
CLOSURE ALGORITHMS  

AND THE STAR-HEIGHT PROBLEM OF  

REGULAR LANGUAGES  

by 

ROLAND CARL BACKHOUSE 

A thesis submitted for the degree of Doctor of Philosophy 
in the Faculty of Engineering in the University of London. 

Department of Computing and Control 
	

September, 1975. 
Imperial College 
London SW7 1LU 



( i ) 

ABSTRACT  

The main motivation for this work is the star-

height problem of regular languages proposed by Eggan. 

We begin by investigating in some detail analogies 

between regular algebra and linear algebra. 	It is shown 

how, using a few simple tautologies of regular algebra, one 

can derive product forms for the closure A* of a matrix A 

analogous to the Gauss and Jordan product forms for (I-A)-1  

in linear algebra. The product forms yield algorithms for 

calculating A* analogous to the Gauss and Jordan elimination 

methods of linear algebra. Methods for finding A* analogous 

to the iterative methods of linear algebra are also briefly 

discussed. 

Following this we present various results in the 

theory of factors of regular languages. We show that there 

is a unique minimal starth root G
Q 

of the factor matrix 171 

of a regular language Q, and give an algorithm to calculate 

GQ. 
	

It is then shown that the factor matrix of a factor H 

of Q is a submatrix of the factor matrix M. This leads to 
an algorithm to calculate the closure G*

4 
 of GQ.  The algorithm 

yields a regular expression for Q which is proven to have star-

height always less than or equal to (and in some cases strictly 

less than) the rank of GQ. Moreover the algorithm does not 

have any analogous method in linear algebra. 

The algorithm to find G*
4 
 does not always give a 

minimal star-height expression for Q and the star-height 

problem is still open. But it is suggested that the 

algorithm may be more generally applicable (than just to 

factor graphs), thus possibly giving fresh insight into the 

star-height problem. 
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INTRODUCTION 

The objective of the work presented here is to 

study in depth certain aspects of the * operator in a 

regular algebra. Although not immediately apparent, such 

studies are relevant to many aspects of Computing Science, 

because the star operator is just one instance of a closure  

operator. 

A closure operator is any operator J which is 

transitively closed, i.e. J.J = J or, in words, the effect 

of applying J twice (or any number of times) is the same as 

that of applying J just once. A trivial example is a while  

loop, since obviously while p do (while p do a) is equivalent 

to while p do a. Closure operations occur wherever an 

operation is iterated indefinitely. For instance a* can be 

interpreted as meaning "iterate a, unconditionally" whereas 

while p do a means "iterate a, conditional on p" or "iterate 

(test p then do a)". 

Sometimes the iteration is concealed and it is not 

immediately obvious that a closure operation is involved. 

One instance is in the recursive definition of a function 

(e.g. Fx = if p then fx else Ffx). Recent work by Scott 

[40] shows clearly that what is involved implicitly in such 

a definition is indeed a closure operation - the operation 

of finding the least fixed point of a function g which in 

Scott's notation is 

1 i gn
(1), 

 

n=o 
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or in the notation of regular algebra g*(1). (g in the 

above example maps Fx onto fx or Ffx depending on p). 

A particular example of this is in the study of 

context-free languages. We may regard the context-free 

grammar G = (V,N,T,P,S) having productions 

pl: S aSb 	p2: S ab 

as defining two operators pl and p2 mapping subsets of V* 

into subsets of V*. p1 is defined by 

uaSbv c pl(uSv) V u,v e V* 

and p2 by 

uabv c p2(uSv) 	V u,v 6 V. 

From pl and p2 a composite operator L = (pl+p2)* is formed, 

where pl+p2 applied to w is the union of pl applied to w and 

p2 applied to w, and p* applied to w is the union of all sets 

found by applying p iteratively to w. The language generated 

by G is T*nL(S), i.e. the set of all terminal strings formed 

by applying the operator L to S. Hence of course the usual 

notation S4-*w. 

Closure operations also arise in the study of path-

finding problems. A typical problem here is, given a network 

of points such that certain points are connected by arcs to 

which a cost is attached, what is the least cost path between 

any two points. 	It can be shown [2,6] that this problem can 

be formulated as finding the closure A* of a matrix A in some 

regular algebra. Other related problems, such as finding a 

route between two points having the least probability of 

blockage, can also be formulated in the same way. Rather 
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interestingly the algorithms we present in Chapter II 

can be used uniformly in the solution of such problems. 

As a final example of where closure operators are 

important, let us observe that lattice theory is a study 

of relations which are anti-symmetric, and reflexive and 

transitive. Quite often in the practical application of 

lattice theory, one is not given such a relation but must 

construct it from other known relations on the elements 

being considered, and this invariably involves a closure 

operation. Non-trivial evidence of this can be seen in the 

construction of the lattice of "partitions with the substitution 

property" in the study of sequential machine decompositions 

The regular algebras are important as a step towards 

a more universal study of closure operators, since they would 

appear to offer the "simplest" examples of algebras having a 

non-trivial closure operator. The . and + operators, which 

are iterated to form the * operator of regular algebra, have 

quite simple properties - for instance distributivity 

a.(b + c) = a.b + a.c of . over +, and associativity of + 

a + (b + c) = (a + b) + c. 	In comparison the while operator 

mentioned earlier is much more unmanageable - distributivity 

does not hold:- 

a ; if p then b else c; # if p then (a;b) else (a;c); 

and associativity does not hold:- 

if q then (if p then a else b) else c; 

# if p then a else (if q then b else c); 
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(Note; this is clearer if we use infix notation: 

Writing a + b for if p then a else b; the above inequalities 

become 

a ; (b + c) # 	(a;b) +p  (a;c) 

and 

(a + b) +q  c # a + (b +q  c) 
	

)• 

Even though the star operator of regular algebra is 

thus a relatively simple closure operator, the study of its 

properties is not simple - in fact quite the opposite. 

To avoid any confusion later, we should make explicit 

various terms we shall use. In Chapter I we give a purely 

formal list of axioms and a rule of inference involving the 

formal operator symbols +, . and *. By a regular algebra we 

understand any algebra having operators +,. and * which obey 

the rules given in Chapter I. Such an algebra is an 

interpretation of the system of axioms. A regular expression 

is simply a well-formed formula involving the symbols 

(,),*,+ and ., and symbols a,b,... from a finite vocabulary 

V. Regular expressions are used to denote elements of a 

regular algebra. 	In particular the familiar regular languages 

form just one instance of a regular algebra (a very important 

one, nevertheless) in which + is interpreted as set union and 

. as concatenation of words. 	In the algebra of regular 

languages a regular expression is a denotation for a regular 

language. 

The problem we consider in Chapters III and IV is 

the star-height problem for regular languages. 	(We assume 
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of course that the reader has some familiarity with this 

problem. Those readers not already acquainted with the 

problem should consult the excellent paper by McNaughton 

C29], in which a highly significant amount of empirical 

information is presented.) The problem is concerned with 

finding the "simplest" possible regular expression denoting 

a particular regular language. 	In tackling this problem a 

possible application we envisage is as follows. Assume one 

is given a regular algebra R (not necessarily the regular 

languages) in which, for each element Q, there is some 

canonical denotation for Q. 	Let us call this denotation the 

"value" of Q, and suppose, given a regular expression 

f(a,b,...) denoting Q, it is required to "evaluate" Q. 

We presume that there is some procedure to do this. Usually 

one would expect that it is more difficult to evaluate starred 

terms A* in f. So, if before evaluating f we can preprocess 

f and find some regular expression g(a,b,...), such that in 

any interpretation f(a,b,...) = g(a,b,...) and the starred 

terms in g are simpler to evaluate, then evaluate g rather 

than f, we will clearly optimise on the computational effort. 

Since the regular languages form a free regular algebra, this 

is equivalent to finding the simplest possible denotation of 

a given regular language. 

The approach we have adopted in tackling the star-

height problem is to regard it as a problem of how best to 

calculate the closure A* of a matrix A whose entries are 

elements of a regular algebra. The approach is essentially 

similar to that of Eggan C18] in his pioneering work on the 
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star-height problem. Eggan considered the following problem. 

Given a (non-deterministic) finite-state recogniser of a 

regular language Q, what is the minimum star-height of all 

the regular expressions denoting Q which one can obtain by 

using an elimination method to solve the associated system 

of equations defining Q. Eggan succeeded in solving this 

problem, showing that a minimal star-height expression, 

obtained by applying an elimination method, equals the "rank" 

of the graph. Eggan showed how to calculate the rank of a 

graph, and how to order the nodes of the graph in the 

elimination process in order to obtain the best possible 

expression. 

A rather simple converse to this result is that, 

given any regular expression g(a,b,...) denoting the language 

Q, there is naturally associated with g a recogniser of Q 

which has rank equal to the star-height of g. Thus one arrives 

at Eggan's theorem (see Chapter III): the star-height of a 

language Q equals the minimum rank of all transition graphs 

which recognise Q. 	Subsequent investigations of the star- 

height problem 0,10,11,12,28,29] begin with this theorem and 

aim to find a recogniser of Q having the least rank. 

In contrast the main aim of this work is, given a 

recogniser of Q, to invent new methods of "solving" for Q 

which do better than a simple elimination method, i.e. to 

invent systematic methods of obtaining regular expressions 

for Q, from the given recogniser, which have star-height less 

than or equal to the rank of the recogniser - and in some cases 

strictly less than the rank of the recogniser. 
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This approach was suggested to the author by work done 

in collaboration with B.A. Carre on analogies between regular 

algebra and linear algebra [2]. The sections of this paper 

relevant to the present work are included in Chapter II. 

First we note in Chapter I that the problem of finding a 

regular expression denoting the language Q from a recogniser 

of Q is equivalent to finding certain entries in the closure 

A* of a matrix A. 	Now A* is analogous to (I-A)-1  in linear 

algebra, since the former is the minimal solution of Y =AY+E, 

where E is the unit matrix in regular algebra, and the latter 

is the solution of V = AY+I , where I is the unit matrix in 

linear algebra. Moreover the algebra M
P 
 (R), of all pxp 

matrices over the regular algebra R, is itself a regular 

algebra and thus any tautologies of regular algebra apply 

equally well to matrices. Beginning with these two observ-

ations, we note in Chapter II a few simple tautologies of 

regular algebra which have analogues in linear algebra and 

then show how these tautologies are sufficient to enable 

one to derive algorithms for calculating A*, which are 

analogous to the well-known elimination methods of Gauss 

and Jordan in linear algebra. 

In addition, as an aside to the main theme of this 

thesis, we show how a number of other "path-finding algorithms", 

having analogues in the iterative techniques of linear algebra, 

can be succinctly described and compared using regular algebra. 

Not all regular tautologies have analogues in linear 

algebra, and so, in restricting oneself to simple elimination 

methods for finding the closure of a matrix, one is under- 
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utilising the properties of regular events. An aim of the 

research for this thesis was therefore to seek methods of 

calculating A*, for a given matrix A, which do not have 

analogues in linear algebra, and which improve on the 

elimination methods. 

Unfortunately we have been unable to discover a 

generally applicable algorithm of this nature, but in 

Chapters III and IV we show that for a particular class 

of graph - the factor graph - such an algorithm does exist. 

Moreover the algorithm achieves one of our objectives, 

namely that the regular expressions produced always have 

star-height less than or equal to the star-height of those 

produced by any elimination method. 

The algorithm, when applied to factor graphs, does 

not always yield minimal star-height expressions and the 

star-height problem remains unsolved. However, we suggest 

in the Conclusions how the algorithm might be extended to 

other important classes of graphs, and that a further attack 

along these lines might eventually lead to a solution of the 

problem. 
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I REGULAR ALGEBRAS  

Regular languages, which we define in §2, have 

been studied by various authors C13,22,38,39] each of whom 

has given axiomatic formulations of their properties. 	In 

the next section we also give an axiomatic formulation of 

regular languages which is similar to that given by Salomaa 

C38] and then proceed to discuss some of the elementary 

consequences of the axioms. 

1. 	THE SYSTEM OF AXIOMS Fl 

1.1 	Axioms  

The algebras we shall consider are of the form 

R = (S,+,.,*), where S is a set on which are defined two 

binary operators + and 	and one unary operator *. The 

following are assumed as axiomatic. 

Al 	(041-13)-i-y 	= 	a+(31-y) 	A4 	a. (3+y) 	= 	(a•(3)+(a•y) 

A2 	a- (13-Y) 	= 	("*k3.).Y 	A5 	(a+f3)-y 	= 	(a.y)+(6-Y) 

A3 aq-(3 	13-Fot 	A6 a+a 	= a 

where a, 3, y E S. 

The set S contains a zero element 0 such that 

A7 	a+4 
	

= 	a 	A8 	0•a = 	0 	= a•c 	. 

Finally the star (or closure) operator * obeys: 

A9 	0*•a 	= 	a 	= 	a. 11* 

A10 a* 	= 	0*  + 	a.a * 

All 	a* 	= 	(I)*  + cc)*  

 

for all aES . 
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We shall normally denote (I)* by e. 	The axioms A9-All then 

become: 

A9' 	e•a = a = a•e 

A10 1 	a* = e + a-a* 

All' 	a* 	(e + a)* 

1.2 	Partial Ordering  

In view of Al, A3 and the idempotency law A6 we 

can define a partial ordering = on the set S by 

a  c s 	a+ g = 	f3. 

and a strict ordering c by 

a = 	a = (3 and a 	. 

It is easily verified that 

a c s = a+y c 

a•y c  f3.y 

and 	y-a = y-13 for all a,(3,y e S . 

Note that we do not assume the cancellative property 

a" = 	=> a  = 

and in consequence we cannot in general infer that if 

acP, then a•y c 13•y . 

1.3 	Solution of Equations  

We define an element a of S to be definite if and 

only if t=a-t=>t = (1). 	Then we assume the following rule 

of inference. 

R1 a = 13'a 	=> aDV`•y 

and furthermore, if (3 is definite then  

a = 3•a 	y => a  = (3*" 



It will be observed that for any given f3 and y 

the equation a=13•a+y always has a solution a=S*•y. 	The 

first part of our rule R1 postulates that a=g*•y is the 

minimal solution, and the second part gives a condition 

under which this solution is unique. 

Henceforth we shall denote the set of axioms Al-All 

and the rule of inference R1 by Fl, and we shall call any 

algebra R = (S,+,.,*) such that the set Fl is valid in R a 

regular algebra. 

2. 	INTERPRETATIONS  

It is important to realise that the above system of 

axioms is a purely formal system in which no meaning has been 

attached to the symbols of S or to the operator symbols +, 

• and *. We now describe a number of interpretations of 

S,+,• and * which give rise to a regular algebra and which 

are particularly important. Note that the list is by no means 

exhaustive. 

2.1 	Regular Languages  

Consider any finite non-empty set V = {vi,v2,...,vm} 

which we call an alphabet or vocabulary, and whose elements 

we call letters. A word over V is a finite string of zero 

or more letters of V; the string consisting of zero letters 

is called the empty word. 

The set of all words over V is denoted by V*. A 

language over V is any subset of V*. The symbol 11) denotes the 

empty set, and (1)* = e denotes the set consisting of the empty 

word. 
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The sum afl3 of two languages a and (3 is their set 

union, and the product or concatenation 04.13 is the set of 

all words formed by concatenating a word in a with a word 

in S. The powers of a language a are defined by 

a o = e, ak  = aoa 	(k = 1,2,...) 

and the closure a* of a is defined to be 

cc 

a* = 	E a
k 

k=0 

In the ensuing paragraphs we shall use three terms 

- regular expression, regular event and regular language -

with quite different meanings. A regular expression over a 

vocabulary V is defined to be a well-formed formula constructed 

from the set Vu{0, the operators + • and *, and the paren-

theses ( and ) . Thus (v 1  + ((v2+v 1 ).v 3 ))* is a regular 

expression. Also allowed are formulae in which the dot is 

omitted, being denoted by juxtaposition, and parentheses are 

omitted. 	In this latter case operator precedence is in the 

order *, .,+ . 

We define a regular event to be any element of a 

regular algebra which can be denoted by a regular expression 

over some finite vocabulary V. 

We also define a regular language to be any set of 

words over some finite vocabulary V which can be denoted by 

a regular expression. 

Finally, following Conway C13], we shall use the term 

regular tautology to mean any equation f(a,b,...) = g(a,b,...) 

between two regular expressions which is universally true in 

any regular algebra. 

• 
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Regular languages are particularly important in 

the study of regular algebras, since the axiom system Fl 

is consistent with the regular languages and is a complete 

system for proving valid equations between regular languages. 

Essentially this was proved by Salomaa [38], although Salomaa's 

axiom system differs from ours, particularly in the rule R1 

and in the condition for uniqueness of solution of equations. 

For regular languages it is however trivial to establish that 

the two conditions (for uniqueness of solutions) are identical, 

and all other differences between our and Salomaa's axioms 

are inessential. 	(For further discussion see §2.2.3, below, 

where we consider the uniqueness of solution of matrix 

equations over the regular languages.) 

The regular languages over V thus form a free 

regular algebra, signifying that the algebra is free of any 

equalities holding between its elements which cannot be 

deduced using the system Fl. Hence we call the algebra of 

the regular languages over vocabulary V the free regular  

algebra generated by V, and denote it by RF(V). 

2.2 	Matrix Algebras  

2.2.1 	The Algebra M
P
(R)  

If one examines the system Fl one may observe that a 

number of operators satisfy the properties of + and • . For 

example the operators min and max defined on the real numbers 

obey the properties of +, and real addition, min and max obey 
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the properties of • . These interpretations do not have any 

practical significance when S is the set of all real numbers, 

but they are very significant when we consider matrices over 

the real numbers. First, however, a number of preliminaries 

are necessary. 

Given a 	regular algebra R we may 	form an 	algebra M
P
(R) 

consisting 	of all 	pxp matrices 	whose 	elements 	belong 	to 	R. 

In 	the algebra M
P
(R) 	the operators 	+ and 	• 	and 	the order 

relation 	c 	are 	defined 	as 	follows: 

Let 

A.- Ea..
1J
]and 	B = 	Eb

1..] J 

be any pxp matrices with 	elements in 	R; 	then 
_ _ 

P 

1J 
a.. 	+ 	b

1
.. A+B = 	[ 	
J , 	A•B = a 

k=1
i  k 
• b 
• kj 

and 

- - 

A cB 	if and only 	if 	a
ij 

b
ij 	

for 	all i,j. 

The unit matrix E= Ceij]  is defined as that pxp matrix with 

eij  = e if i=j and eij  = (1) if i#j. The rows and columns of 

this matrix are described as unit vectors. The zero or null  

matrix N is that matrix all of whose entries are (1). 

Powers of A are defined by 

A° = E, Ak  = A-Ak-1, 	k = 1,2, ... 

and finally A* is defined informally as 

CO 

E A
k 
 . 

k=0 

(Note, a formal definition of A* is given in Appendix A. 

However the above definition of A* is much more useful 

intuitively. We do not assume this form of the definition 

in any proofs.) 
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If R is a regular algebra it is a logical problem 

to prove that mp(R) is a regular algebra, that is that all 

the axioms Al-All and the rule of inference R1 remain valid in 

m (R). 	For our axiomatisation this is a fairly simple 

problem; the main parts of the proof are given in Appendix 

A. Moreover for most practical applications one can also 

infer the validity of Fl from the previous literature. 

2.2.2 	Graphs  

It is well-known that a p-node graph G can be described 

by a pxp matrix A, and, conversely, a pxp matrix can always 

be visualised as a p-node graph. We shall now take the 

opportunity to make this precise and to introduce some 

terminology which will be of use later. 

A labelled graph G = (X,A) consists of a set X of p 

elements xi,x2,...,xp  together with a pxp matrix A = Caij] 

with elements in some regular algebra R. An arc is a pair 

(xi,xj) such that the arc label aii  is non-null, and is said 

to be directed from xi  to xj. A sequence of t arcs 

(x„, ,xk 	,x,) 
K1 	\ 1 	2 	 't-1 

such that the terminal node of each arc coincides with the 

initial node of the following arc is called a path from xi  

to x., of path length t. 	If i?j the path is said to be open; 

whereas if i=j, p is called a closed path or cycle. A path 

(open or closed) is elementary if it does not traverse any of 

its nodes more than once. The path product w(p) of a path p 

is defined as the product of its arc labels: 
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w(p) 	= 	aik
1 
 ak 

1  k 2 	
ak t-1 j • 

A graph without any cycles is called acyclic. 

2.2.3 Regular Languages  

If the arc labels are regular languages and, in 

particular, if they are subsets of Vu{e} we call G a 

(nondeterministic) transition graph. 	In general for any 

path p from xi  to x the path product w(p) will be a set 

of words. A word v is said to be a word taking node xi  to 

node xj  if either v c W(11) for some path p from xi  to xj, 

or v=e and i=j. The closure A*=[at.] is such that at. is 
1 J 	 1 J 

the set of all words which take node i to node j. 

The consistency of Mp(RF(V)) (the algebra of pxp 

matrices whose elements are regular languages over the 

vocabulary V) with Fl has been studied by Salomaa C397. 

Salomaa's axiom system differs from ours in a number of 

respects, but mainly in rule Rl. 	Firstly, our rule R1 is 

the reverse of Salomaa's rule R1 (i.e. Salomaa gives the 

solution of equations of the form a = a-13+y, not a = p..a+y) 

and, correspondingly, our axiom A10 (a* = cp*+a-a*) differs 

from Salomaa's (a* = cp* + a*.a). 	This change is not essential 

in that Salomaa's proofs of the consistency and completeness 

of his axiom system can easily be modified to apply to our 

own axiom system. Thus, henceforth, we shall assume any 

theorems proved by Salomaa to be true and leave the reader 

to convert them to proofs in our own axiom system. 
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Secondly, Salomaa's condition for uniqueness of 

solution of equations also differs (outwardly) from ours. 

The relevant definition and theorem are given below. 

Definition 2.1 (Salomaa): A pxp matrix M=Cmii] possesses 

the empty word property (ewp) iff there is a sequence of 

numbersil,i2,...,ik (k>1) such that ecm. . 	for all v, 
1
141  v+i 

1..c.v5A-1, and evil 	. 
i
k 

Theorem 2.2 (Salomaa): 	If the matrix M does not possess ewp 

then the equation Y=MY+R has a unique solution, namely Y=M*R. 

For lxl matrices, i.e. regular languages, it is 

obvious that we have the equivalence: M does not possess 

ewp <=> M is definite. The equivalence is not so obvious for 

larger .matrices, but is nevertheless easily proved. 

Theorem 2.3 Let A cm
p
(R

F
(V)). Then A does not possess ewp 

<=-> A is definite. 

Proof (i) <=. Suppose ] T#N such T=AT. Then the equation 

T = A-T+N has more than one solution, namely T and N. 

Therefore A possesses ewp. 

(ii) 	Suppose A possesses ewp. Then the graph of 

A contains a cycle. 

y = (x.
1 
 ,x. ) (xi2,xi3 ),...,(x;  ,x. ) 
1 	12 	 'k 	11  

such that 

e E a, 	a. 	a. . 
1112 1213 	1 

k
1
1 

(1) 

Let B be the submatrix of A consisting solely of the arc 

labels ai 	(v = 1,...,k-1) and a. 4  . 	BcA, so we may 
. v . v+1 	 1 1( 1 1 

choose a matrix C such that B+C=A. 
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Now let T=B+. 	By (1) 

(bi 	b„ 	...b, 	) (b 	...b„ 	)* = (bi 	_1)4 	)* 
X 1 1 2 	1 2 1 3 	I k 	1 2 	I k 1 	1 1 2 • 	I k 1 

and it follows that B.B4-  D B and hence T = BT. But then 

T c BT + CT = AT 

and therefore A is not definite. 

Following Conway [13] we call a matrix A, all of 

whose non-null entries are e, a constant matrix and a matrix 

all of whose non-null entries are subsets a. 	+ a. + 	... a. 

	

1 1 
	2 	 k  

of the letters in V, a linear matrix. A constant + linear  

matrix is, as the terminology suggests, one which is the sum 

of a constant matrix and a linear matrix. Thus a transition 

graph always has a constant + linear matrix. A recogniser  

(G,S,T) is a transition graph G = (X,A) for which two subsets 

S,T of the set of nodes X are designated as start and terminal  

nodes, respectively; the language recognised is the set of 

all words which take some start node sES to some terminal node 

tET. A recogniser is all-admissible if for any node xEX 

there is a path from a start node ses to x, and a path from x 

to a terminal node tET. 

Finally we define a graph to be deterministic if for 

all words w and all nodes xi, there are no two distinct nodes 

xj  and xj, such that w takes xi  to xj  and xi  to xj,. A 

recogniser is deterministic if its associated graph is 

deterministic and S has cardinal 1. 
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As usual, we shall specify a recogniser diagrammatically, 

as illustrated below. 

A Recogniser  

The graph of this recogniser has nodes X = {1,2,3} and 

matrix 

(I) e +a (15 

A (I) 

b 

a 

a 

There is only one start node (node 1) indicated by an 

unlabelled arrow pointing to the node. Terminal nodes 

(nodes 1 and 2) are indicated by double circles. 

Because of the very natural correspondence between 

graphs and matrices we shall in future use the two words 

synonymously. Thus we shall refer to the closure G* of a 

graph G, where, more exactly, we mean the graph of the 

closure A* of the matrix A of G. 
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2.2.4 	Boolean Matrices  

In table 1, in which R denotes the real numbers, we 

have shown a number of different interpretations of S,+,• 

and * which have practical value. The table is adapted from 

one given by Carre [6] by adding a column giving an inter- 

pretation of the * operator. 	In each case the star operator 

has no real significance; it becomes important only when we 

begin to consider matrices. 

The algebra RB  is the familiar Boolean algebra in 

which 0 and 1 represent false and true. We may regard a pxp 

matrix A = Caii] with elements in this algebra as specifying 

a relation on the integers 1,2,...,p. Thus 

iAj 
	

(read i 	is related by A to j) 

a
ij 

= 1 
	

1<i,j<p. 

In Mp(RB) the operator * is highly significant since A* is 

the reflexive and transitive closure of A. That is A* is 

the least relation containing A and having the properties 

iA*i 	 (reflexivity) 

and 	(iA*j and jA*k) 	iA*k 	(transitivity). 

It is this particular application of regular algebras from 

which one gets the terminology "closure" operation for the 

* operation. 

The applications of this algebra are numerous and are 

so familiar that they need hardly be mentioned. Suffice it to 

say that A* represents the connectivity of a directed graph 

and wherever graph theory finds application, then so does Mp(RB). 



e S 

RS  
-CO 

RB 

Ru { -c,00} 

{0,1} 

a * 	{ 0 30  ff aa 00 

1 

0 

max 

1 

RC  

CacIR I a?01u{..} 

0 

CO 

RCP min 0 CO 

min 
RSP 

CO 

TABLE 1 

a* 	{ 	if a>0 
if a<0 
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2.2.5 	Finding Shortest Path  

If the arc labels of a graph A are real numbers 

representing costs or distances the algebra Mp(Rsp ) can be 

used to find the least cost or the shortest distance from 

one node to another. 	Indeed it was only through reading 

the paper by Carre [6] and by observing the tremendous 

similarity between Carrels algebra and regular algebra that 

the author first realised the usefulness of regular algebra 

in the context of path-finding problems. However, before 

we can make a precise comparison between regular algebra 

and Carrels algebra we must remove the obstacles caused by 

differences between the definitions used here and in [6]. 

Carrels paper was concerned exclusively with the 

solution of extremal path problems, and its definition of A* 

was tailored to this purpose. Let us here define A to be 

the matrix whose (i,j)th element is the sum of the path 

products of all elementary paths from xi  to xj  on the graph 

of A; the matrix A as defined here corresponds to A* in [6]. 

Now to relate A to the closure A* of A we recall Carrels 

definitions of definiteness and semi-definiteness, which can 

be paraphrased as follows: Let A be a pxp matrix; then A 

is semi-definite iff there is no closed path y in A with 

path-product w(y)De; A is definite iff there is no closed 

path y in A with path-product w(y)De. 	(Note that Carrels 

definition of definiteness is identical to Salomaa's definition 

of ewp and hence is equivalent to our own.) 
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In addition to Al-A9, Carre assumed the following: 

(a) commutativity of multiplication, a•f3. = [3•a 	Va,B. 

(b) the order relation c is total, i.e. for any oc,B 

either aci3 or Bca, 

(c) the cancellation property: 

Va,13,Y#-c°,aP3; 	a.(3 = a.y > 13=y 

With the above properties holding one can prove the 

following well-known theorem [Theorem 4.1 of 6]. 

Theorem  2.4 Let A be a pxp semi-definite matrix. Then the 
2 	 2 

series E+A+A + ... is finitely convergent, with E+A+A +...+A
r 

= 

A for all r>p-1. 

Corollary 	A = A*. 
■NO 

Proof 	A s A* by p applications of A10. But by 

Theorem 2.4, A = E+A-A and hence by R1, A D A*. Thus they 

are equal. 

Thus when A is semi-definite, shortest distances in 

A are given by A*. When A is not semi-definite A must contain 

at least one cycle of negative length and the concept of 

distance becomes meaningless. Thus in this case A* has no 

real significance. 

Regular algebra may also be used to find shortest 

routes between any two points in a graph as follows. 

Consider a vocabulary V = {v1 ,v2 ,...,vp} and let 
RSR 

 be the 

free regular algebra generated by V on which the following 

generating relations are imposed: 

V•a•V 	V.V. 
1 	1 	1 	1 

i = 1,2,...p) for all a. 
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In this algebra one can prove that u* = e+a, and so 

the star operator may be discarded. 

To enumerate the elementary paths on an unlabelled 

p-node graph G.(x,r), we give a name vi  to each node xiEX, 

and we label each arc of G with the name of its terminal 

node, i.e. we set aij  = vj  for all (xi,xj) cr . 	Then within 

the algebra M
p(RSR) 

 the closure A* of the matrix A gives 

all elementary paths on G: specifically, each product 

{vi}-aIi  is a set of sequences of node names, each of these 

sequences defining an elementary path from xi  to xj. 

If the graph G is labelled with costs or distances, 

the two algebras m
p (RSP 

 ) and Mp(RSR) may be combined to give 

least cost routes (and their cost) through G. 	Specifically 

each arc of G is labelled with a pair (c,r) where c is the 

cost of traversing the arc and r is the name of the node on 

which the arc terminates. The product and sum operations 

which are appropriate to finding shortest routes are: 

(c,r) . (c",r') = (c-c', r-r') 

(c,r) + (c',r') = (c+c-, if c+c' = c then r else r'). 

In practice it is of course inadvisable to store the 

entire shortest route from node i to node j in the (i,j)th 

element of A*. Instead it suffices to store the number of 

the node immediately following node i on the shortest route 

from node i to node j [7]. To do this it is simply necessary 

to redefine the product operation to: 

(c,r) • (c",r') 	= 	(c•c",r) . 
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2.2.6 	Other Applications  

Finally we make brief mention of three other 

applications of regular algebra of practical importance. 

If arc labels aid  represent the probability of 

going directly from node x. to node x then in m (R ) 
p C 

(Table 1), aid  represents the maximum probability of going 

from node xi  to xj. 

If nodes represent tasks, and there is an arc from 

node xi  to node xj  labelled with the duration of the task 

, 
x.
1 	

if x
i 
must be completed before x may begin, then 

m
p (RSC 

 ) (Table 1) may be used in scheduling the various tasks. 

Finally mp(Rcp ) (Table 1) may be used to find critical 

paths through routes with some likelihood of blockage. For 

example if arc labels represent the width of a bridge on a 

path from node xi  to xj, this algebra may be used to find 

the minimum width bridge on a route between two given points 

xi  and xj  which minimises the likelihood of a blockage. 

We refer the reader to [6] for detailed references 

on these topics. 

2.3 	Semigroups  

As a final example of a regular algebra which we 

shall exploit in Chapters III and IV we now mention the 

regular algebra defined by a finite semigroup. 

Let S = (S,-) be any finite semigroup having a unit 

element e. 	Consider all subsets 2s  of S and let + be the 

operation of set union defined on 2s. Extend the operation 
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• in the usual way to apply to elements of 2s  by 

m 	n 	m n 
( E ai)•( E b.) 	= 	E 	E a.•b. 

J 
i=1 	j=1 	i=1 j=1 

For any acts, define ao=e (the unit of S) and 

a
n 

= a•a
n-1  

n 	= 	1,2,... 

Since S is finite it is clear that for sufficiently large N 

e+a-Fa2+...+a
N 

= e+a+...+a
N
+...+a

N+n 

for any 	and all ae2s. 

We define a* to be this sum. 	In this way the semigroup S 

is naturally extended to become a regular algebra. We will 

normally denote this algebra by R(S). 
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II ELIMINATION METHODS FOR FINDING CLOSURE MATRICES  

Everyone knows how to solve simultaneous equations 

in linear algebra! The equations 

x = ax + by + e 
	

(1 ) 

y = cx + dy 	 (2) 

are solved by eliminating x from the right hand side of (1), 

forward substituting this value in (2) thus finding y, and 

finally back substituting in (1) to get x. 	By this process 

one would get 

x = (1-a)-1[13(1-(c(1-a)-1b+d))-1c(1-a)-le+e] 	(3) 

y = (1-(c(1-a)-1 b+d))-1 c(1-a)-1 e 	 (4) 

In regular algebra, one uses the rule R1 to eliminate 

variables in exactly the same way. Thus if a,b,c are letters 

and e is the empty word, one obtains as minimal solutions of 

the above equations 

x = a*[b(ca*b+d)*ca*+e] 	 (3)' 

y = (ca*b+d)*ca* 	 (4)' 

(3)' and (4)' are identical to (3) and (4) if one replaces 

the symbolism m* by (1-m)-1, and assumes e=1. 

express 

where 

and 

In 	both 	linear 	algebra 

the 	equations 	(1) 

Y 	= 

Y 	= 

eol 	= _ 

AY 

x 

e 

0 

[l 

and 

y 
 

and 	regular 

(2) 	in 	matrix 

+ 	eol 

, 	A 	= 

is 	the 	first 

a 	b 

c 	d 

algebra 

form, 

column 

we may 

as 

of the 	unit 
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matrix 

(assume e=1 	in linear algebra). 
e 

	: [ 	I 

The solutions are 

Y 	= 	(I-A)
..1 

 e ol  in linear algebra 

and 	Y = A*eol 	in regular algebra 

(more precisely this is the minimal solution). 

This analogy between linear algebra and regular 

algebra has surely been noticed by many others interested 

in regular languages (for example, Aho and Ullman CM, but 

apart from a casual reference none has bothered to investigate 

the analogy further. 	In linear algebra quite significant 

economies can be made in simplifying proofs and avoiding long, 

involved formulae if one uses the so-called matrix methods 

[21]. These methods are based on the simple concept that 

matrices have inverses which satisfy properties identical to 

the inverses of real numbers. 	But in regular algebra one 

can also talk meaningfully about the star A* of a matrix A, 

and, moreover, it has the same properties as a* for a language 

a (as well as others). 	In this chapter, our objective is to 

investigate fully the analogy between linear algebra and 

regular algebra, and, in particular, to show how matrix methods 

can equally be employed in regular algebra as well as in 

linear algebra. 

The impetus for this investigation was provided by 

Carre [6], who, in studying some path-finding problems, 
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obtained product forms for A* which are entirely analogous 

to the Gauss and Jordan product forms for (I-A)-1  in linear 

algebra. 	Carre's paper, however, falls short of our 

objective, as he also used the usual "school' methods for 

deriving the product forms, and, at the time, did not realise 

the possibility of using matrix methods directly. 

1. 	Comparison Between Uniqueness of Solutions  

Before proceeding to discuss algorithms for finding 

A*, for a matrix A, it is worth observing the analogy between 

the conditions for uniqueness of solution of equations in 

linear algebra and regular algebra. 

By R1, A* is a solution of the equation 

Y = AY + E 	 (1.1) 

and, moreover, it is the unique solution if A is definite. 

Now, in linear algebra, the equation 

Y = AY + I 	 (1.2) 

has the unique solution Y=(I-A)-1  if and only if I-A is 

non-singular, or, if and only if T=AT—>T=0. 

Let us compare this with our definition of definite- 

ness: /Item (R) is definite iff TcAT-->T=N. 	The analogy is 

not quite complete, but this is soon rectified by Lemma 1.1 

below. Note that in the proof we anticipate the proof of 

the identity (2.1): 	AA* = A*A, but we assure the reader 

that we are not arguing tautologously. 
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Lemma 1.1 	( 3 T#N such that TcAT) 	( 	TP1 such that T=AT). 

Proof 	is trivial. So let us assume R T#N such that 

TcAT. 

Then TcAT-A*TEA*AT 	= 	AA*T 	(by 2.1). 

But by A10, A*T2AA*T. 

Hence A*T = A(A*T), 

i.e. T' = A*T = AT', and the lemma is proved. 

It may also be possible to establish an analogue to 

the determinant, det(B), of a real matrix B. 	Consider for 

simplicity a 2x2 matrix 

all a12 
• 

a21 a22 

In regular algebra, the condition of non-definiteness of A 

reduces to two conditions (cf. Appendix A). 

Either (a) aliDe or (b) a22+a21aI1 a 122e . 

Now suppose A is a real matrix, and consider B=I-A. 

det(B) = (1-a 11 ) (1-a22) - a21a12 

= (1-a 11 ) 	• a12 	• 
all 

Replacing (1-m)-1  by m*, we get: 

ail 	(a22 + a2lalla12)* det(B) = 1 . 

Superficially, det(B) = 0 if and only if either 

(a)' all  = 1 

or 	(b)' a22  + a2lailai2 

1 

A 
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Of course, as anyone can see, this is not true and the 

analogy between (a), (b) and (a)', (b)' has been fiddled. 

Nevertheless, one cannot dispute that there is a similarity 

and one which is quite interesting to observe. 

The condition for definiteness takes various 

concrete forms under different interpretations of a regular 

algebra. For instance, as we saw in Chapter I §2.2.3, for 

matrices whose entries are regular languages, non-definiteness 

corresponds to the empty word property defined by Salomaa. 

For further discussion of this see section 5 of [2]. 

2. 	Some Regular Tautologies and their Analogues  

Rather surprisingly, with A* replacing (I-A)-1, 

much of the theory of real matrices also holds in regular 

algebra. 	In this section we shall establish a few simple 

regular tautologies, all of which have analogues in linear 

algebra, and which are sufficient to enable us to obtain 

analogues in regular algebra of all the direct methods of 

solving linear equations and inverting matrices. The 

tautologies are listed below, together with their proofs, 

following which we give their analogues in linear algebra. 

Tautology (2.1): 	A*A = AA* 

Proof 	A(A*A + E) + E = AA*A + A + E 

= (AA* + E)A + E 

= A*A + E, by A101. 
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_ 

hence, 	A(A*A + E) 2 AA* 

therefore, 	(AA* + E)A 2 AA* 

so, by A10', 	A*A 	 2 AA* . 	 (2.1.1) _ 

But, by A10', 	AA* 	 = A + A(AA*) 

hence, by R1, 	AA* 	 D A*A . 	 ( 2.1.2) 

From (2.1.1) and (2.1.2), A*A = AA* . 

Tautology (2.2): 	A(BA)* = (AB)*A 

Proof 	Let X = A(BA)*, Y = (AB)*A, and P = (BA)*. Then 

by A10' 	 P = E + BAP 

hence 	X = AP = A + ABAP 

= A + ABX . 

Therefore, by R1, X D (AB)*A = Y . 	 (2.2.1) 

Also, since 	Y = (AB)*A , 

Y = (E + AB(AB)*)A 

= A + AB(AB)*A = A + ABY . 

Hence, 	BY = BA + BA(BY) . 

Therefore, by R1, BY = (BA)*BA 

= BA(BA)* 	 by 2.1. 

So Y = A + ABY gives Y = A + ABA(BA*) 

= A(E + BA(BA)*) 

= A(BA)* = X . 	 (2.2.2) 

From (2.2.1) and (2.2.2), 	X 	= 	Y. 

Tautology (2.3): 	(A + B)* = A*(BA*)* 

Proof 	Let X = (A + B)* and Y = A*(BA*)*. 

Now 	 E + (A + B)Y = E + AA*(BA*)* + BA*(BA*)* 

= (BA*)* + AA*(BA*)* 

= A*(BA*)* . Y. 

Thus by R1, 	A*A + E 	2 A* 
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Hence, by R1, 	Y D 	(A + B)* = X. 

Also, by A10', 	X = E + (A + B)X, 

so 	X = AX + (E + BX), 

hence, by R1, 	X 2 A*(E + BX) 

= A*BX + A* . 

Now X D A*BX + A* —› X D (A*B)*A* . 

From (2.3.1) and (2.3.2), X = Y. 

Tautology (2.4): 	(A + B)* = 	(A*B)*A* 

Proof 	This is immediate from (2.2) and (2.3). 

Tautology (2.5): 	(AB)* = E + A(BA)*B 

Proof 	This is immediate from A10' and (2.2). 

(2.3.1) 

(2.3.2) 

The identities (2.1) - (2.5) all have analogues in 

linear algebra, which are the following: 

(2.1a) : (I-A)-1 A 	= A(I-A)
-1 

 

(2.2a) : A(I-BA)-1  = (I-AB)-1 A 

(2.3a) : (I-(A+B))-1  = (I-A)-1 EI-B(I-A)-1 ]-1  

(2.4a) : (I-(A+B))-1  = [I-(I-A)-1 B]-1 (I-A)-1  

(2.5a) 	: 	(I-AB)-1 	= 	I + A(I-BA)
-1 
 B . 

The identities (2.3) and (2.4) will find great 

prominence in the following sections, because they will enable 

us to express any closure matrix as a product of elementary 

transformation matrices. 	In regular algebra these identities 

are well-known, indeed they are often listed as axioms 

(e.g. Conway [13]). 
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3. 	Product Forms for Closure Matrices  

In this section we shall use the tautologies 2.3 

- 2.5 to derive product forms for the closure A* of a pxp 

matrix A, analogous to the Jordan product forms and 

triangular factor representations of inverse matrices in 

linear algebra. These product forms yield algorithms 

analogous to the direct methods of linear algebra, for 

calculating the minimal solution Y = A*B of a set of 

equations of the form Y = AY + B. 

In this Chapter, the typical elements of a matrix M 

and its closure M* will be denoted by m
ij 

and mt
j 
 respectively, 

l 

and the closure of an element mii  of M will be denoted by 

J 	
th . 

(m
1
..)*. The 1 	row and the j

th 
column will be denoted by 

mio  and moj  respectively. 

3.1 	Row and Column Matrices  

Our techniques for deriving product forms are based 

on the following simple idea: Given a matrix A = AM, we 

can split AM into two matrices C(1)  and 	and and using 

(2.4), write A* = A(0)* = (c( 1 ) + s(1 ))* = (c( 1 )*s( 1 ))*c( 1 )* 

= A(1)*C(1)*, say. 	In doing so, the problem of determining 

the closure of AM is turned into the problem of finding the 

closure of two matrices A(1)  and 	Our Our strategy is to 

choose C(1)  and S(1)  such that 

(a) the closure of C(1)  can be immediately 

calculated and 

(b) A(1)  has a "simpler" form than AM. 
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We can repeat the process for A(1), reducing the problem 

of finding A(1)* to that of finding C(2)* and A(2)* and so 

on. The process is terminated when, after p steps, A(P)  is 

of such a form that its closure A(P)* can also be immediately 

calculated. Using alternative methods of splitting, combined 

with different identities of regular algebra, we can derive 

different product forms for A*. 

The requirement (a) above is achieved if we choose 

the matrices C(k)  always to be column matrices, that is 

matrices of the form 

4)-4 	c
lk 
	0...0 

2k 0  

• • 

(1)...(1) 	cpk 	0...§ 

c(k) 

which are non-null in one column only (in this case the kth 

column). 

C(k)* is found either by inspecting its graph (see 

the following figures) 

Fig. 1(a) - Graph of C(k) 
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Figure 1(b) - Graph of C(k)* 

or algebraically as follows: 

We express C
(k) 

as 

C(k)  = Eoako 

Then 	C(k)* = (Sok.2.ko)*  

which, by 2.5, 	= E + 
.Sok

(
!kook

)*
Sko . 

• c C(k)* = E + 	e • • 	—ok
l
s -
c 
 kk'

1
=* ko • 

Thus C(k)* differs from the unit matrix only in its kth 

column. 

Similarly the star of a row matrix 

R(k)  = 
.2-okrko 

(3.1) 

which is non-null in the kth row only is 

R(k)* = E + e 	lr 
—ok—kk)r*—ko • (3.2) 

We shall now show how (3.1) and (3.2) are exploited 

to derive the standard elimination methods of linear algebra. 
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3.2 	The Jordan Product Forms 

( 1 ) 	Column Decomposition  

To obtain a product form for A*, we first set A(C))=A 

and express A(C))  in terms of its column vectors: 

A(0)  = E a(?)e. 
j=1 —.°J —J°  

Then we express A(°)  as the matrix sum 

A(0)  = C(1)  + S(1)  

where C(1) (. . (3.4) = ac()?)  elo  and S(1)  = 	a9e 

j=2 —03 —J°  

Hence, from (2.4), 

A(°)* . (c(1 ) + s(1))* = A(1)*c(1)* } 
(3.5) 

Now since the first column of S(1)  is null, the first column 

of A(1)  is null also, so A(1)  can in turn be expressed as the 

sum 

A(1) 	c(2) 	s(2) 

where c(2) = a)e 
o2 2o and S

(2)  = 	E a(1)e 
jo 

(3.6) 

and applying 2.4 again, 

A(1)* 	(c(2) 	s(2))* 	A(2)*c(2)*  

(3.3) 

where 
A (1) 	c(1)*s(1) 

where 
A(2) = c(2)*s(2) 

• 
(3.7) 

Continuing in a similar manner, setting 

C(k) - S(k)  = 	a(-i)e aok ako' 	
j=k+1 °j —j°  

A(k)  = C(k)*S(k), (k 

 

 

 

3.8) 
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we obtain 

A(k-1 )* = A(k)*-u(k)  

	

'*, 	(k = 1,2,... p) 

	

Now A(P)  is null, so A(P)* = E. 	Therefore 3.9 gives 

A * 	= 	c (P)* c (P-1)* C ( 1 ) * . 

(3.9) 

(3.10) 

(ii) 	Row Decomposition  

The product form (3.10) was derived by repeated 

application of the relation (2.4), (P+Q)* = (P*Q)*P*, to 

column decompositions. Alternatively, it is possible to 

apply (2.3), (P+Q)* = P*(QP*)*, to row decompositions: 

Corresponding to (3.8) - (3.10), if we set 

R(k) 	,(k-1) T(k) 	
e a(k-1)  

Lokako ' 
i=k+1 	

. 
 

and 

then 

hence 

A(k) 	
T
(k)

R
(k)

*, (k = 1,2,...p) 

= R(k)*A(k)*, 	(k = 1 - 

A* = R(1)*R(2)* 	R(P)* . (3.13) 

We describe (3.10) and (3.13) as the Jordan product  

forms for A*. 
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3.3 	The Gauss Product Form  

In order to derive a product form analogous to 

the Gauss product form it is sufficient to apply the row 

and column decomposition methods, defined above, alternately 

to the successive matrices A
(k) 

. 

We again consider a pxp matrix 	to to which we 

first apply the row decomposition 

where 

Whence 

where 

R(1)  

A(0)* 

S (1)  

= - 

= 

= 

A(0) 
	= 
	R(1) 

	

a °) 	and 
— 
e
ol —l(o 

(R(1) 	+ 	T( 1 ))* 

T(1)R(1)* 	. 

4. 	T(1) 

T(1) 	= 	1  E) 	e 	a(°)  
i=2 °i—i°  

= 	R(1 )*s( 1 )* 

(3.14) 

(3.15) 

We note that since the first row of T(1)  is null, the first 

row of S(1)  is null also. We now perform the column 

decomposition 

S (1) 	= c (1) 4. A (1) 

where 

C(1)  = s(1)e 	and A(1)  = 	E s(1)e. . 	(3.16) 
—ol —lo 	

j=2—°3  -3°  

Whence 

S( 1 )* = 	(c( 1 ) + A( 1 ))* = (c(1 )*A( 1 ))*c( 1 )*.(3.17) 

Here both the first column and the first row of A(1)  are 

null; and since only the first column of C(1)  is non-null, 

in (3.17) we have C(1 )*A(1) 	= 	(E + C(1)*C(1))A(1)  = A(1)  . 

Therefore (3.17) simplifies to 

S(1)* = A(1)*C(1)* 	(3.18) 
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so (3.15) gives 

A(0)* = R(1 )*A( 1 )*c( 1 )* . 	(3.19) 

Continuing in a similar fashion, setting 

R(k) 
= LokLk 

,(k-1) T(k) = E e 	s(k) = T(k)R(k)* 
.a

o 	' 	i=k+.1 ol — 1)'-1),  
 

• 

C(k)  = s )e 	A(k)  = 	s .e. 
—ok —ko , 	

j=k+1—"—J° 

we obtain 

A(k)*  = R(k+1)* A(k+1)* c(k+1)*  

(3.20) 

(3.21) 

(k = 1,2,...p) . 

At the pth  stage A(P)  and C(P)  are null, so (3.21) gives 

A* = R( 1 )* R(2)* ... R(P)* c(P-1 )* c(P-2)* ... c( 1 )*. 

(3.22) 

This decomposition process is illustrated in Figure 2, which 

shows the disposition of the non-null elements of the 

successive R( k), C(k)  and A(k)  matrices. 

R(1)  

C(1)  

R(2)  

C(2)  
. 

• 

. 

. 

R(k)  

C(k) 
A(k) 

Fig. 2 Triangular Decomposition 
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4. 	Algorithms from the Product Forms  

The product forms (3.10), (3.13) and (3.22) 

immediately yield algorithms for computing the minimal 

solution Y=A*B of the equation Y=AY+B. These algorithms 

are now presented in more detail. 

4.1 	Jordan Elimination Method  

Firstly, we note that if we substitute C(k) = 4r
1)-tko 

(from (3.8) into (3.1)), and then use the definition of 

A(k)  in (3.8), we get 

A(k) = (E (a(-1) 	P 	 -1) 
e  Lok 	kk ')*-e-ko)  ( 	! 	' ) 

j=k+1 °J 	—JP  

E 	(!
(k-1) 	(k-1) ,,(k1)

)  * a (k-1))e = 	o' 	—ok 	‘ukk 	,.  
j=k+1 	 KJ 	—Jo 

The non-null columns of A(k)  can therefore be 

obtained directly from those of A(k-1), using 

a(k)  = a(k-1)  + -(k-1)  (aa-1))* 4( -1)  —oj 	—oj 	Lok 

. 	(4.1) 

for k<jqo 	(k = 1,2,...p-1) . 	(4.2) 

To find A*B = C(P)* C(P-1)* 	C(1)*B, we form 

the sequence 

B(°)  = B, B(k) = c(k)*B(k-1) 	= 1,2,...p) . 	(4.3) 

The final term gives the required solution: 	B(P)  = A*B. We 

note that from (4.1), the successive B(k) matrices are given 

by 

13(0) = B, B(k) = B(k-1 ) 	.(k-1 ) f."(
k

-1 )N h( -1 ) 
Lok 	‘k 	I* uko 

(k = 1,2,...,p) . 	 (4.4) 
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Hence the solution can be obtained by performing p 

successive transformations of A and B, the matrices A
(k) 

and B(k)  at each stage being obtained from (4.1) and (4.4) 

respectively. This method is analogous to the Jordan method 

of solving Y=AY+B in linear algebra, with Y=A( 
 k)y+B(k) 

(k = 1,2,...,p) being the equivalent system obtained after 

the elimination of the kth Y- variable. 

Note that once p transformations of the original 

matrix A have been completed the contents of A have been 

overwritten by C(1), C(2), 	, C. 	I.e. after p 

transformations 

        

        

A <— C( 1 ) C( 2 ) • • • C(p) (4.5) 

        

        

This is very convenient if later one wishes to 

calculate the solution of an equation Y=AY+B for a new 

value of B since one need only compute the product 

C(P)* C(P-1)* 	C(1)*B using (4.4). 

In linear algebra this is very often used to 

advantage. The matrix (4.5) is referred to by Tewarson C427 

as the product form of the inverse or PFI. 

When it is required to find Al-=A*A the equations 

(4.2) and (4.4) take on a rather simpler form. Substituting 

B(°)=A into (4.4) we note that the final p-k columns of B(k)  

are identical to the final p-k columns of A
(k)

. 	Moreover, 

since the first k columns of A(k)  are null we can store A(k)  

and B
(k) 

 in the same matrix. Thus to calculate A
+ 

the above 
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method reduces to the rather simpler form e=A(P), where 

A(0) - A,  A(k) - A(k-1) + (k-1 ) 1 (k-1 )N*.(k-1 ) 
' L'ok 	‘akk 	' 'ko 

(k = 1,2,...,p) . 	 (4.6) 

This method has been rediscovered by many authors. 

On the two-element Boolean algebra it is commonly known as 

Warshall's algorithm [43], for finding shortest paths it is 

often attributed to Floyd [19]. 

4.1.1 	Triangular Matrices  

For triangular matrices the relations (3.8) - (3.10) 

and (3.11) - (3.13) defining the Jordan product forms can 

be greatly simplified. Specifically, in applying the column 

decomposition method to a lower triangular matrix L, we have 

(k) = s(k) 
in (3.8) C(k)* s 
	

and hence 

L(k) . E 2,(0)e  

j=k+1—°j —jo, 	( k  ' 1,2,...0-
1) 

which is simply the original matrix L with its first k 

columns nullified. 	Thus C(k)  is formed directly from the 

kth column of L, and from (3.8) and (3.9) we have 

L* = C(P)* C(13-1)*...C(1)* 	(4.8) 

where 	C(k)* = E9,  
+ —ok(P ck)*  .2.ko' 	(k 

 = l,2,...,p) • 

Similarly for an upper triangular matrix U, (3.11) - (3.13) 

give 

U* = R(1)*R(2)*...R(P)* 	 (4.9) 

where 	R(k)* 	= 	
E + f-ok(ukk)*Ilko

, 	(k = 1,2,...,p) . 

To obtain the solution Y=L*B of a lower triangular 

system Y=LY+B, (4.4) and (4.8) give the familiar forward  

substitution method  

B(0)  = B, B(k)  = B(k-1) + !ok(fick 
"bW1) 	

(4.10) 

(4.7) 

(k = 1,2,...,p) 



P 
* 	E u

qrr  
b(

j
-1)  for i=c1  • 

r=q 

bCk)  = 
ij 1) (1-1) 4.  ( 

13 

b(k-1)  
ij 

(4.14) 

for iiq 

) uqq 
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which does not involve any modifications of L. 	For an 

upper triangular system Y=UY+B, (4.9) enables us to express 

the minimal solution as 

U*B = R(1)* R(2)* .. R(P)*B 	(4.11) 

which leads to the back-substitution method  

B(0) = B, B(k) . R(p-k+1)* B(k-1) 

(4.12) 

(k = 1,2,...,p) • 

From (4.9), the B
(k) 

matrices here are given by 

B (k ) = B (k-1) I.  
eo (u )* u 	B(k-1) 
q qg —go 

(4.13) 

where q = p-k+1; hence they have elements 

, 

4.2 	The Gaussian Elimination Method  

To obtain a convenient method of calculating the 

successive C(k), A(k)  and R(k)  matrices we first use (3.2) 

in (3.20) to obtain: 

s(k) = T(k)R(k)* = 	e 	(k-1) 	 -1) 	 -1) 	(-1) 

°i'(  i° 	
+aik 	(akk 	

)*,!ko 	) i=k+1 	' 

(4.15) 

Therefore, from (3.20), the C(k)  and A(k)  matrices are 

given by 

c(k) = e(k)e 
 ako 

P 	( (k-1) + .(k-1)"  (k-1)1 	(k-1)1  

i=k+1 
= 	!oi`aik 	' "ik 	"kk 	Ikakk 	lako 

. 
p 

,(k-1) 
 

(,(k-1)1  

i=k+1 	

*. 
E  !oi "ik 	°L ic 	I ako 

(4.16) 
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and 

A (k)  = E s( k )e. 
j=k+1—" —d" 

P 	P 	(k-1) 
= 	E 	E e .(a.. 	+ aC k- 1)1a (k-1)1*a -1))e. ik 	‘ kk 	' 	 J0 j=k+1 i=k+1-01 1J 

P 	P 	(k-1) + ,(k),(1<-1)1. 	. 
= 	E 	E e .(al 	 (4.17) 

j=k+1 i=k+1-01 lj 	"ik "kj 	1Ljo 

The matrix R(k)  is already defined directly in terms of 

A(k-1)  by (3.20). 

	

Since the non-null elements of R(1), R(2) 	
(k)  

and 	 and C(2),...,C
(k) 

and A
(k) 

all occupy different 

positions (see figure 2), all the R (k)  and C(k)  matrices 

can be computed and recorded simply by performing p-1 

successive transformations of the original A- matrix. Writing 

0°)=A, we compute M(k)  (k = 1,2,...,p-1), where the elements 

of M(k)  are obtained using successively 

 

(k-1) f  (k-1)11, 
mik 	 m̀kk 	I 

m(k-1) 4. m() m(k1) 
mij 	mik mkj 

-1) 
m
m(k
ij 

 

m

m (k) 
= ij 

for k<i<p; j=k 

for k<i,j<p (4.18) 

otherwise. 

   

On termination 013-1)  contains the non-null 

elements of R(1)  ,R(2),...,R(P)  and C(1),C(2),...,C(P-1)  in 

their appropriate positions (see figure 3). 	In linear algebra 

M(P-1)  is considered an extremely useful form of the inverse, 

particularly for sparse matrices and is referred to as the 

elimination form of the inverse or EFI C42]. 
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R( 1 ) 

co) 

R( 2 ) 

C(2) 
o  R(k) 

C(k) 

R(P) 

Fig. 3 

To complete the solution of the equation Y=AY+B 

we need to calculate the product (3.22). 	It will be 

observed that the R(k)  matrices together form an upper 

triangular matrix 

P (k) U = 	E R 
k=1 
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whose closure by (4.9) is 

U* = R(1)*...R(P)* 	(4.19) 

and that the C
(k) 

matrices form the strictly lower triangular 

matrix 

IT 
L = k=1 

whose closure by (4.8) is 

L* = C(13-1)*C(P-2"...C(1)* 
	

(4.20) 

Hence the minimal solution of Y = AY+B is 

Y = A*B = U*L*B. 	(4.21) 

The required solution can therefore be derived by applying 

the forward substitution method (4.10) followed by the back 

substitution method (4.14) which give in turn L*B and 

Y = U*L*B. The above procedure is analogous to the Gauss 

elimination method in linear algebra. 

4.2.1 	Calculating A*  

To complete the calculation of A* we need to 

calculate the product (3.22) which we can do in the order 

A* = (R(1 )*(R(2)*(...(R(P)*(c(P-1 )*(...(c(2)*c( 1 )*)...) 

Note that (other than e elements on the diagonal) the non-null 

elements of the accumulated product and the non-null elements 

of the remaining factors do not intersect at any stage of the 

product. Thus the product can be performed by transforming 

OP-1)  to A* in 2p-2 steps, overwriting the contents of 

OP-1)  at each step. 
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Accordingly, let 

13( 1 ) = OP-1 ) 

then B(k), k = 2,3,... p-1, are obtained by applying the 

forward substitution method (4.10): 

(k-1) + b(k-1) b(k-1) 
"ij 	ik 	kj 

k(k-1) 
,..ii  

bC k) 	= 
1j 

j<k<i 

(4.22) 

otherwise . 

Finally A* = B(4-1)  where B(k)  for k = p,p+1,...,2p-1 

are obtained by applying the back substitution method (4.14): 

bCk) 
lj 

b(k-1)  + 'b(k-1)" 
0 	

k qq 	) 

b(k-1)  + 1 b(k-1)" 
0 	

k qq 	)  

b(k-1)  b(14-1), 
qr 	rj 

r=q 

P 
E b(k-1)  b(k-1)  

r=q+1 qr  
rj 	' 

where q = 2p-k. 	 (4.23) 

4.2.2 	Calculation of Submatrices of A* - Aitken's Method  

It is often necessary to find the intersection of each 

row !to  with each column 	where icV and jeW for some sub- 

sets V and W of {1,2,-0}. 

To solve this problem we observe that any sxt 

submatrix of A* can be expressed as 

H = PA*Q 	 (4.24) 

where P is an sxp matrix composed of the s unit row vectors 

corresponding to nodes iEV, and Q is a pxt matrix composed 

of the t unit column vectors corresponding to nodes jcW. 
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The expression (4.24) can be evaluated by a method 

analogous to the Aitken method of linear algebra, which 

can be very easily explained in graph-theoretic terms. 

Consider the graph G = (X,A) of the matrix A and suppose 

this graph is augmented to form a graph Ga  = (XuV"uW",A 4102) 

where V"  = {x:.  ,x'.. ,...,x } and W'  = fx". ,...,x'. } are sets 
1 1 	12 	1

s 	Jl 	Jt 

of "duplicates"  of the nodes of V and W, and +1 and 11)2 are 

sets of unit arcs joining nodes x.
. 
 E V"  to the corresponding 
ik 

node x
ik 

c V, and nodes x. E W to the corresponding node 
4 

■ ■ 
X. E W . This graph (illustrated in figure 4) has matrix 
3k 

 

M(0) 
 

P 

1)31 

(1)12 Q 

  

(1)22 

(1)32 

1)23 

(1)33 

• 
(4.25) 

where 
	

M(0)  = 
A  . 

Applying the transformations (4.18) to this matrix 

it is easily verified that after k steps 

(1) 12 	Q(k)  

(1)22 	H(k)  

(1)31 _ (1)32 	1)33_ 

where 

and 

P (k) 
 = pR(1)*...R(k)* 

Q(k) = c(k)*  ...c(1)*Q  

H(k)  = p(1 ) 1 0) . 
i=, —ol —lo 

(4.26) 

Thus on termination, 

H(P)  = PA*Q. 	 (4.27) 

Since a number of elements of the matrices M(k)  are always 

null we may dispense with them, and hence the algorithm 

reduces to the following. 
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Let 

(4.28) 11*(0) . rM(0) 
 

P 

then we form M(k) 	(k = 1,2,...,p) where 

(;a-1))* 	for k<i<p+s, j=k 

	

(k) 	< :,(k-1) 	:,(k) :;,(k-1) 

	

m(k) 
	'ij 

	
m(k) "Icj 

for 
{
k<i<p+s 

k<j;p+t 

otherwise . 

(4.29) 

 

At the pth stage of this algorithm 

M(P) 	Q(P) 
WP) = [ 

p(P) 	

— 

H(P)  

  

where H(P)  = PA*Q is the required submatrix of A*. 

The Gaussian elimination method was first described 

by Carre.  C6,7], and is particularly important when handling 

sparse matrices EU. The method we have just described for 

finding submatrices of A* first appeared in Backhouse and 

Carre [2]. 

4.3 	The Escalator Method  

An alternative form of the formulae describing the 

Gaussian elimination method gives rise to the escalator 

method, which we describe briefly below. 

Consider,once again, the first step in the 

derivation of the Gauss product form (eqns. (3.14)-(3.19)). 

Let us define the matrices A11,Al2,A21  and A22 by 
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A= 	= 

Then, using 

so ) = 

(3.15), 

A11 Al2 R(1 ) 

A21 

we 

A22 

get 

T( 1 ) 

AzIAti A21AnAl2 4- A22 

whence from (3.18) and (3.19), 

C11 C12 

A* 
C22 C21 

where 

C11 

C12 

C21 

= At/ 	Ati Al2 C22A2lAtl 

= AtI A12 C 22 	 (4.31) 

= C22A21Ati 

and 

C22 	= 	(A21At1Al2 -I-  A22)*  . 

These formulae applied recursively to a sequence of 

matrices of orders pxp, (p-1)x(p-1),...,1x1 yield a method 

of calculating A* equivalent to Gaussian elimination. 

Alternatively we can apply the formulae (4.31) to 

find successively the star of a lx1 matrix, a 2x2 matrix 
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etc. as shown in figure 5. 	In this form the corresponding 

shortest path algorithm is known as Dantzig's algorithm 

C14]. 

Finally, as with all our formulae, we are not con-

strained to split the matrix A into a row, a column and 

the remainder in applying (4.31). 	Instead we could use 

a "binary" splitting technique to split the matrix A 

(roughly) into 4 equal sized matrices. 	Munro [32] has 

applied this technique to triangular matrices in order to 

take advantage of a recently introduced method of matrix 

multiplication C41]. 

4.4 	Woodbury's Formula  

Our method of deriving product forms for closure 

matrices, using (2.3)-(2.5), is based on the same principles 

as a method discussed by Householder C26] for finding inverse 

matrices in linear algebra, involving repeated use of the 

formula: 

(B + URUT )-1  = B-1  - B-1 U(R-1  +V TB-1 U)-1 V TB-1  . 	(4.32) 

Indeed, by combining our relations (2.4) and (2.5) we obtain 

the analogous formula: 

(A + USVT )* = A* + A*U(SVTA*U)*SVTA* 

which can be verified as follows: 

(A + USVT )* = (A*USVT )*A* 

(E + A*U(SV
T
A*U)*SV

T
)A* 

= A* + A*U(SV
T
A*U)*SV

T
A*. 

(4.33) 

(by (2.4)) 

(by (2.5)) 
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lx1 matrix 

2x2 matrix 

3x3 matrix 

pxp matrix 

Fig. 5 
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To demonstrate that (4.32) and (4.33) are analogous, we 

replace the symbolism M* by (I-M)-1  in (4.33) which gives 

(I-A-USVT )-1  = (I-A)-1+(I-A)-1 U(I-SVT (I-A)-1 1.1) -1 SVT (I-A)-1  

(4.34) 

or 

(I-A-USV T )-1 = 	(I-A)
-1 
 +(I-A)

-1 
 U(S 	-V

T 
 (I-A)-1 U)

- 1 
V

T 
 (I-A)

-1 
 

(4.35) 

If in (4.35) we set I-A = B, and S = -R, we immediately 

obtain (4.32). 	It would have been possible to derive our 

product forms from (4.33), but it is more convenient to apply 

(2.3) - (2.5) separately. 

As in linear algebra, the direct application of 

(4.33) is not usually to be recommended as a practical method 

of computing closure matrices, but it is sometimes useful for 

finding the modification of a closure matrix A* which results 

from a change of a single element of A. 	In particular, from 

(4.33) the modification of A* caused by adding a to the 

element aid  of A is given by 

(A + e
0 
 .ae.

o 
 )* = A* + a*.(aat.)*aat

o 
 . 

— 1 —J 	—01 	31 	—J (4.36) 

A concrete form of (4.36) has been derived from graph-

theoretic considerations by Murchland [33] and Rodionov C36] 

who used it to calculate the changes in distances in a 

transportation network when one of its arc lengths is reduced. 

Note also that (4.32) forms the basis of "Kron's 

method of tearing", which is sometimes found useful in linear 

algebra for finding the inverse of matrices having particular 

structural properties [42]. 
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4.5 	A Comparison of Aitken and Jordan Elimination  

In this section we shall compare the Jordan 

elimination method ((4.3) and (4.4)) with Aitken's method 

((4.29)) for finding particular submatrices of A*. The 

relationship between the two methods has been extensively 

studied by linear algebraists [42] and our contribution is 

merely to translate an important theorem E42, Pp.97-100], 

well-known to linear algebraists, into its appropriate form 

in regular algebra. 

Recall ((4.30)) that in Aitken's method we need to 

store the non-null elements of a matrix ii(k)  (k = 1,2,...,p) 

which consists of the matrix M
(k) 

bordered by the three 

matrices P
(k),  Q(k) and H

(k). We shall assume that a 

relatively small number of elements of A* are required and 

hence that the storage required by and the manipulations on 

(k) Q(k) 
	(k) 

P 	, Q 	and H 	may be disregarded. 

Similarly using Jordan elimination 04.1) we assume 

that the matrix B
(k) 
 may be disregarded. We therefore need 

to investigate the relationship between the matrices 

       

       

J (k)  C(  C(2)  • • • C(k)  A(k)  (4.37) 

       

       

       

and M(k)  (see figure 2) for k = ,2,...,P-1. 

Note that, for sparse matrices, the fill-in (i.e. 

creation of new non-null entries) in the matrices J
(k) 

usually 

exceeds the number of non-null entries in C
(k) 

(which is no 

longer required) and thus the release of this storage is not 
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normally exploited in linear algebra. A similar statement 

applies to the matrix M(k). 

In order to compare the storage requirements of 

M(k)  and J(k)  it is technically simpler to compare the 

matrices 

R(2)* 

C(2)* 

(4.38) 

R(k)*  
G 

C( k)* (k)* 	G
[ 	(k) 

1 
and 

         

         

C(2)* 
J 

   

C(k)* 
J 

A(k)  (4.39) 

   

         

         

(For convenience in the above matrices we use the 

notation C* (R*) to denote the non-null elements of the 

closure of the column (row) matrix C (R) excluding the e's 

on the diagonal.) 
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Note that M(k)'.  (J(k)-.) has the same number of non-

null elements as M
(k) 

(J
(k)

) because, other than e's on the 

diagonal, R* (C*) has the same number of non-null elements 

as 	R 	(C) 	for 	any 

lemma 	is 	given 

Lemma 	4.1 	If 

The analogue 

in 

M(k)..  

row (column) 

in 	linear 

E42,Pp97-100]. 

is 	given 

D(1 40
RG
( 2)* 

R  G 

matrix 	R 	(C). 

	

algebra 	of 

by 	(4.38) 	then 

p(k)* 
''''G 

the 	following 

J (k)-. 	= C(1)* 
C(
G
2)* 

C
G
(k4[ 

A(
G
k)  

Proof 	The lemma is very easily proved by induction on k. 

In fact intuitively the result is obvious, since in Jordan 

elimination one performs the back-substitution as soon as 

possible, whereas in Gaussian elimination back-substitution 

is delayed until all elimination steps have been completed. 

For k=0 the result is immediate. 	If it is true 

for k-1, then certainly M(k)':and J(k)- are equal below the 

diagonal and in rows below row k, simply by comparing (4.2) 

and (4.18). Indeed from (4.2) and (4.18), M
(k)'

and J
(k)' 

differ only in those entries (i,j) where i<k and j>k. 
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This is where the matrix 

R(1)* 	R(k)* 
G 	G 

R (2)* 

R(k)* 
G 

differs from 

Now in Ll(k)-.  these elements are given by (c.f. (4.2)) 

(akk
k-1) 

 )* 

-(k) -(k-1) 	-(k-1) 
13 = 	(akk 	" akj 

if i=j=k 

if i=k, j>k 

a 	+ a. 
-(k-1) 	-(k-1) 1,-(k-1)‘1, -(k-1) 

if i<k, j>k. .. 
13 	lk 	‘ukk I akj 

(4.40) 

But since, by the induction hypothesis, 

-(k-1) 
ER(k)] akj 	

G 	kj 
for j>k 

and
13 G 

= ER(1)*" *" 
10(Gk-14] 	

for i<k, j>k 
 13 

it is clear by inspection of (4.40) that 

a -... (k)  = ER(1)* .R(k-1)*]
ij 13  

+ERV )*. 	) *LikEW ) Igki  

[Rv )*...W-1 ) *W )*iii  

Hence the lemma is also true for k, and so is true for all 

k= 1,...,p. 
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For comparable implementations of Jordan elimination 

and Aitken's method the implications of lemma 4.1 must be 

carefully considered. 	Essentially the lemma indicates that 

Aitken's method will generally be better than Jordan 

elimination both in time and space. 	It is better with respect 

to storage because wherever the matrix J(k)  is non-null then 

so also is the corresponding element in M
(k)

. 	It is better 

with respect to time in that at each stage at least as many 

and + operations need to have been performed (either 

explicitly or implicitly) using Jordan elimination as using 

Aitken's method. 

5. 	The Iterative Techniques  

In many applications Theorem 12.4 holds. For such 

applications one can use iterative techniques analogous to 

those in linear algebra to solve the equation 

Y = 	+ B 	 (5.1) 

for semi-definite matrices A. Although such techniques are 

not applicable to regular languages, and hence out of the 

scope of this thesis, they are extremely important in many 

practical applications and so worthy of a brief mention. 

The simplest iterative technique is to set 

Y(0)  = B 
	

(5.2) 

and then perform successively the transformations 

Y(k) 
	

Ay(k-1) + B, k = 1,2,... 	. 	(5.3) 

Assuming A is semi-definite and Theorem 12.4 holds, this 

process may be terminated after at most p steps giving 

Y(P)  = A*B 
	

(5.4) 
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More generally, to solve the equation (5.1) we may 

split the matrix A into two matrices C and D such that 

A = C + D 
	

(5.5) 

and with initial condition given by (5.2), iterate 

successively the transformation 

Y(k) 	Cy
(k) 	Dy(k-1) + B 	

(5.6) 

Note that the minimal solution of (5.6), 

Y(k) 
 = c*Dy(k-1) C*B 	

(5.7) 

involves the closure matrix C. 	It is advantageous to choose 

C so that the calculation of Y
(k) 

does not involve modifying 

C. 	One such choice is when A is split into a strictly lower 

triangular matrix L and an upper triangular matrix U. This gives the method 

Y(0) = 
B  

Y(k) 	LY(k) 
	uy(k-1) 	B  

which can be solved using the forward substitution method 

(4.10) to find L*UY (k-1 ) + L*B. 

The method (5.3) is analogous to Jacobi's method and 

(5.8) is analogous to the Gauss-Seidel method in linear algebra, 

as was first observed by Carre [6]. 

Yen C45] has described a method which consists 

essentially of iterating the procedure 

y(2k+1) = uy(2k+1) 

▪ y

(2k) 

y(2k+2) = uy(2k+2) 

▪ y

(2k+1) 

for k = 0,1,... with initial approximation Y(C))  = B. This 

involves applying the back-substitution method (4.14) to find 

y(2k+1) from Y
(2k)  followed by applying the forward substitution 

(5.9) 

method (4.10) to find Y
(2k+2) 

(5.8) 
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One can easily prove that 

Y(k)  = (L*U +L*)Y(
5.8
k-1)  + L*B 

5.8 -  

Y (5 = and 	 L*B . 
' 5.9 -1-  ' ' 5.9 

Hence, as L*U* 2 L*U +L* 2 A , it is clear by comparing 

(5.11),(5.10) and (5.3) that 

Y 
	v(2k) y(k) D  y(k) 

— 	' 5.9 — 	5.8 — 	5.3 • 

(5.10) 

(5.11) 

(5.12) 

Since method (5.3) converges after at most p iterations 

if A is semi-definite we have 

Lemma 5.1 	If A is semi-definite and Theorem 12.4 holds, 

methods (5.8) and (5.9) converge after at most p iterationst. 

We can strengthen this lemma by saying that Yen's method 

(method (5.9)) will always converge at least as quickly as, if 

not more quickly than, method (5.8) which in turn converges at 

least as quickly as, if not more quickly than, method (5.3). 

In fact the number of iterations of Yen's method will always 

be less than about half the number of iterations of method 

(5.3) as the next lemma states. 

Lemma 5.2 	Suppose A* = E+A+...+Am  (i.e. method (5.3) converges 

after at most m iterations), then Yen's method converges after 

Lm/2J +1 iterations. 

Proof 	After k iterations of (5.9), 

Y(5 2k) = (L*U*)kB 
.9 

and after k iterations of (5.3) 

Y(
5
k)
3 	

= (E + A + A2  + 	+ Ak )B . 

t A single iteration of method (5.9) consists of calculating 

both 
Y(2k-1) 

and 
Y(2k) 

 from Y(2k-2) 
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A 	= L + U , 

2 
L* 	E + L + L + 	+ LP 

2 
U*  = E + U + U + 	+ UP  . 

Hence 

(2( Lm/ 2J+ 1 )) 

Y
5.9 

n 	Lm/ 2_1 +1 
{(E+L+...+LP) (E+U+...+UF)) 

O
3

M)  = {E (1-44))2  (L+10 3 	(L+U)m}B 
5. 

( by comparing terms on both sides of the inequality). 

Note that Yen's method may require much less than 

half the number of iterations of methods (5.3) or (5.8) for 

example if A=U is strictly upper triangular. 

Finally we observe: 

Lemma 5.3 The number of • and + operations used by each of 

the methods (5.3), (5.8) and (5.9) per iteration is the same 

even when sparsity of A is exploited. 

Proof 	Each of the elements of A is multiplied into once 

per column of B, the methods differing only in the order in 

which the multiplication is performed. Each such multiplication 

which can lead to a modification of the (i,j)th element of Y 

must be added to every other multiplication which can lead to 

a modification of the same element of Y. Since there are 

identical numbers of multiplications there are also identical 

numbers of additions. 

Corollary 5.4 	Yen's method (method (5.9)) invariably uses 

a number of operations less than or equal to the number of 

operations of methods (5.3) and (5.8). 

The comparison between Yen's method and methods (5.3) 

and (5.8) was first observed by Carre [unpublished work]. 

But 

and 
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6. 	A Brief Comparison of the Methods  

The algorithms we have given in this chapter have, 

as we have shown, a very wide range of applications. 	In 

the previous paragraphs we have given comparisons of the 

elimination methods and of the iterative methods, which are 

independent of the input and of the application. To compare 

the elimination methods with the iterative methods is however 

a much more difficult task since the methods differ widely 

in the manner in which they depend on both the input and the 

application. The difficulties are also compounded because 

we would need to compare the generally applicable methods we 

have given with methods tailored to a particular application 

(e.g. Dijkstra's [16] algorithm for finding shortest paths). 

This is beyond the scope of this thesis, and so we shall 

merely try to give a brief review of the literature on this 

topic. 

In practice the problem of finding a particular row 

or column of a closure matrix should be considered separately 

from the problem of finding the whole closure matrix. The 

reason for this is that, in practice, the matrix A may be very 

large but may also be very sparse (i.e. contain relatively few 

non-null entries). The matrix A* will, however, usually be 

quite full. 	In calculating particular rows or columns it is 

therefore important to preserve sparsity as much as possible, 

in calculating A* this is just not possible. 

The iterative techniques are particularly suited to 

preserving storage space (when calculating particular rows or 
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columns of A*) since they involve no modification of the 

original matrix A. 	On the other hand the elimination methods 

do incur an overhead on the storage space since the 

elimination form of the inverse (g4.2) will usually contain 

more non-null elements than the original matrix A. 	In the 

experience of linear algebraists C5,37,421 the elimination 

form of the inverse is often sparse also, and the overhead 

manageable. Note, however, that in the worst-case the EFI 

is full as figure 6 illustrates. 	(Indeed after eliminating 

node 1, A(1)  has no null elements.) This example should not 

deter one from using elimination techniques since the 

experience of many linear algebraists [5,37,42] indicates 

that the worst-case analysis is of minor importance. The 

escalator method used with a binary splitting technique is 

not generally to be recommended for finding particular 

elements of A* for large sparse matrices A since it involves 

calculating the closure A* of a large submatrix A , and 

A* will usually be full. The technique is nevertheless 

sometimes used by linear algebraists when the use of backing 

store is essential [37]. Here, however, A* is not calculated 
11 

explicitly but its EFI is calculated and stored and (3.22) is 

used wherever A* is required. 
11 

Comparisons of closure algorithms that appear in the 

literature are usually restricted to the "worst case". Such 

analyses can only be used as an indicator of the bottlenecks 

within an algorithm and should not be used as the sole measure 

of the algorithm's efficiency. 	On a worst-case analysis Yen's 
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Fig. 6 
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iterative technique requires ipa • and + operations [27], 

where p is the number of nodes of the graph and a is the 

number of non-null elements. 	In the Jordan method the elimina- 

3 
tion process (4.2) requires ip • and + operations (in the 

worst-case) and then completing the solution of Y=A•Y+B using 

2 
(4.4) requires an additional p • and + operations per 

column of B [21]. To find A* the algorithm given in §4.2.1 

3 
requires p • and + operations. Using Gauss's method the 

3 
elimination process (4.18) requires 1/3 p • and + operations, 

and once again completing the solution of Y.AY+B requires an 
2 

additional p • and + operations per column of B. 

Considerable effort has recently been put into 

trying to find algorithms to compute A* which are asymptotically 

better in the worst-case than the above algorithms. For 

Boolean matrices Munro [32] has given an algorithm which 

requires 
0(p2.81)• 

 and + operations, and for shortest paths 

Hoffmann and Winograd [25] have given an algorithm which 

/ 

requires 0(p3 ) comparisons and 0(p 5 /2) (approx.) real additions 

and subtractions. 

Worst-case analyses are, however, particularly 

derogatory to the elimination methods. Figure 6 is an example 

given by Johnson [27] to illustrate that Jordan's method is 
3 

a 0(p ) algorithm. 	If p is large the matrix of this graph is 

large and sparse and so this would imply that the elimination 

methods cannot exploit sparsity within a matrix. On the 

other hand the elimination methods are usually recommended 
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for solving large sparse sets of equations in linear algebra 

C42] and many linear algebraists consider the worst-case 

analyses to be of minor importance [5,37,42]. We have no 

reason to suspect that their experience will not also apply 

to path-finding problems. 

Unfortunately other than worst-case analyses there is 

very little in the literature comparing the algorithms. 	In 

an interesting paper Fontan [20] has compared Yen's, Gauss's 

and Dijkstra's algorithms for large rectangular grid networks 

of various sizes with arc labels uniformly distributed within 

the range C0,10]. These networks are sparse and are similar 

to those commonly occurring in traffic flow problems. Fontan's 

results indicated that for this type of network Dijkstra's 

method took significantly longer than Yen's for large matrices. 

Gauss's method took almost as long as Dijkstra's to find one 

row of A*, most of the time being taken by the elimination 

process, but if more than one row of A* was required Gaussian 

elimination became rapidly more advantageous. These results 

are in complete contradiction to a worst-case analysis, since 
2 

Dijkstra's algorithm is well-known to be 0(p ) and, 

theoretically, should be superior to Yen's and Gauss's 

methods. Recently Johnson C27] has presented a new method 

of implementing Dijkstra's algorithm which is asymptotically 

better than, for example, Yen's [44] implementation of 

Dijkstra's algorithm. 	It remains to be seen whether Johnson's 

method is better in practice than Yen's iterative technique. 
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In addition Grassin and Minoux [23] have compared 

Dantzig's method (the escalator method) and Floyd's algorithm 

[19] (Jordan elimination) with a "new" algorithm for finding 

shortest paths through large sparse symmetric networks. Their 

new algorithm is a variation on Dantzig's algorithm which 

exploits sparsity and some additional properties of symmetric 

matrices. Their algorithm shows significant improvements but 

it is not clear to what extent this is due to exploiting 

sparsity and to what extent to exploiting symmetry. 

Finally mention should be made of review articles 

and books. The paper by Dreyfus [17] is an early review 

of shortest-path algorithms, and an excellent recent review 

of the iterative techniques and Dijkstra's algorithm is 

given by Johnson C27]. Neither Johnson nor Dreyfus mention 

the elimination methods. A very full discussion of the 

elimination methods in the context of linear algebra can be 

found in the book by Tewarson [42]. 

7. 	Conclusions  

In this chapter we have demonstrated the very strong 

connection between problems in linear algebra and various 

path-finding problems. This relationship is important because 

we can now draw upon the very considerable practical experience 

of linear algebraists [5,37,42] in solving such problems. 

Previously this analogy had been observed by Carre [6] and 

others. Our contribution has been to introduce an algebra 
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which is applicable to both matrix operations as well as 

operations on individual elements. This has enabled us to 

justify the elimination methods in a new way which, we feel, 

adds much greater depth to our understanding of these 

algorithms. We have also given an algebraic characterisation 

of the uniqueness of solution of equations which shows 

unequivocably the relationship between e.g. negative cycles 

in a distance matrix and singularity of a linear equation. 

We have also been able to give a simple comparison of the two 

major elimination methods (g4.5) not previously given elsewhere, 

and have given simple, concise comparisons of the iterative 

techniques 05). 

It is remarkable how much of the theory of real 

matrices holds in regular algebra. However one should not 

suppose that all concepts of linear algebra have analogues 

in regular algebra. The notion of linear dependence in a 

p-dimensional vector space is one such concept, and hence the 

orthogonalisation methods of linear algebra cannot be used for 

finding closure matrices. Nor should one suppose that all 

regular tautologies have analogues in linear algebra. The 

axiom A6 a=a+a is one example, and all other tautologies which 

involve this axiom in their proof do not have analogues in 

linear algebra. This has prompted the author to look for other 

generally applicable closure algorithms which improve on the 

elimination methods with respect to the star-height of the 

resulting regular expressions. The explanation of "star-height" 

and the results of this search are contained in the next two 

chapters. 
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III THE FACTOR MATRIX AND FACTOR GRAPH 

1. 	Motivation - The Star-Height Problem  

In this chapter and the next we present some new 

results in the theory of factors of regular languages. The 

term "factor", as we shall use it, was introduced by Conway 

[13], and to him are due all the fundamental results of 

"factor theory". Although we would hope that our results 

will be of value in their own right as a contribution to 

factor theory, our interest in this theory was motivated by 

an interest in the "star-height problem" of regular languages. 

Any regular languate may be denoted by an unbounded 

number of different regular expressions. Thus (a+b)* and 

(a*b)*a* are two expressions denoting the same language (con-

sisting of the set of all strings of a's and b's). Different 

expressions denoting the same language may of course differ 

rather trivially, but often they are remarkably "unalike". 

For example (b+a(aa*b)*b)* and (b+ab)*+(a+b)*b(b+ba)*b both 

denote the same language, (see example 1 of this chapter), but 

are quite different in form from each other. 	It is therefore 

natural to seek some canonical expression denoting a partic-

ular language - wherein the "canonicality" of an expression 

signifies that it is the "simplest" of all expressions which 

denote that language. 	Little, if any, progress has been 

made in finding a canonical form for regular languages, and 

so, as an intermediate step, efforts have been directed 

towards finding a way of assigning to each regular language 

some measure of the "complexity" of the language. 

As a measure of the complexity of a language, 
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Eggan's [18] definition of "star-height" would appear to 

be very reasonable and is generally accepted E9, 10, 11, 

12, 15, 28, 29]. To define this, one first defines the 

star-height of a regular expression to be the maximum depth 

of embedded starred terms in the expression. In our earlier 

example (b+a(aa*b)*b)* has star-height 3 and 

(b+ab)*+(a+b)*b(b+ba)*b has star-height 1. The star-height  

of a regular language is the minimum star-height of all 

regular expressions which denote that language. The star-

height problem is then just the problem of finding the star-

height of any given regular language. 

This problem was first posed in 1963 by Eggan, and 

has been tackled by various authors E9, 10, 11, 12, 15, 28, 

29]. But, in common with many mathematical problems which 

are quite simply stated, its solution has not been forth-

coming and it would appear to be a very difficult problem. 

In the next few paragraphs we have summarised those results 

which we consider an essential part of the repertoire of 

anyone who wishes to tackle this problem. We then continue 

to discuss, quite briefly, other results on this problem 

which have appeared, and indicate why these results led us 

to feel that Conway's factor theory was pertinent to the 

problem. 

1.1 	Previous Work  

A concept which is fundamental to any study of the 

star-height problem, is Eggan's [18] notion of the rank of 

a transition graph. The rank is a measure of the loop com-

plexity of a graph, but it is also very closely related to 
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the notion of star-height. 

In order to define rank some additional terminology 

is needed. A subgraph of a graph G is a graph Gy  determined 

by a set Y= X of the nodes of G, having just those arcs 

(xi, xj) of G between nodes xi  and xj, both of which are 

in Y. 	A subgraph is strongly connected if there is a path 

from xl  to x2  for every ordered pair (xl, x2 ) of its nodes. 

A section of a graph G is a strongly connected subgraph 

that is not a proper subgraph of any strongly connected sub-

graph of G. 

The rank r(G) of a transition graph G is then 

defined as follows: 

(i) 	If G is not strongly connected then 

a) if G has no strongly connected subgraph r(G)=0, 

otherwise 

b) r(G) is the maximum rank of all the sections 

of G. 

(ii) 	If G is strongly connected r(G) = n+1 if and 

only if 

a) it does not have rank i for any in, and 

b) it has a node x whose deletion from G results 

in a subgraph of rank n. 

The above recursive definition of rank is not par-

ticularly enlightening; readers not familiar with the notion 

should refer to McNaughton's paper [29], (from which the 

above definitions were taken), fora more detailed discussion. 

Now consider any recogniser (G,S,T) of the language 

Q. 	If we use, for example, the escalator method to calcu- 

late G* we obtain some regular expression a for Q. 	Re- 
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ordering the nodes of G and reapplying the escalator 

method to calculate G* will result in a different regular 

expression 13 for Q which, moreover, will often have a 

different star-height to that of a. Thus there will be 

some optimal ordering of the nodes of G which, when using 

the escalator method to calculate G*, will yield some 

minimal star-height expression y for Q from the graph G. 

The definition of the rank of the graph G is so contrived 

that the star-height of y equals the rank of G. 	This is 

expressed by Eggan's theorem C181 which is essentially the 

following: 

Eggan's Theorem  

Consider the use of the escalator method to.calculate G* 

from a given graph G. 	Then 

(i) for a suitable ordering of the nodes of G the re- 

sulting regular expressions for those entries 

EG*1 ij  for which G is an all-admissible recogniser 

have star-height equal to the rank of G. 	For 

other entries (ones for which G is not an all-

admissible recogniser) the resulting regular ex-

pressions have star-height less than or equal to 

the rank of G. 

(ii) For all other orderings of the nodes the resulting 

regular expressions for entries [G*]ii, for which 

G is an all-admissible recogniser, have star-height 

greater than or equal to the rank of G. 

A converse to this result was also observed by 

Eggan, namely that to every regular expression there natur- 
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ally corresponds a graph G having rank equal to the star-

height of the expression. Thus one obtains the following 

corollary: 

Corollary E18, 29] 	The star-height of a regular language 

equals the smallest rank of all transition graphs which 

recognise the language. 

This corollary to Eggan's theorem immediately sug-

gests an approach to the problem of determining the star-

height of a regular language which is to find a method of 

obtaining a graph of least rank which is a recogniser of 

the language; it is this approach that almost all papers 

on the star-height problem have adopted. 	(Note that in the 

literature C29] the above corollary is usually referred to 

as "Eggan's theorem" - for reasons which will emerge we 

would like to remove the emphasis from this corollary.) 

The most significant contribution to the star-height 

problem has been made in two papers by McNaughton [28,29]. 

In the first of the two, McNaughton studies languages whose 

semi-group is a pure group. For this class of languages 

McNaughton solved the star-height problem completely, al-

though his solution involved enumerating a possibly rather 

large number of different graphs. However, for the subclass 

of this class consisting of languages for which the finite-

state machine has a unique terminal state, he showed that 

the star-height of the language equals the rank of the 

finite-state machine. 	In spite of this result any connection 

between the structure of the semigroup of the language and 

its star-height would seem to be very illusory. 
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In order to establish his method McNaughton intro-

duced the idea of a pathwise homomorphism between two graphs, 

and then proved a simple but fundamental theorem on the 

ranks of the graphs. As we shall need this result in the 

next chapter we state the theorem below. 

Definition 	A pathwise homomorphism is defined as a mapping 

y from the nodes and arcs of the transition graph G onto 

the nodes and arcs of G', such that y(x), for any node x 

of G, is a node of G' and the following two conditions hold 

between the arcs of G and G': 

(PH1): For each arc B of G labelled b and leading from 

node x1 to node x2, either y(B) is a node of G' and y(xl) 

= y(x2 ) = y(B) or there is an arc y(B) in G' labelled b 

and leading from y(x l ) to y(x2). 

(PH2): If w is a word taking node xi to node x2 in G' 

there are nodes x1 and x2  in G with y(xl) = xi and y(x2) 

= )q such that w takes node x1 to node x2  in G. 

McNaughton's theorem is the following: 

McNaughton's Pathwise Homomorphism Theorem If there is a 

pathwise homomorphism y from G onto G' then the rank of G' 

is less than or equal to the rank of G. 

Following McNaughton's work a number of papers were 

written by Cohen [9,10,11] and by Cohen and Brzozowski C12]. 

Some of these papers were concerned with extending 

McNaughton's work on pure group languages (to "reset-free" 

and "permutation-free" languages and to languages with the 

"finite intersection property"), the basic idea being to 

apply a combination of McNaughton's pathwise homomorphism 

theorem and the corollary to Eggan's theorem. Others pro- 



77. 

vided more empirical results on the star-height problem. 

However, with the exception of Eggan's theorem and 

McNaughton's pathwise homomorphism theorem, progress towards 

solving the star-height problem has been rather slow and 

fragmentary. 

Our own first step in tackling the problem was as 

follows: Eggan's work showed that one closure algorithm 

(the escalator method) yielded regular expressions having 

star-height characterised by the rank of the graph. 	Is it 

possible that other closure algorithms yield regular ex-

pressions characterised by some other property of the graph 

and possibly even offer an improvement over the escalator 

method? In particular, do any of the elimination methods 

of Chapter II (e.g. Jordan elimination) offer such an 

improvement? 

It is not long before one realises that this is not 

so, and that the rank is indeed the appropriate character-

istic of a graph when applying any "elimination method". 

This statement is made precise in Appendix B where we give 

a general formulation of an "elimination method" and use 

this to prove the following theorem. 

Theorem B4 	If an elimination method is used to find G* 

for a graph G, then G* will contain regular expressions 

having star-height at least equal to the rank of G. 

We have observed, however, that the elimination 

methods are all based on regular tautologies having ana-

logues in linear algebra, but that not all regular tauto-

logies have such analogues. This suggested two problems: 
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Can we invent new closure algorithms which do not 

have analogues in linear algebra? and 

does the rank of a graph represent the "best" one 

can do using these new algorithms, or can we do 

better than the rank (i.e. obtain regular expres- 

sions for the entries [G*].. of star-height less 
ij 

than the rank of G)? 

The main stumbling block to this approach is problem 

a), since it would appear extremely difficult to solve this 

problem in full generality. 	(Otherwise, no doubt, such 

algorithms would already have been published.) We were 

therefore obliged to seek a new closure algorithm which 

could be applied to particular classes of graphs, e.g. 

finite-state machines, each graph in the class being somehow 

naturally defined by a given language. Yet once again, for 

graphs such as the finite-state machine or semigroup machine, 

such algorithms seem impossible to find; thus we were 

forced to look for other "naturally defined" graphs to which 

such an algorithm could be applied. Cohen and Brzozowski 

C12] introduced the notion of a "subset automaton" but the 

difficulty in studying this class of graphs is that even for 

very simple regular languages the size of the "subset auto-

maton" may be immense, thus precluding any empirical in-

vestigations. 

1.2 	The Relevance of Factor Theory  

The class of graphs which we eventually decided to 

study are called "factor graphs". The idea of studying 

factor graphs came from reading McNaughton's paper E29] and 

a 

b 
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the chapter in Conway's book [13] on factor theory. 	Let us 

use Conway's terminology and call G.H.K a subfactorization of 

a language Q if G.H.K c Q, and call H a factor of Q if there is 

no H' n H such that G.H'.K c Q. 	(Thus H is in a sense maximal). 

In his paper, McNaughton presented an extremely useful tech-

nique for establishing a lower bound on the star-height of 

a given language. 	The technique involves spotting partic- 

ular regular languages and showing that in any recogniser 

of Q these languages define nodes of the recogniser which 

are connected by arcs having loop complexity at least equal 

to the conjectured lower bound. 	Now, in general, subfactori- 

zations of a language Q are mathematically unmanageable; but 

Conway showed that factors are manageable and, moreover, exhibit 

some remarkable properties. 	One such property particularly 

relevant to our aims is that the factors are all the entries 

in a matrix, denoted Ri and called the factor matrix, which 

is the closure 
(Cmax 

+ 
Lmax)* 

 of a constant + linear matrix. 

Thus the factors naturally define a transition graph, which  

is, moreover, a recogniser for Q. 

The matrix C
max

Lmax' as it turns out, is not very 

useful for our purposes, but it is a stepping stone to prov-

ing that there is a unique minimal constant + linear matrix 

G
Q' 

which we call the factor graph of Q, such that G* 

= 

One of the main reasons for studying a problem like 

the star-height problem is the possible side-benefits that 

one can gain on the way. 	In trying to attack the problem 

using factor theory, we have been particularly on the lookout 
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for such benefits; but also we are expressing a belief 

that a mathematical solution to the problem, which is not 

an impracticable "enumerative" solution, does exist. Rather 

disappointingly, the algorithm we shall present does not 

always yield a minimal star-height expression for a given 

regular language. Nevertheless we feel it is important as 

a contribution to our understanding of factor theory and 

because it offers a new approach to the problem, one which 

may well be more successful than earlier approaches using 

Eggan's theorem. 

The presentation of the algorithm to determine G* 

occupies both this chapter and the next. This chapter is 

devoted to the fundamental properties of factors (due to 

Conway [13J) and to introducing the factor graph, GQ, of a 

regular language Q and providing an algorithm to calculate 

GQ. 	In the next chapter we introduce the notion of separ- 

ability of factors and exploit this notion to derive an 

algorithm to calculate the closure G*
Q 
 of the factor graph.  • 

We also prove that the algorithm yields regular expressions 

for Q of star-height less than or equal to the rank of 

GQ, and, as we demonstrate, in many cases strictly less than 

the rank of GQ. 
	

Finally we discuss how the results could 

be extended in a further attack on the star-height problem. 

2. 	k-classes, r-classes and c-classes  

We shall assume that the reader is familiar with the 

basic results on finite-state machines, to be found in 

Rabin and Scott [35], and the method of derivatives due to 

Brzozowski [3], 
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The purpose of this section is merely to summarise 

those results which we shall require later, and to define 

the k, r and c-classes of a regular language Q. 

2.1 	Machine, Anti-machine and Semigroup  

Let Q = V* be any language. Q naturally defines 

three equivalence relations on V* - Qt, Q
r 

and Q
c 

- given 

by: 

xQky 4 (VzEV*, zxEQ 	zyEQ) 

xQry 	(1zEV*, xzEQ 	yzcQ) 

xQcy 	(-Vu,vEV*, uxvEQ 	uyvcQ). 

These are, of course, the usual left-invariant equivalence 

relation, right-invariant equivalence relation and congruence 

relation introduced by Rabin and Scott [351. 

The fundamental theorem linking these relations to 

regular languages is the following: 

Theorem 2.1 	A language Q = V* is regular 	the relation 

Qt  is of finite index 	the relation Qr  is of finite index 

the relation Qc  is of finite index. 

Definition 	Let Q be a regular language. By theorem 2.1, 

each of the relations Qt, Qr  and Qc  partitions V* into a 

finite number of equivalence classes. We shall call an 

equivalence class modulo Qt  an r-class of Q, an equivalence 

class modulo Qr  an t-class of Q and an equivalence class 

modulo Qc  a c-class of Q. 

Note the peculiar switch: an equivalence class 

modulo Qt  is an r-class of Q. 	The reason for this will 

become evident later. 
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We shall also write t(x) for the Q,-class containing 

x, r(x) for the r-class containing x, and c(x) for the c-

class containing x. 

Definition 	The machine of a regular language Q is the 

unique deterministic recogniser of Q having the least 

number of nodes. 

The anti-machine of Q is the machine of Q, where 

4Q-  denotes the set of all words which are the reverse of 

words in Q. 

Nodes of the machine and anti-machine will usually 

be called states. 

The semigroup of Q is the quotient of the free semi- 

group V* with respect to the congruence relation Qc. 

The machine and the Q,-classes of Q, and the anti- 

machine and the r-classes of Q are connected by the follow- 

ing theorem. 

Theorem 2.2 	Let Q be a regular language. Let the states 

of the machine for Q be {2,1 , 	, kn} and the states of 

the anti-machine be {r1 , 	, rid. Suppose that k1  and r
I 

are the start states of the respective machines and let )(EV*. 

Then we have: 

(a) If x takes the start state k
1 

to state ki  of the 

machine, then the Z-class containing x, k(x), is the 

set of all words which also take state kl  to state ki. 

(b) If IC takes the start state r1  to state r. of the anti- 

machine, then the r-class containing x, r(x), is the 

set of the reverse of all words which take state r
1 

to 

state r.. 
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Corresponding to the semigroup we can always con-

struct a semigroup machine, whose states correspond to 

elements c.
1 
 of the semigroup, and where, for all acV, 

there is an arc labelled a from state ci  to cj  if 

ci-c(a) = cj. Let cl  be the identity element of the 

semigroup. We then have: 

(c) 	If x takes the state c
1 

to state c
t 
of the semigroup 

machine, then the c-class containing x, c(x), is the 

set of all words which also take state c
1 

to state c
t. 

Corollary 	The k, r and c-classes of Q are regular if Q 

is regular. 

Because of this theorem, we shall henceforth use the 

symbols ki, k2, ... to denote states of a machine for a 

regular language Q and also to denote the k-classes of Q 

to which they correspond. 	(And similarly of course with the 

symbols rl, r2, ... and cl, c2, ...). 

(2.2) 	Derivatives, Anti-derivatives and Contexts  

Let us consider the relation 	We We note that any 

word xcV* partitions V* into two sets, denoted DxQ and ruDxQ, 

where 

D
x
Q = {ylxyEQ} 

q,DxQ = {ylxy4Q} . 

D
x
Q is called the derivative of Q with respect to x. 

We then have: 

Lemma 2.3 	x Q
r 

y ..D
x
Q = D

Y 
 Q . 

This is the basis of the method of derivatives for 

calculating the machine of a language Q [3]. 
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Similarly the relation Qt  leads one to define anti-

derivatives: The anti-derivative of Q with respect to x, 

denoted CI xQ is 

	

Ci 	= {Y1xY0} = {Y1 4.0CEQ} . 

Lemma 2.4 	x QR  y 	Clic Q 	= 	c1.1-,Q . 
Finally, the relation Qc  partitions the set V*xV* 

into C
x
Q, the context of x in Q, and q,C

x
Q where 

C
x
Q = {(u,v) I uxv E Q} . 

Lemma 2.5 	x Q
c 
y.eC

x
Q = C

y
Q . 

The following observation, although rather elementary, 

is quite important in the sequel. 

Theorem 2.6 	(a) The word derivatives D
x
Q of a language Q 

are unions of r-classes of Q, where DxQ2r(y) if and only if 

xy EQ. 

(b) The reverse of anti-derivatives of Q, 

i.e. languages of the form 40- 4.-Q, are unions of 2-classes of 

Q, where 'clit-Qpk(x) if and only if xy E Q. 

(c) The contexts CxQ of a language gare unions 

of subsets of V*xV* of the form txr, where t is an 2.-class 

of Q and r is an r-class of Q, where CxQpk(u)xr(v) if and 

only if uxv E Q. 

Proof 	Let Q be a language and let x E V. 

Then ye DxQ4xyEQ. ,4iE C1-31-Q . 

But by lemma 2.4, Ci-.*-Q = 	for all y' such that y' Qt  y. 

	

y c DxQ 	DxQ for all y' such that y' Qt  y. 

i.e. 	D
x
Q = 	E 	r(y) , and part (a) is proved. 

yEDxQ 



85. 

Part (b) is proved similarly. 

Consider now C
x
Q. The pair (u,v) e C

x
Q 	uxv E Q 

V E D Q and tied ÷— Q. 
ux 	xv 

But then, by an identical argument to that above, this implies 

that u'xv' e Q for all u' e k(u) and v' Er(v) . 

i.e. 	CxQ 2 2.(u)xr(v). 

Whence 	C
x
Q = 	E 	k(u) xr(v), and we have proved (c). 

(u,v)ECxQ 

Note that although the displayed unions are over an 

infinite set, the number of distinct terms is finite when 

Q is regular, and so the unions themselves may be taken over 

only a finite set of words. 

3. 	The Fundamentals of Factor Theory  

The following definitions are taken from Conway [13]. 

Definitions 	Let F, G, H, 	, K, Q denote arbitrary 

languages (not necessarily regular). 

F.G...H...J.K is a subfactorization of Q if and only if 

F.G...H...J.K s Q. 	(*) 

dominates it if it is also a subfactorization 

of Q and F c T, G c G, 	, K c 

A term H is maximal if it cannot be increased without 

violating the inequality (*). 

A factorization of Q is a subfactorization in which every 

term is maximal. 

A factor of Q is any language which is a term in some 

factorization of Q. 

A left (right) factor is one which can be the leftmost 

(rightmost) term in a factorization of Q. 
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Next we state two lemmas, due to Conway, which are 

quite fundamental to future results. The proofs are quite 

simple and can be found in Conway's book [13]. 

Lemma 3.1 	Any subfactorization of Q is dominated by 

some factorization in which all terms originally maximal 

remain unchanged. 

Lemma 3.2 	Any left factor is the left factor in some 

2-term factorization. Any right factor is the right factor 

in some 2-term factorization. Any factor is the central 

term in some 3-term factorization. The condition that L.R 

be a factorization of Q defines a (1-1) correspondence 

between left and right factors of Q. 

We shall now give a characterisation of the factors 

of Q which gives some insight into their properties. Recall 

(§2) that an k-class of Q is a right-invariant equivalence 

class, an r-class is a left-invariant equivalence class and 

a c-class is a congruence class of Q. 

Theorem 3.3 	The left factors of any language Q are 

either (I) (the empty set) or are sums of 2.-classes of Q. 

The right factors of Q are either (I) or are sums of r-classes 

of Q and the factors are (1) or are sums of c-classes of Q. 

Corollary (Conway) 	A language Q is regular if and only 

if it has a finite number of factors. The factors are 

regular for regular Q. 

Proof 	Let L be a left factor in the two term factoriz- 

ation L.R c Q of Q. 	If L 	.1), let xEL and consider any 

y Et(X). 	Since L.R c Q, R c DxQ = DyQ (by Lemma 2.3). 

Therefore y.R c Q, and so, since L is maximal, ycL. 	Hence 

L D kW, and L = 	E 2(x), i.e. L is a sum of k-classes 
xEL 
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of Q. 	Similarly any non-empty right factor is a sum of 

r-classes of Q. 

If H is any factor of Q it is the central term in 

a factorization LHR c Q 	(lemma 3.2). 	If H # (I), let xEH. 

Then the set C
x
Q = {(u,v)IuxvEQ} D LxR = {(u,v)I uEL,vER}. 

But if yEc(x), CyQ = CxQ 2 LxR. Thus, as above, yEH and 

H 	= E 	c(x) . 
xEH 

The corollary follows from the corollary to Theorem 

2.2. 

The above characterisation of the factors of Q is 

different to Conway's. The advantage will be seen later when 

we consider the problem of calculating the factors of Q. 

From now on, unless otherwise stated, we shall only 

consider the case when Q is regular. 

4. 	The Factor Matrix  

Following Conway, let us index the left and right 

factors as L1 , L2, ... , Lq  and R1 , R2, ... , Rq  wherein 

corresponding factors (see lemma 3.2) are given the same 

index. 	We now define Qij  (1 5_ i,j 5 q) by the condition that 

LiQijRj  is a subfactorization of Q in which Qij  is maximal. 

(It is important to note that LiQ ijRj  may not be a factor- 

ization of Q). 	We note that, by lemmas 3.1 and 3.2, H is 

a factor of Q if and only if it is some Qij. Thus the 

factors of Q are organised into a qxq matrix which is 

called the factor matrix of Q and is denoted pi. 

Various properties of the factor matrix may be 

observed, some of which are summarised below. 
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Theorem 4.1  

(i) H is a factor of Q r>1-1 is some entry Qij  in the 

factor matrix 71. 

(ii) Qii  is maximal in the subfactorizations Li-Qij  c Lj  

and Qij-Rj E  Ri. Thus Qij  is a right factor of Lj  

and a left factor of R
i  

(iii) unique indices s and t such that Q = Lt  = R
s 

= Q
st' 

Li  = Qsi  and Ri  = Qit. 

(iv) IQI 	= 	IQI* • 

(v) If 
A1.A2 "

. A
m 
c Q. 	

is a subfactorization of Q
. 

then 	indices k1 , k 2, 	, km _ i  such that 

Qk 	01( 1 	1 2 	m-1 

Proof 	Although the proofs of all parts of this theorem 

can be found in Conway's book, the proof technique is so 

fundamental that it is worth repeating. 

The proof of (i) is contained in the preamble to the 

theorem. 

To prove (ii), we observe that the subfactorization 

(LiQ ij)-Rj  E Q is dominated by Lj-Rj s  Q. Therefore 

Li-Qij  c Lj  is a subfactorization of Lj  in which Qij  must 

be maximal. 	Similarly Qij-Rj  c Ri  is a subfactorization 

of Ri  in which Q. is maximal. The rest follows from lemmas 

3.1 and 3.2. 

The indices s and t in part (iii) are chosen by 

the condition that L
t
-Ft

t 
c Q dominates the subfactorization 

Q•e c Q, and Ls-Rs  c Q dominates the subfactorization 

e-Q c Q. Then, by definition, Lt  2 Q;  but also 

Q 2 Lt.Rt  2 Lt.e = Lt. Therefore Lt  = Q. 	Similarly 

Ai  E Q ik  , A2  E 
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R
s 

= Q. 	The index 	s (t) is then unique, because all the 

left (right) factors are distinct. To prove that Qst = Q' 

we note that Qst  is maximal in Ls  -Qst-Rt  s Q implies that 

it is also maximal in .the subfactorization Ls- Qst E Lt. 	But 
 

L
t 

= Q, and R
s 

is maximal in Ls  •R5  = Q. Therefore Q
st 

= R
s  — 

= Q. Now Ls-Q E Q and Li-Ri  E Q are both factorizations 

of Q; 	so Ls-Li-Ri  c Q is a subfactorization of Q in which 

Li  and Ri  are maximal. Therefore, by definition of Qsi, 

Li  = Qsi. Similarly, Ri  = Qit. 

Part (iv) can now be proved quite simply. We observe 

(a) Qii  2 e (Since Li-Ri  = Li-e-Ri  = Q). 	and 

(b) Q ij  n Qik-Qkj , for all k = 1, 2, ... , q. This follows 

because, by (ii), Lk  2 Li.Q ik , and Rk  2 Qkj-R j . 	Therefore 

Li-(Q ik Qkj )-R j  c Lk•Rk  s Q. 	So, by definition, Qij  2 QicQkj.  

In matrix terms (a) and (b) are 

(a)' 	(41 2 E, (b)' 	2 FQ1 • [T. 

Therefore 	IQI 2 E+01-1QI, and so by R1, IT 2 7 *. 

But 	7*  2 7. Therefore IQI = 01 *. 

We shall prove (v) for the case m = 2; for m > 2 the 

result follows by simple induction. Suppose then that 

A-13 c Qij. Then (LiA)-(By c Q is a subfactorization of 

Q and so must be dominated by some factorization Lk•Rk  = Q. 

I.e. 	Lk  2 Li-A and Rk  2 B.R.j 	But then, by (ii), A £ Qik 

and B c Qkj . 

4.1 is an extremely interesting and powerful 

theorem, from which most results on factors can be deduced 

immediately. Particularly useful is 4.1 (iv), which we shall 

often apply in its alternative form (a) Qii  2 e and (b) 

Qij = k Qik.Qkj* 
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Part (iii) tells us that the s th column of 16 

contains all the left factors and the tth row all the 

right factors, and the intersection of this row and column 

is the language Q itself. This and (iv), IQI = 141 *,  

suggest very strongly that there is some recogniser of Q, 

(G,{s},{t}), consisting of a graph G with start node s and 

terminal node t, such that Li  is the set of all words taking 

node s to node i, and Rj  is the set of all words taking 

node j to node t. 	In fact there is often more than one 

such G, but we shall show that there is a unique minimal  

one. 

Note, also, that (iii) does not imply that Q only 

occurs once in its factor matrix. 	For instance, 

[ 

Q = (11)* has factor matrix pfl = (11)* 	(11)*, 

(11)*1 	(11)* 

in which Q occurs twice. 	(We mention this because there is 

a misprint in Conway's book C13,p49], in which Conway says 

"The theorem does prevent Q from occurring twice in its 

matrix ...". This should, of course, read "does not prevent"). 

As we shall see, the combination of Theorems 3.3 and 

4.1 (ii) is sufficient to enable one to calculate IQI. 

Various "brute force" methods can be used, but the method 

we give appears to be the most straightforward and easiest 

to apply. 

5. 	The Factor Graph  

Our objective in this section is to find a method 

of determining the factor matrix of a regular language Q. 

We shall prove that there is a unique minimal matrix G
Q 

such 
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that pfl 	= GQ ,GQ  is a constant + linear matrix and so 

is called the factor graph of Q. 

The proof technique we use may seem rather round-

about, and so it is worth while explaining the difficulty. 

Consider any element A of a regular algebra R. 	We shall 

call any X such that X* = A* a starth root of A*. 

Our aim is to prove that there is a unique minimal starth 

root of rifl. 	In a free regular algebra it is quite easy to 

prove that there is always a unique minimal starth root of 

any element a* in the algebra (see Brzozowski [4]). The 

proof, however, relies on length considerations and does not 

apply to all regular algebras. 	Indeed it is not generally 

[ 

true. Consider the matrixM=eee 

e e e 

e e e 

[

This matrix has starth roots A
l 

= 	(I) e (I) 	and 

A2  = [(p (I) el 	, which are 
e (I) (I) 	both minimal. 

(I) 	e 	(I) 

Thus there is no unique minimal starth root of M. 

In order to prove that IQ' nevertheless does have a 

unique minimal starth root we first prove that 	has a 

starth root which is a constant + linear matrix, and then 

that this matrix can be reduced to one which is minimal. 

Lemma 5.1 	unique maximal constant and linear matrices 

C
max 

and  L
max 

such that pfl 2  (Cmax + Lmax)*. 

Proof 	Define C
max 

and L
max 

to be the unique maximal 

constant and linear matrices (respectively) such that 

(I) 	(I) 	e 

e 	(i) 
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ro 2 Cmax  and 
rolLmax' 

 Then Rfl 
2  Cmax + Lmax 

and, as —  

= 	rfl 2 (Cmax 	Lmax"' 

We shall now prove that the inequality in the above 

lemma can be changed to an equality. 

Theorem 5.2 (Conway) 	Let Cmax  and Lmax  be the unique 

maximal constant and linear matrices of lemma 5.1 such that 

WI 2 (Cma x 
+ L

max 
 ) * . Then 71 = (C

max + Lmax )* • 

Proof 	Suppose x E Qij. 	If x = e then .(a) 	xs F.Cmax]ij, 

since C
max 

is maximal. Otherwise (b) x = al  a2 	am  is 

a word of length m 	1, in which each a is a letter. 	But 

then applying Theorem 4.1(v), 	integers 1(1 , k2, 	, km-1 

such that a
1 

6 Q
iki 	

a
2 	

Q
kik,' 	

, a
m 
E Qk 	j  . 	But 

m-1 

then a
1 
E [L

max
]
ik,' 

a
2 

E 
max- k ik 2' "' 

, a
m 
 c [L

max
]
km_ ij • 

I.e. 	x 6 CL
max'

Lr
liaxij ' 	

But (a) and (b) imply 

NI 
2  Cmax 

+ L
max'

L 	
' 	

But, using lemma 5.1, 

L* 	c (C 	+ L
max

) * 
2 

71. Hence the Cmax 
+ L

max' max — (Cmax 

theorem. 

We have already mentioned that in a free regular 

algebra R
F 

any event A* has a unique minimal starth root. 

This is given by (A\E)\(A\E)
21-* 

 , where E is the unit element 

of R
F' 

\ denotes set difference and 
x2-1-* 

denotes 

X
2
+X

3
+X4-F... 	. 	In the algebra Mp(R F), of pxp matrices over 

the free regular algebra RF, the most we can say is that if 

(A\E)\(A\E)
2.-1-* 

is a starth root then A* does have a unique 

minimal starth root which is given by the above expression. 

More formally: 

Theorem 5.3 	Let A be an element of Mp(RF ) where R
F 

is 

a free regular algebra. 	Let Mp(RF) have unit element E. 
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Let EB\C]
ij 

= Eb..\ci
j  
.1 where \ denotes set difference. 

ij  

If A*  = {(A\E )\(A\E)2."1 *  then (A\E )\(A\E)
21-* 

 is the unique 

minimal starth root of A*. 

Proof 	Let X = (A\E)\(A\E)2+*. 	By assumption X is a 

starth root of A*. 	Suppose Y is also a starth root. 	We 

must show that X c Y. 

Suppose 	w e X
ij* 

Clearly w e Yid  = [(Y\E)*]ii, because Y is a starth root 

of A*  and A*  2 X. Hence w E E(Y\E)
n
]
ij 

for some n where, 

by definition of X, n 	1. 

Now 	Y c A*  = (A\E)*. 

Hence 	Y\E c (A\E)4-  . 

• • • 	w 6 [(Y\E)n]iiC C((A\E)1- ) Illij  . 

But 

	

	w 6 Xii  = [(A\E)\(A\E)
21-*

]ii 

n = 1 

w c [Y\E]ij c Yii . 

I.e. 	X c Y 	and the theorem is proved. 

Considering the matrix M mentioned at the beginning 

of this section, we find that 

 

(M\E)\(M\E)
2+*  

 

This is clearly not a starth root of M. 

We note however that M has e-cycles which pass 

through more than one node. This cannot be true of the 

factor matrix as the next lemma states. This observation 

together with theorems 5.2 and 5.3 enable us to proceed to 

the proof of our main theorem. 
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Lemma 5.4 
	

C
max

\E is acyclic. 

Proof 	Suppose Cmax\E is cyclic. Then there must be two 

distinct nodes i and j such that [C
max

]
ij 

= e = EC
max

)
ji* 

Now consider the matrix NI. 	It will help if the reader 

refers to the figure below, which shows part of the matrix 

1Q1. The nodes labelled s and t are the nodes mentioned 

in Theorem 4.1. 

We have indicated by labelled arrows that 

Qsi = Li' 	Qit = Ri 

Qsj  = Lj  and Qjt  = Rj  . 

Since pfl D Cm ax' Qij 2 e and Qji  2 e. 

This has also been indicated. We shall now prove that 

Li  = Lj 	and 	Ri  = Rj  . 

We have pfl= 17*, (4.10v)), and FQ1 2 Cmax, by 

Theorem 5.2. 

Therefore pfl= pri .71 2 Ffl 

Hence 

and 

Therefore 

Similarly, using 	rtn 2 Cmax• RI!, we get Ri  = Rj  . 

But then nodes i and j cannot be distinct and we have a 

contradiction. Therefore the initial assumption is incorrect 

and 
Cmax\E 

 must be acyclic. 

.Cmax.  

QSi 2  QSj.[Cmax 1ji = Qsj 

Qsj 2  QSi• [C  max = Qs i 	• 

Qsi  = Q sj 	i.e. 	Li  = Lj 	. 
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Corollary 5.5 	Let Rfl be a qxq matrix. Then (Cmax\E)P=N 

for all ipq. 

Finally we come to the main theorem of this chapter. 

Theorem 5.6 	Let Q be a regular language, and let Cmax  

and L
max 

be as defined in Theorem 5.2. Then there is a 

unique minimal matrix GQ  such that G16 = 71, given by 

G
Q 	

((C
max 

+Lmax)\E)\ 
 ((Cmax 

+ L
max

)\E)
2-F* 

 . 	Moreover the 

triple (GQ,{s},{t}) 	(where s and t are given by Theorem 

4.1 (iii)) is a recogniser for Q. 

G
Q 

is a constant + linear matrix and so its graph 

will be called the factor graph of Q. 

Proof 	Using Theorem 5.3, we need only prove that 

G* = rin where G
Q 	

((Cmax + Lmax ) \ E ) \ ( ( Cmax + Lmax )\ E)21-*  . 

In turn this only requires proving that GQ 2 (Cmax  + Lmax )\E, 

since then G*
Q 
 = (GQ)* 2 (C

max Lmax )* = 
ro, by Theorem 5.2. 

—  

Let 	pl : 	w E C(Cmax  + Lmax )\E]ii  

Then 	p2 : 	w has length 0 or 1. 

Suppose 	p3 : 	w E  EGUij  . 

Then 	p4 : 	w 	EGQ]ij 

and so 	
p5 : 	wc[((Cmax +Lmax

)\E)2-Fir
lij .  

Hence 	indices i= kl, k2, 	, 
k111+1= 

 j and words 

m ?_ 2, w = a la 2...am  

and pl : 	a
h 	

C(C
max

+  L
max

)\E]k 
 k 
h h+1 

and hence p2 : 	a
h 

has length 0 or 1, for all h=1,...,m 

Now for some h we must have 

p3 : 	ah 	
CG?-]khkhil 

(otherwise w 	
j 

[G*
Q
]
i 	

). 
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Hence for this h 

p4 : 	EG-1 ah   
k
h
k
h+1 

and so, for this h 

p5 : ah  6 [((Cmax +Lmax)\E)2+*1
khk 

h+1 

Let this a
h 
be v. 	v has the same properties as w 

and so can in turn be expressed as the product of two or more 

words 	b1 b2...b13  , 	where by the same argument one of the 

b 's = u, say, also has the same properties as w. 	In this 

way we can express w as a product 

w = 	Y iY2...Yx 
of an unbounded number x of words yf, where 

Yf c [(Cmax +Lmax)\E]n
f
n
f+1 

for some nodes nl, 	,nx.4.1 . But the product of two linear 

matrices is either null or non-linear. 	Therefore at most 

one yf  has length one, and we conclude that (Cmax\E)P is 

non-null for all p. 	But this contradicts corollary 5.5. 

Hence the initial assumption that property p3 holds for w 

must be false. Hence GQ
2 (Cmax 

+ L
max 	

and by our earlier 

argument G* = FT]. 	Finally, applying Theorem 5.3, G
Q 

is 

the minimal starth root of rql. The, last part of the theorem 

follows immediately from Theorem 4.1 (iii), Q = Qst = [G16 1 st • 

6. 	AN EXAMPLE 

The previous results embody an algorithm for calcul-

ating 71, which we shall develop with the aid of an example. 

Essentially our aim is to calculate Cm 
ax +L 
 
max 

	could 
a +-max ; 

then use any one of the algorithms of chapter II to calculate 
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rTnfrom GQ, using  FT = GQ and 

G
Q 

= ((c
max 

+ L
max 

) \ E ) \ ( (
max 

+ L
max 

) \ E)2"  although the next 

chapter will develop a rather better algorithm to determine GQ. 
 

Example 1: 	Let Q = (b+a(aa*b)*b)* 

6.1 	Machine, Anti-machine and Semigroup  

Theorem 3.3 suggests that we begin by calculating  

the machine, anti-machine and semigroup of Q. 	This we have 

done, using  standard methods, in Figures 1(a), (b) and (c). 

Fig. 1(a) Machine of Q. 

b 
a+b 

 

Fig. 1(b) 	Anti-machine'of Q. 
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Fig. 1(c) Semigroup of Q. 

In these figures we have labelled the nodes of the 

machine 2.1 , 2,2  and £3 , but, as stated after the corollary 

to theorem 2.2, we shall also use the symbols £ 1 , £2 , £3  to 

denote the sets (b+a(aa*b)*b)* (=Q), Qa(aa*b)* and 

Qa(aa*b)*aa*, respectively, these being the right-invariant 

equivalence classes to which they correspond. 	Similarly r1  

is used to label a node of the anti-machine, but also denotes 

the set (ab)*, this being the set of the reverse of all words 
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which take node r 1  to itself in the anti-machine (=(ba)*) . 

6.2 	Calculating the Derivatives etc.  

In tables 1(a) and (b) we have used Theorem 2.6 to 

determine the derivatives and anti-derivatives of Q as sums 

of r-classes and sums of Z-classes of Q, respectively. Thus 

in the first column of each table we have listed the 9,- and 

r-classes, and the third column shows the corresponding 

derivative or (reverse of) anti-derivative as a union of 

r-classes or k-classes of Q, as the case may be, 

Node/ 
2-class 

Representative 
element 

Derivative 

Q 1 
	 e 
	

r1 +r2+r3 

2.2 	 a 
	

r2+r3 

ft 3 
	 as 
	 r 3 

Table 1(a) Machine. 

Node/ 
	

Representative 	Reverse of 
r-class 
	

element 	anti-derivative 

e 	 9, 1  

b 	 R, + 

bb 2. 	32 3 2 +  

a 	 (1) 

r 

r2  

r 3  

Table 1(b) Anti-machine. 
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A very important point to note here is that, since 

each ~-, r- or c-class consists of words which are equivalent 

with respect to some relatio~ the properties which follow 

fro m the e qui val en c esc a n be f 0 u n d by con si de r i n g rep res e n tat i ve 

elements of the equivalence classes only. In order to calcu-

1 ate the de r i vat i ve s 0 f Q ass u m s 0 f r - c 1 ass e s we h a v e c h 0 s en 

in column 2 of each table a representativ~ element of each 

equivalence class. The choice is quite arbitrary: Then we 

have used Theorem 2.6 (a) directly to determine the derivative. 

For instance the class ~2 has representative a 

and since 

and 

but 

and 

a-e ¢ Q 

a-a ¢ Q 

a-b e: Q 

a-bb e: Q 

(e 

(a 

(b 

(bb 

is the representative of 

II 

1\ 

II 

r 1 ) , 

f 1+ ) , 

r
2
), 

r 3 ) , 

the derivative corresponding to ~2 is r 2 + r 3 • Thus it is 

quite unnecessary in these calculations to calculate regular 

expressions representing the various ~-, r- and c-classes'. 

A similar table, illustrating part (c) of Theorem 2.6, 

could be constructed for the c-classes of Q. The part of 

this table for those c-classes containing e or a word con­

sisting of a single letter is shown in Table l(c). Once again 

column 1 lists the c-class and column 2 gives a representative 

element of each c-class. The third column expresses the 

correspondi ng context of Q, CxQ (where xis the represent­

ative), as a union of direct products of the form ~. x r .. 
1 J 

A simple way of calculating the appropriate entry is as fol-

lows. S~ppose one is considering the c-class ck having as 

representative the element x. Consider each state ~i of 
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the machine in turn. 	If under input x state ki  goes to 

state £j  , read off the entry in column 3 of the kith row 

of Table 1(a). 	Suppose this is r. + r
. 

+ ... + r. 	. Then 
i 1 	ih 

add k
i 
x (r. + ... +r. ) to the entry already in the third 

j1  ih 
column of c

IC 

For example consider the class c l  having represent- 

ative a. 	Let us write £.1÷£ if input x takes state ki
i 	j 	 i 

to state £. of the machine. Then we have 
i 

kfL2,2  and £2  has derivative r2  + r3. Hence enter £1  x (r2+r3 ) 

k2-4-£3  and £3  

£3--
a  
41 3  and £3 

Thus the entry in column 3 for c l  is 

k l  x(r2  + r3 ) + k2  x r3  + k 3  x r3  . 

The reader should ignore column 4 of Table 1(c) for 

the time being. 

   

r3. 

r 3 ' 

   

Q2 x r3 

.9., 3  x r3  . 

    

II 

 

 

II 

    



.- 

Node/ 	Representative 	Context 
	

Context 
Congruence class 	element 	Form 1. 	 Form 2. 

co 
	 e 
	

ki x  (r1+ r2+ r3) 
	

L 1 x R1+ L2x  R2+ L3 X R3  

+ k2  x (r2 + r3 ) 
	

+ L1 x R2+ 
L2x 

 R3 + L 1 x R3  

+ Q 3 X r3 
	+ L4 x Ri 	(i = 1,2,3,4) 

Cl 	 a 
	ki  x (r2+ r3 ) 

	
L3 X R3 + L1x  R2  

+ R'2 x  r3 
	+ L2x R3 + L1 x R3  

N 
c) 	 + 2,3  x r3 	+ L4x Ri 	(i = 1,2,3,4) 

C 2 
	 b 
	

ki  x (r1 + r2+ r3 ) 
	

L3 X R2+ L2x  R  1 

+ k2 x  (r1+ r2+ r3) 
	

+ L2x R2+ L3 X R2  

+ 2,3  x (r2 + r3 ) 
	

+ L1 x R
2
4. L 2 x  R3

-1.- L 1 x R3 

Table 1(c) 
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6.3 	The Left and Right Factors  

We can now deduce the left factors and right factors 

of Q from Table 1(a). 	If we consider any sum 

k, + k
i

+ 	+
i 

of Q,-classes-classes of Q, including the 
1 	2 

 

empty sum (I), and then determine those r-classes r, + ...+rj J1 

common to the third column of all the i1 th, i2th, 	, ikth 

rows of Table 1(a), then 

+ T. ) c Q 
1 1 	1 2 	lk 

	J1 	Jm  

will be a subfactorization of Q. 	By inspection of all such 

subfactorizations we can deduce those which are also 

factorizations of Q. 	Thus for our example we would get 

the following subfactorizations: 

1
+ k2 	Z3 )* r3 
	, (Z2+ Z3 )* r3  , (Z I + k3 )- r3  , Z3 - r3  , 

( 9,1+ 2.,2)• (r2+ r3 
	k2-(r2+ r3 ), 

k 1 -(rFr2Er3 ) 	9 

(1)-(r i+r2+r3+r4 ). 

Table 2 Subfactorizations of Q. 

We have displayed these subfactorizations in such 

a way as to make it evident that only those in the first 

column are also factorizations of Q. 

This information is summarised in Table 3, in which 

we have also named the left and right factors L1 , L2, L3 , 

L4  and R 1 , R2, R3 , R4. 
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Left factors 	Right factors 

Q1 	
R
s 

= R1 	r1 + r2 + r 3 

k 1  + 2,2 	 R 2 	r2 + r 3 

k + 2+ t 3 1 k 	R 3  r3 

L 4 	(I) 	 R 4 	r1 + r2+ r 3 + r4 

Table 3 Left and right factors 

In the table we have also indicated that the indices 

s and t of Theorem 4.1(iii) are both equal to 1. 	This is 

because, from the machine (Fig. 1(a)), Q = ki, and from the 

anti-machine (Fig. 1(b)), Q = r1 + r2+ r3; but L1  = t 

and R1  = r1 + r2+ r3. 

6.4 	Construction of C
max 

+ L
max 

and GQ  

The penultimate step in the construction of the 

factor graph is to construct Cmax  + 
Lmax. 
	In our example 

the graph of Cmax  + L
max 

will have four nodes (see Fig. 2). 

In order to fill in the arc labels there are two approaches 

we can adopt. 

(i ) 
	

In Table 1(c), column 4, we have expressed the 

context CxQ of each constant or linear term x (i.e. 

x = e or x c V) in all possible ways in terms of 

direct products of left and right factors of Q. 

There is then an arc labelled x from node i to 

node j of Cmax  + L
max 

if and only if there is an 

entry Li  x Rj  in Column 4 of Table 1(c) of the row 

corresponding to x. 

L
t 
 = L1  

L 2  

L3  
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Alternatively, we can apply Theorem 4.1(ii), which 

can be restated as, x c Qij 	Lix = Lj. 	To do this 

we usetherepresentationofli as2—+R— + 	+t4  , 
1 2 

I k 

given in Table 3. C
max 

can be calculated immediately 

using [Cmax]ij  =e 	Li  s Lj. To find L
max 

consider each element x E V in turn. Under input x 

the state
i 	

of the machine goes to state 2,6  , say. 
m 	

"m 

Thus L
i
x = (2.. + 	 c k

i 2 	k 	
— 

+ 	+ Z. )•)( 	Rh 
1 
 + kh 
	h 

1 	
k 1

2 

and CL
max

]
ij 2 

x for all those j such that 

L.Dk+t+ 	+ 
j — h h2 	h • 

Using either of these techniques, we get the graph 

of C
max 

+ L
max 

shown in Fig. 2. 

e+a+b 

Fig. 2 Cmax+Lmax 
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Finally to get the factor graph we remove those arc 

labels in C
max + Amax 

which are in E or may be decomposed 

into paths in 
((Cmax 

+ L
max

)\E)
2+*

. The factor graph for 

this example is shown in Fig. 3. 	In both Figs. 2 and 3 we 

have indicated, in the usual way, that the graphs are 

recognisers of Q with start node s =1 and terminal node 

t =1. 

e+a 
	

e 

a+b 

Fig. 3 The factor graph of Q. 

6.5 	The matrix IQ'  

From G
Q 
we could now calculate IQ' = G* using one 

of the standard methods of chapter II. However we can 

get the same information about Rn by determining each 
entry Qij  as a sum of c-classes of Q. 	To do this we 

replace each entry in G
Q 
by the c-class of which it is a 

representative (see Fig. 1(c)). Thus G
Q 
is represented by 

q)  C 0 -F C 1 q)  q)  

C
2 (1) C

o (I)  

(I) C 2 C1 (I)  

C
o q)  (I)  C 

1 
+ C2 

 

and then calculate G; in the algebra Mg(R(SQ ) }where 

50
i_ s the semigroup of Q, and R'('S

Q 
 ) is the regular algebra 
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generated by SQ  (c.f. 	I§2.3). 	For this example one 

can verify that G; is represented by 

c
o
+c

2
+c
3
+c

6 	
c
o
+c

1
+c

2
+c

3 

+c4+c6+c7 
 

c +c 	c +c +c 2 	6 	o 	2 	3 

S 

c
6 

+C
4
+C

6
+C

7 

c
2 
 +c

3  +c 6 (f) 
+c7 

 

S S S S 

7 
where S 	denotes the 	whole 	semigroup 	i.e. S = E 

i=0 
c.. 

6.6 	Some Remarks  

There are various minor improvements one can make 

to the above method of calculating GQ. 

First of All, if it is only required to calculate 

G
Q' 

it is unnecessary to calculate the semigroup of the 

language. 	However, the representation of the matrix ro 
in terms of c-classes, as in the last section, is (as we 

shall see) very useful and also much more informative 

than calculating regular expressions denoting each of the 

factors. 

A second point concerns Tables 1(a) and (b). 	It 

should be noted that the third column of Table 1(b) can 

be deduced directly from the third column of Table 1(a) 

(or vice-versa), and thus gives redundant information. 
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This small amount of redundancy can, however, be quite 

useful in checking hand calculations and so is probably 

worth retaining. 

Thirdly, we note that by length considerations, 

G
Q 

= C
min 

+ 
Lmin' 

where 

Cmin = 
(C
max\E)\(Cmax

\E)2+* 

2+* 
and 	L

min = 
L
max

\(L
max 

+ C
min

) 

The above formulae suggest that one first calculates Cmax  

andfromitC
min

,and then determines L
max 

 and from it 

Lmin. The sum of Cmin  and Lmin  is then the factor graph GQ. 

In fact one rarely needs calculate Cmax  and L
max 

explicitly 

because one can remove arcs from these matrices by inspection 

as they are being constructed. Note also that the second 

method of calculating Cmax  and Lmax  (§6.4(ii)) is preferable 

to the first, and hence the construction of Table 1(c) is 

unnecessary - although it does add some insight into what 

is happening. 

Finally, a minor technical nuisance in the study 

of factors is that (I) may be a factor. 	In this example 

L
4
4 is a left factor, but (1) is not a right factor. 	If 

is a factor then the factor graph can have up to two "useless" 

nodes, i.e. nodes such that there is no path from node s to 

the node, (for example node 4 of Fig.3), or no path from 

the node to node t. If we are interested in the graph GQ  

as a recogniser for Q, we can always ignore these nodes and 

consider the resulting all-admissible recogniser for Q. 	In 
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all future calculations we will take the liberty of 

disregarding this technical problem, and all the factor 

graphs we display will be all-admissible factor graphs. 

7. 	An algorithm to calculate the factor graph  

We are now in a position to summarise the steps 

in an algorithm to determine the (all-admissible) factor 

graph for a given regular language Q. We assume naturally 

that Q is given either as a regular expression or by a system 

of left (or right)-linear equations. Following the algorithm 

we have worked through another example, which shows explicitly 

the various steps of the algorithm. 

Algorithm 1 To calculate the factor graph GQ  of a given 

regular language Q. 

Step 1 	Calculate the machine and anti-machine for the lan- 

guage Q. 	Use the method of derivatives [3]). Label the 

states of the machine Canti-machine) Zi, 	, km 

(rl, r2, 	, ram) and use these labels to denote the 

corresponding k-class Cr-class). 

Step 2 Construct two tables, the first listing the k-classes 

of Q and the second the r-classes of Q. Each table has 3 

columns. Construct first of all the first two columns of 

these tables, the first column containing simply a list of 

the labels ki  (ri) given to the k-classes (r-classes) of Q, 

and the second column containing an arbitrary representative 

element of the corresponding class. The third column of 

each table is now constructed. 	In the first table this 
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column represents the various derivatives of Q as unions 

of r-classes of Q, and in the second table it represents 

the reverse of the various anti-derivatives of Q as unions 

of k-classes of Q. Suppose the k-class 	has representative 

xi  and the r-class rj  has representative yj. Then rj  appears 

as a term in the kith row of Table 1 if and only if xiyj  c Q, 

and similarly ki  appears as a term in the rjth row of 

Table 2 if and only if xiyj  c Q. 

Step 3 Deduce the corresponding left and right factors of 

Q and label them L1 , L2, 	9  Lq, R1 , R2, ... 9  Rq. Find 

the unique indices s and t such that Q = Lt  = Rs. 

To do this, one considers all subsets fk.,...,k. } 
k  

(excluding the empty subset) of the k-classes of Q and 

finds for each subset those classes r. 	r. common to 
Jn 

thek.th,f6i th,...,2—th entries in the third column of 
1 1 1 	

2 
 

Table1.0nethenhas(k.+... -Fkik ).(r„ + 	+ ri  ) c Q 
1 1 	J1 

is a subfactorization of Q in which (r, + 	+ r
j

) is 

n 

 

maximal. By inspecting all such subfactorizations one may 

deduce the left and right factors. 	Lt  = ktl+kt2+...+ktk  is 

that left factor such that the k-class k
tE 

L
t 

if and only if 
1 

it corresponds to a terminal node of the machine for Q. 

Similarly R
s' 

 + rs  + 	+ rs  is that right factor 
1 	2 

such that the r-class r
s 
 c R

s 
 if and only if it corresponds 

to a terminal node of the anti-machine for Q. 



Step 4 Calculate Cmax
. Whence deduce 

Cmin  = 
(Cmax")"Cmax")24-*  • 

[Cmaxlij 
	e if and only if Li  = Li, and this can easily 

be deduced from the representation of Li  and Li  as unions 

of k-classes of Q. 

Step 5 Calculate 
Lmax° 

Whence deduce 

L 	= L 	\((C 	+ L 	)\E)21-*  
min max max max 	• 

2 a if and only if a c V and Li.a .E Li  . This can 
ELmaxiij 

also be easily deduced from the representation of L. and L 

as unions of k-classes of Q and the knowledge that tk.a c k. 
- J 

if and only if under input a the 21(th state of the machine for 

Q goes to state Zi. 

Finally GQ  = Cmin  + Lmin  

We shall now illustrate the various steps in the 

above algorithm by a second example. 

Example 2 Q = C(x+y)*zx*(x+y)]* 

Step 1  

(All-admissible) machine 	(All-admissible) anti-machine 



1 

3 

r 

r2 

r 

r4  

e 

x 

zx 

xzx 
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Step 2. 

Representative 	Derivative 

	

e 	r1 + r3 + r4 

	

z 	r2+ r4  

	

x 	r3+ r4  

	

zx 	r1 + r2 + r3 + r4 

Table 1.  

r-class 	Representative 
Reverse of 

anti-derivative 

2,1+ 2,2 4.  2,3+ 2, 4 
Table 2.  

Step 3. 

Left factors 	Right factors 

L1 	Z4 	 R 1 	r1  + r2+ r3 + r4 

L,
I., 

= L2 	9,1+ k4 	 R
s 
 = R2 	r1 + r3 + r4  

L3 	Z2+ Z4 	 R 3 	r2+ r4  

L 	Zi+ Z3+  Z4 	R 4 	r3 + r4 4 

L5 	kl+ k2+ k3+ k4 	R 5 	r4 



Amin 
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Step 4  
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Step 5  

L
max 

x+y+z x+y+z 

(All admissible) 	Factor Graph 	GQ  = Cmin+ Lmin 
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IV CALCULATING THE CLOSURE OF A FACTOR GRAPH  

1. 	Introduction  

We recall that our original objective in studying 

Conway's factor matrix was to try to obtain a method of 

finding the star-height of a given regular language. 	It 

is not long, however, before one realises that this cannot 

be obtained directly from the factor graph for the language 

Q. Thus for the language Q = (b + a(aa*b)*b)* of Example 1 

one obtains directly from the anti-machine for Q (see III 

§6, fig. 1(b)) the regular expression 

Q = [(a + b)*bb + b + e] (ab)* 

showing that Q has star-height one. However the factor 

graph of Q (III §6,fig. 3) has rank two. 

Yet a very enigmatic feature of factor graphs, 

observed by examining just a few examples, is that very 

often one can see ad hoc ways of determining regular 

expressions for the languages which they recognise, which 

have star-height less than the rank of the factor graph. 

The purpose of this chapter is to develop a systematic way 

of finding the closure G* of the factor graph G
Q' 

which does 

have the property of often yielding expressions of star-height 

less than the rank of the graph GQ. 

The intuitive approach adopted to tackle this problem 

is based on the recursive nature of the definition of a lan-

guage Q in terms of its factors (we use recursive here in 

the computer scientists sense, not the mathematicians). We 

observe that if there is a loop 
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V 

such as the one shown above in the factor graph for Q we 

would get equations 

Qit = 14.(ljt 

Qjt 
= v.Q + 

it 

in the system of equations which define Q = Qst. In this 

way Q is defined recursively in terms of its factors. 

The question we ask is "when is a factor necessarily defined 

in terms of Q?" A clue to answering this question is given 

by Theorem 2.1 below, due to Conway, which states "factors 

of factors are themselves factors". This means that the 

relation "factor of" is a transitive relation, and so it can 

be naturally reduced to an equivalence relation on the factors, 

which we call "inseparable from". 	(Note that this is no 

different to considering the relation "is connected to" on 

nodes of a graph, and reducing it to "is strongly connected to", 

which is an equivalence relation on the nodes.) Examining the 

properties of factors further (section 3), we prove that the 

factor matrix of a factor F is a submatrix of IQ', and, 

moreover, is equal to rQ, if and only if F is inseparable 

from Q. Having made this observation an algorithm for 
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determining 4 (sections 4 and 5) which exploits 

separability of factors is then obvious. The remaining 

sections are then concerned with discussing the applicability 

of the algorithms to the star-height problem. 

2. 	Inseparable Factors  

Theorem 2.1 	(Conway) Let Q be any language, and let F be 

a factor of Q. Then any factor of F is also a factor of Q. 

Corollary 	The relation "factor of" is a reflexive and 

transitive relation on the factors of any language Q. 

Proof 	If F is a factor of Q it is maximal in some 

subfactorization LFR = Q of Q. If H is a factor of F it 

is also maximal in some subfactorization GHJ a F . But then 

H is maximal in the subfactorization LGHJR 5.. Q of Q and so 

is a factor of Q. The corollary follows because Q is a 

factor of Q, i.e. the relation is reflexive. 	(That "factor 

of" is transitive is merely a restatement of the above theorem.) 

Definition 2.2 Let F and H be factors of any language Q. 

We say F is inseparable from H if and only if F is a factor 

of H and H is a factor of F. Otherwise we say F and H are 

separable. 

Lemma 2.3 Inseparability is an equivalence relation on the 

factors of Q. 
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3. 	Factor Matrices of Factors  

Let the matrix M have nodes N = {1,2,...,n} and 

let N'cN be any subset of this set. Then we shall call the 

matrix M' derived from M by simply removing the rows and 

columns corresponding to nodes i ¢ N' the submatrix of M 

defined by N'. 	If N' # N we say M' is a proper submatrix  

of M. 

Consider, now, any factor F of Q. Then F is some 

entry Qij  of IQI (III4.1(i)), and each two term product 

Q icQkj  is, by III4.1(iv), a subfactorization of Qij  (i.e. 

Q ik'QkjEQii). Moreover, by III4.1(v), all the L.R 

factorizations of F = Q
ij 

are included in the subfactorizations 

QicQkjEflij. These observations are highly suggestive that 

the factor matrix 571 of F is a submatrix of 7, and, indeed, 

we shall show in this section that this is the case. 

Complications arise inevitably in the proof because factors 

of Q do not necessarily appear uniquely in the factor matrix, 

but often appear repeatedly (as in example 1). 

To avoid confusion we shall henceforth always need 

to use subscripts or superscripts to identify the factor 

under consideration. Thus we shall use N
Q 

to denote the set 

of nodes of the factor graph GQ, scl  and tQ  (where we previously 

used just s and t) for the nodes mentioned in Theorem 1114.1 

(iii), and so on. 

The proof of the main theorem, that the factor matrix 

rn of a factor F = Qij  of Q is a submatrix of NI, follows 
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from four simple lemmas. The first lemma recognises that F 

may occur more than once in NI, and so identifies unique nodes 

s
F 

and t
F 

such that F = Q
sFtF 

and which will play the same role 

in Fri as s
Q 
and t

Q 	
(see III4.1(iii)). Following 

this we define a subset N
F 

of the nodes N
Q 
of the matrix 7, 

and in lemmas 3.3 and 3.4 show that kc NF 
=>Qs

F
k.Qkt

F
EQs

F
t
F 

= F  

is a factorization of F and that these include 

all the L-R factorizations of F. The final step is to show 

that if k and me NF, Q
km 

is maximal in 
Qs 
 -Q -Q 	=F. Then 
F
k km mt

F
- 

by the definition of FF1 the submatrix of FQ—I defined by the 

set of nodes N
F 

is the matrix ITI. 

Lemma 3.1  Let F = Qij  be a factor of Q. Then 3 indices 

sF  and tF  such that F= 
Qs t 	- 

and 	and 	are both 
Qs s 	Q  

F F 	F F 	
t
F 
 t

F  
factors of F. 

Proof By III4.1(ii), LiQij=Lj  is a subfactorization in which 

Qij  is maximal. Let this be dominated by the factorization 

L F -QF3 
. = L.. 	(Note that III4.1(v) is being used implicitly 

s 	s 

here.) Then, by Lemma 1113.1, Qij = QsFi, and 

by III4.1(iii) the index sF  is uniquely defined. 	Now let tF  

be that unique index defined by Q 	= R 	is a factor- , t  
F tF  s

F 

ization which dominates the subfactorization Q 	R. = R
s 
 . 
 

Then also Q
sF F t 

= Q 	. and hence Q
st = Q. 

= F. To prove 
F3 	F F  

the last part, we note that, by construction, LsF.- 
QsFtF.RtF  E  

is a factorization of Q. Thus, using III4.1(ii), 

L -Q 	-Q 	-Q 	-R 	c Q is a factorization, 
s
F 

s
F
s
F 

s
F
t
F 

t
F
t
F 

t
F 
— 
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and hence Qv 	
F F 

and Q
t t 

must be maximal in Q
sFsFsF

t
F
-Qt

F
t
F 

and so are factors of Q
sFtF 

= F. 
Qs
F
t
F 

Definition 3.2 The subset N
F 

of the set N
Q 
of nodes of the 

factor matrix 17)1 is defined by kE 
NF.4QktF 

is a factor of F 

and Lk.
Qkt 

	

	
is a factorization of Lt  . 

F 
E Lt 

 

Lemma 3.3 k s N
F=

Q
s
F
kkt

F 
= Q

sFt 	
is a factorization of F. 

F 

Proof 	By definition k e NF  implies L.
K
.0 	Lt  is a 

	

.kt
F 	 F 

factorization, which implies, by III4.1(ii),that Ls  
FF

k*Qkt
F 

= Lt  is a subfactorization in which Q
s k 

is maximal. 
t
F 

But by the definition of tF  in the proof of lemma 3.1, 

Ls 
	c 	is a factorization. Therefore, Q

s k 
must also 

F  sF.F  — 

be maximal in Q
sF 

k.Qkt c Q
s t and so is a left factor of F. 

F 	FF 

Qkt is a factor by assumption, so the lemma follows immediately. 
F 

Lemma 3.4 If L
FF 

= F is a factorization of F, 3 a unique 
node k E NF  such that Q

sFk 
= L

F 
and 

Qkt
F 

= RF. 
 

Proof By III4.1(v), L
F
-11

F 
=F = Q

sFtF 	
srp 

	

F 

implies L
F 

= Q 	and 

R
F 
c Q

ptF 
for some p. Moreover, as 	L

F 
and R are

. 	' 
factors, 

the last two inequalities must be equalities. Suppose 

L
p
-Q

ptF 	
L
tF 

is dominated by the factorization L.
K
.0 
‘kt 	Lt • 

F 	F 

Now, by 1114.1 	
ClktF  = QptF  = RE' 

and Lk  R Lp =, by 

III4.1(ii), Qpk  R e
' k 

 R Q v  , 	LF. 	Hence 
Qs
F
kqkt

F 
EF  

F 	'F" 

dominates L
F
-Ft

F 
= F; but, as the latter is a factorization, 

Qs
, 	= L

F 
and 0 	Moreover, by definition 3.2, k E N

F. 
F" 	

- ct = R
F 

F 

 

Finally, k is unique follows directly from = Q
1: 	

and 

	

"6F 	"F 
L .Q 	= L 	is a factorization of L 
k kt

F 
 Lt 
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Lemma 3.5 Let k and m c NF. Then Qkm  is maximal in 

QsFk•Qkm6QmtF  E QsFtF * 

Proof By definition, m c NF 
	

m' 	
L„ is a factor- 

F 	'F 
ization; hence, by III4.1(ii), Lk-Qkm.Qmt 	L„ is a sub- 

'F 
factorization in which Qkm  is maximal. But Lk. 

Qkt
F 
E Lt is 

also a factorization of Lt F, from which we conclude that Qkm  

must be maximal in 0  
skm.‘mtF  E QktF° 

is maximal in Q 1,-(4m•Qm„ c Q, 
SFr. NM m.F  

Theorem 3.6 F is a factor of Qua the factor matrix I—F7 of F 

is a submatrix of the factor matrix IQ' of Q. 

Proof Let F be a factor of Q. Then if we compare lemmas 3.3 

to 3.5 with the definition of the factor matrix pn of F at 
the beginning of Section III 4, we see immediately that the 

submatrix of IQ' defined by the set NF  is indeed rn. 
Conversely if m is a submatrix of 	F is an entry in 71 

and so is a factor of Q (see III4.1(i)). 

Corollary 1 Let F and H be two factors of a regular language 

Q. Then F is inseparable from H 

they have the same factor matrix 

they have the same factor graph. 

Proof F is a factor of 	p1 is a submatrix of rffl 	H is a 

factor of 	1HI is a submatrix of 71. Hence F is inseparable 

from H4 ITI = n . The rest follows from the uniqueness of 

the factor graph. 

Corollary 2 Let F be a regular language, and let C
m 

 
ax max

nd 
 

F 
L
max 

be the maximal constant and linear matrices such that 

(C
max 
F 	+ 

Lmax
F 

)* . IF'. Then F is a factor of Q if and only if 

F  
C
max + LFmax 

 is a submatrix of C
max  
 + L

Lx
. 

Thus, by lemma 3.3, Qkm  
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C21 

Proof If F is a factor of Q, C
max + L

FF 
max E 

IFS, which is 

a submatrix of IQ1. Thus by maximality of C
m
Qax  + LQ 

max' 

C
max + LFmax 

 is a submatrix of it. <= is obvious. 

Finally, we recall that inseparability of factors 

was defined as a symmetric closure of the relation "factor 

of". The other "half" of this relation - the anti-symmetric 

half - is a partial ordering on the classes of inseparable 

factors, or equivalently, by Corollary 1 of the last theorem, 

a partial ordering on the factor graphs of factors. This is 

now defined. 

Definition 3.7 Let F and H be two factors of a regular 

language Q, and let GF  and GH  be their factor graphs. Then 

we define the relation 4 on the factor graphs of factors of Q 
by 

GF 	GH 	iff IFI is a submatrix of 1HI. 

Theorem 3.8 	is a (reflexive) partial ordering on the 

factor graphs of factors of Q. 

The proof is obvious. 

4. 	Example 1 again  

The above theorem immediately suggests a new method 

of calculating 171 when Q has a factor H which is separable 

from Q. For, using our knowledge that 7 is a submatrix of 
7, we can write 

RI = C 11 
	C 1 2  

(1) 
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where C11  is a square matrix, 	The factor 'graph GQ . can be 

decomposed into corresponding submatrices 

G
Q 

= A11 	Al2 

(2) 

A21 	A22 

Using this notation the escalator method (II § 4.3 ) is 

given by the formulae 

C11 = Ati+Ar1 A1271A21 At1 	 (3) 

C 1 2 	= 	Ai1 Al2I H I 	 (4) 

C21 , = IHIA21 Ai1 	 (5) 

where 7 is usually given as pfl = (A22 	A21  At/  Al2 )*. 

However rill is the factor matrix of the language H, and so 

GA 	 (6) 

where G
H 

is the factor graph of H. 

Formulae (3), (4), (5) and (6) form the basis of 

an algorithm to compute IQI. We shall first use these 

formulae to calculate the factor matrix of Example 1. 

For ease of reference the all-admissible factor graph 

of Q = Q11 is reproduced below. 

Fig. 1 
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The first step is to find the factor graphs of 

factors of Q. 	We already have an algorithm to do this, 

contained in the proof of Theorem 3.6. 	If F = Qij  is a 

factor of Q, this involves locating other entries Q v  s  

which are also equal to F, and using lemma 3.1 to choose 

s
F 

and tF. Then the L R factorizations of F are found by 

checking whether any one subfactorization Q
sF

p .QpLF c F is 

dominated by another subfactorization Qs 
	
c F; finally 

definition 3.2 is used to choose those k 6 NF. 	It is here 

that the representation of each entry in 4 = IQ1 as a union 

of c-classes of Q is particularly useful. 	For this example 

we have already shown that GQ may be represented by 

	

C o + C2 	Co + C i+ C2+ C 3  + 

	

+ C 3 + C6 	C4+ C6 + C7  

C 2+ C6 	Co+ C2+ C 3  + 
	

S 

C4+ C6 + C7  

C 6 	C2+ C3 + C6 	S 

+ C7  

(Refer to III§6fig.1(c) for the meaning of co , 	, c7 ). 

Using this representation of 4 to determine whether 

Q ip  .Qpj  s Qij  dominates Qik  . Qkj  E Qij  it is only necessary 

to compare finite subsets of the set of elements in the 

semigroup against one another. 

This example has been chosen for its simplicity. 

Only one factor, Q 33 = Q 13 = Q 23, appears more than once in 

the matrix, and this, from fig. 1, is obviously equal to 

(a+b)*, and so has the factor graph shown below. 
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a+b 

Fig. 2 

All other factors Q ij  can be easily shown to have 

the same factor graph as Q = Q1 1. 	For j=1 and for all i, 

one need only check that.Q 11• - 11 — c Qi i  is not dominated by 

any subfactorization Qik4k 1 c (Lk' This is clearly im- 

possible since Q 11 = C O +  C2+ c 3+ c6 
2  Q21 = C 2 1-  c 6 2  Q3I = C 6 • 

Thus Q = Q 11  is a factor of Q11 , and so they are inseparable. 

Similarly Q 12 can be shown to be inseparable from Q. 	This 

only leaves Q 22, but since Q 12 

Q12 	Q32 	( C 1 	E 

But 	Q 12 	is 	inseparable 

order to 	use 	formulae 

G
Q 

Q12 , 	c1 	Q22 1-  

from 

(3), 

e+a 
b 

Q, 

(4), 

e 

Q32) ,  

hence 

(5) 

	

Q12 	is 	a 

	

so 	is 	Q22. 

and 	(6), 	we 

All 

factor 

Now 

write 

Al 2 

of 	Q 22• 

in 

b a A 21 A 22 

A*1  is calculated by a standard elimination method and found 

to be 

[(b+ab)* 	(b+ab)*(e+a) 

Ail - (b+ba)*b 	(b+ba)* 

The factor H in (3) - (6) is Q 33 , and its factor 

matrix is determined from fig.2. 

= 	C(a+b)*1 

We now have all the information necessary to apply the 

formulae (3) - (6), giving 

D Q22  and 
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(b+ab) * (e+a) (a+b) *b (b+ba) * 	(b+ab) * (e+a) (a+b)*1 

+ (b+ab)* (e+a) 

(b+ba)* (a+b)*b (b+ba) * 	(b+ba)* (a+b) * 

+ (b+ba)* 

(a+b) *b (b+ba) * 	 (a+b)* 

(b+ab)* (e+a) (a+b)*b (b+ba)*b 
+ (b+ab)* 

(b+ba)* (a+b)*b (b+ba)*b 

+ (b+ba)*b 

(a+b) *b (b+ba)*b 

The regular expressions appearing in FT1 could be 

made much simpler had we used the knowledge that 

Q33 = Q 31 = Q32 = (a+b)*. 	However this is irrelevant to our 

aim which is simply to obtain regular expressions of smallest 

star-height. 	Indeed for this example we have achieved this 

aim, since all the expressions appearing in pn are of 
star-height one. 	Moreover this is strictly less than the 

rank of the factor graph. The final expression for Q is 

Q = Q„ = (b+ab)*(e+a)(a+b)*b(b+ba)*b+(b+ab)* 

which simplifies to 

Q = (a+b)*b(b+ba)*b+(b+ab)* . 

5. 	An Algorithm for Calculating IQ  

We shall now formulate the algorithm for calculating 

IQI. 	In general the algorithm is not quite as simple as in 

the example above. 	In the above example all the factor 

graphs GH  of factors of Q were totally ordered by the 

relation 	(there were only two!), Technical difficulties 

arise in the algorithm because in general the relation 	is 

a partial ordering on the factor graphs associated with Q. 
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Algorithm 2. 	To calculate IQ! for a given regular language 

Q. 

Step 1 	Find the factor graphs GH  of all factors H of Q 

(including GQ ). A method of doing this is given in the next 

section. Associate with each factor graph GH  a subset 

NH  = {i1 , i2, ... , ih} of the nodes {1, 2, ... , q} of the 

factor graph GQ, where the submatrix of to defined by the 

set N
H 
is the factor matrix Pli of H. 	Note that for some 

factors H there may be more than one submatrix of Til which 

is equal to Firl (see e.g. the next example). 	For the pur- 

poses of exposition, we shall assume these factor graphs to 

be distinct. 

Step 2 	Calculate the upper semi-lattice defined by the 

partial ordering f1 on the distinct factor graphs GH  of 

factors H of Q. 	We shall call G
H 
a minimal element of 

this lattice if there is no other factor graph GF  such that 

GF - G. GQ  is of course the only maximal element. 

Step 3 	Choose any path Gz 	G. Gy... Gs --GR-GQ  from a 

minimal element G
z 
of the semi-lattice to the maximal 

element GQ. This defines a sequence Nz  c N Y C ...c N s  c N R  C N Q  

of the nodes of GQ. Reorder the nodes of GQ  such that the 

nodes in the set NQ \NR  are numbered from 1 to INQ\NR I, the 

nodes of NR\NS  are numbered from INONR I +1 to INQ\Ns l etc. 

Within any of sets NR\NS  the order is immaterial. 

Step 4 	For the minimal element Gz  of the path calculate 

G*
Z 
 = IT using a standard elimination method. 



Nodes in 
NF\NH 	 Nodes 

in NF 

GF 
	AFF 
	 AFH 

AHF 
	 AHH 1 

 Nodes in 
NH  
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Step 5 	Suppose the current factor matrix that has been 

calculated is G* = FFT . 	If GH = G
Q' 

stop; otherwise let 

GF  be the next point in the chain. Split GF  as shown below 

and correspondingly define CFF' CFH , CHF  and CHH  

by 

G* = CFH CFF 

CHH CHF 

Compute ApF  using a standard elimination method. 

Compute all entries of GF using 

1771 	(which has already been calculated) 

F A* + A* A FlA A* F 	FF AFH 	HF FF 

A*F  A Fril F FH 

FRI1 A A* HF FF • 

Step 6 	Repeat Step 5. 

The above algorithm requires that one calculate the 

factor graphs of factors of Q. 	Once the factor graph of Q 

has been calculated it is not necessary to repeat all the 

steps of the algorithm given in section 7 of Chapter III to 

find the factor graph of any factor F of Q. 	Instead one 

essentially uses the proof of lemma 3.1 to find nodes sF  and 

CHH = 

CFF = 

CFH = 

CHF = 
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and t
F 

such that F = Q
s t , 

and then definition 3,2 
F F 

and corollary 2 to theorem 3.6 enable one to deduce 

 
C
max + LFmax 

 directly from C
max  
 + Lax . For ease of 

reference the steps in this algorithm are given below. 

Algorithm 3 	To calculate factor graphs GH  of factors H 

of Q. 

Suppose H = Qij  is the (i,j)th entry of 

Step 1 	Calculate CQ
ax 
 + L

max  
 and deduce G

Q
. 

m  

Step 2 	Calculate (C
ax 	m 

+ LQ
ax 
 )* in the algebra m (R(SQ  )). m   

(R() is the regular algebra generated by the semigroup 

S Q  of the language Q ). 	In other words calculate each entry 

of Fri as a union of c-classes of Q. 	Let this matrix be 

denoted IC(Q)I. 

In the following steps, in order to check that 

Q10  D Qmn, one checks that 

C(Q)k2,  = ci 1 + ci2  +... + cix  2 C(Q)mn  = cj1 +ci2  +... + cjy. 

This involves comparing two finite sets for set inclusion. 

Step 3 	Consider H = Qij, and consider all nodes i' such 

that Qij  = Qi,j. 	Let sH  be that node i' such that LsH  is 

maximal. 	Now consider Q 	and all nodes j' such that Qs  

Q
sHj 

= Q
sHj'

. 	Let tH  be that node j' such that Rt  is maximal. 

Step 4 	We now have H = Q
sHtH

. Compare all subfactorizations 

2 H and Q
sHm

.Q
mt E 

H for one dominating the other; 
Qs

H
k.Qkt

H 
thus deduce the right factors 

Qkt
H 

of H. 

Step 5 	For all k such that 0 	is a right factor of H, 
sktH  

let k' be that node such that Q. = Qk't and  L
k' 

is maximal. 
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Let N
H 

be the set of all such k'. 

Step 6 Cmax 
	m

H 	
+ Lax  is the submatrix of Cmax  

 + L
max  
 defined 

by the set of nodes NH. Calculate GH  using 

GH = 	((C
max 

+ L
max

)\E)\((Cmax 
+ L

max
)\E)

2-0 
 

Needless to say in practical applications it is not 

necessary to go to quite these lengths to calculate GH, and 

various ad hoc techniques, such as were used in example 1, 

can be acquired with practice. 

6. 	Two More Examples  

Consider Q = a(a+b)*b(a+b)*a. 

We shall apply algorithm 2 to determine the factor 

matrix IQ'. 

Step 1 	The factor graph and semigroup of Q are shown below. 

Fig. 3 	Factor Graph of Q = Q13 . 

Fig. 4 
	

Semigroup of Q. 
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The matrix IC(Q)I which exhibits each entry of IQI 

as a union of c-classes of Q is easily found to be: 

17c71 

e+a+ab a+ab aba aba+ab 

+aba +aba 

S S aba b+ab+ba 

= +ba +bab+aba 

S S e+a S 
+ba+aba 

S S a+ba S 
+aba 

where S denotes the whole semigroup. 

Applying algorithm 3 we can deduce the following 

factor graphs for factors Qij  of Q. 

(a) Factor graph of Q23  

(b) Factor Graph of Q14  

(c) Factor graph of Q24  

(d) Factor Graph of Q43 	(e) Factor Graph of Q12  

a+b 

(f) Factor Graph of Q44 	(g) Factor Graph of Q22  

Fig. 5 

a+b 
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Step 2 	The semi-lattice defined by the relation 7-`, is 

shown graphically below. 	Each node contains a representative 

element of the class of inseparable factors to which the node 

corresponds, together with the set of nodes which define the 

submatrix of lin which equals the particular factor matrix. 

Semi-lattice -.2. w Fig. 



(a+b)*a* 

(a+b)*a* 

I C431 

 

(from fig.5(a)) 
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Step 3 	The particular path from bottom to top of this semi- 

lattice, which we will use in the calculation of I-0 , has 

been arrowed. The node numbering has already been chosen 

to meet the requirements of step 3 of algorithm 1. 

Step 4  

Step 5  

1Q431 

Clearly IQ 441 = C(a + b)*]. 	(from fig. 5(f)). 

Repeating step 5 of the algorithm we get successively 

e+(a+b)*a 	(a+b)* 	(from fig. 5(d)) 

(a+b)*a (77-10+ 

a*+a*b(a+b)*a* 	a*b(a+b)*a 	a*b(a+b)*—  FT;;1 = 

e+a (a*+a*b (a+b)*a*) 	a (a*+a*b (a+b)*a*) 	aa*b (a+b) *a 	aa*b (a+b) * 

a*+a*b (a+b) *a* 

171 	
(a+b) *a* 	 1(7231 

(a+b) *a* 

(From Fig.3). 

In each of these matrices we have only shown the new 

entries in the matrix. 	The final expression for Q is 

Q 13  = aa*b(a+b)*a. 

Remarks. 	This example is instructive for two reasons. 	First- 

ly it illustrates that in general one has a choice of path 

through the semilattice. Different paths will usually give 

different regular expressions for the language Q, although in 

this case all paths yield expressions of the same star height. 



134. 

Whether there are examples where two different paths through 

the semi-lattice yield different star-height expressions 

I do not know. 	In any case one can always determine the 

star height that a particular path will give and choose one 

which is optimal. Secondly, all regular expressions appearing 

in Ffl are of star height one, yet the rank of the factor 

graph is two 	Indeed we shall show later that the algorithm 

always yields regular expressions having star-height less 

than or equal to the rank of the factor graph of Q. 

Example 2 (continued) 

Let us return to example 2 (see pages 111-114). The 

language considered is Q = C(x+y)*zx*(x+y)]*, and its factor 

graph is reproduced in fig. 8(b) below. As we are only 

interested in deriving a regular expression for the language 

Q, which is the (2,2)th entry of the factor matrix, we shall 

not calculate the whole factor matrix using algorithm 2 but 

only 0 only ,22 • 	To do this we apply steps 1 to 3 of algorithm 2 

as before, but then apply steps 4 and 5 in the reverse order. 

This results in a system of equations for 

be solved to deduce a regular expression for the language 

Q = Q22.  

The semigroup of Q is shown in Fig. 7, and in 

table 1 we show the factor matrix as a union of congruence 

classes of Q. 

Q22  which can then 
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Fig, 7. Semigroup of Q. 
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e z+zx 
+zy+zx zx+xzx +xz+xzx M-xz M+z 

+xzx+xzy 

e+x e+x e+x M-xz M+z 
+zx+xzx +zx+xzx +zx+xzx 

+y+zy+xzy +z+xz 

y+x x e+x N-e-xz N 
+xzx+xzy +xzx +xz+xzx 

zy+zx z M-xz M+z 
+xzx+xzy zx+xzx +xz+xzx 

xzx+xzy xzx xz+xzx N-e-xz N 

where 

M =e+x+y+ xz + xzx + xzy + zx + zy + zyy + yy 

N =e+x+y +xz+xzx+xzy+yy . 

Table 1. The Matrix IC(Q)1 

We now find that there are three factor graphs 

associated with the language Q. 	The first is the factor 

graph of Q, which for convenience we have reproduced below, 

and the second and third are factor graphs for the languages 

{Q33, Q34 , Q 43 } and 01 -.44,  Q54,  Q45,  Q55}, respectively. 

The ordering 4 on the factor graphs is total and 

so there is no question of a choice of path through the semi-

lattice. 
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(a) Factor Graph of Q 

(b) Factor Graph of Q33, 
	

(c) Factor Graph of Q44, 

Q34, Q43 
	 Q45, Q54  and Q55 

Fig. 8 



A B 

= 
C D 

= G
Q 
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Applying the last step of algorithm 2 requires us to 

split GQ  in the manner indicated below: 

e 

e e 

y x 	e 

z 	e 

x+y -- 	- 

(Cf. figs. 8(a) and (b)). 

Q = [GA
4
]
11 

is then calculated as 

Q = A* + [A*-B-G.C.A*] 
11 	H 	11 

where G
H 

is the second factor graph, i.e. 

e 	e 

x 	e 

z 	e 

x+y 

A* is just e, and so we can write down an equation for Q, 
11 

viz: 

G
H 

= 

  

Q = e + e • e • Q43 • y • e 

A* 	A* 	B 	CG*] 	C 	A* 
11 	11 	14 	H 43 	31 	11 

+ e • e • Q42 • e • e 
I----i 	 1---1 
A* 	B 	[G*] 	C 	A* 
11 	14 	H 42 	21 	11 

= 	e +Q y+Q 
43 	42 

( 1 ) 
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In the above equation we have indicated how each term arises. 

All other terms in the product A*.B-GA.C.A* are null. 	In 

order to calculate Q 43  and Q42  we apply; the same procedure 

to GH. 	(See figs. 8(b) and (c)). 	First we write 

z 

x +y 

Q 43  and Q 42  are then calculated using 

Q43 = [GP.M.K* ]43 

Q42 , = EGp-M.K*1 42  

where G
F 

is the minimal factor graph (fig. 8(c)): 

e+z 

G
F 

x +y 

L 

x*x x* 

By inspection K* 	x* 	x* 

thus Q43 	Q44 
• 	• X* 	Q

44
ZX* 	(2) 

EGp]44  M43K 33 * 

and Q42 = Q44 Z 	X*X 4 ZXX* 	(3) 

E GV44 M43 	K32 

G
H 

= 

e 

x 

e 

e 
K 
	

L 

, say. 

M 
	

N 
e 
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Finally Q44  is calculated directly from the factor graph 

G
F 

(Fig. 8(c)). 	One easily obtains 

Q
44 

= (x+y+zx+zy)* . 
	

(4) 

Using back-substitution, equations (1), (2), (3) and (4) are 

solved to give 

Q = e+(x+y+zx+zy)*zx*y 

+(x+y+zx+zy)*zx*x 

= e+(x+y+zx+zy)*zx*(x+y) . 

Note that once again we obtain an expression for Q 

which has star-height strictly less than the rank of the 

factor graph. 

7. 	Final Theorem  

We have observed in the previous examples that the 

algorithm for determining the closure G*
Q 
 yields expressions 

for Q which are of star-height strictly less than the rank of 

the factor graph GQ. The algorithm requires that one use an 

elimination method to determine certain closures A*
FF 
 and the 

closure GA of a factor graph GH  which is minimal with respect 

to the ordering -.. We shall now prove that, provided the 

order of elimination of nodes used in the determination of the 

various matrices A*
FF 	H 

and G* is optimal with respect to the 

star-height of the resulting regular expressions, the algorithm 

always yields expressions for Q of star-height less than or 

equal to the rank of the factor graph GQ  of Q. The proof 

follows rather simply from the following theorem. 
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Theorem 7.1 	Let Q be a regular language with factor graph 

GQ, and let H be a factor of Q, with factor graph GH. Then 

rank(GH) 	rank(GQ ). 

We shall in fact prove more than this, namely that 

for any factor H of Q there is some graph GH such that 

G
H 
 cG1 

cCmax  
 + 

Lmax'  
 and GQ  is pathwise homomorphic to GE1.1 . 

H   

Suppose that the graph GQ  has nodes NQ, that NH  ENQ  

is the set of nodes of G
H' 

and H = Q..ij where i,j E N
H 

(i.e. i = sH  and j = tH). The next lemma is a necessary 

preliminary to defining a mapping y: NQ  }NH. 

Lemma 7.2 	Let p EN
Q• 

Then 	a unique node mp 
e N

H 
such 

that 	(i) Qim 

P 

 -Qm 
 Pj —Qij 

 dominates Qip-Qpj sQij  and 

(ii) 	if m' E NH  also has the property that 

Q. ,.Q 
mj 

 c , 	Qij 	I 
dominates Q.

P 
 -Q 
PJI  
.c Qij  

im 	— l  

then 

(a) 	Q imp 	and 	(b) 	%imp  2
. e. 

Proof 	Let fnl, 	NH  be all those nodes in NH  such 

that Qink-Qnkj  s Qij  dominates Qip-Qpj  c Qij, k= 1,2,...r. 

(Obviously the set is non-empty.) 

Then (Qini  + Qin2+• • •+ Q in  )•(Qnli nQn2j n • ** tAn
r
j)  2  Qij 

dominates Qip-Qpj s Qij, and is itself dominated by Qim  -Qm j  s Qij  

P P 

for some Mp  E NF. 	But mp  clearly satisfies (i) and (ii) (a). 

Part (ii) (b), follows directly from Theorem III 4.1(ii), since 
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Qim, and Qim  are both left factors of H = Qij  and Qim  2 Q inv ie 

by (ii) (a). 	Finally uniqueness of mp  follows from (ii) (b) 

and the acyclicity of Ciliax \E (Lemma III 5.4). 

Now we may define a mapping y:NQ 	NH  by:y(p) = mp  

where mp  for any pENQ  is the unique node of NH  defined by 

lemma 7.2 above. 

We now extend y to be a pathwise homomorphism in a 

rather trivial manner. We define the graph Gi", to have nodes 

N
H' 

and an arc labelled a from node k to node m (k,meN
H
) if and 

only if there is an arc a from some node pEy-1 (k) to some 

node rEy-1 (m) in the graph GQ. Finally y is extended to be 

a mapping from arcs of GQ  into arcs of GH by : if a labels an 

arc from node p to node r in G
Q 
then y maps it into the arc 

labelled a from y(p) to y(r) in 

By the construction of q, y is a pathwise homormorphism 

and so we deduce from McNaughton's pathwise homormorphism 

theorem that: 

Lemma 7.3 rank(q) < rank(GQ ). 

Lemma 7.5 will state that GH  c GH, from which Theorem 

7.1 follows immediately.. In order to prove this we prove the 

following lemma. 

Lemma 7.4 Let p and r be any two nodes of GQ  and let y(p) = k 

and y(r) = m. Then Qkm  2 Qpr. 

Proof Consider the subfactorization Qip-Qpj  c Qij  which is 

dominated by Qik.Qkj  c Qij  (by the definition of y and lemma 

7.2(i)). 
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Now Qkj  2 Qpj 2 Qpr•Qrj. 

Hence 3 m i cNH  such that 

Qpr — Qkm' 
	 ( 1 ) 

and 

Qrj 2 Qm'j • 	
(2) 

But Qrj  £ Qmii  =>(Qir+Qini,).Qrj 	Qij  • 

Suppose this subfactorization is dominated by n ,im..Q m.j  = Qij 
where mucNH. Then 0 .imu 	and as these are both left 

factors of H = Qij, by III4.1(ii), 

Qm,m" 2 e . 	 (3) 

But, also, 0 
- im".Qmni E 

 Qij dominates 
Q irqrj E Qij • 

.*., by lemma 7.2 (ii) (b), 

Quoin  R e . 	 (4) 

Now, by (3) and (4),Qm.m  D e . 	 (5) 

Hence Qkm  R Qkmi.Qmin 	Qkm., by (5) 

Q
pr
, by (1). 

Lemma 7.5 G c G' 
H 	H 

Proof In order to prove this lemma, we first prove 

(a) G' c C
H 	

+ L
H 

, and 
H — max 	max 

(b) GA c  GA* 

(a) Suppose a E [Gpkm. Then by construction of GH, R nodes 

p and r c NQ  such that y(p)=k,y(r)=m (k,meNH ), and a c EGQ]pr. 
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Thus, by lemma 7.4, a 6 Qkm. Hence a 6 [C
max 

+ L
max]km* 

I.e. GH c  C 	+ L
HH 

H — max 	max
.  

(b) Now let us prove GA c q*. Since GA is a submatrix of 

IQI = 4, a word w e EGA3km  if and only if there is a sequence 

of nodes k = po,pi,...pn  = m with each pr  6 NQ  and such that 

w = ala2...an, where ar  6 EGA] 

	

4 P 	pr r 

But then ar  e EV
H
] 

	

	and y(po ) = k, and y(pn) = m. 
i(Pr_ I MPW 

I.e. w e EGHIr]km  . 
	H 	H 

Thus G* c G'* 
 • 

Now from (a) and (b) and Theorems III 5.6 and 5.2, IHI = 

GA E 	
£ (Cfmiax 	1-Max" = n 

H • Hence GA = 	= 	. 

Finally, since GH  is the unique minimal starth root of pl 

(Theorem III 5.6), GH  c GH and the lemma is proved. 

We may now deduce Theorem 7.1 directly from lemmas 

7.3 and 7.5 since GH  c GH trivially implies rank(GH ) 	rank(GH), 

which by lemma 7.3, 	rank(GQ ). 

Corollary (to Theorem 7.1) With a suitable ordering of the 

nodes of the factor graph GQ, algorithm 2 yields a regular 

expression for the language Q which is of star-height less than 

or equal to the rank of the factor graph GQ. 

Proof The algorithm requires that one determine GA for a 

factor graph GH  which is minimal with respect to the ordering 

4. By the above corollary the rank of GH  does not exceed the 

rank of G
Q 
and so with a suitable ordering of its nodes the 

escalator method yields regular expressions for the entries of 
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G* all of which have star height not exceeding the rank of 

GQ. Also required is that one determine 
AFF 

 for a number of 

graphs AFF. Each such graph is a subgraph of a factor graph 

GF  and hence also has rank not exceeding the rank of GQ. 

Thus once again one can obtain regular expressions for the 

entries in AFF  of star-height less than or equal to the rank 

of GF. Since these are the only two cases where starred 

expressions are introduced by the algorithm the corollary holds. 

As we have already demonstrated in examples 1, 2 and 3 

the regular expressions obtained by the algorithm may well 

have star height strictly less than the rank of GQ. 

The proof of Theorem 7.1 is very useful in hand 

calculations to search for factor graphs of factors of Q 

which are separable from Q. The idea is to endeavour to 

eliminate nodes from the factor graph G
Q 
bycoalescing

II 
them 

with other nodes of the factor graph. To eliminate node p by 

"coalescing" it with node k, one simply converts any arc a 

from some node i to node p into an arc a from node i to node k, 

and any arc a from node p to some node j into an arc a from 

node k to node j. Suppose after eliminating a number of nodes 

from GQ, this results in a graph G' having nodes N' £ NQ. 

The next step is to "prune off" arcs of G', i.e. in 

effect construct G = (GI\E)\(G'\E)
2-1-* 

 . 	This graph G will then 

be a factor graph only if 
Gc' 	+L 	

which can easily be 
MaxMax)' 

checked by inspection. Note, however, that G is not necessarily 

a factor graph of Q (see example 7, section 8), although all 

factor graphs can be obtained in this way. 



146. 

Thus the method is not fail-safe and ultimately resort must 

be made to Algorithm 3. Nevertheless it is undoubtedly a 

useful aid to rough calculations. 

Example 3 illustrates the process quite well. 	In 

order to obtain the factor graph of Q23  one eliminates node 1 

by coalescing it with node 2, the graph for Q 14  is obtained 

by coalescing node 3 with node 4, the graph for 
Q24 by  

coalescing node 3 with node 4 and node 1 with node 2, and so 

on. 

8. 	Empirical Results  

We would have liked, of course, to end this chapter 

with a theorem to the effect that algorithm 2 always yields 

a minimal star-height expression for the language Q. 	Indeed 

for a long time we thought that this could well be true. 

Just by taking a very large selection of regular languages 

which have appeared in the literature, and laboriously 

calculating factor graphs we achieved almost 100% success in 

arriving at minimal star-height forms for these languages. 

If algorithm 2 did always yield a minimal star-height 

expression for any regular language Q, a necessary condition 

would be that, for those languages Q all of whose factors are 

inseparable from Q, the star-height of Q would equal the rank 

of the factor graph of Q. In our empirical investigation we 

eventually found an example which appeared in McNaughton's 

paper [29] which refuted this condition, thus showing that 

algorithm 2 does not always give the minimal star-height 
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expression for a language Q. The example follows. 

Example 4 (Refutation of conjecture that algorithm 2 

always yields a minimal star-height expression.) 

Consider Q = (b + as + ac + aaa + aac)*. The machine 

and anti-machine for this language are shown below. 

Machine 
	

Anti-machine 

Fig. 9 

If we use algorithm 1 we find that 

D Q = r + r 
Z1 	1 	3 

D
9,2
Q = r

2 
 + r3 

 

and D
9,3
Q = r + r + r 

1 	2 	3 

Thus the L.R factorizationsof Q are 

L x R 	(k +k +k)xr 
1 	1 	1 	2 	3 	3 

L
t
=L

2 
xR

2 
 =R

s 
= 	(t

1 
 +k

3
)x (r 

1 
 +r 

3
) 

L x R 	= 	(2, + 2, ) x (r + r ) 
3 	3 	 2 	3 	2 	3 

L x R 	= k x (r + r + r ) 	. 
4 	4 	 3 	1 	2 	3 
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The factor graph of Q can now be determined: 

Fig. 10 

In order to determine whether Q has any factors 

whose factor matrix is a submatrix of RT1 we calculate the 

semigroup of Q. The semigroup machine is shown in the next 

diagram in which nodes, or equivalently c-classes of Q, are 

labelled by a representative element of the corresponding 

c-class. 
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Fig. 11 
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Using the semigroup multiplication we can now 

determine each entry in G*
Q 
 = 7 as a union of c-classes 

of Q. 	Thus we get: 

e+a+aa 	ac+aa 	a+aa 	aa 

+ac+aca 	 +aca 

e+a+aa 	e+aa 	a+aa 	aa 

+ac+aca 	+ac 	 +aca 

+b+ba+baa +b+baa 	+ba+baa +baa 

Fin 

e+a+aa 	a+aa 	e+a+aa 	a+aa 

+ac+aca 	+ac 	 +aca 

+c+ca+caa +c+caa 	+ca+caa +caa 

e+a+aa e+a+aa e+a+aa e+a+aa 

+ac+aca +ac +aca 

+b+ba+baa +b+baa +ba+baa +baa 

+c+ca+caa +c+caa +ca+caa +caa 
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Finally by inspection of the above matrix we can verify 

that there are no indices i,j,p and k such that 

Qip s  Q ik 	and 	Qpj 
c 
 Qkj  , 

and hence all factors are inseparable from Q. 

The rank of G
Q 
is two whereas we already have an 

expression for Q which has star-height one. Thus for this 

example algorithm 2 fails to give a minimal star-height 

expression. 

We conclude this section with a brief discussion of 

some of the "more interesting" examples studied by other 

authors. 

Example 5 This example appears as example 6.5 in the paper 

by Cohen and Brzozowski [12]. 

Consider the language Q defined by the following 

machine. 

Fig. 12 Machine 

Its anti-machine is given in the next diagram, 

following which we show a sequence of factor graphs of the 

language Q and some of its factors. 



152. 

b+c 

Fig. 13 Anti-machine 

a+c 

Fig. 14 Factor Graph 

of Q = Q45  

Matrix indicated by 

dotted lines = A, say. 
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Fig. 15 Factor Graph of Q22  

Matrix indicated by 

dotted lines = B, say. 

a+b+c 	Fig. 16 Factor Graph of Q 

If we apply algorithm 2 to the above sequence of 

factor graphs we would have to calculate Q 	(which is 
ii 

trivially (a+b+c)* - see fig. 16) and the closures B* and A*, 

where we have indicated the matrices A and B by dotted lines 

(figs. 14 and 15). 	Both of these matrices have rank 1 and so 

we deduce that Q has star-height 1. 
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This example was introduced by Cohen and Brzozowski 

to illustrate the difficulties inherent in a method they 

propose for finding the star-height of a regular language, 

their method being an enumerative one viz. calculate all 

subgraphs of a sequence of graphs of a specific type and 

determine whether each such graph is a recogniser for Q. 	In 

contrast using factor theory we are able 	to determine the 

star-height of this language directly, without any enumeration 

being involved. 

Note also that neither the machine nor anti-machine 

have rank one - astute readers may have criticised our earlier 

examples on this point. 

Example 6 (McNaughton [29],p314). The language 

Q = {x*(x + z) x*(y +z))* 

was proved by McNaughton to have star-height 2. His proof 

technique is to consider subfactors of a language and show 

that the complexity of their interconnectionsin any recogniser 

of Q must be above some value. 	In this case let G be any 

recogniser of Q, and consider those nodes N of G such that 

a word w in the subfactor x*zyz takes node N to some node N' 

in G. 	Let A be the set of all such nodes. 	Consider also the 

set B of all nodes M of G such that a word v in the subfactor 

zyzx* takes some node M' to node M in G. Then one easily 

proves that the sets A and B are disjoint but are strongly 

connected, and that they each define some strongly connected 

component of G of rank at least one. This then allows one to 
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prove that the language has star-height at least two. 

Examination of the machine or anti-machine for this 

language yields no insight which would lead to the above 

determination of the language's star-height. 	However if we 

study the factor graph (shown below - fig. 17) 

y+z 

Fig. 17 

we notice that we can eliminate nodes 1 and 4 to obtain the 

following factor graph in which all factors are inseparable. 

"A 

B / 

Fig. 18 
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A and B define two (almost) symmetrical halves of this 

graph (see fig. 18), but are distinguished by the asymmetry 

of the graph. 

Example 7 Let Q = 	(a 	(a + b)c*(c + d) )* . 

This example was also proved by McNaughton [29,p315] 

to have star-height two. The above expression is identical 

to what one would obtain from the factor graph (fig. 19). 

Fig. 19 

All factors of Q are inseparable from Q. Note that 

the factor graph is pathwise homomorphic to the following 

graph, but which is not a factor graph for any language. 

Fig. 20 
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CONCLUSIONS  

In his book C13,p1237 Conway advises readers to 

avoid calculating the factor matrix of any language Q. 

While disagreeing with this advice, for the simple reason 

that one cannot expect to make any advances in the theory 

of factors without doing such calculations, we should 

nevertheless mention two drawbacks to any practical use of 

factor theory. 

The first is that calculations with factors 

inevitably tend to be rather long. With practice the method 

given in Chapter III to calculate the factor matrix IQ' is 

quite simple and straightforward, most of the effort in fact 

going into calculating the machine and anti-machine for Q. 

But, by hand, the work is tedious and rather prone to error, 

as well as involving quite a large amount of computation. 

Moreover, as soon as one begins calculating factor graphs of 

factors, the effort involved really does become quite daunting. 

(An obvious case for programming on a computer!) The second 

and much more significant reason, is that the factor graph 

may well have an extremely large number of nodes, even for 

languages having quite simple finite-state machines. For 

instance the language recognised by the finite-state machine 

below has a factor graph having 64 (=26) nodes. 
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Indeed, for any n > 3, the subset of (a+b)* consisting of 

all words such that the number of a's minus the number of 

b's is not congruent to 0 mod n has 2n  nodes in its factor 

graph (the above example is the case n = 6). Also if the 

language Q has a factor graph of a manageable size, the factor 

graph of —Q will often be quite unmanageable. However these 

problems are not peculiar to factor theory, and would appear 

to be a fact of life when handling regular languages. 	If 

anything, they illustrate just how much we don't know about 

regular languages: 

In retrospect, the algorithm given in chapter IV 

for calculating the closure G* of G
Q is based on very simple 

ideas. 	The essential ingredients of the algorithm are the 

following: 

(a) 	there is a transitive relation "is a factor of" on 

the entries in Gill 
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(b) the relation "is a factor of" can be reduced to an 

equivalence relation "is inseparable from" on the 

entries in G* . 

(c) each equivalence class modulo "inseparability" 

defines a graph GH  such that GA is a submatrix of GQ . 

By Way of comparison, consider any graph G and 

consider the following sequence of ideas. 

(a)' there is a transitive relation "is connected to" on 

the nodes of the graph G. 

(b)' the relation "is connected to" can be reduced to 

the equivalence relation "is strongly connected to" 

on nodes of G. 

(c)' each equivalence class modulo "is strongly connected 

to" defines a subgraph of the graph G (in fact a 

section of G). 

The process of deducing an algorithm to calculate GQ 

is thus a very familiar one, and one inevitably seeks to 

extend it to other recognisers of Q. For example entries in 

M*, where M is the machine of Q, are derivatives of Q and 

derivatives of derivatives are derivatives. Thus "is a 

derivative of" is a transitive relation on the derivatives of 

Q. Unfortunately in this case no additional benefit is gained 

by considering a3 symmetric closure of "is a derivative of" 

since if S and T are derivatives of Q, S is a derivative of T 

and T is a derivative of S if and only if the two nodes to 

which they correspond (cf Theorem III 2.2) are in the same 



160. 

section of the machine of Q. Similarly analysis of the 

anti-machine or the semigroup machine yields no improvement 

on the usual elimination methods for finding their closure. 

One possibility remains. We have observed that 

factors of a language Q are unions of c-classes of Q which 

are maximal in some subfactorization of Q. 	Instead of 

considering maximal unions of c-classes we could consider 

arbitrary unions of c-classes. 	Using similar techniques to 

those given in Chapter III, we could construct "c-class graphs" 

for Q. 	In a c-class graph, G, entries in G* are unions of 

c-classes of Q and each node can be labelled (t. 	) 
ik 

(rj1+...+r4  ) where the ti's are k-classes and the rd's 
m 

are r-classes of Q. The only requirement is that 

).(r. +...+r. )cQ 

11 	
ik 

'1 	J111 

is a subfactorization of Q. Using some results of McNaughton 

and Papert C31], it is very easy to prove that unions of 

c-classes of unions of c-classes of Q are themselves unions 

of c-classes of Q. We thus have the beginnings of an analysis 

similar to the one given here for the factor graph. Moreover, 

in studying c-class graphs one can benefit much more from 

previous work on the star-height problem than we have been 

able to. For the "pure-group events" studied by McNaughton [28] 

a c-class graph is clearly what he would call a "p-graph". 

Cohen and Brzozowski C12] also study "subset automata" which 

are particular cases of c-class graphs. 
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Very severe practical problems arise however, as 

there is usually not just one, but many c-class graphs for 

a particular language Q (one of which is the factor graph). 

Problems which we mentioned above in studying factor graphs 

are thus accentuated tremendously. Needless to say, we have 

no empirical results to date as to how successful this could 

be, and there is still a lot to be done before the star-height 

problem is solved. 

An intermediate problem which is probably worth 

tackling before embarking on an investigation of c-class 

graphs is the following. Let F and H be two regular languages, 

and suppose F is a union of c-classes of H and H is a union 

of c-classes of F. 	Is the star-height of F equal to the 

star-height of H? An answer of no to this question would 

make us very sceptical of pursuing this line of investigation, 

but we would guess that the answer is more likely to be yes. 

It is important to note that algorithm 2 cannot have 

an analogue in linear algebra. Considering yet again example 1; 

from the factor graph of the language Q (fig. 1,p.123) we get 

the following system of equations defining Q: 

Q = (e+a)P + e 

P = bQ + eT 

T = aT + bP , 

where P = Q21 and T = Q31 . 	Substituting e = 1, a = -1, 

b = 1 in these equations and solving (in linear algebra) for 

Q, we get 
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However if we replace m* by (1-m) 	and substitute the same 

values for e,a and b in 

Q = (b+ab)*(e+a)(a+b)*b(b+ba)*b + (b+ab)* 

(IV g 4 ) we get 

Q = 6 . 

If the method did have an analogue in linear algebra, the 

two values would agree, which they evidently do not. 

The main conclusion to be drawn from the 

work presented here is that one should not be content with 

the simple elimination methods of Chapter II, and more effort 

should be put into developing new closure algorithms. The 

approach we would suggest for doing this would be the same 

as that used here. That is, investigate one particular class 

of graphs, develop closure algorithms using properties 

particular to this class and finally seek to extend the 

algorithms to have more general applicability. Moreover, let 

us not see any hypothetical solutions to the star-height 

problem which simply involve "enumeration" until all other 

possible hypotheses have definitely been exhausted. 

We have had little to say in this thesis about other 

applications of Conway's factor theory, but we would anticipate 

that it will become much more important as a theoretical tool 

in the study of regular languages. Conway introduces it as a 

method of studying approximations to regular languages, and 

goes on to use it extensively in his study of the biregulators. 

(Note: 	biregulators are usually called "generalised sequential 

machines".) Some connections between factors and the semigroup 
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of a language have been pointed out, and we feel that the 

direction of future research on factors would be to 

investigate such connections more fully. Note that it is 

always possible to discover the semigroup multiplication 

directly from the matrix C
max   + Amax 

 , and so in studying 

the factor matrix one loses no information about the semi- 

group. 	Indeed much more information is contained in the 

factor matrix. The semigroup is often too coarse a description 

of a language, since it is invariant under relabelling of the 

start and terminal nodes of the machine. However under such 

relabelling the factor matrix changes quite substantially. 

For these reasons we would expect factor theory to yield 

more insight into those problems which have traditionally been 

tackled by studying the semigroup of the language C30]. 

But these are just a few suggestions for further 

work on regular languages. The study of regular languages 

is a particularly attractive area for further research since 

it offers quite a large number of unsolved or inadequately 

solved problems. 	(See E34] for further discussion.) Moreover 

problems in regular algebra are usually expected to be 

solvable - but they are clearly very difficult and very 

challenging. 
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APPENDIX A - PROOF THAT m (R) IS A REGULAR ALGEBRA 

Let R be a regular algebra, and consider all pxp 

matrices 	with 

m 	(R). 	In m 

If 	A 	= 	Ca- 

	

A.B 	= 

entries 	in 	R. 	Let 	this 

(R) 	define 	operators 	• 	and 

1j 	
B 	= 

A+B 	= E 	a
ik

b
kj] 	' 

k=1 

	

set be 	denoted by 

+ 	by: 

Eb..] 
1J 

Ea.. 
1J 	

+ 	bid] 	. 

We define A* by induction on p. 	For p.1 A* is already 

defined, since M1 (R) may be identified with R. 	For p>1 

split A into four matrices 

All  
A = 

A21 

where Allis lxl, A 21  is (p-1)xl, A l2  is lx(p-1) and A 22  is 

(p-1)x(p-1). 

Define 

Al2 

A22 

A* + A* A C A A* 11 	11 12 22 21 11 

C A A* 22 21 11 

A* 

where C 22  = (A22 	A21 At1 A l2 )*. 

We shall now prove that, with the above definitions 

of +, • and *, M (R) is a regular algebra. 

In fact this is quite simple to do. Axioms Al-A9 

are straightforward. A10 and All are also trivially veri- 

fied by induction on p. 	The only non-trivial aspect of the 

proof is to show that the condition for uniqueness of 

solution of equations carries over to matrices. 

To prove this we proceed by induction on p 	For 
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p=1,m1(R) can be identified with R and so is, by assumption, 

a regular algebra. Consider then a square matrix A of 

order p>1, and suppose M
P-1 

 (R) is a regular algebra (and 

hence the condition for uniqueness of solutions of equations 

holds in M
p-1 (R)). 	Let n = p-1 . 

Split A into four submatrices: 

A11 
	

Al2 
A 

A21 	A22 

where A 11  and A22  are square matrices of orders 1 and n 

respectively. 	Let N( q )  denote the null matrix of order q 

We now prove an alternative condition for the 

definiteness of A in terms of A11 , Al2, A21  and A22, and 

then use this alternative condition in lemma 2 to prove 

uniqueness of solution of equations if A is definite. 

Lemma 1 	A is definite 	A11  and A22 	A21A11Al2  are 

definite. 

Proof  

(a) Assume A11  is not definite. Then, by definition, 

3 T il  such that T11 c A
1
1T11 and Til  x(I) . 

Take 
T 11 

N (n  

Then T c AT and so A is not definite. 

(b) Assume A22 	A21 At1 A l2  is not definite. Then 

E T22 'N(n) such that 122  S (A22 	A21 A'n Al2  )T22  . 
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Take 

(i) At 1 A l2T22  

T22 

11 11 12 22 	Al 2T2 2 

A A*  21 11 A12 T22 + A22 T22 

Then 

A* A T 11 12 22 

(A22  4- A2  At 1 Al2) T22 

T. 

Hence A is not definite. 

(a) and (b) together imply A11  or A22  + A2 	Ai2  not 

definite = A is not definite. The contrapositive of 

this is the lemma. 

Consider now the equation Y = A. Y+B, and split 

Y and B into submatrices Y 1  ,Y 12,Y 2, and Y22  and B11  9 612 

B21  and B22  exactly as in A. 

Lemma 2 	The equation Y = AY+B has solution Y D A*B with 

equal ity if A11  and A22  + A21 At 1  A i 2  are both definite. 

Proof 	Multiplying out 	the 	equation 	Y = A-Y+B, we 	get four 

equations: 

Y11 = A1 1Y11 II A1021 B11 (1) 

V 12 = A 11 Y 12 Al2Y22 B12 (2) 

Y21 A21 Y 11 + 	A22 Y 21 B21 ( 3) 

Y22 = A2 1 Y 12 + A22Y22 B22 (4) 

Now A11 has order 1, so we may apply R1 to (1) and 

(2) giving 
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D A* A Y 	+ A* B 	 (5) 11 11 V 11 - 11 12 21 

Y 12 2 A11 Al2 Y22 	A11B12 	 (6) 

with equality if A 11  is definite. 

(5) and (6) are now substituted in (3) and (4), giving: 

21 2 (A22 + A2 1At.1A1 2 )Y21 + B21 	A21At1Bll 
	

( 7) 

	

V22 2 (A22 -F A21At.1Al2 )Y22 + B22 + A21At1B12 
	

(8) 

A22 A-A21 AtiA l2  has order p-1, so by the induction hypothesis 

we can apply R1, giving 

(A22 + A21A11Al2 )* 21 - 	 ( 621 + A2 1 	1 B 1 1 ) 	(9) 

	

Y22 2  (A22 1- A21At1Al2)*  (B22 + A2lAt1B12) 	(10) 

with equality if both A11  is definite and A22  +A21 Ati Al2  

is definite. 

Finally (9) and (10) are substituted in (5) and (6), 

giving 

11 
2 Vic iA l2C22(B2l  + A21 AtI BI  ) + A* B 	(11) 11 11 

At I A I2C22(B22 	+ AnB12 	(12) 12 - 	A21A911B12) 

with the same condition for equality. 

Combining (9),(10),(11) and (12), the definition of 

A* and lemma 1, we clearly get the rule of inference R1 for 

M (R). 	So by induction M (R) is a regular algebra for 

all p. 
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APPENDIX B - INFORMAL PROOF OF THEOREM B4  

Here we shall demonstrate that the algorithms for 

finding G* which we have loosely called "elimination methods" 

invariably result in regular expressions having star-height 

at least equal to the rank of G. We begin by abstracting 

the salient features of an "elimination method" and then show 

how any elimination method defines an "order of elimination of 

arcs". We then investigate in detail the effect of eliminating 

arcs of the graph, and finally show how we can build an 

"analysis" of the graph from the order of elimination of the 

arcs. 

Before doing so we need some definitions and a 

fundamental theorem from McNaughton [29]. By an analysis of 

a graph G we shall mean a partial ordering of ordered pairs 

<N,G1 > where N is a node of Gi'a strongly connected component 

of G, having the following properties: 

1. For each section Si  of G there is a node N of Si  such 

that <N,Si> is maximal in the partial ordering. 

2. For no subgraph GI are there two nodes N,N' such that 

both <N,G1> and <NI,GI> occur in the partial ordering. 

3. If <N,G1> occurs and G2 is a section of that subgraph 

that has all nodes of G1  except N then, for some N' 

of G2, <N',G2> is an immediate inferior of <N,G1> . 

4. All of the immediate inferiors of <N,G1 > are of the 

kind mentioned in 3. (and hence <N,G1 > is minimal if 

all loops of G1  contain N). 
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An analysis of a graph will always be a forest of 

as many trees as the graph has sections. 

The height of an analysis is the length of the 

maximal length chain in the partial ordering. 

Theorem Bl 	(McNaughton C29]). The rank of a graph is the 

minimum height of all analyses of the graph. 

Our aim is to show how an "elimination" method defines 

an analysis of G such that the height of the analysis is less 

than or equal to the maximum star-height of regular expressions 

of G*. Firstly we state more precisely what we mean by an 

elimination method. 

Definition B2 An elementary matrix  is a matrix whose non-null 

elements all lie in the same row, or in the same column. 

Note that it is "elementary" to find the closure of 

a row or column matrix using II (3.1) or (3.2) - hence the 

definition. 

Definition B3 An elementary elimination step is a step in 

an algorithm which involves solely the computation of the 

closure of an elementary matrix. 

We can abstract three essential features of the methods 

of Chapter II. 

1. 	The tautologies II (2.3) and (2.4) are applied 

exclusively to derive an expression for A* as a product 

	

A* = J* J* 	J* 	 (1.1) 
1 	2 

of elementary matrices. 
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If at some stage in the derivation of (1.1) the 

matrix B, say, is split into matrices C and D such that 

B=C+D, and either (2.3) is used to express B* as 

B* = C*(DC*)* 	 (1.2) 

or (2.4) is used giving 

B* 	(C*D)* C* 	 (1.3) 

then C and D are always chosen so that 

2. C is null wherever D is non-null and vice-versa; 

and 

3. if (1.2) is used, DC* is null wherever C is non-null 

and vice-versa, and if (1.3) is used C*D is null wherever C 

is non-null and vice-versa. 

Some terminology is useful here. We shall refer to 

calculating the closure C* of C as eliminating C. 	Evaluating 

the product DC* or C*D, as the case may be, is called forward  

substitution of C in D and finally finding the product 

C*(DC*)* (or (C*D)*C*) is called back substitution of D in C. 

An elimination method consists of expressing the computation of 

A* as a sequence of forward and back substitutions and elementary 

elimination steps, in which subsequences of these steps may be 

interpreted collectively as eliminating C for some matrix C. 

The definition of an elimination method has a number 

of implications which we now consider. Firstly an elimination 

method always defines an ordering on the arcs of G which we 

shall call the order of elimination of the arcs. Specifically 

if at some stage (1.2) (or (1.3)) is used we say that the arcs 

of C are eliminated before the arcs of D. By virtue of 

properties 2. and 3. this ordering is clearly well-defined and 
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total, except that the arcs of each elementary matrix Ji  

are incommensurate - these are eliminated simultaneously. 

Secondly, conditions 2. and 3. imply that we can 

always evaluate the non-null elements of JI,J2,...Jm  by 

successive transformations of G. Specifically we can set 

M
(0)

=G, then perform in-situ modifications of the elements 

of M to transform it to a matrix M(f)  which contains the 

non-null elements of the matrices J*,J*,...J* (other than 
1 

J*,J2 ,...J* 

 on the diagonal) in their appropriate positions. 	If for 

instance at some stage in the derivation of (1.1) we use the 

formula (1.2) then the appropriate action would be to evaluate 

DC* (possibly using additional storage) and store the non-null 

elements of this matrix in the appropriate positions of M. 

The remaining elements of M are left unchanged. Once M(f)  has 

been calculated G* can be calculated using (1.1). 	(This may 

not be the most efficient way of evaluating G* by the particular 

elimination method but our concern here is solely with the 

star-height of the resulting regular expressions.) 

To investigate what actually happens when we perform 

an elimination step, let us suppose that at some stage the 

matrix M has the form 

M11 	M12 	M13 

M21 	M22 	M23 

M31 	M32 	M33 

where M11, M22  and M33 are square matrices. 
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We make no assumptions about the size of the various 

submatrices. Without loss of generality we may assume that 

some subset of the matrices M11, M12, M13, M21, M31 are to 

be eliminated. This elimination process will in general be 

itself expressed in terms of elementary eliminations and 

forward and back substitutions, but here we wish to consider 

its composite effect on M. A number of remarks are in order. 

Remark 1 If the submatrix Mij  is next to be eliminated then 

the result of all previous eliminations will have been forward 

substituted into Mij. 

(To see this consider the context-free grammar 

E-} EfEb ; E --2.  

f represents forward, b back substitution; 2. represents 

elementary elimination. An algorithm for finding G* may be 

regarded as constructing a left-to-right bottom-up parse of 

a sentence of this grammar. If an E has just been recognised 

an f must follow (possibly preceeded by b's) beforea newE may 

be recognised. The remark may now be proved by induction on 

the length of the derivation of the current state of the parse.) 

Remark 2 No submatrix Mij  for i#j may be eliminated before 

either Mii  or Mjj  is eliminated without violating condition 3. 

By remark 1 the result of eliminating Mij  must be 

forward substituted into Mii  and Mjj  before they are eliminated. 

But this will result in a modification of Mij  itself, thus 

violating condition 3 - either it is premultiplied by Mii  or 

post-multiplied by Mjj  depending on which of (1.2) or (1.3) 

is used at the time. 
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Remark 3 	If Mii  and mij  have been eliminated then Mji  may 

not be eliminated after Mjj. 

If Mii  and Mij  have all been eliminated, then by 

remark 1 the results must be forwarded substituted into M.. 
31 

before this is eliminated. This involves pre- or post-

multiplying Mji  by MIiMij  (depending on whether (1.2) or 

(1.3) was used). However post-multiplication changes Mii, 

violating condition 3. Pre-multiplication changes Mjj  and thus 

will also violate condition 3 unless Mjj  has not already been 

eliminated. Hence the remark. 

Remark 4 	Mik  and Mji, where 	and jti, may not both be 

eliminated using a single application of (1.2) or (1.3)without 

violating condition 3 since this would in general affect Mjk. 

Remark 5 	The star-height of elements of M is increased if 

and only if an elementary elimination step is executed in 

which the arc (k,k) is eliminated for some k. 

This is obvious, because substitutions only involve 

multiplications of submatrices of M. 

Now let us suppose that the next step is to eliminate 

M11  and M12. 	(The case of eliminating M21  and M11  can be 

considered 	similarly.) 

4- 

After 	elimination 	of C =M11 

M* 	M* 	M13  11 	11 M  12 

M21 	M22 	M23 

M31 	M32 	M33 

+ M12,  

In view of remark 5 we should like to see what effect 

this elimination has on M22 and M33. Suppose therefore that 
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at some later stage we wish to eliminate the contents of 

M22. By remark 3 we must already have eliminated M21, or 

must do it simultaneously with the elimination of M22. 	Hence, 

by remark 1, Mil  and M11 M12  must also have been forward sub-

stituted into M2I  and M22, and, in order not to violate 

condition 3, this can only be done by post-multiplying by 

Mil 	and 	M11M12. 	Thus after the forward substitution 

- 	 - 
M11 M* M 11 	12 M13 

M M21M11 M22 + M21Mt1M12 M23 

M31 M32 M33 

(D is used here, because the elements of M may also have been 

changed between the elimination of M11  and M12  and their 

forward substitution into M22  and M21 ). Note that the same 

result will be obtained if we consider m21 and M22 eliminated 

separately or simultaneously. 

Thus we see that the star-height of expressions 

obtained by eliminating submatrices of M22  will now depend 

on the star-height of elements in M11  provided M2I  MI1M12 is 

non-null. 	In contrast, if we eliminate submatrices of M 33  

before eliminating M13  or M 31  the star-height of the resulting 

regular expressions will not depend on the star-height of 

elements of M11  since forward substitution of M21  and M I , 

clearly does not affect M 33 . 

We restate this in the form of a lemma on the elements 

of the matrix M. 
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Lemma B2 At some stage in the elimination process let 

M.Cm
ij
J and let the set of all arcs which have currently 

been eliminated be G 1 . 	Suppose the next step in the 

elimination process involves the elimination of arc (i,i), 

and suppose after this step the set of eliminated arcs is G2. 

Then, 

(a) 	
mii = u 	vmrrw  

if 

(b)(i) R nodes k and j s.t. arcs (k,k) and (j,j) have been 

eliminated, 

(ii) nodes k and j are strongly connected to node r in G1 , 

(iii) arcs (i,k) and (j,i) are non-null, 

and 

(iv) arc (r,r) was the last diagonal arc to be eliminated 

in the section of G1  containing {r,j,k}, 

and, moreover, (b) is true if 

(c) 	node i is strongly connected to node r in G2 and arc 

(r,r) was the last diagonal arc to be eliminated in 

the section of G1  containing {r,j,k}. 

(To see how this corresponds to our previous discussion, 

consider j,k and r as nodes of M1 1  and i as a node of M22. 

Condition (iii) implies that M21 Mt1  M 12  is non-null, condition 

(iv) implies that since eliminating (r,r) the only changes 

made to M11  have been by back-substitution (and hence none 

have been made to mrr), and finally conditions (i) and (ii) 

imply that mkj = u'mrrv' 
	w' for some u',v' and w'.) 
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From the order of elimination of the arcs of G we 

can now construct an analysis of G; lemma B2 then enables 

us to relate the height of the analysis to the star-height 

of expressions in G*. We begin with the arcs eliminated 

first and proceed in order to the arcs eliminated last. 

Suppose at some stage we have considered the arcs of graph 

G1  and have constructed an analysis of G1 . Suppose the 

constituent trees of this analysis have roots ri,r2,...rp. 

Suppose also that the next set J of arcs to be eliminated 

are all in the row/column i and that the union of these arcs 

and the arcs of G1  form the graph G2. 	If the arc (i,i) is 

not in J then do not alter the analysis. Otherwise consider 

the largest subset rk  ,...,rk  of the roots ri,...rp  such that 
K1 	

"x 

each r
k 

is strongly connected to node i in G2. 	If this subset 
3 

is non-empty add a new root labelled i to the forest and 

connect it by branches to each of rk  ,...,rk  . If however the 
'1 	"x 

subset is empty then if mii  A (I) before elimination add a new 

root labelled i to the forest (and do not connect it to any 

others); 	if mii  =(I) before elimination do not alter the 

analysis. 

Lemma B3 The star-height of mii  after elimination of (i,i) 

is greater than or equal to the height of the tree with root i. 

Proof This follows easily from lemma B2 by induction on the 

height of the tree. 	If the height is 0 or 1 the lemma is 

obvious from II 3.1 and 3.2. Otherwise, we note that each r
k 
y 

satisfies the properties of r in lemma B2, hence after 
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elimination of (i,i), mii 4u+vm 	w)*. By induction 
rk  rk  
Y Y 

mrk rk has star-height 	to the height of the tree with root 

Y Y 

rk and hence mii  has star-height at least 1 greater than this. 

Y 

Hence the lemma. 

We could strengthen the lemma to an equality as did 

Eggan C18] for the escalator method, but this is not relevant 

here. 

Combining Theorem Bl and lemma B3 we have our 

theorem: 

Theorem B4 If an elimination method is used to find G* for 

a graph G, then G* will contain regular expressions having 

star-height at least equal to the rank of G. 


