
CLOSURE ALGORITHMS

AND THE STAR-HEIGHT PROBLEM OF

REGULAR LANGUAGES

by

ROLAND CARL BACKHOUSE

A thesis submitted for the degree of Doctor of Philosophy
in the Faculty of Engineering in the University of London.

Department of Computing and Control
	

September, 1975.
Imperial College
London SW7 1LU

(i)

ABSTRACT

The main motivation for this work is the star-

height problem of regular languages proposed by Eggan.

We begin by investigating in some detail analogies

between regular algebra and linear algebra. 	It is shown

how, using a few simple tautologies of regular algebra, one

can derive product forms for the closure A* of a matrix A

analogous to the Gauss and Jordan product forms for (I-A)-1

in linear algebra. The product forms yield algorithms for

calculating A* analogous to the Gauss and Jordan elimination

methods of linear algebra. Methods for finding A* analogous

to the iterative methods of linear algebra are also briefly

discussed.

Following this we present various results in the

theory of factors of regular languages. We show that there

is a unique minimal starth root G
Q

of the factor matrix 171

of a regular language Q, and give an algorithm to calculate

GQ.
	

It is then shown that the factor matrix of a factor H

of Q is a submatrix of the factor matrix M. This leads to
an algorithm to calculate the closure G*

4
 of GQ. The algorithm

yields a regular expression for Q which is proven to have star-

height always less than or equal to (and in some cases strictly

less than) the rank of GQ. Moreover the algorithm does not

have any analogous method in linear algebra.

The algorithm to find G*
4
 does not always give a

minimal star-height expression for Q and the star-height

problem is still open. But it is suggested that the

algorithm may be more generally applicable (than just to

factor graphs), thus possibly giving fresh insight into the

star-height problem.

ACKNOWLEDGEMENTS

The work presented in this thesis is entirely

the author's own work except for parts of Chapter II, or

where otherwise indicated in the text.

The material in Chapter II represents work done

in collaboration with Dr. B. A. Carre, and is essentially

an adapted version of En. An attempt has been made to

omit those parts of [2] which are definitely attributable

to Dr. Carre, but it should also be mentioned that the

derivation of the formulae in Chapter II §4.1 and §4.2

(but excluding §4.2.1), using the tautology (AB)* = E+A(BA)*B,

is due to Dr. Carre. Aitken's method (§4.2.2) is also due

to Dr. Carre and has been included here so that the author's

comparison of Aitken's method and Jordan's method (g4.5)

could be included. 	I would like to take the opportunity

of thanking Bernard Carre for the very enjoyable and

stimulating opportunity of working with him.

I would also like to thank my supervisor

Jim Cunningham for much valuable criticism and encouragement

while I was doing this work, and M. S. Paterson for his

criticisms and suggestions regarding this work.

(iii)

CONTENTS

• • •

PAGE

ABSTRACT 	• • 	 • • 	• • 	• • 	 • • 	 • • 	• • 	 • (i)

ACKNOWLEDGEMENTS 	• • 	• • 	• • 	• • 	• • 	• • . 	• (ii)

INTRODUCTION 1

CHAPTER 	I 	- 	REGULAR ALGEBRAS 	. • 	.. 9

1. 	THE 	SYSTEM OF AXIOMS 	Fl 9

1.1 	Axioms g
1.2 	Partial 	Ordering 10
1.3 	Solution 	of 	Equations 10

2. 	INTERPRETATIONS 11

2.1 	Regular 	Languages 11
2.2 	Matrix Algebras 13

2.2.1 	The 	Algebra M 	(R) 13
2.2.2 	Graphs 	p 15
2.2.3 	Regular 	Languages 16
2.2.4 	Boolean 	Matrices 20
2.2.5 	Finding 	Shortest 	Paths 22
2.2.6 	Other 	Applications 25

2.3 	Semigroups 25

CHAPTER II 	- 	ELIMINATION 	METHODS 	FOR FINDING
CLOSURE 	MATRICES 	.. 27

1. COMPARISON 	BETWEEN 	UNIQUENESS
OF SOLUTIONS 29

2. SOME 	REGULAR TAUTOLOGIES AND
THEIR ANALOGUES 31

3. PRODUCT FORMS FOR CLOSURE MATRICES 34

3.1 	Row and 	Column Matrices 34

3.2 	The Jordan 	Product 	Forms 37
3.3 	The 	Gauss 	Product 	Form 39

PAGE

41

41

43

44

47

48

51
53

56

60

64

69

4. ALGORITHMS FROM THE PRODUCT FORMS

4.1 Jordan Elimination Method

4.1.1 	Triangular Matrices

4.2 The Gaussian Elimination Method

4.2.1 	Calculating A*
4.2.2 Calculation of Submatrices

of A* - Aitken's Method

4.3 The Escalator Method
4.4 Woodbury's Formula
4.5 A Comparison of Aitken and Jordan

Elimination

5. THE ITERATIVE TECHNIQUES

6. A BRIEF COMPARISON OF THE METHODS

7. CONCLUSIONS

CHAPTER III - THE FACTOR MATRIX AND FACTOR GRAPH

1. MOTIVATION - THE STAR-HEIGHT PROBLEM

1.1 Previous Work
1.2 The Relevance of Factor Theory

2. k-CLASSES, r-CLASSES AND c-CLASSES

2.1 Machine, Anti-machine and Semigroup
2.2 Derivatives, Anti-derivatives and

Contexts

3. THE FUNDAMENTALS OF FACTOR THEORY

4. THE FACTOR MATRIX

5. THE FACTOR GRAPH

6. AN EXAMPLE

6.1 	Machine, Anti-machine and Semigroup
6.2 Calculating the Derivatives etc.
6.3 The Left and Right Factors
6.4 Construction of C

max +Lmax and GQ 6.5 The Matrix

6.6 Some Remarks

71

71

72
78

80

81

83

85

87

90

96

97
99

103
104
106
107

7. AN ALGORITHM TO CALCULATE THE FACTOR GRAPH
	

109

(v)

PAGE

CHAPTER IV - CALCULATING THE CLOSURE OF
A FACTOR GRAPH 	115

1. INTRODUCTION 	 115

2. INSEPARABLE FACTORS 	 117

3. FACTOR MATRICES OF FACTORS 	118

4. EXAMPLE 1 AGAIN 	 122

5. AN ALGORITHM FOR CALCULATING Rfl 	126

6. TWO MORE EXAMPLES 	 130

7. FINAL THEOREM 	 140

8. EMPIRICAL RESULTS 	 146

CONCLUSIONS 	08 	00 	00 	00 	00 	00 	00 	00 	 157

REFERENCES 	. • 	00 	00 	00 	00 	.. 	164

APPENDIX A - PROOF THAT m
P
(R) IS A REGULAR ALGEBRA 	171

APPENDIX B - INFORMAL PROOF OF THEOREM B4 	• • 	• • 	175

INTRODUCTION

The objective of the work presented here is to

study in depth certain aspects of the * operator in a

regular algebra. Although not immediately apparent, such

studies are relevant to many aspects of Computing Science,

because the star operator is just one instance of a closure

operator.

A closure operator is any operator J which is

transitively closed, i.e. J.J = J or, in words, the effect

of applying J twice (or any number of times) is the same as

that of applying J just once. A trivial example is a while

loop, since obviously while p do (while p do a) is equivalent

to while p do a. Closure operations occur wherever an

operation is iterated indefinitely. For instance a* can be

interpreted as meaning "iterate a, unconditionally" whereas

while p do a means "iterate a, conditional on p" or "iterate

(test p then do a)".

Sometimes the iteration is concealed and it is not

immediately obvious that a closure operation is involved.

One instance is in the recursive definition of a function

(e.g. Fx = if p then fx else Ffx). Recent work by Scott

[40] shows clearly that what is involved implicitly in such

a definition is indeed a closure operation - the operation

of finding the least fixed point of a function g which in

Scott's notation is

1 i gn
(1),

n=o

2.

or in the notation of regular algebra g*(1). (g in the

above example maps Fx onto fx or Ffx depending on p).

A particular example of this is in the study of

context-free languages. We may regard the context-free

grammar G = (V,N,T,P,S) having productions

pl: S aSb 	p2: S ab

as defining two operators pl and p2 mapping subsets of V*

into subsets of V*. p1 is defined by

uaSbv c pl(uSv) V u,v e V*

and p2 by

uabv c p2(uSv) 	V u,v 6 V.

From pl and p2 a composite operator L = (pl+p2)* is formed,

where pl+p2 applied to w is the union of pl applied to w and

p2 applied to w, and p* applied to w is the union of all sets

found by applying p iteratively to w. The language generated

by G is T*nL(S), i.e. the set of all terminal strings formed

by applying the operator L to S. Hence of course the usual

notation S4-*w.

Closure operations also arise in the study of path-

finding problems. A typical problem here is, given a network

of points such that certain points are connected by arcs to

which a cost is attached, what is the least cost path between

any two points. 	It can be shown [2,6] that this problem can

be formulated as finding the closure A* of a matrix A in some

regular algebra. Other related problems, such as finding a

route between two points having the least probability of

blockage, can also be formulated in the same way. Rather

3.

interestingly the algorithms we present in Chapter II

can be used uniformly in the solution of such problems.

As a final example of where closure operators are

important, let us observe that lattice theory is a study

of relations which are anti-symmetric, and reflexive and

transitive. Quite often in the practical application of

lattice theory, one is not given such a relation but must

construct it from other known relations on the elements

being considered, and this invariably involves a closure

operation. Non-trivial evidence of this can be seen in the

construction of the lattice of "partitions with the substitution

property" in the study of sequential machine decompositions

The regular algebras are important as a step towards

a more universal study of closure operators, since they would

appear to offer the "simplest" examples of algebras having a

non-trivial closure operator. The . and + operators, which

are iterated to form the * operator of regular algebra, have

quite simple properties - for instance distributivity

a.(b + c) = a.b + a.c of . over +, and associativity of +

a + (b + c) = (a + b) + c. 	In comparison the while operator

mentioned earlier is much more unmanageable - distributivity

does not hold:-

a ; if p then b else c; # if p then (a;b) else (a;c);

and associativity does not hold:-

if q then (if p then a else b) else c;

if p then a else (if q then b else c);

4.

(Note; this is clearer if we use infix notation:

Writing a + b for if p then a else b; the above inequalities

become

a ; (b + c) # 	(a;b) +p (a;c)

and

(a + b) +q c # a + (b +q c)
	

)•

Even though the star operator of regular algebra is

thus a relatively simple closure operator, the study of its

properties is not simple - in fact quite the opposite.

To avoid any confusion later, we should make explicit

various terms we shall use. In Chapter I we give a purely

formal list of axioms and a rule of inference involving the

formal operator symbols +, . and *. By a regular algebra we

understand any algebra having operators +,. and * which obey

the rules given in Chapter I. Such an algebra is an

interpretation of the system of axioms. A regular expression

is simply a well-formed formula involving the symbols

(,),*,+ and ., and symbols a,b,... from a finite vocabulary

V. Regular expressions are used to denote elements of a

regular algebra. 	In particular the familiar regular languages

form just one instance of a regular algebra (a very important

one, nevertheless) in which + is interpreted as set union and

. as concatenation of words. 	In the algebra of regular

languages a regular expression is a denotation for a regular

language.

The problem we consider in Chapters III and IV is

the star-height problem for regular languages. 	(We assume

5.

of course that the reader has some familiarity with this

problem. Those readers not already acquainted with the

problem should consult the excellent paper by McNaughton

C29], in which a highly significant amount of empirical

information is presented.) The problem is concerned with

finding the "simplest" possible regular expression denoting

a particular regular language. 	In tackling this problem a

possible application we envisage is as follows. Assume one

is given a regular algebra R (not necessarily the regular

languages) in which, for each element Q, there is some

canonical denotation for Q. 	Let us call this denotation the

"value" of Q, and suppose, given a regular expression

f(a,b,...) denoting Q, it is required to "evaluate" Q.

We presume that there is some procedure to do this. Usually

one would expect that it is more difficult to evaluate starred

terms A* in f. So, if before evaluating f we can preprocess

f and find some regular expression g(a,b,...), such that in

any interpretation f(a,b,...) = g(a,b,...) and the starred

terms in g are simpler to evaluate, then evaluate g rather

than f, we will clearly optimise on the computational effort.

Since the regular languages form a free regular algebra, this

is equivalent to finding the simplest possible denotation of

a given regular language.

The approach we have adopted in tackling the star-

height problem is to regard it as a problem of how best to

calculate the closure A* of a matrix A whose entries are

elements of a regular algebra. The approach is essentially

similar to that of Eggan C18] in his pioneering work on the

6.

star-height problem. Eggan considered the following problem.

Given a (non-deterministic) finite-state recogniser of a

regular language Q, what is the minimum star-height of all

the regular expressions denoting Q which one can obtain by

using an elimination method to solve the associated system

of equations defining Q. Eggan succeeded in solving this

problem, showing that a minimal star-height expression,

obtained by applying an elimination method, equals the "rank"

of the graph. Eggan showed how to calculate the rank of a

graph, and how to order the nodes of the graph in the

elimination process in order to obtain the best possible

expression.

A rather simple converse to this result is that,

given any regular expression g(a,b,...) denoting the language

Q, there is naturally associated with g a recogniser of Q

which has rank equal to the star-height of g. Thus one arrives

at Eggan's theorem (see Chapter III): the star-height of a

language Q equals the minimum rank of all transition graphs

which recognise Q. 	Subsequent investigations of the star-

height problem 0,10,11,12,28,29] begin with this theorem and

aim to find a recogniser of Q having the least rank.

In contrast the main aim of this work is, given a

recogniser of Q, to invent new methods of "solving" for Q

which do better than a simple elimination method, i.e. to

invent systematic methods of obtaining regular expressions

for Q, from the given recogniser, which have star-height less

than or equal to the rank of the recogniser - and in some cases

strictly less than the rank of the recogniser.

7.

This approach was suggested to the author by work done

in collaboration with B.A. Carre on analogies between regular

algebra and linear algebra [2]. The sections of this paper

relevant to the present work are included in Chapter II.

First we note in Chapter I that the problem of finding a

regular expression denoting the language Q from a recogniser

of Q is equivalent to finding certain entries in the closure

A* of a matrix A. 	Now A* is analogous to (I-A)-1 in linear

algebra, since the former is the minimal solution of Y =AY+E,

where E is the unit matrix in regular algebra, and the latter

is the solution of V = AY+I , where I is the unit matrix in

linear algebra. Moreover the algebra M
P
 (R), of all pxp

matrices over the regular algebra R, is itself a regular

algebra and thus any tautologies of regular algebra apply

equally well to matrices. Beginning with these two observ-

ations, we note in Chapter II a few simple tautologies of

regular algebra which have analogues in linear algebra and

then show how these tautologies are sufficient to enable

one to derive algorithms for calculating A*, which are

analogous to the well-known elimination methods of Gauss

and Jordan in linear algebra.

In addition, as an aside to the main theme of this

thesis, we show how a number of other "path-finding algorithms",

having analogues in the iterative techniques of linear algebra,

can be succinctly described and compared using regular algebra.

Not all regular tautologies have analogues in linear

algebra, and so, in restricting oneself to simple elimination

methods for finding the closure of a matrix, one is under-

8.

utilising the properties of regular events. An aim of the

research for this thesis was therefore to seek methods of

calculating A*, for a given matrix A, which do not have

analogues in linear algebra, and which improve on the

elimination methods.

Unfortunately we have been unable to discover a

generally applicable algorithm of this nature, but in

Chapters III and IV we show that for a particular class

of graph - the factor graph - such an algorithm does exist.

Moreover the algorithm achieves one of our objectives,

namely that the regular expressions produced always have

star-height less than or equal to the star-height of those

produced by any elimination method.

The algorithm, when applied to factor graphs, does

not always yield minimal star-height expressions and the

star-height problem remains unsolved. However, we suggest

in the Conclusions how the algorithm might be extended to

other important classes of graphs, and that a further attack

along these lines might eventually lead to a solution of the

problem.

9.

I REGULAR ALGEBRAS

Regular languages, which we define in §2, have

been studied by various authors C13,22,38,39] each of whom

has given axiomatic formulations of their properties. 	In

the next section we also give an axiomatic formulation of

regular languages which is similar to that given by Salomaa

C38] and then proceed to discuss some of the elementary

consequences of the axioms.

1. 	THE SYSTEM OF AXIOMS Fl

1.1 	Axioms

The algebras we shall consider are of the form

R = (S,+,.,*), where S is a set on which are defined two

binary operators + and 	and one unary operator *. The

following are assumed as axiomatic.

Al 	(041-13)-i-y 	= 	a+(31-y) 	A4 	a. (3+y) 	= 	(a•(3)+(a•y)

A2 	a- (13-Y) 	= 	("*k3.).Y 	A5 	(a+f3)-y 	= 	(a.y)+(6-Y)

A3 aq-(3 	13-Fot 	A6 a+a 	= a

where a, 3, y E S.

The set S contains a zero element 0 such that

A7 	a+4
	

= 	a 	A8 	0•a = 	0 	= a•c 	.

Finally the star (or closure) operator * obeys:

A9 	0*•a 	= 	a 	= 	a. 11*

A10 a* 	= 	0* + 	a.a *

All 	a* 	= 	(I)* + cc)*

for all aES .

1 0.

We shall normally denote (I)* by e. 	The axioms A9-All then

become:

A9' 	e•a = a = a•e

A10 1 	a* = e + a-a*

All' 	a* 	(e + a)*

1.2 	Partial Ordering

In view of Al, A3 and the idempotency law A6 we

can define a partial ordering = on the set S by

a c s 	a+ g = 	f3.

and a strict ordering c by

a = 	a = (3 and a 	.

It is easily verified that

a c s = a+y c

a•y c f3.y

and 	y-a = y-13 for all a,(3,y e S .

Note that we do not assume the cancellative property

a" = 	=> a =

and in consequence we cannot in general infer that if

acP, then a•y c 13•y .

1.3 	Solution of Equations

We define an element a of S to be definite if and

only if t=a-t=>t = (1). 	Then we assume the following rule

of inference.

R1 a = 13'a 	=> aDV`•y

and furthermore, if (3 is definite then

a = 3•a 	y => a = (3*"

It will be observed that for any given f3 and y

the equation a=13•a+y always has a solution a=S*•y. 	The

first part of our rule R1 postulates that a=g*•y is the

minimal solution, and the second part gives a condition

under which this solution is unique.

Henceforth we shall denote the set of axioms Al-All

and the rule of inference R1 by Fl, and we shall call any

algebra R = (S,+,.,*) such that the set Fl is valid in R a

regular algebra.

2. 	INTERPRETATIONS

It is important to realise that the above system of

axioms is a purely formal system in which no meaning has been

attached to the symbols of S or to the operator symbols +,

• and *. We now describe a number of interpretations of

S,+,• and * which give rise to a regular algebra and which

are particularly important. Note that the list is by no means

exhaustive.

2.1 	Regular Languages

Consider any finite non-empty set V = {vi,v2,...,vm}

which we call an alphabet or vocabulary, and whose elements

we call letters. A word over V is a finite string of zero

or more letters of V; the string consisting of zero letters

is called the empty word.

The set of all words over V is denoted by V*. A

language over V is any subset of V*. The symbol 11) denotes the

empty set, and (1)* = e denotes the set consisting of the empty

word.

12.

The sum afl3 of two languages a and (3 is their set

union, and the product or concatenation 04.13 is the set of

all words formed by concatenating a word in a with a word

in S. The powers of a language a are defined by

a o = e, ak = aoa 	(k = 1,2,...)

and the closure a* of a is defined to be

cc

a* = 	E a
k

k=0

In the ensuing paragraphs we shall use three terms

- regular expression, regular event and regular language -

with quite different meanings. A regular expression over a

vocabulary V is defined to be a well-formed formula constructed

from the set Vu{0, the operators + • and *, and the paren-

theses (and) . Thus (v 1 + ((v2+v 1).v 3))* is a regular

expression. Also allowed are formulae in which the dot is

omitted, being denoted by juxtaposition, and parentheses are

omitted. 	In this latter case operator precedence is in the

order *, .,+ .

We define a regular event to be any element of a

regular algebra which can be denoted by a regular expression

over some finite vocabulary V.

We also define a regular language to be any set of

words over some finite vocabulary V which can be denoted by

a regular expression.

Finally, following Conway C13], we shall use the term

regular tautology to mean any equation f(a,b,...) = g(a,b,...)

between two regular expressions which is universally true in

any regular algebra.

•

13.

Regular languages are particularly important in

the study of regular algebras, since the axiom system Fl

is consistent with the regular languages and is a complete

system for proving valid equations between regular languages.

Essentially this was proved by Salomaa [38], although Salomaa's

axiom system differs from ours, particularly in the rule R1

and in the condition for uniqueness of solution of equations.

For regular languages it is however trivial to establish that

the two conditions (for uniqueness of solutions) are identical,

and all other differences between our and Salomaa's axioms

are inessential. 	(For further discussion see §2.2.3, below,

where we consider the uniqueness of solution of matrix

equations over the regular languages.)

The regular languages over V thus form a free

regular algebra, signifying that the algebra is free of any

equalities holding between its elements which cannot be

deduced using the system Fl. Hence we call the algebra of

the regular languages over vocabulary V the free regular

algebra generated by V, and denote it by RF(V).

2.2 	Matrix Algebras

2.2.1 	The Algebra M
P
(R)

If one examines the system Fl one may observe that a

number of operators satisfy the properties of + and • . For

example the operators min and max defined on the real numbers

obey the properties of +, and real addition, min and max obey

14.

the properties of • . These interpretations do not have any

practical significance when S is the set of all real numbers,

but they are very significant when we consider matrices over

the real numbers. First, however, a number of preliminaries

are necessary.

Given a 	regular algebra R we may 	form an 	algebra M
P
(R)

consisting 	of all 	pxp matrices 	whose 	elements 	belong 	to 	R.

In 	the algebra M
P
(R) 	the operators 	+ and 	• 	and 	the order

relation 	c 	are 	defined 	as 	follows:

Let

A.- Ea..
1J
]and 	B = 	Eb

1..] J

be any pxp matrices with 	elements in 	R; 	then
_ _

P

1J
a.. 	+ 	b

1
.. A+B = 	[
J , 	A•B = a

k=1
i k
• b
• kj

and

- -

A cB 	if and only 	if 	a
ij

b
ij 	

for 	all i,j.

The unit matrix E= Ceij] is defined as that pxp matrix with

eij = e if i=j and eij = (1) if i#j. The rows and columns of

this matrix are described as unit vectors. The zero or null

matrix N is that matrix all of whose entries are (1).

Powers of A are defined by

A° = E, Ak = A-Ak-1, 	k = 1,2, ...

and finally A* is defined informally as

CO

E A
k
 .

k=0

(Note, a formal definition of A* is given in Appendix A.

However the above definition of A* is much more useful

intuitively. We do not assume this form of the definition

in any proofs.)

15.

If R is a regular algebra it is a logical problem

to prove that mp(R) is a regular algebra, that is that all

the axioms Al-All and the rule of inference R1 remain valid in

m (R). 	For our axiomatisation this is a fairly simple

problem; the main parts of the proof are given in Appendix

A. Moreover for most practical applications one can also

infer the validity of Fl from the previous literature.

2.2.2 	Graphs

It is well-known that a p-node graph G can be described

by a pxp matrix A, and, conversely, a pxp matrix can always

be visualised as a p-node graph. We shall now take the

opportunity to make this precise and to introduce some

terminology which will be of use later.

A labelled graph G = (X,A) consists of a set X of p

elements xi,x2,...,xp together with a pxp matrix A = Caij]

with elements in some regular algebra R. An arc is a pair

(xi,xj) such that the arc label aii is non-null, and is said

to be directed from xi to xj. A sequence of t arcs

(x„, ,xk 	,x,)
K1 	\ 1 	2 	 't-1

such that the terminal node of each arc coincides with the

initial node of the following arc is called a path from xi

to x., of path length t. 	If i?j the path is said to be open;

whereas if i=j, p is called a closed path or cycle. A path

(open or closed) is elementary if it does not traverse any of

its nodes more than once. The path product w(p) of a path p

is defined as the product of its arc labels:

16.

w(p) 	= 	aik
1
 ak

1 k 2 	
ak t-1 j •

A graph without any cycles is called acyclic.

2.2.3 Regular Languages

If the arc labels are regular languages and, in

particular, if they are subsets of Vu{e} we call G a

(nondeterministic) transition graph. 	In general for any

path p from xi to x the path product w(p) will be a set

of words. A word v is said to be a word taking node xi to

node xj if either v c W(11) for some path p from xi to xj,

or v=e and i=j. The closure A*=[at.] is such that at. is
1 J 	 1 J

the set of all words which take node i to node j.

The consistency of Mp(RF(V)) (the algebra of pxp

matrices whose elements are regular languages over the

vocabulary V) with Fl has been studied by Salomaa C397.

Salomaa's axiom system differs from ours in a number of

respects, but mainly in rule Rl. 	Firstly, our rule R1 is

the reverse of Salomaa's rule R1 (i.e. Salomaa gives the

solution of equations of the form a = a-13+y, not a = p..a+y)

and, correspondingly, our axiom A10 (a* = cp*+a-a*) differs

from Salomaa's (a* = cp* + a*.a). 	This change is not essential

in that Salomaa's proofs of the consistency and completeness

of his axiom system can easily be modified to apply to our

own axiom system. Thus, henceforth, we shall assume any

theorems proved by Salomaa to be true and leave the reader

to convert them to proofs in our own axiom system.

17.

Secondly, Salomaa's condition for uniqueness of

solution of equations also differs (outwardly) from ours.

The relevant definition and theorem are given below.

Definition 2.1 (Salomaa): A pxp matrix M=Cmii] possesses

the empty word property (ewp) iff there is a sequence of

numbersil,i2,...,ik (k>1) such that ecm. . 	for all v,
1
141 v+i

1..c.v5A-1, and evil 	.
i
k

Theorem 2.2 (Salomaa): 	If the matrix M does not possess ewp

then the equation Y=MY+R has a unique solution, namely Y=M*R.

For lxl matrices, i.e. regular languages, it is

obvious that we have the equivalence: M does not possess

ewp <=> M is definite. The equivalence is not so obvious for

larger .matrices, but is nevertheless easily proved.

Theorem 2.3 Let A cm
p
(R

F
(V)). Then A does not possess ewp

<=-> A is definite.

Proof (i) <=. Suppose] T#N such T=AT. Then the equation

T = A-T+N has more than one solution, namely T and N.

Therefore A possesses ewp.

(ii) 	Suppose A possesses ewp. Then the graph of

A contains a cycle.

y = (x.
1
 ,x.) (xi2,xi3),...,(x; ,x.)
1 	12 	 'k 	11

such that

e E a, 	a. 	a. .
1112 1213 	1

k
1
1

(1)

Let B be the submatrix of A consisting solely of the arc

labels ai 	(v = 1,...,k-1) and a. 4 . 	BcA, so we may
. v . v+1 	 1 1(1 1

choose a matrix C such that B+C=A.

18.

Now let T=B+. 	By (1)

(bi 	b„ 	...b,) (b 	...b„)* = (bi 	_1)4)*
X 1 1 2 	1 2 1 3 	I k 	1 2 	I k 1 	1 1 2 • 	I k 1

and it follows that B.B4- D B and hence T = BT. But then

T c BT + CT = AT

and therefore A is not definite.

Following Conway [13] we call a matrix A, all of

whose non-null entries are e, a constant matrix and a matrix

all of whose non-null entries are subsets a. 	+ a. + 	... a.

	

1 1
	2 	 k

of the letters in V, a linear matrix. A constant + linear

matrix is, as the terminology suggests, one which is the sum

of a constant matrix and a linear matrix. Thus a transition

graph always has a constant + linear matrix. A recogniser

(G,S,T) is a transition graph G = (X,A) for which two subsets

S,T of the set of nodes X are designated as start and terminal

nodes, respectively; the language recognised is the set of

all words which take some start node sES to some terminal node

tET. A recogniser is all-admissible if for any node xEX

there is a path from a start node ses to x, and a path from x

to a terminal node tET.

Finally we define a graph to be deterministic if for

all words w and all nodes xi, there are no two distinct nodes

xj and xj, such that w takes xi to xj and xi to xj,. A

recogniser is deterministic if its associated graph is

deterministic and S has cardinal 1.

19.

As usual, we shall specify a recogniser diagrammatically,

as illustrated below.

A Recogniser

The graph of this recogniser has nodes X = {1,2,3} and

matrix

(I) e +a (15

A (I)

b

a

a

There is only one start node (node 1) indicated by an

unlabelled arrow pointing to the node. Terminal nodes

(nodes 1 and 2) are indicated by double circles.

Because of the very natural correspondence between

graphs and matrices we shall in future use the two words

synonymously. Thus we shall refer to the closure G* of a

graph G, where, more exactly, we mean the graph of the

closure A* of the matrix A of G.

20.

2.2.4 	Boolean Matrices

In table 1, in which R denotes the real numbers, we

have shown a number of different interpretations of S,+,•

and * which have practical value. The table is adapted from

one given by Carre [6] by adding a column giving an inter-

pretation of the * operator. 	In each case the star operator

has no real significance; it becomes important only when we

begin to consider matrices.

The algebra RB is the familiar Boolean algebra in

which 0 and 1 represent false and true. We may regard a pxp

matrix A = Caii] with elements in this algebra as specifying

a relation on the integers 1,2,...,p. Thus

iAj
	

(read i 	is related by A to j)

a
ij

= 1
	

1<i,j<p.

In Mp(RB) the operator * is highly significant since A* is

the reflexive and transitive closure of A. That is A* is

the least relation containing A and having the properties

iA*i 	 (reflexivity)

and 	(iA*j and jA*k) 	iA*k 	(transitivity).

It is this particular application of regular algebras from

which one gets the terminology "closure" operation for the

* operation.

The applications of this algebra are numerous and are

so familiar that they need hardly be mentioned. Suffice it to

say that A* represents the connectivity of a directed graph

and wherever graph theory finds application, then so does Mp(RB).

e S

RS
-CO

RB

Ru { -c,00}

{0,1}

a * 	{ 0 30 ff aa 00

1

0

max

1

RC

CacIR I a?01u{..}

0

CO

RCP min 0 CO

min
RSP

CO

TABLE 1

a* 	{ 	if a>0
if a<0

22.

2.2.5 	Finding Shortest Path

If the arc labels of a graph A are real numbers

representing costs or distances the algebra Mp(Rsp) can be

used to find the least cost or the shortest distance from

one node to another. 	Indeed it was only through reading

the paper by Carre [6] and by observing the tremendous

similarity between Carrels algebra and regular algebra that

the author first realised the usefulness of regular algebra

in the context of path-finding problems. However, before

we can make a precise comparison between regular algebra

and Carrels algebra we must remove the obstacles caused by

differences between the definitions used here and in [6].

Carrels paper was concerned exclusively with the

solution of extremal path problems, and its definition of A*

was tailored to this purpose. Let us here define A to be

the matrix whose (i,j)th element is the sum of the path

products of all elementary paths from xi to xj on the graph

of A; the matrix A as defined here corresponds to A* in [6].

Now to relate A to the closure A* of A we recall Carrels

definitions of definiteness and semi-definiteness, which can

be paraphrased as follows: Let A be a pxp matrix; then A

is semi-definite iff there is no closed path y in A with

path-product w(y)De; A is definite iff there is no closed

path y in A with path-product w(y)De. 	(Note that Carrels

definition of definiteness is identical to Salomaa's definition

of ewp and hence is equivalent to our own.)

23.

In addition to Al-A9, Carre assumed the following:

(a) commutativity of multiplication, a•f3. = [3•a 	Va,B.

(b) the order relation c is total, i.e. for any oc,B

either aci3 or Bca,

(c) the cancellation property:

Va,13,Y#-c°,aP3; 	a.(3 = a.y > 13=y

With the above properties holding one can prove the

following well-known theorem [Theorem 4.1 of 6].

Theorem 2.4 Let A be a pxp semi-definite matrix. Then the
2 	 2

series E+A+A + ... is finitely convergent, with E+A+A +...+A
r

=

A for all r>p-1.

Corollary 	A = A*.
■NO

Proof 	A s A* by p applications of A10. But by

Theorem 2.4, A = E+A-A and hence by R1, A D A*. Thus they

are equal.

Thus when A is semi-definite, shortest distances in

A are given by A*. When A is not semi-definite A must contain

at least one cycle of negative length and the concept of

distance becomes meaningless. Thus in this case A* has no

real significance.

Regular algebra may also be used to find shortest

routes between any two points in a graph as follows.

Consider a vocabulary V = {v1 ,v2 ,...,vp} and let
RSR

 be the

free regular algebra generated by V on which the following

generating relations are imposed:

V•a•V 	V.V.
1 	1 	1 	1

i = 1,2,...p) for all a.

24.

In this algebra one can prove that u* = e+a, and so

the star operator may be discarded.

To enumerate the elementary paths on an unlabelled

p-node graph G.(x,r), we give a name vi to each node xiEX,

and we label each arc of G with the name of its terminal

node, i.e. we set aij = vj for all (xi,xj) cr . 	Then within

the algebra M
p(RSR)

 the closure A* of the matrix A gives

all elementary paths on G: specifically, each product

{vi}-aIi is a set of sequences of node names, each of these

sequences defining an elementary path from xi to xj.

If the graph G is labelled with costs or distances,

the two algebras m
p (RSP

) and Mp(RSR) may be combined to give

least cost routes (and their cost) through G. 	Specifically

each arc of G is labelled with a pair (c,r) where c is the

cost of traversing the arc and r is the name of the node on

which the arc terminates. The product and sum operations

which are appropriate to finding shortest routes are:

(c,r) . (c",r') = (c-c', r-r')

(c,r) + (c',r') = (c+c-, if c+c' = c then r else r').

In practice it is of course inadvisable to store the

entire shortest route from node i to node j in the (i,j)th

element of A*. Instead it suffices to store the number of

the node immediately following node i on the shortest route

from node i to node j [7]. To do this it is simply necessary

to redefine the product operation to:

(c,r) • (c",r') 	= 	(c•c",r) .

25.

2.2.6 	Other Applications

Finally we make brief mention of three other

applications of regular algebra of practical importance.

If arc labels aid represent the probability of

going directly from node x. to node x then in m (R)
p C

(Table 1), aid represents the maximum probability of going

from node xi to xj.

If nodes represent tasks, and there is an arc from

node xi to node xj labelled with the duration of the task

,
x.
1 	

if x
i
must be completed before x may begin, then

m
p (RSC

) (Table 1) may be used in scheduling the various tasks.

Finally mp(Rcp) (Table 1) may be used to find critical

paths through routes with some likelihood of blockage. For

example if arc labels represent the width of a bridge on a

path from node xi to xj, this algebra may be used to find

the minimum width bridge on a route between two given points

xi and xj which minimises the likelihood of a blockage.

We refer the reader to [6] for detailed references

on these topics.

2.3 	Semigroups

As a final example of a regular algebra which we

shall exploit in Chapters III and IV we now mention the

regular algebra defined by a finite semigroup.

Let S = (S,-) be any finite semigroup having a unit

element e. 	Consider all subsets 2s of S and let + be the

operation of set union defined on 2s. Extend the operation

26.

• in the usual way to apply to elements of 2s by

m 	n 	m n
(E ai)•(E b.) 	= 	E 	E a.•b.

J
i=1 	j=1 	i=1 j=1

For any acts, define ao=e (the unit of S) and

a
n

= a•a
n-1

n 	= 	1,2,...

Since S is finite it is clear that for sufficiently large N

e+a-Fa2+...+a
N

= e+a+...+a
N
+...+a

N+n

for any 	and all ae2s.

We define a* to be this sum. 	In this way the semigroup S

is naturally extended to become a regular algebra. We will

normally denote this algebra by R(S).

27.

II ELIMINATION METHODS FOR FINDING CLOSURE MATRICES

Everyone knows how to solve simultaneous equations

in linear algebra! The equations

x = ax + by + e
	

(1)

y = cx + dy 	 (2)

are solved by eliminating x from the right hand side of (1),

forward substituting this value in (2) thus finding y, and

finally back substituting in (1) to get x. 	By this process

one would get

x = (1-a)-1[13(1-(c(1-a)-1b+d))-1c(1-a)-le+e] 	(3)

y = (1-(c(1-a)-1 b+d))-1 c(1-a)-1 e 	 (4)

In regular algebra, one uses the rule R1 to eliminate

variables in exactly the same way. Thus if a,b,c are letters

and e is the empty word, one obtains as minimal solutions of

the above equations

x = a*[b(ca*b+d)*ca*+e] 	 (3)'

y = (ca*b+d)*ca* 	 (4)'

(3)' and (4)' are identical to (3) and (4) if one replaces

the symbolism m* by (1-m)-1, and assumes e=1.

express

where

and

In 	both 	linear 	algebra

the 	equations 	(1)

Y 	=

Y 	=

eol 	= _

AY

x

e

0

[l

and

y

and 	regular

(2) 	in 	matrix

+ 	eol

, 	A 	=

is 	the 	first

a 	b

c 	d

algebra

form,

column

we may

as

of the 	unit

28.

matrix

(assume e=1 	in linear algebra).
e

	: [I

The solutions are

Y 	= 	(I-A)
..1

 e ol in linear algebra

and 	Y = A*eol 	in regular algebra

(more precisely this is the minimal solution).

This analogy between linear algebra and regular

algebra has surely been noticed by many others interested

in regular languages (for example, Aho and Ullman CM, but

apart from a casual reference none has bothered to investigate

the analogy further. 	In linear algebra quite significant

economies can be made in simplifying proofs and avoiding long,

involved formulae if one uses the so-called matrix methods

[21]. These methods are based on the simple concept that

matrices have inverses which satisfy properties identical to

the inverses of real numbers. 	But in regular algebra one

can also talk meaningfully about the star A* of a matrix A,

and, moreover, it has the same properties as a* for a language

a (as well as others). 	In this chapter, our objective is to

investigate fully the analogy between linear algebra and

regular algebra, and, in particular, to show how matrix methods

can equally be employed in regular algebra as well as in

linear algebra.

The impetus for this investigation was provided by

Carre [6], who, in studying some path-finding problems,

29.

obtained product forms for A* which are entirely analogous

to the Gauss and Jordan product forms for (I-A)-1 in linear

algebra. 	Carre's paper, however, falls short of our

objective, as he also used the usual "school' methods for

deriving the product forms, and, at the time, did not realise

the possibility of using matrix methods directly.

1. 	Comparison Between Uniqueness of Solutions

Before proceeding to discuss algorithms for finding

A*, for a matrix A, it is worth observing the analogy between

the conditions for uniqueness of solution of equations in

linear algebra and regular algebra.

By R1, A* is a solution of the equation

Y = AY + E 	 (1.1)

and, moreover, it is the unique solution if A is definite.

Now, in linear algebra, the equation

Y = AY + I 	 (1.2)

has the unique solution Y=(I-A)-1 if and only if I-A is

non-singular, or, if and only if T=AT—>T=0.

Let us compare this with our definition of definite-

ness: /Item (R) is definite iff TcAT-->T=N. 	The analogy is

not quite complete, but this is soon rectified by Lemma 1.1

below. Note that in the proof we anticipate the proof of

the identity (2.1): 	AA* = A*A, but we assure the reader

that we are not arguing tautologously.

30.

Lemma 1.1 	(3 T#N such that TcAT) 	(TP1 such that T=AT).

Proof 	is trivial. So let us assume R T#N such that

TcAT.

Then TcAT-A*TEA*AT 	= 	AA*T 	(by 2.1).

But by A10, A*T2AA*T.

Hence A*T = A(A*T),

i.e. T' = A*T = AT', and the lemma is proved.

It may also be possible to establish an analogue to

the determinant, det(B), of a real matrix B. 	Consider for

simplicity a 2x2 matrix

all a12
•

a21 a22

In regular algebra, the condition of non-definiteness of A

reduces to two conditions (cf. Appendix A).

Either (a) aliDe or (b) a22+a21aI1 a 122e .

Now suppose A is a real matrix, and consider B=I-A.

det(B) = (1-a 11) (1-a22) - a21a12

= (1-a 11) 	• a12 	•
all

Replacing (1-m)-1 by m*, we get:

ail 	(a22 + a2lalla12)* det(B) = 1 .

Superficially, det(B) = 0 if and only if either

(a)' all = 1

or 	(b)' a22 + a2lailai2

1

A

31.

Of course, as anyone can see, this is not true and the

analogy between (a), (b) and (a)', (b)' has been fiddled.

Nevertheless, one cannot dispute that there is a similarity

and one which is quite interesting to observe.

The condition for definiteness takes various

concrete forms under different interpretations of a regular

algebra. For instance, as we saw in Chapter I §2.2.3, for

matrices whose entries are regular languages, non-definiteness

corresponds to the empty word property defined by Salomaa.

For further discussion of this see section 5 of [2].

2. 	Some Regular Tautologies and their Analogues

Rather surprisingly, with A* replacing (I-A)-1,

much of the theory of real matrices also holds in regular

algebra. 	In this section we shall establish a few simple

regular tautologies, all of which have analogues in linear

algebra, and which are sufficient to enable us to obtain

analogues in regular algebra of all the direct methods of

solving linear equations and inverting matrices. The

tautologies are listed below, together with their proofs,

following which we give their analogues in linear algebra.

Tautology (2.1): 	A*A = AA*

Proof 	A(A*A + E) + E = AA*A + A + E

= (AA* + E)A + E

= A*A + E, by A101.

32.

_

hence, 	A(A*A + E) 2 AA*

therefore, 	(AA* + E)A 2 AA*

so, by A10', 	A*A 	 2 AA* . 	 (2.1.1) _

But, by A10', 	AA* 	 = A + A(AA*)

hence, by R1, 	AA* 	 D A*A . 	 (2.1.2)

From (2.1.1) and (2.1.2), A*A = AA* .

Tautology (2.2): 	A(BA)* = (AB)*A

Proof 	Let X = A(BA)*, Y = (AB)*A, and P = (BA)*. Then

by A10' 	 P = E + BAP

hence 	X = AP = A + ABAP

= A + ABX .

Therefore, by R1, X D (AB)*A = Y . 	 (2.2.1)

Also, since 	Y = (AB)*A ,

Y = (E + AB(AB)*)A

= A + AB(AB)*A = A + ABY .

Hence, 	BY = BA + BA(BY) .

Therefore, by R1, BY = (BA)*BA

= BA(BA)* 	 by 2.1.

So Y = A + ABY gives Y = A + ABA(BA*)

= A(E + BA(BA)*)

= A(BA)* = X . 	 (2.2.2)

From (2.2.1) and (2.2.2), 	X 	= 	Y.

Tautology (2.3): 	(A + B)* = A*(BA*)*

Proof 	Let X = (A + B)* and Y = A*(BA*)*.

Now 	 E + (A + B)Y = E + AA*(BA*)* + BA*(BA*)*

= (BA*)* + AA*(BA*)*

= A*(BA*)* . Y.

Thus by R1, 	A*A + E 	2 A*

33.

Hence, by R1, 	Y D 	(A + B)* = X.

Also, by A10', 	X = E + (A + B)X,

so 	X = AX + (E + BX),

hence, by R1, 	X 2 A*(E + BX)

= A*BX + A* .

Now X D A*BX + A* —› X D (A*B)*A* .

From (2.3.1) and (2.3.2), X = Y.

Tautology (2.4): 	(A + B)* = 	(A*B)*A*

Proof 	This is immediate from (2.2) and (2.3).

Tautology (2.5): 	(AB)* = E + A(BA)*B

Proof 	This is immediate from A10' and (2.2).

(2.3.1)

(2.3.2)

The identities (2.1) - (2.5) all have analogues in

linear algebra, which are the following:

(2.1a) : (I-A)-1 A 	= A(I-A)
-1

(2.2a) : A(I-BA)-1 = (I-AB)-1 A

(2.3a) : (I-(A+B))-1 = (I-A)-1 EI-B(I-A)-1]-1

(2.4a) : (I-(A+B))-1 = [I-(I-A)-1 B]-1 (I-A)-1

(2.5a) 	: 	(I-AB)-1 	= 	I + A(I-BA)
-1
 B .

The identities (2.3) and (2.4) will find great

prominence in the following sections, because they will enable

us to express any closure matrix as a product of elementary

transformation matrices. 	In regular algebra these identities

are well-known, indeed they are often listed as axioms

(e.g. Conway [13]).

34.

3. 	Product Forms for Closure Matrices

In this section we shall use the tautologies 2.3

- 2.5 to derive product forms for the closure A* of a pxp

matrix A, analogous to the Jordan product forms and

triangular factor representations of inverse matrices in

linear algebra. These product forms yield algorithms

analogous to the direct methods of linear algebra, for

calculating the minimal solution Y = A*B of a set of

equations of the form Y = AY + B.

In this Chapter, the typical elements of a matrix M

and its closure M* will be denoted by m
ij

and mt
j
 respectively,

l

and the closure of an element mii of M will be denoted by

J 	
th .

(m
1
..)*. The 1 	row and the j

th
column will be denoted by

mio and moj respectively.

3.1 	Row and Column Matrices

Our techniques for deriving product forms are based

on the following simple idea: Given a matrix A = AM, we

can split AM into two matrices C(1) and 	and and using

(2.4), write A* = A(0)* = (c(1) + s(1))* = (c(1)*s(1))*c(1)*

= A(1)*C(1)*, say. 	In doing so, the problem of determining

the closure of AM is turned into the problem of finding the

closure of two matrices A(1) and 	Our Our strategy is to

choose C(1) and S(1) such that

(a) the closure of C(1) can be immediately

calculated and

(b) A(1) has a "simpler" form than AM.

35.

We can repeat the process for A(1), reducing the problem

of finding A(1)* to that of finding C(2)* and A(2)* and so

on. The process is terminated when, after p steps, A(P) is

of such a form that its closure A(P)* can also be immediately

calculated. Using alternative methods of splitting, combined

with different identities of regular algebra, we can derive

different product forms for A*.

The requirement (a) above is achieved if we choose

the matrices C(k) always to be column matrices, that is

matrices of the form

4)-4 	c
lk
	0...0

2k 0

• •

(1)...(1) 	cpk 	0...§

c(k)

which are non-null in one column only (in this case the kth

column).

C(k)* is found either by inspecting its graph (see

the following figures)

Fig. 1(a) - Graph of C(k)

36.

Figure 1(b) - Graph of C(k)*

or algebraically as follows:

We express C
(k)

as

C(k) = Eoako

Then 	C(k)* = (Sok.2.ko)*

which, by 2.5, 	= E +
.Sok

(
!kook

)*
Sko .

• c C(k)* = E + 	e • • 	—ok
l
s -
c
 kk'

1
=* ko •

Thus C(k)* differs from the unit matrix only in its kth

column.

Similarly the star of a row matrix

R(k) =
.2-okrko

(3.1)

which is non-null in the kth row only is

R(k)* = E + e 	lr
—ok—kk)r*—ko • (3.2)

We shall now show how (3.1) and (3.2) are exploited

to derive the standard elimination methods of linear algebra.

37.

3.2 	The Jordan Product Forms

(1) 	Column Decomposition

To obtain a product form for A*, we first set A(C))=A

and express A(C)) in terms of its column vectors:

A(0) = E a(?)e.
j=1 —.°J —J°

Then we express A(°) as the matrix sum

A(0) = C(1) + S(1)

where C(1) (. . (3.4) = ac()?) elo and S(1) = 	a9e

j=2 —03 —J°

Hence, from (2.4),

A(°)* . (c(1) + s(1))* = A(1)*c(1)* }
(3.5)

Now since the first column of S(1) is null, the first column

of A(1) is null also, so A(1) can in turn be expressed as the

sum

A(1) 	c(2) 	s(2)

where c(2) = a)e
o2 2o and S

(2) = 	E a(1)e
jo

(3.6)

and applying 2.4 again,

A(1)* 	(c(2) 	s(2))* 	A(2)*c(2)*

(3.3)

where
A (1) 	c(1)*s(1)

where
A(2) = c(2)*s(2)

•
(3.7)

Continuing in a similar manner, setting

C(k) - S(k) = 	a(-i)e aok ako' 	
j=k+1 °j —j°

A(k) = C(k)*S(k), (k

3.8)

38.

we obtain

A(k-1)* = A(k)*-u(k)

	

'*, 	(k = 1,2,... p)

	

Now A(P) is null, so A(P)* = E. 	Therefore 3.9 gives

A * 	= 	c (P)* c (P-1)* C (1) * .

(3.9)

(3.10)

(ii) 	Row Decomposition

The product form (3.10) was derived by repeated

application of the relation (2.4), (P+Q)* = (P*Q)*P*, to

column decompositions. Alternatively, it is possible to

apply (2.3), (P+Q)* = P*(QP*)*, to row decompositions:

Corresponding to (3.8) - (3.10), if we set

R(k) 	,(k-1) T(k) 	
e a(k-1)

Lokako '
i=k+1 	

.

and

then

hence

A(k) 	
T
(k)

R
(k)

*, (k = 1,2,...p)

= R(k)*A(k)*, 	(k = 1 -

A* = R(1)*R(2)* 	R(P)* . (3.13)

We describe (3.10) and (3.13) as the Jordan product

forms for A*.

39.

3.3 	The Gauss Product Form

In order to derive a product form analogous to

the Gauss product form it is sufficient to apply the row

and column decomposition methods, defined above, alternately

to the successive matrices A
(k)

.

We again consider a pxp matrix 	to to which we

first apply the row decomposition

where

Whence

where

R(1)

A(0)*

S (1)

= -

=

=

A(0)
	=
	R(1)

	

a °) 	and
—
e
ol —l(o

(R(1) 	+ 	T(1))*

T(1)R(1)* 	.

4. 	T(1)

T(1) 	= 	1 E) 	e 	a(°)
i=2 °i—i°

= 	R(1)*s(1)*

(3.14)

(3.15)

We note that since the first row of T(1) is null, the first

row of S(1) is null also. We now perform the column

decomposition

S (1) 	= c (1) 4. A (1)

where

C(1) = s(1)e 	and A(1) = 	E s(1)e. . 	(3.16)
—ol —lo 	

j=2—°3 -3°

Whence

S(1)* = 	(c(1) + A(1))* = (c(1)*A(1))*c(1)*.(3.17)

Here both the first column and the first row of A(1) are

null; and since only the first column of C(1) is non-null,

in (3.17) we have C(1)*A(1) 	= 	(E + C(1)*C(1))A(1) = A(1) .

Therefore (3.17) simplifies to

S(1)* = A(1)*C(1)* 	(3.18)

40.

so (3.15) gives

A(0)* = R(1)*A(1)*c(1)* . 	(3.19)

Continuing in a similar fashion, setting

R(k)
= LokLk

,(k-1) T(k) = E e 	s(k) = T(k)R(k)*
.a

o 	' 	i=k+.1 ol — 1)'-1),

•

C(k) = s)e 	A(k) = 	s .e.
—ok —ko , 	

j=k+1—"—J°

we obtain

A(k)* = R(k+1)* A(k+1)* c(k+1)*

(3.20)

(3.21)

(k = 1,2,...p) .

At the pth stage A(P) and C(P) are null, so (3.21) gives

A* = R(1)* R(2)* ... R(P)* c(P-1)* c(P-2)* ... c(1)*.

(3.22)

This decomposition process is illustrated in Figure 2, which

shows the disposition of the non-null elements of the

successive R(k), C(k) and A(k) matrices.

R(1)

C(1)

R(2)

C(2)
.

•

.

.

R(k)

C(k)
A(k)

Fig. 2 Triangular Decomposition

41.

4. 	Algorithms from the Product Forms

The product forms (3.10), (3.13) and (3.22)

immediately yield algorithms for computing the minimal

solution Y=A*B of the equation Y=AY+B. These algorithms

are now presented in more detail.

4.1 	Jordan Elimination Method

Firstly, we note that if we substitute C(k) = 4r
1)-tko

(from (3.8) into (3.1)), and then use the definition of

A(k) in (3.8), we get

A(k) = (E (a(-1) 	P 	 -1)
e Lok 	kk ')*-e-ko) (! 	')

j=k+1 °J 	—JP

E 	(!
(k-1) 	(k-1) ,,(k1)

) * a (k-1))e = 	o' 	—ok 	‘ukk 	,.
j=k+1 	 KJ 	—Jo

The non-null columns of A(k) can therefore be

obtained directly from those of A(k-1), using

a(k) = a(k-1) + -(k-1) (aa-1))* 4(-1) —oj 	—oj 	Lok

. 	(4.1)

for k<jqo 	(k = 1,2,...p-1) . 	(4.2)

To find A*B = C(P)* C(P-1)* 	C(1)*B, we form

the sequence

B(°) = B, B(k) = c(k)*B(k-1) 	= 1,2,...p) . 	(4.3)

The final term gives the required solution: 	B(P) = A*B. We

note that from (4.1), the successive B(k) matrices are given

by

13(0) = B, B(k) = B(k-1) 	.(k-1) f."(
k

-1)N h(-1)
Lok 	‘k 	I* uko

(k = 1,2,...,p) . 	 (4.4)

42.

Hence the solution can be obtained by performing p

successive transformations of A and B, the matrices A
(k)

and B(k) at each stage being obtained from (4.1) and (4.4)

respectively. This method is analogous to the Jordan method

of solving Y=AY+B in linear algebra, with Y=A(
 k)y+B(k)

(k = 1,2,...,p) being the equivalent system obtained after

the elimination of the kth Y- variable.

Note that once p transformations of the original

matrix A have been completed the contents of A have been

overwritten by C(1), C(2), 	, C. 	I.e. after p

transformations

A <— C(1) C(2) • • • C(p) (4.5)

This is very convenient if later one wishes to

calculate the solution of an equation Y=AY+B for a new

value of B since one need only compute the product

C(P)* C(P-1)* 	C(1)*B using (4.4).

In linear algebra this is very often used to

advantage. The matrix (4.5) is referred to by Tewarson C427

as the product form of the inverse or PFI.

When it is required to find Al-=A*A the equations

(4.2) and (4.4) take on a rather simpler form. Substituting

B(°)=A into (4.4) we note that the final p-k columns of B(k)

are identical to the final p-k columns of A
(k)

. 	Moreover,

since the first k columns of A(k) are null we can store A(k)

and B
(k)

 in the same matrix. Thus to calculate A
+

the above

43.

method reduces to the rather simpler form e=A(P), where

A(0) - A, A(k) - A(k-1) + (k-1) 1 (k-1)N*.(k-1)
' L'ok 	‘akk 	' 'ko

(k = 1,2,...,p) . 	 (4.6)

This method has been rediscovered by many authors.

On the two-element Boolean algebra it is commonly known as

Warshall's algorithm [43], for finding shortest paths it is

often attributed to Floyd [19].

4.1.1 	Triangular Matrices

For triangular matrices the relations (3.8) - (3.10)

and (3.11) - (3.13) defining the Jordan product forms can

be greatly simplified. Specifically, in applying the column

decomposition method to a lower triangular matrix L, we have

(k) = s(k)
in (3.8) C(k)* s
	

and hence

L(k) . E 2,(0)e

j=k+1—°j —jo, 	(k ' 1,2,...0-
1)

which is simply the original matrix L with its first k

columns nullified. 	Thus C(k) is formed directly from the

kth column of L, and from (3.8) and (3.9) we have

L* = C(P)* C(13-1)*...C(1)* 	(4.8)

where 	C(k)* = E9,
+ —ok(P ck)* .2.ko' 	(k

 = l,2,...,p) •

Similarly for an upper triangular matrix U, (3.11) - (3.13)

give

U* = R(1)*R(2)*...R(P)* 	 (4.9)

where 	R(k)* 	= 	
E + f-ok(ukk)*Ilko

, 	(k = 1,2,...,p) .

To obtain the solution Y=L*B of a lower triangular

system Y=LY+B, (4.4) and (4.8) give the familiar forward

substitution method

B(0) = B, B(k) = B(k-1) + !ok(fick
"bW1) 	

(4.10)

(4.7)

(k = 1,2,...,p)

P
* 	E u

qrr
b(

j
-1) for i=c1 •

r=q

bCk) =
ij 1) (1-1) 4. (

13

b(k-1)
ij

(4.14)

for iiq

) uqq

44.

which does not involve any modifications of L. 	For an

upper triangular system Y=UY+B, (4.9) enables us to express

the minimal solution as

U*B = R(1)* R(2)* .. R(P)*B 	(4.11)

which leads to the back-substitution method

B(0) = B, B(k) . R(p-k+1)* B(k-1)

(4.12)

(k = 1,2,...,p) •

From (4.9), the B
(k)

matrices here are given by

B (k) = B (k-1) I.
eo (u)* u 	B(k-1)
q qg —go

(4.13)

where q = p-k+1; hence they have elements

,

4.2 	The Gaussian Elimination Method

To obtain a convenient method of calculating the

successive C(k), A(k) and R(k) matrices we first use (3.2)

in (3.20) to obtain:

s(k) = T(k)R(k)* = 	e 	(k-1) 	 -1) 	 -1) 	(-1)

°i'(i° 	
+aik 	(akk 	

)*,!ko) i=k+1 	'

(4.15)

Therefore, from (3.20), the C(k) and A(k) matrices are

given by

c(k) = e(k)e
 ako

P 	((k-1) + .(k-1)" (k-1)1 	(k-1)1

i=k+1
= 	!oi`aik 	' "ik 	"kk 	Ikakk 	lako

.
p

,(k-1)

(,(k-1)1

i=k+1 	

*.
E !oi "ik 	°L ic 	I ako

(4.16)

45.

and

A (k) = E s(k)e.
j=k+1—" —d"

P 	P 	(k-1)
= 	E 	E e .(a.. 	+ aC k- 1)1a (k-1)1*a -1))e. ik 	‘ kk 	' 	 J0 j=k+1 i=k+1-01 1J

P 	P 	(k-1) + ,(k),(1<-1)1. 	.
= 	E 	E e .(al 	 (4.17)

j=k+1 i=k+1-01 lj 	"ik "kj 	1Ljo

The matrix R(k) is already defined directly in terms of

A(k-1) by (3.20).

	

Since the non-null elements of R(1), R(2) 	
(k)

and 	 and C(2),...,C
(k)

and A
(k)

all occupy different

positions (see figure 2), all the R (k) and C(k) matrices

can be computed and recorded simply by performing p-1

successive transformations of the original A- matrix. Writing

0°)=A, we compute M(k) (k = 1,2,...,p-1), where the elements

of M(k) are obtained using successively

(k-1) f (k-1)11,
mik 	 m̀kk 	I

m(k-1) 4. m() m(k1)
mij 	mik mkj

-1)
m
m(k
ij

m

m (k)
= ij

for k<i<p; j=k

for k<i,j<p (4.18)

otherwise.

On termination 013-1) contains the non-null

elements of R(1) ,R(2),...,R(P) and C(1),C(2),...,C(P-1) in

their appropriate positions (see figure 3). 	In linear algebra

M(P-1) is considered an extremely useful form of the inverse,

particularly for sparse matrices and is referred to as the

elimination form of the inverse or EFI C42].

46.

R(1)

co)

R(2)

C(2)
o R(k)

C(k)

R(P)

Fig. 3

To complete the solution of the equation Y=AY+B

we need to calculate the product (3.22). 	It will be

observed that the R(k) matrices together form an upper

triangular matrix

P (k) U = 	E R
k=1

47.

whose closure by (4.9) is

U* = R(1)*...R(P)* 	(4.19)

and that the C
(k)

matrices form the strictly lower triangular

matrix

IT
L = k=1

whose closure by (4.8) is

L* = C(13-1)*C(P-2"...C(1)*
	

(4.20)

Hence the minimal solution of Y = AY+B is

Y = A*B = U*L*B. 	(4.21)

The required solution can therefore be derived by applying

the forward substitution method (4.10) followed by the back

substitution method (4.14) which give in turn L*B and

Y = U*L*B. The above procedure is analogous to the Gauss

elimination method in linear algebra.

4.2.1 	Calculating A*

To complete the calculation of A* we need to

calculate the product (3.22) which we can do in the order

A* = (R(1)*(R(2)*(...(R(P)*(c(P-1)*(...(c(2)*c(1)*)...)

Note that (other than e elements on the diagonal) the non-null

elements of the accumulated product and the non-null elements

of the remaining factors do not intersect at any stage of the

product. Thus the product can be performed by transforming

OP-1) to A* in 2p-2 steps, overwriting the contents of

OP-1) at each step.

48.

Accordingly, let

13(1) = OP-1)

then B(k), k = 2,3,... p-1, are obtained by applying the

forward substitution method (4.10):

(k-1) + b(k-1) b(k-1)
"ij 	ik 	kj

k(k-1)
,..ii

bC k) 	=
1j

j<k<i

(4.22)

otherwise .

Finally A* = B(4-1) where B(k) for k = p,p+1,...,2p-1

are obtained by applying the back substitution method (4.14):

bCk)
lj

b(k-1) + 'b(k-1)"
0 	

k qq)

b(k-1) + 1 b(k-1)"
0 	

k qq)

b(k-1) b(14-1),
qr 	rj

r=q

P
E b(k-1) b(k-1)

r=q+1 qr
rj 	'

where q = 2p-k. 	 (4.23)

4.2.2 	Calculation of Submatrices of A* - Aitken's Method

It is often necessary to find the intersection of each

row !to with each column 	where icV and jeW for some sub-

sets V and W of {1,2,-0}.

To solve this problem we observe that any sxt

submatrix of A* can be expressed as

H = PA*Q 	 (4.24)

where P is an sxp matrix composed of the s unit row vectors

corresponding to nodes iEV, and Q is a pxt matrix composed

of the t unit column vectors corresponding to nodes jcW.

49.

The expression (4.24) can be evaluated by a method

analogous to the Aitken method of linear algebra, which

can be very easily explained in graph-theoretic terms.

Consider the graph G = (X,A) of the matrix A and suppose

this graph is augmented to form a graph Ga = (XuV"uW",A 4102)

where V" = {x:. ,x'.. ,...,x } and W' = fx". ,...,x'. } are sets
1 1 	12 	1

s 	Jl 	Jt

of "duplicates" of the nodes of V and W, and +1 and 11)2 are

sets of unit arcs joining nodes x.
.
 E V" to the corresponding
ik

node x
ik

c V, and nodes x. E W to the corresponding node
4

■ ■
X. E W . This graph (illustrated in figure 4) has matrix
3k

M(0)

P

1)31

(1)12 Q

(1)22

(1)32

1)23

(1)33

•
(4.25)

where
	

M(0) =
A .

Applying the transformations (4.18) to this matrix

it is easily verified that after k steps

(1) 12 	Q(k)

(1)22 	H(k)

(1)31 _ (1)32 	1)33_

where

and

P (k)
 = pR(1)*...R(k)*

Q(k) = c(k)* ...c(1)*Q

H(k) = p(1) 1 0) .
i=, —ol —lo

(4.26)

Thus on termination,

H(P) = PA*Q. 	 (4.27)

Since a number of elements of the matrices M(k) are always

null we may dispense with them, and hence the algorithm

reduces to the following.

51.

Let

(4.28) 11*(0) . rM(0)

P

then we form M(k) 	(k = 1,2,...,p) where

(;a-1))* 	for k<i<p+s, j=k

	

(k) 	< :,(k-1) 	:,(k) :;,(k-1)

	

m(k)
	'ij

	
m(k) "Icj

for
{
k<i<p+s

k<j;p+t

otherwise .

(4.29)

At the pth stage of this algorithm

M(P) 	Q(P)
WP) = [

p(P) 	

—

H(P)

where H(P) = PA*Q is the required submatrix of A*.

The Gaussian elimination method was first described

by Carre. C6,7], and is particularly important when handling

sparse matrices EU. The method we have just described for

finding submatrices of A* first appeared in Backhouse and

Carre [2].

4.3 	The Escalator Method

An alternative form of the formulae describing the

Gaussian elimination method gives rise to the escalator

method, which we describe briefly below.

Consider,once again, the first step in the

derivation of the Gauss product form (eqns. (3.14)-(3.19)).

Let us define the matrices A11,Al2,A21 and A22 by

52.

A= 	=

Then, using

so) =

(3.15),

A11 Al2 R(1)

A21

we

A22

get

T(1)

AzIAti A21AnAl2 4- A22

whence from (3.18) and (3.19),

C11 C12

A*
C22 C21

where

C11

C12

C21

= At/ 	Ati Al2 C22A2lAtl

= AtI A12 C 22 	 (4.31)

= C22A21Ati

and

C22 	= 	(A21At1Al2 -I- A22)* .

These formulae applied recursively to a sequence of

matrices of orders pxp, (p-1)x(p-1),...,1x1 yield a method

of calculating A* equivalent to Gaussian elimination.

Alternatively we can apply the formulae (4.31) to

find successively the star of a lx1 matrix, a 2x2 matrix

53.

etc. as shown in figure 5. 	In this form the corresponding

shortest path algorithm is known as Dantzig's algorithm

C14].

Finally, as with all our formulae, we are not con-

strained to split the matrix A into a row, a column and

the remainder in applying (4.31). 	Instead we could use

a "binary" splitting technique to split the matrix A

(roughly) into 4 equal sized matrices. 	Munro [32] has

applied this technique to triangular matrices in order to

take advantage of a recently introduced method of matrix

multiplication C41].

4.4 	Woodbury's Formula

Our method of deriving product forms for closure

matrices, using (2.3)-(2.5), is based on the same principles

as a method discussed by Householder C26] for finding inverse

matrices in linear algebra, involving repeated use of the

formula:

(B + URUT)-1 = B-1 - B-1 U(R-1 +V TB-1 U)-1 V TB-1 . 	(4.32)

Indeed, by combining our relations (2.4) and (2.5) we obtain

the analogous formula:

(A + USVT)* = A* + A*U(SVTA*U)*SVTA*

which can be verified as follows:

(A + USVT)* = (A*USVT)*A*

(E + A*U(SV
T
A*U)*SV

T
)A*

= A* + A*U(SV
T
A*U)*SV

T
A*.

(4.33)

(by (2.4))

(by (2.5))

54.

lx1 matrix

2x2 matrix

3x3 matrix

pxp matrix

Fig. 5

55.

To demonstrate that (4.32) and (4.33) are analogous, we

replace the symbolism M* by (I-M)-1 in (4.33) which gives

(I-A-USVT)-1 = (I-A)-1+(I-A)-1 U(I-SVT (I-A)-1 1.1) -1 SVT (I-A)-1

(4.34)

or

(I-A-USV T)-1 = 	(I-A)
-1
 +(I-A)

-1
 U(S 	-V

T
 (I-A)-1 U)

- 1
V

T
 (I-A)

-1

(4.35)

If in (4.35) we set I-A = B, and S = -R, we immediately

obtain (4.32). 	It would have been possible to derive our

product forms from (4.33), but it is more convenient to apply

(2.3) - (2.5) separately.

As in linear algebra, the direct application of

(4.33) is not usually to be recommended as a practical method

of computing closure matrices, but it is sometimes useful for

finding the modification of a closure matrix A* which results

from a change of a single element of A. 	In particular, from

(4.33) the modification of A* caused by adding a to the

element aid of A is given by

(A + e
0
 .ae.

o
)* = A* + a*.(aat.)*aat

o
 .

— 1 —J 	—01 	31 	—J (4.36)

A concrete form of (4.36) has been derived from graph-

theoretic considerations by Murchland [33] and Rodionov C36]

who used it to calculate the changes in distances in a

transportation network when one of its arc lengths is reduced.

Note also that (4.32) forms the basis of "Kron's

method of tearing", which is sometimes found useful in linear

algebra for finding the inverse of matrices having particular

structural properties [42].

56.

4.5 	A Comparison of Aitken and Jordan Elimination

In this section we shall compare the Jordan

elimination method ((4.3) and (4.4)) with Aitken's method

((4.29)) for finding particular submatrices of A*. The

relationship between the two methods has been extensively

studied by linear algebraists [42] and our contribution is

merely to translate an important theorem E42, Pp.97-100],

well-known to linear algebraists, into its appropriate form

in regular algebra.

Recall ((4.30)) that in Aitken's method we need to

store the non-null elements of a matrix ii(k) (k = 1,2,...,p)

which consists of the matrix M
(k)

bordered by the three

matrices P
(k), Q(k) and H

(k). We shall assume that a

relatively small number of elements of A* are required and

hence that the storage required by and the manipulations on

(k) Q(k)
	(k)

P 	, Q 	and H 	may be disregarded.

Similarly using Jordan elimination 04.1) we assume

that the matrix B
(k)
 may be disregarded. We therefore need

to investigate the relationship between the matrices

J (k) C(C(2) • • • C(k) A(k) (4.37)

and M(k) (see figure 2) for k = ,2,...,P-1.

Note that, for sparse matrices, the fill-in (i.e.

creation of new non-null entries) in the matrices J
(k)

usually

exceeds the number of non-null entries in C
(k)

(which is no

longer required) and thus the release of this storage is not

57.

normally exploited in linear algebra. A similar statement

applies to the matrix M(k).

In order to compare the storage requirements of

M(k) and J(k) it is technically simpler to compare the

matrices

R(2)*

C(2)*

(4.38)

R(k)*
G

C(k)* (k)* 	G
[(k)

1
and

C(2)*
J

C(k)*
J

A(k) (4.39)

(For convenience in the above matrices we use the

notation C* (R*) to denote the non-null elements of the

closure of the column (row) matrix C (R) excluding the e's

on the diagonal.)

58.

Note that M(k)'. (J(k)-.) has the same number of non-

null elements as M
(k)

(J
(k)

) because, other than e's on the

diagonal, R* (C*) has the same number of non-null elements

as 	R 	(C) 	for 	any

lemma 	is 	given

Lemma 	4.1 	If

The analogue

in

M(k)..

row (column)

in 	linear

E42,Pp97-100].

is 	given

D(1 40
RG
(2)*

R G

matrix 	R 	(C).

	

algebra 	of

by 	(4.38) 	then

p(k)*
''''G

the 	following

J (k)-. 	= C(1)*
C(
G
2)*

C
G
(k4[

A(
G
k)

Proof 	The lemma is very easily proved by induction on k.

In fact intuitively the result is obvious, since in Jordan

elimination one performs the back-substitution as soon as

possible, whereas in Gaussian elimination back-substitution

is delayed until all elimination steps have been completed.

For k=0 the result is immediate. 	If it is true

for k-1, then certainly M(k)':and J(k)- are equal below the

diagonal and in rows below row k, simply by comparing (4.2)

and (4.18). Indeed from (4.2) and (4.18), M
(k)'

and J
(k)'

differ only in those entries (i,j) where i<k and j>k.

59.

This is where the matrix

R(1)* 	R(k)*
G 	G

R (2)*

R(k)*
G

differs from

Now in Ll(k)-. these elements are given by (c.f. (4.2))

(akk
k-1)

)*

-(k) -(k-1) 	-(k-1)
13 = 	(akk 	" akj

if i=j=k

if i=k, j>k

a 	+ a.
-(k-1) 	-(k-1) 1,-(k-1)‘1, -(k-1)

if i<k, j>k. ..
13 	lk 	‘ukk I akj

(4.40)

But since, by the induction hypothesis,

-(k-1)
ER(k)] akj 	

G 	kj
for j>k

and
13 G

= ER(1)*" *"
10(Gk-14] 	

for i<k, j>k
 13

it is clear by inspection of (4.40) that

a -... (k) = ER(1)* .R(k-1)*]
ij 13

+ERV)*.) *LikEW) Igki

[Rv)*...W-1) *W)*iii

Hence the lemma is also true for k, and so is true for all

k= 1,...,p.

60.

For comparable implementations of Jordan elimination

and Aitken's method the implications of lemma 4.1 must be

carefully considered. 	Essentially the lemma indicates that

Aitken's method will generally be better than Jordan

elimination both in time and space. 	It is better with respect

to storage because wherever the matrix J(k) is non-null then

so also is the corresponding element in M
(k)

. 	It is better

with respect to time in that at each stage at least as many

and + operations need to have been performed (either

explicitly or implicitly) using Jordan elimination as using

Aitken's method.

5. 	The Iterative Techniques

In many applications Theorem 12.4 holds. For such

applications one can use iterative techniques analogous to

those in linear algebra to solve the equation

Y = 	+ B 	 (5.1)

for semi-definite matrices A. Although such techniques are

not applicable to regular languages, and hence out of the

scope of this thesis, they are extremely important in many

practical applications and so worthy of a brief mention.

The simplest iterative technique is to set

Y(0) = B
	

(5.2)

and then perform successively the transformations

Y(k)
	

Ay(k-1) + B, k = 1,2,... 	. 	(5.3)

Assuming A is semi-definite and Theorem 12.4 holds, this

process may be terminated after at most p steps giving

Y(P) = A*B
	

(5.4)

61.

More generally, to solve the equation (5.1) we may

split the matrix A into two matrices C and D such that

A = C + D
	

(5.5)

and with initial condition given by (5.2), iterate

successively the transformation

Y(k) 	Cy
(k) 	Dy(k-1) + B 	

(5.6)

Note that the minimal solution of (5.6),

Y(k)
 = c*Dy(k-1) C*B 	

(5.7)

involves the closure matrix C. 	It is advantageous to choose

C so that the calculation of Y
(k)

does not involve modifying

C. 	One such choice is when A is split into a strictly lower

triangular matrix L and an upper triangular matrix U. This gives the method

Y(0) =
B

Y(k) 	LY(k)
	uy(k-1) 	B

which can be solved using the forward substitution method

(4.10) to find L*UY (k-1) + L*B.

The method (5.3) is analogous to Jacobi's method and

(5.8) is analogous to the Gauss-Seidel method in linear algebra,

as was first observed by Carre [6].

Yen C45] has described a method which consists

essentially of iterating the procedure

y(2k+1) = uy(2k+1)

▪ y

(2k)

y(2k+2) = uy(2k+2)

▪ y

(2k+1)

for k = 0,1,... with initial approximation Y(C)) = B. This

involves applying the back-substitution method (4.14) to find

y(2k+1) from Y
(2k) followed by applying the forward substitution

(5.9)

method (4.10) to find Y
(2k+2)

(5.8)

62.

One can easily prove that

Y(k) = (L*U +L*)Y(
5.8
k-1) + L*B

5.8 -

Y (5 = and 	 L*B .
' 5.9 -1- ' ' 5.9

Hence, as L*U* 2 L*U +L* 2 A , it is clear by comparing

(5.11),(5.10) and (5.3) that

Y
	v(2k) y(k) D y(k)

— 	' 5.9 — 	5.8 — 	5.3 •

(5.10)

(5.11)

(5.12)

Since method (5.3) converges after at most p iterations

if A is semi-definite we have

Lemma 5.1 	If A is semi-definite and Theorem 12.4 holds,

methods (5.8) and (5.9) converge after at most p iterationst.

We can strengthen this lemma by saying that Yen's method

(method (5.9)) will always converge at least as quickly as, if

not more quickly than, method (5.8) which in turn converges at

least as quickly as, if not more quickly than, method (5.3).

In fact the number of iterations of Yen's method will always

be less than about half the number of iterations of method

(5.3) as the next lemma states.

Lemma 5.2 	Suppose A* = E+A+...+Am (i.e. method (5.3) converges

after at most m iterations), then Yen's method converges after

Lm/2J +1 iterations.

Proof 	After k iterations of (5.9),

Y(5 2k) = (L*U*)kB
.9

and after k iterations of (5.3)

Y(
5
k)
3 	

= (E + A + A2 + 	+ Ak)B .

t A single iteration of method (5.9) consists of calculating

both
Y(2k-1)

and
Y(2k)

 from Y(2k-2)

63.

A 	= L + U ,

2
L* 	E + L + L + 	+ LP

2
U* = E + U + U + 	+ UP .

Hence

(2(Lm/ 2J+ 1))

Y
5.9

n 	Lm/ 2_1 +1
{(E+L+...+LP) (E+U+...+UF))

O
3

M) = {E (1-44))2 (L+10 3 	(L+U)m}B
5.

(by comparing terms on both sides of the inequality).

Note that Yen's method may require much less than

half the number of iterations of methods (5.3) or (5.8) for

example if A=U is strictly upper triangular.

Finally we observe:

Lemma 5.3 The number of • and + operations used by each of

the methods (5.3), (5.8) and (5.9) per iteration is the same

even when sparsity of A is exploited.

Proof 	Each of the elements of A is multiplied into once

per column of B, the methods differing only in the order in

which the multiplication is performed. Each such multiplication

which can lead to a modification of the (i,j)th element of Y

must be added to every other multiplication which can lead to

a modification of the same element of Y. Since there are

identical numbers of multiplications there are also identical

numbers of additions.

Corollary 5.4 	Yen's method (method (5.9)) invariably uses

a number of operations less than or equal to the number of

operations of methods (5.3) and (5.8).

The comparison between Yen's method and methods (5.3)

and (5.8) was first observed by Carre [unpublished work].

But

and

64.

6. 	A Brief Comparison of the Methods

The algorithms we have given in this chapter have,

as we have shown, a very wide range of applications. 	In

the previous paragraphs we have given comparisons of the

elimination methods and of the iterative methods, which are

independent of the input and of the application. To compare

the elimination methods with the iterative methods is however

a much more difficult task since the methods differ widely

in the manner in which they depend on both the input and the

application. The difficulties are also compounded because

we would need to compare the generally applicable methods we

have given with methods tailored to a particular application

(e.g. Dijkstra's [16] algorithm for finding shortest paths).

This is beyond the scope of this thesis, and so we shall

merely try to give a brief review of the literature on this

topic.

In practice the problem of finding a particular row

or column of a closure matrix should be considered separately

from the problem of finding the whole closure matrix. The

reason for this is that, in practice, the matrix A may be very

large but may also be very sparse (i.e. contain relatively few

non-null entries). The matrix A* will, however, usually be

quite full. 	In calculating particular rows or columns it is

therefore important to preserve sparsity as much as possible,

in calculating A* this is just not possible.

The iterative techniques are particularly suited to

preserving storage space (when calculating particular rows or

65.

columns of A*) since they involve no modification of the

original matrix A. 	On the other hand the elimination methods

do incur an overhead on the storage space since the

elimination form of the inverse (g4.2) will usually contain

more non-null elements than the original matrix A. 	In the

experience of linear algebraists C5,37,421 the elimination

form of the inverse is often sparse also, and the overhead

manageable. Note, however, that in the worst-case the EFI

is full as figure 6 illustrates. 	(Indeed after eliminating

node 1, A(1) has no null elements.) This example should not

deter one from using elimination techniques since the

experience of many linear algebraists [5,37,42] indicates

that the worst-case analysis is of minor importance. The

escalator method used with a binary splitting technique is

not generally to be recommended for finding particular

elements of A* for large sparse matrices A since it involves

calculating the closure A* of a large submatrix A , and

A* will usually be full. The technique is nevertheless

sometimes used by linear algebraists when the use of backing

store is essential [37]. Here, however, A* is not calculated
11

explicitly but its EFI is calculated and stored and (3.22) is

used wherever A* is required.
11

Comparisons of closure algorithms that appear in the

literature are usually restricted to the "worst case". Such

analyses can only be used as an indicator of the bottlenecks

within an algorithm and should not be used as the sole measure

of the algorithm's efficiency. 	On a worst-case analysis Yen's

66.

Fig. 6

67.

iterative technique requires ipa • and + operations [27],

where p is the number of nodes of the graph and a is the

number of non-null elements. 	In the Jordan method the elimina-

3
tion process (4.2) requires ip • and + operations (in the

worst-case) and then completing the solution of Y=A•Y+B using

2
(4.4) requires an additional p • and + operations per

column of B [21]. To find A* the algorithm given in §4.2.1

3
requires p • and + operations. Using Gauss's method the

3
elimination process (4.18) requires 1/3 p • and + operations,

and once again completing the solution of Y.AY+B requires an
2

additional p • and + operations per column of B.

Considerable effort has recently been put into

trying to find algorithms to compute A* which are asymptotically

better in the worst-case than the above algorithms. For

Boolean matrices Munro [32] has given an algorithm which

requires
0(p2.81)•

 and + operations, and for shortest paths

Hoffmann and Winograd [25] have given an algorithm which

/

requires 0(p3) comparisons and 0(p 5 /2) (approx.) real additions

and subtractions.

Worst-case analyses are, however, particularly

derogatory to the elimination methods. Figure 6 is an example

given by Johnson [27] to illustrate that Jordan's method is
3

a 0(p) algorithm. 	If p is large the matrix of this graph is

large and sparse and so this would imply that the elimination

methods cannot exploit sparsity within a matrix. On the

other hand the elimination methods are usually recommended

68.

for solving large sparse sets of equations in linear algebra

C42] and many linear algebraists consider the worst-case

analyses to be of minor importance [5,37,42]. We have no

reason to suspect that their experience will not also apply

to path-finding problems.

Unfortunately other than worst-case analyses there is

very little in the literature comparing the algorithms. 	In

an interesting paper Fontan [20] has compared Yen's, Gauss's

and Dijkstra's algorithms for large rectangular grid networks

of various sizes with arc labels uniformly distributed within

the range C0,10]. These networks are sparse and are similar

to those commonly occurring in traffic flow problems. Fontan's

results indicated that for this type of network Dijkstra's

method took significantly longer than Yen's for large matrices.

Gauss's method took almost as long as Dijkstra's to find one

row of A*, most of the time being taken by the elimination

process, but if more than one row of A* was required Gaussian

elimination became rapidly more advantageous. These results

are in complete contradiction to a worst-case analysis, since
2

Dijkstra's algorithm is well-known to be 0(p) and,

theoretically, should be superior to Yen's and Gauss's

methods. Recently Johnson C27] has presented a new method

of implementing Dijkstra's algorithm which is asymptotically

better than, for example, Yen's [44] implementation of

Dijkstra's algorithm. 	It remains to be seen whether Johnson's

method is better in practice than Yen's iterative technique.

69.

In addition Grassin and Minoux [23] have compared

Dantzig's method (the escalator method) and Floyd's algorithm

[19] (Jordan elimination) with a "new" algorithm for finding

shortest paths through large sparse symmetric networks. Their

new algorithm is a variation on Dantzig's algorithm which

exploits sparsity and some additional properties of symmetric

matrices. Their algorithm shows significant improvements but

it is not clear to what extent this is due to exploiting

sparsity and to what extent to exploiting symmetry.

Finally mention should be made of review articles

and books. The paper by Dreyfus [17] is an early review

of shortest-path algorithms, and an excellent recent review

of the iterative techniques and Dijkstra's algorithm is

given by Johnson C27]. Neither Johnson nor Dreyfus mention

the elimination methods. A very full discussion of the

elimination methods in the context of linear algebra can be

found in the book by Tewarson [42].

7. 	Conclusions

In this chapter we have demonstrated the very strong

connection between problems in linear algebra and various

path-finding problems. This relationship is important because

we can now draw upon the very considerable practical experience

of linear algebraists [5,37,42] in solving such problems.

Previously this analogy had been observed by Carre [6] and

others. Our contribution has been to introduce an algebra

70.

which is applicable to both matrix operations as well as

operations on individual elements. This has enabled us to

justify the elimination methods in a new way which, we feel,

adds much greater depth to our understanding of these

algorithms. We have also given an algebraic characterisation

of the uniqueness of solution of equations which shows

unequivocably the relationship between e.g. negative cycles

in a distance matrix and singularity of a linear equation.

We have also been able to give a simple comparison of the two

major elimination methods (g4.5) not previously given elsewhere,

and have given simple, concise comparisons of the iterative

techniques 05).

It is remarkable how much of the theory of real

matrices holds in regular algebra. However one should not

suppose that all concepts of linear algebra have analogues

in regular algebra. The notion of linear dependence in a

p-dimensional vector space is one such concept, and hence the

orthogonalisation methods of linear algebra cannot be used for

finding closure matrices. Nor should one suppose that all

regular tautologies have analogues in linear algebra. The

axiom A6 a=a+a is one example, and all other tautologies which

involve this axiom in their proof do not have analogues in

linear algebra. This has prompted the author to look for other

generally applicable closure algorithms which improve on the

elimination methods with respect to the star-height of the

resulting regular expressions. The explanation of "star-height"

and the results of this search are contained in the next two

chapters.

71.

III THE FACTOR MATRIX AND FACTOR GRAPH

1. 	Motivation - The Star-Height Problem

In this chapter and the next we present some new

results in the theory of factors of regular languages. The

term "factor", as we shall use it, was introduced by Conway

[13], and to him are due all the fundamental results of

"factor theory". Although we would hope that our results

will be of value in their own right as a contribution to

factor theory, our interest in this theory was motivated by

an interest in the "star-height problem" of regular languages.

Any regular languate may be denoted by an unbounded

number of different regular expressions. Thus (a+b)* and

(a*b)*a* are two expressions denoting the same language (con-

sisting of the set of all strings of a's and b's). Different

expressions denoting the same language may of course differ

rather trivially, but often they are remarkably "unalike".

For example (b+a(aa*b)*b)* and (b+ab)*+(a+b)*b(b+ba)*b both

denote the same language, (see example 1 of this chapter), but

are quite different in form from each other. 	It is therefore

natural to seek some canonical expression denoting a partic-

ular language - wherein the "canonicality" of an expression

signifies that it is the "simplest" of all expressions which

denote that language. 	Little, if any, progress has been

made in finding a canonical form for regular languages, and

so, as an intermediate step, efforts have been directed

towards finding a way of assigning to each regular language

some measure of the "complexity" of the language.

As a measure of the complexity of a language,

72.

Eggan's [18] definition of "star-height" would appear to

be very reasonable and is generally accepted E9, 10, 11,

12, 15, 28, 29]. To define this, one first defines the

star-height of a regular expression to be the maximum depth

of embedded starred terms in the expression. In our earlier

example (b+a(aa*b)*b)* has star-height 3 and

(b+ab)*+(a+b)*b(b+ba)*b has star-height 1. The star-height

of a regular language is the minimum star-height of all

regular expressions which denote that language. The star-

height problem is then just the problem of finding the star-

height of any given regular language.

This problem was first posed in 1963 by Eggan, and

has been tackled by various authors E9, 10, 11, 12, 15, 28,

29]. But, in common with many mathematical problems which

are quite simply stated, its solution has not been forth-

coming and it would appear to be a very difficult problem.

In the next few paragraphs we have summarised those results

which we consider an essential part of the repertoire of

anyone who wishes to tackle this problem. We then continue

to discuss, quite briefly, other results on this problem

which have appeared, and indicate why these results led us

to feel that Conway's factor theory was pertinent to the

problem.

1.1 	Previous Work

A concept which is fundamental to any study of the

star-height problem, is Eggan's [18] notion of the rank of

a transition graph. The rank is a measure of the loop com-

plexity of a graph, but it is also very closely related to

73.

the notion of star-height.

In order to define rank some additional terminology

is needed. A subgraph of a graph G is a graph Gy determined

by a set Y= X of the nodes of G, having just those arcs

(xi, xj) of G between nodes xi and xj, both of which are

in Y. 	A subgraph is strongly connected if there is a path

from xl to x2 for every ordered pair (xl, x2) of its nodes.

A section of a graph G is a strongly connected subgraph

that is not a proper subgraph of any strongly connected sub-

graph of G.

The rank r(G) of a transition graph G is then

defined as follows:

(i) 	If G is not strongly connected then

a) if G has no strongly connected subgraph r(G)=0,

otherwise

b) r(G) is the maximum rank of all the sections

of G.

(ii) 	If G is strongly connected r(G) = n+1 if and

only if

a) it does not have rank i for any in, and

b) it has a node x whose deletion from G results

in a subgraph of rank n.

The above recursive definition of rank is not par-

ticularly enlightening; readers not familiar with the notion

should refer to McNaughton's paper [29], (from which the

above definitions were taken), fora more detailed discussion.

Now consider any recogniser (G,S,T) of the language

Q. 	If we use, for example, the escalator method to calcu-

late G* we obtain some regular expression a for Q. 	Re-

74.

ordering the nodes of G and reapplying the escalator

method to calculate G* will result in a different regular

expression 13 for Q which, moreover, will often have a

different star-height to that of a. Thus there will be

some optimal ordering of the nodes of G which, when using

the escalator method to calculate G*, will yield some

minimal star-height expression y for Q from the graph G.

The definition of the rank of the graph G is so contrived

that the star-height of y equals the rank of G. 	This is

expressed by Eggan's theorem C181 which is essentially the

following:

Eggan's Theorem

Consider the use of the escalator method to.calculate G*

from a given graph G. 	Then

(i) for a suitable ordering of the nodes of G the re-

sulting regular expressions for those entries

EG*1 ij for which G is an all-admissible recogniser

have star-height equal to the rank of G. 	For

other entries (ones for which G is not an all-

admissible recogniser) the resulting regular ex-

pressions have star-height less than or equal to

the rank of G.

(ii) For all other orderings of the nodes the resulting

regular expressions for entries [G*]ii, for which

G is an all-admissible recogniser, have star-height

greater than or equal to the rank of G.

A converse to this result was also observed by

Eggan, namely that to every regular expression there natur-

75.

ally corresponds a graph G having rank equal to the star-

height of the expression. Thus one obtains the following

corollary:

Corollary E18, 29] 	The star-height of a regular language

equals the smallest rank of all transition graphs which

recognise the language.

This corollary to Eggan's theorem immediately sug-

gests an approach to the problem of determining the star-

height of a regular language which is to find a method of

obtaining a graph of least rank which is a recogniser of

the language; it is this approach that almost all papers

on the star-height problem have adopted. 	(Note that in the

literature C29] the above corollary is usually referred to

as "Eggan's theorem" - for reasons which will emerge we

would like to remove the emphasis from this corollary.)

The most significant contribution to the star-height

problem has been made in two papers by McNaughton [28,29].

In the first of the two, McNaughton studies languages whose

semi-group is a pure group. For this class of languages

McNaughton solved the star-height problem completely, al-

though his solution involved enumerating a possibly rather

large number of different graphs. However, for the subclass

of this class consisting of languages for which the finite-

state machine has a unique terminal state, he showed that

the star-height of the language equals the rank of the

finite-state machine. 	In spite of this result any connection

between the structure of the semigroup of the language and

its star-height would seem to be very illusory.

76.

In order to establish his method McNaughton intro-

duced the idea of a pathwise homomorphism between two graphs,

and then proved a simple but fundamental theorem on the

ranks of the graphs. As we shall need this result in the

next chapter we state the theorem below.

Definition 	A pathwise homomorphism is defined as a mapping

y from the nodes and arcs of the transition graph G onto

the nodes and arcs of G', such that y(x), for any node x

of G, is a node of G' and the following two conditions hold

between the arcs of G and G':

(PH1): For each arc B of G labelled b and leading from

node x1 to node x2, either y(B) is a node of G' and y(xl)

= y(x2) = y(B) or there is an arc y(B) in G' labelled b

and leading from y(x l) to y(x2).

(PH2): If w is a word taking node xi to node x2 in G'

there are nodes x1 and x2 in G with y(xl) = xi and y(x2)

=)q such that w takes node x1 to node x2 in G.

McNaughton's theorem is the following:

McNaughton's Pathwise Homomorphism Theorem If there is a

pathwise homomorphism y from G onto G' then the rank of G'

is less than or equal to the rank of G.

Following McNaughton's work a number of papers were

written by Cohen [9,10,11] and by Cohen and Brzozowski C12].

Some of these papers were concerned with extending

McNaughton's work on pure group languages (to "reset-free"

and "permutation-free" languages and to languages with the

"finite intersection property"), the basic idea being to

apply a combination of McNaughton's pathwise homomorphism

theorem and the corollary to Eggan's theorem. Others pro-

77.

vided more empirical results on the star-height problem.

However, with the exception of Eggan's theorem and

McNaughton's pathwise homomorphism theorem, progress towards

solving the star-height problem has been rather slow and

fragmentary.

Our own first step in tackling the problem was as

follows: Eggan's work showed that one closure algorithm

(the escalator method) yielded regular expressions having

star-height characterised by the rank of the graph. 	Is it

possible that other closure algorithms yield regular ex-

pressions characterised by some other property of the graph

and possibly even offer an improvement over the escalator

method? In particular, do any of the elimination methods

of Chapter II (e.g. Jordan elimination) offer such an

improvement?

It is not long before one realises that this is not

so, and that the rank is indeed the appropriate character-

istic of a graph when applying any "elimination method".

This statement is made precise in Appendix B where we give

a general formulation of an "elimination method" and use

this to prove the following theorem.

Theorem B4 	If an elimination method is used to find G*

for a graph G, then G* will contain regular expressions

having star-height at least equal to the rank of G.

We have observed, however, that the elimination

methods are all based on regular tautologies having ana-

logues in linear algebra, but that not all regular tauto-

logies have such analogues. This suggested two problems:

78.

Can we invent new closure algorithms which do not

have analogues in linear algebra? and

does the rank of a graph represent the "best" one

can do using these new algorithms, or can we do

better than the rank (i.e. obtain regular expres-

sions for the entries [G*].. of star-height less
ij

than the rank of G)?

The main stumbling block to this approach is problem

a), since it would appear extremely difficult to solve this

problem in full generality. 	(Otherwise, no doubt, such

algorithms would already have been published.) We were

therefore obliged to seek a new closure algorithm which

could be applied to particular classes of graphs, e.g.

finite-state machines, each graph in the class being somehow

naturally defined by a given language. Yet once again, for

graphs such as the finite-state machine or semigroup machine,

such algorithms seem impossible to find; thus we were

forced to look for other "naturally defined" graphs to which

such an algorithm could be applied. Cohen and Brzozowski

C12] introduced the notion of a "subset automaton" but the

difficulty in studying this class of graphs is that even for

very simple regular languages the size of the "subset auto-

maton" may be immense, thus precluding any empirical in-

vestigations.

1.2 	The Relevance of Factor Theory

The class of graphs which we eventually decided to

study are called "factor graphs". The idea of studying

factor graphs came from reading McNaughton's paper E29] and

a

b

79.

the chapter in Conway's book [13] on factor theory. 	Let us

use Conway's terminology and call G.H.K a subfactorization of

a language Q if G.H.K c Q, and call H a factor of Q if there is

no H' n H such that G.H'.K c Q. 	(Thus H is in a sense maximal).

In his paper, McNaughton presented an extremely useful tech-

nique for establishing a lower bound on the star-height of

a given language. 	The technique involves spotting partic-

ular regular languages and showing that in any recogniser

of Q these languages define nodes of the recogniser which

are connected by arcs having loop complexity at least equal

to the conjectured lower bound. 	Now, in general, subfactori-

zations of a language Q are mathematically unmanageable; but

Conway showed that factors are manageable and, moreover, exhibit

some remarkable properties. 	One such property particularly

relevant to our aims is that the factors are all the entries

in a matrix, denoted Ri and called the factor matrix, which

is the closure
(Cmax

+
Lmax)*

 of a constant + linear matrix.

Thus the factors naturally define a transition graph, which

is, moreover, a recogniser for Q.

The matrix C
max

Lmax' as it turns out, is not very

useful for our purposes, but it is a stepping stone to prov-

ing that there is a unique minimal constant + linear matrix

G
Q'

which we call the factor graph of Q, such that G*

=

One of the main reasons for studying a problem like

the star-height problem is the possible side-benefits that

one can gain on the way. 	In trying to attack the problem

using factor theory, we have been particularly on the lookout

80.

for such benefits; but also we are expressing a belief

that a mathematical solution to the problem, which is not

an impracticable "enumerative" solution, does exist. Rather

disappointingly, the algorithm we shall present does not

always yield a minimal star-height expression for a given

regular language. Nevertheless we feel it is important as

a contribution to our understanding of factor theory and

because it offers a new approach to the problem, one which

may well be more successful than earlier approaches using

Eggan's theorem.

The presentation of the algorithm to determine G*

occupies both this chapter and the next. This chapter is

devoted to the fundamental properties of factors (due to

Conway [13J) and to introducing the factor graph, GQ, of a

regular language Q and providing an algorithm to calculate

GQ. 	In the next chapter we introduce the notion of separ-

ability of factors and exploit this notion to derive an

algorithm to calculate the closure G*
Q
 of the factor graph. •

We also prove that the algorithm yields regular expressions

for Q of star-height less than or equal to the rank of

GQ, and, as we demonstrate, in many cases strictly less than

the rank of GQ.
	

Finally we discuss how the results could

be extended in a further attack on the star-height problem.

2. 	k-classes, r-classes and c-classes

We shall assume that the reader is familiar with the

basic results on finite-state machines, to be found in

Rabin and Scott [35], and the method of derivatives due to

Brzozowski [3],

81.

The purpose of this section is merely to summarise

those results which we shall require later, and to define

the k, r and c-classes of a regular language Q.

2.1 	Machine, Anti-machine and Semigroup

Let Q = V* be any language. Q naturally defines

three equivalence relations on V* - Qt, Q
r

and Q
c

- given

by:

xQky 4 (VzEV*, zxEQ 	zyEQ)

xQry 	(1zEV*, xzEQ 	yzcQ)

xQcy 	(-Vu,vEV*, uxvEQ 	uyvcQ).

These are, of course, the usual left-invariant equivalence

relation, right-invariant equivalence relation and congruence

relation introduced by Rabin and Scott [351.

The fundamental theorem linking these relations to

regular languages is the following:

Theorem 2.1 	A language Q = V* is regular 	the relation

Qt is of finite index 	the relation Qr is of finite index

the relation Qc is of finite index.

Definition 	Let Q be a regular language. By theorem 2.1,

each of the relations Qt, Qr and Qc partitions V* into a

finite number of equivalence classes. We shall call an

equivalence class modulo Qt an r-class of Q, an equivalence

class modulo Qr an t-class of Q and an equivalence class

modulo Qc a c-class of Q.

Note the peculiar switch: an equivalence class

modulo Qt is an r-class of Q. 	The reason for this will

become evident later.

82.

We shall also write t(x) for the Q,-class containing

x, r(x) for the r-class containing x, and c(x) for the c-

class containing x.

Definition 	The machine of a regular language Q is the

unique deterministic recogniser of Q having the least

number of nodes.

The anti-machine of Q is the machine of Q, where

4Q- denotes the set of all words which are the reverse of

words in Q.

Nodes of the machine and anti-machine will usually

be called states.

The semigroup of Q is the quotient of the free semi-

group V* with respect to the congruence relation Qc.

The machine and the Q,-classes of Q, and the anti-

machine and the r-classes of Q are connected by the follow-

ing theorem.

Theorem 2.2 	Let Q be a regular language. Let the states

of the machine for Q be {2,1 , 	, kn} and the states of

the anti-machine be {r1 , 	, rid. Suppose that k1 and r
I

are the start states of the respective machines and let)(EV*.

Then we have:

(a) If x takes the start state k
1

to state ki of the

machine, then the Z-class containing x, k(x), is the

set of all words which also take state kl to state ki.

(b) If IC takes the start state r1 to state r. of the anti-

machine, then the r-class containing x, r(x), is the

set of the reverse of all words which take state r
1

to

state r..

83.

Corresponding to the semigroup we can always con-

struct a semigroup machine, whose states correspond to

elements c.
1
 of the semigroup, and where, for all acV,

there is an arc labelled a from state ci to cj if

ci-c(a) = cj. Let cl be the identity element of the

semigroup. We then have:

(c) 	If x takes the state c
1

to state c
t
of the semigroup

machine, then the c-class containing x, c(x), is the

set of all words which also take state c
1

to state c
t.

Corollary 	The k, r and c-classes of Q are regular if Q

is regular.

Because of this theorem, we shall henceforth use the

symbols ki, k2, ... to denote states of a machine for a

regular language Q and also to denote the k-classes of Q

to which they correspond. 	(And similarly of course with the

symbols rl, r2, ... and cl, c2, ...).

(2.2) 	Derivatives, Anti-derivatives and Contexts

Let us consider the relation 	We We note that any

word xcV* partitions V* into two sets, denoted DxQ and ruDxQ,

where

D
x
Q = {ylxyEQ}

q,DxQ = {ylxy4Q} .

D
x
Q is called the derivative of Q with respect to x.

We then have:

Lemma 2.3 	x Q
r

y ..D
x
Q = D

Y
 Q .

This is the basis of the method of derivatives for

calculating the machine of a language Q [3].

84.

Similarly the relation Qt leads one to define anti-

derivatives: The anti-derivative of Q with respect to x,

denoted CI xQ is

	

Ci 	= {Y1xY0} = {Y1 4.0CEQ} .

Lemma 2.4 	x QR y 	Clic Q 	= 	c1.1-,Q .
Finally, the relation Qc partitions the set V*xV*

into C
x
Q, the context of x in Q, and q,C

x
Q where

C
x
Q = {(u,v) I uxv E Q} .

Lemma 2.5 	x Q
c
y.eC

x
Q = C

y
Q .

The following observation, although rather elementary,

is quite important in the sequel.

Theorem 2.6 	(a) The word derivatives D
x
Q of a language Q

are unions of r-classes of Q, where DxQ2r(y) if and only if

xy EQ.

(b) The reverse of anti-derivatives of Q,

i.e. languages of the form 40- 4.-Q, are unions of 2-classes of

Q, where 'clit-Qpk(x) if and only if xy E Q.

(c) The contexts CxQ of a language gare unions

of subsets of V*xV* of the form txr, where t is an 2.-class

of Q and r is an r-class of Q, where CxQpk(u)xr(v) if and

only if uxv E Q.

Proof 	Let Q be a language and let x E V.

Then ye DxQ4xyEQ. ,4iE C1-31-Q .

But by lemma 2.4, Ci-.*-Q = 	for all y' such that y' Qt y.

	

y c DxQ 	DxQ for all y' such that y' Qt y.

i.e. 	D
x
Q = 	E 	r(y) , and part (a) is proved.

yEDxQ

85.

Part (b) is proved similarly.

Consider now C
x
Q. The pair (u,v) e C

x
Q 	uxv E Q

V E D Q and tied ÷— Q.
ux 	xv

But then, by an identical argument to that above, this implies

that u'xv' e Q for all u' e k(u) and v' Er(v) .

i.e. 	CxQ 2 2.(u)xr(v).

Whence 	C
x
Q = 	E 	k(u) xr(v), and we have proved (c).

(u,v)ECxQ

Note that although the displayed unions are over an

infinite set, the number of distinct terms is finite when

Q is regular, and so the unions themselves may be taken over

only a finite set of words.

3. 	The Fundamentals of Factor Theory

The following definitions are taken from Conway [13].

Definitions 	Let F, G, H, 	, K, Q denote arbitrary

languages (not necessarily regular).

F.G...H...J.K is a subfactorization of Q if and only if

F.G...H...J.K s Q. 	(*)

dominates it if it is also a subfactorization

of Q and F c T, G c G, 	, K c

A term H is maximal if it cannot be increased without

violating the inequality (*).

A factorization of Q is a subfactorization in which every

term is maximal.

A factor of Q is any language which is a term in some

factorization of Q.

A left (right) factor is one which can be the leftmost

(rightmost) term in a factorization of Q.

86.

Next we state two lemmas, due to Conway, which are

quite fundamental to future results. The proofs are quite

simple and can be found in Conway's book [13].

Lemma 3.1 	Any subfactorization of Q is dominated by

some factorization in which all terms originally maximal

remain unchanged.

Lemma 3.2 	Any left factor is the left factor in some

2-term factorization. Any right factor is the right factor

in some 2-term factorization. Any factor is the central

term in some 3-term factorization. The condition that L.R

be a factorization of Q defines a (1-1) correspondence

between left and right factors of Q.

We shall now give a characterisation of the factors

of Q which gives some insight into their properties. Recall

(§2) that an k-class of Q is a right-invariant equivalence

class, an r-class is a left-invariant equivalence class and

a c-class is a congruence class of Q.

Theorem 3.3 	The left factors of any language Q are

either (I) (the empty set) or are sums of 2.-classes of Q.

The right factors of Q are either (I) or are sums of r-classes

of Q and the factors are (1) or are sums of c-classes of Q.

Corollary (Conway) 	A language Q is regular if and only

if it has a finite number of factors. The factors are

regular for regular Q.

Proof 	Let L be a left factor in the two term factoriz-

ation L.R c Q of Q. 	If L 	.1), let xEL and consider any

y Et(X). 	Since L.R c Q, R c DxQ = DyQ (by Lemma 2.3).

Therefore y.R c Q, and so, since L is maximal, ycL. 	Hence

L D kW, and L = 	E 2(x), i.e. L is a sum of k-classes
xEL

87.

of Q. 	Similarly any non-empty right factor is a sum of

r-classes of Q.

If H is any factor of Q it is the central term in

a factorization LHR c Q 	(lemma 3.2). 	If H # (I), let xEH.

Then the set C
x
Q = {(u,v)IuxvEQ} D LxR = {(u,v)I uEL,vER}.

But if yEc(x), CyQ = CxQ 2 LxR. Thus, as above, yEH and

H 	= E 	c(x) .
xEH

The corollary follows from the corollary to Theorem

2.2.

The above characterisation of the factors of Q is

different to Conway's. The advantage will be seen later when

we consider the problem of calculating the factors of Q.

From now on, unless otherwise stated, we shall only

consider the case when Q is regular.

4. 	The Factor Matrix

Following Conway, let us index the left and right

factors as L1 , L2, ... , Lq and R1 , R2, ... , Rq wherein

corresponding factors (see lemma 3.2) are given the same

index. 	We now define Qij (1 5_ i,j 5 q) by the condition that

LiQijRj is a subfactorization of Q in which Qij is maximal.

(It is important to note that LiQ ijRj may not be a factor-

ization of Q). 	We note that, by lemmas 3.1 and 3.2, H is

a factor of Q if and only if it is some Qij. Thus the

factors of Q are organised into a qxq matrix which is

called the factor matrix of Q and is denoted pi.

Various properties of the factor matrix may be

observed, some of which are summarised below.

88.

Theorem 4.1

(i) H is a factor of Q r>1-1 is some entry Qij in the

factor matrix 71.

(ii) Qii is maximal in the subfactorizations Li-Qij c Lj

and Qij-Rj E Ri. Thus Qij is a right factor of Lj

and a left factor of R
i

(iii) unique indices s and t such that Q = Lt = R
s

= Q
st'

Li = Qsi and Ri = Qit.

(iv) IQI 	= 	IQI* •

(v) If
A1.A2 "

. A
m
c Q. 	

is a subfactorization of Q
.

then 	indices k1 , k 2, 	, km _ i such that

Qk 	01(1 	1 2 	m-1

Proof 	Although the proofs of all parts of this theorem

can be found in Conway's book, the proof technique is so

fundamental that it is worth repeating.

The proof of (i) is contained in the preamble to the

theorem.

To prove (ii), we observe that the subfactorization

(LiQ ij)-Rj E Q is dominated by Lj-Rj s Q. Therefore

Li-Qij c Lj is a subfactorization of Lj in which Qij must

be maximal. 	Similarly Qij-Rj c Ri is a subfactorization

of Ri in which Q. is maximal. The rest follows from lemmas

3.1 and 3.2.

The indices s and t in part (iii) are chosen by

the condition that L
t
-Ft

t
c Q dominates the subfactorization

Q•e c Q, and Ls-Rs c Q dominates the subfactorization

e-Q c Q. Then, by definition, Lt 2 Q; but also

Q 2 Lt.Rt 2 Lt.e = Lt. Therefore Lt = Q. 	Similarly

Ai E Q ik , A2 E

89.

R
s

= Q. 	The index 	s (t) is then unique, because all the

left (right) factors are distinct. To prove that Qst = Q'

we note that Qst is maximal in Ls -Qst-Rt s Q implies that

it is also maximal in .the subfactorization Ls- Qst E Lt. 	But

L
t

= Q, and R
s

is maximal in Ls •R5 = Q. Therefore Q
st

= R
s —

= Q. Now Ls-Q E Q and Li-Ri E Q are both factorizations

of Q; 	so Ls-Li-Ri c Q is a subfactorization of Q in which

Li and Ri are maximal. Therefore, by definition of Qsi,

Li = Qsi. Similarly, Ri = Qit.

Part (iv) can now be proved quite simply. We observe

(a) Qii 2 e (Since Li-Ri = Li-e-Ri = Q). 	and

(b) Q ij n Qik-Qkj , for all k = 1, 2, ... , q. This follows

because, by (ii), Lk 2 Li.Q ik , and Rk 2 Qkj-R j . 	Therefore

Li-(Q ik Qkj)-R j c Lk•Rk s Q. 	So, by definition, Qij 2 QicQkj.

In matrix terms (a) and (b) are

(a)' 	(41 2 E, (b)' 	2 FQ1 • [T.

Therefore 	IQI 2 E+01-1QI, and so by R1, IT 2 7 *.

But 	7* 2 7. Therefore IQI = 01 *.

We shall prove (v) for the case m = 2; for m > 2 the

result follows by simple induction. Suppose then that

A-13 c Qij. Then (LiA)-(By c Q is a subfactorization of

Q and so must be dominated by some factorization Lk•Rk = Q.

I.e. 	Lk 2 Li-A and Rk 2 B.R.j 	But then, by (ii), A £ Qik

and B c Qkj .

4.1 is an extremely interesting and powerful

theorem, from which most results on factors can be deduced

immediately. Particularly useful is 4.1 (iv), which we shall

often apply in its alternative form (a) Qii 2 e and (b)

Qij = k Qik.Qkj*

90.

Part (iii) tells us that the s th column of 16

contains all the left factors and the tth row all the

right factors, and the intersection of this row and column

is the language Q itself. This and (iv), IQI = 141 *,

suggest very strongly that there is some recogniser of Q,

(G,{s},{t}), consisting of a graph G with start node s and

terminal node t, such that Li is the set of all words taking

node s to node i, and Rj is the set of all words taking

node j to node t. 	In fact there is often more than one

such G, but we shall show that there is a unique minimal

one.

Note, also, that (iii) does not imply that Q only

occurs once in its factor matrix. 	For instance,

[

Q = (11)* has factor matrix pfl = (11)* 	(11)*,

(11)*1 	(11)*

in which Q occurs twice. 	(We mention this because there is

a misprint in Conway's book C13,p49], in which Conway says

"The theorem does prevent Q from occurring twice in its

matrix ...". This should, of course, read "does not prevent").

As we shall see, the combination of Theorems 3.3 and

4.1 (ii) is sufficient to enable one to calculate IQI.

Various "brute force" methods can be used, but the method

we give appears to be the most straightforward and easiest

to apply.

5. 	The Factor Graph

Our objective in this section is to find a method

of determining the factor matrix of a regular language Q.

We shall prove that there is a unique minimal matrix G
Q

such

91.

that pfl 	= GQ ,GQ is a constant + linear matrix and so

is called the factor graph of Q.

The proof technique we use may seem rather round-

about, and so it is worth while explaining the difficulty.

Consider any element A of a regular algebra R. 	We shall

call any X such that X* = A* a starth root of A*.

Our aim is to prove that there is a unique minimal starth

root of rifl. 	In a free regular algebra it is quite easy to

prove that there is always a unique minimal starth root of

any element a* in the algebra (see Brzozowski [4]). The

proof, however, relies on length considerations and does not

apply to all regular algebras. 	Indeed it is not generally

[

true. Consider the matrixM=eee

e e e

e e e

[

This matrix has starth roots A
l

= 	(I) e (I) 	and

A2 = [(p (I) el 	, which are
e (I) (I) 	both minimal.

(I) 	e 	(I)

Thus there is no unique minimal starth root of M.

In order to prove that IQ' nevertheless does have a

unique minimal starth root we first prove that 	has a

starth root which is a constant + linear matrix, and then

that this matrix can be reduced to one which is minimal.

Lemma 5.1 	unique maximal constant and linear matrices

C
max

and L
max

such that pfl 2 (Cmax + Lmax)*.

Proof 	Define C
max

and L
max

to be the unique maximal

constant and linear matrices (respectively) such that

(I) 	(I) 	e

e 	(i)

92.

ro 2 Cmax and
rolLmax'

 Then Rfl
2 Cmax + Lmax

and, as —

= 	rfl 2 (Cmax 	Lmax"'

We shall now prove that the inequality in the above

lemma can be changed to an equality.

Theorem 5.2 (Conway) 	Let Cmax and Lmax be the unique

maximal constant and linear matrices of lemma 5.1 such that

WI 2 (Cma x
+ L

max
) * . Then 71 = (C

max + Lmax)* •

Proof 	Suppose x E Qij. 	If x = e then .(a) 	xs F.Cmax]ij,

since C
max

is maximal. Otherwise (b) x = al a2 	am is

a word of length m 	1, in which each a is a letter. 	But

then applying Theorem 4.1(v), 	integers 1(1 , k2, 	, km-1

such that a
1

6 Q
iki 	

a
2 	

Q
kik,' 	

, a
m
E Qk 	j . 	But

m-1

then a
1
E [L

max
]
ik,'

a
2

E
max- k ik 2' "'

, a
m
 c [L

max
]
km_ ij •

I.e. 	x 6 CL
max'

Lr
liaxij ' 	

But (a) and (b) imply

NI
2 Cmax

+ L
max'

L 	
' 	

But, using lemma 5.1,

L* 	c (C 	+ L
max

) *
2

71. Hence the Cmax
+ L

max' max — (Cmax

theorem.

We have already mentioned that in a free regular

algebra R
F

any event A* has a unique minimal starth root.

This is given by (A\E)\(A\E)
21-*

 , where E is the unit element

of R
F'

\ denotes set difference and
x2-1-*

denotes

X
2
+X

3
+X4-F... 	. 	In the algebra Mp(R F), of pxp matrices over

the free regular algebra RF, the most we can say is that if

(A\E)\(A\E)
2.-1-*

is a starth root then A* does have a unique

minimal starth root which is given by the above expression.

More formally:

Theorem 5.3 	Let A be an element of Mp(RF) where R
F

is

a free regular algebra. 	Let Mp(RF) have unit element E.

93.

Let EB\C]
ij

= Eb..\ci
j
.1 where \ denotes set difference.

ij

If A* = {(A\E)\(A\E)2."1 * then (A\E)\(A\E)
21-*

 is the unique

minimal starth root of A*.

Proof 	Let X = (A\E)\(A\E)2+*. 	By assumption X is a

starth root of A*. 	Suppose Y is also a starth root. 	We

must show that X c Y.

Suppose 	w e X
ij*

Clearly w e Yid = [(Y\E)*]ii, because Y is a starth root

of A* and A* 2 X. Hence w E E(Y\E)
n
]
ij

for some n where,

by definition of X, n 	1.

Now 	Y c A* = (A\E)*.

Hence 	Y\E c (A\E)4- .

• • • 	w 6 [(Y\E)n]iiC C((A\E)1-) Illij .

But

	

	w 6 Xii = [(A\E)\(A\E)
21-*

]ii

n = 1

w c [Y\E]ij c Yii .

I.e. 	X c Y 	and the theorem is proved.

Considering the matrix M mentioned at the beginning

of this section, we find that

(M\E)\(M\E)
2+*

This is clearly not a starth root of M.

We note however that M has e-cycles which pass

through more than one node. This cannot be true of the

factor matrix as the next lemma states. This observation

together with theorems 5.2 and 5.3 enable us to proceed to

the proof of our main theorem.

94.

Lemma 5.4
	

C
max

\E is acyclic.

Proof 	Suppose Cmax\E is cyclic. Then there must be two

distinct nodes i and j such that [C
max

]
ij

= e = EC
max

)
ji*

Now consider the matrix NI. 	It will help if the reader

refers to the figure below, which shows part of the matrix

1Q1. The nodes labelled s and t are the nodes mentioned

in Theorem 4.1.

We have indicated by labelled arrows that

Qsi = Li' 	Qit = Ri

Qsj = Lj and Qjt = Rj .

Since pfl D Cm ax' Qij 2 e and Qji 2 e.

This has also been indicated. We shall now prove that

Li = Lj 	and 	Ri = Rj .

We have pfl= 17*, (4.10v)), and FQ1 2 Cmax, by

Theorem 5.2.

Therefore pfl= pri .71 2 Ffl

Hence

and

Therefore

Similarly, using 	rtn 2 Cmax• RI!, we get Ri = Rj .

But then nodes i and j cannot be distinct and we have a

contradiction. Therefore the initial assumption is incorrect

and
Cmax\E

 must be acyclic.

.Cmax.

QSi 2 QSj.[Cmax 1ji = Qsj

Qsj 2 QSi• [C max = Qs i 	•

Qsi = Q sj 	i.e. 	Li = Lj 	.

95.

Corollary 5.5 	Let Rfl be a qxq matrix. Then (Cmax\E)P=N

for all ipq.

Finally we come to the main theorem of this chapter.

Theorem 5.6 	Let Q be a regular language, and let Cmax

and L
max

be as defined in Theorem 5.2. Then there is a

unique minimal matrix GQ such that G16 = 71, given by

G
Q 	

((C
max

+Lmax)\E)\
 ((Cmax

+ L
max

)\E)
2-F*

 . 	Moreover the

triple (GQ,{s},{t}) 	(where s and t are given by Theorem

4.1 (iii)) is a recogniser for Q.

G
Q

is a constant + linear matrix and so its graph

will be called the factor graph of Q.

Proof 	Using Theorem 5.3, we need only prove that

G* = rin where G
Q 	

((Cmax + Lmax) \ E) \ ((Cmax + Lmax)\ E)21-* .

In turn this only requires proving that GQ 2 (Cmax + Lmax)\E,

since then G*
Q
 = (GQ)* 2 (C

max Lmax)* =
ro, by Theorem 5.2.

—

Let 	pl : 	w E C(Cmax + Lmax)\E]ii

Then 	p2 : 	w has length 0 or 1.

Suppose 	p3 : 	w E EGUij .

Then 	p4 : 	w 	EGQ]ij

and so 	
p5 : 	wc[((Cmax +Lmax

)\E)2-Fir
lij .

Hence 	indices i= kl, k2, 	,
k111+1=

 j and words

m ?_ 2, w = a la 2...am

and pl : 	a
h 	

C(C
max

+ L
max

)\E]k
 k
h h+1

and hence p2 : 	a
h

has length 0 or 1, for all h=1,...,m

Now for some h we must have

p3 : 	ah 	
CG?-]khkhil

(otherwise w 	
j

[G*
Q
]
i 	

).

96.

Hence for this h

p4 : 	EG-1 ah
k
h
k
h+1

and so, for this h

p5 : ah 6 [((Cmax +Lmax)\E)2+*1
khk

h+1

Let this a
h
be v. 	v has the same properties as w

and so can in turn be expressed as the product of two or more

words 	b1 b2...b13 , 	where by the same argument one of the

b 's = u, say, also has the same properties as w. 	In this

way we can express w as a product

w = 	Y iY2...Yx
of an unbounded number x of words yf, where

Yf c [(Cmax +Lmax)\E]n
f
n
f+1

for some nodes nl, 	,nx.4.1 . But the product of two linear

matrices is either null or non-linear. 	Therefore at most

one yf has length one, and we conclude that (Cmax\E)P is

non-null for all p. 	But this contradicts corollary 5.5.

Hence the initial assumption that property p3 holds for w

must be false. Hence GQ
2 (Cmax

+ L
max 	

and by our earlier

argument G* = FT]. 	Finally, applying Theorem 5.3, G
Q

is

the minimal starth root of rql. The, last part of the theorem

follows immediately from Theorem 4.1 (iii), Q = Qst = [G16 1 st •

6. 	AN EXAMPLE

The previous results embody an algorithm for calcul-

ating 71, which we shall develop with the aid of an example.

Essentially our aim is to calculate Cm
ax +L

max

	could
a +-max ;

then use any one of the algorithms of chapter II to calculate

97.

rTnfrom GQ, using FT = GQ and

G
Q

= ((c
max

+ L
max

) \ E) \ ((
max

+ L
max

) \ E)2" although the next

chapter will develop a rather better algorithm to determine GQ.

Example 1: 	Let Q = (b+a(aa*b)*b)*

6.1 	Machine, Anti-machine and Semigroup

Theorem 3.3 suggests that we begin by calculating

the machine, anti-machine and semigroup of Q. 	This we have

done, using standard methods, in Figures 1(a), (b) and (c).

Fig. 1(a) Machine of Q.

b
a+b

Fig. 1(b) 	Anti-machine'of Q.

98.

Fig. 1(c) Semigroup of Q.

In these figures we have labelled the nodes of the

machine 2.1 , 2,2 and £3 , but, as stated after the corollary

to theorem 2.2, we shall also use the symbols £ 1 , £2 , £3 to

denote the sets (b+a(aa*b)*b)* (=Q), Qa(aa*b)* and

Qa(aa*b)*aa*, respectively, these being the right-invariant

equivalence classes to which they correspond. 	Similarly r1

is used to label a node of the anti-machine, but also denotes

the set (ab)*, this being the set of the reverse of all words

99.

which take node r 1 to itself in the anti-machine (=(ba)*) .

6.2 	Calculating the Derivatives etc.

In tables 1(a) and (b) we have used Theorem 2.6 to

determine the derivatives and anti-derivatives of Q as sums

of r-classes and sums of Z-classes of Q, respectively. Thus

in the first column of each table we have listed the 9,- and

r-classes, and the third column shows the corresponding

derivative or (reverse of) anti-derivative as a union of

r-classes or k-classes of Q, as the case may be,

Node/
2-class

Representative
element

Derivative

Q 1
	 e
	

r1 +r2+r3

2.2 	 a
	

r2+r3

ft 3
	 as
	 r 3

Table 1(a) Machine.

Node/
	

Representative 	Reverse of
r-class
	

element 	anti-derivative

e 	 9, 1

b 	 R, +

bb 2. 	32 3 2 +

a 	 (1)

r

r2

r 3

Table 1(b) Anti-machine.

100.

A very important point to note here is that, since

each ~-, r- or c-class consists of words which are equivalent

with respect to some relatio~ the properties which follow

fro m the e qui val en c esc a n be f 0 u n d by con si de r i n g rep res e n tat i ve

elements of the equivalence classes only. In order to calcu-

1 ate the de r i vat i ve s 0 f Q ass u m s 0 f r - c 1 ass e s we h a v e c h 0 s en

in column 2 of each table a representativ~ element of each

equivalence class. The choice is quite arbitrary: Then we

have used Theorem 2.6 (a) directly to determine the derivative.

For instance the class ~2 has representative a

and since

and

but

and

a-e ¢ Q

a-a ¢ Q

a-b e: Q

a-bb e: Q

(e

(a

(b

(bb

is the representative of

II

1\

II

r 1) ,

f 1+) ,

r
2
),

r 3) ,

the derivative corresponding to ~2 is r 2 + r 3 • Thus it is

quite unnecessary in these calculations to calculate regular

expressions representing the various ~-, r- and c-classes'.

A similar table, illustrating part (c) of Theorem 2.6,

could be constructed for the c-classes of Q. The part of

this table for those c-classes containing e or a word con­

sisting of a single letter is shown in Table l(c). Once again

column 1 lists the c-class and column 2 gives a representative

element of each c-class. The third column expresses the

correspondi ng context of Q, CxQ (where xis the represent­

ative), as a union of direct products of the form ~. x r ..
1 J

A simple way of calculating the appropriate entry is as fol-

lows. S~ppose one is considering the c-class ck having as

representative the element x. Consider each state ~i of

101.

the machine in turn. 	If under input x state ki goes to

state £j , read off the entry in column 3 of the kith row

of Table 1(a). 	Suppose this is r. + r
.

+ ... + r. 	. Then
i 1 	ih

add k
i
x (r. + ... +r.) to the entry already in the third

j1 ih
column of c

IC

For example consider the class c l having represent-

ative a. 	Let us write £.1÷£ if input x takes state ki
i 	j 	 i

to state £. of the machine. Then we have
i

kfL2,2 and £2 has derivative r2 + r3. Hence enter £1 x (r2+r3)

k2-4-£3 and £3

£3--
a
41 3 and £3

Thus the entry in column 3 for c l is

k l x(r2 + r3) + k2 x r3 + k 3 x r3 .

The reader should ignore column 4 of Table 1(c) for

the time being.

r3.

r 3 '

Q2 x r3

.9., 3 x r3 .

II

II

.-

Node/ 	Representative 	Context
	

Context
Congruence class 	element 	Form 1. 	 Form 2.

co
	 e
	

ki x (r1+ r2+ r3)
	

L 1 x R1+ L2x R2+ L3 X R3

+ k2 x (r2 + r3)
	

+ L1 x R2+
L2x

 R3 + L 1 x R3

+ Q 3 X r3
	+ L4 x Ri 	(i = 1,2,3,4)

Cl 	 a
	ki x (r2+ r3)

	
L3 X R3 + L1x R2

+ R'2 x r3
	+ L2x R3 + L1 x R3

N
c) 	 + 2,3 x r3 	+ L4x Ri 	(i = 1,2,3,4)

C 2
	 b
	

ki x (r1 + r2+ r3)
	

L3 X R2+ L2x R 1

+ k2 x (r1+ r2+ r3)
	

+ L2x R2+ L3 X R2

+ 2,3 x (r2 + r3)
	

+ L1 x R
2
4. L 2 x R3

-1.- L 1 x R3

Table 1(c)

103.

6.3 	The Left and Right Factors

We can now deduce the left factors and right factors

of Q from Table 1(a). 	If we consider any sum

k, + k
i

+ 	+
i

of Q,-classes-classes of Q, including the
1 	2

empty sum (I), and then determine those r-classes r, + ...+rj J1

common to the third column of all the i1 th, i2th, 	, ikth

rows of Table 1(a), then

+ T.) c Q
1 1 	1 2 	lk

	J1 	Jm

will be a subfactorization of Q. 	By inspection of all such

subfactorizations we can deduce those which are also

factorizations of Q. 	Thus for our example we would get

the following subfactorizations:

1
+ k2 	Z3)* r3
	, (Z2+ Z3)* r3 , (Z I + k3)- r3 , Z3 - r3 ,

(9,1+ 2.,2)• (r2+ r3
	k2-(r2+ r3),

k 1 -(rFr2Er3) 	9

(1)-(r i+r2+r3+r4).

Table 2 Subfactorizations of Q.

We have displayed these subfactorizations in such

a way as to make it evident that only those in the first

column are also factorizations of Q.

This information is summarised in Table 3, in which

we have also named the left and right factors L1 , L2, L3 ,

L4 and R 1 , R2, R3 , R4.

104.

Left factors 	Right factors

Q1 	
R
s

= R1 	r1 + r2 + r 3

k 1 + 2,2 	 R 2 	r2 + r 3

k + 2+ t 3 1 k 	R 3 r3

L 4 	(I) 	 R 4 	r1 + r2+ r 3 + r4

Table 3 Left and right factors

In the table we have also indicated that the indices

s and t of Theorem 4.1(iii) are both equal to 1. 	This is

because, from the machine (Fig. 1(a)), Q = ki, and from the

anti-machine (Fig. 1(b)), Q = r1 + r2+ r3; but L1 = t

and R1 = r1 + r2+ r3.

6.4 	Construction of C
max

+ L
max

and GQ

The penultimate step in the construction of the

factor graph is to construct Cmax +
Lmax.
	In our example

the graph of Cmax + L
max

will have four nodes (see Fig. 2).

In order to fill in the arc labels there are two approaches

we can adopt.

(i)
	

In Table 1(c), column 4, we have expressed the

context CxQ of each constant or linear term x (i.e.

x = e or x c V) in all possible ways in terms of

direct products of left and right factors of Q.

There is then an arc labelled x from node i to

node j of Cmax + L
max

if and only if there is an

entry Li x Rj in Column 4 of Table 1(c) of the row

corresponding to x.

L
t
 = L1

L 2

L3

(ii

105.

Alternatively, we can apply Theorem 4.1(ii), which

can be restated as, x c Qij 	Lix = Lj. 	To do this

we usetherepresentationofli as2—+R— + 	+t4 ,
1 2

I k

given in Table 3. C
max

can be calculated immediately

using [Cmax]ij =e 	Li s Lj. To find L
max

consider each element x E V in turn. Under input x

the state
i 	

of the machine goes to state 2,6 , say.
m 	

"m

Thus L
i
x = (2.. + 	 c k

i 2 	k 	
—

+ 	+ Z.)•)(Rh
1
 + kh
	h

1 	
k 1

2

and CL
max

]
ij 2

x for all those j such that

L.Dk+t+ 	+
j — h h2 	h •

Using either of these techniques, we get the graph

of C
max

+ L
max

shown in Fig. 2.

e+a+b

Fig. 2 Cmax+Lmax

b 	 b

106.

Finally to get the factor graph we remove those arc

labels in C
max + Amax

which are in E or may be decomposed

into paths in
((Cmax

+ L
max

)\E)
2+*

. The factor graph for

this example is shown in Fig. 3. 	In both Figs. 2 and 3 we

have indicated, in the usual way, that the graphs are

recognisers of Q with start node s =1 and terminal node

t =1.

e+a
	

e

a+b

Fig. 3 The factor graph of Q.

6.5 	The matrix IQ'

From G
Q
we could now calculate IQ' = G* using one

of the standard methods of chapter II. However we can

get the same information about Rn by determining each
entry Qij as a sum of c-classes of Q. 	To do this we

replace each entry in G
Q
by the c-class of which it is a

representative (see Fig. 1(c)). Thus G
Q
is represented by

q) C 0 -F C 1 q) q)

C
2 (1) C

o (I)

(I) C 2 C1 (I)

C
o q) (I) C

1
+ C2

and then calculate G; in the algebra Mg(R(SQ) }where

50
i_ s the semigroup of Q, and R'('S

Q
) is the regular algebra

107.

generated by SQ (c.f. 	I§2.3). 	For this example one

can verify that G; is represented by

c
o
+c

2
+c
3
+c

6 	
c
o
+c

1
+c

2
+c

3

+c4+c6+c7

c +c 	c +c +c 2 	6 	o 	2 	3

S

c
6

+C
4
+C

6
+C

7

c
2
 +c

3 +c 6 (f)
+c7

S S S S

7
where S 	denotes the 	whole 	semigroup 	i.e. S = E

i=0
c..

6.6 	Some Remarks

There are various minor improvements one can make

to the above method of calculating GQ.

First of All, if it is only required to calculate

G
Q'

it is unnecessary to calculate the semigroup of the

language. 	However, the representation of the matrix ro
in terms of c-classes, as in the last section, is (as we

shall see) very useful and also much more informative

than calculating regular expressions denoting each of the

factors.

A second point concerns Tables 1(a) and (b). 	It

should be noted that the third column of Table 1(b) can

be deduced directly from the third column of Table 1(a)

(or vice-versa), and thus gives redundant information.

108.

This small amount of redundancy can, however, be quite

useful in checking hand calculations and so is probably

worth retaining.

Thirdly, we note that by length considerations,

G
Q

= C
min

+
Lmin'

where

Cmin =
(C
max\E)\(Cmax

\E)2+*

2+*
and 	L

min =
L
max

\(L
max

+ C
min

)

The above formulae suggest that one first calculates Cmax

andfromitC
min

,and then determines L
max

 and from it

Lmin. The sum of Cmin and Lmin is then the factor graph GQ.

In fact one rarely needs calculate Cmax and L
max

explicitly

because one can remove arcs from these matrices by inspection

as they are being constructed. Note also that the second

method of calculating Cmax and Lmax (§6.4(ii)) is preferable

to the first, and hence the construction of Table 1(c) is

unnecessary - although it does add some insight into what

is happening.

Finally, a minor technical nuisance in the study

of factors is that (I) may be a factor. 	In this example

L
4
4 is a left factor, but (1) is not a right factor. 	If

is a factor then the factor graph can have up to two "useless"

nodes, i.e. nodes such that there is no path from node s to

the node, (for example node 4 of Fig.3), or no path from

the node to node t. If we are interested in the graph GQ

as a recogniser for Q, we can always ignore these nodes and

consider the resulting all-admissible recogniser for Q. 	In

109.

all future calculations we will take the liberty of

disregarding this technical problem, and all the factor

graphs we display will be all-admissible factor graphs.

7. 	An algorithm to calculate the factor graph

We are now in a position to summarise the steps

in an algorithm to determine the (all-admissible) factor

graph for a given regular language Q. We assume naturally

that Q is given either as a regular expression or by a system

of left (or right)-linear equations. Following the algorithm

we have worked through another example, which shows explicitly

the various steps of the algorithm.

Algorithm 1 To calculate the factor graph GQ of a given

regular language Q.

Step 1 	Calculate the machine and anti-machine for the lan-

guage Q. 	Use the method of derivatives [3]). Label the

states of the machine Canti-machine) Zi, 	, km

(rl, r2, 	, ram) and use these labels to denote the

corresponding k-class Cr-class).

Step 2 Construct two tables, the first listing the k-classes

of Q and the second the r-classes of Q. Each table has 3

columns. Construct first of all the first two columns of

these tables, the first column containing simply a list of

the labels ki (ri) given to the k-classes (r-classes) of Q,

and the second column containing an arbitrary representative

element of the corresponding class. The third column of

each table is now constructed. 	In the first table this

110.

column represents the various derivatives of Q as unions

of r-classes of Q, and in the second table it represents

the reverse of the various anti-derivatives of Q as unions

of k-classes of Q. Suppose the k-class 	has representative

xi and the r-class rj has representative yj. Then rj appears

as a term in the kith row of Table 1 if and only if xiyj c Q,

and similarly ki appears as a term in the rjth row of

Table 2 if and only if xiyj c Q.

Step 3 Deduce the corresponding left and right factors of

Q and label them L1 , L2, 	9 Lq, R1 , R2, ... 9 Rq. Find

the unique indices s and t such that Q = Lt = Rs.

To do this, one considers all subsets fk.,...,k. }
k

(excluding the empty subset) of the k-classes of Q and

finds for each subset those classes r. 	r. common to
Jn

thek.th,f6i th,...,2—th entries in the third column of
1 1 1 	

2

Table1.0nethenhas(k.+... -Fkik).(r„ + 	+ ri) c Q
1 1 	J1

is a subfactorization of Q in which (r, + 	+ r
j

) is

n

maximal. By inspecting all such subfactorizations one may

deduce the left and right factors. 	Lt = ktl+kt2+...+ktk is

that left factor such that the k-class k
tE

L
t

if and only if
1

it corresponds to a terminal node of the machine for Q.

Similarly R
s'

 + rs + 	+ rs is that right factor
1 	2

such that the r-class r
s
 c R

s
 if and only if it corresponds

to a terminal node of the anti-machine for Q.

Step 4 Calculate Cmax
. Whence deduce

Cmin =
(Cmax")"Cmax")24-* •

[Cmaxlij
	e if and only if Li = Li, and this can easily

be deduced from the representation of Li and Li as unions

of k-classes of Q.

Step 5 Calculate
Lmax°

Whence deduce

L 	= L 	\((C 	+ L)\E)21-*
min max max max 	•

2 a if and only if a c V and Li.a .E Li . This can
ELmaxiij

also be easily deduced from the representation of L. and L

as unions of k-classes of Q and the knowledge that tk.a c k.
- J

if and only if under input a the 21(th state of the machine for

Q goes to state Zi.

Finally GQ = Cmin + Lmin

We shall now illustrate the various steps in the

above algorithm by a second example.

Example 2 Q = C(x+y)*zx*(x+y)]*

Step 1

(All-admissible) machine 	(All-admissible) anti-machine

1

3

r

r2

r

r4

e

x

zx

xzx

112.

Step 2.

Representative 	Derivative

	

e 	r1 + r3 + r4

	

z 	r2+ r4

	

x 	r3+ r4

	

zx 	r1 + r2 + r3 + r4

Table 1.

r-class 	Representative
Reverse of

anti-derivative

2,1+ 2,2 4. 2,3+ 2, 4
Table 2.

Step 3.

Left factors 	Right factors

L1 	Z4 	 R 1 	r1 + r2+ r3 + r4

L,
I.,

= L2 	9,1+ k4 	 R
s
 = R2 	r1 + r3 + r4

L3 	Z2+ Z4 	 R 3 	r2+ r4

L 	Zi+ Z3+ Z4 	R 4 	r3 + r4 4

L5 	kl+ k2+ k3+ k4 	R 5 	r4

Amin

113.

Step 4

114.

Step 5

L
max

x+y+z x+y+z

(All admissible) 	Factor Graph 	GQ = Cmin+ Lmin

115.

IV CALCULATING THE CLOSURE OF A FACTOR GRAPH

1. 	Introduction

We recall that our original objective in studying

Conway's factor matrix was to try to obtain a method of

finding the star-height of a given regular language. 	It

is not long, however, before one realises that this cannot

be obtained directly from the factor graph for the language

Q. Thus for the language Q = (b + a(aa*b)*b)* of Example 1

one obtains directly from the anti-machine for Q (see III

§6, fig. 1(b)) the regular expression

Q = [(a + b)*bb + b + e] (ab)*

showing that Q has star-height one. However the factor

graph of Q (III §6,fig. 3) has rank two.

Yet a very enigmatic feature of factor graphs,

observed by examining just a few examples, is that very

often one can see ad hoc ways of determining regular

expressions for the languages which they recognise, which

have star-height less than the rank of the factor graph.

The purpose of this chapter is to develop a systematic way

of finding the closure G* of the factor graph G
Q'

which does

have the property of often yielding expressions of star-height

less than the rank of the graph GQ.

The intuitive approach adopted to tackle this problem

is based on the recursive nature of the definition of a lan-

guage Q in terms of its factors (we use recursive here in

the computer scientists sense, not the mathematicians). We

observe that if there is a loop

• • •

• • •

116.

w

V

such as the one shown above in the factor graph for Q we

would get equations

Qit = 14.(ljt

Qjt
= v.Q +

it

in the system of equations which define Q = Qst. In this

way Q is defined recursively in terms of its factors.

The question we ask is "when is a factor necessarily defined

in terms of Q?" A clue to answering this question is given

by Theorem 2.1 below, due to Conway, which states "factors

of factors are themselves factors". This means that the

relation "factor of" is a transitive relation, and so it can

be naturally reduced to an equivalence relation on the factors,

which we call "inseparable from". 	(Note that this is no

different to considering the relation "is connected to" on

nodes of a graph, and reducing it to "is strongly connected to",

which is an equivalence relation on the nodes.) Examining the

properties of factors further (section 3), we prove that the

factor matrix of a factor F is a submatrix of IQ', and,

moreover, is equal to rQ, if and only if F is inseparable

from Q. Having made this observation an algorithm for

117.

determining 4 (sections 4 and 5) which exploits

separability of factors is then obvious. The remaining

sections are then concerned with discussing the applicability

of the algorithms to the star-height problem.

2. 	Inseparable Factors

Theorem 2.1 	(Conway) Let Q be any language, and let F be

a factor of Q. Then any factor of F is also a factor of Q.

Corollary 	The relation "factor of" is a reflexive and

transitive relation on the factors of any language Q.

Proof 	If F is a factor of Q it is maximal in some

subfactorization LFR = Q of Q. If H is a factor of F it

is also maximal in some subfactorization GHJ a F . But then

H is maximal in the subfactorization LGHJR 5.. Q of Q and so

is a factor of Q. The corollary follows because Q is a

factor of Q, i.e. the relation is reflexive. 	(That "factor

of" is transitive is merely a restatement of the above theorem.)

Definition 2.2 Let F and H be factors of any language Q.

We say F is inseparable from H if and only if F is a factor

of H and H is a factor of F. Otherwise we say F and H are

separable.

Lemma 2.3 Inseparability is an equivalence relation on the

factors of Q.

118.

3. 	Factor Matrices of Factors

Let the matrix M have nodes N = {1,2,...,n} and

let N'cN be any subset of this set. Then we shall call the

matrix M' derived from M by simply removing the rows and

columns corresponding to nodes i ¢ N' the submatrix of M

defined by N'. 	If N' # N we say M' is a proper submatrix

of M.

Consider, now, any factor F of Q. Then F is some

entry Qij of IQI (III4.1(i)), and each two term product

Q icQkj is, by III4.1(iv), a subfactorization of Qij (i.e.

Q ik'QkjEQii). Moreover, by III4.1(v), all the L.R

factorizations of F = Q
ij

are included in the subfactorizations

QicQkjEflij. These observations are highly suggestive that

the factor matrix 571 of F is a submatrix of 7, and, indeed,

we shall show in this section that this is the case.

Complications arise inevitably in the proof because factors

of Q do not necessarily appear uniquely in the factor matrix,

but often appear repeatedly (as in example 1).

To avoid confusion we shall henceforth always need

to use subscripts or superscripts to identify the factor

under consideration. Thus we shall use N
Q

to denote the set

of nodes of the factor graph GQ, scl and tQ (where we previously

used just s and t) for the nodes mentioned in Theorem 1114.1

(iii), and so on.

The proof of the main theorem, that the factor matrix

rn of a factor F = Qij of Q is a submatrix of NI, follows

119.

from four simple lemmas. The first lemma recognises that F

may occur more than once in NI, and so identifies unique nodes

s
F

and t
F

such that F = Q
sFtF

and which will play the same role

in Fri as s
Q
and t

Q 	
(see III4.1(iii)). Following

this we define a subset N
F

of the nodes N
Q
of the matrix 7,

and in lemmas 3.3 and 3.4 show that kc NF
=>Qs

F
k.Qkt

F
EQs

F
t
F

= F

is a factorization of F and that these include

all the L-R factorizations of F. The final step is to show

that if k and me NF, Q
km

is maximal in
Qs
 -Q -Q 	=F. Then
F
k km mt

F
-

by the definition of FF1 the submatrix of FQ—I defined by the

set of nodes N
F

is the matrix ITI.

Lemma 3.1 Let F = Qij be a factor of Q. Then 3 indices

sF and tF such that F=
Qs t 	-

and 	and 	are both
Qs s 	Q

F F 	F F 	
t
F
 t

F
factors of F.

Proof By III4.1(ii), LiQij=Lj is a subfactorization in which

Qij is maximal. Let this be dominated by the factorization

L F -QF3
. = L.. 	(Note that III4.1(v) is being used implicitly

s 	s

here.) Then, by Lemma 1113.1, Qij = QsFi, and

by III4.1(iii) the index sF is uniquely defined. 	Now let tF

be that unique index defined by Q 	= R 	is a factor- , t
F tF s

F

ization which dominates the subfactorization Q 	R. = R
s
 .

Then also Q
sF F t

= Q 	. and hence Q
st = Q.

= F. To prove
F3 	F F

the last part, we note that, by construction, LsF.-
QsFtF.RtF E

is a factorization of Q. Thus, using III4.1(ii),

L -Q 	-Q 	-Q 	-R 	c Q is a factorization,
s
F

s
F
s
F

s
F
t
F

t
F
t
F

t
F
—

120.

and hence Qv 	
F F

and Q
t t

must be maximal in Q
sFsFsF

t
F
-Qt

F
t
F

and so are factors of Q
sFtF

= F.
Qs
F
t
F

Definition 3.2 The subset N
F

of the set N
Q
of nodes of the

factor matrix 17)1 is defined by kE
NF.4QktF

is a factor of F

and Lk.
Qkt

	

	
is a factorization of Lt .

F
E Lt

Lemma 3.3 k s N
F=

Q
s
F
kkt

F
= Q

sFt 	
is a factorization of F.

F

Proof 	By definition k e NF implies L.
K
.0 	Lt is a

	

.kt
F 	 F

factorization, which implies, by III4.1(ii),that Ls
FF

k*Qkt
F

= Lt is a subfactorization in which Q
s k

is maximal.
t
F

But by the definition of tF in the proof of lemma 3.1,

Ls
	c 	is a factorization. Therefore, Q

s k
must also

F sF.F —

be maximal in Q
sF

k.Qkt c Q
s t and so is a left factor of F.

F 	FF

Qkt is a factor by assumption, so the lemma follows immediately.
F

Lemma 3.4 If L
FF

= F is a factorization of F, 3 a unique
node k E NF such that Q

sFk
= L

F
and

Qkt
F

= RF.

Proof By III4.1(v), L
F
-11

F
=F = Q

sFtF 	
srp

	

F

implies L
F

= Q 	and

R
F
c Q

ptF
for some p. Moreover, as 	L

F
and R are

. 	'
factors,

the last two inequalities must be equalities. Suppose

L
p
-Q

ptF 	
L
tF

is dominated by the factorization L.
K
.0
‘kt 	Lt •

F 	F

Now, by 1114.1 	
ClktF = QptF = RE'

and Lk R Lp =, by

III4.1(ii), Qpk R e
' k

 R Q v , 	LF. 	Hence
Qs
F
kqkt

F
EF

F 	'F"

dominates L
F
-Ft

F
= F; but, as the latter is a factorization,

Qs
, 	= L

F
and 0 	Moreover, by definition 3.2, k E N

F.
F" 	

- ct = R
F

F

Finally, k is unique follows directly from = Q
1: 	

and

	

"6F 	"F
L .Q 	= L 	is a factorization of L
k kt

F
 Lt

121.

Lemma 3.5 Let k and m c NF. Then Qkm is maximal in

QsFk•Qkm6QmtF E QsFtF *

Proof By definition, m c NF
	

m' 	
L„ is a factor-

F 	'F
ization; hence, by III4.1(ii), Lk-Qkm.Qmt 	L„ is a sub-

'F
factorization in which Qkm is maximal. But Lk.

Qkt
F
E Lt is

also a factorization of Lt F, from which we conclude that Qkm

must be maximal in 0
skm.‘mtF E QktF°

is maximal in Q 1,-(4m•Qm„ c Q,
SFr. NM m.F

Theorem 3.6 F is a factor of Qua the factor matrix I—F7 of F

is a submatrix of the factor matrix IQ' of Q.

Proof Let F be a factor of Q. Then if we compare lemmas 3.3

to 3.5 with the definition of the factor matrix pn of F at
the beginning of Section III 4, we see immediately that the

submatrix of IQ' defined by the set NF is indeed rn.
Conversely if m is a submatrix of 	F is an entry in 71

and so is a factor of Q (see III4.1(i)).

Corollary 1 Let F and H be two factors of a regular language

Q. Then F is inseparable from H

they have the same factor matrix

they have the same factor graph.

Proof F is a factor of 	p1 is a submatrix of rffl 	H is a

factor of 	1HI is a submatrix of 71. Hence F is inseparable

from H4 ITI = n . The rest follows from the uniqueness of

the factor graph.

Corollary 2 Let F be a regular language, and let C
m

ax max

nd

F
L
max

be the maximal constant and linear matrices such that

(C
max
F 	+

Lmax
F

)* . IF'. Then F is a factor of Q if and only if

F
C
max + LFmax

 is a submatrix of C
max
 + L

Lx
.

Thus, by lemma 3.3, Qkm

122.

C21

Proof If F is a factor of Q, C
max + L

FF
max E

IFS, which is

a submatrix of IQ1. Thus by maximality of C
m
Qax + LQ

max'

C
max + LFmax

 is a submatrix of it. <= is obvious.

Finally, we recall that inseparability of factors

was defined as a symmetric closure of the relation "factor

of". The other "half" of this relation - the anti-symmetric

half - is a partial ordering on the classes of inseparable

factors, or equivalently, by Corollary 1 of the last theorem,

a partial ordering on the factor graphs of factors. This is

now defined.

Definition 3.7 Let F and H be two factors of a regular

language Q, and let GF and GH be their factor graphs. Then

we define the relation 4 on the factor graphs of factors of Q
by

GF 	GH 	iff IFI is a submatrix of 1HI.

Theorem 3.8 	is a (reflexive) partial ordering on the

factor graphs of factors of Q.

The proof is obvious.

4. 	Example 1 again

The above theorem immediately suggests a new method

of calculating 171 when Q has a factor H which is separable

from Q. For, using our knowledge that 7 is a submatrix of
7, we can write

RI = C 11
	C 1 2

(1)

123.

where C11 is a square matrix, 	The factor 'graph GQ . can be

decomposed into corresponding submatrices

G
Q

= A11 	Al2

(2)

A21 	A22

Using this notation the escalator method (II § 4.3) is

given by the formulae

C11 = Ati+Ar1 A1271A21 At1 	 (3)

C 1 2 	= 	Ai1 Al2I H I 	 (4)

C21 , = IHIA21 Ai1 	 (5)

where 7 is usually given as pfl = (A22 	A21 At/ Al2)*.

However rill is the factor matrix of the language H, and so

GA 	 (6)

where G
H

is the factor graph of H.

Formulae (3), (4), (5) and (6) form the basis of

an algorithm to compute IQI. We shall first use these

formulae to calculate the factor matrix of Example 1.

For ease of reference the all-admissible factor graph

of Q = Q11 is reproduced below.

Fig. 1

124.

The first step is to find the factor graphs of

factors of Q. 	We already have an algorithm to do this,

contained in the proof of Theorem 3.6. 	If F = Qij is a

factor of Q, this involves locating other entries Q v s

which are also equal to F, and using lemma 3.1 to choose

s
F

and tF. Then the L R factorizations of F are found by

checking whether any one subfactorization Q
sF

p .QpLF c F is

dominated by another subfactorization Qs
	
c F; finally

definition 3.2 is used to choose those k 6 NF. 	It is here

that the representation of each entry in 4 = IQ1 as a union

of c-classes of Q is particularly useful. 	For this example

we have already shown that GQ may be represented by

	

C o + C2 	Co + C i+ C2+ C 3 +

	

+ C 3 + C6 	C4+ C6 + C7

C 2+ C6 	Co+ C2+ C 3 +
	

S

C4+ C6 + C7

C 6 	C2+ C3 + C6 	S

+ C7

(Refer to III§6fig.1(c) for the meaning of co , 	, c7).

Using this representation of 4 to determine whether

Q ip .Qpj s Qij dominates Qik . Qkj E Qij it is only necessary

to compare finite subsets of the set of elements in the

semigroup against one another.

This example has been chosen for its simplicity.

Only one factor, Q 33 = Q 13 = Q 23, appears more than once in

the matrix, and this, from fig. 1, is obviously equal to

(a+b)*, and so has the factor graph shown below.

125.

a+b

Fig. 2

All other factors Q ij can be easily shown to have

the same factor graph as Q = Q1 1. 	For j=1 and for all i,

one need only check that.Q 11• - 11 — c Qi i is not dominated by

any subfactorization Qik4k 1 c (Lk' This is clearly im-

possible since Q 11 = C O + C2+ c 3+ c6
2 Q21 = C 2 1- c 6 2 Q3I = C 6 •

Thus Q = Q 11 is a factor of Q11 , and so they are inseparable.

Similarly Q 12 can be shown to be inseparable from Q. 	This

only leaves Q 22, but since Q 12

Q12 	Q32 	(C 1 	E

But 	Q 12 	is 	inseparable

order to 	use 	formulae

G
Q

Q12 , 	c1 	Q22 1-

from

(3),

e+a
b

Q,

(4),

e

Q32) ,

hence

(5)

	

Q12 	is 	a

	

so 	is 	Q22.

and 	(6), 	we

All

factor

Now

write

Al 2

of 	Q 22•

in

b a A 21 A 22

A*1 is calculated by a standard elimination method and found

to be

[(b+ab)* 	(b+ab)*(e+a)

Ail - (b+ba)*b 	(b+ba)*

The factor H in (3) - (6) is Q 33 , and its factor

matrix is determined from fig.2.

= 	C(a+b)*1

We now have all the information necessary to apply the

formulae (3) - (6), giving

D Q22 and

126.

(b+ab) * (e+a) (a+b) *b (b+ba) * 	(b+ab) * (e+a) (a+b)*1

+ (b+ab)* (e+a)

(b+ba)* (a+b)*b (b+ba) * 	(b+ba)* (a+b) *

+ (b+ba)*

(a+b) *b (b+ba) * 	 (a+b)*

(b+ab)* (e+a) (a+b)*b (b+ba)*b
+ (b+ab)*

(b+ba)* (a+b)*b (b+ba)*b

+ (b+ba)*b

(a+b) *b (b+ba)*b

The regular expressions appearing in FT1 could be

made much simpler had we used the knowledge that

Q33 = Q 31 = Q32 = (a+b)*. 	However this is irrelevant to our

aim which is simply to obtain regular expressions of smallest

star-height. 	Indeed for this example we have achieved this

aim, since all the expressions appearing in pn are of
star-height one. 	Moreover this is strictly less than the

rank of the factor graph. The final expression for Q is

Q = Q„ = (b+ab)*(e+a)(a+b)*b(b+ba)*b+(b+ab)*

which simplifies to

Q = (a+b)*b(b+ba)*b+(b+ab)* .

5. 	An Algorithm for Calculating IQ

We shall now formulate the algorithm for calculating

IQI. 	In general the algorithm is not quite as simple as in

the example above. 	In the above example all the factor

graphs GH of factors of Q were totally ordered by the

relation 	(there were only two!), Technical difficulties

arise in the algorithm because in general the relation 	is

a partial ordering on the factor graphs associated with Q.

127.

Algorithm 2. 	To calculate IQ! for a given regular language

Q.

Step 1 	Find the factor graphs GH of all factors H of Q

(including GQ). A method of doing this is given in the next

section. Associate with each factor graph GH a subset

NH = {i1 , i2, ... , ih} of the nodes {1, 2, ... , q} of the

factor graph GQ, where the submatrix of to defined by the

set N
H
is the factor matrix Pli of H. 	Note that for some

factors H there may be more than one submatrix of Til which

is equal to Firl (see e.g. the next example). 	For the pur-

poses of exposition, we shall assume these factor graphs to

be distinct.

Step 2 	Calculate the upper semi-lattice defined by the

partial ordering f1 on the distinct factor graphs GH of

factors H of Q. 	We shall call G
H
a minimal element of

this lattice if there is no other factor graph GF such that

GF - G. GQ is of course the only maximal element.

Step 3 	Choose any path Gz 	G. Gy... Gs --GR-GQ from a

minimal element G
z
of the semi-lattice to the maximal

element GQ. This defines a sequence Nz c N Y C ...c N s c N R C N Q

of the nodes of GQ. Reorder the nodes of GQ such that the

nodes in the set NQ \NR are numbered from 1 to INQ\NR I, the

nodes of NR\NS are numbered from INONR I +1 to INQ\Ns l etc.

Within any of sets NR\NS the order is immaterial.

Step 4 	For the minimal element Gz of the path calculate

G*
Z
 = IT using a standard elimination method.

Nodes in
NF\NH 	 Nodes

in NF

GF
	AFF
	 AFH

AHF
	 AHH 1

 Nodes in
NH

128.

Step 5 	Suppose the current factor matrix that has been

calculated is G* = FFT . 	If GH = G
Q'

stop; otherwise let

GF be the next point in the chain. Split GF as shown below

and correspondingly define CFF' CFH , CHF and CHH

by

G* = CFH CFF

CHH CHF

Compute ApF using a standard elimination method.

Compute all entries of GF using

1771 	(which has already been calculated)

F A* + A* A FlA A* F 	FF AFH 	HF FF

A*F A Fril F FH

FRI1 A A* HF FF •

Step 6 	Repeat Step 5.

The above algorithm requires that one calculate the

factor graphs of factors of Q. 	Once the factor graph of Q

has been calculated it is not necessary to repeat all the

steps of the algorithm given in section 7 of Chapter III to

find the factor graph of any factor F of Q. 	Instead one

essentially uses the proof of lemma 3.1 to find nodes sF and

CHH =

CFF =

CFH =

CHF =

129.

and t
F

such that F = Q
s t ,

and then definition 3,2
F F

and corollary 2 to theorem 3.6 enable one to deduce

C
max + LFmax

 directly from C
max
 + Lax . For ease of

reference the steps in this algorithm are given below.

Algorithm 3 	To calculate factor graphs GH of factors H

of Q.

Suppose H = Qij is the (i,j)th entry of

Step 1 	Calculate CQ
ax
 + L

max
 and deduce G

Q
.

m

Step 2 	Calculate (C
ax 	m

+ LQ
ax
)* in the algebra m (R(SQ)). m

(R() is the regular algebra generated by the semigroup

S Q of the language Q). 	In other words calculate each entry

of Fri as a union of c-classes of Q. 	Let this matrix be

denoted IC(Q)I.

In the following steps, in order to check that

Q10 D Qmn, one checks that

C(Q)k2, = ci 1 + ci2 +... + cix 2 C(Q)mn = cj1 +ci2 +... + cjy.

This involves comparing two finite sets for set inclusion.

Step 3 	Consider H = Qij, and consider all nodes i' such

that Qij = Qi,j. 	Let sH be that node i' such that LsH is

maximal. 	Now consider Q 	and all nodes j' such that Qs

Q
sHj

= Q
sHj'

. 	Let tH be that node j' such that Rt is maximal.

Step 4 	We now have H = Q
sHtH

. Compare all subfactorizations

2 H and Q
sHm

.Q
mt E

H for one dominating the other;
Qs

H
k.Qkt

H
thus deduce the right factors

Qkt
H

of H.

Step 5 	For all k such that 0 	is a right factor of H,
sktH

let k' be that node such that Q. = Qk't and L
k'

is maximal.

130.

Let N
H

be the set of all such k'.

Step 6 Cmax
	m

H 	
+ Lax is the submatrix of Cmax

 + L
max
 defined

by the set of nodes NH. Calculate GH using

GH = 	((C
max

+ L
max

)\E)\((Cmax
+ L

max
)\E)

2-0

Needless to say in practical applications it is not

necessary to go to quite these lengths to calculate GH, and

various ad hoc techniques, such as were used in example 1,

can be acquired with practice.

6. 	Two More Examples

Consider Q = a(a+b)*b(a+b)*a.

We shall apply algorithm 2 to determine the factor

matrix IQ'.

Step 1 	The factor graph and semigroup of Q are shown below.

Fig. 3 	Factor Graph of Q = Q13 .

Fig. 4
	

Semigroup of Q.

131.

The matrix IC(Q)I which exhibits each entry of IQI

as a union of c-classes of Q is easily found to be:

17c71

e+a+ab a+ab aba aba+ab

+aba +aba

S S aba b+ab+ba

= +ba +bab+aba

S S e+a S
+ba+aba

S S a+ba S
+aba

where S denotes the whole semigroup.

Applying algorithm 3 we can deduce the following

factor graphs for factors Qij of Q.

(a) Factor graph of Q23

(b) Factor Graph of Q14

(c) Factor graph of Q24

(d) Factor Graph of Q43 	(e) Factor Graph of Q12

a+b

(f) Factor Graph of Q44 	(g) Factor Graph of Q22

Fig. 5

a+b

132.

Step 2 	The semi-lattice defined by the relation 7-`, is

shown graphically below. 	Each node contains a representative

element of the class of inseparable factors to which the node

corresponds, together with the set of nodes which define the

submatrix of lin which equals the particular factor matrix.

Semi-lattice -.2. w Fig.

(a+b)*a*

(a+b)*a*

I C431

(from fig.5(a))

133.

Step 3 	The particular path from bottom to top of this semi-

lattice, which we will use in the calculation of I-0 , has

been arrowed. The node numbering has already been chosen

to meet the requirements of step 3 of algorithm 1.

Step 4

Step 5

1Q431

Clearly IQ 441 = C(a + b)*]. 	(from fig. 5(f)).

Repeating step 5 of the algorithm we get successively

e+(a+b)*a 	(a+b)* 	(from fig. 5(d))

(a+b)*a (77-10+

a*+a*b(a+b)*a* 	a*b(a+b)*a 	a*b(a+b)*— FT;;1 =

e+a (a*+a*b (a+b)*a*) 	a (a*+a*b (a+b)*a*) 	aa*b (a+b) *a 	aa*b (a+b) *

a*+a*b (a+b) *a*

171 	
(a+b) *a* 	 1(7231

(a+b) *a*

(From Fig.3).

In each of these matrices we have only shown the new

entries in the matrix. 	The final expression for Q is

Q 13 = aa*b(a+b)*a.

Remarks. 	This example is instructive for two reasons. 	First-

ly it illustrates that in general one has a choice of path

through the semilattice. Different paths will usually give

different regular expressions for the language Q, although in

this case all paths yield expressions of the same star height.

134.

Whether there are examples where two different paths through

the semi-lattice yield different star-height expressions

I do not know. 	In any case one can always determine the

star height that a particular path will give and choose one

which is optimal. Secondly, all regular expressions appearing

in Ffl are of star height one, yet the rank of the factor

graph is two 	Indeed we shall show later that the algorithm

always yields regular expressions having star-height less

than or equal to the rank of the factor graph of Q.

Example 2 (continued)

Let us return to example 2 (see pages 111-114). The

language considered is Q = C(x+y)*zx*(x+y)]*, and its factor

graph is reproduced in fig. 8(b) below. As we are only

interested in deriving a regular expression for the language

Q, which is the (2,2)th entry of the factor matrix, we shall

not calculate the whole factor matrix using algorithm 2 but

only 0 only ,22 • 	To do this we apply steps 1 to 3 of algorithm 2

as before, but then apply steps 4 and 5 in the reverse order.

This results in a system of equations for

be solved to deduce a regular expression for the language

Q = Q22.

The semigroup of Q is shown in Fig. 7, and in

table 1 we show the factor matrix as a union of congruence

classes of Q.

Q22 which can then

135.

Fig, 7. Semigroup of Q.

136.

e z+zx
+zy+zx zx+xzx +xz+xzx M-xz M+z

+xzx+xzy

e+x e+x e+x M-xz M+z
+zx+xzx +zx+xzx +zx+xzx

+y+zy+xzy +z+xz

y+x x e+x N-e-xz N
+xzx+xzy +xzx +xz+xzx

zy+zx z M-xz M+z
+xzx+xzy zx+xzx +xz+xzx

xzx+xzy xzx xz+xzx N-e-xz N

where

M =e+x+y+ xz + xzx + xzy + zx + zy + zyy + yy

N =e+x+y +xz+xzx+xzy+yy .

Table 1. The Matrix IC(Q)1

We now find that there are three factor graphs

associated with the language Q. 	The first is the factor

graph of Q, which for convenience we have reproduced below,

and the second and third are factor graphs for the languages

{Q33, Q34 , Q 43 } and 01 -.44, Q54, Q45, Q55}, respectively.

The ordering 4 on the factor graphs is total and

so there is no question of a choice of path through the semi-

lattice.

137.

(a) Factor Graph of Q

(b) Factor Graph of Q33,
	

(c) Factor Graph of Q44,

Q34, Q43
	 Q45, Q54 and Q55

Fig. 8

A B

=
C D

= G
Q

138.

Applying the last step of algorithm 2 requires us to

split GQ in the manner indicated below:

e

e e

y x 	e

z 	e

x+y -- 	-

(Cf. figs. 8(a) and (b)).

Q = [GA
4
]
11

is then calculated as

Q = A* + [A*-B-G.C.A*]
11 	H 	11

where G
H

is the second factor graph, i.e.

e 	e

x 	e

z 	e

x+y

A* is just e, and so we can write down an equation for Q,
11

viz:

G
H

=

Q = e + e • e • Q43 • y • e

A* 	A* 	B 	CG*] 	C 	A*
11 	11 	14 	H 43 	31 	11

+ e • e • Q42 • e • e
I----i 	 1---1
A* 	B 	[G*] 	C 	A*
11 	14 	H 42 	21 	11

= 	e +Q y+Q
43 	42

(1)

139.

In the above equation we have indicated how each term arises.

All other terms in the product A*.B-GA.C.A* are null. 	In

order to calculate Q 43 and Q42 we apply; the same procedure

to GH. 	(See figs. 8(b) and (c)). 	First we write

z

x +y

Q 43 and Q 42 are then calculated using

Q43 = [GP.M.K*]43

Q42 , = EGp-M.K*1 42

where G
F

is the minimal factor graph (fig. 8(c)):

e+z

G
F

x +y

L

x*x x*

By inspection K* 	x* 	x*

thus Q43 	Q44
• 	• X* 	Q

44
ZX* 	(2)

EGp]44 M43K 33 *

and Q42 = Q44 Z 	X*X 4 ZXX* 	(3)

E GV44 M43 	K32

G
H

=

e

x

e

e
K
	

L

, say.

M
	

N
e

140.

Finally Q44 is calculated directly from the factor graph

G
F

(Fig. 8(c)). 	One easily obtains

Q
44

= (x+y+zx+zy)* .
	

(4)

Using back-substitution, equations (1), (2), (3) and (4) are

solved to give

Q = e+(x+y+zx+zy)*zx*y

+(x+y+zx+zy)*zx*x

= e+(x+y+zx+zy)*zx*(x+y) .

Note that once again we obtain an expression for Q

which has star-height strictly less than the rank of the

factor graph.

7. 	Final Theorem

We have observed in the previous examples that the

algorithm for determining the closure G*
Q
 yields expressions

for Q which are of star-height strictly less than the rank of

the factor graph GQ. The algorithm requires that one use an

elimination method to determine certain closures A*
FF
 and the

closure GA of a factor graph GH which is minimal with respect

to the ordering -.. We shall now prove that, provided the

order of elimination of nodes used in the determination of the

various matrices A*
FF 	H

and G* is optimal with respect to the

star-height of the resulting regular expressions, the algorithm

always yields expressions for Q of star-height less than or

equal to the rank of the factor graph GQ of Q. The proof

follows rather simply from the following theorem.

141.

Theorem 7.1 	Let Q be a regular language with factor graph

GQ, and let H be a factor of Q, with factor graph GH. Then

rank(GH) 	rank(GQ).

We shall in fact prove more than this, namely that

for any factor H of Q there is some graph GH such that

G
H
 cG1

cCmax
 +

Lmax'
 and GQ is pathwise homomorphic to GE1.1 .

H

Suppose that the graph GQ has nodes NQ, that NH ENQ

is the set of nodes of G
H'

and H = Q..ij where i,j E N
H

(i.e. i = sH and j = tH). The next lemma is a necessary

preliminary to defining a mapping y: NQ }NH.

Lemma 7.2 	Let p EN
Q•

Then 	a unique node mp
e N

H
such

that 	(i) Qim

P

 -Qm
 Pj —Qij

 dominates Qip-Qpj sQij and

(ii) 	if m' E NH also has the property that

Q. ,.Q
mj

 c , 	Qij 	I
dominates Q.

P
 -Q
PJI
.c Qij

im 	— l

then

(a) 	Q imp 	and 	(b) 	%imp 2
. e.

Proof 	Let fnl, 	NH be all those nodes in NH such

that Qink-Qnkj s Qij dominates Qip-Qpj c Qij, k= 1,2,...r.

(Obviously the set is non-empty.)

Then (Qini + Qin2+• • •+ Q in)•(Qnli nQn2j n • ** tAn
r
j) 2 Qij

dominates Qip-Qpj s Qij, and is itself dominated by Qim -Qm j s Qij

P P

for some Mp E NF. 	But mp clearly satisfies (i) and (ii) (a).

Part (ii) (b), follows directly from Theorem III 4.1(ii), since

142.

Qim, and Qim are both left factors of H = Qij and Qim 2 Q inv ie

by (ii) (a). 	Finally uniqueness of mp follows from (ii) (b)

and the acyclicity of Ciliax \E (Lemma III 5.4).

Now we may define a mapping y:NQ 	NH by:y(p) = mp

where mp for any pENQ is the unique node of NH defined by

lemma 7.2 above.

We now extend y to be a pathwise homomorphism in a

rather trivial manner. We define the graph Gi", to have nodes

N
H'

and an arc labelled a from node k to node m (k,meN
H
) if and

only if there is an arc a from some node pEy-1 (k) to some

node rEy-1 (m) in the graph GQ. Finally y is extended to be

a mapping from arcs of GQ into arcs of GH by : if a labels an

arc from node p to node r in G
Q
then y maps it into the arc

labelled a from y(p) to y(r) in

By the construction of q, y is a pathwise homormorphism

and so we deduce from McNaughton's pathwise homormorphism

theorem that:

Lemma 7.3 rank(q) < rank(GQ).

Lemma 7.5 will state that GH c GH, from which Theorem

7.1 follows immediately.. In order to prove this we prove the

following lemma.

Lemma 7.4 Let p and r be any two nodes of GQ and let y(p) = k

and y(r) = m. Then Qkm 2 Qpr.

Proof Consider the subfactorization Qip-Qpj c Qij which is

dominated by Qik.Qkj c Qij (by the definition of y and lemma

7.2(i)).

143.

Now Qkj 2 Qpj 2 Qpr•Qrj.

Hence 3 m i cNH such that

Qpr — Qkm'
	 (1)

and

Qrj 2 Qm'j • 	
(2)

But Qrj £ Qmii =>(Qir+Qini,).Qrj 	Qij •

Suppose this subfactorization is dominated by n ,im..Q m.j = Qij
where mucNH. Then 0 .imu 	and as these are both left

factors of H = Qij, by III4.1(ii),

Qm,m" 2 e . 	 (3)

But, also, 0
- im".Qmni E

 Qij dominates
Q irqrj E Qij •

.*., by lemma 7.2 (ii) (b),

Quoin R e . 	 (4)

Now, by (3) and (4),Qm.m D e . 	 (5)

Hence Qkm R Qkmi.Qmin 	Qkm., by (5)

Q
pr
, by (1).

Lemma 7.5 G c G'
H 	H

Proof In order to prove this lemma, we first prove

(a) G' c C
H 	

+ L
H

, and
H — max 	max

(b) GA c GA*

(a) Suppose a E [Gpkm. Then by construction of GH, R nodes

p and r c NQ such that y(p)=k,y(r)=m (k,meNH), and a c EGQ]pr.

144.

Thus, by lemma 7.4, a 6 Qkm. Hence a 6 [C
max

+ L
max]km*

I.e. GH c C 	+ L
HH

H — max 	max
.

(b) Now let us prove GA c q*. Since GA is a submatrix of

IQI = 4, a word w e EGA3km if and only if there is a sequence

of nodes k = po,pi,...pn = m with each pr 6 NQ and such that

w = ala2...an, where ar 6 EGA]

	

4 P 	pr r

But then ar e EV
H
]

	

	and y(po) = k, and y(pn) = m.
i(Pr_ I MPW

I.e. w e EGHIr]km .
	H 	H

Thus G* c G'*
 •

Now from (a) and (b) and Theorems III 5.6 and 5.2, IHI =

GA E 	
£ (Cfmiax 	1-Max" = n

H • Hence GA = 	= 	.

Finally, since GH is the unique minimal starth root of pl

(Theorem III 5.6), GH c GH and the lemma is proved.

We may now deduce Theorem 7.1 directly from lemmas

7.3 and 7.5 since GH c GH trivially implies rank(GH) 	rank(GH),

which by lemma 7.3, 	rank(GQ).

Corollary (to Theorem 7.1) With a suitable ordering of the

nodes of the factor graph GQ, algorithm 2 yields a regular

expression for the language Q which is of star-height less than

or equal to the rank of the factor graph GQ.

Proof The algorithm requires that one determine GA for a

factor graph GH which is minimal with respect to the ordering

4. By the above corollary the rank of GH does not exceed the

rank of G
Q
and so with a suitable ordering of its nodes the

escalator method yields regular expressions for the entries of

145.

G* all of which have star height not exceeding the rank of

GQ. Also required is that one determine
AFF

 for a number of

graphs AFF. Each such graph is a subgraph of a factor graph

GF and hence also has rank not exceeding the rank of GQ.

Thus once again one can obtain regular expressions for the

entries in AFF of star-height less than or equal to the rank

of GF. Since these are the only two cases where starred

expressions are introduced by the algorithm the corollary holds.

As we have already demonstrated in examples 1, 2 and 3

the regular expressions obtained by the algorithm may well

have star height strictly less than the rank of GQ.

The proof of Theorem 7.1 is very useful in hand

calculations to search for factor graphs of factors of Q

which are separable from Q. The idea is to endeavour to

eliminate nodes from the factor graph G
Q
bycoalescing

II
them

with other nodes of the factor graph. To eliminate node p by

"coalescing" it with node k, one simply converts any arc a

from some node i to node p into an arc a from node i to node k,

and any arc a from node p to some node j into an arc a from

node k to node j. Suppose after eliminating a number of nodes

from GQ, this results in a graph G' having nodes N' £ NQ.

The next step is to "prune off" arcs of G', i.e. in

effect construct G = (GI\E)\(G'\E)
2-1-*

 . 	This graph G will then

be a factor graph only if
Gc' 	+L 	

which can easily be
MaxMax)'

checked by inspection. Note, however, that G is not necessarily

a factor graph of Q (see example 7, section 8), although all

factor graphs can be obtained in this way.

146.

Thus the method is not fail-safe and ultimately resort must

be made to Algorithm 3. Nevertheless it is undoubtedly a

useful aid to rough calculations.

Example 3 illustrates the process quite well. 	In

order to obtain the factor graph of Q23 one eliminates node 1

by coalescing it with node 2, the graph for Q 14 is obtained

by coalescing node 3 with node 4, the graph for
Q24 by

coalescing node 3 with node 4 and node 1 with node 2, and so

on.

8. 	Empirical Results

We would have liked, of course, to end this chapter

with a theorem to the effect that algorithm 2 always yields

a minimal star-height expression for the language Q. 	Indeed

for a long time we thought that this could well be true.

Just by taking a very large selection of regular languages

which have appeared in the literature, and laboriously

calculating factor graphs we achieved almost 100% success in

arriving at minimal star-height forms for these languages.

If algorithm 2 did always yield a minimal star-height

expression for any regular language Q, a necessary condition

would be that, for those languages Q all of whose factors are

inseparable from Q, the star-height of Q would equal the rank

of the factor graph of Q. In our empirical investigation we

eventually found an example which appeared in McNaughton's

paper [29] which refuted this condition, thus showing that

algorithm 2 does not always give the minimal star-height

147.

expression for a language Q. The example follows.

Example 4 (Refutation of conjecture that algorithm 2

always yields a minimal star-height expression.)

Consider Q = (b + as + ac + aaa + aac)*. The machine

and anti-machine for this language are shown below.

Machine
	

Anti-machine

Fig. 9

If we use algorithm 1 we find that

D Q = r + r
Z1 	1 	3

D
9,2
Q = r

2
 + r3

and D
9,3
Q = r + r + r

1 	2 	3

Thus the L.R factorizationsof Q are

L x R 	(k +k +k)xr
1 	1 	1 	2 	3 	3

L
t
=L

2
xR

2
 =R

s
= 	(t

1
 +k

3
)x (r

1
 +r

3
)

L x R 	= 	(2, + 2,) x (r + r)
3 	3 	 2 	3 	2 	3

L x R 	= k x (r + r + r) 	.
4 	4 	 3 	1 	2 	3

148.

The factor graph of Q can now be determined:

Fig. 10

In order to determine whether Q has any factors

whose factor matrix is a submatrix of RT1 we calculate the

semigroup of Q. The semigroup machine is shown in the next

diagram in which nodes, or equivalently c-classes of Q, are

labelled by a representative element of the corresponding

c-class.

149.

Fig. 11

150.

Using the semigroup multiplication we can now

determine each entry in G*
Q
 = 7 as a union of c-classes

of Q. 	Thus we get:

e+a+aa 	ac+aa 	a+aa 	aa

+ac+aca 	 +aca

e+a+aa 	e+aa 	a+aa 	aa

+ac+aca 	+ac 	 +aca

+b+ba+baa +b+baa 	+ba+baa +baa

Fin

e+a+aa 	a+aa 	e+a+aa 	a+aa

+ac+aca 	+ac 	 +aca

+c+ca+caa +c+caa 	+ca+caa +caa

e+a+aa e+a+aa e+a+aa e+a+aa

+ac+aca +ac +aca

+b+ba+baa +b+baa +ba+baa +baa

+c+ca+caa +c+caa +ca+caa +caa

151.

Finally by inspection of the above matrix we can verify

that there are no indices i,j,p and k such that

Qip s Q ik 	and 	Qpj
c
 Qkj ,

and hence all factors are inseparable from Q.

The rank of G
Q
is two whereas we already have an

expression for Q which has star-height one. Thus for this

example algorithm 2 fails to give a minimal star-height

expression.

We conclude this section with a brief discussion of

some of the "more interesting" examples studied by other

authors.

Example 5 This example appears as example 6.5 in the paper

by Cohen and Brzozowski [12].

Consider the language Q defined by the following

machine.

Fig. 12 Machine

Its anti-machine is given in the next diagram,

following which we show a sequence of factor graphs of the

language Q and some of its factors.

152.

b+c

Fig. 13 Anti-machine

a+c

Fig. 14 Factor Graph

of Q = Q45

Matrix indicated by

dotted lines = A, say.

153.

Fig. 15 Factor Graph of Q22

Matrix indicated by

dotted lines = B, say.

a+b+c 	Fig. 16 Factor Graph of Q

If we apply algorithm 2 to the above sequence of

factor graphs we would have to calculate Q 	(which is
ii

trivially (a+b+c)* - see fig. 16) and the closures B* and A*,

where we have indicated the matrices A and B by dotted lines

(figs. 14 and 15). 	Both of these matrices have rank 1 and so

we deduce that Q has star-height 1.

154.

This example was introduced by Cohen and Brzozowski

to illustrate the difficulties inherent in a method they

propose for finding the star-height of a regular language,

their method being an enumerative one viz. calculate all

subgraphs of a sequence of graphs of a specific type and

determine whether each such graph is a recogniser for Q. 	In

contrast using factor theory we are able 	to determine the

star-height of this language directly, without any enumeration

being involved.

Note also that neither the machine nor anti-machine

have rank one - astute readers may have criticised our earlier

examples on this point.

Example 6 (McNaughton [29],p314). The language

Q = {x*(x + z) x*(y +z))*

was proved by McNaughton to have star-height 2. His proof

technique is to consider subfactors of a language and show

that the complexity of their interconnectionsin any recogniser

of Q must be above some value. 	In this case let G be any

recogniser of Q, and consider those nodes N of G such that

a word w in the subfactor x*zyz takes node N to some node N'

in G. 	Let A be the set of all such nodes. 	Consider also the

set B of all nodes M of G such that a word v in the subfactor

zyzx* takes some node M' to node M in G. Then one easily

proves that the sets A and B are disjoint but are strongly

connected, and that they each define some strongly connected

component of G of rank at least one. This then allows one to

155.

prove that the language has star-height at least two.

Examination of the machine or anti-machine for this

language yields no insight which would lead to the above

determination of the language's star-height. 	However if we

study the factor graph (shown below - fig. 17)

y+z

Fig. 17

we notice that we can eliminate nodes 1 and 4 to obtain the

following factor graph in which all factors are inseparable.

"A

B /

Fig. 18

156.

A and B define two (almost) symmetrical halves of this

graph (see fig. 18), but are distinguished by the asymmetry

of the graph.

Example 7 Let Q = 	(a 	(a + b)c*(c + d))* .

This example was also proved by McNaughton [29,p315]

to have star-height two. The above expression is identical

to what one would obtain from the factor graph (fig. 19).

Fig. 19

All factors of Q are inseparable from Q. Note that

the factor graph is pathwise homomorphic to the following

graph, but which is not a factor graph for any language.

Fig. 20

157.

CONCLUSIONS

In his book C13,p1237 Conway advises readers to

avoid calculating the factor matrix of any language Q.

While disagreeing with this advice, for the simple reason

that one cannot expect to make any advances in the theory

of factors without doing such calculations, we should

nevertheless mention two drawbacks to any practical use of

factor theory.

The first is that calculations with factors

inevitably tend to be rather long. With practice the method

given in Chapter III to calculate the factor matrix IQ' is

quite simple and straightforward, most of the effort in fact

going into calculating the machine and anti-machine for Q.

But, by hand, the work is tedious and rather prone to error,

as well as involving quite a large amount of computation.

Moreover, as soon as one begins calculating factor graphs of

factors, the effort involved really does become quite daunting.

(An obvious case for programming on a computer!) The second

and much more significant reason, is that the factor graph

may well have an extremely large number of nodes, even for

languages having quite simple finite-state machines. For

instance the language recognised by the finite-state machine

below has a factor graph having 64 (=26) nodes.

158.

Indeed, for any n > 3, the subset of (a+b)* consisting of

all words such that the number of a's minus the number of

b's is not congruent to 0 mod n has 2n nodes in its factor

graph (the above example is the case n = 6). Also if the

language Q has a factor graph of a manageable size, the factor

graph of —Q will often be quite unmanageable. However these

problems are not peculiar to factor theory, and would appear

to be a fact of life when handling regular languages. 	If

anything, they illustrate just how much we don't know about

regular languages:

In retrospect, the algorithm given in chapter IV

for calculating the closure G* of G
Q is based on very simple

ideas. 	The essential ingredients of the algorithm are the

following:

(a) 	there is a transitive relation "is a factor of" on

the entries in Gill

159.

(b) the relation "is a factor of" can be reduced to an

equivalence relation "is inseparable from" on the

entries in G* .

(c) each equivalence class modulo "inseparability"

defines a graph GH such that GA is a submatrix of GQ .

By Way of comparison, consider any graph G and

consider the following sequence of ideas.

(a)' there is a transitive relation "is connected to" on

the nodes of the graph G.

(b)' the relation "is connected to" can be reduced to

the equivalence relation "is strongly connected to"

on nodes of G.

(c)' each equivalence class modulo "is strongly connected

to" defines a subgraph of the graph G (in fact a

section of G).

The process of deducing an algorithm to calculate GQ

is thus a very familiar one, and one inevitably seeks to

extend it to other recognisers of Q. For example entries in

M*, where M is the machine of Q, are derivatives of Q and

derivatives of derivatives are derivatives. Thus "is a

derivative of" is a transitive relation on the derivatives of

Q. Unfortunately in this case no additional benefit is gained

by considering a3 symmetric closure of "is a derivative of"

since if S and T are derivatives of Q, S is a derivative of T

and T is a derivative of S if and only if the two nodes to

which they correspond (cf Theorem III 2.2) are in the same

160.

section of the machine of Q. Similarly analysis of the

anti-machine or the semigroup machine yields no improvement

on the usual elimination methods for finding their closure.

One possibility remains. We have observed that

factors of a language Q are unions of c-classes of Q which

are maximal in some subfactorization of Q. 	Instead of

considering maximal unions of c-classes we could consider

arbitrary unions of c-classes. 	Using similar techniques to

those given in Chapter III, we could construct "c-class graphs"

for Q. 	In a c-class graph, G, entries in G* are unions of

c-classes of Q and each node can be labelled (t.)
ik

(rj1+...+r4) where the ti's are k-classes and the rd's
m

are r-classes of Q. The only requirement is that

).(r. +...+r.)cQ

11 	
ik

'1 	J111

is a subfactorization of Q. Using some results of McNaughton

and Papert C31], it is very easy to prove that unions of

c-classes of unions of c-classes of Q are themselves unions

of c-classes of Q. We thus have the beginnings of an analysis

similar to the one given here for the factor graph. Moreover,

in studying c-class graphs one can benefit much more from

previous work on the star-height problem than we have been

able to. For the "pure-group events" studied by McNaughton [28]

a c-class graph is clearly what he would call a "p-graph".

Cohen and Brzozowski C12] also study "subset automata" which

are particular cases of c-class graphs.

161.

Very severe practical problems arise however, as

there is usually not just one, but many c-class graphs for

a particular language Q (one of which is the factor graph).

Problems which we mentioned above in studying factor graphs

are thus accentuated tremendously. Needless to say, we have

no empirical results to date as to how successful this could

be, and there is still a lot to be done before the star-height

problem is solved.

An intermediate problem which is probably worth

tackling before embarking on an investigation of c-class

graphs is the following. Let F and H be two regular languages,

and suppose F is a union of c-classes of H and H is a union

of c-classes of F. 	Is the star-height of F equal to the

star-height of H? An answer of no to this question would

make us very sceptical of pursuing this line of investigation,

but we would guess that the answer is more likely to be yes.

It is important to note that algorithm 2 cannot have

an analogue in linear algebra. Considering yet again example 1;

from the factor graph of the language Q (fig. 1,p.123) we get

the following system of equations defining Q:

Q = (e+a)P + e

P = bQ + eT

T = aT + bP ,

where P = Q21 and T = Q31 . 	Substituting e = 1, a = -1,

b = 1 in these equations and solving (in linear algebra) for

Q, we get

162.

However if we replace m* by (1-m) 	and substitute the same

values for e,a and b in

Q = (b+ab)*(e+a)(a+b)*b(b+ba)*b + (b+ab)*

(IV g 4) we get

Q = 6 .

If the method did have an analogue in linear algebra, the

two values would agree, which they evidently do not.

The main conclusion to be drawn from the

work presented here is that one should not be content with

the simple elimination methods of Chapter II, and more effort

should be put into developing new closure algorithms. The

approach we would suggest for doing this would be the same

as that used here. That is, investigate one particular class

of graphs, develop closure algorithms using properties

particular to this class and finally seek to extend the

algorithms to have more general applicability. Moreover, let

us not see any hypothetical solutions to the star-height

problem which simply involve "enumeration" until all other

possible hypotheses have definitely been exhausted.

We have had little to say in this thesis about other

applications of Conway's factor theory, but we would anticipate

that it will become much more important as a theoretical tool

in the study of regular languages. Conway introduces it as a

method of studying approximations to regular languages, and

goes on to use it extensively in his study of the biregulators.

(Note: 	biregulators are usually called "generalised sequential

machines".) Some connections between factors and the semigroup

163.

of a language have been pointed out, and we feel that the

direction of future research on factors would be to

investigate such connections more fully. Note that it is

always possible to discover the semigroup multiplication

directly from the matrix C
max + Amax

 , and so in studying

the factor matrix one loses no information about the semi-

group. 	Indeed much more information is contained in the

factor matrix. The semigroup is often too coarse a description

of a language, since it is invariant under relabelling of the

start and terminal nodes of the machine. However under such

relabelling the factor matrix changes quite substantially.

For these reasons we would expect factor theory to yield

more insight into those problems which have traditionally been

tackled by studying the semigroup of the language C30].

But these are just a few suggestions for further

work on regular languages. The study of regular languages

is a particularly attractive area for further research since

it offers quite a large number of unsolved or inadequately

solved problems. 	(See E34] for further discussion.) Moreover

problems in regular algebra are usually expected to be

solvable - but they are clearly very difficult and very

challenging.

164.

REFERENCES

1. Aho, A.V. and Ullman, J.D.

"The Theory of Parsing, Translation and Compiling",
vol.I.

Prentice Hall, Englewood Cliffs, N.J. 1972.

2. Backhouse, R.C. and Carre, B.A.

"Regular algebra applied to path-finding problems"

J. Inst. Maths. Applics. 15 (1975) pp.161-186.

3. Brzozowski, J.A.

"Derivatives of regular expressions"

J.A.C.M. 11, 4 (Oct. 1964) pp.481-494.

4. Brzozowski, J.A.

"Roots of star events"

J.A.C.M. 14, 3 (July 1967) pp.466-477.

5. Bunch, J.R.

"Complexity of sparse elimination"

In

"Complexity of sequential and parallel numerical
algorithms"

Traub, J.F. (Ed.), Academic Press, New York and London
(1973).

6. Carre, B.A.

"An algebra for network routing problems"

J. Inst. Maths. Applics. 7 (1971), pp.273-294.

165.

7. Carre, B.A.

"A matrix factorization method for finding optimal
paths through networks"

I.E.E. Conf. Publ. No.51 (Computer Aided Design) 1969,
pp.388-397.

8. Carre, B.A.

"An elimination method for minimal-cost network flow
problems"

In

"Large sparse sets of linear equns."

(Proc. IMA Conf., Oxford, 1970) Ed. J.K. Reid, Academic
Press, London.

9. Cohen, R.S.

"Rank non-increasing transformations on transition
graphs"

Inf. and Control 20 (1972), pp.93-113.

10. Cohen, R.S.

"Star-height of certain families of regular events"

J. Comp. Syst. Scs. 4, 3 (1970), pp.281-297.

11. Cohen, R.S.

"Techniques for establishing star-height of regular
sets"

Math. Systs. Th. 5, 2 (1971) pp.97-114.

12. Cohen, R.S. and Brzozowski, J.A.

"General properties of star-height of regular events"

J. Comp. Syst. Scs. 4, 3 (1970), pp.260-280.

166.

13. Conway, J.H.

"Regular algebra and finite machines"

Chapman and Hall, London 1971.

14. Dantzig, G.B.

"All shortest routes in a graph"

Theory of Graphs (International Symposium, Rome 1966),
Gordon and Breach, New York, pp.91-92.

15. Dejean, F. and Schiitzenberger, M.P.

"On a question of Eggan"

Info. and Control 9, (1966) pp.23-25.

16. Dijkstra, E.W.

"A note on two problems in connexion with graphs"

Numerische Mathematik, 1 (1959), pp.269-271.

17. Dreyfus, S.E.

"An appraisal of some shortest path algorithms"

Operat. Res. 17, 3 (May 1969), pp.395-412.

18. Eggan, L.C.

"Transition graphs and the star-height of regular
events"

Michigan Math. J. 10 (1964) pp.385-397.

19. Floyd, R.W.

"Algorithm 97, shortest path"

Comm. Assoc. Comp. Mach. 5, 6 (June 1962).

20. Fontan, G.

"Sur les performances d'algorithmes de recherche de
chemins minimaux dans les graphes clairsemes"

Rep. Lab. d'Auto. et d'Analyse des Systemes, Toulouse
(1974).

167.

21. Fox, L.

"An introduction to numerical linear algebra"

Clarendon Press, Oxford (1964).

22. Ginzburg, A.

"Algebraic theory of automata"

Academic Press, New York 1968.

23. Grassin, J. and Minoux, M.

"Variations sur un algorithme de Dantzig avec
application a la recherche des plus courts chemins
dans les grands reseaux"

Rev. Fr. d'Auto. Info. & Rech. Oper. 1 (March 1973).

24. Hartmanis, J. and Stearns, R.E.

"Algebraic structure theory of sequential machines"

Prentice Hall, Englewood Cliffs, N.J. (1966).

25. Hoffman, A.J. and Winograd, S.

"Finding all shortest distances in a network"

IBM J. Res. & Devel. 16, 4 (July 1972), pp.412-414.

26. Householder, A.S.

"Principles of numerical analysis"

McGraw Hill, New York 1953.

27. Johnson, D.B.

"Algorithms for shortest paths"

Technical Report 73-169, Dept. of Computer Science,
Cornell University (May 1973).

28. McNaughton, R.

"The loop complexity of pure-group events"

Info. and Control, 11 (1967), pp.167-176.

168.

29. McNaughton, R.

"The loop complexity of regular events"

Infor. Sciences 1 (1969), pp.305-328.

30. McNaughton, R. and Papert, S.

"Counter-free automata"

Res. Monograph no.65, M.I.T. Press, Cambridge, Mass.
and London.

31. McNaughton, R. and Papert, S.

"The syntactic monoid of a regular event"

In Arbib, M.A. (Ed.)

"Algebraic theory of machines, languages and semigroups"

Academic Press, New York (1968).

32. Munro, I.

"Efficient determination of the transitive closure of
a directed graph"

Info. Proc. Letters (1971) pp.56-58, North Holland
Publ. Co.

33. Murchland, J.D.

London School of Economics Report LSE-TNT-26 (1967).

34. Rabin, M.O.

"Mathematical theory of automata"

In J.J.T. Schwartz (Ed.)

"Mathematical aspects of computer science"

Amer. Math. Soc. Proc. in Applied Maths. 19, (1967).

35. Rabin, M.O. and Scott, D.

"Finite automata and their decision problems"

IBM J. Res. Dev. 3, 114-125 (1959).

169.

36. Rodionov, V.V.

USSR Comp. Math. and Math. Phys. 8, (1968), pp.336-343.

37. Rose, D.J. and Bunch, J.R.

"The role of partitioning in the numerical solution
of sparse systems"

In

"Spars.e matrices and their applications"

Rose, D.J., Willoughby, R.A. (Eds.) Plenum Press,
New York and London (1972), pp.177-187.

38. Salomaa, A.

"Two complete axiom systems for the algebra of
regular events"

J.A.C.M. 13, 1 (Jan. 1966), pp.158-169.

39. Salomaa, A.

"Theory of automata"

Pergamon Press, Oxford (1969).

40. Scott, D.

"The lattice of flow diagrams"

In

"Symposium on semantics of algorithmic languages"

Ed. E. Engeler: Springer-Verlag, Berlin (1971).

41. Strassen, V.

"Gaussian elimination is not optimal"

Numer. Math. 13 (1969), pp.354-356.

42. Tewarson, R.P.

"Sparse matrices"

Academic Press, New York and London (1973).

170.

43. Warshall, S.

"A theorem on boolean matrices"

J.A.C.M., 9 (1962), pp.11-12.

44. Yen, J.Y.

"Finding the lengths of all shortest paths in N-node
non-negative - distance complete networks using IN3
additions and N3 comparisons"

J.A.C.M., 19, 3 (July 1972), pp.423-424.

45. Yen, J.Y.

"An algorithm for finding shortest routes from all
source nodes to a given destination in general networks"

Quart. Appl. Maths. 27 (1970), pp.526-530.

A* A C 11 12 22

C22

171.

APPENDIX A - PROOF THAT m (R) IS A REGULAR ALGEBRA

Let R be a regular algebra, and consider all pxp

matrices 	with

m 	(R). 	In m

If 	A 	= 	Ca-

	

A.B 	=

entries 	in 	R. 	Let 	this

(R) 	define 	operators 	• 	and

1j 	
B 	=

A+B 	= E 	a
ik

b
kj] 	'

k=1

	

set be 	denoted by

+ 	by:

Eb..]
1J

Ea..
1J 	

+ 	bid] 	.

We define A* by induction on p. 	For p.1 A* is already

defined, since M1 (R) may be identified with R. 	For p>1

split A into four matrices

All
A =

A21

where Allis lxl, A 21 is (p-1)xl, A l2 is lx(p-1) and A 22 is

(p-1)x(p-1).

Define

Al2

A22

A* + A* A C A A* 11 	11 12 22 21 11

C A A* 22 21 11

A*

where C 22 = (A22 	A21 At1 A l2)*.

We shall now prove that, with the above definitions

of +, • and *, M (R) is a regular algebra.

In fact this is quite simple to do. Axioms Al-A9

are straightforward. A10 and All are also trivially veri-

fied by induction on p. 	The only non-trivial aspect of the

proof is to show that the condition for uniqueness of

solution of equations carries over to matrices.

To prove this we proceed by induction on p 	For

172.

p=1,m1(R) can be identified with R and so is, by assumption,

a regular algebra. Consider then a square matrix A of

order p>1, and suppose M
P-1

 (R) is a regular algebra (and

hence the condition for uniqueness of solutions of equations

holds in M
p-1 (R)). 	Let n = p-1 .

Split A into four submatrices:

A11
	

Al2
A

A21 	A22

where A 11 and A22 are square matrices of orders 1 and n

respectively. 	Let N(q) denote the null matrix of order q

We now prove an alternative condition for the

definiteness of A in terms of A11 , Al2, A21 and A22, and

then use this alternative condition in lemma 2 to prove

uniqueness of solution of equations if A is definite.

Lemma 1 	A is definite 	A11 and A22 	A21A11Al2 are

definite.

Proof

(a) Assume A11 is not definite. Then, by definition,

3 T il such that T11 c A
1
1T11 and Til x(I) .

Take
T 11

N (n

Then T c AT and so A is not definite.

(b) Assume A22 	A21 At1 A l2 is not definite. Then

E T22 'N(n) such that 122 S (A22 	A21 A'n Al2)T22 .

173.

Take

(i) At 1 A l2T22

T22

11 11 12 22 	Al 2T2 2

A A* 21 11 A12 T22 + A22 T22

Then

A* A T 11 12 22

(A22 4- A2 At 1 Al2) T22

T.

Hence A is not definite.

(a) and (b) together imply A11 or A22 + A2 	Ai2 not

definite = A is not definite. The contrapositive of

this is the lemma.

Consider now the equation Y = A. Y+B, and split

Y and B into submatrices Y 1 ,Y 12,Y 2, and Y22 and B11 9 612

B21 and B22 exactly as in A.

Lemma 2 	The equation Y = AY+B has solution Y D A*B with

equal ity if A11 and A22 + A21 At 1 A i 2 are both definite.

Proof 	Multiplying out 	the 	equation 	Y = A-Y+B, we 	get four

equations:

Y11 = A1 1Y11 II A1021 B11 (1)

V 12 = A 11 Y 12 Al2Y22 B12 (2)

Y21 A21 Y 11 + 	A22 Y 21 B21 (3)

Y22 = A2 1 Y 12 + A22Y22 B22 (4)

Now A11 has order 1, so we may apply R1 to (1) and

(2) giving

174.

D A* A Y 	+ A* B 	 (5) 11 11 V 11 - 11 12 21

Y 12 2 A11 Al2 Y22 	A11B12 	 (6)

with equality if A 11 is definite.

(5) and (6) are now substituted in (3) and (4), giving:

21 2 (A22 + A2 1At.1A1 2)Y21 + B21 	A21At1Bll
	

(7)

	

V22 2 (A22 -F A21At.1Al2)Y22 + B22 + A21At1B12
	

(8)

A22 A-A21 AtiA l2 has order p-1, so by the induction hypothesis

we can apply R1, giving

(A22 + A21A11Al2)* 21 - 	 (621 + A2 1 	1 B 1 1) 	(9)

	

Y22 2 (A22 1- A21At1Al2)* (B22 + A2lAt1B12) 	(10)

with equality if both A11 is definite and A22 +A21 Ati Al2

is definite.

Finally (9) and (10) are substituted in (5) and (6),

giving

11
2 Vic iA l2C22(B2l + A21 AtI BI) + A* B 	(11) 11 11

At I A I2C22(B22 	+ AnB12 	(12) 12 - 	A21A911B12)

with the same condition for equality.

Combining (9),(10),(11) and (12), the definition of

A* and lemma 1, we clearly get the rule of inference R1 for

M (R). 	So by induction M (R) is a regular algebra for

all p.

175.

APPENDIX B - INFORMAL PROOF OF THEOREM B4

Here we shall demonstrate that the algorithms for

finding G* which we have loosely called "elimination methods"

invariably result in regular expressions having star-height

at least equal to the rank of G. We begin by abstracting

the salient features of an "elimination method" and then show

how any elimination method defines an "order of elimination of

arcs". We then investigate in detail the effect of eliminating

arcs of the graph, and finally show how we can build an

"analysis" of the graph from the order of elimination of the

arcs.

Before doing so we need some definitions and a

fundamental theorem from McNaughton [29]. By an analysis of

a graph G we shall mean a partial ordering of ordered pairs

<N,G1 > where N is a node of Gi'a strongly connected component

of G, having the following properties:

1. For each section Si of G there is a node N of Si such

that <N,Si> is maximal in the partial ordering.

2. For no subgraph GI are there two nodes N,N' such that

both <N,G1> and <NI,GI> occur in the partial ordering.

3. If <N,G1> occurs and G2 is a section of that subgraph

that has all nodes of G1 except N then, for some N'

of G2, <N',G2> is an immediate inferior of <N,G1> .

4. All of the immediate inferiors of <N,G1 > are of the

kind mentioned in 3. (and hence <N,G1 > is minimal if

all loops of G1 contain N).

176.

An analysis of a graph will always be a forest of

as many trees as the graph has sections.

The height of an analysis is the length of the

maximal length chain in the partial ordering.

Theorem Bl 	(McNaughton C29]). The rank of a graph is the

minimum height of all analyses of the graph.

Our aim is to show how an "elimination" method defines

an analysis of G such that the height of the analysis is less

than or equal to the maximum star-height of regular expressions

of G*. Firstly we state more precisely what we mean by an

elimination method.

Definition B2 An elementary matrix is a matrix whose non-null

elements all lie in the same row, or in the same column.

Note that it is "elementary" to find the closure of

a row or column matrix using II (3.1) or (3.2) - hence the

definition.

Definition B3 An elementary elimination step is a step in

an algorithm which involves solely the computation of the

closure of an elementary matrix.

We can abstract three essential features of the methods

of Chapter II.

1. 	The tautologies II (2.3) and (2.4) are applied

exclusively to derive an expression for A* as a product

	

A* = J* J* 	J* 	 (1.1)
1 	2

of elementary matrices.

177.

If at some stage in the derivation of (1.1) the

matrix B, say, is split into matrices C and D such that

B=C+D, and either (2.3) is used to express B* as

B* = C*(DC*)* 	 (1.2)

or (2.4) is used giving

B* 	(C*D)* C* 	 (1.3)

then C and D are always chosen so that

2. C is null wherever D is non-null and vice-versa;

and

3. if (1.2) is used, DC* is null wherever C is non-null

and vice-versa, and if (1.3) is used C*D is null wherever C

is non-null and vice-versa.

Some terminology is useful here. We shall refer to

calculating the closure C* of C as eliminating C. 	Evaluating

the product DC* or C*D, as the case may be, is called forward

substitution of C in D and finally finding the product

C*(DC*)* (or (C*D)*C*) is called back substitution of D in C.

An elimination method consists of expressing the computation of

A* as a sequence of forward and back substitutions and elementary

elimination steps, in which subsequences of these steps may be

interpreted collectively as eliminating C for some matrix C.

The definition of an elimination method has a number

of implications which we now consider. Firstly an elimination

method always defines an ordering on the arcs of G which we

shall call the order of elimination of the arcs. Specifically

if at some stage (1.2) (or (1.3)) is used we say that the arcs

of C are eliminated before the arcs of D. By virtue of

properties 2. and 3. this ordering is clearly well-defined and

178.

total, except that the arcs of each elementary matrix Ji

are incommensurate - these are eliminated simultaneously.

Secondly, conditions 2. and 3. imply that we can

always evaluate the non-null elements of JI,J2,...Jm by

successive transformations of G. Specifically we can set

M
(0)

=G, then perform in-situ modifications of the elements

of M to transform it to a matrix M(f) which contains the

non-null elements of the matrices J*,J*,...J* (other than
1

J*,J2 ,...J*

 on the diagonal) in their appropriate positions. 	If for

instance at some stage in the derivation of (1.1) we use the

formula (1.2) then the appropriate action would be to evaluate

DC* (possibly using additional storage) and store the non-null

elements of this matrix in the appropriate positions of M.

The remaining elements of M are left unchanged. Once M(f) has

been calculated G* can be calculated using (1.1). 	(This may

not be the most efficient way of evaluating G* by the particular

elimination method but our concern here is solely with the

star-height of the resulting regular expressions.)

To investigate what actually happens when we perform

an elimination step, let us suppose that at some stage the

matrix M has the form

M11 	M12 	M13

M21 	M22 	M23

M31 	M32 	M33

where M11, M22 and M33 are square matrices.

179.

We make no assumptions about the size of the various

submatrices. Without loss of generality we may assume that

some subset of the matrices M11, M12, M13, M21, M31 are to

be eliminated. This elimination process will in general be

itself expressed in terms of elementary eliminations and

forward and back substitutions, but here we wish to consider

its composite effect on M. A number of remarks are in order.

Remark 1 If the submatrix Mij is next to be eliminated then

the result of all previous eliminations will have been forward

substituted into Mij.

(To see this consider the context-free grammar

E-} EfEb ; E --2.

f represents forward, b back substitution; 2. represents

elementary elimination. An algorithm for finding G* may be

regarded as constructing a left-to-right bottom-up parse of

a sentence of this grammar. If an E has just been recognised

an f must follow (possibly preceeded by b's) beforea newE may

be recognised. The remark may now be proved by induction on

the length of the derivation of the current state of the parse.)

Remark 2 No submatrix Mij for i#j may be eliminated before

either Mii or Mjj is eliminated without violating condition 3.

By remark 1 the result of eliminating Mij must be

forward substituted into Mii and Mjj before they are eliminated.

But this will result in a modification of Mij itself, thus

violating condition 3 - either it is premultiplied by Mii or

post-multiplied by Mjj depending on which of (1.2) or (1.3)

is used at the time.

180.

Remark 3 	If Mii and mij have been eliminated then Mji may

not be eliminated after Mjj.

If Mii and Mij have all been eliminated, then by

remark 1 the results must be forwarded substituted into M..
31

before this is eliminated. This involves pre- or post-

multiplying Mji by MIiMij (depending on whether (1.2) or

(1.3) was used). However post-multiplication changes Mii,

violating condition 3. Pre-multiplication changes Mjj and thus

will also violate condition 3 unless Mjj has not already been

eliminated. Hence the remark.

Remark 4 	Mik and Mji, where 	and jti, may not both be

eliminated using a single application of (1.2) or (1.3)without

violating condition 3 since this would in general affect Mjk.

Remark 5 	The star-height of elements of M is increased if

and only if an elementary elimination step is executed in

which the arc (k,k) is eliminated for some k.

This is obvious, because substitutions only involve

multiplications of submatrices of M.

Now let us suppose that the next step is to eliminate

M11 and M12. 	(The case of eliminating M21 and M11 can be

considered 	similarly.)

4-

After 	elimination 	of C =M11

M* 	M* 	M13 11 	11 M 12

M21 	M22 	M23

M31 	M32 	M33

+ M12,

In view of remark 5 we should like to see what effect

this elimination has on M22 and M33. Suppose therefore that

181.

at some later stage we wish to eliminate the contents of

M22. By remark 3 we must already have eliminated M21, or

must do it simultaneously with the elimination of M22. 	Hence,

by remark 1, Mil and M11 M12 must also have been forward sub-

stituted into M2I and M22, and, in order not to violate

condition 3, this can only be done by post-multiplying by

Mil 	and 	M11M12. 	Thus after the forward substitution

- 	 -
M11 M* M 11 	12 M13

M M21M11 M22 + M21Mt1M12 M23

M31 M32 M33

(D is used here, because the elements of M may also have been

changed between the elimination of M11 and M12 and their

forward substitution into M22 and M21). Note that the same

result will be obtained if we consider m21 and M22 eliminated

separately or simultaneously.

Thus we see that the star-height of expressions

obtained by eliminating submatrices of M22 will now depend

on the star-height of elements in M11 provided M2I MI1M12 is

non-null. 	In contrast, if we eliminate submatrices of M 33

before eliminating M13 or M 31 the star-height of the resulting

regular expressions will not depend on the star-height of

elements of M11 since forward substitution of M21 and M I ,

clearly does not affect M 33 .

We restate this in the form of a lemma on the elements

of the matrix M.

182.

Lemma B2 At some stage in the elimination process let

M.Cm
ij
J and let the set of all arcs which have currently

been eliminated be G 1 . 	Suppose the next step in the

elimination process involves the elimination of arc (i,i),

and suppose after this step the set of eliminated arcs is G2.

Then,

(a) 	
mii = u 	vmrrw

if

(b)(i) R nodes k and j s.t. arcs (k,k) and (j,j) have been

eliminated,

(ii) nodes k and j are strongly connected to node r in G1 ,

(iii) arcs (i,k) and (j,i) are non-null,

and

(iv) arc (r,r) was the last diagonal arc to be eliminated

in the section of G1 containing {r,j,k},

and, moreover, (b) is true if

(c) 	node i is strongly connected to node r in G2 and arc

(r,r) was the last diagonal arc to be eliminated in

the section of G1 containing {r,j,k}.

(To see how this corresponds to our previous discussion,

consider j,k and r as nodes of M1 1 and i as a node of M22.

Condition (iii) implies that M21 Mt1 M 12 is non-null, condition

(iv) implies that since eliminating (r,r) the only changes

made to M11 have been by back-substitution (and hence none

have been made to mrr), and finally conditions (i) and (ii)

imply that mkj = u'mrrv'
	w' for some u',v' and w'.)

183.

From the order of elimination of the arcs of G we

can now construct an analysis of G; lemma B2 then enables

us to relate the height of the analysis to the star-height

of expressions in G*. We begin with the arcs eliminated

first and proceed in order to the arcs eliminated last.

Suppose at some stage we have considered the arcs of graph

G1 and have constructed an analysis of G1 . Suppose the

constituent trees of this analysis have roots ri,r2,...rp.

Suppose also that the next set J of arcs to be eliminated

are all in the row/column i and that the union of these arcs

and the arcs of G1 form the graph G2. 	If the arc (i,i) is

not in J then do not alter the analysis. Otherwise consider

the largest subset rk ,...,rk of the roots ri,...rp such that
K1 	

"x

each r
k

is strongly connected to node i in G2. 	If this subset
3

is non-empty add a new root labelled i to the forest and

connect it by branches to each of rk ,...,rk . If however the
'1 	"x

subset is empty then if mii A (I) before elimination add a new

root labelled i to the forest (and do not connect it to any

others); 	if mii =(I) before elimination do not alter the

analysis.

Lemma B3 The star-height of mii after elimination of (i,i)

is greater than or equal to the height of the tree with root i.

Proof This follows easily from lemma B2 by induction on the

height of the tree. 	If the height is 0 or 1 the lemma is

obvious from II 3.1 and 3.2. Otherwise, we note that each r
k
y

satisfies the properties of r in lemma B2, hence after

184.

elimination of (i,i), mii 4u+vm 	w)*. By induction
rk rk
Y Y

mrk rk has star-height 	to the height of the tree with root

Y Y

rk and hence mii has star-height at least 1 greater than this.

Y

Hence the lemma.

We could strengthen the lemma to an equality as did

Eggan C18] for the escalator method, but this is not relevant

here.

Combining Theorem Bl and lemma B3 we have our

theorem:

Theorem B4 If an elimination method is used to find G* for

a graph G, then G* will contain regular expressions having

star-height at least equal to the rank of G.

