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= 1 for all x E S. For this 

In the second 
	

regular algebra 	i 	he two additional prop,  
that 

(1) the ordering < induced2  by + is a total ordering 

on the elements of S, and 

(2) 1 is the: largest element in the ordering. 

Iii addition to 	 one is 	 inatrix b. Hereafter lx ATI matrices 
wail be called --v•-ct,ors . 1 x 1 matrices will he called -elements.' and Nix NI 
matrices will be called -matrices". The second problem is to derive an algorithm to 
compute 	vector 	- „1,t,  wherelty the primitive terms in 	igorithm do not 
involve any 	 " " operator. 

3 Interpretations 

The relevance and interest of the st nied problem: is that they abstract front several 
path problems on labelled, directed graphs. 	 :,E) be 	directed graph 
with no,le set 2s,' and labelled-el:it" setJ 	 dray.m, from sorne 	. ular 
algebra (S, 	•, 	h. 1) . "[hen (as t,ve leen: known 	at instance itT)i anti  
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Since 	 regular it 	 matrix multiplication can 
defined it 	s 	ssial tasty tivith 	 ties. An important theorem is that 

liar,  matrices of a fixed size 'VIS 	 dravint front S' itself forms a 
regular 	v with the usual definitions of the zero anti identity matrices, matrix 
and it ion ant niatrix Inuit iplic:o ion. Inc derivatiot 10 c 	,rSf:10 ,:d makes e:ctcrisive 
use of this t hoorem. For further 
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r!..;u1a, 	-ra. The ax. 
--are now H ely known and 

!lie framework are that (S. ---,- 
which are defined two binary  
as a pc,: fix of its argument). 

	

.)tent. Multipli, • ,:! 	(•) distributes c• 

	

T.1 	 --)ciative bin 1- not neo 	commutri! .- 	The basic properties 

	

of * t 	 • re are, for H a, b E s 
(3) at = 1+a-a* 	A at =1+a*a 

(4) a 	(b - a) * 	(a - b) * 	a 

(5) (a + b) * = at - (b 	a*)* 	A 	(a + 6) * 	a 	b) 	at 
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k,j 
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'tar that is  pv 	' 0. 
nodes: of t 	4rapli 	eleinen of N) 
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(6) I* = 1 

Rile (1) will !-,•-• r•rfe'rrc•-.1 to as the "leapfrog rule" whilst. rnlo (5) will be called the 
:! a r..d,,compoiition rule." The main contribution made by Rackhouse and Carle [3] 

was to show that these four rules are at the heart of several elimination techniques 
for solving shortest-path and other pat a- Indiaproblems. 

A wel1,1:■lown rule of regular algebra identifies a* b as a least fixed point : 

a*. b < x 	• x 	b < x 

We do not use this rule in our derivations. Use cf lie rule is nonetheless implicit 
in our claim that the probh.inis we ,•amsider are i • 	I a'ostractions of the specific 
path-finling problems discussed it se•I an 3. 

Two additional rnleS (WiliC11 Wt• du 1160 arc the k.11owing consequences of the 
idempo:encc of -'* 	 , respectiio:ly. 

(7) a* 

(8) a* a* 	a* . 

5 Selectors 

Although the matrices, we consider form a regular aim ira. they will obviously never 
satisfy tIn requireirn.mts (1) and (2), evert if their r- 	rents In, Given tint we wish to 
appeal to tiiRse properties Fr-Mt titue to t.iltte. it is in.:1.'01'1M to keep :rack of which 
terms in 	 denotr• , ilerments, which denote vectors and which denote 
matrices. 1 la -- rides for , none so are simple and 	 the product, of 
an to x it rilld 	x 	iii rix is im in 	p matrie.and ad:lit  	pia..stirve the 
dimensioh (•,1 	 s. It r ,•-mnins. theretcre- 	adoi 	systeinalic naming 

ion for tine •virialtics that we is. This, and april10• niechanism for for' g  
vet•tors. isii 	raPe of this sect_ 

During trrr, r:Jursit of the 	 -nrnt the. 	 - conventions will be 
used. 
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one of these four terms 

	

the context whether the designated 	 ; -hint 	or not, 

,, 	by the intprprPtatior, 	,:i'oduct o: .', ,,,:itrix 
an 	 ally, j. - Y is a vector 	 ,:opy of the , is row of 
ma! 	 .k is the (j, k)th element 	 .more, there is a (1-1) 

(.)ri-,.-.- 	 •:1 subseTs o 	and selector 	 I:, !he function 

Y+ = X 
_a mediate consequenc, —•f the definition of the "underlining" 

:,roperties are that, for 	nodes k, 

(15) 	k. 
and, fo net nodn- 	k, 

0 

alculation, 	 , , id all nodes 
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(17) 	k E M = (; f 	.k 	k 



and, for all sets of nodes L and M, 

(18) L 	= L n M  

In particular, 

(19) ALL = 

and 

(20) L flM =ç => L • 	= 

nefnal propPrty is that all matrices and all vectors are indexed by the given node 
sc-L N. This we render by the tmlat ions: 

(21) X • N 	X = A: X 

and 

(22) x • N 

for all matrices X and all vectors a:, 

6 The Warshall/Floyd Algori 

In this s,  
of 

‘vith th 	h-.‘r of the two problems, V17. t.h€ C.C111pLatian 

;vide a 	utie introduction to the calculational techMques, 
in particniay t 	 doconiposition to derive an ne t i;11 algorithm at inatrix 
level f..lIa:i s 	use of th,  leapfrog ruh- 	conveit 	 itnin to one in 
terms al m 	•-if•inenis. 

6.1 'I'll( nit: LitlkiII  

The haurist P upderiii. 	(.:01nputation is to i is.:: ,, posit ion in order to 
build up the , an matrix 	titin 	the sta:- 	ra tor fro 	null matrix to its 
final form. \HI.,  prsyly. we introducr. s,1rie- tat mix T, with loop invariant. 

(23) 	X = A - (L • A)* 

te011,  

A* 

The hiv,ir. 	 •..• 	:1) we have 0* = I. For 
L 
	

d oar aim is to :•:•.1.ond 
\Vi 	OFt no, 1- 	 , 	tin .. 	 • This rsnits in the following skeleton 

,)H•lint 



lat 

X ,L 
do  LN 

k :E N — L 
; X := A (( L + k)- A)* 
;L 	LU{k} 

X =A+ } 

	

thm only t 	ignment to X in the body of the repetition needs 

	

to be simplifi L Proceedin;:: 	the evaluation 	 calculate 

{ 
A - (LA ±k- 

{ 	star dec : 	(5) } 

A-( (LA)*  

X -(k-X)* 

Thus 	"merit to X in the body can be replaced by 

Y (k•X 

t1 an al,,, 	which the 	, peratoi 	applied to matrix 

	

-e preci 	gleton mat:, 	only, V 	ontinue the calcu- 

dding (3), distributivity 

	

+ 	 -k-X 

=.k .  
X -I- X 	 - 	k• 

{ 	leap 	r,de (4) for .k 

+ X ..k 

	

in the abc 	calculation the 

	

Intermediate 	 , while the leapfrog rUle  

	

ran,form tin 	 , i n t o  the required form : only in di. 

	

on do v.-, 	 in which 	-, tar 
on mai rix 	 the 

e body 	 plac 	 L 
invariat , 	) A J<kr---,,, 



X ,k 
do  kOn 	X := X + X 	-(k. X ..k)*- k.- X 

;k := k+1 

od{ X=A+ } 

6.2 Implementation Freedom 

The algorithm we lwve obtained is not quite \Varshall's algorithm or Fic,yd's algo-
rithm (even after s.ahle interpretation of the operatc, rs). The reason is that at. 
element. level the assignment in the body of the loop 	 gimic•rit. 
to all matrix elem,-:•iits. Spelling this out. in detail ;  prinultiplying by io and post 
multiplying by 	, tin-,  matrix assignmen1 

X 

is directly imple,,,,nted as the simultaneous a 	• in 

s im_f or 	:= 0 to n — 1 and j := 0 to n — 1 do 
is X -.j := 

(is X , •j) 	X - .k) (k. X - .k)* (k. X .j) 

(Writ,ng i.• X 	conventionally as 	t his takes on the more fa niiiiar appearance: 

sim_for i := 0 to n — 1 and j := 0 to n — 1 do 
:= 	xik (xkk) * ski 

, of couNe. tIn roiA,,u, of the simultaneous 	,,2;n1nr,lit 

Exploitation 	 unied, idernpoti 	 hov:ever, 
,ives LlliLittiltal fraedcin in the srder in which the matrix Hem ,  . 	-•siiznecl. They 
may 1,f, 	 in Warshall's and floy,rs :dg.. 	Inns. or completely 
in j;;,•2:11:,.,1! To xplainirlie iH 	s so w,  tako a closer look at the assignments at 
elemew level. The 	 assigned to element xik , for instance, evaluates to 

Xik + i i;.• X kk* X kk 

distributivity 

xik-(1+ ;2'.-kk*xkk) 

{ 	folding : (3) 	} 

•./.o;* 

iliSt 

 

The expressioll 
assigned to. 	 it tat 

	 Since. 

(8) and 
	

kk 	X kk* 	(xkk 	Xkk* 

that for the 

Xik (Xkk )* Xkj 
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ve 	of this 	phrv..-d completely 	of 	is rather 
menis. can be 	lid in 	The proof shows 	the 	i on 

A 

which, as we know, is equal to the function 

(26) 	X 	X. (k • . 

Dperato 	 :Ticiei 	o permit rik.:i conversion of the s,:,  
:lent i 	a sti? ,-irn::at in which the inPvi  

or( 	)roc: 	the latter is also incl::,  

•-•:ivation 	 d algorithm. No,,  
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be for such a compact 

the order 	on elements 	 claim that. 

(28) 	 • .1,-. 	.k , 



Theorem 29 For all M C N, k E N, matrices Z and vectors u, 

kEM A Vt./ jEM:u- ./ < u •k) A Z > N  
uMZk = u•k 

Proof The proof is by mn mlhiclnsion. As:-;unte 	•Ito:c.(:dc:nt of the implication, 
Then, 

u-M•Z-k 

u-M-k 

u-k 

iiM Z-k 

{ 

assumption : Z>1 } 

ass um p t ion: k E M (17) } 

definition o 

and 

iEM 

definition of i and distrii)itti 

iEM : u 	i. • Z •k). k. 

1.• Z -•k is an element, hence by (2) i. Z .k < 1 } 

i 	iE21•1 : u 	k. 

as,.,:nmpticto c. ,  k 

u • k k.  
{ 	( 9) } 

u k 

0 
No 	lo 	nate step or 	 how the co,orfltipli 

on k • 	IV,: 	 ( .11“.(1- 
	

„ven the on. inclusion 
ti•2, 1 • ' k > 

7.2 A Skdeton Algorithm 

The ulguriiluiii ve develri 	hasod )1 	 process in winch in :ii 1 iteration 
Thoorom2P 	ed to ":o- 	on 	of the ci ii- 
aural ion some set L of no , 	1..r, dealt nd. I 	jtiririu, are captti-t 
fornially tty postulating as loop 

d.fl 	tt,  = b- 	L 	A 



for thy 

and as postcondition 

(31) 	w = 	-1* 

where w is a vec 

L 

For 	 of the repet: 

), the in,: 	 lied by the 

ihle 
ite 	 Y.ards L= 	, and 

ed by choosing statemc;:-  

the loo;. 	 _L_1,,.ento L is 
accorr:;-,, 	 mein, 	: 	A* 

(32) 

Thus we have arrived at the following skeleton algorithm 

L,u2  

do L4N — k :E N— L  

:= w+b-A*-k 

;L 	LU {k} 

7.3 U 

For convenie:, 

1331 	:11 

ir ijecol l", p? ;t11 4. 1 K4V 111, r; (,111 

ional 

iier word-. 
he fact 

he complement. of L in N , Thus we have, by invariant (:30) 
=1, 

+ w 

:.•3‘v calculate, bear H 	mind that b-,4* k = b A* , ill  k , for 

• .,. 

star decompositio: 	• 	= V + 1-47  

= L-A and 	- A 



unfolding (W* V)* : (3) } 

b (1 + (W* • V)* - 	• I')• 1,V * 

ar 	nposition 

b (1 + (V + 147 )* 1.) • 11 /* 

distribution, definition of V and W } 
(b +  

invariant and leapfrog } 

(b + w.A)M(A'M)*  

introduce 	riani 

(35) : u = b 

u 	(All)* 

Tile driving force in the flrA four ,j,!ps of the aL' 	calculation was to .ixpose. a 
;-.-.1(:ct or matrix L 	 r 6 A* in or,,ler 	use the loop invariatit. The 
, i , coniposition A 	L. A -÷ 13 • 	 to 	ion for achie-, 	this 

So now, with additional inv;iant 

(35) u = b + 	, 

we are in a,position to invoke the Key Theorem : since for kEM the above calculation 
implies 

t.) • A* • k  

api 	 the K.,y `11 hr.( 	Ads 

(36) ;JE.111 A qj ; jE. 	: 	oj < 	 - A*. k = ok  

As for the i 	rinnce 4 r 33) 	(35) initiviliznig -..lateMt - it Li? :=7 	is aug- 
monied with Mi' := .V.I, ; 	: 2.)1111''01 L := Lu , 	ended -,ilh .',1 := 

111 — , 4  j ; 	to i-...;;Itcliwn: 	:= ?r ,- /i 	is , xi en hut with tt := 	oh ' A , 
since , by (35), 

(b + 07'4)(w 	+ u-k) 	ii + u-k - A 

Thus we have arrived at an algorithm in which tile Si tir ,- ,perator no longer occurs, 

:= 0,0,N,b 

do LN 	k : 	A VU jEM u < u 

;0),u 	w + 	, u + u-k ,  A 

;LM := LU{k} ,M — {k} 

b A* 



(37) 	u :11_ = 0 = b A* . 

As a result, the 	- 1 ....an 	t-itigtliened to u-.17/ 	0 . 

Opt.intizations 

iItw 

w=bA*L A LcN 

M = N L 

tp , A 

NotW, 	 or M 	c introduction of vari 
s Us 	 itho 	al5-cting tl 

Ly (34) and the 	 we h2 . . 

f 	L a 	tt•k 
and 

;Is from a cl<•-• • investigation of t.  

'ow that th,  ,,..s.,i[rnment. to u lea% 
he invariail 	 H duce 

(4U) 	u-k Aj•k = ti,•k 

(41) 	(u + u-k A)-L = u L 

i!' • 	to property. (90) 	by distributivity and the definition of " < ", it is 

k < tc -k 

definitice 	 client k. A 	< 1 by 
•k < 	 calculate 



(u + 	A)*L = u•L 

calculus } 

u-k•A*L 

b. A* : (39) , and k < 1 } 
b. A*. A. L < u-L 

{ 	b* A* A. L < b. A* L 

{ 
	• introduce new invariant w 

	

Invariant w < uL is est:Ildislied y  Hnttent Lw 	0,0 and 	-):Titined by 
the body of the repetition since 

(w < v 

{ 
w + 11  

w < 'u-L 

, L := w + u*k , u + u.k A , LU{k}) 

substitution } 

(u 	zi-k • A) (L + k) 

regular algebra 

< 	u*L + u-k 

!t V  

7.5 Elenwitt wise Impleme 
	

ion 

In this fiiii] 	 implement. 1.1:f 	,,,;nitient 	:= 	-.4 in terms of 
eleniernwH -- 	 --,--,n ,,., 1,,,...,,t-,, 	-, 	piationshil 	“:1‘,.,.: 	algorithm 
pre 	ted it , -1, 	 titional d'''Crild .101 s of Dijkslras -Thorti-path nigorithm 
and of Travers: 	Anis ;Ire 

Whaiftsign:w.•nt 	:= tt  

tn!tn.-(l h 	 •j fc,7 

r. ) 

pro„, 	 t 	) t.h.rivt..d earlier, 
j = 	 = 	i ti to = 

= 	 ,-an be restrict 
of eleinel 	he vale , 	• ti,) 

level can be ascer- 

ils :lown to a skip for 
for jEL, since 

jE M—{k}. In terms 
i.e. 

(U•o.) 
	 • A ..j) , 

where the parentliest:s indicate which subexpressions are 6:i:tents. Assembling tite 
results of the preyHTIs s::,-re;; with t he ;dove, we have arrived at oar final algorithm, 
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terpretation pertainin. 
track of the "grey" nodes 

instea ,1  of a 

rithm. tit::: 
, 	 , proport 

It tile size o: 
II--  Ka 0 	 ..tli that clic:- 

tit to 11 	its I 	-kip if it: 
-io 	from 1:. 

of edges 

. ;Ind that the 
n--;!1 the 

, u 	N b 
do 	— 

k 	: 	kell 	^ V(j : jell : n.j < u,•k) 
;simfor(j: 	 u..j := (u '.j) 	(u-ik).(1c.- A..f)) 

:= Al - 
ad { i = bA  

	

e only 	fl . 	ii . 	g 	bra for reaci, 

	

ine corn 	HHH is o:; 	 at in the bo(,:  

8 Commentary and Credit 

this H 	f ias been tc -• 	 , :!•Isses of standard Fs,: 	:!,_;orithms 
t.ebraic calculation 	is, of cour -. not the thst and nor 

he H 	such deri --: 	( For 	dier derivatioa of the 
tu, present der 	was in 	by the second author's 

yr; 	 „1milar problems '.11.) '1 H 	:ebraic 1,- 	•r the calculation 

	

. and some of its detail v 	inft, 	by Carre's dErivation 

	

ru;iiiy other 	 ave descrih 	;;pplied 
r roe! 	problems: 	paper 

 	:1, ature of 	 :•inent 



presented here. however, is its relian -e on calculations with matrices rather than 
with matrix elements, 
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