnd have been removed: the nodes
that have been “seen” (i.e. from which a search has been started) are the nodes repre-
sented by s> —the nodes that have a start time—, and the nodes have not been “seen”
—previously ~seen— is represented by s=. In practice, a boolean array seen indexed
by nodes would be added to the implementation with the invariant property that seen
and s> represent the same set, namely the set of nodes for which the function s is
defined. It helps to keep the account shorter if we don’t do so. Similarly, an auxiliary
variable fnd might be added to the implementation with the invariant property that
fnd equals f> (and ~fnd equals f») but we don’t do so for reasons of economy. How-
ever, we do translate all the properties established in previous sections of seen and fnd
into properties of s> and f-.

The implementation of dfs(a) is as follows:

s = s U (MAX.sTMAX.f)+1-TTca
; while acGos»# 1l do
begin
choose node b such that aocTTob C aocGose
; dfs(b)
end

. f = fU (MAXsTMAX.f)+1oTTea

The while statement is bracketed by two statements that set the value of the functions
s and f at a. The notation MAX.s denotes the maximum value of the function s,
and similarly for MAX.f. If s= 11, the value of MAX.s is defined to be 0. The value

Algorithmic Graph Theory April 8, 2022

265

MAX.s TMAX.f counts the number of times that an assignment to s or f has been
made; in this way, the assignment

s = s U (MAX.sTMAX.f)+1-TTca

records the “time” that the search from node a is initiated. The assignment to f is
similarly interpreted.

The coreflexive s> represents the set of nodes from which a search has been started,
i.e. the nodes that have been “seen”. As already mentioned, a depth-first search from
a is only initiated when aos> = 1l . This guarantees that the property that s is
functional is invariant; the fact that (MAX.s TMAX.f)+1 is distinct from any existing
value of s guarantees that the property that s is injective is also invariant. Similarly, the
coreflexive f> represents the set of nodes from which a search has finished —previously
represented by the variable fnd (see fig. 12.4)— and the assignment to f guarantees
that its functionality and injectivity remain invariant.

Apart from the replacement of ~seen by s=», the while statement itself is unchanged
from section 11.

The reader may wish to look at fig. 11.1 again as an example of the calculation of
timestamps. Recall that the first element of the pair of numbers labelling a node is
the timestamp of the start of the search from that node and the second element is the
timestamp of the finish of the search from that node. Recall also that the labels O1 thru
O6 indicate the nodes from which a search has been started in the outer loop.

For the purpose of calculating strongly connected components, the start timestamp
s is not needed in its entirety: computations in the first phase make use of just s> and
only the function f is used in the second phase. Thus a practical implementation would
introduce a boolean variable seen, as outlined earlier, and document s as an auxiliary
variable.

13.1.1 Specification

The timestamps s and f have a number of properties that are crucial to the success-
ful use of f in the second phase to compute representatives of the strongly connected
components. Fig. 13.1 documents the outer loop with the relevant properties!.

For the moment, note particularly the postcondition. The first conjunct states for-
mally that s and f are total, injective functions (the property mentioned earlier). The
second and third conjuncts relate s and f to the given graph G ; take care to note that
G is on the left of an inclusion in the second conjunct and on the right in the third
conjunct. The final conjunct is a characteristic property of depth-first search.

!Stronger properties are discussed in chapter 14.

Algorithmic Graph Theory April 8, 2022

266

{ G is a finite graph }
fys = LI, 11;
{ Invariant Relation: ME?> N Fr”o(C)oFr N slnc
where (s’,f') ME? (s,f) = s’>Ds> A f'>Df>
and Fr(s,f) = s>0Goss
and (s'yf) sInc (s,f) = swoso<os= 11
Invariant Property: (13.1) A (13.2) A (13.3) A (13.5) A (13.4) }
while s> [yoge doO
begin
choose node a such that acs>= 11
; dfs(a)
end
{ f>=f'of =s>=5"05 = Iyoge /\ S0s” CIny A fof’ Clp
A G”Cso<of
A s70<os N fo>of C G*

A s70<os N flo<of = flo<os }

Figure 13.1: Timestamps: Outer Loop

In this section, we prepare the ground for applying the induction theorem, theorem
12.5, to establish these properties of the implementation of timestamps. That is, we
formulate an invariant relation R, precondition p and intermediate assertion q that
precisely capture the execution of depth-first search.

In section 11, we proved formally that the set of “seen” nodes is strictly increased by
calls of the procedure dfs. This and other elements of the invariants studied there need
to be adapted, replacing the variable seen by s> and the variable fnd by f-. Fig.
13.1 documents the fact that the relation ME? N Fr’c(C)oFr is an invariant, where
the definitions of relations ME and Fr are suitably modified versions of the relations
GE and the frontier function Fr of fig. 12.3. These are supplemented in fig. 13.1 by the
relation sInc where, for all s/, f’, s and f

(s',f') sInc (s,f) = swos’o<os = 11 .

This relation expresses the property that, at each iteration of the outer loop body, no
newly started node has a starting timestamp that is at most the starting timestamp of

Algorithmic Graph Theory April 8, 2022

267

a node from which the search has already been started. (The equivalent contrapositive
of this is that nodes from which a search is newly started by an execution of the body
of the outer loop have a timestamp that is strictly greater than the timestamp of nodes
from which a search has already been started.)

The invariant properties of the outer loop are formulated below. Accompanying each
is a verbal explanation.

At the start of each iteration of the outer loop body, f and s are injective functions
with equal right domains (but they are not total until termination of the loop): that is

(13.1) f>=fof =s> =505 A sos” Cly A fof Cly .

For each node in the right domain of f, the start timestamp is less than the finish
timestamp:

(13.2) f> C s o<of .

There are no edges from nodes from which the search has finished to nodes from which
the search has either not started or started at a later time:

(13.3) f>0Gos» = 1l = flo<osNG .

For all nodes a and b, if the search from a starts before the start of the search from
b, and the search from a finishes after the search from b finishes there is a path from
a tob:

(13.4) s"o<os N flo>of C G* .

(Property (13.4) asserts an inclusion only. The inclusion can, in fact, be strengthened to
an equality by appropriately modifying the right side. See chapter 14 for discussion on
this and the “white-path theorem”. Property (13.4) is sufficient for our current goals.)

For all nodes a and b, if the search from a starts before the start of the search
from b and finishes before the finish of the search from b, the search from a finishes
before the search from b starts.

(13.5) s'o<os N flo<of = flo<os .

It is straightforward to check that the stated postcondition is implied by the conjunction
of the termination condition and the above invariant properties — with the exception of
the second conjunct:

(13.6) G~ C s o<of .

Algorithmic Graph Theory April 8, 2022

268

This is a consequence of the invariant (13.3), as the following calculation shows?.

1l = ffo<osnN G
— { shunting rule (2.27) }
flo<os C —G
— { middle-exchange rule (4.18) }
foGoes” C —(<)
= { not less-than relation on numbers is at-least }

foGos” C (>)

= { on termination, f and s are total functions }
G C flo>os
= { converse |

G” C s7o<of .

In order to check that the additional properties (13.1), (13.2) (13.3), (13.4) and (13.5)
are indeed maintained invariant by the body of the outer loop, we need to provide details
of the implementation of dfs(a), which we now do.

As demonstrated in section 11.1, properties that hold in the outer loop may not hold
in the inner loop. Such properties must be weakened in the inner loop, but properties
added to guarantee the stronger properties in the outer loop.

For convenience, we summarise the properties in the following definition.

Definition 13.7 (Specification of Timestamped Depth-First Search) Suppose
G is a relation of type Node~Node where Node is a finite set. Suppose also that s, f,
s’ and f’ are all functions of type N« Node. The invariant property of a depth-first
search from an arbitrary node, which we abbreviate to Inv(s,f), is the conjunction of
the following properties:

(13.8) f>=fof C s>=s50os A sos Cly A fof ClIyn ,

(13.9) f> C s o<of

?Effectively, the calculation shows that —on termination of the outer loop— the negation of f"o<os
is f"o>o0s. When reasoning pointwise, it is tempting to dismiss this as an obvious property of the
less-than ordering on numbers. However, the proven equality is only valid on termination since, during
execution, s and f are partial functions and the negation of f” o <os relates certain nodes on which
f and/or s are undefined. It is incorrect to assert that the property G C s”o<of is an invariant of
depth-first search.

Algorithmic Graph Theory April 8, 2022

269

(13.10) f>oGos» = 1l = fo<osNG
(13.11) feos’0o<os C G*

(13.12) s7o<os N f o>of C G*

)

(13.13) s7o<os N flo<of = flo<osof> .

Formally, Inv(s,f) is defined to be

(13.8) A (13.9) A (13.10) A (13.11) A (13.12) A (13.13)
Also, P(a,s,f) is defined to be

aoses = a /\ s>ofw»oTToa C (s>of»cQG)*
and Q(a,s,f) is defined to be

aos>of» =
A froso<osoa = flo<osoa
A aos’o<osofs = 1|
/N feos>0TToa C (s>of»0G)* .

Finally, Invrel is defined by
Invrel = MT? N FrYo(C)oFr N Grey”oGrey N Inv’o(&)oInv N slnc
where, for all s, f, s’ and f’,

(S/,f/) HMTZ]] (S)f) = S/>:_)S> VAN f/>:_)f> A\ s’>7és> /\ f’>7éf> ,

Fr(s,f) = s>0@Goge s

Grey(s,f) = s>of» , and

(s, 1) [sInc] (s,f) = swos"o<os =11 .
]

Algorithmic Graph Theory April 8, 2022

270

The reader is invited to compare invariant properties (13.8) thru (13.13) with invari-
ant properties (13.1) thru (13.5) of the outer loop. Properties (13.12) and (13.4) are
identical; the remainder are almost identical with some small differences.

Property (13.8) is weaker than (13.1): the equality f>=s> has been weakened to
f>Cs>. This is the same weakening made in section 11.1 where the equality fnd=seen
was weakened to fnd C seen.

The property (13.11) is missing from the invariant properties of the outer loop. It
asserts that there is a path from node a to node b if a is grey and the search from a
started before the search from b. In the outer loop s>ofw = 11 —it is the invariant
seeno~fnd = LI discussed in section 11.1— so (13.11) is easily shown to be true.

Finally, (13.13) differs from (13.5) in that it includes an additional domain restriction
“f-"_ In the outer loop, the domain restriction is superfluous because s> and f> are
equal.

The property P(a,s,f) should be compared with the properties used to instantiate
p.a when reasoning about the implementation of depth-first search shown in fig. 12.3.
They are identical but for the replacement of seen by s>, ~seen by s» and ~fnd by
f». We exploit this fact later.

The relations MT?, Fro(C)oFr and Grey”oGrey have been considered in depth
in section 11.1 —albeit before the replacement of the variable seen by s> and fnd
by f>— . Consequently, we mention their verification only briefly below. (The term
Grey~ o Grey expresses the property that the value of s>of=» is an invariant value; this
is equivalent to the invariance of the value of seeno~fnd discussed in section 12.3.)

The term Inv’o(«)oInv states that Inv is an invariant property. The invariant
Inv is different from the invariant property in section 12.3 because it expresses properties
of the orderings on start and finish times. Nevertheless, we use the same techniques to
verify its validity.

Fig. 13.2 summarises the implementation of dfs(a) with assertions bracketing each
statement.

Conditional correctness is established using the induction theorem, theorem 12.5.
The term p.a in theorem 12.5 is instantiated to the coreflexive corresponding to the
property P(a,s,f) AInv(s,f); similarly, the term q.a is the coreflexive corresponding
to the property Q(a,s,f) AInv(s,f). The relation R is instantiated to Invrel (see
definition 13.7). The task is thus to verify (12.6), (12.7), (12.8) and (12.9) with these
instantiations.

Because of the number of clauses that have to be established, a large number of
calculations have to be carried out. We begin with (12.9). Although it is typically
the hardest to verify, the groundwork that we have done in section 11 means that it is
relatively easy to verify.

Algorithmic Graph Theory April 8, 2022

271

{ Invariant Relation: MT? N Fr’c(C)oFr N slnc
Invariant Property: Inv(s,f)
Invariant Value: s>of-e
Invariant Value: s”o<osofs }

{ P(a,s,f) A Inv(s,f) }

s = s U (MAX.sTMAX.f)+1-TTca

{ Imnner Loop Invariant: Q(a,s,f) A Inv(s,f) }
; while acGos»# 1l do
begin
choose node b such that aocTTob C aocGose
; { P(bys,f) A Inv(s,f) }
dfs(b)
{ Q(ays,f) A Inv(s,f) }
end
{ acGose = 1L N Q(a,s,f) A Inv(s,f) }
;o f = f U (MAXsTMAXA)+10TToa

Figure 13.2: Timestamps: The Procedure dfs(a)

Algorithmic Graph Theory

April 8, 2022

272

13.1.2 The Relation Invrel

Comparing the relation Invrel with the invariant relation discussed in section 12.3, the
changes that have been made are the addition of the the relation sInc, and the changes
to the invariant properties captured by Inv. In this section, we verify (12.9) for sInc.

(The verification of (12.9) for the relation Inv”o(«<)oInv is the subject of later
sections: because it is reflexive and transitive,

FotoK.(Invo(&)olnv)* 6Ssp € K.(ImvWo(&)olny)
& Fotoq € K(ImvWo(&)olnv) A Sép C K(Inv'o(&)olnv) .

That is, we show that Inv(s,f) is an invariant property of the final assignment to f and
of the initial assignment to s, assuming the preconditions tcq and p.)

We first show that (in combination with other relations) sInc is reflexive and transi-
tive. This means that the verification of (12.9) for this new relation can be decomposed
into verifying that the initial assignment to s maintains the relation, and that the final
assignment to f also maintains the relation. The latter is trivially true (because sInc
is independent of f) so only the simple proof of the former is required.

We have already seen that the relations MT?, Fr”o(C)oFr and Inv’o(&)oInv are
transitive. The remaining relation, sInc, is not transitive. However, in combination
with the other relations, it is:

Lemma 13.14 When restricted to states (s, f) such that s is functional, the relation
sInc N MT?

is transitive. With the same restriction, the relation
sInc N (IUMT?)

is reflexive and transitive. (The relation (IUMT?) is ME? where ME is the superset
relation on coreflexives.)

Proof The relation sInc is reflexive since
ICsInc
= { type of sInc }
(Vs,f i swos’o<os = 11)
= { 7 =s>08" }
(Vs,f i1 swos>08"0<os = 1)
= { seos>= 11, 1l is zero of composition }

true .

Algorithmic Graph Theory April 8, 2022

273

The relation TUMT? is also reflexive. It follows that the intersection of the two relations
is reflexive.
That sInc N MT? is transitive follows from the following calculation.
s02052" 0 <050
= { [=s1-Usl» }

S0#051>082"0<0s0 U s0wosle052"0<os0

- { assume: sO C sl }
S0%051>082"0<0s0 U s0wosleo0s2"0<o0s]
= { assume: slw»o0s2”0<osl = 1l }
s0»o0s1>052"0<os0
- { domains (specifically [R> = INR”=R] with R:=s1) }
s0=051"051052" 0 <050
- { assume: s1Cs2 }
s00517082052" 0 <050
- { (13.8) (specifically, s2 is functional) and monotonicity }

s0»0s1”0 <050
— { assume: s0weos]”o<os0O= LI }

AL .
Summarising, we have shown that, for all s0, s1, s2, fO, f1 and f2

(s2,f2) [sInc] (s0, f0)
& (s2,12) [sInc] (s1,f1) A (s1,f1)[sInc] (s0, fO)
A s0Cs1Cs2 N s2> =s2"0s2

Since MT? is transitive, it follows that sIncMT? is transitive under the stated re-
striction. (The final conjunct, s2- = s2”0s2, is the reason for introducing the type
restriction.)
O

Lemma 13.14 requires that the variable s in the definition of sInc is functional. This
is a consequence of the property Inv(s,f) which we show to be an invariant property in
the subsections that follow this one.

Corollary 13.15 The relation Invrel is transitive.

Algorithmic Graph Theory April 8, 2022

274

Proof The intersection of transitive relations is transitive. (This is well-known. Its easy
(point-free) proof is left as an exercise for the reader.) Thus, combining lemma 13.14
with the known transitivity of MT?, Fr"o(C)oFr, Grey”oGrey and Inv’e(&)olnv,
we conclude that Invrel is transitive.

]

Lemma 13.16 The property (12.9) is valid with R instantiated to sInc NME?. To
be precise,

FoK.InvreloSop C K.sInc

where F and S are the timestamp assignments to s and f, respectively, and p.a is the
coreflexive corresponding to the assertion P(a,s,f)/\Inv(s,f).

Proof We begin by showing that

K.InvrelsSép € Kisinc .

With m denoting (MAX.s0TMAX.f0)+1, we have:
(s1,f1)[InvreleS.aop.a](s0, f0)
= { definitions of F, S and p }
(s1,f1)[Invrel](sO U me TT ca, f0)
A s0wo~aos]”o<o(sOUmoTToa) = 1L
/N sOea=1L A Inv(s0,f0)
= { distributivity and properties of LI }
(s1,f1)[Invrel](sO U meTT ca, f0)
A s0eo~aosl’o<os0) = LI
AN s0ea=_1l A Inv(s0,f0) .
Also,
(s1,f1)[K.sInc](s0,f0) = s0wo0s1”0<os0 = LI .
Our goal is thus to prove that, for all a, m, sO, s1, fO and f1,
(s1,f1)[Invrel](sO U me TT ca, f0)
A s0so~aoslVo<os) = 1L
/N sOea=_11L A Inv(s0,f0)
= s0=0s1”0<o0s0 = 11 .

Algorithmic Graph Theory April 8, 2022

275

Unusually, we begin with the simpler side (because it is not immediately clear which
components of Invrel are required).

s0=051”0<0s0 = LI
& { case analysis on ~aUa }
sO0eo~qaoslo<os) = Il
A sO0eoqaoslo<os0) = 1L
& { introduce assumption: sOca= 11 ;
equivalently, sO»ca = a }

sO0eo~qaoslo<os) = Il

A acslo<os0) = 1L
AN sOea=_11
& { 1st conjunct: monotonicity;

2nd conjunct: introduce assumption slea = moTToa }
sO0wo0s1”0<os0) = 1L
A aocTlTomo<os) = LI
AN sO0eca=1l A slea=meTTea
= { by definition of m, mo<os0 = 1L }
s0»0s1”0<os0) = 1L
A sOeca=1L A slea =moTTea
& { lemma 5.49 with fh := meTTea,sleca
(meTTea is functional with right domain a,
so too is slea isif s1 is functional) }
s0»0s51"0<o0s0 = 1L
A sOea=_11
A s DmeTTea A slosl” =sl< .

Comparing the goal with what has just been established, we have to prove that

(s1,f1)[Invrel](sO U meTT ca, f0) A Inv(s0,f0)
= s1DOmoTTea A slosl” =sl< .

Algorithmic Graph Theory April 8, 2022

276

The first conjunct follows from the MT? component of Invrel, and the second and third
conjuncts follow from the Inv”o(<)eoInv component of Invrel, in particular (13.8).
That we can now deduce that

FoK.InvreloSop C K.sInc
is a straightforward consequence of the property
(s1,f1)[F](s0,f0) = s1=s0 ,

for all s1, f1, sO and f0, and sInc(s,f) is independent of f. (The details are left to
the reader.)
O

The following theorem summarises the results of this section.

Theorem 13.17 The verification condition (12.9) is valid if it is valid for the invariant
properties expressed by Inv. That is,

(129)R = MT?> N Fr’o(C)oFr N Grey oGrey N sinc]
and it remains to prove

(12.9)[R := Inv o(&)oIny]

Proof The relations MT?, Fr”o(C)oFr and Grey”oGrey involve only the right
domains of s and f and, consequently, that (12.9) is valid for them was established in
section 12.3 (with seen and fnd taking the place of s> and f>, respectively). Lemma
13.16 establishes (12.9) for the relation sInc. (Recall the discussion in section 12.2 of
how the proof obligations are broken down.)

O

13.1.3 Assigning Start Times

The specification of the assignment to s is that, assuming precondition P, it truthifies
the property Q whilst maintaining the invariant property Inv. That is, we must verify
that

{ P(a,s,f) A\ Inv(s,f) }
s = s U (MAX.sTMAX.f)+1TTca
{ Qlays,f) A Inv(s,f) }

Algorithmic Graph Theory April 8, 2022

277

for all a, s and f.

Because of the number of conjuncts in the postcondition (ten in total!), the calculation
is inevitably long.

We begin with a lemma on the effect of the assignment on subterms of Q and Inv.

Lemma 13.18

(sVo<os)[s = s U (MAX.sTMAX.f)+1cTToa] = s o<os U (s> U a)oTToa ,

(s7o<os)[s == s U (MAX.sTMAX.f)+10TToa] = s"o<os U s>oTToa ,and

(s>)[s := s U (MAX.s TMAX.f)+1TToa] = s>Ua

Proof In the calculations below, we use m to denote (MAX.s TMAX.f)+1; that is, m
is a coreflexive representing a natural number that is strictly greater than MAX.s TMAX.f.
It is thus a proper atom and

mo<os = 1l = mMo<os
A s7o<om = s>olTom = s o<om

A mo<om = m .

We have:

(s70<os)[s :== s U moTloq]
= { definition of substitution and distributivity,
a and m are coreflexives, so a=a” and m=m"~ }
s70<os U aoTlomo<os
U s’o<omoTloa U aclTomo<omoTloa
= { defining properties of m (see above) }
s70<os U s>oTTomoTloa U aclTomoTloa
= { m= 1L, cone rule and distributivity }
s70o<os U (s>Ua)TTea .

Similarly, we have:.

Algorithmic Graph Theory April 8, 2022

278

(s7o<os)[s := s U moTToq]
= { definition of substitution and distributivity,
a and m are coreflexives, so a=a” and m=m"~ }
s7o<os U aoTlomo<os
U s’o<omoTloa U aecTlTomo<omoTloa
= { defining properties of m (see above) }
s7o<os U s>oTTomoTloa
= { m= 1L, cone rule and distributivity }
S7o<os U s>o0Tloa .

(It is also possible to derive the second assertion from the first using the obvious rela-
tion between less-than and at-most. The copy-and-paste we have just used is quicker.)

Finally,
(s>)[s == s U moTToq]
= { definition of substitution and distributivity }
s> U (moTToa)>
= { domains }
s> U (TTomeTToa)>
= { m=£ Ll , cone rule, domains and a is coreflexive }

s>Ja .
O

Lemma 13.19 The property Q(a,s,f) is truthified by the assignment to s. That is,

(Q(a,s,f))[s := s U (MAX.sTMAX.f)+1TTca] & P(a,s,f) AInv(s,f) .
Proof There are four conjuncts in the definition of Q(a,s,f):

aos>of» =
A froso<osoa = flo<osoa
A aos’o<osofe = 1|
/N fwos>0TToa C (s>of»oG)* .

Algorithmic Graph Theory April 8, 2022

279

(Because they depend only on the domains s> and f>», the first and last conjuncts have
effectively been verified already in section 12.3. Nevertheless, we repeat the proofs here
to show the additional elements in the calculation.)

The validity of the postcondition aos>of» = a is straightforward:

(acs>of»)[s := s U meTT oq]
= { definition of substitution, distributivity }
aos>ofes U ao(moTloa)>
= { domains }
aos>ofe U aca
= { assumption: P(a,s,f), hence aos> = 11;
a is a coreflexive, so aca=a }

a .
That is (for arbitrary m),
(acs>of» =a)[s := s U moeTToa] & aoseofe=a

as required.
That the second is truthified is also obvious®. With m denoting (MAX.s T MAX.f)+1,
we have:

(f>o8”0<osoa = f'o<osoa)[s := s U meo Tl oq]
= { substitution and lemma 13.18,
assumption: P(a,s,f), hence acs>= 11 }
fros>0TToa = fo<omo Tl oa
= { assumption: Inv(s,f), in particular f>Cs> ;
by definition of m, f"o<om = f>oTTom }
f>oTToa = f>oTlTomeo T loa
- [TTemeTT=TT)

true .

That the third is truthified is slightly less obvious:

3This is perhaps not obvious in the point-free form. This is one case where the pointwise formulation
is clearer.

Algorithmic Graph Theory April 8, 2022

280

(aos’o<osofs)[s := s U (MAX.sTMAX.f)+1oTT oq]
= { substitution and lemma 13.18 }
ao(s"o<os U s>o0TToa)ofs
= { distributivity and domains }
aos>o(s”o<os U s>0TToa)ofs
= { assumption: P(a,s,f), hence aos>= 11 }
1.
The validity of the fourth is established as follows.

(foos>0TToa C (s>of»0G)*)[s := s U (MAX.sTMAX.f)+1TT oq]
= { substitution and lemma 13.18 }
feo(s>Ua)eTToa C ((s>Ua)ofeoG)*
& { distributivity, suprema }
feos>0oTToa C (s>of»oG)* A feoaocTToa C (acfeoG)*
& { acTTea=a, aCl, f»CI, ICG*, and monotonicity }
faos>oTToa C (s>ofeoG)*
& { assumption: P(a,s,f) ,
in particular feos>oTToa C (s>of»0G)* }

true .
]
We now consider in turn each of the conjuncts of Inv(s,f) and show that they are
invariants of the assignment to s.

Lemma 13.20 The property (13.8) is an invariant of the assignment to s.

Proof We leave this to the reader. The calculation is very similar to the one in lemma
10.21.
O

Lemma 13.21 The property (13.9) is an invariant of the assignment to s.

Proof This a trivial consequence of the theorem s CsUa for all s and a.
O

Lemma 13.22 The property (13.10) is an invariant of the assignment to s. Specifi-
cally,

Algorithmic Graph Theory April 8, 2022

281

(13.10)[s = s U (MAX.sTMAX.f)+1TT ca] & (13.10) AP(a,s,f) .

Proof Obviously

(f>0Gose = 1l)[s := s U (MAX.sTMAX.f)+10TToa] & f>oGose = 11 .

(Formally, monotonicity is the key: the assignment increases s and decreases s=».) For
the second conjunct, we have

(LL = ffo<os N G)[s := s U (MAX.sTMAX.f)+1TT oq]
& { definition of substitution and (13.10) }
1l = fPo<o(MAXSTMAXA)+1TToanN G
= { property of MAX: (f"o<o(MAX.sTMAX.f)+1)< = f>,

domains }
1l = f>0Goa
= { assumptions: P(a,s,f), so aCs=», and (13.10) }
true .

O

Lemma 13.23 The property (13.11) is an invariant of the assignment to s. Specifi-
cally,

(13.11)[s == s U (MAX.sTMAX.f)+1TTca] & (13.11) A P(a,s,f) .

Proof

(foos’o<os)[s := s U (MAX.sTMAX.f)+10TT o q]
= { definition of substitution and lemma 13.18 }
feo(s”0o<os U (s>Ua)eTTeaq)
= { distributivity, acTTea=a }

feos 0<os U feos>oTloa U feoa

N

{ assumption: P(a,s,f)
in particular, feos>oTToca C G*
and feoa=a }
feos o<os U fwos>oG*oa U a

- { assumption: (13.11),

Algorithmic Graph Theory April 8, 2022

282

a, f» and s> are all coreflexives }
G*U G*UI
= { definition of G*, idempotency of union,
substitution }

(G9)[s := s U (MAX.sTMAX.f)+10TT oq]

O

Lemma 13.24 Property (13.12) is an invariant of the assignment to s. Specifically,

(13.12)[s == s U (MAX.sTMAX.f)+1TTca] & (13.12) /\ aoswof» = a .

Proof It suffices to prove that the left side of (13.12) is invariant under the assignment.

(s"0<os N fPo>of)[s := s U (MAX.sTMAX.f)+10TT oq]

= s570<os N flo>of

assuming that aos»of» = q.

(s70<os N flo>of)[s := s U (MAX.s TMAX.f)+10TT o]

= { definition of substitutivity and lemma 13.18 }
(s70<os U (s"Ua)eTTea) N flo>of

= { distributivity }
(se<os N fPo>0f) U ((s” Ua)TTea N fo>of)

= { domains

(specifically RNS = RoS>NS and (f"o>of)> C f>) }

(s0<os N flo>of) U ((s"Ua)eTToaof> N fo>of)

= { assumption: aoseofe = a , hence aof>= 1L }
s7o<os N flo>of |

The lemma now follows from the definition of substitution.
O

Lemma 13.25 Property (13.13) is an invariant of the assignment to s. Specifically,

Algorithmic Graph Theory April 8, 2022

283

(13.13)[s = s U (MAX.sTMAX.f)+1TTca] <& (13.13) /\ acs=eof» = a .

Proof For brevity, we use m to denote (MAX.sTMAX.f)+1.

(13.13)[s = s U (MAX.sTMAX.f)+1-TT o q]
= { definition of substitutivity and lemma 13.18 }
(s70<os U (s"Ua)eTTea) N flo<of = flo<o(s U moTToa)of>
& { distributivity and assumption: (13.13) }
(s"Ua)TTea N flo<of = fo<omoTloaof>
= { domains }
(s"Ua)ofo<ofoa = flo<omoTToaof>
= { assumption: aosweofe = a , hence aof>= 11 }
1l =10
= { reflexivity }

true .
O

In summary:
Lemma 13.26 The claimed postcondition in the program segment
{ P(a,s,f) N Inv(s,f) }
s = s U (MAXsTMAX.f)+1TTca
{ Q(a,s,f) A\ Inv(s,f) }

is indeed valid.

O

13.1.4 The Precondition

Next we consider the precondition P of a call of dfs. That is, we establish condition
12.7 of the depth-first search induction theorem, theorem 12.5.

Recall our earlier remark that the property P is effectively identical to the the prop-
erty used to instantiate p.a when reasoning about the implementation of depth-first
search shown in fig. 12.3: one is obtained from the other by replacing seen by s>,
~seen by s=» and ~fnd by f». The reasoning used in section 12.3 (and more specifi-
cally section 12.3.2) is therefore applicable here with only minor changes.

Algorithmic Graph Theory April 8, 2022

284

The procedure dfs is called from two places: the outer and the inner loops. Also,
P(a,s,f) is defined to be

aose = a /A s>ofwoTToa C (s>of»0G)* .

The validity of P(a,s,f) when dfs(a) is called in the outer loop follows from properties
established in section 12.3. In the outer loop, f>=s> is an invariant —it is the property
fnd =seen established in 12.3— and the choice of a is acs> = 1l . Thus aos» = a
follows immediately. The second conjunct follows because the invariant f>=s> implies
that feos>= 11.

When dfs(b) is called in the inner loop, the validity of the two conjuncts was estab-
lished in section 12.3.2. The calculation given there can be repeated here by replacing
seen by s>, ~seen by s» and ~fnd by f=.

This completes the proof that the property P holds when dfs is called from either
the outer or the inner loop.

13.1.5 Maintaining the Invariant of the Inner Loop

Recall that our task is to apply theorem 12.5 with the term q.a instantiated to the
coreflexive corresponding to the property labelled “Inner Loop Invariant” in fig. 13.2.
That is, for all s, f’, s and f,

(s'sf)q.a](s,f) = s'=s A f'=f A Q(a,s,f) N Inv(s,f) .

The relation R is instantiated to Invrel (see definition 13.7). In this section, we consider
the task of verifying (12.8) with these instantiations. Specifically, we show that, for all
a, sO, f0, s1 and f1,

Q(a,s1,fT) A Inv(s1,f1)
& Q(a,s0,f0) A Inv(s0,f0) A (s1,f1) [Invrel] (sO,f0) .

In words, q.a is maintained by Invrel.

That the property Inv is maintained by Invrel is immediate: one of the terms in
the definition of Invrel is Inv”o (<)o Inv. The task is thus to show that the coreflexive
corresponding to the boolean function (s,f: Q(a,s,f)) is maintained by Invrel, with the
additional assumption that Inv is both a valid precondition and postcondition. That
is, we prove that

Q(a,s1,f1)
& Inv(s1,f1) A Q(a,s0,f0) A Inv(s0,f0) A (s1,f1) [Invrel] (s0,f0) .

Algorithmic Graph Theory April 8, 2022

285

The predicate Q captures properties of a that cannot be strengthened further. For
example, the conjunct

(13.27) acs o<osofs = 1l
cannot be strengthened to
feos o<osofe = 1| .

Property (13.27) asserts that, at the beginning of each iteration of the inner loop, node
a is the last node from which a search has started but not finished. It is weaker than
the property

aocs’o<os = 1l

which we showed to be established by the assignment to s (see lemma 13.26). The
introduction of the term “f-=" is necessary because, during execution of dfs(a), searches
from other nodes are started and finished. Because the assertion is weaker, it is clearly
true initially. That it is maintained by subsequent executions of dfs(b) in the inner
loop is an immediate consequence of Invrel, in particular the properties that s>of= is
invariant and s is increasing. This is proven in lemma 13.31. Similarly, it is shown that
the other conjuncts of Q are maintained by the inner loop in lemmas 13.28, 13.30 and
13.32.
The first lemma is easy:

Lemma 13.28 For all a, sO, fO, s1 and f1,

aosl>ofl» = a
& aos0>0f0» = a /A (s1,f1) [Invrel] (s0,f0) .
Proof This is immediate from the conjunct sl>oflw» = s0>cf0= in the definition of

Invrel. (See definition 13.7.)
]

Some of the remaining lemmas are not so easy. The following lemma is used repeat-
edly in the calculations.

Lemma 13.29 For all a, sO, fO, sl and f1,

s = sOUslosO» A fl = fOU fl1of0» /A sloa = sOca /A slosO> = s0
& aos0>=a A (s1,f1) [Invrel] (s0,f0)

Proof For the first conjunct, we exploit the key is that s1 D s0 and both sO and sl
are injective and functional.

Algorithmic Graph Theory April 8, 2022

286

sl = sO U sTos0-
{ anti-symmetry }
s1 C sOUsTosOe A sT D sOUsTosO
= { assumption: (s1,f1) [Invrel] (s0, f0),
in particular s125s0;
also IDsO» }
s1 C sO U sTos(Oe
& { I = s0-Us0=» , distributivity }
s1os0> C s0
= { assumption: (s1,f1) [Invrel] (s0,f0),
in particular s0> = s0”0s0 }
sl1os0”0s0 C s0
& { monotonicity }
slos0” C 1
& { assumption: (s1,f1) [Invrel] (s0,f0),
in particular s1> = s1”0s1,
s1=CI }
s0” Cs1”
= { assumption: (s1,f1) [Invrel] (s0,f0),
in particular sOC s1; monotonicity }

true .

The second conjunct is proved in the same way. The final two conjuncts are straightfor-
ward.

slea

= { sl = sO U slos0=» , distributivity }
sO0ca U sTosOwoa

= { assumption: aosO0> =a, so sO»ca =1L }
sOeca .

Similarly,

Algorithmic Graph Theory April 8, 2022

287

s10s0>

= { sT = sO U slos0» , distributivity }

$0080> U s1 050050~

= { 800s0> = s0, sO0=wos0>= 1L }

sO .
O

We now proceed to establish the maintenance properties as explained earlier.

Lemma 13.30 For all a, sO, fO, sl and f1,

fl>os1”o<osloa = flo<osloa

& aos0>0f0e = a A f0>050"0c<o0s0ca = f0"o<os0oa
A Inv(s1,f1) A Inv(s0,f0) A (s1,f1) [Invrel] (s0,f0)

Proof

fl>os1”o<osloa = flo<osloa

= { slea = sOca (see lemma 13.29) }

fl=os1"o<os0oa = fl o<osOoa

& { I = s0>Us0=» and distributivity }

fl>050>051"0<o0s0oa = s0>0fl”o<os0oa

A fl>080=0s1”0<os0oa = s0»ofl”o<os0oa

= { slos0> = sO (see lemma 13.29) }

fl>0s50”0<os0oa = s0>ofl”o<os0oca

A fl>o0s0=0s1”c<os0oa = s0»ofl”o<os0oa
= { f1of0> = fO (see lemma 13.29) }

fO0>050"0<os0oa = f0 o<osOcoa

A fl>0f0»050"0<os0oa

A fl>o0s0»0s1”0<os0oa

= { assumption: f0>os0"

fl1>0f0»050"0c<os0oa

A fl>o0s0»0s1”0<os0oa

$0>0f0»0f1"0<os00a
s0of1”0o<os0oa
o<osfoa = f0 o<os0oa
$0>0f0»0f1"0<os00a

sO0»ofl”o<os0oa

= { assumption: (s1,f1) [Invrel] (s0,f0) ;

Algorithmic Graph Theory

April 8, 2022

288

in particular (s1,f1) [sInc] (s0,f0) ,i.e. s0%o0s1”0<osO= 11 }
f1>0f0»050" 0o <os0oa = s0>0f0»ofl"0o<os0oa
A 1L = s0eofl"0o<os0oa
& { assumption: (s1,f1) [Invrel] (s0, f0),
in particular s0>of0» = sl>ofl=,
fl>ofl» = 11 and Il is zero of composition }
dl=1L A 1L = s0=0f1”0<0s0
& { assumption: Inv(s1,f1); in particular f1> C sl o<ofl }
sOwos1”o<oflofl”o<os0 C 1L
& { flof1” C I, < is transitive }
s0#0s1”0<os0 C 1L
= { assumption: (s1,f1) [Invrel] (s0,f0) ;
in particular (s1,f1) [sInc] (s0,f0) ,i.e. sO%os1”o<osO =11 }

true .
O

Lemma 13.31 For all a, sO, fO, sl and f1,

aoslo<oslofls = 11

& aos0>=a A (s1,f1) [Invrel] (s0,f0) A acs0”o<os0of0» = 1L .
Proof

aosl”o<oslofls
= { by lemma 13.29 and converse, aosl” = aos0” ,
also s1 =slosl> }
aos0”o<oslosl>of]
= { assumption: (s1,f1) [Invrel] (s0, f0),
in particular s1>oflw = s0>0f0» }
aos0”0<oslos0>0f0s
= { s1os0> = sO (see lemma 13.29) }

aos0”o<os00f(0

Algorithmic Graph Theory April 8, 2022

289

= { assumption: aos0”o<osQof0s = 1L }

Lemma 13.32 For all a, sO, fO, sl and f1,

fleosl>oTToa C G*
& f0»o0s0>0TToa C G* A (s1,f1) [Invrel] (s0,f0) .

Proof This is immediate from the conjunct sl>oflw» = s0>of0= in the definition of
Invrel. (See definition 13.7.)
O

13.1.6 Postcondition of Inner Loop

Now we consider the stated postcondition of the inner loop. Comparing the conjuncts
with those of the loop invariant, one conjunct has been added, viz.

aoGos»e = [

This is the condition for the termination of the loop. We conclude, therefore, that the
postcondition of the inner loop is valid.
For later reference, we state this as a lemma.

Lemma 13.33 On termination of the inner loop, the assertion

aocGose = 1|
A aossofe=a /\ aos’o<osofe = 1|
/N s>ofeoTToa C G* A Inv(s,f)

is valid.

Proof As remarked above, the first conjunct is the condition for terminating the inner
loop. See subsection 13.1.5 for the validity of the remaining conjuncts.
O

Algorithmic Graph Theory April 8, 2022

290

13.1.7 Assigning Finish Times

Now we turn to the final assignment to f. The task is to show that the property
Inv is maintained by the assignment. Again we begin by considering the effect of the
assignment on various subterms.

Lemma 13.34

(fPo>of)[f := f U (MAX.sTMAX.f)+10TToqa] = fPo>of U aUaeTTof> ,

(f>)[f == f U (MAX.sTMAX.f)410TToa] = f>Ua ,and

(fo)[f := f U (MAX.sTMAX.f)+10TToa] = feo~a .

Proof For brevity, we let m denote (MAX.s TMAX.f)+1.
(fPe>of)[f := f U moTT oq]
= { definition of substitution and distributivity,
a and m are coreflexives, so a=a” and m=m"~ }
fPo>o0f U aoTlomo>of
U flo>oemoTlTea U aecllemoe>omolloa
= { by definition of m, me>cf< =moTTof< and f<o>em = 1l ;

fPo>of U aollTomoTlof U aecllomoTlomeoe Tl oa

also mo>om = moTlTom }

= { mz 1L, cone rule and distributivity }
ffo>of U aoTTo(fUa)

= { distributivity, a=acTTea, TTof = TTof> }
fPo>of UaUaoTlof> .

(f>)[f := f U moTToq]

= { definition of substitution }
(f U meTToa)>

— { distributivity }
f> U (moTToa)>

= { domains }

Algorithmic Graph Theory April 8, 2022

291

f> U (TTemoTToa)>
= { cone rule (m# 1L)and (TTeca)>=a }
f-Ua .

The final equality follows straightforwardly from f»=~(f>) and the properties of com-
plements.
O

Lemma 13.35 The property (13.8) is an invariant of the assignment to f.

Proof As for lemma 13.20, we leave this straightforward calculation to the reader.
O

Lemma 13.36 The property (13.9) is an invariant of the assignments to f.

Proof The invariance of the first conjunct is straightforward.

(f> Cs7o<of)[f := f U (MAX.sTMAX.f)+10TT oq]
= { substitution and lemma 13.34 }

f>Ua C s7o<o(f U (MAX.sTMAX.f)+10TToq)

& { assumption: f> C sZo<of }
a C s7o<o(MAX.sTMAX.f)+1TT o a

& { aCI and monotonicity }
a C aes’o<o(MAX.sTMAX.A)+10TT o a

& { a=aoTTea and a =acs> (so a=aocs>cTlca) }
s20TT C s o<o(MAX.sTMAXA)+1oTT
= { by definition of MAX,
s>0 1T C s7o<o(MAX.sTMAXA)+1oTT }

true .

The properties of MAX exploited in the last step are well known; we omit a formal
proof of their validity.
O

Lemma 13.37 The property (13.10) is an invariant of the assignment to f.

Proof First,

Algorithmic Graph Theory April 8, 2022

292

(f>oGos»)[f := f U (MAX.sTMAX.f)4+1cTT o q]

= { substitution and lemma 13.34 }
(f>Ua)eGos=

= { assume: f>oGosw» = 1l , distributivity }
aocGose

= { termination of inner loop: lemma 13.33 }

1.

Second,

(ffo<osNG)[f == f U (MAX.sTMAX.f)+10TT o]
= { substitution, distributivity and assumption: fo<osN G = 1L }
(MAX.sTMAXA)+ToTToa) o<os N G

= { converse |}
aoTT o (MAX. s TMAX.f)+1o<es N G

= { (MAX.sTMAX.f)+1o<os=11 }
1L

O
Lemma 13.38 The property (13.11) is an invariant of the assignment to f.

Proof This is obvious:

(foos”o<os)[f := f U (MAX.sTMAX.f)+10TT o q]
= { substitution and lemma 13.34 }

NaOfZOOSUOSOS

N

{ ~aClI and assumption: (13.11) }
G*
= { subsitution }

(GHI[f == f U (MAX.sTMAX.f)+1TToa] .

|

Lemma 13.39 The property (13.12) is an invariant of the assignment to f. Specifi-
cally,

Algorithmic Graph Theory April 8, 2022

293

(13.12)[f := f U (MAX.sTMAX.f)+1oTToqa] & (13.11) A (13.12) A aof»=a .

Proof

(s70<os N flo>of)[f = f U (MAX.sTMAX.f)+10TT oq]
= { definition of substitution and lemma 13.34 }
so<os N (fo>of U aUaoTlof>)
= { distributivity, s"c<oesnNa = a }
(s70<os N flo>of) Ua U (s’o<os N aoTTof>)
{ assume: (13.12) }

N

G* U a U (s7e<os N aoTTof>)
= { aCICG*, domains }

G* U aos’o<osof>

N

{ assumption: aofe =a,ie. aCfs }
G* U feos’o<osof-

{ (3.11) }
G* U G*of>

N

= { f» C1, idempotency and substitution }
(GH[f = f U (MAXsTMAX.f)+1TToq] .

O

Lemma 13.40 The property (13.13) is an invariant of the assignment to f. Specifi-
cally,

(13.13) [f := f U (MAX.sTMAX.f)+1.TTeqa] & (13.13) N Q(a,s,f) .
(See the proof below for the specific conjunct of Q(a,s,f) that is needed.)

Proof

(s70<os N flo<of)[f == f U (MAX.sTMAX.f)+10TT oq]
= { definition of substitution and lemma 13.34 }
s70<os N (fYo<of U f>oTToaq)
= { distributivity and domains }

(s70<os N flo<of) U fros”0o<oso0a

Algorithmic Graph Theory April 8, 2022

294

= { assumption: (13.13) }
flo<osof> U f>o05"0<osoa
= { s is injective, assumption: f>oa = 1L }
fo<osof> U fros"0o<osoq
Also, letting m denote (MAX.sTMAX.f)+1,
(ffo<osof>)[f := f U (MAX.sTMAX.f)+1-TT oq]

= { definition of substitution and lemma 13.34 }
(f UmoTToa) o<oso(f>Ua)

= { distributivity }
flo<oso(f>Ua) U aoTlomo<oso(f>Ua)

= { by definition of m, mo<os=11 }
flo<oso(f>Ua)

= { distributivity }
flo<osof> U flo<osoa .

So,

(13.13) [f := f U (MAX.sTMAX.f)4+10TT o q]
& { above and assumption: (13.13) }
f>osuo<os<>a = on<050a
& { definition }
Q(a)s)f> *
]
This completes the proof that timestamped depth-first search meets the specification
given in definition 13.7 using theorem 12.5. The verification of (12.6) was completed in
subsection 13.1.3, that of (12.7) in subsection 13.1.4, that of (12.8) in subsection 13.1.5

and, finally, the verification of (12.9) was completed in subsection 13.1.2 and (for the
relation Inv”o(&)oInv) in subsections 13.1.3 and 13.1.7.

13.2 Calculating a Representative

The conclusion of this section on calculating strongly connected components is quite
short. It suffices to observe that the delegate function on G according to the timestamp
f is a representative function for the strongly connected components of G.

Algorithmic Graph Theory April 8, 2022

295

Suppose ¢ is the delegate function on G according to the timestamp f. From
theorem 10.37, we know that

equiv.G C @ o .
It remains to show that
@ o C equiv.G .

We do this by showing that ¢ Cequiv.G. That is, we show that the delegate of a node
according to f is strongly connected to the node. The key is to use induction, the main
difficulty being to identify a suitable induction hypothesis. This is done in the following
lemma. Its proof combines two properties of delegates: (i) for each node, there is a path
to its delegate on which all nodes have the same delegate and (ii) the delegate has the
largest f-value.

Lemma 13.41
@ C (X = flo>of N (I U XGY)) .

Proof

= { lemma 10.36 }
(WX = eNn(I U XeG"))
C { theorem 10.37 (specifically, @ C f o>of)
and monotonicity }

(WX = fPo>of N (I U XoG"))
O
Lemma 13.41 enables us to use fixed-point induction to establish a key lemma:

Lemma 13.42
@ C s7o<os N flo>of .
Proof
@ C s7o<os N flo>of
& { lemma 13.41 }
(uX = f7o>of N (I U XeG")) C s7o0<os N flo>of

& { fixed-point induction }

Algorithmic Graph Theory April 8, 2022

296

ffo>of N (I U (s70<os N fo>0f)oG”) C s70o<os N flo>of
& { [RUS = RU(—RNS)] with R,S = I,5"0<0os0G"
and distributivity }
fo>of NI C s’0<os
AN flo>of N =1 N (s70<os Nl o>0f)oG” C s70<os
= { < is reflexive and s is total, so I C s"0<os
f is injective, so fo>of N =] = fYo>of }
ffo>of N (s70<os N fo>0f)oG” C s0<os .
We continue with the left-hand side of the inclusion.

fPo>of N (s”0<os N fo>of)oG"

- { assumption (13.6): G” Cs"o<of }
flo>of M (s7o<os N flo>0f)o(s"0<of)
- { [RNSCR] with RS = s”0<os, flo>of
and monotonicity }
fPo>of N s70<o0s05”0<of
C { s is functional, so sos” C I, < is transitive }
ffo>of N s70<of
= { assumption : (13.5), i.e. (taking converse and complements)
s7o<of = s70<os U flo<of }
flo>of N (s”0<os U fo<of)
= { ffo>of N flo<of = 1L}
flo>of N s70<0s
C { monotonicity }
s7o<os .

Combining the two calculations, the proof is complete.
O

Now we can proceed to show that every node is strongly connected to its delegate.

Lemma 13.43 Suppose ¢ is the delegate function on G according to the timestamp
f. Then

@ Cequiv.G

Algorithmic Graph Theory April 8, 2022

297

Proof

@ Cequiv.G

= { definition of equiv.G, distributivity }
9 CG* A @C (G

= { by definition of delegate (see theorem 10.37), ¢ C(G*)” }
®CG”

& { (13.4) is a postcondition of repeated depth-first search }
@ C s7o<os N flo>of

& { lemma 13.42 }
true .

O

Theorem 13.44 The delegate function on G according to the timestamp f is a
representative function for strongly connected components of G. That is, if ¢ denotes
the delegate function,

@ o@ = equiv.G

Proof

U

@ o@ = equiv.G
= { anti-symmetry }
equiv.G C @"o@ A @ o@ C equiv.G
& { theorem 10.37, lemma 13.43 }
true /\ (equiv.G) cequiv.G C equiv.G
= { (equiv.G) is symmetric and transitive }

true .

Algorithmic Graph Theory April 8, 2022

298

Algorithmic Graph Theory April 8, 2022

Chapter 14

A Short Comparison

Our analysis of timestamps and their use in constructing strongly connected components
has been influenced by Tarjan’s [Tar72] and Cormen, Leiserson and Rivest’s [CLR90]
thorough but informal proofs. This chapter explains the connection. Section 14.1 ex-
plains how the different types of edge identified by Tarjan are expressed using times-
tamps. Sections 14.2 and 14.3 delve further into Cormen, Leiserson and Rivest’s [CLR90]
so-called “white path theorem”. Finally, section 14.4 formulates and proves a lemma said
by Lengauer and Tarjan [LT79] to be crucial to a “dominators” algorithm.

14.1 Classifying Edges

Tarjan’s account of depth-first search [Tar72] classifies edges of the given graph into four
categories: tree edges, ancestor edges, fronds and vines.

In order to make the classification precise, we formulate how the edges may be iden-
tified during execution of depth-first search. In the first instance, we consider the im-
plementation shown in fig. 12.4. Suppose Wt is a relation on nodes such that node a
is related by Wt to b if b isin ~seen at the time that dfs(a) s called. Similarly,
suppose Gy relates node a to node b if b isin seeno~fnd and suppose Bk relates
node a to node b if b isin fnd at the time that dfs(a) is called. “Wt” abbreviates
“White”, “Gy” abbreviates “Grey” and “Bk” abbreviates “Black”: the colours used
in (eg.) Cormen, Leiserson and Rivest’s [CLR90] account of depth-first search. Note
carefully that Wt, Gy and Bk are relations.

Because fnd C seen is an invariant property, there are no other possibilities. That
is,

WtNnGy = GyNnBk = BknWt = 1I. A WtUGYyUBk =TT .
Now, the identity

G = (GNWt)U(GN—Wt)

Algorithmic Graph Theory 299 April 8, 2022

300

splits the edges into two types: the edges represented by the relation GNWt are tree
or ancestor edges. These are the edges from a node a to nodes that have not been seen
at the time that dfs(a) is called. Tree edges were highlighted in fig. 11.1. Whether an
edge becomes a tree edge or an ancestor edge may depend on the order in which edges
are chosen in the inner loop: a tree edge is an edge that is indeed chosen.

Next, the identity

GN—Wt = (GNGy)U(GNBKk)

splits the second type of edge into two types: the edges represented by the relation
GNGy are called fronds. In the iterative stack-based implementation of depth-first
search, these are edges from a to nodes that are on the stack at the time that dfs(a)
is called. An important property of depth-first search is that there is a path from node
b to node a in the graph if the edge from node a to node b is a frond. This is the
invariant property (12.25).

Finally, the edges represented by the relation GN Bk are called vines.

Because of the temporal nature of the classification of nodes as white, grey or black
—every node is initially white but eventually black— it is impossible to reflect the
classification of edges in the postcondition of the implementation shown in fig. 12.4.
When timestamps are added this is (partially) possible.

First, we can split the edges according to start times: the edges represented by the
relation

G N s o<os

are either tree or ancestor edges. It is not possible to use timestamps to distinguish
between these types of edges’; the distinction reflects the non-determinism in the imple-
mentation and is, in fact, irrelevant. Next, we can split the remaining edges according
to finish times: the edges represented by the relation

G N sio>os N flo<of
are fronds, and the edges represented by the relation
G N sio>os N flo>of

are vines. A crucial property of depth-first search is the property (13.5). Applying this
property, the vines are represented by the relation

G N s o>of .

! As for many informal statements, this is not completely correct: self-loops are ancestor edges.

Algorithmic Graph Theory April 8, 2022

301

In words, a vine is an edge from a node a to a node b such that the search from a
started after the search from b finished.

Just as important as the above classification of edges is the property expressed by
the postcondition

G C flo>os .

Whenever there is an edge from node a to node b, the search from a finishes after the
search from b starts; conversely, there are no edges from a node a to a node b such that
the search from a finishes before the search from b starts. This property was identified
as a crucial characteristic property by Tarjan [Tar72]. See also [CLR90, exercise 23.3-4,
p.484] (after correction to include self-loops as in [CLRS09, exercise 22.3-5, p.611]).
When illustrating depth-first search, the layout of nodes and edges is typically in-
formed as much as possible by the practice of reading Latin script from left to right and
top to bottom. So tree and ancestor edges are most often (but not always) depicted by
arrows pointing downwards, and vines are depicted by arrows pointing from right to left
(and possibly downwards), thus suggesting the order in which the nodes are processed
during the search. This extends to the display of strongly connected components: the
top-to-bottom, left-to-right layout suggests the order in which they are recognised. We
have adopted this practice in fig. 11.1. See also [AHUS2, fig. 6.37] and [CLR90, fig. 23.4].

14.2 The White-Path Theorem

Section 11.3, in particular theorem 11.13, identifies the function implemented by dfs(a)
as D.a, where

D.a.seen = seen U (ao(Go~seen)*)> .

When dfs(a) is called, the nodes represented by ~seen are “white” relative to node a
and the relation (a-(Go~seen)*)> represents nodes that can be reached from a by a
so-called “white” path. Theorem 11.13 is therefore a formal statement of what Cormen,
Leiserson and Rivest [CLR90| call the “white path theorem”?. Introducing timestamps
gives a different way of formulating the theorem. Specifically, on termination of the outer
loop, the functions s and f record the history of the search in the sense that the nodes
that were “white” at the time the search from node a is initiated are represented by

(aosuo§03)>

2More precisely, this is our interpretation of the “white path theorem” as stated by Cormen, Leiser-
son and Rivest. Because of their informal, operational account, their statements are open to different
interpretations and we may have inadvertently chosen an interpretation that was not intended.

Algorithmic Graph Theory April 8, 2022

302

and the nodes that could be reached by a “white path” at that time are represented by
(ao(Go(aos’o<os)=)")> .

The nodes newly “seen” by the call of dfs(a) are represented by
(ao(s’o<os N flo>of))>

so the “white path theorem” is the theorem that, for all nodes a,

(14.1) (ao(s’o<os N fo>0f))> = (ao(Go(aos 0o<os)=)")> .

We do not prove the correctness of this reformulation of theorem 11.13 because it is not
needed to establish the correctness of the algorithm for calculating strongly connected
components®. Because of the two occurrences of “a” in the right side of (14.1), it
cannot be directly restated in point-free form. Theorem 14.4 reformulates (14.1) and, in
so doing, adds greater insight into the claim.

First we need a lemma on domains and a lemma on fixed points.

Lemma 14.2 For all atomic coreflexives a and relations R and S,
a°(RNS) = a°RNaS = aoRo(asS)> .

Proof The first equality is immediate from the fact that a is coreflexive. Specifically,

a°(RNS) = aeR N aoS

= { RNSCR and RNSCS }
a°(RNS) O a°R N aoS

& { modularity rule: (4.8) }
as(RNS) 2 as(RNa’ca-8S)

& { monotonicity }
I D a’ca

= { a is coreflexive }
true .

The second equality is proved by mutual inclusion. First we note that

31t should be possible to modify the statement and proof of theorem 11.13 appropriately but we have
not checked that this is the case at the time of writing. We do establish the correctness of a stronger
“white-path theorem” in section 14.3.

Algorithmic Graph Theory April 8, 2022

303

ao Il o (aoS)>

= { domains }
ao TTo@oS

= { a is an atomic coreflexive, so a=aoTTea }
aoS .

Now for the containment, we have:
acRN asS O aoRo(asS)>
= { distributivity, 12 (a-S)> and monotonicity }
a°S O aoRo(a°S)-
= { TT DR and monotonicity }
a°S O aoTTo(aeS)>
= { see above |}
true .
Secondly, for the inclusion we have
aoRo(ass)>
= { domains }
acR N TTeaeS
2 { Tror |}
acR N aeS .

O

Lemma 14.3 Suppose a is an atomic coreflexive and R and S are arbitrary relations.
Then

ao(Re(@eS)>)" = ao(uX :: TU(XRNS)) .
Proof
ao(Re(aeS)>)* = ao(uX = IU(XeRNS))
= { [RoS* = (uX = RU XoS) | with R,S := a, Ro(a-S)> }
(X = a U XeRo(@eS)>) = ao(uX = IU(XRNS))
& { (ao) is a lower adjoint, theorem 2.43 }

Algorithmic Graph Theory April 8, 2022

304

(VX = a U aoXeRo(aeS)> = ao(IU(Xe-RNS)))
& { distributivity and Leibniz }

(VX i @oXeRo(@eS)> = aoXeR N aoS)
& { lemma 14.2 with R,S:=XoR,S }

true .
O

Theorem 14.4 Assuming the validity of (14.1),
sTo<os N fo>of = (UX:IU(XeGNs e<os)) .
Proof We have:
s70<os N flo>of
= { saturation axiom }
(Ua = ao(s7eo<os N f o>0of))
= { assumption: (14.1) }
(Ua:ao (ao(Go(aos”o<os)>)*)>)
= { lemma 14.3 with R,S := G , s"0<os }
(Uazao(uX = TU (XeGNs’o<os))>)
= { absorption rule, s"o<os N —I = s”o<os
saturation axiom }

(X = TU (XoG N s70<0s))

O

The expression (uX = I U (XeG N s o<os)) is the relation between nodes a and b
such that there is a path in G from a to b on which every node is “white” at the time
that the search from a is initiated. So theorem 14.4 is a formal statement of the “white-
path theorem”. If we interpret the relation s”o<os N f’o>of as the ancestor relation,
the property is that ancestor equals white path. Pointwise, node a is an ancestor of
node b in a depth-first search if and only if there is a path from a to b on which each
node is white at the time that the search from a starts.

14.3 Ancestor Paths

In the previous section, we gave a precise formulation of the “white-path theorem”: the
property that, in a depth-first search of a finite graph, there is a path from node a to a

Algorithmic Graph Theory April 8, 2022

305

node b in a graph comprising nodes that are white at the time that the search from a
starts exactly when node a is an ancestor of b in the search (i.e. the search from node
a starts before and finishes after the start of the search from node b).

A stronger statement is that, for each node a, a call of dfs(a) calculates all nodes
that can be reached from a by a path consisting of edges connecting nodes with strictly
increasing start times. This is a smaller set of paths than the “white paths”. For example,
in fig. 11.1, it does not include the path from the node with start time 2 via the node
with start time 9 to the node with start time 4 (this being nevertheless a “white” path
because the nodes with start times 9 and 4 are both white relative to the node with
start time 2); it does include the path via the node with start time 3.

In this section, we prove that for all nodes a, a call of dfs(a) calculates all nodes
that can be reached from a by a path consisting of “tree/ancestor” edges.

The proof is in two steps. We begin by proving that, on termination of depth-first
search,

(14.5) s"o<os N fo>of = (s’o<osNG)* .

This is stronger than theorem 14.4 because the right side of the equality describes paths
formed of edges whereby each node is white with respect to its predecessor on the path
(as opposed to white with respect to the initial node on the path). Its proof involves
strengthening the assertions made about depth-first search; in this way it gives greater
understanding of the algorithm. Then, we can infer the formally stronger property

(14.6) s o<os N fo>of = (sTo<os N fo>ofNG)*

by a straightforward calculation. See theorem 14.21. In words, this is the property that
anode a is an ancestor of node b in the search exactly when there is a path from a to
b of which each edge is a tree or ancestor edge.

In order to prove (14.5), the precondition for executing a depth-first search, the
invariant, and the intermediate assertion must all be strengthened. The precondition,
P(a,s,f), for executing dfs(a) is strengthened with the conjunct

(14.7) feos>oTToa C (so<osN G)*=G .

(This strengthens the precondition fwos>oTT oca C G*.) The invariant is strengthened
by adding three conjuncts:

(14.8) fo(GNs o<os)*of> = s’o<os N f o>of
(a strengthening of s”o<os N fo>of C G*),

(14.9) f>o(GNs o<os)ofs = LI

Algorithmic Graph Theory April 8, 2022

306

(a supplement to f>ocGos» = 1l) and

(14.10) f2o (G Ns o<os)*of> = fwos o<osof> .

Finally, the intermediate assertion, Q(a,s,f), is strengthened by adding the conjunct:
(14.11) feos>0TToa C (s o<os N G)* .

It is an immediate consequence of (14.8) that (14.5) holds on termination of the outer
loop: on termination, f>=1. Properties (14.9) and (14.10) are needed to establish (14.8):
see the proof of lemma 14.14 below.

The verification of these properties proceeds as follows. It is obvious that the three
invariants (14.8), (14.9) and (14.10) are truthified by the initialisation in the outer loop
(because the initial values of s> and f> are both _LL).

In the outer loop, f>=s> is an invariant property; it follows that in the outer loop,
the truth of (14.9) and (14.10) is guaranteed. The remaining invariant, (14.8) is obviously
truthified by the initialisation of s and f; so we must show that it is maintained by
calls of dfs.

The precondition (14.7) is clearly satisfied when dfs(a) is called in the outer loop:
the left side is Ll because f>=s>). It is also satisfied when dfs(b) is called because of
the combination of (14.10) and the condition for choosing b.

aoTTob C s>ofwoGoss /\ s>ofwoTToa C (s'o<osN G)*
= { monotonicity }
s>ofwo Tl oaoaoc Il ob C (suo<os N G)*os>of;ooGos;o
= { a# 1l,s0 TToacaeTT =TT ; s= is a coreflexive }
S>ofeo] ob g (SUO<OS M G)*os>of:ooGoS>o
= { [R*oR C R*], transitivity }
s>ofeoTTob C (s7o<osNG)*oG .
(This is just a repeat of the calculation in section 12.3.1 but with the strengthened
precondition.)

Verifying the strengthened intermediate assertion (in particular, the conjunct (14.11))
is a straightforward application of the assignment axiom. It is also necessary to show that
(14.11) is maintained by subsequent searches. (Formally, we have to establish (12.8).)
As before, the crucial fact is that f»ocs> is an invariant value. Thus the left side of
(14.11) is invariant whilst the right side increases (because s increases).

This leaves the verification of each of the new invariants. This is done by showing
that they are invariant properties of both the assignment to s and the assignment to f.

Algorithmic Graph Theory April 8, 2022

307

(Formally, we split the verification of (12.9) into the verification of (12.17) and (12.18),
as we did with other invariant properties.)

Because the subterm (G N s”o<os)* occurs in two of the invariants, we separate it
out:

Lemma 14.12

(GNs“o<os))[s := sU (MAX.sTMAX.f)+10TT oq]
= (GNs’o<os)o(IUs>>Goa) .
Proof

(GNs’o<os))[s := sU(MAX.sTMAX.f)+10TT oq]
= { lemma 13.18 }
(GN(s"e<os U s>0TToa))*
= { distributivity and star decomposition }
(GNs o<os) o(s>0Goac(G N s o<os)*)*
= { R* = TURoR* with R := GNs’o<os,
aos>= 1l (so aos” =11) }
(GNs o<os) o(s>0Goa)*
= { R* = TUR*oR with R:=s>0Goa
distributivity, mirror rule and aos> = 1L }

(GNs“o<os) o(IUs>oGoa) .
O

Lemma 14.13 Property (14.8) is an invariant of the assignment to s.

Proof

(f>o(GNs’o<os) of>)[s := sU (MAX.sTMAX.f)+10TT o q]
= { substitution and lemma 14.12 }

f>o (GNs o<os)o(IUs>0Goa)of>
= { distributivity and aof>= 1L }

f>o(GNs o<os)*of> .

By lemma 13.24 —the value of s”o<os N f o>of is invariant under the assignment to
s— , invariance under the assignment to s follows.
O

Algorithmic Graph Theory April 8, 2022

308

Lemma 14.14 Property (14.8) is an invariant of the assignment to f.

Proof We begin by showing that (14.9) is equivalent to
(14.15) f>o (G Ns”o<os)*ofes = 1l .
We have:

f>o(GNs o<os)ofs = LI

= { (complemented) domains }
(f>o(GNs’o<os)®)> C f>

& { fusion theorem: theorem 2.43 }
(f>Uf>0(GNs’o<os))> C f>

= { distributivity }
(f>c(GNs’o<os))> C f>

= { (complemented) domains }
f>o(GNs o<os)ofs = LI

& { RCR* with R := G N s”o<os and monotonicity }
f>o(GNs o<os)*ofs = 1l .

Now we can proceed to establish the invariance of (14.9).

(f>o(GNs’o<os) of>)[f == fU(MAX.sTMAX.f)+1TT oq]
= { lemma 13.34 }

(f>Ua)o(GNs o<os)o(f>Ua)
= { distributivity }

f>o(GNs’o<os)*of> U ao(GNso<os)*oa

U ao(GNso<os)*of> U f>0(GNso<os)*oa

= { a is an atom,;
(14.10) and aof=» = a; (14.15) and acf*=a }

f>o(GNso<os)®of> U a U acs’o<osof> .

Also,

(s70<os N fPo>of)[f := fU(MAXSTMAX.f)+10TT oq]

Algorithmic Graph Theory April 8, 2022

309

= { lemma 13.34 }
s7o<os N (fYo>of U aUaoTlof>)
= { distributivity }
(s"0<os M o>of) U a U aos’o<osof>
= { assumption: (14.8) }
f>o(GNso<os)*of> U a U aos’o<osof> .
The lemma follows by the definition of substitution.

|

Lemma 14.16 Property (14.9) is an invariant of the assignment to s.

Proof

(f>c(GNs’o<os)ofs)[s := sU (MAX.sTMAX.f)+1-TT oq]
= { lemma 13.18 }
f>o(GN(s"o<osUs>oTToa))ofs

- { distributivity and assumption: (14.9), f>os> =f> }

f>oGoa

C { aoss»=a }
f>0Gosge

- { invariant (13.10) }
L.

O

Lemma 14.17 Property (14.9) is an invariant of the assignment to f.

Proof

(f>o(GNs’o<os)ofs)[f = fU(MAX.sTMAX.f)+10TT oq]
= { lemma 13.34 }
(f>Ua)o(GNs’o<os)ofeor~a
= { distributivity and assumption: (14.9) }
a°(GNs’o<os)ofeona

C { lemma 13.19, in particular acs”o<osofw = Il ,

Algorithmic Graph Theory April 8, 2022

310

and section 13.1.5 }

Lemma 14.18 Property (14.10) is an invariant of the assignment to s.

Proof For the left side of (14.10), we have:

(fro(GNs’o<os)of>)[s := s U (MAX.sTMAX.f)+1-TT o q]
= { substitution and lemma 14.12 }
fao(GNs’o<os)*o(IUs>oGoa)of>
- { aof>= 11}
fao(GNs o<os)*of> .

Also, for the right side, we have:

(foos’o<osof>)[s = s U (MAX.sTMAX.f)+1oTT oq]
= { lemma 13.18 }

feo(s’o<osUs>oTloa)of>
= { distributivity and aof>= 1L }

feos o<osof> .

Both sides are thus unchanged by the assignment and so their equality is invariant.
O

In order to establish that (14.10) is an invariant of the assignment to f, we need
to reformulate the intermediate property (14.11) as an equality. This is done in the
following lemma.

Lemma 14.19 Suppose s>oa = a. Then

feos>0 [o g (SUO<OS N G)*

= fwos’o<osoa = fwo(s"o<osNG)*oa .
(The antecedent of this implication is the property (14.11).)

Proof

Algorithmic Graph Theory April 8, 2022

311

feo(s7o<os N G)*oa
= { assumption: s>oa = a, s>os” =s”, sos> =35,
mirror rule and distributivity property of coreflexives }

feos>o(s’o<os N G)*ca

- { s70<osN G C s’o<os and monotonicity }
feos>o(s o<os)*oa
= { the less-than relation is transitive and s is functional
S0 (s7o<os)* =s"0<os
(simple formal proof left to reader) }
feos>05"0<os0a
- { assumption: feos>oTToa C (s'o<osN G)*

feos> and a are coreflexives, pop=p for all coreflexives p }
feos>0(s"0c<os N G)*oa
= { first step reversed }
feo(s”o<os N G)*oa .

The lemma follows by the anti-symmetry of the subset relation combined with s>os” = s”.
O

Lemma 14.20 Property (14.10) is an invariant of the assignment to f.

Proof The key step is the use of lemma 14.19. It is applicable because s>ca = a and
(14.11) are both valid when the assignment is executed (as shown earlier).

(foo(GNs’o<os) of>)[f = fU(MAX.sTMAX.f)+10TT oq]
= { lemma 13.34 }
faorao(GNs o<os)*o(f>Ua)
= { coreflexives commute and distributivity }
~aofeo(GNs o<os) of> U ~aofeo(GNs’o<os)*oa
= { (left summand) assumption: (14.10)
(right summand) assumption: (14.11) and lemma 14.19 }

NaOfDOOSUOSOSOf> U Naof)osuogoSoa

Algorithmic Graph Theory April 8, 2022

312

= { distributivity }
Naofxosuogoso(f>ua)
= { coreflexives commute and lemma 13.34 }

(foos’o<osof>)[f := fU(MAXsTMAX.f)+1oTToq] .

O

We summarise the results of this section in the following theorem. We call it the
“ancestor paths” theorem because it asserts that, for all nodes a and b, the search
from node a starts before and finishes after node b —i.e. a is an “ancestor” of node
b — equivales there is a path from a to b formed of edges each of which is from an
“ancestor” to a “descendant”.

Theorem 14.21 (Ancestor Paths) On termination of depth-first search,
s o<os N flo>of = (s70<osNG)* = (sTo<os N fo>ofNG)* .
Proof That
s o<os N flo>of = (s7o<osN G)*
on termination is immediate from the invariant property (14.8) and the termination
property f>=1. Now
s’o<os N G
= { Tn = (QQUINU(>), and fof =1,
SO TTNoge = T o<of U Inoge U T o>0f
distributivity and s”o<os N Inoge = 1L}
(s7o<os N flo<of N G) U (s7o<os N fo>of N G)
= { invariant: (13.5) }
(fo<os NG) U (s70o<os N flo>of N G)
= { invariant: (13.3) }

sfo<os N flo>of N G .

The theorem follows by Leibniz’s rule.
O

We now return to theorem 14.4. Recall that theorem 14.4 assumes the validity of
(14.1) which we have not proved. It is straightforward to show that theorem 14.4 is
implied by theorem 14.21. For completeness,we give the proof below.

The following lemma, which is relatively obvious, forms the core of the argument.

Algorithmic Graph Theory April 8, 2022

313

Lemma 14.22 Suppose T is a reflexive and transitive relation. Then, for all relations
R,

(RNT)* € (uX=IU (XeRNT)) C T .
Proof We begin by proving that
(WX=TU (XeRNT)) C T .
We have
(WX=zTU (XeRNT)) C T
& { fixed-point induction }
[U(TRNT) C T
= { definition of supremum }
I[ICT N TRATCT
= { assumption: T is reflexive (i.e. ICT)
property of infimum }
true .
Using the above, we can infer that
(RNT)* € (uX=zTU (XeRNT)) .
Introducing the abbreviation M for (uX:=I U (XeRNT)), we have:
(RNT)* C (uX:=TU (XeRNT))
= { definition of M}
(RNT)* € M
& { fixed-point induction }
[UM-(RNT) € M
= { by (fixed-point) computation rule, M=1U (MeRNT) }
I UM-RNT) € TU(MeRNT)
& { monotonicity of (IU) }
Mo (RNT) € MeRNT
= { definition of infimum }

Mo(RAT) € MeR A Mo(RNT)C T

Algorithmic Graph Theory April 8, 2022

314

& { monotonicity and assumption: T is transitive }
Mo (RNT) C ToT

& { property of infimum, monotonicity and definition of M}
(uX:TU (XeRNT)) C T

= { see above }

true .
O

Theorem 14.23 On termination of depth-first search,

s7o<os N flo>of
(s70o<os N G)*
= (s7o<os N flo>of N G)*
(X=TU (XeG Ns”o<os))
(As remarked earlier, (uX:IU (XoG Ns”0o<os)) is the relation between nodes a and
b expressing the existence of a path from a to b on which every node is “white” at the

time that the call of dfs(a) is made. See the remarks preceding theorem 14.21 for the
interpretation of the other terms in the continued equality.)

Proof The first two equalities are as in theorem 14.21. We now prove that the first
and last terms are equal. The proof is by mutual inclusion.

Instantiating lemma 14.22 with R,T := G, s"o<os (and noting that s"o<os is
reflexive and transitive because the at-most relation is reflexive and transitive and s is
a total function)

(GNs e<os)” C (uXuIU (XeGNs o<os)) C s’o<os .

Moreover, (G N s o<os)*=(s"o<os N G)*. (This is because R*=(—INR)* for all R,
and the less-than relation is the intersection of the not-equal and the at-most relation.)
S0

(s"0<os N G)* C (uXuIU (XeGNso<os)) C s7o<os .
Comparing with theorem 14.21, it remains to prove that
(uX:zTU (XoG Ns”o<os)) C flo>of |

Now,

Algorithmic Graph Theory April 8, 2022

315

(uX:TU (XoG Ns”0<os)) C flo>of
& { fixed-point induction, f"o>of is reflexive }
flo>0foG N s'o<os C flo>of
= { shunting rule (2.27) }
fPo>0foG N s’ o<osNfo<of C 1L
& { on termination of depth-first search
s70<os N flo<of = flo<os
and G C f'o>o0s }
flo>ofof’o>0s N flo<os C 1L
& { > is transitive, f is a total function }
fPo>o0s N flo<os C 1L
= { f and s are total functions, (>)N(<) = 1L }

true .

A yet stronger theorem than theorem 14.21 is expressed by the invariant property
s70<os N flo>of = Tree*

where Tree is the subset of G capturing the “tree” edges: the edges aoTTob chosen by
the selection criterion

aoTTob C aoGose

in the procedure dfs(a) (see fig. 12.4). Recall, however, that it is impossible to distin-
guish tree and ancestor edges using timestamps. Thus we are unable to exclude (non-tree)
ancestor edges in the statement of theorem 14.21. Of course, it would be straightfor-
ward to augment the implementation to record tree edges and then prove the stronger
theorem using the techniques we have presented. The distinction between “tree” and
“ancestor” edges is, however, irrelevant —it reflects the nondeterminism in the choice of
edges rather than being of intrinsic importance— and, in any case, the full strength of
theorem 14.21 is not needed to establish the correctness of the algorithm for constructing
strongly connected components: only the inclusion of the left side of the equality in the
right side is needed, as we have shown in earlier sections.

Algorithmic Graph Theory April 8, 2022

316

14.4 Common Ancestors

Lengauer and Tarjan [LT79, Lemma 1] assert a property of depth-first search that is use-
ful in calculating “dominators”. We do not discuss algorithms for computing dominators
here; see [SMC12| for a point-free formulation of the fundamental properties of domi-
nance. Here we restrict attention to formulating and validating Lengauer and Tarjan’s
assertion.

Slightly adapted to fit the terminology used here, the assertion is the following:

If a and b are nodes of G such that s.a<s.b, then any path from a to b
must contain a common ancestor of a and b in Tree.

Our formulation is as follows.

Theorem 14.24 If a and b are nodes of G such that acTTob C s”o<os, then any
path from a to b must contain a node ¢ such that ¢ Anc a and ¢ Anc b where the
ancestor relation Anc is defined by

Anc = (s"o<os N flo>of N G)* .

Our theorem is slightly weaker than Lengauer and Tarjan’s assertion in that our “an-
cestor relation” is not the relation Tree*. (The relation Tree is a subset of the relation
§s7o<os N fPo>of N G.) See the remarks following theorem 14.21 for an explanation
of what is involved in strengthening the theorem.

The theorem clearly demands a constructive proof: an algorithm that computes for a
given path a common ancestor of the two end-nodes of the path. The precondition of the
algorithm is the postcondition of depth-first search. Theorem 14.23 plays a significant
role: in the proof we use the equivalent definition

Anc = s o<os N flo>of .

Unlike elsewhere in this document, our proof is not completely formal. We have not
formalised the notion of a “path”, or being “on” a path. This means that some assertions
are not formally justified. The techniques used in [SMC12] are applicable to filling this
gap.

The algorithm is very simple: in the case that a=b, the “common ancestor” is
chosen to be a and, in the case that a##b, the “common ancestor” c in the statement
of the theorem is chosen to be the node on the given path that minimises the value of
the function s. That is, for all nodes d on the path,

coTTod C s 0<os .

Algorithmic Graph Theory April 8, 2022

317

(The pointwise equivalent is s.c <s.d.)

The case analysis on a=b or a#b turns out to be useful for the argument below:
in the case that a=b the given path may be non-empty, and it is simpler not to have
to consider this possibility. Clearly the choice of the common ancestor in the case that
a=">b is correct because the ancestor relation is reflexive. From now on, we assume that
a#b.

The choice of any node c on the given path divides the path into a path from a to
¢ and a path from c¢ to b; the specific choice of ¢ has the implication that

coTTeb C (uXzIU (XeG Ns”o<os))

In words, the part of the given path from ¢ to b is such that every node d on it satisfies
s.c <s.d. Equivalently —just use the absorption rule to replace at-most by less-than—

coTTob C (uXzIU (XoG Ns”o<os)) .

Applying theorem 14.23, it follows that ¢ Anc b as required.
It remains to show that ¢ Anc a. If a=c, this is trivially true. So assume that
a#c. Now ¢ Anc b (which we have just proved) is, by theorem 14.23, the property

coTTob C s70<os N flo>of .
We also have, by assumption,

acTTob C s o<os
and, by the choice of c,

coTTea C s o<os .

(Recall the assumptions that a#b and a#c.) Now there are just two possibilities:
either boTToa C f"o>of or aocTTob C f o>of. In the first case,
true
= { assumptions and choice of ¢}
coTToa C sPo<os A coTTob C fo>of A bolToa C flo>of
= { monotonicity and transitivity of f"o>of }
coTToa C s7o<os /A colToa C f o>of
= { definition of Anc and theorem 14.23 }

cAnca .

In the second case,

Algorithmic Graph Theory April 8, 2022

318

coTToa C flo<of

= { assumption: coTToa C s”o<os }
coTTea C s'o<os N flo<of

= { on termination of depth-first search (see (13.5))

s7o<os N flo<of = flo<os }

coTTea C fo<os

= { assumption: aoTTob C s”o<os, monotonicity and transitivity }
coTTob C fo<ogos”o<os

= { s is functional, <os C <of and less-than is transitive }
coTTob C flo<of

= { c Anc b (proved above), so coTTob C f o>of }
coTTob C flo<of N f o>of

= { f is functional, <N>= 11, coTTeb#A 1L }

false .
We conclude that
coTToa C flo>of .

Combined with the choice of c, in particular coTToa C s”o<os, we have thus shown
that ¢ Anc a.

(The property <os C <of used in the implication step is the point-free formulation of
the property that, for all nodes d, s.d<f.d. In words, the start time of each node is less
than its finish time. More precisely, it is the point-free formulation of the property that,
for all numbers m and all nodes d, m<s.d = m<f.d. We haven’t actually proved
this property! To do so it suffices to add the property

<osof> C <of

to the invariants of depth-first search. Its verification is straightforward.)
Note that the full extent of theorem 14.23 is used to establish theorem 14.24; the
white-path theorem on its own is inadequate.

Algorithmic Graph Theory April 8, 2022

Part V

Concluding Remarks

Algorithmic Graph Theory 319 April 8, 2022

321

The goal of this text has been to demonstrate the effectiveness of point-free relation
algebra in reasoning about graph algorithms. We hope that our work may form the basis
for an investigation into the effectiveness of contemporary machine-supported verification
systems.

Some readers may conclude that our experiment has failed. In spite of our claim that
point-free reasoning combines concision with precision, the length of this document may
lead some to argue otherwise. Certainly, compared to informal proofs our calculations
are substantially longer.

Aho, Hopcroft and Ullman [AHUS82, pp. 219-226] present depth-first search, its
application to computing a topological ordering of the nodes in an acyclic graph as well
as to computing the strongly connected components of an arbitrary graph, all within less
than ten pages. Their discussion of the correctness of the strongly-connected-components
algorithm takes less than one page. Cormen, Leiserson and Rivest [CLR90, pp.465-497]
cover the same ground in less than forty pages. Their account of the correctness of the
algorithm for computing strongly connected components —which is much more thorough
than that of Aho, Hopcroft and Ullman— amounts to five pages. The formal verification
we have given is modelled on these two accounts but totals more than 100 pages. One
may question whether this represents progress.

It has long been known that formal, axiomatic proofs are substantially longer than
informal proofs in natural language. One reason is that formal proofs are necessarily
more complete and are less prone to the sin of omission. More often than their formal
counterparts, informal proofs tend to omit details that are considered “obvious” but
nevertheless are essential to the argument. (An example is the property that the times-
tamps in depth-first search are total, injective functions.) Informal proofs undergo what
has been called a “social process” before they become accepted as legitimate: they rely
on the agreement of sufficiently many experts that all steps are correct and have been
adequately substantiated. (Undoubtedly, the graph algorithms discussed here have long
ago passed this test and there is no question about their correctness.) Informal proofs
achieve concision at the expense of precision.

We would argue that the formal proofs we have given do combine precision with
concision. This combination is evident in the documentation that we provide. See, for
example, fig. 13.1 in which properties of depth-first search are fully documented. An
experienced, well-trained programmer will study the documentation in order to gain
a full understanding of the implementation. Formal documentation of this nature can
also be “executed” as a means of testing the implementation. Indeed, a well-trained
programmer should be able to check for themself the veracity of the documentation,
using it to design tests in cases of doubt.

Of course, mathematical formulae are less “readable” than natural language (at least
to those for whom the natural language in use is the mother tongue) but natural lan-

Algorithmic Graph Theory April 8, 2022

322

guage can be misleading: mathematical vernacular tends to be chosen so that it mimics
everyday language but its familiarity can be deceptive*. Our point-free formulae will be
even less readable to those unfamiliar with them but, we would argue, it is just a ques-
tion of practice to gain the necessary reading and writing skills. Traditional pointwise
formulae name variables that do not need to be named, and sometimes involve several
layers of universal and existential quantifications.

For concrete instances of the extra precision —without loss of concision— we refer
the reader to our discussion of the “white-path theorem” in sections 10.2.5 and 14.3. As
we explained in section 10.2.5, the notion of a “white path” can have different defini-
tions. The point-free calculus used here enables us to make the distinction concisely and
precisely — as we did in section 14.3. The calculus also allows us to identify exactly
which properties are necessary to establish the correctness of the algorithm for computing
strongly connected components: theorem 14.21 on “ancestor paths” does add to a proper
understanding of depth-first search but weaker properties suffice for understanding how
it is exploited.

Textbook accounts of graph algorithms typically rely on an informal, operational
understanding of program statements. We have presented a basic “Algol-like” language
to which we have given a simple non-operational relational semantics. In this way,
we have met the goal of clarifying the basis of our formal arguments. The (now well-
known) relevance of regular algebra to reasoning about simple loops has been prominent
throughout; chapter 12 goes much further in demonstrating the application of fixed-point
calculus in reasoning about so-called “recursive” programs.

As mentioned in the introduction, our next step is to explore how good contemporary
verification systems are in the task of verifying non-trivial graph algorithms. For exam-
ple, to what extent is it possible to supply such a system with the formal documentation
and then have it checked without human intervention? Many of the calculations included
here are straightforward, leading to the hope that they might be automatically recon-
structed. If so, then the seemingly overwhelming explosion in the length of documents
like this one may not be so inevitable after all.

“For example, we choose to use the term “conditional correctness” rather “partial correctness” because
being “partially” correct may also be interpreted as partially incorrect. We use the term “correctness” re-
luctantly because it suggests something absolute. We prefer to say that a program “meets its specification”,
thus allowing for the possibility that the specification is flawed.

Algorithmic Graph Theory April 8, 2022

Bibliography

[ABH* 92]

[ACT5]

[AHUS2]

[BacT75]

[Bac00]

[Bac02]

[Bac03|

[Bac06|

C.J. Aarts, R.C. Backhouse, P. Hoogendijk, T.S. Voermans, and J. van der
Woude. A relational theory of datatypes. Available via World-Wide Web
at http://www.cs.nott.ac.uk/ “psarb2/papers, September 1992.

Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An
aid to bibliographic search. Communzications of the ACM, 18(6):333—-340,
1975.

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Structures
and Algorithms. Addison-Wesley, 1982.

R.C. Backhouse. Closure algorithms and the star-height problem of
reqular languages. PhD thesis, University of London, 1975. Avail-
able at https://spiral.imperial.ac.uk/bitstream/10044/1/22243/2
/Backhouse-RC-1976-PhD-Thesis. pdf.

Roland Backhouse. Fixed point calculus. Summer School
and Workshop on Algebraic and Coalgebraic Methods in
the Mathematics of Program Construction, available at

http:/www.cs.nott.ac.uk/ psarb2/MPC/acmmpc.pdf, April 2000.

Roland Backhouse. Galois connections and fixed point calculus. In Roland
Backhouse, Roy Crole, and Jeremy Gibbons, editors, Algebraic and Coal-
gebraic Methods in the Mathematics of Program Construction, volume
2297 of LNCS Tutorial, chapter 4, pages 89-148. Springer, 2002. Inter-
national Summer School and Workshop, Oxford, UK, April 2000, Revised
Lectures (Abridged version of [Bac00]).

Roland Backhouse. Program Construction. Calculating Implementations
From Specifications. John Wiley & Sons, Ltd., 2003.

Roland Backhouse. Regular algebra applied to language problems. Journal
of Logic and Algebraic Programmaing, 66:71-111, 2006.

Algorithmic Graph Theory 323 April 8, 2022

324

[Bacl1]

[Bac16|

[BCT75]

[BC82]

[BDGv22]

[BAMO7]

[BL77]

[BNOS]

[Brz67]

[BW93]

[CarT71]

[CLROO]

Roland Backhouse. Algorithmic Problem Solving. John Wiley & Sons,
2011.

Roland Backhouse. Factor theory and the unity of opposites. J. Logical
and Algebraic Methods in Programming, 85(5):824-846, 2016.

R.C. Backhouse and B.A. Carré. Regular algebra applied to path-finding
problems. Journal of the Institute of Mathematics and its Applications,
15:161-186, 1975.

R.C. Backhouse and B.A. Carré. A comparison of Gaussian and Gauss-
Jordan elimination in regular algebra. International Journal of Computer
Mathematics, 10:311-325, 1982.

Roland Backhouse, Henk Doornbos, Roland Gluck, and Jaap van der
Woude. Components and acyclicity of graphs. an exercise in combining
precision with concision. Journal of Logical and Algebraic Methods in
Programmaing, 124:100730, 2022.

Richard S. Bird and Oege de Moor. Algebra of Programming. Prentice-Hall
International, 1997.

R.C. Backhouse and R.K. Lutz. Factor graphs, failure functions and bi-trees.
In A. Salomaa and M. Steinby, editors, Fourth Colloguium on Automata,
Languages and Programmang, pages 61-75. Springer-Verlag, LNCS 52,
July 1977.

Lex Bijlsma and Rob Nederpelt. Dijkstra-Scholten predicate calculus: con-
cepts and misconceptions. Acta Informatica, 35:1007-1036, 1998.

J.A. Brzozowski. Roots of star events. Journal of the ACM, 14(3):466-477,
July 1967.

R.C. Backhouse and J. van der Woude. Demonic operators and monotype
factors. Mathematical Structures in Computer Science, 3(4):417-433,
December 1993.

B.A. Carré. A network routing algebra. J.Inst. Maths.Applics., 7:273-294,
1971.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Intro-
duction to Algorithms. MIT Electrical Engineering and Computer Science
Series, MIT Press, 1990.

Algorithmic Graph Theory April 8, 2022

325

[CLRS09]

[Con71]

[DB02]

[DBvdW97]

[DM60]

[DM66]

[Do096]

[DS90]

[Fv90]

[Gliil7]

[Gri81]

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, 3rd edition. MIT Electrical Engineer-
ing and Computer Science Series, MIT Press, 2009.

J.H. Conway. Regular Algebra and Finite Machines. Chapman and Hall,
London, 1971.

Henk Doornbos and Roland Backhouse. Algebra of program termination. In
Roland Backhouse, Roy Crole, and Jeremy Gibbons, editors, Algebraic and
Coalgebraic Methods in the Mathematics of Program Construction, vol-
ume LNCS 2297 of Lecture Notes in Computer Science, Tutorial Series,
pages 203-235. Springer, 2002.

Henk Doornbos, Roland Backhouse, and Jaap van der Woude. A calcula-
tional approach to mathematical induction. Theoretical Computer Sci-
ence, 179(1-2):103-135, 1 June 1997.

A. De Morgan. On the syllogism, no. iv, and on the logic of relations.
Transactions of the Cambridge Philosophical Society, 1860. Reprinted
in [DM66].

Augustus De Morgan. On the Syllogism and Other Logical Writings.
Yale University Press, New Haven, 1966. Edited, with an Introduction, by
Peter Heath.

H. Doornbos. Reductivity arguments and program construction. PhD
thesis, Department of Mathematics and Computer Science, June 1996.

Edsger W. Dijkstra and Carel S. Scholten. Predicate Calculus and Pro-
gram Semantics. Texts and monographs in Computer Science. Springer-
Verlag, 1990.

P.J. Freyd and A. S¢edrov. Categories, Allegories. North-Holland, 1990.

Roland Glick. Algebraic investigation of connected components. In
P. Hofner, D. Pous, and G. Struth, editors, Relational and Algebraic Meth-
ods wn Computer Science — 16th International Conference, RAM:iCS
2017, volume 10226 of Lecture Notes in Computer Science, pages 109-
126. Springer, May 15-18 2017.

D. Gries. The Science of Programmang. Springer-Verlag, New York, 1981.

Algorithmic Graph Theory April 8, 2022

326

[Ho097]

[KMP77]

[LT79)

[Mad91]

[Mat95]

[Pei70]

[Pei33]

[Pra92]

[Rig48|

[Sal69]
[Sch95]

[Shag1]

[SMC12]

Paul Hoogendijk. A Generic Theory of Datatypes. PhD thesis, Depart-
ment of Mathematics and Computer Science, 1997.

D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings.
SIAM Journal of Computing, 6:325—-350, June 1977.

Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding
dominators in a flowgraph. ACM Transactions on Programming Lan-
guages and Systems, 1(1):121-141, 1979.

Roger D. Maddux. The origin of relation algebras in the development and
axiomatization of the calculus of relations. Studia Logica, 50(3—4):421-455,
1991.

Mathematics of Program Construction Group, Eindhoven University of
Technology. Fixed-point calculus. Information Processing Letters,
53(3):131-136, February 1995.

C.S. Peirce. Description of a notation for the logic of relatives, resulting from
an amplification of the conceptions of Boole’s calculus of logic. Memozrs
of the American Academy of Sciences, 9:317-378, 1870. Reprinted in
[Pei33].

C.S. Peirce. Collected Papers. Harvard University Press, 1933.

V.R. Pratt. Origins of the calculus of binary relations. In Logic tn Com-
puter Science, pages 248-254. IEEE Computer Society Press, 1992.

J. Riguet. Relations binaires, fermetures, correspondances de Galois. Bul-
letin de la Société Mathématique de France, 76:114-155, 1948.

A. Salomaa. Theory of Automata. Pergamon Press, Oxford, 1969.
E. Schroder. Algebra der Logik, volume 3. Teubner, Leipzig, 1895.

M. Sharir. A strong-connectivity algorithm and its application in data flow
analysis. Computers and Mathematics with Applications, 7(1):67-72,
1981.

Ilya Sergey, Jan Midtgaard, and Dave Clarke. Calculating graph algorithms
for dominance and shortest path. In Jeremy Gibbons and Pablo Nogueira,
editors, Mathematics of Program Construction, 11th International Con-
ference, MPC2012, volume LNCS 7342, pages 132-156. Springer, 2012.

Algorithmic Graph Theory April 8, 2022

327

[SS88]

3593

[Tar41]

[Tar72]

[TG87]

[Voe99]

[Wei73]

G. Schmidt and T. Strohlein. Relationen und Grafen. Springer-Verlag,
1988.

G. Schmidt and T. Strohlein. Relations and Graphs, Discrete Math-
ematics for Computer Scientists. EATCS Monographs on Theoretical
Computer Science. Springer-Verlag, Berlin Heidelberg, 1993.

A. Tarski. On the calculus of relations. Journal of Symbolic Logic, 6(3):73—
89, 1941.

Robert Endre Tarjan. Depth first search and linear graph algorithms. SIAM
J. Computing, pages 146-160, 1972.

Alfred Tarski and Steven Givant. A Formalization of Set Theory without
Variables, volume 41 of Colloquium Publications. American Mathematical
Society, Providence, Rhode Island, 1987.

Ed (Theodorus Sebastiaan) Voermans. Inductive Datatypes with Laws
and Subtyping — A Relational Model. PhD thesis, Department of Mathe-
matics and Computer Science, Technische Universiteit Eindhoven, 1999.

P. Weiner. Linear pattern matching algorithms. In Conf. Record IEEE
14th Annual Symposium on Switching and Automata, pages 1-11, 1973.

Algorithmic Graph Theory April 8, 2022

Index

adjoint of a relation, 157-167
lower, 16 strongly connected, 159, 167
upper, 16 conditionally correct, 100
all-or-nothing, 67-73, 92 cone rule, 58
allegory, 87 connected by, 159
ancestor, see edge type constructive logic, 13
ancestor path, 304-315 context (of a specification), 117
anti-monotonic, 9 coreflexive, 61
assertion, 100-102 atomic, 69
atom, 21-31 lattice of, 71
irreducible, 30 Curry-Howard isomorphism, 13
proper, 22
atomic lattice, 21, 22, 71 de Morgan, Augustus, 5, 59, 91
auxiliary variable, 96, 112, 207 definite
axiom of choice, 7 right, 131
delegate, 192-220, 226, 263
bijection, 82 depth-first search, 294-297
bottom, 7 depth-first search, 1, 89, 99, 113, 187, 191,
bound function, 116 192, 218, 219, 221-243, 246, 252,
bounded, 7 254, 257, 263, 265, 266, 268, 270,
breadth-first search, 191 283, 294, 299-301, 304, 305, 312,
)) 314, 316
classical logic, 13 Dijkstra, Edsger W., 2, 98, 99

closure operator, 19-21 divergence rule, 59
complementation-fixed, 21, 92, 124,126 4 . operato’r 6467
complementation-idempotent, 21, 92, 126 ’

complement, 7, 12 edge, 129
complement operator edge type (in depth-first search)
on coreflexives, 72 ancestor edge, 299, 300
on relations, 72 frond, 299, 300
complemented domain, 67 tree edge, 299, 300
completely distributive, 7 vine, 299
component empty-word property, 44

Algorithmic Graph Theory 328 April 8, 2022

329

equivalence class, 121
equivalence relation, 121
everywhere brackets, 99
excluded middle, 13
extensional, 71
extensive, 20

factor graph, 44
factor matrix, 44
fixed point
computation rule, 19
fusion rule, 19
induction rule, 19
least, 18
Freyd, P.J., 56, 61, 87
frond, see edge type
full, 22
functional, 81, 82, 85
fusion
of fixed points, 19

Galois connection, 15-20, 30, 32, 40, 52, 54,

81
existence theorem, 16
ghost variable, 96, 97, 112
graph, 129
factor, 44
guard, 61, 107

Hasse diagram, 44

idempotent
(property of closure operator), 20
indirect equality, 10
injective, 82
injectivity, 82
invariant, 108
establishing, 108
maintaining, 108
property, 108, 111-112

relation, 107-111
value, 108, 111-112

Knuth-Morris-Pratt
pattern matching algorithm, 44

leapfrog rule, 42

left condition, 61

left-domain operator, 64
Leibniz’s rule, 14, 81

Leibniz, Gottfried Wilhelm, 14
Lengauer, Thomas, 299
lexicographic ordering, 49, 142
lower adjoint, 16

Maddux, Roger D., 92
maintain (a property), 112
matrix
factor, 44
middle-exchange rule, 59
mirror rule, 42
modularity rule, 56
monoid, 39
monotonic
(property of closure operator), 20

node, 72, 129

partially correct, 100
partition, 121
path, 129
pattern matching, 44
Peirce, C.S., 91
point, see proper atom, 68
point-free
axiomatisation, 51
pointwise
axiomatisation, 51
interpretation, 51
powerset, 5, 7, 21, 22, 30, 72
Pratt, V.R., 92

Algorithmic Graph Theory

April 8, 2022

330

prefix point, 18

least, 18
program

total, 100
proper

atom, 22

element, 22
pseudo-complement, 8
psuedo-cocomplement, 11

reflexive closure, 20
reflexive reduction, 50

strongly connected component, 167-174
surjective, 85

symmetric closure, 20

syntactic substitution, 96

Tarjan, Robert Endre, 221, 242, 299, 301
Tarski’s rule, 58

Tarski, Alfred, 5, 32, 91

terminating, 100

top, 7

topological ordering, 130, 146, 156, 213
topological search, 130, 145-157, 192

reflexive-transitive reduction, 44-50, 140, 141total, 85

regular algebra, 38-50
definition, 40
universally distributive, 40

relation
bijective, 82
functional, 81, 82, 85
injective, 82
surjective, 85
total, 85

relation algebra, 50-60

right condition, 61

right-domain operator, 64

rotation rule, 59

saturated lattice, 21, 22, 33, 37
Séedrov, A., 56, 61, 87
Scholten, C.S., 98, 99
Schroder rule, 58
Schroder, E., 5, 59, 91
shunting rule, 15
singleton set, 30
specification
definition, 100
total, 100
star decomposition, 42
starth root, 140-142
state space, 61

totality, 85

transitive closure, 20
transitive reduction, 50
tree edge, see edge type
truthify (a property), 112

UEP, see unique extension property
unique extension property, 43, 44, 110
of relation algebra, 131
unity of opposites theorem, 17
unity-of-opposites, 32
universally distributive, 7
regular algebra, 40
upper adjoint, 16

variable

auxiliary, 112

ghost, 101, 112
verification condition, 102—-103
vine, see edge type, 300, 301

well-founded, 44, 49, 110, 116, 117, 130-
132, 136, 142, 145, 147, 148
white-path theorem, 219, 267, 301-304, 318

Algorithmic Graph Theory

April 8, 2022

