Calculational combinatorics

Roland Backhouse and Arjan J. Mooij

School of Computer Science and Information Technology,
The University of Nottingham, United Kingdom.
{Roland.Backhouse@nottingham.ac.uk, Arjan.Mooij@cs.nott.ac.uk}

Abstract We present a new generalised distributivity rule for manipulating quantified expressions.
We use the rule to calculate the solution to a well-known light-bulb problem, which is tradition-
ally solved using induction. Our rule appears to have more general applicability to combinatorial
problems.

Keywords: combinatorics, distributivity, problem solving, quantifier manipulation

1 Introduction

The following problem was communicated to us by Benjamin Kelly!:

“There are 100 light bulbs and 100 people, both numbered from 1 to 100. Initially,
all the light bulbs are off. Person number k toggles all the light bulbs that are
divisible by k. For example, person 2 toggles bulbs 2,4,6,...,100. After all 100
people have finished toggling the light bulbs, which light bulbs are on?”

The traditional approach to solving this problem is to experiment with the first so-
many light bulbs until a pattern emerges, and then verify the pattern using induction.
However, guess-and-verify is not very effective, as has also been noted in [GKP94]:

“Induction has its place, (...) but it’s still not really what we’re seeking. (...)
Flashes of inspiration should not be necessary. We should be able to do sums even
on our less creative days.”

The light-bulb problem is easily formalised —see Section 2— which formalisation
suggests that it should be solvable by straightforward calculation along the lines of
those in [BMO06]. Disappointingly, we got stuck at a very early stage —see Section 3— ;
the published rules for manipulating quantifiers [GKP94,GS00,Bac03] turn out to be
inadequate for this problem. The difficulty was soon rectified by a generalisation of the
distributivity rule given in [Bac03|, which we develop in Section 4.

Our new distributivity rule enables the direct application of the calculational ap-
proach to some combinatorial problems, as we illustrate in Section 5. It also enables us
to calculate the solution to the light-bulb problem — see Section 6. Section 7 draws some
conclusions and suggests directions for further work.

! Kelly saw the problem on a colleague’s website; his colleague was given the problem by Jan van de Snepscheut.



2
2 Modelling the problem

A straightforward modelling of whether light bulb n is finally on is
odd.(Zk: k\n: 1)

In general, (Zx: s.x: 1) denotes the number of values x for which condition s.x holds,
and this particular instance denotes the number of times that light bulb n is toggled.
As the light bulbs are initially off, the ones that are finally on are those that have been
toggled an odd number of times.

Aside We use the uniform “Eindhoven” quantifier notation [Dij75,Dij76,Dij00] through-
out. The notation extends the binary operator, & say, of an abelian monoid to an arbi-
trary finite bag of values, the bag being defined by a function (the term) acting on a set
(the range). The general form of a quantified expression is

(@v € type: range: term)

where @ is the quantifier, v is the dummy or bound variable and type is its type, range
defines a subset of the type of the dummy over which the dummy ranges, and term
defines a function on the range. The value of the quantification is the result of applying
the operator ¢ to all the values generated by evaluating the term at all instances of the
dummy in the range. The type of the dummy is often cumbersome to repeat. For this
reason, the type is omitted and a convention on the naming of dummies is adopted. In
addition, the range is sometimes omitted if it is equivalent to a true range. Hints in our
calculation refer to the formulation of the quantifier manipulation rules as presented in
[Bac03]. End of Aside

The division ordering on the positive integers, denoted by \, can be defined in several
ways. One definition exploits existential quantification, but in our calculation this quickly
leads to a dead end. An alternative is to exploit the Unique Prime Factorisation theorem,
leading to the universal quantification in the following definition:

(Vk,n: k\n = (Vp: expkp <expn.p))

where p ranges over the prime numbers. The so-called ezponent function exp is such that
exp.n, for any positive integer n, maps prime numbers to natural numbers. It is defined
as follows:

(Vn,fz expn=f = n=Tpz p™P))

Note that this definition states formally that exp is a bijection from the positive integers
to the type of f, which is the set of all functions from prime numbers to the natural
numbers that are eventually always zero. Its inverse is the function that maps f to

(TTp == p™P).



3 Towards a calculational solution

Based on the modelling from Section 2, we begin calculating the solution of the light-bulb
problem:

odd.(Zk: k\n: 1)

= { distribution of odd over X/# }
(Zk: k\n: odd.1)

= { use odd.1; trading }
(Zk: k\n)

= { definition of the division ordering }
(Zk:= (Vp: expkp <expn.p))

= { range translation f:=exp.k }

(Zfz (Vpu f.p <expmp))

The first two steps simplify the formula — at this stage, there is little choice of what
to do. The distribution rule used in the first step may be unfamiliar. It exploits the fact
that odd distributes through addition turning it into boolean inequality (which is more
commonly known as exclusive-or). See [Bac03] for further details.

The introduction of boolean inequality motivates the choice of definition of the divides
relation in the third step. The simpler choice would be to replace k\n by an existential
quantification. However, the crucial consideration is that conjunction (/\) distributes
over boolean inequality (), whereas disjunction does not.

The range translation in the last step is motivated by the fact that the only interest
in the positive number k, is in exp.k.p for any p. Its use is valid because of the afore-
mentioned fact that exp is a bijection from the type of k to the type of f.

This is the point at which our calculation gets stuck. The difficulty is that, although
A\ distributes over #, none of the published rules of quantifier manipulation caters for
nested quantifications of this particular shape. This is the topic of the next section,
following which we continue the calculation in Section 6.

4 Distributivity properties

The key to our difficulty is a further generalisation of the distributivity rule documented
in [Bac03]. A binary operator ® is said to distribute over the binary operator @ if

0p =1 and (¥x,y,z: x®(ydz) = x®@y) & x®z)) ,



4

where Oy denotes the zero element of ®, and 1, denotes the unit element of @. If this is
the case, the operator ® distributes over finite quantifications @ as well2. That is,

(Vx,tz x@ (i ti) (Pi: x®ti)
Some well-known instances of ® and ¢ include x and +, /\ and V, and —significantly—
/\ and #.

Given that operator ® distributes over operator &, we have developed the following
new rule for distributing a finite @ quantification over a €@ quantification, for any t:

(1) @iz (Bj= tij)) = @Pf= (QRi= ti(fi))

The types of the dummy f is a function which maps a value of the type of variable i to
a value of the type of variable j.

The rule is easily established by induction on the size of the range of dummy i. The
base case exploits that the type of f reduces to a singleton, and the inductive case is
justified by exploiting distributivity of ® over @ (twice). A detailed proof is provided in
Appendix A.

Our new distribution rule can be described as formalising the axiom of choice on
finite domains. This is the rule

Viz (F= tij)) = (I (Viz ti(fi))

obtained by instantiating ® to /A and @ to V. That conjunction distributes over disjunc-
tion in the way defined above is the combination of the properties

Opn=1y=false and (Vx,y,z: xA(yVz) = (xAy) V (xAz))

The function f, that is introduced in a left-to-right application of our distribution
rule, names (or “Skolemizes” in the jargon of foundational mathematics) the dummy j
that is chosen for a particular value of the dummy i. A possibly less well-known example
of “Skolemization” is the rule

(Fis: (V= tij)) = (V= (Fie ti(fi)))
It is obtained by instantiating ® to \V and & to /\. That disjunction distributes over
conjunction is the combination of the properties

Oy =1p=true and (¥x,y,z: xV(yAz) = (xVy) N\ (xVz))

Since the range of the quantification over variable i cannot depend on j or f, any
proper range can be modelled using the type of variable i. This does not hold for the range

2 Whenever we introduce a quantification, we assume, of course, that the binary operator in question is associative
and symmetric



5

of variable j, which could depend on variable i. To make this explicit, we aim to generalise
the rule further by introducing a condition s.i.j for the range of the quantification over
j. Let us calculate the corresponding effect on the right-hand side of the rule:

(®iz (Bj: s.ij: tij))
= { trading, in order to eliminate the explicit range }
(®ix: (Bj: if sij then tij else 14 fi))
= { (3), distribution of Q over & }
(Bf: (@i if s.d.(f.i) then ti.(fi) else 14 fi))
= { use Oy = 1g, since ® distributes over @ }
(Bf: if (Vi sdi.(fi)) then (@1i: ti.(fi)) else 14 fi)
= { trading, in order to introduce an explicit range }

(Bf: (Vi sdi(fi)): (@i ti(fi)))

Thus, under the same premises as before, we obtain the following calculational rule.
For any s and t:

2) (@i (Bj: sij: tij)) = (Pf: (Viz si(fi)): (@iz ti(fi))

5 Intermezzo: relation to combinatorics

To provide a simple illustration of the effectiveness of our new distributivity rule, we
consider the following combinatorial problem:

“How many ways are there to colour n objects using m colours?”

To model this problem, we represent each object i by a natural number between 1
and n, each colour j by a natural number between 1 and m, and each colouring ¢ by a
function from objects to colours. Thus the problem can be formulated as computing the
value of

In contrast to the traditional approach to this problem, we simply calculate the
solution using our new rule:



(Ze: Vi: 1<i<n: 1<ci<m): 1)
= { introduce a product }

(Zc: Mi: 1<i<n: 1 <ci<m): (Thh: 1<i<n: 1))
= { (4), distribution of TT over L }

(M: 1<i<n: (&:1<5<m: 1))
= { eliminate the summation }

(M: 1<i<n: m)
= { eliminate the product }

mTL

The standard way of solving this problem —which we stress is a counting problem—
is to immediately formulate the product, with only a verbal justification (if any) for the
replacement. This, in our view, is another example of the proverbial rabbit-in-a-hat with
which traditional mathematical practice abounds and which puts many students off.

The formulation of the quantifier rule has the advantage of capturing the use of
induction in one general rule, which has applicability in a wide range of circumstances
(including to operators other than addition and multiplication). Another simple variation
on this combinatorial problem is to restrict the available number of colours for each object
ito i. The solution can be computed along the same lines, using that (TTli: 1 <i<n: i)
denotes the factorial of n.

6 Completing a calculational solution

Armed with our new distributivity rule, we continue the calculation in Section 3 using
the following maxim [GKP94]:

“Once you, the reader, have learned the material (...), all you will need is a cool
head, a large sheet of paper, and fairly decent handwriting (...).”

So, let us calculate:

(Zf: (Vpu fp<expmp))
= { (3), distribution of V over # }
(Vp: (Fe: e<expnp))
= { trading; use odd.1 }
(Vp: (Ze: e<expmn.p: odd.l))
= { distribution of odd over L/# }
(Vp:: odd.(Xe: e<expmp: 1))
= { eliminate the summation }
(Vp :: odd.(expnp+1))
= { relation between odd and even }
(Vp = even.(exp.n.p) )



7

Observing both the introduction and the elimination of the # quantifier, one might
wonder whether we could not just stick to the X quantifier in Section 3. This turns out
to be possible, and it even slightly reduces the length of the calculation by using rule (4)
which embeds the two trading steps. However, the choice of the particular definition of
the division ordering becomes a bit harder to motivate, and before applying rule (4) a TT
quantifier has to be introduced, as we did in the example in Section 5.

Experienced mathematicians with a good knowledge of prime factorisation might
already be able to interpret the last formula in terms of the original problem. Otherwise,
the only thing we can do is to apply the definition of even, and bravely continue our
calculation:

(Vp = even.(expn.p) )

= { definition of even }
(Vp: (3m: expnp=mx2))

= { (3), distribution of ¥ over 3 }
(If = (Vp: expnp="Ffpx2))

= { definition of exp, prime factorisation }
(Ifz n=Tpz pfexd))

= { use xV*? = (x¥)? distribution of square over IT }
(Ifzn=~TIp=z pP)?)

= { range translation: k:= (TTp :: p™?) }
(Fk: n=k?)

(Observe the use of (3) again.) The final solution can easily be interpreted in terms of
the original problem. The light bulbs that are finally on are the ones that are numbered
by a square.

7 Conclusions and further work

This work was driven by the desire to solve a light-bulb problem just by calculation.
Although this was our source of inspiration, the main research results are methodological.
We have developed a general rule for the distribution of quantifiers over quantifiers. From
a problem-solving perspective, this rule offers an important calculational tool that deals
with patterns that could not be addressed before, viz., any quantification whose range
is a universal quantification, and quantifications whose term is another quantification.

We have also demonstrated that the distributivity rule captures a fundamental as-
pect of combinatorial problems. Namely, that such problems are formulated in terms of
functions and sums (i.e., for counting the number of possibilities), whilst their solutions
are obtained by translating to products.



Although we have as yet considered only a small number of examples, we expect that
many other problems will yield to a similar analysis. A particular direction for further
work is to investigate how, in our distributivity rule, the range of the quantification
over the function space can be generalised. In this way, we expect to be able to improve
problem-solving skills in this particular area, which in turn should lead to new insights
into many combinatorial problems.

Acknowledgement

We are very grateful to Diethard Michaelis for his suggestions for improvement, in par-
ticular with regard to the proof of (3) given in the appendix.

References

[Bac03] R.C. Backhouse. Program Construction: Calculating Implementations from Specifications. John Wiley
and Sons, Inc., March 2003.

[BM06] R.C. Backhouse and D. Michaelis. Exercises in quantifier manipulation. In Proceedings of the 8th
international conference on Mathematics of Program Construction, volume 4014 of LNCS, pages 69—
81. Springer-Verlag, 2006.

[Dij75] E.W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs. Communica-
tions of the ACM, pages 453-457, 1975.

[Dij76] E.W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[Dijo0] E.W. Dijkstra. The notational conventions I adopted, and why. EWD 1300, July 2000.

[GKP94] R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics: A Foundation for Computer

[GS00]

Science. Addison-Wesley, second edition, 1994.
D. Gries and F.B. Schneider. A Logical Approach to Discrete Math. Springer-Verlag, September 2000.



A Proof of the distributivity rule

Although we have been very explicit regarding the main calculation, in Section 4 we
have only sketched a proof of rule (3). The reason for doing so, is that a proper proof
demands some theory about function spaces, which we only need for this proof.

The following are well-known properties of finite function spaces:

~

m«—0O = 1
(Mmen) xm = m« (n+1)

where O denotes the empty space, and 1 denotes the singleton space. The sole element
in 1 is denoted by .

Using these properties, we can provide a detailed proof of rule (3) by structural
induction on the range of dummy i. For the base case, i.e., the empty space O, we
calculate from the right-hand side:

(Pf: fem«—0O): (®i: 1eO: ti.(fi)))
= {m« O = 1; range translation and one-point rule }

(®1i: 1€ O: tix)
= { empty range }

lg
= { empty range }

(®i: 1eO: (Bj: jem: tij))

For the inductive case, i.e. the non-empty space n+ 1, we calculate from the left-hand
side:

(®i: 1€ n+1l: (Bj: jem: tij))
= {splitoffiel}

(®i:ien: (Bj:jem: tij)) ® (Bj: jem: txj)
= { induction hypothesis for the case n }

(Bf: femen: (Qi:ien: ti(fi)) ® (Bj: jem: txj)
= { distribution of ® over @ }

(Bf: f e men: (Qi:ien: ti(fi) @ (Bj: jem: txj))
= { distribution of ® over @ }

(Bf: femen: (Bj: jem: (Qi: ien: ti(fi)) ® t.xj))
= { nesting }

(Bf,j: fe€men A jem: (Qi: 1en: ti(fi)) @ txj)
= {(men)xm = m « (n+1); range translation }

(Pf: feme—n+1): (Ki: ien: ti.(fi) @ tx(f.x))
= {splitoffiel}

(Pf: f e me—n+1): (Qi: 1 € n+1: ti.(fi)))

This concludes our proof of rule (3).



