
Do-it-yourself Type Theory

Roland Backhouse, Paul Chisholm, Grant Malcolm,
Erik Saaman

CS 8811

Computing Science Notes

This is a series of notes of the Computing Science Section of the
Department of Mathematics and Computing Science of Groningen
University.

Since these notes are preliminary versions or may be published
elsewhere, they have a limited distribution only and are not for
review.

Do-it-yourself Type Theory

Roland Backhouse 	Paul Chisholm 	Grant Malcolm
Erik Saaman

University of Groningen
Department of Mathematics and Computing Science

P.O. Box 800
9700 AV Groningen

The Netherlands

September 19, 1988

Thus you see, ladies, how this story might have been written, if the author had but a
mind; for, to tell the truth, he is just as familiar with Newgate as with the palaces of
our revered aristocracy, and has seen the outside of both. But as I don't understand the
language or manners of the Rookery, nor that polyglot conversation, which, according
to the fashionable novelists, is spoken by the leaders of ton; we must, if you please,
preserve our middle course modestly....

W.M. Thackeray, Vanity Fair.

1 Introduction
As long ago as 1972 the stage had already been set for much of the current research into math-
ematical methodologies for the development of verifiable software. In the classic book entitled
"Structured Programming" by O.-J. Dahl, E.W. Dijkstra and C.A.R. Hoare[19], two topics that
were prominently discussed were the use of invariants in program proofs and the use of abstract
data types in program design. Since then both the methodologies of program proof and of data
structuring have flourished and have become an accepted part of the computing science curriculum
in universities.

Both methodologies have flourished — and yet, separately. The "craft" (Reynolds,[57]), "dis-
cipline" (Dijkstra,[20]), "logic" (Hehner,[29]) or "science" (Gries,[27]) — call it what you will —
of programming is now a well-developed subject which, in the hands of skilled practitioners, is
extremely convincing — but typically for small-scale problems. The immense volume of textbooks
on data structures, on the other hand, testifies to the enormous improvement in our ability to
represent abstract structures within the constraints imposed by the conventional digital computer.

1

But these texts rarely discuss issues of correctness and their discussion of abstract data structures
pales before their discussion of concrete implementations.

Of course, this is all a matter of opinion, an opinion that will undoubtedly be vehemently op-
posed by many. There has indeed always been a desire to combine the methodology of proof and
the methodology of data type abstraction, which has resulted in a considerable amount of ongoing
research. The present work is a contribution to this endeavour. Based on the theory of types
developed by Martin-Lof[40), we discuss formal methods for introducing and reasoning about ab-
stract types. The examples that we use (binary numerals, finite sets, forests etc.) have no intrinsic
interest; our intention is not to provide a fixed set of general-purpose type constructors that are
sufficient to encompass all the future needs of all programmers but to provide a discipline whereby
programmers may invent their own type constructors peculiar to their own problem domain —
"cartesian rings", "integrated mix", "disarrays", or whatever.

A fundamental argument for the use of type information in the design of large programs is
that the structure of the program is governed by the structure of the data. A well-established
example is the use of recursive descent to structure the parsing (and compilation) of strings defined
by a context-free grammar; here the structure of the data is defined by its grammar and the
structure of the parsing program is identical. This idea is extended in the denotational description
of programming languages[59,62] where a fundamental initial step is the definition of so-called
domain equations; those familiar with denotational semantics know that once this step has been
taken the later steps are often relatively mundane and straightforward. Users of strongly-typed
languages like Pascal will argue strongly that the effective use of type declarations is extremely
important for subsequent program development, and even users of untyped languages like Lisp will
admit that the programming errors they make are often caused by type violations. A fundamental
aspect of Martin-Lors theory of types is that the connection between type (or data) structure and
program structure is made evident. One defines a new type by specifying the way its elements
are formed. These are the so-called introduction rules for the type. From these rules there is a
systematic method to construct a so-called elimination rule for the type, which says how to reason
constructively about (i.e. write programs on) the elements of the type. Computation rules, which
in effect define the operational semantics of the programming construct defined by the elimination
rule, are also derived from the introduction rules. Our paper describes this process with the aid of
a variety of examples. 	 •

We have entitled our work "do-it-yourself' type theory because our objective is in part to
demystify Martin-Lof's theory. For us a major fascination of the theory is its elegant structure
which encourages experimentation with novel data types. This is of considerable practical value
because it means that the programmer may work directly within the problem domain rather than
within some representation of the problem domain. In order to encourage such experimentation
we have chosen to depend on examples rather than to present a theoretical account complete with
all kinds of soundness arguments. It does not mean however that the programmer's task has been
trivialised and that the professional programmer is no longer required. Quite the opposite. What
it does mean is that we may expect rather more from the professional programmer in terms of
the clarity and precision of his work. Indeed, in this paper we go into considerably more detail in
respect of formal statements of the correctness of our programs than is usually considered necessary.
There is thus more work involved in the development process, but the extra effort is in our view
fully justified!

2

In section 2 we discuss the notion of propositions as types, which notion is fundamental to
Martin-Lof's theory of types. This section prepares the way for the later sections; it discusses
and exemplifies the different judgement forms, in particular the membership judgement form, and
describes our style of presenting proof derivations.

Section 3 is central to the remainder of the paper. In it we describe the elegant structure of the
rules which characterises Martin-Lors theory. We show how the elimination and computation rules
for a given type constructor are derived from its formation and introduction rules. We do so for
free type structures, for congruence types, and for types with information loss. The mechanisms for
deriving basic properties of type constructors — closure, individuality and cancellation properties
— are also considered.

The remaining sections apply the theory developed earlier. Section 4 exemplifies the way that
algorithm development is conducted in a constructive framework. Of particular interest here is
the relationship between the formulation of inductive hypotheses and the construction of invariant
properties. Section 5 describes and compares two ways of defining and reasoning about binary
numerals. Finally, section 6 discusses constructive reasoning on mutually recursive type structures.

2 Propositions As Types
2.1 The Membership Judgement Form
The basis for our work is the theory of types developed by Martin-Lof[39]. In outline, Martin-Lof's
theory is a formal system for making so-called "judgements" about certain well-formed formulae.
Underlying the construction of the formal system is the principle of "propositions-as-types", which
principle is generally attributed to Curry[18] and Howard[31] and pervades a number of founda-
tional studies including the Automath project[7] and categorical logic[37]. In this section we briefly
explain the principle, introduce some of the rules in Martin-Lof's theory and discuss the notation
and proof format that we use.

"Judgements" in Martin-Lot's theory take one of four possible forms.

P type,

p E P,

p = q E P,

P = Q.

(Here and elsewhere p, q, P and Q stand for expressions.) The fourth judgement form states that P
and Q denote equal types. The third judgement form states that "within the type P the objects p
and q are equal". We use both judgement forms quite extensively, in particular the third judgement
form, but not for the moment. The reader's forbearance is therefore requested until section 3.1.

A judgement of the form P type is read as "(the expression) P denotes (or is) a type". For
example, we have the judgements

IN type

3

meaning "the set of natural numbers is a type", and

List(IN) type

meaning "the set of lists of natural numbers is a type". The type structure in the theory is very
expressive to the extent that whether or not the judgement P type can be made about an arbitrary
expression, P, is undecidable. Nevertheless, for the purposes of this introductory section, you may
regard such a judgement as stating that P is a syntactically well-formed type expression.

A judgement of the form p E P can be read in several different ways. In the conventional
computing science sense it is read as "p has type P" or "p is a member of the set P". Examples
of such judgements are

OE IN

meaning "0 has the type natural number"

red E {red, white, blue}

meaning "red is an element of the enumerated type {red, white, blue}"

IN EUI

and
0 E U1.

Here U1 stands for a universe of types, the first in a hierarchy of universes. Thus the judgement
IN E U1 reads that the set of natural numbers is an element of the first universe, and the judgement
0 E U1 reads that the empty type is also such an element. We call elements of U1 small types.

In "intuitionistic" or "constructive" logic the judgement form p E P admits a different reading.
If P is a proposition (i.e. well-formed formula constructed from the propositional connectives A, V
etc.) then the judgement form p E P can be interpreted as the statement that p is (a summary
of) a constructive proof of P. In other words proposition P is identified with the set (or "type")
of its proofs. This is the so-called principle of propositions-as-types.

The following paragraphs discuss the principle in more detail; table 1 summarises the discussion.
In order that the reader may understand the discussion it is necessary to make some preliminary
remarks about the notation we use. We assume the reader has a basic familiarity with the lambda
calculus[10,62] and the concepts of bound variables, a-, /3- and rj-reduction. For function applica-
tion we have chosen to use a period rather than juxtaposition for the simple reason that we wish to
use multi-letter identifiers. This decision precluded us from using a period to denote abstraction.
Square brackets take its place. An abstraction has the syntax AfflvariableMexpression)) and
denotes the function that given argument a evaluates (expression) with the dummy (variable)
replaced everywhere by a. Note that the scope of the dummy extends to the first unmatched
closing parenthesis. We assume that function application associates to the left (thus f.g.h and
(f.g).h are the same). Corresponding to the convention that function application associates to the
left we have the convention that implication associates to the right. Thus P = Q 	R is read as

4

Example
([xix) E A A

A([x]A([llir)) E A 	(B 	A)

A(M(x,x)) E A (A A A)
MbilfSt.v) E (A A B)=, A

A(Minl(Oz)) E A (A v B)

(N,0) E 3(U1, (AM)
(N, A([x]x)) E 3(U1, [44 	A)

A([A)A([x]x)) E 	, [AJA *. A)

([f] f .0) E 	[AM)

P x Q

P Q

E(P, [x]Q (x))

n(13, 1z1Q(x))

Proposition
PDQ

P AQ

P v Q

3(P, (x]Q(r))

NI(P, 	(x))

-'P P 0

dependent function space

P —• Q
Type Type Name

function space

cartesian product

disjoint sum

dependent product

Table 1: Propositions as types

P 	(Q 	R). This completes, for the time being, our remarks on notation and we may return
to the principle of propositions-as-types.

In constructive mathematics, a proof of P 	Q is a method of proving Q given a proof of P.
Thus P 	Q is identified with the type P 	Q of (total) functions from the type P into the type
Q. Assuming that A is a proposition, an elementary example would be the proposition A 	A.
A proof of A 	A is a method of constructing a proof of A given a proof of A. Such a method
would be the identity function of A, A([x]x), since this is a function that, given an object of A,
returns the same object of A. The proposition A 	(B 	A) provides a second, slightly more
complicated, example of the constructive interpretation of implication. Assuming that A and B
are propositions, a proof of A 	(B 	A) is a method that, given a proof of A, constructs a proof
of B 	A. Now, a proof of B 	A is a method that from a proof of B constructs a proof of A.
Thus, given that x is a proof of A the constant function A([y]x) is a proof of B 	A. Hence the
function A([x]A([y]x)) is a proof of A 	(B 	A).

To prove P A Q constructively it is necessary to exhibit a proof of P and to exhibit a proof of
Q. Thus the proposition P A Q is identified with the cartesian product, P x Q, of the types P and
Q. That is, P A Q is the type of all pairs (x, y) where x has type P and y has type Q. For example,
assuming that A and B are propositions, the proposition (A A B) 	A is proved constructively
as follows. We have to exhibit a method that given a pair (x, y), where x proves A and y proves
B, constructs a proof of A. Such a method is clearly the projection function fst that projects an
object of A A B onto its first component.

(The function fst is not a primitive of type theory. It is an abbreviation for the expression
AapJA-elim(p,[x,y]x)). In general, A-elim(p, [x, y]e) splits a pair p into its two components and
evaluates the expression e with the variables x and y bound to the respective components. Thus
A-elim(p, [x, y]x) splits p into its two components and then evaluates the expression x with x bound
to the first component, i.e. it evaluates the first component. The construct A—elim is explained
in more detail later.)

A constructive proof of P V Q consists of either a proof of P or a proof of Q together with
information indicating which of the two has been proved. Thus P v Q is identified with the disjoint

5

sum of the types P and Q. That is, objects of P v Q take one of the two forms inl(x) or inr(y),
where x is an object of P, y is an object of Q, and the reserved words inl(inject left) and inr(inject
right) indicate which disjunct has been proved. As elementary examples of provable propositions
involving disjunction we take A = AvB and AVB B vA. The proposition A = AvBis proved
by the function A([x]inl(x)) that injects an argument x of type A into the left disjunct of A V B.
The proposition AVB 	B\/A is proved by the function A([x]V-elim(x, [y]inr(y), [z]inl(z))). In
general the construct V-elim(x, [y]e, [z]f) is evaluated as follows. The argument x is evaluated; if
its value takes the form inl(a) then the expression e is evaluated with the variable y bound to a; if
the value of x takes the form inr(b) then the expression f is evaluated with the variable z bound
to b. Thus V-elim(x, [y]inr(y), [z]inl(z)) has the effect of transforming a value of the form inr(b)
into inl(b) and vice-versa.

The notation V(P, [x]Q(x)) denotes a universal quantification. We prefer this notation to the
more conventional (Vx E P)Q(x) because it makes clear the scope of the binding of the variable
x. In order to prove constructively the proposition V(P, [x]Q(x)) it is necessary to provide a
method that, given an object p of type P, constructs a proof of Q(p). Thus proofs of V(P, [x]Q(x))
are functions (as for implication), their domain being P and their range, Q(p), being dependent
on the argument p supplied to the function. As an example the polymorphic identity function
AGA]A([x]x)) is a proof of the proposition V(//i , [A]A 	A).

The notion of dependent function space is often severely restricted if not completely unknown
in conventional programming languages even though the idea is commonplace in the space of real
world problems. Examples would include the type of functions that input a number n and then
return a number that is at least n, the type of functions that input a number n and then return
a function that inputs an integer array of size n and outputs its maximum element, or a function
that inputs the details of a person and then depending on whether they are living or dead, outputs
their employment status or details of their estate.

Underlying type theory is a theory of expressions which details how the expressions that repre-
sent types and objects may be constructed. Each expression is associated with an arity (a simple
form of typing), and a relation of definitional (or intensional) equality between expressions, de-
noted by a, is defined. The theory was developed by Martin-Li5f and is discussed in detail by
Nordstrom et al[53]. The relation of definitional equality includes the a-, /3- and 77-reduction rules
of the lambda calculus. In particular, the rule of 71-reduction says that the expressions [x]p(x)
and p are definitionally equal ([4(x) E p) provided p contains no free occurrences of x. The
symbol Q in V(P, [x]Q(x)) is a schematic variable so does not contain x. Thus, by 71-reduction,
V(P, [x]Q(x)) E V(P, Q). We make use of this fact in abbreviating expressions later.

A constructive proof of the existential quantification 3(P, Q) (i.e. 3(P, [x]Q(x))) consists of
exhibiting an object p of P together with a proof of Q(p). Thus proofs of 3(P, Q) are pairs (p, q)
where p is a proof of P and q is a proof of Q(p).

The type 3(P, Q) is called a dependent product because the type of the second component, q,
in a pair (p, q) in the type depends on the first component, p. For example, there are many objects
of the type 3(U1 , [A]A). Each consists of a pair (A, a) where A is a type and a is an object of that
type. (Thus the proposition is interpreted as the statement "there is a type that is provable", or
"there is a type that is non-empty".) The pair (IN, 0) is an object of 3(U1 , [A]A) since IN is an
element of U 1 and 0 is an element of IN. Two further examples are ({red, white, blue), red) and
(IN 	IN, a([x]x))•

6

Objects of the type 3(U1 , [A]A) are the simplest possible examples of algebras (one or more
sets together with a number of operations defined on the sets) since they each consist of a set A
together with a single constant of A. Indeed, algebras are good examples of the need for dependent
types. A semigroup, for example, is a set S together with an associative binary operation on S.
Thus a semigroup is a pair in which the type of the second component depends on the value of
the first component. The idea that algebras are described by the existential or E type is due to
Nordstrom and Petersson[51]. The same idea was reported by Mitchell and Plotkin[48].

A consequence of the identification of propositions and types is that the absurdity proposition
(1) is identified with the empty type (0). There can be no proof of the absurdity proposition, so
its corresponding type can have no members. Conversely, the empty type contains no members,
so its corresponding proposition is unprovable.

Negation is not a primitive concept of type theory. It is defined via the empty type. The
negation -'P is defined to be P 	0.

P 0

This means that a proof of 	is a method for constructing an object of the empty type from an
object of P. Since it would be absurd to, construct an object of the empty type this is equivalent
to saying that it is absurd to construct an object of P.

	

As an example of a provable negation, consider the proposition 	[AJA). The proposition
states that not every small type is provable, or not every small type is non-empty. The basis for
its proof is straightforward — we exhibit a counter-example to the proposition that every small
type is non-empty, namely the empty type 0. Formally, we have to construct a function that maps
an argument f, say, of type V(Ui, [A]A) into 0. Now f is itself a function mapping objects, A, of
U1 into objects of A. So, for any small type A, the application of f to A, denoted f.A, has type
A. In particular, f.0 has type 0. Thus the proof object we require is A([f]f.0).

Some further examples of provable propositions may help to clarify the nature of constructive
proof.
Functional composition proves the transitivity of implication:

A([0([g]A([xig.(f.x)))) E (A 	B) 	(B 	C) 	(A 	C)

The propositional equivalent of currying:

	

A(VJA([x]A([y][(x, y)))) E (A A B 	C) 	(A 	B 	C)

Uncurrying:

	

A([0([w]A-elim(w, [x,y]f.x.y))) E (A 	B C) 	(A A B 	C)

Strengthening the antecedent:

A(L/Pax]fini(x))) E (A V B C) (A C)

Distributivity property of *:

AatuPt([x]v-elim(w, [f][(fst.x), [g]g.(snd.x))))
ERA C)v (B C)] [(A A B) C]

7

2.2 An Example Derivation
Martin-Lors theory is defined by a number of natural deduction style[24] inference rules. For the
purposes of illustration we consider just five rules for the moment. These are the assumption rule,
(simplified forms of) the rules for function introduction and elimination, and the two rules for V
introduction.

A type
assumption

I[xEA
xEA

xEAl[
t> f(x) E B

A-introduction
A(f) E A B

aEA
fEAB

f .a E B

aE A
inl-introduction

inl(a)E AvB

E B
inr-introduction

inr(b) E AV B

The first of these rules introduces the notion of a hypothetical judgement. Hypothetical judge-
ments play an extremely important role in the theory and are indicated by the use of scope brackets
("I[" and "Jr). (This notation, borrowed from the book by Dijkstra and Feijen[21], is not used by
Martin-Li5f but is one introduced by Backhouse[2] in his accounts of the theory.) A rough para-
phrase of the assumption rule is the statement that if A is a type then it is possible to introduce
a context in which it is assumed that the variable z has type A. The bracket-pair, "I[" and "N",
delimits the scope of the hypothesis x E A. The symbol "t>" separates the hypothesis from the
conclusions that may be drawn from it. The basic rule of assumption therefore states that if A is
a type then in a context in which x is assumed to have type A it may be concluded that x has

8

type A.
The second rule (a-introduction) says how functions can be constructed. It has one, hypothet-

ical, premise. In a logical sense the rule may be read as "if assuming that x is a proof of A it is
possible to construct a proof f(z) of B then A(f) (i.e. A([x]f(x))) is a proof of A 	B." In a
computational sense the rule is read differently. "If in a context in which x is an object of type A
the object f (x) has type B then the function A(f) is an object of type A 	B."

In general, f(x) will be an expression containing zero or more free occurrences of z. Such
occurrences of x become bound in the expression A(f). The binding of variables is always associated
with the discharge of assumptions.

The third of these rules (-elimination) can also be read in both a logical sense and a compu-
tational sense. In a logical sense the rule states that if a is a proof of A and f is a proof of A 	B,
i.e. a method of going from a proof of A to a proof of B, then f.a — the result of applying the
method f to the given proof a — is a proof of B. In a computational sense it states that if a has
type A and f is a function from A to B then f.a, the result of applying the function f to a, has
type B.

The last two rules say how to construct a proof of a disjunction or, equivalently, how to construct
an element of a disjoint sum. To prove A v B we exhibit a proof of A and tag it with the constant
Ml, or we exhibit a proof of B and tag it with the constant inr. Put another way, an element of
the disjoint sum of types A and B is an element of A tagged by inl or an element of B tagged by
inr. The constants MI and inr are called injection functions and stand for inject left and inject
right, respectively.

We use these rules in the proof of the proposition

[(Ay (A B)) 	B

where A and B are assumed to be small types.

Example 1

AU] Rinr(Aqx] f .inl(x))))) E [(A v (A B)) B] 	B

The derivation is given in figure 1. In this derivation the line numbers (0.0, 0.1 etc.) and the
comments enclosed within braces are not part of the derivation but are meant as aids to the reader.
The use of the assumption rule is so fundamental that we have chosen not to comment it — it can
always be recognised by the appearance of scope brackets. Also, in applying the assumption rule
we have chosen not to repeat the hypothesis both before and after the symbol "D.".

Step by step one may read through the above derivation as follows. The required conclusion
has the form P 	Q, where the antecedent is (A v (A 	B)) 	B and the consequent is B.
We therefore begin in step 0.0 by assuming that f is an element of the antecedent and try to
establish the consequent. Looking ahead to steps 0.4 and 1 we see that, having constructed an
element of B, A-introduction can be used to complete the derivation. Now, in steps 0.1.0, 0.1.1
and 0.1.2 we construct an object of A 	B. First (step 0.1.0) we assume that xis an object of A.
From that assumption we may conclude (step 0.1.1) by inl-introduction that inl(x) is an object
of A v (A 	B), and hence, in step 0.1.2, by *-elimination, that finl(x) is an object of B. (Note
particularly in this step how the context in which judgements are made plays its role.) Step 0.2

9

f E (A V (A B)) B
I[r E A

{ 0.1.0, inl-introduction }
inl(x) E AV (A 	B)

{ 0.0, 0.1.1,--elimination
f.inl(x) E B

{ 0.1.0, 0.1.2, A-introduction }
0.2 	Agx]finl(x)) E A B

{ 0.2, inr-introduction
0.3 	inr(A([x]finl(x))) E A v (A 	B)

{ 0.0, 0.3, A-elimination
0.4 	f.inr(Athif.inl(x))) E B

{ 0.0, 0.4, A-introduction }
1 	A(Larinr(A((zif.inl(r)))) E [(AV (A 	B)) 	B] 	B

Figure 1:, Derivation for example 1

now follows by A-introduction — note the discharge of assumption 0.1.0 — and then steps 0.3 and
0.4 follow by inr-introduction and 	-elimination respectively. Finally, as mentioned earlier, we
obtain the required conclusion by discharging the initial assumption.

There is an ulterior motive for presenting the above as an example of proof derivation in
constructive mathematics, namely to explain the role of the law of the excluded middle. As is well-
known the law of the excluded middle is not valid in constructive mathematics. More precisely,
there is no general method for establishing for an arbitrary proposition whether the proposition or
its negation is true; a theory obtained, however, by adding the law of the excluded middle to type
theory would not be inconsistent[61]. Indeed it is the case that the law of the excluded middle
can never be refuted in constructive mathematics. Evidence for this is obtained from the above
example. Specifically, by substituting 0 for B and replacing all expressions of the form P = 0 by

we obtain the tautology
v

Quantifying over A we obtain
V(U1 , 	v -,A))

and applying the result that "V-, 	-.3" we obtain

[A]-,(AV -,A)).

We interpret the last proposition as the statement that it is impossible to exhibit a proposition,
A, that refutes the law of the excluded middle.

The form 	is of interest because it asserts that P cannot be refuted. Other examples of
propositions that are classically valid but cannot be generally established in constructive mathe-
matics are the following:

(A B) v (B A)

10

(A B v C) [(A B) v (A C)]

(B 	A B

For each such proposition, P, it is however the case that 	can be proven constructively. Indeed
it is a theorem attributed by Kleene[35] to Glivenko[25] that if P is any tautology of the classical
propositional calculus then the proposition 	is always constructively valid. For one method of
modelling classical reasoning in a formal implementation of a constructive theory you are referred
to [17].

3 The Structure of the Rules
The programmer is, in his everyday activities, a user of formal systems — operating systems,
text-processing systems and programming systems. The computing scientist is therefore, in his
everyday activities, concerned with the construction and analysis of formal systems. What criteria
should we use to assess a formal system? What is it that distinguishes an "elegant" formal system
from an "inelegant" formal system? Certainly there have been many formalisations of constructive
mathematics but none has gained as much acclaim among the computing scientist community as
that of Per Martin-Lot We believe this is because his system exhibits a certain elegance that
others lack.

On first encounter, however, the universal reaction among computing scientists appears to
be that the theory is formidable. Indeed, several have specifically referred to the overwhelming
number of rules in the theory. On closer examination, however, the theory betrays a rich structure
— a structure that is much deeper than is suggested by the superficial observation that types
are defined by formation, introduction, elimination and computation rules. Once recognised, this
structure considerably reduces the burden of understanding. The aim of this section is, therefore,
to convey that structure to you.

There is a very practical reason for wanting to recognise the inherent structure of the formal
system. As programmers using a typed programming language we are strongly encouraged to
introduce and exploit our own type structures. Such declared data types are intended to reflect
the structure of the given data and are in turn reflected in the structure of the programs that
we write[33]. Any formalisation of constructive reasoning should also strongly encourage the in-
troduction of new type structures, but of course in a disciplined way. That his theory is already
open to extension is a fact that was clearly intended by Martin-Lof. Indeed, it is a fact that
has been exploited by several individuals; Nordstrom, Petersson and Smith[53] have extended the
theory to include lists, they and Constable et al[16] have added subset types and Constable et al
have introduced quotient types, Nordstrom has introduced multi-level functions[49], Chisholm has
introduced a very special-purpose type of tree structure[8], and Dyckhoff[23] has defined the type
of categories.

The rules defining individual type constructors can be divided into five sets.

1. A formation rule.

2. The introduction rules.

3. An elimination rule.

11

4. The computation rules.

5. The congruence rules.

The formation rule specifies how a type constructor may be parameterised by other types; the
introduction rules say how to form elements of the type and the elimination rule says how to reason
about elements of the type (or equally, since reasoning is constructive, how to construct functions
defined over the elements of the type). The elimination rule associates with the type constructor a
so-called non-canonical object form; the computation rules then prescribe how to evaluate instances
of this form. Finally, the congruence rules express substitutivity and extensionality properties.

The main contribution that we make here is to describe a scheme for inferring the elimination
rule and computation rules for a newly introduced type constructor. In other words, we show that
it suffices to provide the type formation rule and the introduction rules for a new type constructor;
together these provide sufficient information from which the remaining details can be deduced. The
significance of this result comes from the twin benefits of reducing the burden of understanding and
the burden of definition. It reduces the burden of understanding since we now need to understand
only the formation and introduction rules and the general scheme for inferring the remaining rules.
The burden of definition is reduced since it suffices to state the formation and introduction rules,
the others being inferred automatically.

The method of inferring the elimination rule from the introduction rules is described by way of
examples rather than formally, although a formal method does indeed underlie our descriptions[3]
and should be evident. (The idea that it may be so inferred was apparently first put forward by
Gentzen himself, and later developed by Prawitz[56]. Schroder-Heister's work[60] also supports this
view. The role of proof objects, however, is not considered by either Prawitz or Schröder-Heister.)

We have divided the discussion into three parts — free types, congruence types and types
with information loss. Free types are those in which canonical objects (i.e., those objects which
have been fully evaluated) are equal only if they have the same constructor and they have equal
components (thus they are "free" of additional equalities). In Martin-La's original theory all
types were free types. Congruence types are types in which we choose to postulate additional
equalities on the canonical elements. Thus the objects of the type are congruence classes of
elements in the corresponding free type. Finally, types with information loss are those in which
some information about proof objects is not recorded in the process of constructing the type or its
elements. In Martin-Lors formalisation the only type involving information loss was the equality
type. The most widely used example of a type with information loss is the subset type introduced
by Constable[12] and Nordstrom and Petersson[52]. We shall, however, discuss other examples of
information loss.

3.1 Free Type Structures
The canonical objects of a type are those formed by the introduction rules. In a "free" type two
canonical objects are equal if they have the same constructor and they have equal components. Free
types are thus the simplest possible. Free types include cartesian product, disjoint sum, enumerated
types, the natural numbers, finite lists, and many more. We begin our account by discussing how
finite lists are formalised within the theory. Other examples included are conjunction (cartesian
product) and the empty set.

12

3.1.1 Lists

Formation and Introduction Rules
The list type constructor should be familiar. The formation rule and two introduction rules

are as follows.

A type
List-formation

List(A) type

A type
nil-introduction

nil E List(A)

A type
a E A
I E List(A)

::-introduction
a ::I E List(A)

It is normal to omit the premises of the formation rule from the premises of the introduction
rules. Thus the premise "A type" would normally be omitted from the nil- and ::-introduction
rules above. We shall follow this practice in the remainder of this discussion.

The formation rule simply says that List(A) is a type whenever A is a type. The two intro-
duction rules state, respectively, that nil has type List(A), for an arbitrary type A, and a ::1 has
type List(A) whenever a has type A and I has type List(A) (and, of course, A is a type).
Elimination Rule

The (single) elimination rule for a given type constructor performs two functions: it says
how to reason about objects of the type and it says how to define functions over objects of the
type. (Because proofs are interpreted constructively these amount to the same thing.) The first
premise (excluding the premises of the formation rule) of the elimination rule for an arbitrary type
constructor 9 is therefore the statement that C, say, is a family of types indexed by objects of
e. In other words C is postulated to be a property of objects of type e. The introduction rules
represent the only way that canonical objects of the type e may be constructed; so, in order to
show that property C holds of an arbitrary object of type e, it suffices to show that it holds of
each of the different sorts of canonical objects. There is thus one premise in the elimination rule for
each of the introduction rules. Moreover the premises of an introduction rule become assumptions
in the corresponding premise of the elimination rule.

In the case of lists there are just two sorts of canonical element, the empty list and composite
lists consisting of a head element and a tail list. In order to prove that a property C is true of an
arbitrary list we thus have to show that it is true of the empty list and of composite lists. Equally,
to define a function over lists it suffices to define its value on the empty list and its value when

13

applied to a composite list. The elimination rule is therefore as follows.

I[w E List(A) r C(w) type JI
x E List(A)
y E C(nil)
i{ a E A;1 E List(A); h E C(1)

z(a, I, h) E C(a ::1)
]I

List-elimination
Listelim(x, y, z) E C(x)

In this rule the third premise is the one corresponding to nil-introduction; it is not hypothetical
since apart from the premises of List formation there are no premises in the nil-introduction
rule. The fourth premise corresponds to the ::-introduction rule; it is hypothetical since the ::-
introduction rule has two premises in addition to the premises of List formation. To emphasise
the way in which the premises of the introduction rule become assumptions of the corresponding
premise in the elimination rule we have used the same symbols, a and 1 in the ::-introduction rule
and in the elimination rule.

Note that there is an additional assumption ("h E C(I)") in the elimination rule arising from
the fact that 1 is a recursive introduction variable. More formally, let e be a type and B be a
canonical constant of O. If the introduction rule for B has a premise of the form x E 0, x is called
a recursive introduction variable. The effect of this recursive introduction variable is to add an
assumption of the form h E C(x) to that premise of 0-elimination corresponding to 0-introduction.

The third parameter of Listelim, z, is an abstraction. That is, the term z is definitionally equal
to [a. 1, h]z(a,l, h).

We may read the rule as follows. The first premise is the supposition that C is a well-defined
property (or type) over elements of List(A). The second premise is the supposition that that x
is an arbitrary element of List(A). The third and fourth premises determine how to infer that x
has property C ("C(x)" in the conclusion). Specifically, in the third premise we suppose that y
proves C(nil), and in the fourth we suppose that z(a, 1, h) proves C(a 1) assuming a is an element
of A, 1 an element of List(A), and z proves C(/). From the justifications of these four premises
we conclude that the object Listelim(x, y, z) proves the proposition C(x) (or is an element of the
type C(x)). The evaluation of Listelim expressions is detailed in the computation rules.

For later reference we shall name the three sets of premises in the elimination rule as follows.
The first premise is called the type premise, the second premise is called the major premise, and the
remaining premises are called the minor premises. There is a minor premise for each introduction
rule; the premise corresponding to some canonical constant B is called the 0-premise. Thus the
third premise of the List elimination rule is the nil-premise and the fourth premise is the ::-premise.
The type abstraction, C, in the type premise is called the elimination hypothesis. (For recursively
defined types like lists the more familiar terminology would be induction hypothesis.)

As an example, consider the list append operation. It is defined as:

1©m E Listelim(1, m, tx, y, hix ::h)

14

0.0 	l[I E List(A); m E List(A)
0.1.0 	r> 	I{ 	x E A; y E List(A); h E List(A)

{ 0.1.0, ::-introduction }
0.1.1 	 x:: h E List(A)

]!
{ 0.0, 0.1, List-elimination }

0.2 	 m, [x, y, h]x h) E List(A)
{ definition of 	}

0.3 	 E List(A)

)1

Figure 2: well-formedness of @

To establish the well-formedness of this definition, we must verify the following judgement.
Example 2

I[1 E List(A); m E List(A) P 14m E List(A)]J

The derivation is given in figure 2.
Computation Rules

To express the computation rules we need to make use of the third judgement form in the
theory, that is the form

p = q E P.

We recall that such a judgement means that p and q are equal elements in the type P.
Computation in the theory is lazy. That is, to evaluate an expression like Listelim(. .) the

first parameter is evaluated to its canonical form and then further evaluation involving the other
parameters takes place. Since the introduction rules specify the only forms that the canonical
objects of a type can take it suffices to provide a computation rule corresponding to each of
the introduction rules. For the List type constructor we must therefore explain how to evaluate
expressions of the form Listelim(nil, ...) and of the form Listelim(a ::1, .). We do so by replacing
the major premise "x E List(A)" in the List elimination rule by the premises of the introduction
rule. Taking the nil-introduction rule we obtain the following computation rule.

I[w E List(A) ct. C(w) type
y E C(nil)
i[a E A;1 E List(A); h E C(l)

z(a, 1, h) E C(a ::I)

nil-computation
Listelim(nil, y, z) = y E C(nil)

Since there are no premises in the nil-introduction rule the effect of the replacement is simply to
reduce the number of premises by one. The conclusion of the rule is also straightforward to see.

15

wEAvB P C(w) type
dEAVB
I[aEA
L> e(a) E C(inl(a))
)1
1[b E B

f(b) E C(inr(b))
II

V-elimination
v-elim(d, e, f) E C(d)

Note how the premises of the introduction rules become assumptions in the corresponding premises
of the elimination rule. Note also the parameterisation of C in each of the premises.

There are two computation rules for v-elim objects, one for each sort of canonical object.

I[wEAvB L> C(w) type
aE A
I[aEA
r. e(a) E C(inl(a))

b E B
f(b) E C(inr(b))

inl-computation
v-elim(inl(a), e, f)) = e(a) E C(inl(a))

If w E A v B > C(w) type]I
b E B
I[aEA

I> e(a) E C(inl(a))

I[bE B
> f(b) E C(inr(b))
]I

inr-computation
v-elim(inr(b), e, f)) = f(b) E C(inr(b))

The operational understanding of V-elim is that V-elim(t, e, f) picks out either e or f depending
on the form taken by t. If it has the form inl(p) then e(p) is evaluated. On the other hand if it
has the form inr(q) then f(q) is evaluated.

]I

18

3.1.4 The empty type

It is always instructive to consider extreme cases. Let us therefore consider the empty type. The
formation rule is just the axiom:

0-formation
0 type

There are no introduction rules for the empty type (since it would be absurd to construct an
element of the empty type). Thus there are no premises in the elimination rule other than the
standard ones.

1[w E 0 c> C(w) type II
r E 0

0-elimination
0-elim(r) E C(r)

This rule is easily recognised as the absurdity rule — if it is possible to establish an absur-
dity then it is possible to establish any proposition whatever. We encounter 0-elim frequently
in program development. Such occurrences arise within case analyses where one case is always
excluded from the computation. It can be proved within the theory that whenever 0-elim occurs
in an expression, its argument can be replaced by an arbitrary expression[2]. We choose to use the
constant 0 for the argument in all cases.

Since there are no introduction rules there are no computation rules. Any attempt to evaluate
0-elim(r) may thus be considered as a divergent computation.

In conclusion we note that the rule -elimination given in section 2.2 is not the rule we would
construct from its corresponding introduction rule, but it is logically equivalent. We have chosen
this rule both for historical reasons (it is the type theoretic counterpart of modus ponens), and
because it directly corresponds to the notion of function application in typed functional languages.
The general form of the rule [42] also requires the notion of "hypothetical hypotheses", which
notion we do not discuss here.

3.2 More on Equality and Type Judgements
3.2.1 Families of Types

So far we have said little about type or equality judgements. As we shall see these are not unrelated.
Type judgements are, mostly, very straightforward. An example that we have occasion to use

very shortly is the type judgement for the existential type.

19

A type
I[x E A

B(x) type
)1

3-formation
3(A, B) type

The rule states that if A is a type and if B(x) is a type whenever x is an element of A then
3(A, B) is a type.

Note that B(x) may depend on the object x, but as yet we have seen no mechanism within the
theory by which such a dependence can be introduced! One such mechanism involves the use of
the universes. Specifically, any element of a universe is a type. Moreover if two objects A and B
are equal in U1 then they are equal types. (We give the rule only for the first universe but it is
also valid for U, generally where 1 < i.)

A EU1 	 A=B EU1
U1-elimination

A type 	 A = B

(The name, "U1-elimination", may be misleading; the rule is not an elimination rule in the
same sense as, say, the List elimination rule.)

This seemingly innocuous rule can be combined to great advantage with the elimination rules
given earlier to construct so-called "families of types". For example consider a context in which
d is declared to have type A v B for some types A and B. Then using the V-elimination rule
with elimination hypothesis Ul we can conclude that v-elim(d, [x]IN, [y]{ red, yellow, blue)) is an
element of U1 . Hence, by U1-elimination it is a type. Indeed, by the computation rules for v, it
is a type with value IN or {red, yellow, blue} depending on whether d has value inl(a), for some
a, or inr(b), for some b. With some imagination one can see how this example can be extended
to the construction of quite complex expressions that specify functions that return a result whose
type depends on the values of its arguments. (Functions that fail on smile arguments offer the
most obvious examples; integer division, for example, is typically implemented as a function that
returns an integer when its second argument is nonzero but returns an error message otherwise.)

3.2.2 The Equality Type

The second mechanism for introducing objects into type expressions is via the equality type. For
objects a and b of type A, we define the type a =A b which is identified with the proposition "a
and b are equal objects of type A." It is closely related to the equality judgement, the two different
judgement forms

a =bEA

and
c E a =A b

20

WEAvB
I(z E A

{ 0.1.0, inl-intro }
inl(z) E AvB

{ 0.0, 0.1.1, =-formation }
inl(z) =Ave w type

{ A type, 0.1.0, 0.1.2, 3-formation }

	

0.2 	3(A, Mial(z)=AvB w) type
{ similarly

	

0.3 	3(B, [y]inr(y) =A VE w) type
{ 0.2, 0.3, v-formation

	

0.4 	3(A, [z]inl(z) =AVE w) v 3(B, [y]inr(y) =AvE w) type

Figure 3: Derivation for example 3

meaning essentially the same thing.
We begin our account of the equality type with the type formation rule:

A type
a E A
b E A

=-formation
a =A b type

Note how the =-formation rule relies on the ability to make judgements of the form a E A.
This is a significant aspect of the formal system with the implication that it is no longer possible
to claim, as we did in section 2.1, that the judgement A type means that A is a "well-formed type
expression". The two judgement forms are inextricably bound together!

The following example illustrates the use of this rule. It will be used again shortly.

Example 3

I[wEAVB
t> 3(A, [x]inl(x) =Ave w) V 3(B, [y]inr(y) =AvB w) type

The derivation is given in figure 3.
We shall drop the subscript A in =A when it is clear from the context the type A that is

intended.

21

aEA
I[x E A
r> b(x) E B(x)
]l

a EA
I[x E A
r> B(x) type
II

Substitution

3.2.3 General Rules

Equality obeys the usual rules of reflexivity, symmetry, transitivity and substitutivity. (In the
following rules, type premises are omitted.)

a E A

a =aEA 	 A=A

a=bEA 	 A= B

b=aEA 	 B=A

a=bEA 	 A=B
b=cEA 	 B=C

a=cEA 	 A=C

Reflexivity

Symmetry

Transitivity

a=bEA
I[x E A
D B(x) = C(x)
II

B(a) = C(b)

a=bEA
I[x E A
t> c(x) = d(x) E B(x)
] I

c(a) = d(b) E B(a)
Substitution

Though not directly concerned with equality, we also require substitution rules for the type
and E judgement forms.

B(a) type 	 b(a) E B(a)

If two types are equal then any element of one is also an element of the other, and equal
elements in one are also equal elements in the other.

22

aEA
	 a =bEA

A= B
	

A=B
Equality of types

a E B
	 a=bEB

An object of the equality type is introduced by making equality judgements.

a=bEA
=-introduction

eq E a =A b

Conversely, if we are able to construct an object of an equality type then we can also make the
corresponding equality judgement.

c E a =A b
=-elimination

a =bEA

3.2.4 Closure and Individuality Properties

With the rules that we have now assembled we are able to prove two quite remarkable results, first
that the only elements of a disjoint sum are those of the form inl(a) or inr(b), and that inl(a) is
different from inr(b), where a and b are elements of A and B respectively.

Example 4

A([d]v-elim(d, [c](a,eq), [b](b.eq)))
E V(A v B, [d]3(A, [x]inl(r) =AVB d) v 3(B, [y]inr(y) =AvB d))

Example 4 is called the closure property for v. Its derivation is given in figure 4. (Note: readers
studying figure 4 are referred to section 3.4.3 for the details of the 3- and `d-introduction rules.)

In other formalisations of type systems one often encounters verbal statements of the form
"nothing else is an element of the type", e.g. [30]. The fact that the above proposition can
be derived using an elimination rule of a general nature is therefore remarkable. Similar closure
properties are straightforward to state and prove for other type constructors. For example, every
element of a list is either nil or a ::1 for some element of the base type, a, and some list, I.

Example 5

aEA; bEB
inl(a) 0AvEs inr(b)

]I

23

0.0 I[dEAvB
0.1.0 	i> 	I[a E A

{ 0.1.0, inl-intro. }
0.1.1 	 inl(a) E AVB

{ 0.1.1, refl. }
0.1.2 	 inl(a) = inl(a) EAVB

{ 0.1.2, =-intro.
0.1.3 	 eq E inl(a) =AvB inl(a)

{ 0.1.0, 0.1.3, 3-intro. }
0.1.4 	 (a, eq) E 3(A, [x]inl(r) =AvB inl(a))

{ 0.1.4, inl-intro.
0.1.5 	 inl((a, eq))) E 3(A, [x]inl(x) =AvB inl(a)) V 3(B, [y]inr(y) =AVB inl(a))

}I

0.2.0 	b E B
{ similarly }

0.2.1 	 inr((b, eq))) E 3(A, [x]inl(z) =AvB inr(b)) V 3(B, [y]inr(y) =AvB inr(b))
JI

{ example 3, 0.0, 0.1, 0.2, v-elim.
0.3 	v-elim(d, [a](a,eq), [b](b,eq)) E 3(A, [r]inl(x) =Av B d) v 3(B, [y]inr(y) =AvB d)

Figure 4: Derivation for example 4

where a O A b abbreviates -'(a = A b). Example 5 is called the individuality property for V. Its
derivation is given in figure 5.

Similar individuality properties for other types are straightforward. For example, the individ-
uality property for List states that nil is different from a ::1 for all a and 1.

Other fundamental properties of the type system that can be formally derived include cancel-
lation properties (e.g. if two pairs are equal then their components are equal).

3.3 Congruence Types
Recall that objects of free types are equal if and only if they are built from the same constructor,
and the arguments of the constructor are equal. Thus, the expressions 0 :: nil and 0 :: 0 :: nil are
distinct objects of the type List(IN). They are built from the same constructor (::) and have the
same first argument (0), but their second arguments are different (nil and 0 :: nil are built from
different constructors). However, not all types enjoy this property. Consider a type of finite sets
whose canonical objects are of the form 0 (construct the empty set) and a • s (add the element
a to the set s). The expressions 0 • 0 and 0 • 0 • go denote equal sets since they have the same
membership properties. However, the free type whose constructors are 0 and • would distinguish
the objects 0 0 and 0 • 0 • 0. Congruence types allow us to impose equalities on the canonical
objects of a type over and above those implied by a free type. The equalities are specified by
extra introduction rules, which we refer to as congruence rules. We describe congruence types in
this section by defining finite bags (multisets) and finite sets. Bags are constructed from lists by

24

0 	0 E
1 	IN E
2.0 1[dEAvB

t> 	{ 0,1, V-elim. }
2.1 	v-elim(d, [x]0, [ON) E

{ 2.1, refl. }
2.2 	v-elim(d, [Of, (y]N) = v-elim(d. (x)0, [ON) E U1

]i
3.0 	I[a E A; b E B

{ 3.0, inl-intro, 2.1, inl-comp }
3.1 	v-e/im(inl(a), [x]0, [y]IN) = O'E

{ similarly }
3.2 	v-elim(inr(b), [x]0, (ON) = IN E
3.3.0 	I(r E inl(a) =Ave inr(b)

{ 3.3.0, =-elimination
3.3.1 	 inl(a) = inr(b) E A V B

{ 2.0, 2.2, 3.3.1, substitution }
3.3.2 	 v-elim(inl(a), [x]0, [ON) = v-elim(inr(b), [x]0, [y]IN) E U1

{ 3.1, 3.2, 3.3.2, trans., sym.
3.3.3 	 0=IN E U1

{ 3.3.3, U1-elim. }
3.3.4 	 0 = N

{ 3.3.4, 0 E IN, type equality }
3.3.5 	 0E 0

JI
{ 3.3.0, 3.3.5, '-introduction }

3.4 	A(H0) E inl(a) 0AVB inr(b)
)1

Figure 5: Derivation for example 5

25

adding a congruence rule which identifies lists which differ only in the order of elements. Sets are
constructed from bags by identifying those bags which differ only in the number of occurrences of
elements.

3.3.1 Finite Bags

Suppose we wish to define a type constructor 9 such that (A) is the type of finite bags of A. Any
such bag can be constructed by listing its elements. Conversely any list of elements of A may be
regarded as a finite bag of A provided that we disregard the order of the elements. 9(A) is thus
the quotient of List(A) with respect to the equivalence relation that defines two lists as equal if
they have the same elements independent of order.

We define the type constructor 9 by adding to the introduction rules for List a congruence rule
defining the above equivalence. In full the rules are:

A type
9-formation

(A) type

ck-introduction
0 E (A)

aE A
s E '(A)

•-introduction
a • s E (A)

a E A
b E A
s E (A)

order
a •b•s=boa•sE(A)

How should we construct the elimination rule for 9 ? The best way to begin is to view the rule
as a method of defining a function over objects of the type. If a function is to be truly a function
then it must give equal values when applied to equal objects. Looking at it from the point of view
of proofs, a proof that an object has some property must be independent of the way the object
was constructed. Thus the 9-elimination rule is constructed like the List-elimination rule but with
an additional premise corresponding to the order rule. As with free types, each introduction rule
yields a premise in the elimination rule.

26

I[w E (A) c> C (w) type JI
t E fl(A)
c E C(0)
I[a E A; s E (A); h E C(s)

d(a, s, h) E C(a • s)
II
I[a E A; b E A; s E (A); h E C(s)
c> d(a,b • s, d(b, s, h)) = d(b, a • s, d(a, s, h)) E C(a • b • s)
II

E C(t)

The premise corresponding to the order rule

I[a E A; b E A; s E (A); h E C(s)
c> d(a,b • s,d(b, s, h)) = d(b, a • s,d(a,s,h)) E C(a • b • s)
II

is constructed as follows. The assumptions are derived from the premises of the order rule as in the
discussion of lists. From the assumptions b E A, s E (A) and h E C(s), the s-premise establishes

d(b, s, h) E C(b • s)
	

(1)

From a E A, b • s E (A) and (1), the •-premise also establishes

d(a, b • s, d(b,s, h)) E C(a • b • s)
	

(2)

By similar reasoning we get
d(b, a • s,d(a,s,h)) E C(b • a • s)

The order rule states that the expressions a • b • s and b • a • s are equal in the type Z'(A), so the
types C(a • b • s) and C(b • a • s) must also be equal. Thus, by type equality we have

d(b, a • s, d(a,s,h)) E C(a • b • s)
	

(3)

Viewing the elimination rule as a method for constructing functions on the type (A), (2) is the
expression to be evaluated when the function is applied to a • b • s, and (3) is the expression to be
evaluated when the function is applied to b • a • s. Equal arguments must produce equal results.
The order premise formalises the requirement that the objects of (2) and (3) are equal.

The computation rules are constructed similarly. 0-computation has all the premises of
elimination except t E Z(A) and has conclusion

c, = c E C(0)

•-computation has the extra premise
a E A

27

and conclusion
Z' —elim(a • t, c, d) = 	 c, d)) E C(a • t)

As an example, consider the union operation over bags. It is similar to the corresponding
operation on sets but repeated occurrences of elements must be retained. That is, for any a in
A, if there are in occurrences of a in the bag s and n occurrences of a in t, then there are in + n
occurrences of a in the union of s and t. The operation is defined as

sUt E 	 [x, y, h]x • h)

In clausal form, this definition would be written as

O u t 	= t
(a•s)ut = a•(sUt)

To verify the well-definedness of U, we must establish the judgement

1(s E Z`(A); t E Z'(A) 	SUi E Z`(A)

The instances of the minor premises of the elimination rule are

t E (A) 	 0—premise
1(x E A; y E Z`(A); h E (A) 	x • h E ZIA) 11 • — premise
l[a E A; b E A; y E (A); h E (A) 	 order — premise

a•b•h=b•a•hEZ(A)

The 0-premise is established by assumption, the •-premise by •-introduction, and the order-premise
by the order introduction rule. For brevity, we shall not formally verify the correctness of this
definition of u. Instead, we establish an important property of U: commutativity. That is, we will
verify the judgement

I[S E %A); t E '(A) I> sUt=tUsE(A)]I

which clearly should hold since the order of elements in a bag is irrelevant. The derivation is
detailed in figure 6. We assume • has greater binding power than U.

As a second example, we define the cardinality operation over bags which counts the number
of elements in a bag including repeated occurrences of the same element. It is defined as

161 	—elim(b, 0, [x, y, h]succ(h))

The instances of the minor premises of the elimination rule when proving the well-formedness of
1_1 are

OE IN
	

0—premise
x E A; y E Z`(A); h E IN r, succ(h) E IN 31 •—premise

1[aEA; bEA; yE(A);hElN
	 order — premise

succ(succ(h)) = succ(succ(h)) E IN

28

0.0 	I[s, t E (A)
{ minor premises of U well-formedness, 0-computation)

0.1 	OUt=tE(A)
-elimination with t E (A) as major premise }

0.2 	tU0=tE3'(A)
{ 0.2, symmetry, 0.1, transitivity }

0.3 	0Ut=tU0E (A)
{ 0.3, =-introduction }

0.4 	eq E U t =0(A) U (i)

0.5.0 	1[a E A; yE(A);hEyUt=0(A)tUy
0.5.1 	 asyLit

=0(A) 	 { definition of U
— elizr2(a • y, 	h)x • h)

=0(A) 	{ 0.5.0, minor premises of U well-formedness, •-computation
a 	 t,[x,y, h]x • h)

=0(A) 	{ definition of U
a • (y 	t)

=0(A)
	{ 0.5.0, =-elimination, •-introduction, subst

a • (t u y)

=0(A) 	 Z'-elimination with t E Z'(A) as major premise
tUaey

{ 0.5.1, =-introduction
0.5.2 	 eqEaoyUt=0(A)tUasy

0.6.0 	I[a,b E A; yEZIA.); heyut=0(A) tuy
{ 0.6.0, •-introduction, 0.5, subst

0.6.1 	 eq=eqEa•b•yut=0(A)tua•b•y

{ 0.0, 0.4, 0.5, 0.6, '-elimination }
0.7 	 [z, y, h]eq) EsUt =0(A) t U s

{ 0.7, =-elimination }
0.8 	sUt=tUsE(A)

]I

Figure 6: Commutativity of U

29

They are easily established using the introduction rules for IN and reflexivity.
One possible approach to specifying the correctness of the cardinality operation is to consider

bijections between the elements of a bag and some subset of the natural numbers. Let {s} denote
the type whose objects are exactly the members of the bag s (where different occurrences of the
same element in s are distinguished in {s}), and fi denote the type of natural numbers less than
n. The specification of cardinality states that for any bag s, there exists a bijection between the
types {s} and Isl. A bijection between types A and B is defined to be

	

Bijection(A, B) E 3(A 	B, [f]Injective(A, B, f) A Surjective(A, B, f))

that is, an injective (1-1) and surjective (onto) function from A to B.

	

Injective(A, B, f) 	= V(A, [a]V(A, [6] f.a =B f.b 	a =A b))
Surjective(A, B, f) E. V(B,[b]3(A,[a]f.a =B 6))

The correctness of 1_1 is established by verifying the judgement

I[s E (A) r> p E Bijection({s},

for some p.

3.3.2 Finite Sets

Sets, like bags, are independent of the order in which elements appear in their construction. In
addition, sets are independent of the number of occurrences of any element appearing in their
construction. Therefore, we can define a type of finite sets by adding to the type 3 a congruence
rule which identifies bags which differ only in the number of occurrences of elements. The extra
rule is

a E A
repetition

a.a•0= a•0 	(A)

which yields the following extra premise in the elimination rule.

1[a E A i> d(a, a • 0, d(a, 0, c)) = d(a, 0, c) E C(a • 0) 11

The repetition premise is derived from the repetition congruence rule as follows. From a E A
(assumption), 0 E (A) (0-introduction), and c E C(0) (0-premise), the •-premise establishes

d(a, 0,c) E C(a • 0) 	 (4)

From a E A, a • 0 E (A) (•-introduction), and 4, the .-premise also establishes

d(a, a • 0, d(a, 0, c)) E C(a • a • 0)

30

The repetition rule states that the expressions a • 0 and a • a • 0 are equal in the type (A), so
the types C(a • 0) and C(a • a • 0) must also be equal by substitution properties. By type equality
we have

d(a, a • 0, d(a, 0, c)) E C(a • 0) 	 (5)
Viewing the elimination rule as a method for constructing functions on the type '(A), (4) is the
expression to be evaluated when the function is applied to a • 0, and (5) is the expression to be
evaluated when the function is applied to a • a • 0. Equal arguments must produce equal results.
The repetition premise formalises the requirement that the objects of (4) and (5) be equal.

The computation rules for finite sets are the same as those for finite bags but with the addition
of the repetition premise.

The repetition premise for sets means that there are more conditions to be satisfied when
constructing functions over sets than there are when constructing functions over bags. Any function
we define over sets is also a function over bags, but there are functions over bags which are not
functions over sets. Consider the two operations defined on bags earlier. The union operation
remains valid with respect to sets. To verify that U is well-formed in the type of finite sets, we
have to verify the premises from the proof for bags plus the additional repetition premise. The
particular instance is

I[a E A c> a•a•t=a•t E(A) II

which is verified by Z'. elimination with the repetition rule as basis, and substitution properties and
the order rule being used for the inductive step.

The derivation of commutativity of U is very similar. We merely have the extra premise

I[a E A r> eq=eqEa•OUt=o(A)tUa•0 JI

which is verified by substitution and reflexivity on the •-premise.
In contrast to U, the cardinality operation defined above is not valid with respect to sets. The

number of occurrences of an element in a bag is significant, so the cardinality operation counts
each occurrence of each element. The repetition premise states that the number of occurrences of
an element in a set is insignificant. Formally, the problem arises in the repetition premise when
proving the well-formedness of I_I with the definition given above. The instance of the repetition
premise is

I[a E A c> succ(succ(0)) = succ(0) E IN II

This judgement is not provable. In fact, the individuality property of IN shows the judgement
to be inconsistent. An alternative definition of cardinality must be given for sets. It must count
each distinct element in a set only once, regardless of how many times an element appears in the
construction of a set. This is achieved as follows.

isi --za —elim(s , 0, [x, y, Of xey then h else succ(h))

where
acs E Z`— elim(s , false, [x, y, h]if a.eq.x then true else h)

The symbol c denotes set membership. It is only definable if we have a decidable equality relation
over the objects of type A, which has been denoted by the infix operator .eq. in the above expression.

31

Thus, we are only able to define the cardinality operation for those types (A) such that A is
decidable. Other than the requirement of decidability, the specification of cardinality for sets is
the same as for bags.

Starting with lists, we added a congruence rule to give bags. A further congruence rule gave sets.
Meertens[43] takes this process one step further. He begins with binary trees, whose canonical forms
construct the empty tree, a tip, and compose two trees. Lists are obtained by adding congruence
rules stating that tree composition is associative, and the empty tree is both a left and a right
identity of tree composition. Trees constructed by empty, tip, and composition are then viewed as
the nil list, unit list, and list append respectively. Bags and sets follow by adding rules concerning
the commutativity and idempotence of composition respectively.

3.3.3 The NuPrl Quotient Type

The motivation behind congruence types is to allow stronger equality relations between objects of a
type than those implied by a free type. An important aspect of our method is that the congruence
types we construct can be viewed as primitive types of the theory; they have the same status as
the types V, IN, etc. Thus, the definition of a congruence type of finite bags allows us to reason
directly in the theory of bags. An alternative approach is taken by the NuPrl group[16]. They have
introduced a quotient operation which allows one to construct a new type by defining a stronger
equality relation over an existing type. Given A type and l[x, y E A D. E(x, y) type]I, the type

A//E

is the quotient of A by the (equivalence) relation E. The objects of ANE are the objects of A, but
equality on All E need not be the same as equality on A. Two objects a and b are equal in All E
exactly when we can prove the judgement p E E(a, b) for some p.

Whereas we view congruence types as primitive, the quotient type forces one to view types
as defined. Reasoning about a quotient type involves reasoning about the primitive types which
were used to define it, with the disadvantage that we can no longer work directly in the theory of
interest. Cleaveland and Panangaden[11] and Chisholm[9] give different formulations of finite sets
using the quotient type, the former by quotienting finite maps and the latter by quotienting finite
lists. In both cases, the size and complexity of proofs in the defined type is substantially greater
than the primitive type of sets we give above.

The Nuprl quotient type is an instance of a congruence type. Its elimination rule can be derived
from the introduction rule using the method described above. Note, however, that the quotient
type also exhibits information loss, which is discussed in the following section.

3.4 Computational Redundancy and Types with Information Loss
A feature of the types =A (section 3.2.2) and 0 (section 3.1.4) encountered earlier is that one is
interested only in whether they are inhabited; their objects do not contribute any computational
information and are in that sense redundant. Closely related to computational redundancy is the
notion of information loss. The conclusions of the inference rules of the free and congruence types
we have encountered so far retain all the information embodied in their premises. In particular,
when a judgement of the form a E A appears as a premise of an introduction rule, the object a

32

also appears in the conclusion. From a computational point of view, the conclusion of each rule
inherits the computational content of its premises. In this section, we describe how types exhibiting
information loss can be introduced into the theory. First, the types =A and 0 are discussed in
more detail as their computational redundancy is vital for the effective use of information loss.

3.4.1 Computational Redundancy

Given any proof of an equality type, such as

p E a =A b

where p may be arbitrarily complex, the rule =-elimination establishes

a=6EA

and .=-introduction gives
eq E a =A b

That is, any object derived from a proof of an equality type can be transformed in two steps to the
constant eq. Thus, the object synthesised from a derivation of an equality type is uninteresting.
Only the existence of the object is important since it witnesses the truth of the equality specified
by the type. One can view the type =A as a special case of information loss since the object r in
the premise of =-elimination does not appear in the conclusion.

The type 0 is computationally uninteresting for the simple reason that it contains no objects.
Unlike =A , it is not a special case of information loss. The conclusions of its rules retain all the
information in the premises.

We shall say that a type A exhibits computational redundancy if for each a in A there exists
an a' in A such that a' is a closed expression and a = a' E A. Thus we can always get rid of
free variables from objects of types exhibiting computational redundancy. The types =A and 0
exhibit computational redundancy. Using them as a basis, we can construct other types exhibiting
computational redundancy. For example, all objects of the type A = 0 (i.e. —,44), where A is an
arbitrary type, can be simplified to A([x]x). Objects of negation types thus have no computational
content. The important point to note about such types, and types exhibiting computational
redundancy in general, is that their objects can always be transformed to equal objects containing
no free variables.

3.4.2 Information Loss: The Subset Type

Types with information loss allow unwanted proof objects to be discarded, for example from types
exhibiting computational redundancy. In general, however, we may construct objects which have
computational content but which are not interesting for the problem at hand. Recall that to verify
the correctness of the cardinality operation over finite bags, we must establish the judgement

l[s E (A) c> p E Bijection({s},Is1)]I

for some p. The first component of the object p derived from the proof is a bijection between {s}
and Isj, that is, a computable function from {s} to Isl. In this situation, p's computational content
is irrelevant. We merely wish to construct and verify the cardinality operation.

33

Uninteresting proof objects can be discarded using the subset type[52,16]. It allows the con-
struction of a set of objects of some type with a common property. The formation rule is:

A type
I[x E A r> B(x) type

Set-formation
Set(A, B) type

The subset type is so called because its objects are a subset of the objects of type A — more
specifically, those objects a of type A such that the type B(a) is inhabited (contains at least one
object). The introduction rule is:

a E A
b E B(a)

Set-introduction
a E Set(A, B)

The object b in the second premise does not appear in the conclusion, its information is lost.
Unlike the other types introduced so far, Set has no canonical objects of its own. Its elements are
merely a subset of the elements of A. The elimination rule is:

w E Set(A, B) > C(w) type
a E Set(A, B)
I[x E A; y E B(x)
t> c(x) E C(x)

Set-elimination
c(a) E C(a)

The first two premises are the standard type and major premises appearing in all elimination
rules. There is one introduction rule, hence one minor premise. The assumptions of the minor
premise are derived from the premises of Set-introduction as usual. From these two assumptions,
the judgement x E Set(A, B) follows by Set-introduction so C(x) is a well-formed type. The
information loss in the introduction rule is reflected in the minor premise by the constraint that
the variable y may not appear free in the consequent c(x) E C(x), just as the object b does not
appear in the conclusion of Set-introduction.

Since Set has no canonical constants, it is unnecessary to have an elimination constant. Like-
wise, there are no computation rules.

The importance of computational redundancy for information loss is seen in the constraint
on the minor premise of Set-elimination. The variable y may not appear free in the consequent.

34

There are two commonly occurring cases in which dependence upon the variable y may be obviated:
B(x) exhibits computational redundancy; and C(x) is itself a type involving information loss. The
first case is exemplified by the equality type. Let a be some fixed object of type A, and take
B(x) 	(x =A a). Then, as explained above, from the assumption y E (x =A a) we obtain,
in two steps, eq E (x =A a) and so the variable y is replaced by the closed term eq. The
second case, where C(x) involves information loss, can be exemplified by the subset type. Take
B(x) E P(x) A Q(x) and C(x) = Set(A, P): from the assumption y E P(x) A Q(x) we obtain
fst.y E P(x) and then, by subset introduction, x E Set(A, P). Thus, although in both cases a
proof of C(x) may depend upon the truth of B(x), it is possible to eliminate any dependence upon
the variable y.

Set allows us to verify the correctness of the cardinality operation without unwanted proof
objects appearing in the result. We would now verify:

I[s E .(A) v 1.91 E Set(IN, [n]Bijection({s},7)) JI

Although an object of type Bijection({s} , Is') would be constructed during the derivation, it is
discarded when the rule Set-introduction is applied.

Comparison of the Set- and 3-introduction rules is educational, not only because it allows one
to see explicitly the information that is lost but because it also suggests other forms of information
loss.

a E A 	 aE A
b E B(a) 	 b E B(a)
	 Set-introduction 3-introduction
a E Set(A, B) 	 (a, b) E 3(A, B)

Note that objects of an existential type are ordered pairs; objects of a Set type can be consid-
ered as objects of the corresponding existential type but where the second component has been
discarded.

Instead of discarding the second component we might choose to discard the first component.
This would give objects of a union type.

a E A
b E B(a)

Li-introduction
b E u(A, B)

An object of U(A, B) is an object of some member B(a) of a family of types B(x), indexed by
x in A, but where the information about which particular member has been lost. We shall not
pursue this type any further since it does not yet appear to have found practical application. A
useful exercise for the reader, however, is to construct the elimination rule for the type by analogy
with the Set-elimination rule.

35

3.4.3 Information Loss: The Polymorphic Function Type

Dual to the information loss that occurs in going from an existential type to a union type is the loss
of dependency in going from a universal type to an implication. We see the latter by comparing
their type formation rules.

A type 	 A type
x E A 	 EA
B type 	 r B(x) type

-formation 	 `d-formation
A B type 	 V(A, B) type

In general a V-type is much more specific than an -type: if f E V(A, B) then f E A = U(A, B),
but the converse is not always the case since the specific information about the range of the function
f is lost through the n-type. For example, VON, [n]Set(IN, [m]m = n div 2)) is satisfied uniquely
by division by 2, but IN 	U(1N, [n]Set(IN, [m]m = n div 2)) is satisfied by all total functions from
IN to IN, including division by 2 but also including, say, the identity function. (Observe that IN
has precisely the same elements as u(IN, [n]Set(IN, [m]m = n div 2)).)

The examples above (Set, U and 	suggest that we can play a syntactic game with the type
constructors we have seen so far whereby we choose to discard individual items of information.
Two forms of polymorphism arise naturally in this way, one of them subsuming the notion of type
polymorphism, the importance of which for computation was first recognised by Milner [46].

The first, and more general form, we shall refer to as the n type constructor. It has formation
rule:

A type
x E A > B(x) type II

n-formation
n(A, B) type

The polymorphic function type may be viewed as a special case of V type, whose objects are
constant functions. The introduction rule is:

x E A
b E B(x)

]I
n-introduction

b E n(A, B)

which should be compared with the introduction rule for the V type:

36

0.0 I[AEU1
0.1.0 	I[aE A

{ 0.1.0)
0.1.1 	 aEA

{ 0.1, 	-introduction
0.2 	A([a]a) E A 	A

{ 0, n-introduction }
1 	A([a]a) E n(Ui, [A]ft 	A)

Figure 7: Derivation for polymorphic identity function.

x E A
b(x) E B(x)

V-introduction
A([x]b(x)) E V(A, B)

The important difference between the two rules is that the n-introduction rule imposes the
restriction that x may not appear free in the expression b. (It may, on the other hand, appear free
in the type expression B(x).) Thus b is an element of n(A, B) if it is an element of each type in
the family B(x) where x ranges over elements of A. In particular, if some element a of type A is
exhibited then b is an element of B(a). This is expressed by the n-elimination rule:

b E n(A, B)
a EA

n-elimination
b E B(a)

The type n is nothing more than the notion of polymorphic function from Martin-Lors logical
framework[22], but at the level of types rather than categories.

One use of n is in the construction of objects which are not cluttered up with unnecessary type
information. For example, given an arbitrary type A the identity function A([a]a) is an object of
type A 	A. We can quantify over the type argument using n and construct the polymorphic
identity function.

A([a]a) E n(Ui, [A]A = A)
The derivation is given in figure 7. By n-elimination, we can apply the polymorphic identity
function to the argument IN E U1 giving:

A([aja) E IN 	IN

In the absence of the type n, we would justify step 1 of figure 7 by b'-introduction giving:

A([AN[a]a)) E V (U1 , [A]A 	A)

37

Using V makes the type information explicit in the identity function itself.
Just as the type 	is the non-dependent form of the type V, there is a non-dependent form of

n. The introduction rule is:

I[x E A
t> 6EB

---introduction
bEA1—.B

where x does not occur free in 6 and B. The elimination rule is:

a E A

E B

Initially, the type 	may seem to be of little use. The argument to a polymorphic function
contributes type information only, but in the non-dependent form it does not even contribute type
information (since the result type of the function is not dependent on its argument). The utility
of 1—. is in the construction of functions that have constraints on their domain type. Say we have
proved b E A 	B. Applying '--elimination then establishes 6 E B, but only if we can construct
an object a of type A (or, equivalently, the condition A is satisfied). For example, consider the
head function over finite lists. We must restrict the domain to non-empty lists but we do not wish
to impose any restrictions on the base type of the lists: we want to construct a truly polymorphic
head function. The head function is defined as

hd(x) E Listelim(x, 0-elim(0), [a, /,11]a)

and we would like to prove, for arbitrary type A,

[1 E Set(List(A), [1]1 0 nil)
t> hd(1) E A

The reader may be surprised to learn that this judgement is not provable in the current theory
without polymorphic functions. The best we are able to do is

1[I E Set(List(A), [111 0 nil)
Listelim(1,)([x]0-elim(0)), [a, 1, h]aax]a)).),([x]0) E A

]I

which is somewhat more complex. The problem is that we require as our elimination hypothesis

x 0 nil A

38

0.0
0.1.0
0.1.1.0

0.1.1.1

0.1.1.2

0.1.2
0.1.3.0
0.1.3.1.0

0.1.3.1.1

I[
	

1 E Set(List(A),[1]1 0 nil)
I[E List(A); nE m0 nil
° 	R z E nil ¢ nil

{ 0.1.1.0, absurdity }
0 E 0

{ 0.1.1.1, 0-elimination }
0-elim(0) E A

{ 0.1.1, i--.-introduction
0-elim(0) E nil nil I--• A
f[aEA; 1 E List(A); hElOni1)--. A

xEa ::l nil
{ 0.1.3.0 }

aE A

{ 0.1.3.1, --introduction }
0.1.3.2 	 a E a ::1$ nil 	A

{ 0.1.0, 0.1.2, 0.1.3, List-elimination
0.1.4 	 Listelim(m, 0-elim(0), [a, 1, h]a) E m 0 nil 1—• A

{ 0.1.4, defn. of hd, 0.1.0, --elimination }
0.1.5 	 hd(m) E A

{ 0.0, 0.1, Set-elimination }
0.2 	 hd(l) E A

Figure 8: Derivation of head function.

where z E List(A). We must perform List elimination on a function type and apply the result of
the elimination to an object of the function's argument type. The outcome is an object containing
unnecessary A abstractions and applications.

Using the non-dependent polymorphic function type, we can establish the desired judgement.
The proof is given in figure 8. More examples of the use of 	for this purpose can be found in
section 5; for further discussion see [38].

4 Algorithm Design in Type Theory
This section is concerned with examining the relationship between the heuristics used in inductive
proof[26,5] and the heuristics used in the development of loop invariants[27,21,4] in algorithm
design. The problem we use as illustration is called the majority-vote problem. It may briefly be
described as determining whether or not one of the candidates in a ballot has received a majority
of the votes. More specifically, suppose the candidates in a ballot are drawn from the type A
and votes for each candidate are recorded in the list / of length n. The problem is to determine

39

whether or not one of the elements of A occurs more than n div 2 times in 1 and if so to exhibit
that element. For example, in the list

[a, b, d, a, a, c, b, a, b, a, a]

the element a occurs a majority of times (6 times in a list of length 11) but in the list

[a, b]

no element occurs a majority of times.
This problem is a particularly attractive one to consider for several reasons. First it is easily

stated and readily understood. Second it is a problem for which all programmers are able to pro-
pose a solution within a space of a few minutes, and therefore one that is all too easily dismissed
as "trivial" or "uninteresting". Nevertheless, the solution on which our development is based —
described in [47] and originally due to J S. Moore [6] — is quite remarkable and not obvious. It is a
solution that involves a transformation from a deterministic into a non-deterministic problem spec-
ification, and one that requires considerable creativity in the invention of an appropriate inductive
hypothesis, but for which the resulting program is compact, elegant and — most importantly —
difficult to understand by purely operational arguments.

In order to proceed more formally, we introduce the following context wherein it is assumed
that A is a non-empty type with decidable equality, and 1 is a list of objects of type A.

I[AE UI
eq E V(A, [a]V(A, [b](a = A b) V (a 	b)))

E A
1 E List(A)

I>

The specification in type theory of the program we require is the following:

Set(A,[x]majority(1, x)) V --,Set(A,[x]majority(1, x))
	

(6)

where

majority(!, x) 	E no-of-occurrences(!, x) > length(1) div 2
no-of-occurrences(!, x) = Listelim(1, 0, [a, m, h]if a = x then h + 1 else h)
length(!) 	 = Listelim(1, 0, [a, m, h]h 1)

Note that (6) is trivially true in classical mathematics; in constructive mathematics it is only
true if one can provide a proof of either the proposition Set(A, [x]majority(1, x)) or its negation
— i.e., exhibit a candidate receiving a majority of votes or prove that it is impossible to do so.
Note also that an object in the right summand of (6) carries no computational content. What is
significant is that the specification is deterministic: any two objects that satisfy the specification
must be equal.

40

4.1 Solution strategy
In searching problems such as this, a common strategy is to replace a proposition that may or
may not be satisfiable by one that is always satisfiable but in such a way that a simple test on a
satisfying instance determines whether the original proposition is satisfiable. This, for example,
is the strategy adopted when a sentinel is added to the end of an array during a linear search
for an element. It is also the strategy used in specifying binary search when we seek an index to
an ordered array which partitions all elements less than or equal to a given value x from those
elements greater than x, rather than determining whether or not x occurs in the array[4]. And it
is the strategy used in the Knuth-Morris-Pratt string searching algorithm where the search for a
pattern in a string is replaced by the computation of a failure function[36]. In the present case we
recognise that an easily solved problem is that of determining whether or not a given candidate x
occurs a majority of times in the list 1. This problem has specification:

	

V(A, [x]majority(1, x) V --.majority(1, x)) 	 (7)

We leave it as an exercise for the reader to construct an object of (7).
Our solution to the majority-vote problem is based on combining a solution to (7) with a

solution to the following:
Set(A,[x]pm(1, x)) 	 (8)

where definition of the predicate pm should be such that we can recover a solution to the original
problem as follows. First, use the solution to (8) to generate an object a of A. Then subject a
to the test specified by (7). If a is found to occur a majority of times in the list then injecting
it into the left summand of (6) is clearly all that is required; otherwise, we wish to infer that no
element of A can be a majority value. In summary, therefore, the element a should exclude all
other elements from being majority values. Thus we take the following as our definition of pm.

pm(1, a) E --imajority(1, a) 	ThSet(A,[x]majority(1, x))

Of course, a pair of objects of types (7) and (8) is not the same as an object of (6). However
such an object can be easily recovered. Specifically, the function

Aqa]A([f]v-elim(f.a, [y]inl(a), [z]inr(A([x]x)))))

	

is of type (8) 	(7) 	(6) as can be seen from the derivation given in 	figure 9.
The identifier "pm" has been chosen as an abbreviation for "possible-majority candidate".

From the definition of pm we observe that an object a E Set(A, [x]prn(1, x)) satisfies the property

	

majority(!, a) V -,Set(A,[x]majority(1, x))
	

(9)

Because a candidate obtaining a majority of votes is always unique, if one exists, (9) is another
way of saying that a excludes all other candidates from being in the majority.

41

0.0 	I[f E V(A,[x]majority(1,x) V -,majority(!, x))
0.1 	, 	a E Set(A,[x]pm(1, x))
0.2.0 	I> 	I[X E A
0.2.1 	 g E -,majority(I, x) 	-Set(A,[x]majority(1,x))

{ 0.0, 0.2.0, V-elim
0.2.2 	 f.z E majority(1, x) V -,Tnajority(1, z)
0.2.3.0 	 I[y E majority(!, x)

{ 0.2.0, 0.2.3.0, Set-intro, inl-intro
0.2.3.1 	 inl(z) E (6)

JI
0.2.4.0 	 I[z E -.majority(1,x)

{ 0.2.1, 0.2.4.0,
0.2.4.1 	 g.z E -,Set(A,[x]majortly(1, x))

{ 0.2.4.1, section 3.4.1 }
0.2.4.2 	 A([x]x) E -,Set(A,[x]majority(1,x))

{ 0.2.4.2, inr-intro
0.2.4.3 	 inr(A([z]z)) E (6)

{ 0.2.2, 0.2.3, 0.2.4, V-elim
0.2.5 	 V-elim(f.x, [y]inl(z), {z}inr(),([z]z))) E (6)

]I
{ 0.1, 0.2, Se t-elim }

0.3 	 v-elim(f.a, [y]inl(a). [z]inr(A({z]z))) E (6)

Figure 9: Problem Decomposition

4.2 Invariants versus Inductive Hypotheses
We choose to prove (8) by elimination on I (i.e. by induction over the structure of lists). The basis
is trivial since no candidate can occur a majority of times in the empty list, and any object will do
as our possible-majority candidate. Problems occur when we try to perform the induction step.
Suppose that h E Set(A,[x]pm(m,x)) for some m E List(A). How does one construct an object
of Set(A, [x]pm(a ::m, x))? It is clear that more information is needed about the object h — we
must strengthen our induction hypothesis.

In an imperative programming language, our aim would be to construct a loop that examines
each element of the list and exhibits a possible-majority candidate at each iteration. The initialisa-
tion that precedes execution of the loop corresponds to the basis of the proof by induction, and the
loop body to the proof of the inductive step. The notion of inductive hypothesis corresponds to the
notion of invariant property. Strengthening the inductive hypothesis corresponds to introducing
additional auxiliary variables into the computation.

Too strong a hypothesis would be the conjunction of (6) and

V(A, [x]majority(I, x) v V(A, [y]-imajority(I, y)) 	pm(I, x))

since it defeats the purpose of introducing the predicate pm. (Such a hypothesis states that x is a
possible-majority candidate if either it is a majority candidate or no value is a majority candidate.
It is a hypothesis likely to be proposed by a mathematician with no regard for the computational
efficiency of the proof.) Instead we wish to strengthen the induction hypothesis as little as possible.

Another hypothesis we might consider is the existence of both a possible majority candidate
and its number of occurrences in the array segment. This is too strong and too weak. It is too
weak to stand alone as an inductive hypothesis. It is too strong because if we do try to prove it
inductively we are obliged to consider a hypothesis in which the number of occurrences of every
candidate is known.

A suitable hypothesis can be formulated by first examining some properties of pm and majority.
Suppose m E List(A), x E A and pm(m, x). Suppose also that a E A. Previous remarks suggest
that this information is insufficient to be able to deduce an object of Set(A, [x]pm(a ::m, x)), but
what if we extend the list by one more element? Suppose 6 E A. Is there a relationship between
pm(m, x) and pm(a b in, x)? Indeed there is: in the case that a and b are distinct. For in this
case we observe that:

no-of-occurrences(a 	in, x) < no-of-occurrences(m, x) + 1 	 (10)

From (10) we can derive in turn:

majority(a 	:: in, x) 	ma jority(m, x)

and
pm(m, x) pm(a b m, z)

	
(12)

These are proved as follows. First (11).

43

majority(a b in, x)
{ definition }

no-of-occurrences(a b in, x) > length(a b in, x) div 2
{ (10) and arithmetic }

no-of-occurrences(m, x) + 1 > (length(m) div 2) + 1
{ arithmetic, definition of majority }

majority(m, x)
Expanding the definition of pm(a ::b m, x) we see that to prove (12) we have to prove the

following.

pm(m, x) = —,majority(a b m, x) 	Set(A,[y]majority(a b ::m, y)) = 0

Thus we make the following assumptions:

If
	pm(m, x)

-rma jority(a b in, x)
y E A
majority(a b in, y)

From the second and fourth assumptions it follows that

Y OA X

From (11) and the fourth assumption we also have

majority(m, y)

Thus, since majority values are always unique,

~majority(m, x)

But, expanding the definition of pm(m, x), we obtain

—Set(A,[y]majority(m, y))

which clearly contradicts the earlier conclusion majority(m, y); thus we have:

0
JI

Discharging the above assumptions by Set-elimination and -introduction we have established
(12)

The proposition (12) is only valid in the case that a and 6 are distinct, so we are still confronted
with the computation of a y E A such that pm(a :: a :: m, y). If we try extending the list m by
yet one more element we will still face difficulties computing pm(a ::.a :: a :: in, y), and so on. Our

44

problem has therefore generalised to the problem of, given a E A and n E IN, compute y such that
pm(a" in, y). That is, construct a function of type

V(A, [a]V(IN, [n]Set(A, [y]pm(an ::m, y)))) 	 (13)

where a" ::m denotes a list consisting of n occurrences of a followed by the list in. Formally,

a" :: m a IN-elim(n, in, [k, 	:: h)

Note that (13) is indeed a generalisation of our original problem since if f is an object of type
(13) then

f .a.0 E Set(A, [y]pm(ct° in, y))

I.e.,•
f.a.0 E Set(A, [y]pm(m, y))

Since we are in the midst of an exploratory investigation let us take the bold step of proposing
(13) as the induction hypothesis.

4.3 Program development
Let C(m) denote V(A, [a]V(IN, [n]Set(A, [y]pm(an m, y)))). We propose the construction of an
object of type C(1) by List-elimination. That is, if we can construct programs cp and ip such that

(14) 0 E C(nil)

and

I[b E A; m E List(A); h E C (m)
tl) E C(b m)

then an application of List-elimination on I E List(A) will give us:

Listelim(1, 0, [6, m, h]lk) E C(1)

and hence

(15)

(16)

Taking (14) first:

Listelim(l, 0, [b, in, h]tb).a.0 E Set(A, [x]pm(/, x))
	

(17)

o.o 	If

0.1

0.2

a E A; n IN
{trivially}

pm(an ::nil, a)
{0.0, 0.1, Set-intro.}

a E Set(A, [x]pm(a" :: nil, a))

45

{0.0, 0.2, V-intro. }
1 	A([a]A([n]a)) E C(nil)

For the inductive step, (15), we make the assumptions:

2.0 	I[b E A; m E List(A);h E C(m)
2.1.0 	D 	I[a E A; n E IN

and we try to construct an object of

Set(A, [x]pm(an ::b::m,x)) 	 (18)

Recalling our remarks of the previous section, it is necessary to consider two cases, a = b and
a b. By assumption we have

2.1.1 	 eq.a.b E (a =A b) V (a 5A b)

Considering the left summand first:

2.1.2.0 	 If 	a =A b
2.1.2.1 	 D 	h.a.(n + 1) E Set(A,[x]pm(a" 1 ::m,x))

Now we note that

an+1 rn
• {trivially}

a n ::a ::m
▪ {assumption}

a" :: b ::rn

So we conclude

2.1.2.2 	 h.a.(n 	1) E Set(A,[x]pm(an b in, z))

Now consider the right summand of (2.1.1):

2.1.3.0 	 I[(a OA b)

We now perform IN-elimination on n with induction hypothesis

D(k) E Set(A, [x]pm(ak b m, x))

(In fact we are only interested in whether n = 0 or n 0 and we do not make use of the induction
hypothesis. However the method we employ is technically preferable to such a case analysis.)

For the base case, then, we want to find an object of D(0), i.e. Set(A, [x]pm(b ::m, x)). Now,

46

2.1.3.1

Thus, since b1 :: m = b m,

2.1.3.2

h.b.1 E Set(A,[x]pm(61 ::m, x))

h.b.1 E D(0)

For the induction step we assume:

2.1.3.3.0
	

j[k E IN

(As remarked earlier we make no use of the induction hypothesis D(k); we have therefore
omitted it from our list of assumptions.)

We note that

2.1.3.3.1 	 h.a.k E Set(A,pm(ak ::m, x))

But since, by assumption, a $A b, we can apply (12) to infer that:

2.1.3.3.2 	 h.a.k E Set(A,pm(a ::b ak M, x))

The property pm is, however, a property of bags rather than lists — it is independent of the
order of elements in the list — and so:

2.1.3.3.3
	

h.a.k E Set(A, pm(ak :: a :: b :: m, x))

I.e.,

2.1.3.3.4
	

h.a.k E D(k + 1)

By EN-elimination,

2.1.3.4 	 IN-elim(n, h.b.1, [k, _]h.a.k) E Set(A,[x]pm(an :: 	m, x))

Performing v-elimination on (2.1.1) gives:

2.1.4 	 v-elim(eq.a.b, Nh.a.(n + 1), HIN-elim(n, h.b.1, [k, _Jh.a.k))
E Set(A,[x]pm(an :: b :: m, x))

]i

and thus by V-introduction

2.2 	 A([a]Aan]V-elim(eq.a.b, [-)h.a.(n + 1), [_]IN-elim(n, h.b.1, [k, _]h.a.k))))
E V(A, [a]V(1N, [n]Set(A,[x]pm(an :: b::m, x))))

47

]I
As observed in (16) our program is obtained by applying List-elimination to steps 1 and 2, and
applying the resulting program to et and 0. In full, the complete program to compute a possible-
majority candidate given list 1 is as follows.

3 	List-elim(1
, A([0],‘([n]a))
, [6, m, IIJA([a])t([n]v-elim(eq.a.6

,[_]h.a.(n + 1)
, [_]IN-elim(n, h.6.1, [k, _]lt.a.k)
)))

)
.a .0
E Set(A, [x]pm(1, x))

If we consider the case when 1= nil, our program reduces (by nil-computation) to

A([a]A([n]a)).a.0 E Set(A, [x]pm(nil, x))

and further to

a E Set(A, [x]pm(nil, x))

The distinguished element a is in this sense a "default value", a guarantee that the program
will always produce some value even though the list may be empty.

5 Binary Numerals
In this section, we apply the theory developed earlier to define two alternative formalisations
of binary numerals. In the first formulation, we use a congruence rule to identify those binary
numerals which differ only in the number of leading zeroes. In the second formulation, information
loss is used to exclude numerals with leading zeroes from the type.

5.1 Binary Numerals as a Congruence Type
A binary numeral is a sequence of l's and O's in which leading O's are insignificant. Thus 11 = 011
= 0011 etc. A binary numeral is, however, one particular interpretation of such a sequence. More
generally we may regard such a sequence as denoting a polynomial over {0,1}; thus, 101 denotes
x2 + 1. We can define a type, called BN say, of sequences of O's and I's in which leading O's are
insignificant as follows.

RN-formation
BN type

48

A-introduction
A E BN

b E BN
0-introduction

60 E BN

b E BN
1-introduction

61 E BN

leading zeroes
AO = A E BN

0- and 1- introduction construct a new numeral from an existing numeral by adding a 0 or
1, respectively, as the least significant digit. Given the four introduction rules, we derive four
corresponding premises for the elimination rule. These premises state that to define a function
over BN it is necessary to consider three cases — the case where the argument is A, the case where
it is of the form 60 and the case where it is of the form bl — and furthermore it is necessary to
show that the insignificance of leading zeroes is respected. Specifically, we have the following rule.

I[w E BN 	C(w) type JI
b E BN
c E C(A)
I[x E BN: h E C(x) 	d(x, h) E C(x0)
I[x E BN; h E C(x) r> e(x,h)E C(xl)
d(A, c) = c E C(A)

BN-elimination
BNelim(b, c, d, e)

The three computation rules are summarised by the equations:

BNelim(A, c, d, e) = c E C(A)
BNelim(60, c, d, e) = d(b, BNelim(b, c, d, e)) E C(60)
BNelim(bl, c, d, e) = e(b, BNelim(b, c, d, e)) E C(61)

The type BN can be used to model some of the tasks that a hardware designer faces. Suppose
that we regard objects of BN as binary representations of natural numbers; the task is to construct
functions that represent the common arithmetic operations, addition, subtraction and so on. Here
we shall describe the construction and verification of some operations on BN.

49

To verify that the constructed operations on BN do indeed represent operations on numbers
it is necessary to relate IN and BN. Thus we shall define an operation abs that maps an object
b of BN to an object abs(b) of IN. We also define and verify two operations inc and dec which,
respectively, add one to and subtract one from a binary numeral.

The representation operation, abs, is defined to be

abs(b) F.-: BNelim(b, 0, [x, h]2 * h, [x, h]succ(2 * h))

Note that to verify the well-definedness of abs we have to verify the following.

(a) 0 E N
(b) I[x E BN; h N r. 2 * h E N]I
(c) I[x E BN; h E N 	succ(2 * h) E N
(d) 0=2*OE N

Clause (d) is of course the appropriate instance of the leading zeroes premise. For brevity we
denote abs(b) by b'.

Consider now the operation inc which takes an object b in BN and returns the numeral one
greater than b. It is defined as

inc(b) E BNelim(b, Al, [z, Idx1,[x , 1]h0))

or in clausal form
inc(A) = Al
inc(b0) = 61
inc(b1) = (inc(b))0

Formally we can verify inc by establishing the judgement

I[b E BN c> inc(b) E Set(BN, [y]y' =D; succ(61)) ji

That is, the natural number corresponding to inc(b) must be one greater than the natural number
corresponding to b. The proof is detailed in figure 10. The structure of the argument reflects the
steps taken to construct the function inc. Steps 0.3, 0.4 and 0.5 establish the correctness of the
constructions for the cases A, b0 and bl respectively. Step 0.6 proves the operation respects the
leading zeroes constraint.

Complementary to inc is the function dec that subtracts 1 from a binary numeral b. It is
defined as

dec(b) E BNelim(6,0-elim(0),[x , 1]h1, [x, h]x0))

or in clausal form
dec(A) = 0-e/im(0)
dec(b0) = (dec(b))1
dec(b1) = 60

Note that dec only produces sensible answers when applied to non-empty numerals. See section
3.1.4 for a justification of the use of 0 as the argument to 0-elim in the A clause. We can verify

50

0.0 	I(b E BN
{ A-intr, 1-intr }

0.1 	Al E BN
0.2 	 succ(A')

=14 	{ BN-comp, subst }
succ(0)

=IN 	{ BN-comp, IN-comp }
(Al)'

{ 0.1, 0.2, Set-intr
0.3 	Al E Set(BN, [y]y1 = succ(A'))
0.4.0 	i[x E BN; h E Set(BN, [y]y' = succ(x'))

{ 0.4.0, 1-intr
0.4.1 	 xl E BN
0.4.2 	 succ((x0)')

=14 	{ BN-comp, subst)
succ(2 * x')

{ BN-comp, IN-comp }
(x1)'

{ 0.4.1, 0.4.2, Set-intr)
0.4.3 	 xl E Set(BN, [y]y' = succ((x0)1))

0.5.0 	i[x E BN; h E Set(BN, [y]y' = succ(x'))
{ 0.5.0, Set-elim, 0-intr

0.5.1 	 h0 E BN
0.5.2 	 succ((x1)')

=t; 	{ BN-comp, subst
succ(succ(2 * x'))

=IN 	 { IN-comp }
2 ssucc(x')

=pi 	{ 0.5.0, Set-elim, subst }
2* h'

=IN 	 BN-comp)
(hO)'

{ 0.5.1, 0.5.2, Set-intr
0.5.3 	 h0 E Set(BN, [y]y' = succ((x1)'))

] I
{ 0.3, refl }

0.6 	Al = Al E Set(BN, [y]y' = succ(A'))
{ 0.0, 0.3, 0.4, 0.5, 0.6, BN-elim

0.7 	inc(b) E Set(BN, [y]y1 = succ(b'))
)1

Figure 10: Verification of inc

51

elimination hypothesis:
1[b E BN

b $ A ■-• Set(BN, [y]inc(y) = b) type

{ 1-premise
0.0 I[zE BN
0.1 	; 	hEx0A1-• Set(BN, [y]inc(y) =
0.2.0 	1:) 	I[u E xl $ A

{ 0.0, 0-intr }
0.2.1 	 x0 E BN

BN-comp
0.2.2 	 inc(x0) = xl

{ 0.2.1, 0.2.2, Set-intr }
0.2.3 	 x0 E Set(BN,[y]inc(y) = xl)

{ 0.2, ■-•-intr
0.3 	x0 E xl $ A 	Set(BN,[y]inc(y) = xl)

]I
{ leading zeroes premise }

1.0 I[uEA$A
{ A-intr, refl

1.1 	A = A
{ 1.0, 1.1, -‘-elim

1.2 	0 E 0
{ 1.2, absurdity }

1.3 	0-elim(0) = 0-elim(0)1 E Set(BN, [y]inc(y) = A)
]I

{ 1, ,--intr)
2 	0-elim(0) = 0-elim(0)1 E A$ A 	Set(BN, [y]inc(y) = A)

Figure 11: Verification of dec

dec by establishing the judgement

I[b E Set(BN, [y]y A)
dec(b) E Set(BN, [y]inc(y) = b)

]I

We actually prove
I[b E BN

dec(b) E b # A 1—■ Set(BN, [y]inc(y) = 6)
]I

from which the desired judgement easily follows (section 3.4.3). The details of verifying the 1-
premise and the leading zeroes premise of the elimination rule are given in figure 11.

52

The operations inc and dec are the inverses of each other. Denoting composition of functions
by o, we have the properties

deco inc = A([x]x) E BN BN

dec composed with inc is an identity function over binary numerals, and

inc o dec = A([x)x) E Set(BN, [y]y A) 	Set(BN, [y]y A)

inc composed with dec is an identity function over non-empty numerals.

5.2 Binary Numerals Via Information Loss
In section 5.1, the type of binary numerals was defined so that any sequence of 0's and l's is a
valid numeral. A congruence rule was used to identify those numerals differing only in the number
of leading zeroes. An alternative approach is to define the type so that those numerals containing
leading zeroes are not valid members of the type. In this section, we give such a formulation of
binary numerals using information loss to exclude leading zeroes.

The formation rule and the A- and 1- introduction rules are the same as for BN.

BN'-formation
BN' type

A-introduction
A E BN1

b E BN'
1-introduction

61 E BN1

The 0-introduction rule is more complex. In BN, given some existing numeral b we simply
construct the numeral 60. However, if b is A, the invalid numeral AO containing a leading zero is
constructed. In order to exclude this possibility, the rule is strengthened to

b E BN'
pEb OBN, A

0-introduction
60 E BN'

The object p in the second premise of 0-introduction does not appear in the conclusion of the

53

rule. Thus, BN exhibits information loss. Note that p is an object of a negated equality type.
Such types are computationally redundant so this is a very simple case of information loss.

Each distinct term built up from the introduction rules for BN' denotes a distinct numeral.
The leading zeroes congruence rule is unnecessary.

The elimination rule obtained from the introduction rules is

I[w E BN c> C(w) type]I
b E BN1
c E C(A)
I[x BN1 ; h E C(x) ; p x $BN, A

d(x , h) E C(xO)

I[x BN' ; h E C(x) 	e(x, h) E C(xl)
BN'-elimination

BN'elim(b, c, d, e) E C(b)

Note how the premise p E b O A of 0-introduction becomes an assumption of the 0-premise in
the elimination rule, but the object p does not appear in the consequent of the premise because it
does not appear in the conclusion of the 0-introduction rule.

The three computation rules are summarised by the equations:

BN' elim(A, c, d, e) = c E C(A)
BA" elim(60, c, d, e) = d(b, BN'elim(b, c, d, e)) E C(b0)

elim(61, c, d, e) = e(6, BN'elim(b, c, d, e)) E C(61)

The 0-computation rule has all the premises of BN'-elimination plus

pEb$ A

We now compare the two formalisations of binary numerals by redoing the fragment of theory
developed for BN in B/V1 .

The definition of abs is the same in BN' as in BN. Its construction is identical except that the
leading zeroes premise of BN, namely 0 = 2* 0 E IN, disappears.

The definition and specification of inc are similarly unchanged in BN.

inc(6) = BIV'elim(b, Al, [x, h]xl,[x , 100)

I[b E BN 	inc(b) E Set(BN1 , [y]y' =N succ(b'))

The verification of inc in BN' is given in figure 12.
The proofs of inc in BN and BN differ in three ways:
• the proof of the 0-premise in BN (step 0.2) has the extra assumption xExt A. Such an

assumption is essential for constructing the numeral x0 in BN, though not of course in BN.

54

0.0 	I[b E BN'
{ similar to figure 10, steps 0.1-0.3 }

0.1 	Al E Set(BN', 	= succ(A'))
{ similar to figure 10, step 0.4 }

0.2.0 	1[E BN' ; h Set(BN', [y]yi = succ(xi)) ; zEz0A
0.2.1 	 zl E Set(BN', [y]y1 = succ((x0)'))

]I
0.3.0 	i[r E BN' ; h E Set(BN', [y]y' = succ(x'))

{ 0.3.0, Set-dim }
0.3.1 	 h' = succ(x')

{ 0.3.1, IN-individuality
0.3.2 	 h' 	0

0.3.2, absurdity)
0.3.3 	 h A

{ 0.3.3, 0-intr)
0.3.4 	 h0 E BN'

{ 0.3.1, BN'-comp, subst }
0.3.5 	 succ((x1)') = (hO)'

{ 0.3.4, 0.3.5, Set-intr }
0.3.6 	 h0 E Set(BN', [y]y' = succ((x1)1))

{ 0.0, 0.1, 0.2, 0.3, BN'-elim
0.4 	inc(b) E Set(BN', [y]y' = succ(b'))

Figure 12: Verification of inc in BN'

• to justify the 1-premise in both proofs, it is necessary to establish the equality

(h0)' 	SUCC((21)1)

One step in its derivation involves establishing

(hO)' =/.1 2* h'

In BN, we simply apply the 0-computation rule. In BN', however, we may only use the
0-computation rule when h $ A. Extra work is needed to establish this fact.

• the leading zeroes premise of BN (step 0.6) does not appear in BN'. In this example, it is
trivial to justify.

The second point above is a commonly occurring problem when reasoning in BN. Whenever we
want to use the 0-computation rule with 60, it is necessary to explicitly show b 0 A. In BN, it is
sufficient to establish b E BN.

The definition of dec is more complex in BN'. Consider subtracting 1 from the numeral 61. In
BN, we simply return 60. If b is A, the constructed numeral AO is invalid in BN'. Thus, 60 is only
returned if b 0 A, otherwise A is returned. The definition is

dec(b) E BN'elim(b,0-elim(0),[x,h]hl,[x, 	x = A then A else x0)

The correctness condition for dec is the same as in BN. The justification of the 1-premise is detailed
in figure 13. It is noticably more complex than the derivation in BN (step 0 of figure 11) as a
direct result of the more complex definition of dec required in BN'.

The verification of dec generalises the problem associated with reasoning in BN' mentioned
earlier. The general form of the 1-premise is

I[x E BN' ; h E C(r) c> d(x, h) E C(xl)]I

If the justification of this premise requires, at any point, the construction of the numeral rO,
it is necessary to establish x $ A. Unless we can establish x $ A from the induction hypothesis
y E C(x), it is necessary to do case analysis on x (complicating the proof and the derived program).
dec is an example. Even when x $ A is a consequence of y E C(x), it must still be derived
(complicating the proof but not the derived program). inc is an example..

Of course, the leading zeroes premise must be established when verifying dec in BN. Although
easy in this example, consider the situation where one wants to prove a property of binary numerals,
which is functional in character, by elimination. The leading zeroes premise then involves reasoning
about equality between functions. In such a situation, the effort required to establish the leading
zeroes premise becomes more significant and BM would compare more favourably with BN.

We can view the congruence rules of a congruence type as defining equivalence classes of objects
constructed from the other introduction rules. When these equivalence classes contain unique
representatives, the congruence type can also be defined via information loss. Namely, that type
which excludes all objects but the representatives of the equivalence classes. For example, the
unique representatives of BN are those numerals without leading zeroes, which is just the type
BN'. Types such as finite bags and finite sets defined in section 3.3 whose equivalence classes do
not contain unique representatives can not be defined via information loss.

56

elimination hypothesis:
I{ b E BN

b A 	Set(BN, [y]inc(y) = b) type

1-premise
0.0 	I[x E BN'
0.1 • 	, 	hEx0A)—• Set(BN',[y]inc(y) = x)
0.2.0 	j[u xl 0 A

{ BN'-elim
0.2.1 	 x=AVx0A
0.2.2.0 	 If 	z = A

BN'-comp, 0.2.2.0, 1-intr, subst }
0.2.2.1 	 inc(A) = Al = xl E BN'

A-intr, 0.2.2.1, Set-intr
0.2.2.2 	 A E Set(BN', [y]inc(y) = xl)

JI
0.2.3.0 	 If 	x 	A

{ 0.0, 0.2.3.0, 0-intr }
0.2.3.1 	 x0 E BN'

{ BN'-comp
0.2.3.2 	 inc(x0) = xl

{ 0.2.3.1, 0.2.3.2, Set-intr
0.2.3.3 	 zO E Set(BN', [y]inc(y) = xl)

{ 0.2.1, 0.2.2, 0.2.3, Bool-elim }
0.2.4 	 if x = A then A else x0 E Set(BN', [y]inc(y) = xl)

]I
{ 0.2, 	}

0.3 	 if x = A then A else x0 E xl $ A 1— Set(BN', [y]inc(y) = xl)

Figure 13: Verification of dec in BN'

57

In defining BN', we have used information loss for a very specific purpose. Namely, to exclude
certain objects from a type. These objects are, strictly speaking, valid objects of the type but their
inclusion induces the wrong equality relation. When information loss is used for this purpose, an
alternative formulation as a congruence type is possible. Namely, use congruence rules to identify
each excluded object with the included object it is equal to.

6 Mutually Recursive Types
A recursively defined type, such as the natural numbers, is defined in terms of itself; thus, for
example, we say that zero is a natural number, and that the successor of a natural number is also
a natural number. This principle of inductive definition can easily be generalised to accommodate
collections of types defined in terms of one another. We say that a collection of types is mutually
recursive if each type in the collection is defined in terms of some other types in the collection. As
data structures, such types have many applications in computing science: the two examples which
we present in this section are trees and forests, and derivation trees for context-free grammars.

Mutual recursion introduces nothing substantially new into type theory. What innovations
there are, reside in the elimination and computation rules. Ordinarily, a type's elimination rule
contains one premise for each of its introduction rules; with a collection of mutually recursive
types, the elimination rule for one type contains premises related to the introduction rules of other
types in the collection as well. Induction hypotheses occur in the premises of the elimination
rules in such a way as reflects the mutually recursive nature of the types, and this allows the
construction of recursive functions. In fact, the non-canonical constants defined by the elimination
and computation rules constitute a collection of mutually recursive functions.

The simplest way to explain the use of mutually recursive types in type theory is by example.
Below, we present a trees-and-forests data structure, in which a node of a tree governs a list
of subtrees (hence, a tree structure with an arbitrary branching factor), and, more generally, a
mutually recursive collection of types which represent the derivation trees of a given context-free
grammar. Both examples are brief, intended only to convey the basic principles of the mutually
recursive definition of types; they are supplemented, however, by an extended example of an
application of the trees and forests data structure, in which we construct a search algorithm
commonly used in games-playing programs.

6.1 Trees and Forests
Our first example, then, is a trees and forests data structure which is parameterised by a base
type. So much is expressed by the formation rules of the types:

A type

Tree(A) type

A type

Forest(A) type

Tree-formation

Forest-formation

58

A tree consists of an element of the base type together with a forest of subtrees:

a E A
f E Forest(A)

node-introduction
node(a, f) E Tree(A)

and a forest is a list-like structure of trees:

nilf-introduction
nilf E Forest(A)

t E Tree(A)
f E Forest(A)

:-introduction
t : f E Forest(A)

where nilf denotes the empty forest. These types are mutually recursive in that a tree may occur
as a subexpression of a forest, and vice-versa. The elimination rules for the types introduce two
non-canonical constants, Telim and Felim, which are themselves mutually recursive: evaluation of
Telim on an object t E Tree(A) may involve a call of Felim on the forest which is a subexpression
of t, and similarly for Felim. For this reason, premises pertaining to the forest introduction rules
are included in the premises of Tree-elimination, and a premise pertaining to node-introduction
is included in Forest-elimination: in other words, the minor premises of the two elimination rules
are identical. There are three minor premises to each rule: one for trees and two for forests. This
means that in order to prove a property P(t) for some t E Tree(A), one must also prove that some
other property, Q(f), holds for all f E Forest(A). Here, then, are the elimination rules:

I[x E Tree(A) t> P(x) type)1
1[x E Forest(A) t> Q(x) type)1
t E Tree(A)
j[x E A; y E Forest(A); hy E Q(y)

• 	

a(x,y,hy) E P(node(x, y))
11
b E Q(nilf)

I[x E 1Yee(A); y E Forest(A); hx E P(x); hy E Q(y)

• 	

c(x, y,hx,hy) E Q(x : y)

Tree-elim
Telim(t , a, b, c) E P(t)

and Forest-elimination differs only in its major premise and its conclusion:

59

I(x E 71.ee(A) v P(x) type 11
If x E Forest(A) 	Q(x) type
I E Forest(A)

I[x E A;y E Forest(A);by E Q(y)
a(x,y,hy) E P(node(x, y))

b Q(nilf)
I[x E Tree(A); y E Forest(A); hx E P(x); by E Q(y)

c(x , y, hx , hy) E Q(x : y)

Forest-elim
Felim(f , a, b, c) E Q(/)

(To be consistent we should write Tree-elim(. . .) and Forest-elim(. . .). For brevity we prefer
Telim(. . .) and Felim(. . .).)

The computation rules are summarised by the following equations:

Telim(node(x , y), a, b, c) = a(x , y, Felim(y, a, b, c))

Fehm(nilf, , a, b, c) = b
Felim(y : y, a, b, c) = c(x , y, Telim(x , a, b, c), Felim(y, a, b, c))

The mutually recursive nature of Telim and Felim is evident in these equations. The two elim-
ination hypotheses—P and Q —of the elimination rules, if chosen appropriately, allow for very
elegant proofs when reasoning about trees and forests, as we shall presently see. For the moment,
before moving on to context-free grammars, we content ourselves with presenting a function which
emphasises the list-like structure of forests. The function is like the function "map" defined on
lists: it takes as arguments a function g E Tree(A) = B and a forest, and, applying g to each tree
in the forest, concatenates the results into a list. Since we shall have cause to refer to this function
later, we call it "mapforest" and define it thus:

mapforest E A([g] A([f]Felim(f , , y, hylx
,nil
, [x, y, hx, hy](g .x) by

E (Tree(A) B) Forest(A) List(B).

We derive the function (see figure 14) by assuming g E Tree(A) = B and f E Forest(A), and
then performing Forest-elimination on f . As noted above, two of the minor premises of Forest-
elimination pertain to forests—these we use to construct an object of List(B)—but there is also
one premise which pertains to trees and we are required to prove some property, P, of trees. This
latter property is superfluous, since our function mapforest requires no information concerning the
individual trees which constitute the forest to which it is applied. In this case, we select some
trivial proposition, here A which we prove from the assumptions of the premise pertaining to trees.

60

g E Tree(A) B
I[f E Forest(A)
• { Forest-elimination, node-premise, prove A }

E A; y E Forest(A); hy E List(B)
• { trivially, from assumptions }

z EA

{ Forest-elimination, nilf-premise, nil-intro }
0.1.2 	 nil E List(B)

{ Forest-elimination, :-premise }
0.1.3.0 	 z E Tree(A); y E Forest(A); hr E A; hy E List(B)

{ function application, 0.0, 0.1.3.0 }
0.1.3.1 	 g.z E B

{ ::-intro, 0.1.3.1, 0.1.3.0 }
0.1.3.2 	 (g.z) :: hy E List(B)

{ Forest-dim, 0.1.1, 0.1.2, 0.1.3)
0.1.4 	 Felim(f, [x, y, hy]x, nil, [x, y, hx, hy](g.x):: hy) E List(B)

JI
J1

Figure 14: derivation of mapforest

It is worth noting that if a function g E Tree(A) 	B is such that

g.(node(x , y)) = e(x , y) E B

for some expression, e, then, for all f E Forest(A), mapforest.g.f is equal to:

Felim(f , [x, y, hy]e(x, y)
,nil
, [x, y, hx, hy]lix hy

)•

The reader may care to prove the equality by using Forest-elimination to construct the above
object as an element of Set(List(B), 	= mapforest.g.f). The proof is simple, but provides a
good example of how the two elimination hypotheses of the elimination rules can work in tandem.

6.2 CFG's and mutually recursive types
A possible application of mutually recursive types is in the development of parsing algorithms;
see, for example, Chisholm [9]. We outline here a method for constructing a collection of types
with which to represent derivation trees for a given context-free grammar. If the grammar is
mutually recursive (two or more nonterminals are reachable from each other), then so too will be
the collection of types which is constructed.

61

For each nonterminal symbol, "A", we introduce a type constructor A whose formation rule is
the axiom A type. This type will have one introduction rule for each production of the grammar
in which "A" occurs to the left of the rewrite arrow. Such a production will be of the form:

A — xoAixi • • • AnXn

for 0 < n and where each A, is a nonterminal and each x, is a string of terminal symbols. The
corresponding introduction rule will be:

al E Al

an E An

E A

where r is a unique object-constructor and each A, is the type constructor corresponding to the
nonterminal "Ai". The elimination rule can thence be constructed as with trees and forests above:
for two nonterminals "A" and "B", if "B" is reachable from "A" and "A" is reachable from "B",
then premises pertaining to the introduction rules of B will be included in the premises of the
elimination rule for A, and vice-versa, and in proving a property, P, of objects of type A, it will
be necessary to prove a complementary property Q of objects of type B.

The objects of the types represent derivation trees in that each object-constructor is associated
with a production of the grammar, and each of the subexpressions which it governs represents, in
turn, an instance of a nonterminal which occurs to the right of the rewrite arrow in that production.

As an example, consider the following simplified fragment of the syntax of Pascal type declara-
tions (from Jensen & Wirth [34]), where names between angle brackets denote nonterminals, and
all other symbols are terminals.

(Pascaltype) 	record (Fieldlist) end

(Fieldlist) 	(Recordsection) ; (Fieldlist)

(Recordsection) 	(Id) : (Pascaltype)

We wish to introduce types corresponding to the nonterminals above; call these Ptype, Flist, Rsect
and Id. These types will have (among others) the following introduction rules:

f E Flist

rec(f) E Ptype

r E Rsect
E Flist

r; f E Flist

62

x E Id
t E Ptype

x : t E Rsect

Since the nonterminals "Pascaltype", "Fieldlist" and "Recordsection" are all reachable from each
other, their corresponding types are mutually recursive, and so the elimination rules for these types
will contain premises pertaining to each of these introduction rules. Thus, the elimination rule for
Ptype will have the form:

I[x E Ptype r> P(x) type]I
I[x E Flist 	Q(x) type JI
I[x E Rsect r> R(x) type II
t E Ptype
l[x E Flist; hx E Q(x)

a(x, hx) E P(rec(x))
]I

I[x E Rsect; y E Flist; hx E R(x); by E Q(y)
b(x, y, hx, hy) E Q(x; y)

i[x E 	y E Ptype; hy E P(t)
c> c(x , y, hy) E R(x : y)
] I

Ptype-elim
Ptype-elim(t, a, . 	b, 	, c) E P(t)

An obvious corollary of this example is that it is possible to construct types to represent
derivation trees for context-free programming languages. The elimination rules then provide a
means of reasoning about programs written in the language, one possible application being to
formalise the language's denotational semantics.

It should be noted that what we have presented above is just a method for constructing a
collection of types, and does not allow one to reason about context-free grammars within the
theory. However, Synek and Petersson [55] have introduced into the theory a tree type which is
a generalisation of the well-ordering type, and which can be used to represent mutually recursive
data structures. They claim that with this type, it is possible to reason about the data structures
themselves, rather than just about the objects of the data structures.

6.3 An application: games playing
We now present an application of the trees and forests data structure; to wit, the construction of
a game-tree (a tree the paths through which represent admissible sequences of moves in a given
game) and a search algorithm usually known as "minimax" which is often used in games-playing

63

programs. Our purpose, however, is still primarily pmdagogic, so we proceed slowly at first and
construct some simple, generally-useful functions which will be combined in the end to form the
minimax algorithm.

There is much to be said for this approach to program development. On our first attempt,
we tried to derive the algorithm all in one go, which resulted in an ungainly derivation of a
discouraging length. Our subsequent attempt resulted in what follows. The algorithm was divided
into constituent functions of manageable size, and as each function was derived, we proved that it
enjoyed certain properties which were useful when we came to combine them into larger functions.
The derivations we give below are pleasantly short and quite readable, though we maintain a high
degree of formality at each step.

Our program development is similar to that of Hughes in [32], although in that paper, the
functions are written in a programming language with infinite objects, which allows a function to
be more freely decomposed into constituent parts. The reason for this greater freedom is that, given
a language with infinite objects, a non-terminating function may be composed with other functions
in such a way that the composite function is guaranteed to terminate. In type theory, however, all
constituent functions must be strongly terminating. Thus, for example, Hughes is able to derive
separately two functions, the first of which constructs (lazily) a possibly infinite game-tree (and so
may not terminate) and the second of which "prunes" the tree to a given depth. Type theory, on
the other hand, only allows the derivation of terminating functions, and so below we have to derive
a function which constructs a game-tree and which takes as a parameter the maximum depth of
the tree to be constructed; this one function being equivalent to the composition of Hughes' two
functions.

We assume throughout a base type, A, which we intend to be taken as a representation of
positions in some game, but as we make few assumptions about this type, there is little loss of
generality. The minimax algorithm searches a game-tree to select the best possible move which
can be made from a given position of the game; we begin by deriving some functions which allow
us to construct the game-tree.

The first small program we develop is a function, roots E Forest(A) = List(A), which, given a
forest, returns the list of the roots of the trees in that forest. The function is defined to be:

roots E A([f]Felim(f , [z, y, hy]x
,nil
, [x, y, 	hy]hx hy

E Forest(A) List(A).

The function is derived by using forest-elimination, which involves two elimination hypotheses, one
pertaining to trees, the other to forests. For the hypothesis pertaining to trees, we choose A; for
forests, List(A). If we compare the derivation of roots (figure 15) to that of the function mapforest
which we derived earlier, we see that they are quite similar, except that roots does make use of
the hypothesis pertaining to trees.

Next we derive a function, miff E (A 	Forest(A)) 	List(A) 	Forest(A), which constructs
a forest. The function takes as arguments a function, g E A 	Forest(A), and a list of elements

64

0.0 	I[f E Forest(A)
{ Forest-elimination, node-premise: construct an object of A

0.1.0 	i[r E A; y E Forest(A); hy E List(A)
0.1.1 	v 	x E A

{ Forest-elimination, nilf-premise, nil-intro }
0.2 	nil E List(A)

{ Forest-elimination, :-premise: construct an object of List(A) }
0.3.0 	l[z E Tree(A); y E Forest(A); hx E A; hy E List(A)

{ ::-intro, 0.3.0 }
0.3.1 	 hx ::hy E List(A)

11
{ Forest-elimination, 0.0, 0.1, 0.2, 0.3 }

0.4 	 Felim(f, [x, y, hy]x, nil, [x, y, hx, hy]hx hy) E List(A)

Figure 15: derivation DI

of type A and returns a forest of trees whose roots are the elements of the given list and whose
subtrees are generated by the function g applied to the root. mkf is defined to be:

A(MA([1]Listelim(1, nilf, [x, y, hy]node(x, g.x) : hy)))

and its derivation is given in figure 16.
Now we can show a useful property of roots and mkf, namely that for all g E A 	Forest(A)

and 1 E List(A):
roots.(mkf .g .1) = 1 E List(A)

The proof, given in figure 17, uses the computation rules for Felim, but since the premises of
those rules have effectively been given in the previous derivations, we omit them and use only the
equations given in the introduction to trees and forests.

We turn now to the construction of the game-tree, which should be such that the root of a
subtree denotes a position which can be reached from its ancestor in one move. That is, if we have
a function, moves E A 	List(A), which, given a position in a game, returns the list of positions
which may be reached from that position in one move of the game, then we want to specify that
for every subtree, node(a, f), of the game-tree, roots. f = moves.a E List(A). It is a simple matter
to specify that this relation holds between the root of a tree and its immediate subtrees, but how
can we express that this relation holds recursively for all subtrees of a tree?

The solution lies with the non-canonical constants Telim and Felim: their mutual recursion
allows the specification of just such properties. For example, suppose that Q is a relationship
between objects a E A and objects f E Forest(A), i.e., Q(a, f) E U1 whenever a E A and
f E Forest(A). Then we can construct a property P of trees such that

P(node(a, f)) 17- Q(a, f).

65

0.0 	R 	g E A 	Forest(A)
0.1.0 	r> 	I[1 E List(A)

{ induction on 1, base case, nilf-intro
0.1.1 	 nilf E Forest(A)

induction step }
0.1.2.0 	 R 	x E A; y E List(A); hy E Forest(A)

{ function application, 0.0, 0.1.2.0 }
0.1.2.1 	 g.x E Forest(A)

{ node-intro, 0.1.2.0, 0.1.2.1 }
0.1.2.2 	 node(x, g.x) E Tree(A)

:-intro, 0.1.2.2, 0.1.2.0 }
0.1.2.3 	 node(x, g.x) : hy E Forest(A)

{ list-dim, 0.1.0, 0.1.1, 0.1.2 }
0.1.3 	 Listelim(1, nilf, [x, y, hy]node(x, g.x) : hy) E Forest(A)

Figure 16: derivation D2

We can specify this for an arbitrary t E Tree(A) by defining

P(t) E Telim(t ,[x , y, hy]Q(x, y)
,T
, [x, y, hx,hy]r

E Ui.

Since, for the moment, we are not interested in specifying properties of forests, we let T in the
second and third clauses of the Telim expression denote some always-inhabited type (hence, -true").
However, it is a simple matter to extend this definition to a property, FP, of forests, which expresses
that for f E Forest(A), each tree in the forest f enjoys property P:

FP (f) E Felim(f ,[x , y, hy]co(x ,y)
,T
, [x, y, hx , hy]hx A hy

E Ul.

Here, the T in the second clause expresses that FP is vacuously true of the empty forest.
This can be generalised one step further to allow the relation to depend upon the recursion

variable hy (to allow, for example, that the relation hold recursively for each subtree of a given
tree). Thus, we posit a new relation, R, such that:

J[zEA;yE Forest(A);hy EU j
R(x , y, hy)

]I

66

{ roots a A([f]Felim(f,[x,y, hy]x, nil, [x, y, hz, hy]hz hy)) }
mkf F.—: A([g]A([1]Listelim(1, nilf, [x ,y, hyjnode(x, g.x) : hy))) }

0.0 	I[g E A 	Forest(A)
0.1.0 	t• 	I(1 E List(A)

{ induction on 1, base case, definition of mkf
0.1.1 	 mkf .g.nil = nilf E Forest(A)
0.1.2 	 roots.(mkf .g.nil)

=List(A) 	 { congruence of function application, 0.1.1
roots.nilf

=List(A) 	 { definition of roots }
nil

{ induction step
0.1.3.0 	 1(x E A; y E List(A); hy E (roots.(mkf .g.y) =List(.4) y)

{ definition of mkf
0.1.3.1 	 mkf .g.(x y) = node(x,g.x) : (mkf .g.y) E Forest(A)
0.1.3.2 	 roots.(mid .g.(x ::y))

=Liss(A) 	{ congruence, 0.1.3.1
roots.(node(x, g.x) : (mkf .g.y))

=List(A) 	 { definition of roots }
::(roots.(mkf.g.y))

=Li st(A) 	{ hypothesis, 0.1.3.0, ::-congruence
z::y

JI
{ list-dim, 0.1.0, 0.1.2, 0.1.3, suppressing proof-object

0.1.4 	 roots.(mkf.g.1) = 1 E List(A)

Figure 17: derivation D3

67

We formulate a new property, P, which expresses that, for t E Tree(A), R holds for the components
of t, and possibly for each subtree of t:

P(t) E Telim(t ,[x ,y, hy]R(x , y, hy)
,T
, [x ,y, hx , hy]hx A hy

E U1.

And, similarly, the corresponding property defined on forests:

FP(f) _= Felim(f , [x, y, hy]R(x ,y, hy)
T

, [x ,y, hx , hy]hx A hy

E U1.

Now, using P and FP as above, we can show that mkf preserves certain properties in that

mkf E V(A, [a]Set(Forest(A), [f]P(node(a, f)))) 	List(A) 	Set(Forest(A), FP).

That is, given a function g E A 	Forest(A) such that for all a E A, P(node(a, g .a)) holds, and
given a list 1 E List(A), FP(rnkf .g .1) also holds. The proof is given in figure 18.

Now we assume that we have a function moves E A 	List(A) which, given a position, returns
the list of positions which may be reached from that position in one move. Our game-tree, then,
will be such that for every node(a, f) which occurs in the tree, roots. f = moves.a E List(A), and
the same will hold for each subtree in the forest f . However, since we cannot construct an infinite
game-tree, we must weaken this requirement to (f = nilf) V (roots. f = moves.a). We specify this
as the property M, where, for t E Tree(A),

M(t) E Telim(t , [x , y, hy)(y = nilf) V (roots.y = moves.x A hy)
T

,[x , y, hr , hy]hx A hy

E U1.

The occurrence of hy in the first clause expresses that the ancestor-descendant relation holds
recursively for all subtrees. There is also the corresponding property, FM, which expresses that,
for f E Forest(A), each tree in f enjoys property M:

FM (f) 	Felim(f , [x, y, hy](y = nilf) V (roots.y = moves.x A hy)
,T
, [x, y, hx ,hy]lax A hy

E U1.

68

(FP(f) = Felim(f, R, T, [x, y, hz, hyjhz A hy)}
0.0 	I(g E V(A, [a]Set(Forest(A),[f]P(node(a, f))))
0.1.0 	 1 E List(A)

{ induction on I, base case, nilf-intro }
0.1.1 	 nilf E Forest(A)

{ definition of FP }
0.1.2 	 FP(nilf) = T

T always inhabited; type-equality, subset-intro, 0.1.1 }
0.1.3 	 nilf E Set(Forest(A), FP)

{ induction step }
0.1.4.0 	 l[z E A; y E List(A); hy E Set(Forest(A), FP)

{ function application, 0.0, 0.1.4.0 }
0.1.4.1 	 g.x E Set(Forest(A),[f]P(node(x, f)))

{ assumptions for subset-elim on hy and g.x }
0.1.4.2.0 	 I[hy E Forest(A); q E FP(hy); 9x E Forest(A); r E P(node(x,gx))

{ node- intro, :-intro, 0.1.4.0, 0.1.4.2.0 }
0.1.4.2.1 	 node(x,gx) : hy E Forest(A)

{ definition of FP }
0.1.4.2.2 	 FP (node(x , gx) : hy) = P(node(x, gx)) A FP(hy)

{ pair-intro, 0.1.4.2.0, type-equality, 0.1.4.2.2 }
0.1.4.2.3 	 (r,q) E FP(node(x,gx) : hy)

{ subset-intro, 0.1.4.2.1, 0.1.4.2.3 }
0.1.4.2.4 	 node(x,gx) : hy E Set(Forest(A), FP)

)1
subset-elim, twice, 0.1.4.0, 0.1.4.1, 0.1.4.2 }

0.1.4.3 	 node(x, g.x) : hy E Set(Forest(A), FP)
)1

{ list-dim, 0.1.0, 0.1.3, 0.1.4 }
	 •

0.1.5 	 Listelim(1, nilf, [x, y, hyJnode(x, g.x) : hy) E Set(Forest(A), FP)
)1

)1

Figure 18: derivation D4

69

From the symmetry of these expressions, it is easy to verify that

M(node(a, f)) = (f = nilf) v (roots. f = moves.a A FM (f))

and
FM(t : f) = M(t) A FM(f).

We now give the function gen E IN A Forest(A), which we use to construct the game-tree.
The function is defined to be:

)►([n]IN-elim(n,)t([a]nilf), [x ,hx]AaalmIrf.hx.(moves.a))))

and is such that, for n E IN and a E A, gen.n.a is a forest of trees of level at most n such
that M(node(a, gen.n.a)) holds. To ensure this latter property, figure 19 shows that gen E IN
V(A, [a]Set(Forest(A), [f]M(node(a, f)))). The proof uses derivation D4, with P instantiated to M
and FP instantiated to FM. We also use the property proven in D3, that for all g E A 	Forest(A)
and all / E List(A), roots.(mkf .g .1) = I E List(A).

Now that we can construct our game-tree, we turn to our last function, the minimax algorithm.
The minimax algorithm is intended for a two-player game and assumes that there is some method
of evaluating how good a given position is for a fixed player. Working on the assumption that this
player will always try to move to a maximally good position, and that the other player will always
move to a minimally good (for his opponent) position, minimax searches a game-tree by alternately
selecting the maxima and minima of the levels of the game-tree. The algorithm is usually written
as consisting of two mutually recursive functions, maximise and minimise:

maximise.(node(a, nilf)) = a 	 (19)
maximise.(node(a, f)) = max .(mapforest.minimise. f) 	 (20)

minimise.(node(a, nilf)) = a 	 (21)
minimise.(node(a, f)) = min.(mapforest.maximise.f) 	 (22)

We assume given the functions min E List(A) = A and max E List(A) 	A, which select,
respectively, a minimally good and a maximally good position from a list of positions. First, we
construct a function, alt E Tree(A) 	(List(A) 	A) = (List(A) 	A) = A, which, given a tree
and two functions, applies those functions alternately at each level of the tree. We define alt to be:

	

alt = Aat] Telim(t , [x, y, hy]A([p, 	y = nilf then x else p.(hy.q.p))
A([p, q]nil)

, [x, y, hx, hy]A([p, Chx.p.q)::(hy.p.q))

Tree(A) (List(A) A) (List(A) A) A.

The swapping of the functions p and q in the first clause effects the alternate applications. The
function is derived by Tree-elimination in the obvious way: the elimination hypothesis pertaining
to trees is (List(A) 	A) 	(List(A) 	A) = A, and the elimination hypothesis pertaining

70

{M(t) a Telim(t, [x, y, hy](y = nilf) V (roots.y = moves.x A hy), T, [z, y, hz, hy]hx A hy)}
{FM (f) = Felim(f, [x, y, hy](y = nilf) V (roots.y = moves.z A hy), T, [x, y, hx, hy]hx A hy))
{gen E A([n]N-elim(n, A([a]nilf), [r, hx)A([a]mkf .hx.(moves.a))))}
0.0 	I[n E IN

• { induction on n, base case }
0.1.0 	I[a E A

t) 	nilf-intro
0.1.1 	 nilf E Forest(A)

{ definition of M
0.1.2 	 M(node(a, nilf)) = (nilf = nilf) V (roots.nilf = moves.a A FM (nilf))

{ nilf = nilf, V-intro, subset-intro, 0.1.1, 0.1.2 }
0.1.3 	 nilf E Set(Forest(A),[f]M(node(a, f)))

{ A-intro, 0.1 }
0.2 	 A([a]nilf) E V(A, [a]Set(Forest(A), [f]M(node(a, f))))

{ induction step }
0.3.0 	i[z E IN; hz E V(A, [a]Set(Forest(A),[f]M(node(a, f))))
0.3.1.0 	

• 	

I[a E A
0.3.1.1 	 u 	moves.a E List(A)

{ D4, definitions of M and FM }
0.3.1.2 	 mkf.hx.(moves.a) E Set(Forest(A), FM)

{ D3 }
0.3.1.3 	 roots.(mid .hx.(moves.a)) = moves.a E List(A)

{ definition of M, subset-intro, 0.3.1.2, 0.3.1.3 }
0.3.1.4 	 mkf.hx.(moves.a) E Set(Forest(A), [f]M(node(a, f)))

{ A-intro, 0.3.1 }
0.3.2 	 A([a]mkf 	.(moves.a)) E V(A, [a]Set(Forest(A),[f]M(node(a, f))))

INT-elim, 0.0, 0.2, 0.3, definition of gen }
0.4 	 gen.n E V(A, [a]Set(Forest(A),[f]M(node(a, 1))))

Figure 19: derivation D5

71

to forests is (List(A) 	A) 	(List(A) 	A) 	List(A). Similarly, we can derive a function,
mapalt E (List(A) = A) 	(List(A) 	A) = List(A), which corresponds to alt, but is defined on
forests, and effectively applies alt to each tree in a given forest:

mapalt 	A([f]Felim(f , [x, y, hy]Aap, 	y = nilf then x else p.(hy.q.p))
,)([p, qinil)
,[x, y, hx , hy]A([p, q](hx.p•q) (hy•p•q))

E Forest(A) 	(List(A) = A) 	(List(A) = A) 	List(A)

The last step is to define maximise E Tree(A) = A to be A(Nalt.t.max.rnin) and define
minimise E Tree(A) 	A to be A(Nalt.t.min.max) and then prove that these functions satisfy
equations (19)-(22) above. By using the computation rules, it is easily shown that:

mapalt. f.min.max = mapforest.minimise.f

mapalt. f . max . min = map forest .maximise. f

from which. again by using the computation rules:

maximise.(node(a, f)) = if f = nilf then a else max.(mapalt. f .min.max)
= if f = nilf then a else max .(mapforest. minimise. f)

minimise.(node(a, f)) = if f = nilf then a else min.(mapalt. f .max.min)
= if f = nilf then a else min.(mapforest.maximise. f)

Finally, given a E A and n E IN, the program

maximise.(node(a, gen. n.a))

finds the best move that can be made from a in n moves.

7 Conclusion
The world of programming languages seems to be split into two quite distinct and mutually antag-
onistic parts: the world of untyped languages and the world of typed languages. The best-known
example of the former is probably Lisp but it also includes Prolog, all command languages such as
Cshell and text-processing languages like TEx. The best-known example of the latter is probably
Pascal but it also includes modern functional languages like SML [45].

Alongside the dichotomy between typed and type-free languages most programmers would
recognise a dichotomy between "static", or "compile-time", type checking and "dynamic", or "run-
time" type checking. This view of type is however a severe impediment to future progress because
there is indeed no such dichotomy; there is a trichotomy. There is a third time at which type
checking can take place and that is at development time.

72

Many would argue that static type checking is an a priori requirement on any notion of type
in programming languages, that such a machine-check substantially increases the reliability of our
programs. The truth is, though, that the most significant benefit of a well-defined type structure is
the support that it gives to organising the development of programs — an experienced programmer
will (or should?) never make major type errors, in just the same way that he never makes major
syntactic errors. The standards that we require of professional programmers should at least ensure
that.

There are, moreover, many properties of a program that can be discovered neither at run-time
nor at compile-time because of either theoretical or practical impossibility. We need only mention
one — termination. The constructive theory of types that we have described here was originally
developed unfettered by implementation ideologies or, indeed, by any concern for practical pro-
gramming issues. Yet its introduction of the notion of dependent types was both a vital and an
inevitable step; as a consequence, the notion of type is sufficiently enriched as to be equated with
specification. And as a consequence, the type of a program is not a decidable property. The
responsibility for ensuring that a program is well-typed devolves thus upon the professional pro-
grammer — Martin-L8f's theory of types is in our view an excellent exemplar of a formalism for
development-time type checking.

On the other hand there remain drawbacks to the practical application of the theory that it
would be dishonest of us not to mention. Two in particular concern (a) the mismatch between
programs and proofs and (b) the introduction of well-founded recursion.

With regard to the former, we have already discussed the use of the subset type as a mecha-
nism for eliminating computationally irrelevant information from proof objects. It is, however, a
mechanism that in our view does not go far enough. Rather, it is the case that in many instances
(for example, equalities and negations) the identification of propositions with types is far-fetched
and awkward. In cases where the proof of a proposition contributes no computationally relevant
information there is also no reason why classical reasoning should not be used. Current thinking
is therefore towards a separation of propositions from types.

Related to the separation of propositions from types is the distinction between Gentzen-style
proof derivations (the sort we have used here) and equational style reasoning. An argument that
is aired nowadays is that Gentzen-style reasoning is better suited for machine implementations
(witness the NuPRL system) than for human reasoning (in apparent contradiction to Gentzen's
own claim that his was a "natural" system of logical deduction). Indeed it is often the case
that equational-style derivations within the classical calculus are substantially more elegant than
Gentzen-style derivations of the same propositions. The advantages of Gentzen-style derivations
become apparent, however, in those cases where the structure of the proof directly reflects the
structure of the program that is created. A proper separation of propositions from types will
therefore separate those parts of program design that are directly reflected in the program structure
from those parts that leave no visible trace in the program. Gentzen-style reasoning will continue
to be effective in the former case but we are often more convinced by equational reasoning in the
latter case.

The second drawback of Martin-Lot's theory concerns the strict requirement of totality for
all functions defined within the theory. The inability to define non-terminating computations is
not something that we regard as a major handicap to the practising programmer, although the
introduction of partial functions is regarded by the NuPRL group as an important innovation

73

[15,16]. The drawback that we regard as more urgent is that there is no clean mechanism within
the theory whereby (total) functions may be defined by well-founded recursion such as is used
in, say, the development of quick-sort. There have been several attempts to introduce such a
mechanism whilst maintaining the philosophy and elegance of Martin-Lors formalism [54,50,58]
but in our view the problem has still not been adequately resolved.

Computer programming has invigorated the study of formal systems not just because a proper
formalisation is a prerequisite of any implementation but because good formalisms can be very
effective in understanding and assisting the process of developing programs. Constructive type
theory is a formalism that helps us to understand and to exploit the relationship between data
and program structure; it is this aspect of the theory that we have chosen to emphasis here. A
complaint that may be made is that we have been somewhat cavalier in our discussion of semantical
and other foundational issues. For discussion of such aspects of the theory we refer the reader to
Martin-Lot's own accounts [41,42,40] and to the work of Allen [1] and of Nordstrom et al. [53].
With reference to the introduction of new type structures into the theory we would particularly
draw attention to the work of Mendler [44] and Constable and Mendler [14] where some of the
limitations and pitfalls of the techniques that we have exemplified are amply discussed.

There is a number of other topics that we have not discussed, not least of which is imple-
mentations of the theory such as the NuPRL system [13,16], and the related implementation of
"Constructions" [17]. Also not mentioned is the development and implementation of "logical frame-
works" [28,22], a topic which can be said to owe its very existence to constructive type theory.
Finally, the relationship between the work presented here and categorical accounts of type struc-
tures is one that we have just hinted at. We have not discussed it in depth because we ourselves
are not capable of doing so at this point in time. Nevertheless it is a topic that we believe will
receive particular attention in the future.

Acknowledgements
We would like to take this opportunity to express our gratitude to those who have made this paper
possible. First and foremost, our thanks go to Per Martin-Li5f, the author of the theory on which
the paper is based, and to the members of the Goteborg Programming Methodology Group, Bengt
Nordstrom, Kent Petersson and Jan Smith, for their pioneering efforts in bringing the theory to
the attention of computing scientists. We have received valuable criticism and support from Stuart
Anderson and from members of the Groningen Tuesday Afternoon Club. Thanks also go to Hilary
Backhouse for her IATEXpertise. G.R. Malcolm is supported by a grant from the Science and
Engineering Research Council of Gt. Britain.

References
[1] S. Allen. A Non-Type-Theoretic Semantics for Type-Theoretic Language. PhD thesis, Cornell

University, September 1987.
[2] R.C. Backhouse. Notes on Martin-LOf's theory of types, parts 1 and 2. In FACS FACTS,

British Computer Society, 1986.

74

[3] R.C. Backhouse. On the Meaning and Construction of the Rules in Martin-Lot's Theory
of Types. Computing Science Notes CS 8606, Department of Mathematics and Computing
Science, University of Groningen, 1986.

[4] R.C. Backhouse. Program Construction and Verification. Prentice-Hall International, Lon-
don, 1986.

[5] R.S. Boyer and J S. Moore. A Computational Logic. Academic Press, 1979.
[6] R.S. Boyer and J S. Moore. MJRTY — A Fast Majority Vote Algorithm. Technical Re-

port ICSCA-CMP-32, Institute for Computing Science and Computer Applications, University
of Texas at Austin, 1982.

[7] N.G. de Bruijn. A survey of the project automath. In J.P. Seldin and J.R. Hindley, editors,
Essays in Combinatory Logic, Lambda Calculus, and Formalism, pages 589-606, Academic

.Press, 1980.

[8] P. Chisholm. Derivation of a parsing algorithm in Martin-Lot's theory of types. Science of
Computer Programming, 8:1-42, 1987.

[9] P. Chisholm. Investigations into Martin-Lof Type Theory as a Programming Logic. PhD
thesis, Department of Computer Science, Heriot-Watt University, Edinburgh, July 1988.

[10] A. Church. The Calculi of Lambda-Conversion. Volume 6 of Annals of Mathematical Studies,
Princeton University Press, Princeton, 1951.

[11] R. Cleaveland and P. Panangaden. Type Theory and Concurrency. Technical Report TR
85-714, Department of Computer Science, Cornell University, December 1985.

[12] R.L. Constable. Constructive mathematics as a programming logic 1: some principles of
theory. Annals of Discrete Mathematics, 24:21-38, 1985.

[13] R.L. Constable, T.B. Knoblock, and J.L. Bates. Writing programs that construct proofs.
Journal of Automated Reasoning, 1(3):285-326, 1985.

[14] R.L. Constable and N.P. Mendler. Recursive definitions in type theory. In Proceedings of
Logics of Programs Conference, LNCS 193, pages 61-78, Springer-Verlag, 1985.

[15] R.L. Constable and S.F. Smith. Partial objects in constructive type theory. In Proceedings of
IEEE Symposium on Logic in Computer Sc:ence, pages 183-193, Computer Society Press of
the IEEE, 1987.

[16] R.L. Constable, et al. Implementing Mathematics in the Nuprl Proof Development System.
Prentice-Hall, 1986.

[17] T. Coquand and G. Huet. Constructions: a higher order proof system for mechanizing math-
ematics. In Proceedings of EUROCAL 85, Linz, Austria, April 1985.

[18] H.B. Curry and R. Feys. Combinatory Logic. Volume 1, North-Holland, 1958.
[19] O.-J. Dahl, E.W. Dijkstra, and C.A.R. Hoare. Structured Programming. Academic Press,

1972.
[20] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

75

[21] E.W. Dijkstra and W.H.J. Feijen. Een Methode van Programmeren. Academic Service, Den
Haag, 1984. Now available as A Method of Programming, Addison-Wesley, Reading, Mass.,
1988.

[22] P. Dybjer. Inductively Defined Sets in Martin-Lars Set Theory. Technical Report, Depart-
ment of Computer Science, University of Goteborg/Chalmers, April 1987.

[23] R. Dyckhoff. Category Theory as an Extension of Martin-Lof Type Theory. Technical Re-
port CS/85/3, Department of Computational Science, University of St. Andrews, 1985.

[24] G. Gentzen. Investigations into logical deduction. In M.E. Szabo, editor, The Collected Papers
of Gerhard Gentzen, pages 68-213, North-Holland, Amsterdam, 1969.

[25] V. Glivenko. Sur quelques points de la logique de m. brouwer. Bulletins de la classe des
sciences, 15:183-188, 1929.

[26] M.J. Gordon, R. Milner, and C.P. Wadsworth. Edinburgh LCF. Springer-Varlag, 1979.
[27] D. Gries. The Science of Programming. Springer-Verlag, New York, 1981.
[28] R. Harper, F.A. Honsell, and G. Plotkin. A framework for defining logics. In Proceedings of

the Second Annual Conference on Logic in Computer Science, Cornell, Dec 1987.
[29] E.R.C. Hehner. The Logic of Programming. Prentice-Hall, 1984.
[30] C.A.R. Hoare. Notes on data structuring. In O.-J. Dahl, E.W. Dijkstra, and C.A.R. Hoare,

editors, Structured Programming, Academic Press, 1972.
[31] W.A. Howard. The formulas-as-types notion of construction. In J.P. Seldin and J.R. Hindley,

editors, To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism,
pages 479-490, Academic Press, 1980.

[32] J. Hughes. Why Functional Programming Matters. Technical Report, Department of Com-
puter Science, University of Goteborg/Chalmers, 1984.

[33] M.A. Jackson. Principles of Program Design. Academic Press, 1975.
[34] K. Jensen and N. Wirth. PASCAL: user manual and report. Springer-Verlag, 1975.
[35] S.C. Kleene. Introduction to Metamathematics. North-Holland, Amsterdam, 1952.
[36] D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings. SIAM Journal

of Computing, 6:325-350, 1977.
[37] J. Lambek and P.J. Scott. Introduction to Higher Order Categorical Logic. Volume 7 of

Studies in Advanced Mathematics, Cambridge University Press, 1986.
[38] G.R. Malcolm and P. Chisholm. Polymorphism in Martin-Lors type theory. Department of

Mathematics and Computing Science, University of Groningen, 1988.
[39] P. Martin-Lof. Constructive mathematics and computer programming. In C.A.R. Hoare and

J.C. Shepherdson, editors, Mathematical Logic and Computer Programming, pages 167-184,
Prentice-Hall, 1984.

[40] P. Martin-LOf. Constructive mathematics and computer programming. In L.J. Cohen, J. Los,
H. Pfeiffer, and K.-P. Podewski, editors, Logic, Methodology and Philosophy of Science, IV,
pages 153-175, North-Holland, 1982.

76

[41] P. Martin-Lof. An intuitionistic theory of types: predicative part. In H.E. Rose and J.C.
Shepherdson, editors, Logic Colloquium 1973, pages 73-118, North-Holland, 1975.

[42] P. Martin-Li5f. Intuitionistic Type Theory. Bibliopolis, 1984. Notes by Giovanni Sambin of a
series of lectures given in Padova.

[43] L. Meertens. Algorithrnics - towards programming as a mathematical activity. In Proceed-
ings of the CWI Symposium on Mathematics and Computer Science, pages 289-334, North-
Holland, 1986.

[44] N.P. Mendler. Inductive Definitions in Type Theory. PhD thesis, Cornell University, Septem-
ber 1987.

[45] R. Milner. The standard ml core language. Polymorphism, II(2), October 1985.
[46] R. Milner. A theory of type polymorphism in programming. J. Comp. Syst. Scs., 17:348-375,

1977.
[47] J. Misra and D. Gries. Finding repeated elements. Science of Computer Programming, 2:143-

152, 1982.
[48] J. Mitchell and G. Plotkin. Abstract types have existential types. In Proceedings of 12th

ACM Symposium on Principles of Programming Languages, pages 37-51, 1985.
[49] B. Nordstrom. Multilevel functions in type theory. In N. Jones, editor, Programs as Data

Objects, Springer-Verlag, LNCS 217, 1985.
[50] B. Nordstrom. Terminating General Recursion. Technical Report, Programming Methodol-

ogy Group, University of Goteborg/Chalmers, September 1987.
[51] B. Nordstrom and K. Petersson. 	The Semantics of Module Specifications in Martin-

LO'f's Type Theory. Technical Report 36, Programming Methodology Group, University of
Goteborg/Chalmers, October 1985.

[52] B. Nordstrom and K. Petersson. Types and specifications. In R.E. Mason, editor, IFIP '83,
pages 915-920, Elsevier Science Publishers, 1983.

[53] B. Nordstrom, K. Petersson, and J. Smith. An Introduction to Martin-Lof's Theory of Types.
Technical Report, Programming Methodology Group, University of Goteborg/Chalmers, 1986.

[54] L.C. Paulson. Constructing recursion operators in intuitionistic type theory. Journal of
Symbolic Computation, 2:325-355, 1986.

[55] K. Petersson and D. Synek. A Set Constructor for Trees in Intuitionistic Type Theory. Tech-
nical Report, Department of Computer Science, University of Goteborg/Chalmers, August
1987.

[56] D. Prawitz. Proofs and the meaning and completeness of the logical constants. In J. Hin-
tikka, I. Niiniluoto, and E. Saarinen, editors, Essays on Mathematical and Philosophical Logic,
pages 25-40, Reidel, 1979.

[57] J.C. Reynolds. The Craft of Programming. Prentice-Hall, 1981.
[58] E. Saaman and G.R. Malcolm. Well-founded Recursion in Type Theory. Computing Science

Notes CS 8701, Department of Mathematics and Computer Science, University of Groningen,
1987.

77

[59J D. Schmidt. Denotational Semantics: A Methodology for Language Development. Allyn and
Bacon, 1986.

[60] P. Schroder-Heister. A natural extension of natural deduction. The Journal of Symbolic Logic,
49(4), Dec 1984.

[61] J. Smith. On a Nonconstructive Type Theory and Program Derivation. Technical Report,
Department of Computer Science, University of Goteborg/Chalmers, November 1985.

[62] J. Stoy. Denotational Semantics. The MIT Press, Cambridge, Mass, 1977.

78

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78

