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Abstract We present a new generalised distributivity rule for manipulating quanti�ed expressions.

We use the rule to 
al
ulate the solution to a well-known light-bulb problem, whi
h is tradition-

ally solved using indu
tion. Our rule appears to have more general appli
ability to 
ombinatorial

problems.
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1 Introduction

The following problem was 
ommuni
ated to us by Benjamin Kelly

1

:

\There are 100 light bulbs and 100 people, both numbered from 1 to 100. Initially,

all the light bulbs are o�. Person number k toggles all the light bulbs that are

divisible by k. For example, person 2 toggles bulbs 2, 4, 6, . . . , 100. After all 100

people have �nished toggling the light bulbs, whi
h light bulbs are on?"

The traditional approa
h to solving this problem is to experiment with the �rst so-

many light bulbs until a pattern emerges, and then verify the pattern using indu
tion.

However, guess-and-verify is not very e�e
tive, as has also been noted in [GKP94℄:

\Indu
tion has its pla
e, (. . . ) but it's still not really what we're seeking. (. . . )

Flashes of inspiration should not be ne
essary. We should be able to do sums even

on our less 
reative days."

The light-bulb problem is easily formalised |see Se
tion 2| whi
h formalisation

suggests that it should be solvable by straightforward 
al
ulation along the lines of

those in [BM06℄. Disappointingly, we got stu
k at a very early stage |see Se
tion 3| ;

the published rules for manipulating quanti�ers [GKP94,GS00,Ba
03℄ turn out to be

inadequate for this problem. The diÆ
ulty was soon re
ti�ed by a generalisation of the

distributivity rule given in [Ba
03℄, whi
h we develop in Se
tion 4.

Our new distributivity rule enables the dire
t appli
ation of the 
al
ulational ap-

proa
h to some 
ombinatorial problems, as we illustrate in Se
tion 5. It also enables us

to 
al
ulate the solution to the light-bulb problem| see Se
tion 6. Se
tion 7 draws some


on
lusions and suggests dire
tions for further work.

1

Kelly saw the problem on a 
olleague's website; his 
olleague was given the problem by Jan van de Sneps
heut.
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2 Modelling the problem

A straightforward modelling of whether light bulb n is �nally on is

odd.(Σk : k\n : 1) .

In general, (Σx : s.x : 1) denotes the number of values x for whi
h 
ondition s.x holds,

and this parti
ular instan
e denotes the number of times that light bulb n is toggled.

As the light bulbs are initially o�, the ones that are �nally on are those that have been

toggled an odd number of times.

AsideWe use the uniform \Eindhoven" quanti�er notation [Dij75,Dij76,Dij00℄ through-

out. The notation extends the binary operator, ⊕ say, of an abelian monoid to an arbi-

trary �nite bag of values, the bag being de�ned by a fun
tion (the term) a
ting on a set

(the range). The general form of a quanti�ed expression is

(
⊕

v ∈ type : range : term) .

where

⊕
is the quanti�er, v is the dummy or bound variable and type is its type, range

de�nes a subset of the type of the dummy over whi
h the dummy ranges, and term

de�nes a fun
tion on the range. The value of the quanti�
ation is the result of applying

the operator ⊕ to all the values generated by evaluating the term at all instan
es of the

dummy in the range. The type of the dummy is often 
umbersome to repeat. For this

reason, the type is omitted and a 
onvention on the naming of dummies is adopted. In

addition, the range is sometimes omitted if it is equivalent to a true range. Hints in our


al
ulation refer to the formulation of the quanti�er manipulation rules as presented in

[Ba
03℄. End of Aside

The division ordering on the positive integers, denoted by \, 
an be de�ned in several

ways. One de�nition exploits existential quanti�
ation, but in our 
al
ulation this qui
kly

leads to a dead end. An alternative is to exploit the Unique Prime Fa
torisation theorem,

leading to the universal quanti�
ation in the following de�nition:

(∀k, n :: k\n ≡ (∀p :: exp.k.p ≤ exp.n.p) )

where p ranges over the prime numbers. The so-
alled exponent fun
tion exp is su
h that

exp.n, for any positive integer n, maps prime numbers to natural numbers. It is de�ned

as follows:

(∀n, f :: exp.n = f ≡ n = (Πp :: pf.p) )

Note that this de�nition states formally that exp is a bije
tion from the positive integers

to the type of f, whi
h is the set of all fun
tions from prime numbers to the natural

numbers that are eventually always zero. Its inverse is the fun
tion that maps f to

(Πp :: pf.p).
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3 Towards a calculational solution

Based on the modelling from Se
tion 2, we begin 
al
ulating the solution of the light-bulb

problem:

odd.(Σk : k\n : 1)

= f distribution of odd over Σ/6≡ g

( 6≡ k : k\n : odd.1)

= f use odd.1; trading g

( 6≡ k :: k\n)

= f de�nition of the division ordering g

( 6≡ k :: (∀p :: exp.k.p ≤ exp.n.p) )

= f range translation f := exp.k g

( 6≡ f :: (∀p :: f.p ≤ exp.n.p) ) .

The �rst two steps simplify the formula | at this stage, there is little 
hoi
e of what

to do. The distribution rule used in the �rst step may be unfamiliar. It exploits the fa
t

that odd distributes through addition turning it into boolean inequality (whi
h is more


ommonly known as ex
lusive-or). See [Ba
03℄ for further details.

The introdu
tion of boolean inequality motivates the 
hoi
e of de�nition of the divides

relation in the third step. The simpler 
hoi
e would be to repla
e k\n by an existential

quanti�
ation. However, the 
ru
ial 
onsideration is that 
onjun
tion (∧) distributes

over boolean inequality (6≡), whereas disjun
tion does not.

The range translation in the last step is motivated by the fa
t that the only interest

in the positive number k, is in exp.k.p for any p. Its use is valid be
ause of the afore-

mentioned fa
t that exp is a bije
tion from the type of k to the type of f.

This is the point at whi
h our 
al
ulation gets stu
k. The diÆ
ulty is that, although

∧ distributes over 6≡, none of the published rules of quanti�er manipulation 
aters for

nested quanti�
ations of this parti
ular shape. This is the topi
 of the next se
tion,

following whi
h we 
ontinue the 
al
ulation in Se
tion 6.

4 Distributivity properties

The key to our diÆ
ulty is a further generalisation of the distributivity rule do
umented

in [Ba
03℄. A binary operator ⊗ is said to distribute over the binary operator ⊕ if

0⊗ = 1⊕ and (∀x, y, z :: x⊗ (y⊕ z) = (x⊗ y) ⊕ (x⊗ z) ) ,
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where 0⊗ denotes the zero element of ⊗, and 1⊕ denotes the unit element of ⊕. If this is

the 
ase, the operator ⊗ distributes over �nite quanti�
ations

⊕
as well

2

. That is,

(∀x, t :: x⊗ (
⊕

i :: t.i) = (
⊕

i :: x⊗ t.i) ) .

Some well-known instan
es of ⊗ and ⊕ in
lude × and +, ∧ and ∨, and |signi�
antly|

∧ and 6≡.

Given that operator ⊗ distributes over operator ⊕, we have developed the following

new rule for distributing a �nite

⊗
quanti�
ation over a

⊕
quanti�
ation, for any t:

(
⊗

i :: (
⊕

j :: t.i.j) ) = (
⊕

f :: (
⊗

i :: t.i.(f.i)) )(1)

The types of the dummy f is a fun
tion whi
h maps a value of the type of variable i to

a value of the type of variable j.

The rule is easily established by indu
tion on the size of the range of dummy i. The

base 
ase exploits that the type of f redu
es to a singleton, and the indu
tive 
ase is

justi�ed by exploiting distributivity of ⊗ over

⊕
(twi
e). A detailed proof is provided in

Appendix A.

Our new distribution rule 
an be des
ribed as formalising the axiom of 
hoi
e on

�nite domains. This is the rule

(∀i :: (∃j :: t.i.j) ) = (∃f :: (∀i :: t.i.(f.i)) )

obtained by instantiating ⊗ to ∧ and ⊕ to ∨. That 
onjun
tion distributes over disjun
-

tion in the way de�ned above is the 
ombination of the properties

0∧ = 1∨ = false and (∀x, y, z :: x∧ (y∨ z) = (x∧ y) ∨ (x∧ z) ) .

The fun
tion f, that is introdu
ed in a left-to-right appli
ation of our distribution

rule, names (or \Skolemizes" in the jargon of foundational mathemati
s) the dummy j

that is 
hosen for a parti
ular value of the dummy i. A possibly less well-known example

of \Skolemization" is the rule

(∃i :: (∀j :: t.i.j) ) = (∀f :: (∃i :: t.i.(f.i)) ) .

It is obtained by instantiating ⊗ to ∨ and ⊕ to ∧. That disjun
tion distributes over


onjun
tion is the 
ombination of the properties

0∨ = 1∧ = true and (∀x, y, z :: x∨ (y∧ z) = (x∨ y) ∧ (x∨ z) ) .

Sin
e the range of the quanti�
ation over variable i 
annot depend on j or f, any

proper range 
an be modelled using the type of variable i. This does not hold for the range

2

Whenever we introdu
e a quanti�
ation, we assume, of 
ourse, that the binary operator in question is asso
iative

and symmetri
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of variable j, whi
h 
ould depend on variable i. To make this expli
it, we aim to generalise

the rule further by introdu
ing a 
ondition s.i.j for the range of the quanti�
ation over

j. Let us 
al
ulate the 
orresponding e�e
t on the right-hand side of the rule:

(
⊗

i :: (
⊕

j : s.i.j : t.i.j) )

= f trading, in order to eliminate the expli
it range g

(
⊗

i :: (
⊕

j :: if s.i.j then t.i.j else 1⊕ fi) )

= f (3), distribution of

⊗
over

⊕
g

(
⊕

f :: (
⊗

i :: if s.i.(f.i) then t.i.(f.i) else 1⊕ fi) )

= f use 0⊗ = 1⊕, sin
e ⊗ distributes over ⊕ g

(
⊕

f :: if (∀i :: s.i.(f.i)) then (
⊗

i :: t.i.(f.i)) else 1⊕ fi )

= f trading, in order to introdu
e an expli
it range g

(
⊕

f : (∀i :: s.i.(f.i)) : (
⊗

i :: t.i.(f.i)) ) .

Thus, under the same premises as before, we obtain the following 
al
ulational rule.

For any s and t:

(
⊗

i :: (
⊕

j : s.i.j : t.i.j) ) = (
⊕

f : (∀i :: s.i.(f.i)) : (
⊗

i :: t.i.(f.i)) ) .(2)

5 Intermezzo: relation to combinatorics

To provide a simple illustration of the e�e
tiveness of our new distributivity rule, we


onsider the following 
ombinatorial problem:

\How many ways are there to 
olour n obje
ts using m 
olours?"

To model this problem, we represent ea
h obje
t i by a natural number between 1

and n, ea
h 
olour j by a natural number between 1 and m, and ea
h 
olouring c by a

fun
tion from obje
ts to 
olours. Thus the problem 
an be formulated as 
omputing the

value of

(Σc : (∀i : 1 ≤ i ≤ n : 1 ≤ c.i ≤ m) : 1) .

In 
ontrast to the traditional approa
h to this problem, we simply 
al
ulate the

solution using our new rule:
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(Σc : (∀i : 1 ≤ i ≤ n : 1 ≤ c.i ≤ m) : 1)

= f introdu
e a produ
t g

(Σc : (∀i : 1 ≤ i ≤ n : 1 ≤ c.i ≤ m) : (Πi : 1 ≤ i ≤ n : 1) )

= f (4), distribution of Π over Σ g

(Πi : 1 ≤ i ≤ n : (Σj : 1 ≤ j ≤ m : 1) )

= f eliminate the summation g

(Πi : 1 ≤ i ≤ n : m )

= f eliminate the produ
t g

mn .

The standard way of solving this problem |whi
h we stress is a 
ounting problem|

is to immediately formulate the produ
t, with only a verbal justi�
ation (if any) for the

repla
ement. This, in our view, is another example of the proverbial rabbit-in-a-hat with

whi
h traditional mathemati
al pra
ti
e abounds and whi
h puts many students o�.

The formulation of the quanti�er rule has the advantage of 
apturing the use of

indu
tion in one general rule, whi
h has appli
ability in a wide range of 
ir
umstan
es

(in
luding to operators other than addition and multipli
ation). Another simple variation

on this 
ombinatorial problem is to restri
t the available number of 
olours for ea
h obje
t

i to i. The solution 
an be 
omputed along the same lines, using that (Πi : 1 ≤ i ≤ n : i)

denotes the fa
torial of n.

6 Completing a calculational solution

Armed with our new distributivity rule, we 
ontinue the 
al
ulation in Se
tion 3 using

the following maxim [GKP94℄:

\On
e you, the reader, have learned the material (. . . ), all you will need is a 
ool

head, a large sheet of paper, and fairly de
ent handwriting (. . . )."

So, let us 
al
ulate:

( 6≡ f :: (∀p :: f.p ≤ exp.n.p) )

= f (3), distribution of ∀ over 6≡ g

(∀p :: ( 6≡ e :: e ≤ exp.n.p) )

= f trading; use odd.1 g

(∀p :: ( 6≡ e : e ≤ exp.n.p : odd.1) )

= f distribution of odd over Σ/6≡ g

(∀p :: odd.(Σe : e ≤ exp.n.p : 1) )

= f eliminate the summation g

(∀p :: odd.(exp.n.p+ 1) )

= f relation between odd and even g

(∀p :: even.(exp.n.p) )
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Observing both the introdu
tion and the elimination of the 6≡ quanti�er, one might

wonder whether we 
ould not just sti
k to the Σ quanti�er in Se
tion 3. This turns out

to be possible, and it even slightly redu
es the length of the 
al
ulation by using rule (4)

whi
h embeds the two trading steps. However, the 
hoi
e of the parti
ular de�nition of

the division ordering be
omes a bit harder to motivate, and before applying rule (4) a Π

quanti�er has to be introdu
ed, as we did in the example in Se
tion 5.

Experien
ed mathemati
ians with a good knowledge of prime fa
torisation might

already be able to interpret the last formula in terms of the original problem. Otherwise,

the only thing we 
an do is to apply the de�nition of even, and bravely 
ontinue our


al
ulation:

(∀p :: even.(exp.n.p) )

= f de�nition of even g

(∀p :: (∃m :: exp.n.p = m× 2) )

= f (3), distribution of ∀ over ∃ g

(∃f :: (∀p :: exp.n.p = f.p× 2) )

= f de�nition of exp, prime fa
torisation g

(∃f :: n = (Πp :: p(f.p×2)) )

= f use x(y×z) = (xy)z; distribution of square over Π g

(∃f :: n = (Πp :: pf.p)2 )

= f range translation: k := (Πp :: pf.p) g

(∃k :: n = k2 ) .

(Observe the use of (3) again.) The �nal solution 
an easily be interpreted in terms of

the original problem. The light bulbs that are �nally on are the ones that are numbered

by a square.

7 Conclusions and further work

This work was driven by the desire to solve a light-bulb problem just by 
al
ulation.

Although this was our sour
e of inspiration, the main resear
h results are methodologi
al.

We have developed a general rule for the distribution of quanti�ers over quanti�ers. From

a problem-solving perspe
tive, this rule o�ers an important 
al
ulational tool that deals

with patterns that 
ould not be addressed before, viz., any quanti�
ation whose range

is a universal quanti�
ation, and quanti�
ations whose term is another quanti�
ation.

We have also demonstrated that the distributivity rule 
aptures a fundamental as-

pe
t of 
ombinatorial problems. Namely, that su
h problems are formulated in terms of

fun
tions and sums (i.e., for 
ounting the number of possibilities), whilst their solutions

are obtained by translating to produ
ts.



8

Although we have as yet 
onsidered only a small number of examples, we expe
t that

many other problems will yield to a similar analysis. A parti
ular dire
tion for further

work is to investigate how, in our distributivity rule, the range of the quanti�
ation

over the fun
tion spa
e 
an be generalised. In this way, we expe
t to be able to improve

problem-solving skills in this parti
ular area, whi
h in turn should lead to new insights

into many 
ombinatorial problems.
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A Proof of the distributivity rule

Although we have been very expli
it regarding the main 
al
ulation, in Se
tion 4 we

have only sket
hed a proof of rule (3). The reason for doing so, is that a proper proof

demands some theory about fun
tion spa
es, whi
h we only need for this proof.

The following are well-known properties of �nite fun
tion spa
es:

m← O

∼= 1

(m← n) × m ∼= m ← (n+ 1)

where O denotes the empty spa
e, and 1 denotes the singleton spa
e. The sole element

in 1 is denoted by ∗.

Using these properties, we 
an provide a detailed proof of rule (3) by stru
tural

indu
tion on the range of dummy i. For the base 
ase, i.e., the empty spa
e O, we


al
ulate from the right-hand side:

(
⊕

f : f ∈ (m← O) : (
⊗

i : i ∈ O : t.i.(f.i)) )

= f m← O

∼= 1; range translation and one-point rule g

(
⊗

i : i ∈ O : t.i.∗)

= f empty range g

1⊗

= f empty range g

(
⊗

i : i ∈ O : (
⊕

j : j ∈ m : t.i.j) ) .

For the indu
tive 
ase, i.e. the non-empty spa
e n+1, we 
al
ulate from the left-hand

side:

(
⊗

i : i ∈ n+ 1 : (
⊕

j : j ∈ m : t.i.j) )

= f split o� i ∈ 1 g

(
⊗

i : i ∈ n : (
⊕

j : j ∈ m : t.i.j) ) ⊗ (
⊕

j : j ∈ m : t.∗.j)

= f indu
tion hypothesis for the 
ase n g

(
⊕

f : f ∈ m← n : (
⊗

i : i ∈ n : t.i.(f.i)) ) ⊗ (
⊕

j : j ∈ m : t.∗.j)

= f distribution of ⊗ over

⊕
g

(
⊕

f : f ∈ m← n : (
⊗

i : i ∈ n : t.i.(f.i)) ⊗ (
⊕

j : j ∈ m : t.∗.j) )

= f distribution of ⊗ over

⊕
g

(
⊕

f : f ∈ m← n : (
⊕

j : j ∈ m : (
⊗

i : i ∈ n : t.i.(f.i)) ⊗ t.∗.j) )

= f nesting g

(
⊕

f, j : f ∈ m← n ∧ j ∈ m : (
⊗

i : i ∈ n : t.i.(f.i)) ⊗ t.∗.j )

= f (m← n)×m ∼= m ← (n+ 1); range translation g

(
⊕

f : f ∈ m← (n+ 1) : (
⊗

i : i ∈ n : t.i.(f.i)) ⊗ t.∗.(f.∗) )

= f split o� i ∈ 1 g

(
⊕

f : f ∈ m← (n+ 1) : (
⊗

i : i ∈ n+ 1 : t.i.(f.i)) ) .

This 
on
ludes our proof of rule (3).


