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Abstract

Seventy years ago, in a series of publi
ations, Ja
ques Riguet introdu
ed the

notions of a \relation difon
tionelle", the \di��eren
e" of a relation and \relations

de Ferrers". He also presented a number of properties of these notions, in
luding

an \analogie frappante" between \relations de Ferrers" and the \di��eren
e" of a

relation. Riguet's de�nitions, parti
ularly of the 
entral 
on
ept of the \di��eren
e"

of a relation, use formulae involving nested 
omplements. Riguet's proofs make

extensive use of natural language making them diÆ
ult to understand. The primary

purpose of this paper is to bring Riguet's work up to date using modern 
al
ulational

methods. Other goals are to do
ument and extend Riguet's work as fully as possible,

and to 
orre
t extant errors in the literature.

We 
all a \relation difon
tionelle" a \difun
tional relation", the \di��eren
e" of

a relation we 
all the \diagonal" of a relation and a \relation de Ferrers" we 
all

a \stair
ase relation" | a spe
ial 
ase of a \blo
k-ordered relation". We avoid as

mu
h as possible the use of nested 
omplements by exploiting the left and right fa
tor

operators (aka division or residual operators) on relations.

We present 
omplete, 
al
ulational proofs of two fundamental properties of di-

fun
tional relations: a relation is difun
tional if and only if it 
an be represented

by a pair of fun
tional relations and that a relation is difun
tional if and only if it

is the union of a set of 
ompletely disjoint re
tangles. The diagonal of a relation

(Riguet's \di��eren
e") is a difun
tion that plays a very signi�
ant rôle in the study

of blo
k-ordered relations; a

ordingly, we study its properties in depth. For 
om-

pleteness, we also present a se
ond method for 
onstru
ting a difun
tion from an

arbitrary relation: Riguet's \fermeture difon
tionelle".

Riguet used an informal, mental pi
ture of a stair
ase-like stru
ture to introdu
e

\relations de Ferrers" in the 
ase of �nite relations. Riguet also stated a ne
essary and

suÆ
ient 
ondition for a \relation de Ferrers" to be the union of a totally ordered 
lass

of re
tangles, where the ordering has a property that we 
all \polar". By omitting

the totality requirement, we abstra
t the more general notion of a blo
k-ordered

relation. We explore 
onditions under whi
h a given relation has a non-redundant,

polar 
overing and when it is blo
k-ordered. In doing so, we formulate and prove a
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theorem establishing an equivalen
e between the property of a relation being blo
k-

ordered and properties of the diagonal of a relation. Our theorem generalises Riguet's

\analogie frappante".

The primary novelty of our work is the introdu
tion of the notion of the \
ore"

of a relation. This is a notion that is of general appli
ability and not just in the


ontext of blo
k-ordered relations. For example, the 
ore of a difun
tional relation

is a bije
tion, the 
ore of a preorder is an ordering (a spe
ial 
ase of the 
ore of a

blo
k-ordered relation, whi
h is also an ordering), and the 
ore of a �nite graph is an

a
y
li
 graph 
onne
ting its strongly 
onne
ted 
omponents. Our generalisation of

Riguet's \analogie frappante" shows how the 
ore of a relation in 
ombination with its

diagonal is used |under 
ertain 
onditions| to 
onstru
t a non-redundant, inje
tive

polar 
overing of a given relation. The theorem may have pra
ti
al appli
ation in

the 
on
ise representation of very large databases.

Finally, we 
onsider the spe
ial 
ase of stair
ase relations. We 
onsider di�erent

de�nitions that formalise Riguet's mental pi
ture. Contrary to 
laims made in the

published literature, we show that the de�nitions are not equivalent in general. We

do prove their equivalen
e in the 
ase of (blo
k-)�nite relations, a fa
t that is often

taken for granted in the extant literature but of whi
h we have never seen a proof.
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1 Introduction

The interfa
e between requirements and spe
i�
ations poses a major 
hallenge for pra
-

tising programmers be
ause it is intrinsi
ally a so
ial pro
ess that is largely unsupported

by mathemati
al method: requirements are informal and 
ustomer-led whereas spe
i-

�
ations are formal (even if, as is often the 
ase, the \spe
i�
ation" is the a
tual im-

plementation of the requirements). There is no mathemati
ally veri�able \
orre
tness"

relation between requirements and spe
i�
ations.

The 
hallenge of assuring the 
ustomer that their requirements have indeed been met


an be over
ome in di�erent ways. We would argue that one of the most important ways

is by deriving |by mathemati
al 
al
ulation| properties of the spe
i�
ation whi
h are

then interpreted in a way that 
an be understood by the 
ustomer. This pro
ess is vital

to the integrity of the s
ien
e of 
omputing.

Seventy years ago, in a series of publi
ations [Rig48, Rig50, Rig51℄, Ja
ques Riguet

introdu
ed the notions of a \relation difon
tionelle", the \di��eren
e" of a relation and

\relations de Ferrers". In the 
ase of �nite relations, he provided an informal mental

pi
ture of a \relation de Ferrers" in the form of a stair
ase-like stru
ture. But his formal

de�nition of a \relation de Ferrers" bears little or no resemblan
e to the mental pi
ture

and it is diÆ
ult to see how the formal 
orresponds to the informal. The name \relation

de Ferrers" also gives little 
lue as to the pra
ti
al relevan
e of the notion. Riguet's def-

initions, parti
ularly of the \di��eren
e" of a relation, use (in our view) over-
ompli
ated

and outdated formulae involving nested 
omplements that are better formulated using

the fa
tor operators (aka division or residual operators). Riguet also relies heavily on

natural language justi�
ations of important properties as well as asserting several prop-

erties without proof. More re
ent publi
ations, some of whi
h do not 
ite Riguet but

whi
h 
opy his de�nitions, introdu
e errors by failing to re
ognise the restri
tions that

Riguet made 
lear in his a

ount of the properties of the notions.

The writing of this paper initially began as an exer
ise in applying modern 
al
u-

lational reasoning to bring Riguet's work up to date and more a

essible to a wider

audien
e. In view of the extant errors in relatively re
ent publi
ations and to try to

avoid introdu
ing yet more errors, we de
ided to in
lude full details of all proofs. In the

pro
ess, we de
ided that some 
hanges in terminology were desirable: for reasons that

we explain later, we 
all the \di��eren
e" of a relation the \diagonal" of the relation and

we 
all \relations de Ferrers" stair
ase relations. We also realised that 
ertain generalisa-

tions of Riguet's work were desirable, the primary one being from \stair
ase" relations to

\blo
k-ordered relations": the property of being a \stair
ase" relation demands a 
ertain

total ordering on \blo
ks" (\re
tangles totalement ordonn�ees par in
lusion" [Rig51℄), be-

ing \blo
k-ordered" does not require the ordering to be total. In summary, the goals of

this paper are as follows:
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1. To demonstrate the eÆ
a
y of modern 
al
ulational reasoning in developing a the-

ory of blo
k-ordered relations.

2. To do
ument as fully as possible the pre
ise relation between difun
tional relations

and blo
k-ordered relations (Riguet's \analogie frappante").

3. To set the re
ord straight with respe
t to the origin of the 
on
epts and theorems

relating difun
tional relations to blo
k-ordered relations.

4. To 
orre
t extant errors in the literature.

1.1 Mental Pictures

Partly as a 
onsequen
e of our de
ision to in
lude all proofs, this do
ument has be
ome

quite long and it is inappropriate to introdu
e all parts in one go. In order to set the s
ene,

this se
tion gives a very informal a

ount of the prin
iple notions introdu
ed. In doing

so, we use notation that will be introdu
ed in later se
tions. Readers unfamiliar with

the notation are invited to read the se
tion nevertheless,postponing full understanding

until later.

For many, it is useful to have a \mental pi
ture" of formal mathemati
al statements.

Fig. 1 is su
h a mental pi
ture of what we shall 
all a \stair
ase relation". (Riguet

[Rig51℄ presents a similar pi
ture of a \relation de Ferrers".) The shaded area depi
ts a

binary relation on sets A and B , the verti
al axis depi
ting the set A , the horizontal

axis depi
ting the set B , and the shaded area depi
ting the set of pairs (a, b) for whi
h

the relation holds. Informally a stair
ase relation is any relation that 
an be depi
ted in

su
h a way.

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

A

B

Figure 1: Mental Pi
ture of a Stair
ase Relation

One of the problems we address in this paper is how to formulate the notion of a

\stair
ase" relation in a way that is both amenable to mathemati
al 
al
ulation and
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aptures the very informal de�nition just given. In the pro
ess of so doing, it is ne
-

essary to resolve ambiguities and/or mis
on
eptions that inevitably arise from informal

de�nitions.

Fig. 2 is a \mental pi
ture" of a difun
tional relation of type A∼B . Informally,

a difun
tional relation is a (heterogeneous) relation that is the union of a 
olle
tion

of \
ompletely disjoint re
tangles

1

". The relation shown in �g. 2 is what we 
all the

\diagonal" of the stair
ase relation shown in �g. 1.

���
���
���

���
���
��������
�����
�����

�����
�����
�����������

������
������

������
������
�����������

�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����A

B

Figure 2: Mental Pi
ture of a Difun
tional Relation

The mental pi
ture of a difun
tional relation suggests a se
ond property that appears

to be folklore: ea
h point a in the left domain and ea
h point b in the right domain of a

difun
tional relation de�nes a re
tangle whereby related pairs de�ne the same re
tangle.

In this way, a difun
tional relation is 
hara
terised by a pair of fun
tional relations.

As mentioned earlier, Riguet [Rig51℄ uses the name \di��eren
e" for what we 
all the

\diagonal". Fig. 3 explains in pi
ture-form the reasoning behind the naming as well as

how our formulation di�ers from Riguet's.

The four parts of �g. 3 depi
t in turn

(a) a relation R (
oloured green),

(b) the fa
tor R
∪

\R
∪

/R
∪

(in red, where R
∪

denotes the 
onverse of R ),

(c) the diagonal of R (in blue | more pre
isely, the relation R ∩ R∪

\R
∪

/R
∪

),

(d) the relation R ◦¬R∪
◦R .

Informally, the diagonal of R (shown in �g. 3(
)) is that part of the relation R (shown

in �g. 3(a)) that is 
ommon to the fa
tor R
∪

\R
∪

/R
∪

(shown in �g. 3(b)).

Riguet formulated the diagonal as the \di��eren
e" between R and the relation

R ◦¬R
∪
◦R , i.e. as R∩¬(R ◦¬R

∪
◦R) . (Note the nested 
omplements, denoted by the

1

See de�nition 123 for a formal de�nition of \
ompletely disjoint re
tangles".
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e"
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symbol \¬ ".) Fig. 3(d) shows the relation R ◦¬R
∪
◦R . It has two parts: the parts not


oloured red, i.e. the shaded part and the white part. The part 
oloured red is the \use-

ful" part R< ◦ R∪

\R∪ /R∪
◦ R>

of the relation depi
ted in (b). Here R<
and R>

denote

the left and right \domains" of R (not to be 
onfused with the target and sour
e of

R ). The shaded part of �g. 3(d) depi
ts the relation R•< ◦⊤⊤ ∪ ⊤⊤ ◦R>•
: the set of pairs

(a, b) su
h that either a is not related by R to any element of B or no element of A

is related by R to b . Riguet's \di��eren
e" is the di�eren
e between the green part of

�g. 3(a) and the non-red part of �g. 3(d).

Hopefully, by way of these informal pi
tures, we 
an now give an overview of the

remainder of the paper.

1.2 Overview

To begin, we present the axiomati
 basis for our formal reasoning in se
tion 2. The basis

for the axiom system originated in the work of De Morgan, Pier
e, S
hr�oder, Tarksi and,

no doubt, many others. This se
tion is an abbreviated version of the presentation in

[BDGv21℄ to whi
h the reader is referred for full details (in
luding proofs of the stated

theorems).

Se
tion 3 goes into more detail on basi
 elements of relation algebra. At this point,

we adhere to our maxim of providing proofs of all stated properties. Whilst the topi
s in

this se
tion |in parti
ular fa
tors (se
tion 3.2), the domain operators (de�nition 42) and

\provisional orderings" (de�nition 114)| all play a signi�
ant rôle later, we re
ommend

that the reader skim the se
tion brie
y in the �rst instan
e, returning to it later as and

when ne
essary. (The notion of a \provisional ordering" is new but the motivation for

its introdu
tion only be
omes apparent later.)

Se
tion 4 is the beginning of topi
s spe
i�
 to blo
k-orderings. \Blo
ks" or \re
tan-

gles" are parti
ular sorts of relations that are pi
tured as re
tangles. As pi
tured in �g. 2,

a difun
tional relation 
an be 
hara
terised as a 
olle
tion of \
ompletely disjoint re
tan-

gles". Se
tion 4.1 presents a number of elementary properties of squares and re
tangles

whilst se
tion 4.2 introdu
es some important de�nitions and properties: the notion of

an \indexed set" of re
tangles (de�nition 129), the notion of \
ompletely disjoint re
t-

angles" (de�nition 130) and the 
hara
terisation of an indexed set of 
ompletely disjoint

re
tangles by a pair of fun
tional relations (theorem 141).

In se
tion 5 we formulate properties of partial equivalen
e relations that will be fa-

miliar to most readers. The main topi
 is a theorem 
hara
terising a partial equivalen
e

relation as a 
olle
tion of disjoint squares. In more familiar terminology, a partial equiv-

alen
e relation partitions its domain into disjoint equivalen
e 
lasses. Note that we fo
us

on partial equivalen
e relations (of whi
h equivalen
e relations form a spe
ial 
ase). In

general, we are obliged to reason about the left and right domains of relations, parti
u-
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larly when reasoning about the diagonal of a relation (de�nition 183) | a topi
 that is


entral to this investigation. Re
all our dis
ussion of the shaded area of �g. 3(d).

We formulate several proofs of the per 
hara
terisation theorem, theorem 143, in

se
tion 5. Later we do the same for the 
hara
terisation of difun
tional relations, theorem

161, one of the proofs being based on theorem 143. We do so in order to evaluate di�erent


al
ulational methods. In this 
ase, 
ontrary to the view we ourselves have propagated,

the 
al
ulations exploiting points and the saturation axiom are preferable to the point-

free 
al
ulations. Our formalism allows us to mitigate the negative aspe
ts of pointwise

reasoning so that points appear in formulae only where this is desirable. This is dis
ussed

further in se
tion 12.

The main results of this investigation are presented in se
tion 6 on difun
tional rela-

tions, se
tion 7 on the \diagonal" of a relation and se
tions 9 and 11 on blo
k-ordered

and stair
ase relations, respe
tively.

Se
tion 6 is about the basis for the name \difun
tion": a difun
tional relation is


hara
terised by a pair of fun
tional relations (theorem 161); moreover, su
h a 
hara
-

terisation is (essentially) unique (theorem 166). This is a well-known generalisation of

the properties of partial equivalen
e relations and, as mentioned above, is in
luded in

order to evaluate di�erent 
al
ulational methods.

For 
ompleteness, se
tion 6.4 do
uments the properties of the \difun
tional 
losure"

of a relation: the \fermeture difon
tionelle" introdu
ed by Riguet [Rig50℄.

Se
tion 7 is a detailed examination of the properties of the diagonal of a relation.

Riguet's a

ount of \relations de Ferrers" in
ludes a theorem 
hara
terising su
h relations

as the \r�eunion" of \re
tangles" that have a very spe
ial property. Referring to �g. 1,

ea
h individual \tread" of a stair
ase relation de�nes a unique re
tangle (exa
t details

of whi
h are given later) and the relation is the \r�eunion" of them all. With this as

motivation, we abstra
t the notion of a \polar 
overing" and we prove a theorem that

every relation has a polar 
overing. See de�nition 209 and theorem 211 in se
tion 8. As

a step towards Riguet's 
hara
terisation of \relations de Ferrers", we de�ne the notion of

a \non-redundant" polar 
overing. For �nite relations, it is straightforward to show that

a non-redundant polar 
overing 
an always be 
onstru
ted from a given polar 
overing of

the relation. The algorithm may, however, not be pra
ti
al; moreover, there are in�nite

relations that do not have a non-redundant polar 
overing. (The less-than relation on

real numbers is an example.) A fo
us of se
tion 7 is to investigate when the diagonal

of a relation de�nes a non-redundant polar 
overing of the relation. The main result in

this se
tion is thus theorem 222 (whi
h we believe to be original to this paper).

Blo
k-ordered relations are de�ned in se
tion 9. Although we don't dis
uss it in

any detail, the pra
ti
al appli
ation of blo
k-ordering a relation is eÆ
ient storage and

re
overy of information. Dividing the left and right domains of a relation into \blo
ks" is

an obvious �rst step. We take the opportunity in se
tion 9.1 to point out the pioneering
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ontribution to information s
ien
e made by Hartmanis and Stearns [HS64, HS66℄ in their

study of so-
alled \pair algebras". The relevan
e to blo
k-ordered relations is that so-


alled \perfe
t" Galois 
onne
tions provide a ri
h sour
e of examples. Se
tion 9.2 relates

blo
k-orderings to diagonals. The se
tion is entitled \analogie frappante" be
ause the


on
luding theorem of the se
tion (theorem 262) is a ne
essary and suÆ
ient 
ondition

for a relation to be blo
k-ordered expressed as a property of the diagonal of a relation,

thus generalising Riguet's \analogie frappante" between the properties of a \relation

de Ferrers" and difun
tional relations. Theorem 234 proves that every blo
k-ordered

relation has a non-redundant polar 
overing, the non-redundan
y of whi
h is witnessed

by the relation's diagonal.

Se
tion 10 introdu
es a less-restri
tive notion of \(possibly) imperfe
t" blo
k-orderings.

Every relation has an imperfe
t blo
k-ordering as witnessed by the \grips" of the rela-

tion. The \grips" of a relation are \blo
ks" that are essentially the same as the so-
alled

\Begri�en" (\
on
epts") of the relation [DP90℄.

Se
tion 11 was the starting point of this investigation: prin
ipally, how should the

informal mental pi
ture of a \stair
ase" relation be made pre
ise and what then are its

properties? Unsurprisingly (at least to us) it turns out that pi
tures 
an be de
eiving.

We have been able to verify that all the 
laims made by Riguet are valid and mu
h of

the se
tion is devoted to that task; in parti
ular, theorem 334 establishes the (unproven)

theorem in [Rig51℄ that every stair
ase relation has a linear polar 
overing. On the other

hand, we provide examples showing that other 
laims in the extant literature are not

valid. In parti
ular, theorem 319 proves, by way of 
on
rete examples, that not every

stair
ase relation is blo
k-ordered. It is the 
ase, however, as 
orre
tly stated by Riguet

[Rig51℄, that every �nite stair
ase relation is blo
k-ordered but we have been unable to

�nd a proof anywhere in the literature. Theorem 335 and its proof re
tify this la
una.

Se
tion 12 
on
ludes the paper with a summary and dis
ussion of publi
ations in

the last thirty years. (We have been unable to �ll the forty-year gap |in respe
t of

non-�nite relations| from 1950 to 1990 and would wel
ome re
eiving information about

relevant publi
ations in that period.)
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2 The Axiom System

We assume familiarity with a number of basi
 
on
epts of relation algebra: 
omposition,


onverse, left and right domains, and left and right fa
tors (aka \residuals"). Our pre-

sentation is based on the system of axioms formulated by Voermans [Voe99℄; full details


an be found in [BDGv21℄. In addition to the axioms we give a pointwise interpretation

of ea
h of the operators. That is, we say, for ea
h operator that we introdu
e, how the

operator de�nes a set of pairs. In giving the interpretation we use the notation [[E]] to

mean \the interpretation of E ". Thus we write x[[R]]y instead of xRy ; this enhan
es

readability and also emphasises the di�eren
e between the obje
ts of an abstra
t relation

algebra and the interpretation of su
h obje
ts as binary relations.

2.1 Point-Free Relation Algebra

We begin with a point-free axiomatisation of homogeneous relations. Later we extend

the axiomatisation to heterogeneous relations (se
tion 2.4) and to points (se
tion 2.5).

The �rst unit is a latti
e stru
ture. Spe
i�
ally, let (A ,⊆ ) be a partially-ordered set.

We postulate that A forms a 
omplete, universally distributive latti
e. The in�mum

and supremum operators will be denoted by ∩ and ∪ , respe
tively. The top and bottom

elements of the latti
e will be denoted by ⊤⊤ and ⊥⊥ , respe
tively. We 
all elements

of A relations and denote them by variables R , S and T . The interpretation of A is

the set of relations of some �xed type. The interpretation of a relation is a set; so A is

a powerset.

As suggested by the 
hoi
e of notation, the interpretation of ⊆ is the subset ordering,

the interpretation of ∩ is set interse
tion, and the interpretation of ∪ is set union.

Formally,

[[R⊆S]] ≡ 〈∀x,y : x[[R]]y : x[[S]]y〉 ,

x [[R∩S]]y ≡ x[[R]]y ∧ x[[S]]y , and

x [[R∪S]]y ≡ x[[R]]y ∨ x[[S]]y .

The interpretation of ⊤⊤ is the universal relation and the interpretation of ⊥⊥ is the

empty relation. That is,

〈∀x,y :: x[[⊤⊤]]y≡ true〉 ∧ 〈∀x,y ::x[[⊥⊥]]y≡ false〉 ,

This is the most 
ompli
ated unit in the framework but one whi
h should be familiar to

the reader.
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Every binary relation has a 
onverse; the 
onverse operator, denoted by a post�x \

∪

"

symbol (pronoun
ed \wok"), is interpreted by

x [[R
∪

]]y ≡ y[[R]]x

for all x and y . Axiomati
ally, we postulate the existen
e of a (total) unary fun
tion

from relations to relations su
h that, for all relations R and S

R
∪⊆S ≡ R⊆S∪

.(1)

The Galois 
onne
tion (1) is all that is ne
essary to de�ne the 
onverse operator and its

interfa
e with the latti
e stru
ture. Its being a Galois 
onne
tion makes it so attra
tive.

The set of homogeneous binary relations over some universe in
ludes the identity

relation, I , with the interpretation

x[[I]]y ≡ x=y

for all x and y . Relations may also be 
omposed via the binary 
omposition operator,

◦
, de�ned at the point level by

x [[R◦S]] z ≡ 〈∃y ::x[[R]]y∧y[[S]]z〉 .

We 
apture these two notions axiomati
ally by demanding the existen
e of a relation I

and a binary operator,

◦
, mapping a pair of relations to a relation, su
h that (A , ◦ , I )

is a monoid.

There are two interfa
es to be spe
i�ed. The interfa
e with the 
onverse operator is

soon dealt with. Bearing in mind the intended relational interpretations of 
onverse and


omposition we postulate

(R◦S)
∪

= S
∪

◦R
∪

,(2)

for all relations R and S . For the interfa
e with the latti
e stru
ture we postulate that

a relation algebra is a regular algebra. In parti
ular, we postulate that for all relations R

the fun
tions (R◦
) and (

◦R ) are universally distributive. This is equivalent to postulating

the existen
e of two fa
tor operators; these are dis
ussed in detail in se
tion 3.2.

In the theory developed in this paper, the 
onverse operator plays a very signi�
ant

rôle. Be
ause 
onverse has su
h strong distributivity properties, it is frequently possible

to \dualise" a property by simply applying the 
onverse operator to obtain a property

that is the mirror image of the original. (See, for example, (3) and (4).) Also, operators

we de�ne frequently have left and right variants with mirror properties. (See, for example,

the domain operators introdu
ed in de�nition 42.)
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2.2 Operator Precedence

We have now introdu
ed quite a large number of operators. In order to redu
e the

number of parentheses in formulae we should agree on a pre
eden
e between the di�erent

operators.

A general rule we use throughout is that all pre�x and post�x operators as well as

subs
ripting and supers
ripting take pre
eden
e over in�x operators and in�x operators

in turn take pre
eden
e over multi�x operators. When both pre�x and post�x operators

are applied to an expression, we use parentheses to 
larify the order of evaluation. An

ex
eption is when a pre�x and post�x operator obey an \asso
iative" law, in whi
h 
ase

we omit the parentheses. For example |as observed by De Morgan| 
omplement and


onverse \asso
iate". So we 
an safely write ¬R
∪

, parsing it as ¬(R∪) or as (¬R)∪

depending on the 
al
ulational needs. Thus it remains to dis
uss the relative pre
eden
e

of the in�x operators.

For in�x operators, the general rule is that metaoperators (operators like ≡ and ∧ )

have the lowest pre
eden
e. Next 
ome relations like ≤ and ⊆ . The operators of relation

algebra have the next highest pre
eden
e, and fun
tion appli
ation (whi
h we denote by

an in�x dot) has the highest pre
eden
e of all. Among the in�x operators of relation

algebra the pre
eden
e is: interse
tion and union have the same, lowest pre
eden
e, and

the highest pre
eden
e is given to 
omposition.

2.3 Modularity Rule and Cone Rule

Although 
omposition distributes through suprema, it does not distribute through in-

�ma. This 
reates diÆ
ulties in 
al
ulations that 
ombine in�ma with 
omposition. The

rule we now introdu
e to over
ome this diÆ
ulty a
ts as an interfa
e between all three

units of the framework. Riguet [Rig48℄ named the rule after the famous mathemati
ian

J.W.R. Dedekind (he 
alled it \la relation de Dedekind") be
ause of its resemblan
e to

the modular identity, a property of normal subgroups attributed to Dedekind. S
hmidt

and Str�ohlein [SS93℄ have adopted Riguet's terminology (they refer to \the Dedekind

formula") whereas Freyd and

�

S�
edrov [Fv90℄ 
all it the law of modularity (possibly for

the same reason as Riguet). We 
all it the modularity rule .

The modularity rule is that, for all relations R , S and T ,

R◦S∩T ⊆ R ◦ (S ∩ R
∪

◦ T) .(3)

The dual property, obtained by exploiting properties of the 
onverse operator, is, for all

relations R , S and T ,

S◦R∩T ⊆ (S ∩ T ◦R
∪

) ◦R .(4)
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(This the �rst of many examples of mirror-image duality that we forewarned of in se
tion

2.1.)

An additional rule, sometimes 
alled \Tarski's rule", is 
alled the 
one rule below:

for all relations R ,

〈∀R :: ⊤⊤◦R◦⊤⊤ = ⊤⊤ ≡ R 6=⊥⊥〉 .(5)

Axiom systems for relation algebra often in
lude a 
omplementation (negation) operator

and, instead of the modularity rule, the so-
alled S
hr�oder rule is postulated. Our

formulation of S
hr�oder's rule is slightly di�erent from standard a

ounts, as we now

explain.

Suppose we 
onsider an algebra that obeys all the axioms of relation algebra ex
ept

for the modularity rule. Suppose that the algebra is 
omplemented (i.e. every relation

has a 
omplement); we denote the 
omplement of relation R by ¬R . Then the middle-

ex
hange rule : for all R , S , X and Y ,

R ◦¬X ◦S ⊆ ¬Y ≡ R
∪

◦Y ◦S
∪ ⊆ X(6)

is equivalent to the modularity rule. O

asionally, its equivalent, the rotation rule:

R◦S⊆¬T
∪ ≡ T ◦R ⊆ ¬S

∪

(7)

is used.

The middle-ex
hange rule gets its name from the fa
t that the middle term in a 
om-

position is ex
hanged with the right side of an in
lusion. It has an attra
tive, symmetri


form, making it easy to remember in spite of having four free variables. The standard

rule, due to S
hr�oder, is the 
onjun
tion of the two equivalen
es obtained by instantiat-

ing R and S to the identity relation. The rotation rule (so 
alled be
ause of the way

the variables are rotated) also has an attra
tive form.

This 
on
ludes our dis
ussion of the point-free algebrai
 framework. In a few sen-

ten
es, a relation algebra is a 
omplete, universally distributive latti
e on whi
h is de-

�ned a monoid stru
ture and a unary 
onverse operator. Composition on the left and

on the right are both universally distributive (with the impli
ation that they both have

upper adjoints: the fa
tor operators to be introdu
ed in se
tion 3.2). Converse is a lat-

ti
e isomorphism that preserves the unit of 
omposition and distributes 
ontravariantly

through 
omposition. Finally, the latti
e stru
ture, 
onverse and the monoid stru
ture

are all interrelated via the modularity rule.

2.4 Heterogeneous Relations

A heterogeneous relation R has a type given by two sets A and B , whi
h we 
all the

target and sour
e of R . We use the notation A∼B to denote the type of a relation.
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Formally, a relation of type A∼B is a subset of A×B . (Equivalently, it is a fun
tion

with domain A×B and range Bool .) A homogeneous relation is a relation of type A∼A
for some A .

The operators in the algebra of heterogeneous relations are typed. For example, the


omposition of two relations R and S , denoted as always by R◦S , is only de�ned when

the sour
e of R equals the target of S . Moreover, the target of R◦S is the target of R

and the sour
e of R◦S is the sour
e of S . That is, if R has type A∼B and S has type

B∼C then R◦S has type A∼C . We assume the reader is familiar with su
h rules.

The rules of the untyped 
al
ulus are appli
able in the typed 
al
ulus, with some

restri
tions on types. Restri
tions are ne
essary on types for, for example, the middle-

ex
hange rule: (6).

Care must be taken with the overloading of notation. It is tempting, for example, to

state the rule:

⊤⊤∪

= ⊤⊤

without quali�
ation. But, if R has type A∼B , its 
onverse R∪

has type B∼A . Thus

the notation \⊤⊤ " on the left side of the equation denotes the universal relation of type

A∼B , for some types A and B ; on the other hand, the notation \⊤⊤ " on the right

side of the equation denotes the universal relation of type B∼A . Rather than overload

the notation in this way, we 
ould de
orate every o

urren
e of ⊤⊤ with its type. For

example, we 
ould rephrase the rule as

(A⊤⊤B)
∪

= B⊤⊤A .

The same applies to ⊥⊥ . We prefer not to do so be
ause the type information is usually

easy to infer. An ex
eption is that we o

asionally de
orate the identity relation I with

its type: IA denotes the identity relation of type A∼A .

Typed relation algebra, as brie
y summarised above, extends 
ategory theory to what

has been 
alled allegory theory . See Freyd and

�

S�
edrov [Fv90℄ for more details.

2.5 Points

The relations of a given type form a powerset. A powerset forms a 
omplete, universally

distributive, 
omplemented latti
e under the subset ordering. However, these properties

do not 
hara
terise the properties of the elements of the sets in the powerset. For this,

we need the notion of a \saturated", \atomi
" latti
e: elements of a set are modelled by

so-
alled \atoms".

Let us re
all the appropriate de�nitions , �rst in an arbitrary latti
e and later spe-


ialising to relations.
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Definition 8 (Atom and Atomicity) Consider an arbitrary poset ordered by the

relation ⊆ and with least element ⊥⊥ . Then the element p is an atom i�

〈∀q :: q⊆p ≡ q=p ∨ q=⊥⊥〉 .

Note that ⊥⊥ is an atom a

ording to this de�nition. If p is an atom that is di�erent

from ⊥⊥ we say that it is a proper atom. A latti
e is said to be atomi
 if

〈∀q :: q 6=⊥⊥ ≡ 〈∃a : atom.a∧a 6=⊥⊥ : a⊆q〉〉 .

In words, a latti
e is atomi
 if every proper element in
ludes a proper atom.

✷

Definition 9 (Saturated) A 
omplete latti
e is saturated i�

〈∀p :: p = 〈∪a : atom.a ∧ a⊆p : a〉〉 .
✷

The following theorem is 
entral to the use of saturated latti
es as a model of pow-

ersets.

Theorem 10 Suppose A is a 
omplete, universally distributive latti
e. Then the

following statements are equivalent.

(a) A is saturated,

(b) A is atomi
 and 
omplemented,

(c) A is isomorphi
 to the powerset of its atoms.

✷

Given a type A , the homogeneous relations of a given type A∼A form a powerset.

A 
ore
exive relation is a relation of type A∼A , for some A , that is a subset of the

identity relation. (Core
exives are also 
alled partial identities, monotypes and tests.)

To our axiom system, we add the following postulates.

1. For ea
h type A , the poset of 
ore
exives is a 
omplete, universally distributive,

saturated latti
e.

2. The all-or-nothing rule [Gl�u17℄:

〈∀a,b,R : AC.a ∧ AC.b : a◦R◦b=⊥⊥ ∨ a◦R◦b=a◦⊤⊤◦b〉

where AC abbreviates \atomi
 and 
ore
exive".
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The 
ombination of these two properties is equivalent to the postulate that the latti
e

of relations of a given type is atomi
 and saturated. The proper atoms are events of the

form a◦⊤⊤◦b where a and b are proper atomi
 
ore
exives; su
h an event models the

pair (a, b) in 
onventional pointwise formulations of relation algebra.

Theorem 11 Suppose that, for all types A , the latti
e of 
ore
exives of type A∼A
is a 
omplete, universally distributive, saturated latti
e. Then, if the all-or-nothing rule

is universally valid, the latti
e of relations of type A∼B (for arbitrary types A and B )

is also a saturated, atomi
 latti
e; the atoms are elements of the form a◦⊤⊤◦b where a

and b are atoms of the latti
e of 
ore
exives of types A and B , respe
tively. It follows

that the latti
e of relations is isomorphi
 to the powerset of the set of elements of the

form a◦⊤⊤◦b where a and b are atoms of the latti
e of 
ore
exives.

✷

(See Voermans [Voe99, se
tion 4.5℄ for further dis
ussion of so-
alled \extensional-

ity" properties of relations. Note that Voermans gives the name \singleton" to proper

atoms. Thus |perhaps 
onfusingly| what we have just referred to as \pairs" are, in

his terminology, also \singletons".)

In 
ommon with all 
ore
exives, a point is a homogeneous relation of type A∼A .

However, in keeping with the idea that points represent elements of type A , we often

abbreviate the type A∼A to just A.

Definition 12 (Point) A point is a proper, atomi
, 
ore
exive relation.

✷

For the purposes of this paper, we don't need all the details of what is meant by

\atomi
". If A is a type, we use a , a ′
et
. to denote points of type A . Similarly for

points of type B . Properties we use of a point a of type A are:

a◦a = a = a
∪

,(13)

⊤⊤◦a◦⊤⊤ = ⊤⊤ ,(14)

a◦⊤⊤◦a = a ,(15)

〈∀p :: p⊆ IA ≡ p = 〈∪a :a⊆p :a〉〉 .(16)

Also, for points a and a ′
of the same type,

a=a ′ ∨ a◦a ′=⊥⊥ .(17)

Property (14) is equivalent to the property that a point is non-empty (\proper"). The

property is an instan
e of the rule we 
all the \
one rule" introdu
ed earlier. In general,
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if a is a point of type A and b is a point of type B , the relation a◦⊤⊤◦b represents

the pair (a, b) ; given a relation R of type A∼B and points a and b of type A and

B , respe
tively, the statement

a◦⊤⊤◦b ⊆ R

has the interpretation that the pair a and b are related by R . Spe
i�
ally, for all

relations R and points a and b of appropriate type,

(a◦R◦b 6= ⊥⊥) = (a◦⊤⊤◦b ⊆ R) = (a◦⊤⊤◦b = a◦R◦b) .(18)

(In 
onforman
e with long-standing mathemati
al pra
ti
e, property (18) should be read


onjun
tionally: that is as the equality of three terms. In this 
ase, ea
h term is boolean.)

The saturation property is that

〈∀R :: R = 〈∪a,b : a◦⊤⊤◦b⊆R : a◦⊤⊤◦b〉〉 .(19)

The irredu
ibility property is that, if R is a fun
tion with range relations of type A∼B
and sour
e K , then, for all points a and b of appropriate type,

a◦⊤⊤◦b ⊆ ∪R ≡ 〈∃k : k∈K : a◦⊤⊤◦b⊆R.k〉 .(20)

The identity relation IA of type A has the property that, for all points a and a ′
of

type A ,

a◦⊤⊤◦a ′ ⊆ IA ≡ a=a ′ .(21)

Relations of the form R◦b◦S , where b is a point, play a 
entral rôle in what follows.

The interpretation of R◦b◦S is a relation that holds between points a and c i� the

relation R holds between a and b , and the relation S holds between b and c . This

is expressed pre
isely by the property:

a◦⊤⊤◦c ⊆ R◦b◦S ≡ a◦⊤⊤◦b ⊆ R ∧ b◦⊤⊤◦c ⊆ S .(22)
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3 Basic Structures

This se
tion 
ontains a mis
ellany of topi
s that are referred to repeatedly in subsequent

se
tions. We re
ommend that the reader s
ans it brie
y in the �rst instan
e, postponing

a more detailed reading until later.

3.1 Specifications

Sometimes we want to de�ne fun
tions indire
tly via a property relating input and output

values. The property is formalised and then it is shown that the formal spe
i�
ation

relates ea
h input value to exa
tly one output value. That is, the formal spe
i�
ation

relates ea
h input value to at most one and at least one output value. In order to reason

within our axiom system, we then want to 
on
lude that output values are points. See,

for example, se
tion 3.5, where we de�ne the meaning of fun
tionality and exhibit an

expression that formulates, in very general terms, the result of applying a fun
tion to an

argument.

Although the pro
ess seems to be obvious, we want to sti
k to our goal of validating

every step within our axiom system. For this reason, we now present the te
hni
al

justi�
ation. As just mentioned, we refer the reader to se
tion 3.5 for a 
on
rete example.

In the following lemmas, p is a 
ore
exive relation and dummies a and a ′
are points

of the same type as p .

We begin with the 
onsequen
e of showing that spe
i�
ation p has at least one

solution.

Lemma 23

p 6=⊥⊥ ≡ 〈∃a ::a⊆p〉 .

Proof

p 6=⊥⊥
= { 
one rule: (5) }

⊤⊤◦p◦⊤⊤ = ⊤⊤
= { saturation property: (19) }

⊤⊤ ◦ 〈∪a :a⊆p :a〉 ◦⊤⊤ = ⊤⊤
= { distributivity }

〈∪a :a⊆p :⊤⊤◦a◦⊤⊤〉 = ⊤⊤
= { a ranges over points: (15) }
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〈∪a :a⊆p :⊤⊤〉 = ⊤⊤
⇒ { 〈∪a : false :⊤⊤〉=⊥⊥ and ⊥⊥ 6=⊤⊤ }

〈∃a ::a⊆p〉
⇒ { a ranges over points: so ⊥⊥ 6=a

predi
ate 
al
ulus, (details left to the reader) }

p 6=⊥⊥ .

✷

Next we formulate the 
onsequen
e of showing that spe
i�
ation p has at most one

solution.

Lemma 24

〈∀a : a⊆p : a=p〉 ≡ 〈∀a,a ′ : a⊆p ∧ a ′⊆p : a=a ′〉 .

Proof

〈∀a : a⊆p : a=p〉
= { anti-symmetry }

〈∀a : a⊆p : a⊇p〉
= { saturation: (16) }

〈∀a : a⊆p : a ⊇ 〈∪a ′ :a ′⊆p :a ′〉〉
= { suprema }

〈∀a : a⊆p : 〈∀a ′ : a ′⊆p : a⊇a ′〉〉
⇐ { re
exivity of the subset relation }

〈∀a : a⊆p : 〈∀a ′ : a ′⊆p : a=a ′〉〉
= { nesting of quanti�
ations }

〈∀a,a ′ : a⊆p ∧ a ′⊆p : a=a ′〉
⇐ { Leibniz and predi
ate 
al
ulus }

〈∀a : a⊆p : a=p〉 .
✷

Theorem 25 Suppose p is a 
ore
exive relation. Then p is a point equivales

〈∃a ::a⊆p〉 ∧ 〈∀a,a ′ : a⊆p ∧ a ′⊆p : a=a ′〉 .
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(As above, dummies a and a ′
range over points of the same type as p .)

In words, a spe
i�
ation p de�nes a point i� it has at least one solution and at most

one solution.

Proof In the following dummy q ranges over 
ore
exives of the same type as p and

a ranges over points of the same type as p .

p is atomi


= { de�nition 8 }

〈∀q : q⊆p : q=p ∨ q=⊥⊥〉
= { trading }

〈∀q : q⊆p∧q 6=⊥⊥ : q=p〉
= { lemma 23 }

〈∀q : q⊆p∧ 〈∃a ::a⊆q〉 : q=p〉
= { distributivity (of 
onjun
tion over disjun
tion),

range disjun
tion }

〈∀q,a : a⊆q⊆p : q=p〉
⇐ { anti-symmetry }

〈∀a : a⊆p : a=p〉
= { lemma 24 }

〈∀a,a ′ : a⊆p ∧ a ′⊆p : a=a ′〉 .

Also,

p is atomi


= { de�nition 8 }

〈∀q : q⊆p : q=p ∨ q=⊥⊥〉
⇒ { points a and a ′

are 
ore
exives, weakening }

〈∀a,a ′ : a⊆p ∧ a ′⊆p : (a=p ∨ a=⊥⊥) ∧ (a ′=p ∨ a ′=⊥⊥)〉
= { points are proper (i.e. a 6=⊥⊥ and a ′ 6=⊥⊥ ) }

〈∀a,a ′ : a⊆p ∧ a ′⊆p : a=p ∧ a ′=p〉
⇒ { transitivity of equality }

〈∀a,a ′ : a⊆p ∧ a ′⊆p : a=a ′〉 .
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Combining the two 
al
ulations, we have established by mutual impli
ation that

p is atomi
 ≡ 〈∀a,a ′ : a⊆p∧a ′⊆p : a=a ′〉 .(26)

It follows that, for all 
ore
exives p ,

p is a point

= { de�nitions 8 and 12, assumption: p is 
ore
exive }

p 6=⊥⊥ ∧ p is atomi


= { lemma 23 and (26) }

〈∃a ::a⊆p〉 ∧ 〈∀a,a ′ : a⊆p ∧ a ′⊆p : a=a ′〉 .
✷

3.2 Factors

If R is a relation of type A∼B and S is a relation of type A∼C , the relation R\S of

type B∼C is de�ned by the Galois 
onne
tion, for all T (of type B∼C ),

R\S ⊇ T ≡ S ⊇ R◦T .

Similarly, if R is a relation of type A∼B and S is a relation of type C∼B , the relation
R/S of type A∼C is de�ned by the Galois 
onne
tion, for all T ,

R/S ⊇ T ≡ R ⊇ T ◦S .

(The existen
e of these operators is equivalent to the universal distributivity of 
ompo-

sition over union.)

In relation algebra, fa
tors are also known as \residuals". We prefer the term \fa
tor"

be
ause it emphasises 
al
ulational properties whereas \residual" emphasises an opera-

tional understanding (what is left after taking something away). In parti
ular, fa
tors

have the 
an
ellation properties:

T ◦T\U ⊆ U ∧ R/S ◦S ⊆ R .

The fa
tor operators (whi
h we pronoun
e \under" and \over" respe
tively) are mutually

asso
iative. That is

R\(S/T) = (R\S)/T .(27)

This means that it is unambiguous to write R\S/T | whi
h we shall do in order to

promote the asso
iativity property by making its use invisible (in the same way that the

use of the asso
iativity of 
omposition is made invisible).
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The relations R\R (of type B∼B if R has type A∼B ) and R/R (of type A∼A if

R has type A∼B ) play a 
entral rôle in what follows. As is easily veri�ed, both are

preorders. That is, both are transitive :

R\R ◦R\R ⊆ R\R ∧ R/R ◦R/R ⊆ R/R

and both are re
exive :

I ⊆ R\R ∧ I ⊆ R/R .

(The notation \ I " is overloaded in the above equation. In the left 
onjun
t, it denotes

the identity relation of type B∼B and, in the right 
onjun
t, it denotes the identity

relation of type A∼A , assuming R has type A∼B . We often overload 
onstants in this

way. Note, however, that we do not attempt to 
ombine the two in
lusions into one.) In

addition, for all R ,

R ◦R\R = R = R/R ◦R ,(28)

R/(R\R) = R = (R/R)\R ,(29)

(R\R)/(R\R) = R\R = (R\R)\(R\R) and(30)

(R/R)\(R/R) = R/R = (R/R)/(R/R) .(31)

In fa
t, we don't use (29) dire
tly; its relevan
e is as the initial step in proving the

leftmost equations of (30) and (31). We 
hoose not to exploit the asso
iativity of the

over and under operators in (30) and (31) |by writing, for example, (R\R)/(R\R) as

R\R/(R\R)| in order to emphasise their rôle as properties of the preorders R\R and

R/R .

In relation algebra (as opposed to regular algebra) it is possible to eliminate the

fa
tor operators altogether be
ause they 
an be expressed in terms of 
omplements and


onverse. The rule for doing so is given in lemma 32. Although the elimination of fa
tors

is highly undesirable, we are obliged to introdu
e 
omplements and it is useful to exploit

the lemma o

asionally.

Lemma 32 For all R , S and T ,

R\S/T = ¬(R
∪

◦¬S ◦T
∪

) .

Proof We have, for all X ,
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X ⊆ R\S/T

= { de�nition of fa
tors }

R◦X◦T ⊆ S

= { middle-ex
hange: (6) }

R
∪
◦¬S ◦T

∪ ⊆ ¬X

= { 
omplements }

X ⊆ ¬(R∪
◦¬S ◦T

∪) .

The lemma follows by indire
t equality (i.e. by instantiating X to the left and right

sides of the 
laimed equality and then using re
exivity and anti-symmetry of the subset

ordering).

✷

For the purpose of providing examples, extreme 
ases are often the most illuminating.

Instantiating lemma 32 with R,S,T := ¬I ,¬I , I , and R,S,T := I ,¬I ,¬I (where I denotes

an identity relation of some unspe
i�ed type), we get

¬I\¬I = I = ¬I /¬I .(33)

Thus the equality relation on a type is the preorder of the form R\R (or R/R ) obtained

by the instantiation R :=¬I .

Let 11 denote the type with exa
tly one element. Then the universal relation 11⊤⊤11

equals the identity relation I11 . Thus the type 11 is an example of a �nite, non-empty

type su
h that ¬I11 is the empty relation 11⊥⊥11 .

Property (28) exempli�es how mu
h easier 
al
ulations with fa
tors 
an be 
ompared

to 
al
ulations that 
ombine 
omplements with 
onverses. The property is very easy to

spot and apply. Expressed using lemma 32, it is equivalent to

R ◦¬(R
∪

◦¬R) = R = ¬(¬R ◦R
∪

) ◦R .

In this form, the property is diÆ
ult to spot and its 
orre
t appli
ation is diÆ
ult to


he
k.

It is useful to re
ord the distributivity properties of 
onverse over the fa
tor operators:

Lemma 34 For all R and S ,

R
∪

\S
∪

= (S/R)
∪

= ¬R/¬S .(35)

Symmetri
ally,

R
∪

/S
∪

= (S\R)
∪

= ¬R \¬S .(36)

Also,

(R\S/T)
∪

= T
∪

\S
∪

/R
∪

.(37)
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Proof We prove the �rst equation of (35) using indire
t equality. For any R , S and

T , we have:

T ⊆ (S/R)∪

= { 
onverse: (1) }

T
∪ ⊆ S/R

= { Galois 
onne
tion de�ning fa
tors }

T
∪
◦R ⊆ S

= { 
onverse: (1) and (2) }

R
∪
◦T ⊆ S

∪

= { Galois 
onne
tion de�ning fa
tors }

T ⊆ R
∪

\S
∪

.

The se
ond equation of (35) is proved using the property

R\S = ¬(R
∪

◦ ¬S) ∧ S/T = ¬(¬S ◦ T
∪

) .(38)

We have:

¬R/¬S

= { (38) with S,T := ¬R ,¬S ,

properties of negation and 
onverse }

¬(R ◦¬S
∪)

= { (38) with R,S := R∪

, S
∪

properties of negation and 
onverse }

R
∪

\S
∪

= { �rst equality }

(S/R)∪ .

Property (36) proved using symmetri
al 
al
ulations and (37) is a 
ombination of (35)

and (36).

(Note how the asso
iativity property ¬(R∪)= (¬R)∪ is used silently in the above


al
ulation.)

✷

The following 
orollary is relevant to se
tion 11 on stair
ase relations.
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Corollary 39 For all R ,

R\R∪ (R\R)
∪

= (R
∪

/R
∪

)
∪ ∪ R

∪

/R
∪

= ¬R \¬R ∪ (¬R \¬R)
∪

.

Proof

R\R ∪ (R\R)∪

= { 
onverse and lemma 34

(in parti
ular (35) with R,S := R∪

, R
∪

) }

(R∪

/R
∪)∪ ∪ R

∪

/R
∪

= { lemma 34

(in parti
ular (36) with R,S := ¬R ,¬R ) }

(¬R \¬R)∪ ∪ ¬R \¬R .

✷

When 
onsidering 
on
rete examples, it is sometimes ne
essary to know the pointwise

de�nition of the fa
tor operators. The following lemma is needed in theorem 319 where

we exhibit a 
on
rete 
ounterexample to an error in the extant literature.

Lemma 40 For all relations R and points a and b (of appropriate type),

a◦⊤⊤◦b ⊆ (R\R/R)∪ ≡ 〈∀a ′,b ′ : a ′◦⊤⊤◦b ⊆ R ∧ a◦⊤⊤◦b ′ ⊆ R : a ′◦⊤⊤◦b ′ ⊆ R〉 .

Proof

a◦⊤⊤◦b ⊆ (R\R/R)∪

= { de�nition of 
onverse and fa
tors }

R◦b◦⊤⊤◦a◦R ⊆ R

= { saturation property: (19) }

〈∀a ′,b ′ :: a ′◦R◦b◦⊤⊤◦a◦R◦b ′ ⊆ a ′◦R◦b ′〉
= { all-or-nothing: theorem 11 }

〈∀a ′,b ′ : a ′◦⊤⊤◦b ⊆ R ∧ a◦⊤⊤◦b ′ ⊆ R : a ′◦⊤⊤◦b◦⊤⊤◦a◦⊤⊤◦b ′ ⊆ R〉
= { 
one rule, a and b are points }

〈∀a ′,b ′ : a ′◦⊤⊤◦b ⊆ R ∧ a◦⊤⊤◦b ′ ⊆ R : a ′◦⊤⊤◦b ′ ⊆ R〉 .
✷
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3.3 The Domain Operators

Within relation algebra, there are various ways that sets 
an be represented as relations.

S
hmidt and Str�ohlein [SS93℄ use \
onditions" (relations of the form R◦⊤⊤ or ⊤⊤◦R |


alled \ve
tors" by S
hmidt and Str�ohlein), Freyd and

�

S�
edrov [Fv90℄ use 
ore
exives.

A third possibility is to use \squares" (as suggested by Voermans [Voe99℄).

Definition 41 A (homogeneous) relation R is a square i� R = R ◦⊤⊤ ◦R
∪

.

✷

Points are squares. Also if a and b are points (of appropriate type), the relations

R
∪
◦a ◦R and R ◦b ◦R

∪

are squares. (This is an easy 
onsequen
e of the properties (13)

and (15).) We see later (lemma 57) that R
∪
◦a ◦R represents the set of all points b su
h

that a and b are related by R , and similarly for R ◦b ◦R
∪

.

Formally, 
ore
exives, 
onditionals and squares are isomorphi
 representations of sets.

Nevertheless, 
hoosing whi
h to use 
an make a 
onsiderable di�eren
e to 
on
ise 
al
u-

lation. Squares have the disadvantage that they are not 
losed under union (although

squares are 
losed under interse
tion); 
ore
exives and 
onditionals are both 
losed un-

der union and interse
tion. The only advantage of using 
onditionals over 
ore
exives

and squares is that they are 
losed under negation but the advantage is not signi�-


ant. (S
hmidt and Str�ohlein [SS93℄ make extensive use of negation but most 
an be

eliminated by the use of fa
tors.) The overwhelming advantage of using 
ore
exives is

their 
onvenien
e in expressing restri
tions on the left and right domain of relations,

in 
ombination with the asso
iativity of 
omposition. So, if p is a 
ore
exive, R◦p◦S

simultaneously restri
ts the right domain of R and the left domain of S to elements

in the set represented by p . If 
onditions are used, one must 
hoose between using a

right 
ondition to restri
t the right domain of R and a left 
ondition to restri
t the left

domain of S . Squares 
an also be used to restri
t the left or right domain of a relation

|there are several instan
es in se
tion 6.3.1| but 
annot be used to simultaneously

restri
t the right and left domains of two relations. For this reason, we generally prefer

to use 
ore
exives to represent sets, ex
ept in very spe
ial 
ir
umstan
es.

Definition 42 (Domain Operators) Given relation R of type A∼B , the 
ore
exive
representation R<

of the left domain of R is de�ned by the equation

R< = I ∩ R ◦R
∪

and the 
ore
exive representation R>
of the right domain of R is de�ned by the

equation

R> = I ∩ R
∪

◦R .

✷
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The name \domain operator" is 
hosen be
ause of the fundamental properties: for

all R and all 
ore
exives p ,

R=R◦p ≡ R>⊆p(43)

and

R=p◦R ≡ R<⊆p .(44)

A simple, often used 
onsequen
e of (43) and (44) is the property:

R< ◦R = R = R ◦R> .(45)

In words, R>
is the least 
ore
exive p su
h that restri
ting the \domain" of R on the

right has no e�e
t on R . It is in this sense that R<
and R>

represent the set of points

on the left and on the right on whi
h the relation R is \de�ned", i.e. its left and right

\domains".

Aside Freyd and

�

S�
edrov [Fv90℄ 
all R<
the \domain" of R ; they do not appear to

give a name to R>
. Like us, they also use the names \sour
e" and \target". In their

a

ount a relation of type A∼B has sour
e A and target B ; we reverse the names. (See

the warning above.) Bird and De Moor [BdM97℄ 
all R>
the \domain" of R and R<

the

\range" of R . End of Aside

In our earlier work on relation algebra, the domain operators play a very signi�
ant

rôle, and the same is true here. We regard knowledge of their properties as so funda-

mental that we often explain steps making use of domain 
al
ulus with the simple hint

\domains". The most fundamental property of the domain operators |monotoni
ity|

we use silently. Sometimes (for example in the proof of lemma 55) we state the properties

within everywhere bra
kets.

For readers unfamiliar with the domain operators, we summarise their properties

below. We restri
t our attention here to the right-domain operator. The reader is

requested to dualise the results to the left-domain operator.

The intended interpretation of R>
(read R \right") for relation R is {x | 〈∃y ::y[[R]]x〉} .

Two ways we 
an reformulate this requirement without re
ourse to points are formulated

in the following theorem.

Theorem 46 (Right Domain) For all relations R and 
ore
exives p ,

R>⊆p ≡ R⊆⊤⊤◦p(47)

and

R>⊆p ≡ R=R◦p .(48)

✷
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The 
hara
terisations (47) and (48) predi
t a number of useful 
al
ulational properties

of the right domain operator. Some are immediate, some involve a little bit of work for

their veri�
ation. Immediate from (47) |a Galois 
onne
tion| is that the right domain

operator is universally ∪ -jun
tive, and (⊤⊤◦
) is universally distributive over in�ma of


ore
exives. In parti
ular,

⊤⊤◦(p∩q) = (⊤⊤◦p)∩ (⊤⊤◦q) ,

(R∪S)> = R>∪S> ,

and

⊥⊥>=⊥⊥ .

The last of these 
an in fa
t be strengthened to

R>=⊥⊥ ≡ R=⊥⊥ .(49)

The proof is straightforward: use (47) in 
ombination with ⊤⊤◦⊥⊥=⊥⊥ .

From (47) we may also dedu
e a number of 
an
ellation properties. But, in 
ombina-

tion with the modularity rule, the 
an
ellation properties 
an be strengthened. We leave

their proofs together with a 
ouple of other interesting appli
ations of Galois 
onne
tions

as exer
ises.

Theorem 50 For all relations R , S and T

(a) ⊤⊤ ◦R> = ⊤⊤◦R ,

(b) R ∩ S◦⊤⊤◦T = S< ◦R ◦T> ,

(c) (R∪)> = R< ,

(d) (R∩S◦T)> = (S∪
◦R ∩ T)> ,

(e) (R◦⊤⊤◦S)> = S> ⇐ R 6=⊥⊥ .

✷

We 
omplete this se
tion by do
umenting the isomorphism between 
ore
exives and


onditions. Re
all that the right 
onditions are, by de�nition, the �xed points of the

fun
tion (⊤⊤◦
).

Theorem 51 The 
ore
exives are the �xed points of the right domain operator. That

is, for all R ,

(a) R=R> ≡ R⊆ I .
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Also, for all 
ore
exives p and all right 
onditions C ,

(b) (⊤⊤◦p)>=p , and

(
) ⊤⊤ ◦C> = C .

Moreover, for all relations R and S ,

(d) R>⊆S> ≡ ⊤⊤◦R⊆⊤⊤◦S .

Hen
e,

(e) R>=S> ≡ ⊤⊤◦R=⊤⊤◦S .

The right-domain operator is thus a poset isomorphism mapping the set of right


onditions to the set of 
ore
exives and its inverse is the fun
tion (⊤⊤◦
).

✷

Some powerful and far from obvious theorems about 
ore
exives are proved by map-

ping the theorems to statements about 
onditionals and then exploiting the 
hara
teristi


properties of ⊤⊤ | ⊤⊤⊇R for all R , and ⊤⊤=⊤⊤∪

| to prove these statements. An

illustration of the te
hnique is a�orded by the proof of the following lemma.

(R◦S)>=(R> ◦S)> .(52)

We begin the proof by invoking theorem 51

(R◦S)> = (R> ◦S)>

= { theorem 51(e) }

⊤⊤◦R◦S = ⊤⊤ ◦R> ◦S

= { ⊤⊤ ◦R> = ⊤⊤◦R }

⊤⊤◦R◦S = ⊤⊤◦R◦S

= { re
exivity }

true .

Another useful property is:

X=⊥⊥ ≡ X>=⊥⊥ .(53)

The proof is by mutual impli
ation. First,

X=⊥⊥ ⇒ {Leibniz } X>=⊥⊥> ⇒ {⊥⊥>=⊥⊥} X>=⊥⊥ .

Se
ond,
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X>=⊥⊥
= { ⊥⊥ is least relation }

X>⊆⊥⊥
= { theorem 46 }

I∩⊤⊤◦X ⊆ ⊥⊥
⇒ { monotoni
ity of 
omposition,

preparing for use of the modularity rule }

(I∩X◦⊤⊤)◦⊤⊤⊆⊥⊥
⇒ { modularity rule: (3), ⊤⊤=⊤⊤∪

}

⊤⊤∩X⊆⊥⊥
= { ⊤⊤ is greatest relation, ⊥⊥ is least relation }

X=⊥⊥ .

We 
on
lude this se
tion with a basi
 property that be
omes very obvious with a little

knowledge of the domain operators. Spe
i�
ally, we have, for all relations R ,

R ⊆ R ◦R
∪

◦R(54)

The proof is easy:

R ⊆ R ◦R
∪
◦R

⇐ { R> ⊆ R
∪
◦R and monotoni
ity of 
omposition }

R = R ◦R>

= { domains }

true .

3.4 Properties of Points

This se
tion do
uments properties of points with respe
t to domains and fa
tors.

Lemma 55 For all relations R and points a and b (of appropriate type),

a ⊆ R< ≡ (a◦R)> 6= ⊥⊥ , and

b ⊆ R> ≡ (R◦b)< 6= ⊥⊥ .

Proof We prove the se
ond equation.
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(R◦b)< 6= ⊥⊥
= { 
one rule: (5) }

⊤⊤ ◦ (R◦b)< ◦⊤⊤ = ⊤⊤
= { [ R< ◦⊤⊤ = R◦⊤⊤ ] with R :=R◦b }

⊤⊤◦R◦b◦⊤⊤ = ⊤⊤
= { [ ⊤⊤ ◦R> = ⊤⊤◦R ] }

⊤⊤ ◦R> ◦b ◦⊤⊤ = ⊤⊤
= { 
one rule: (5) }

R> ◦b 6= ⊥⊥
= { R> ◦b ⊆ b ;

so, by atomi
ity of b , R> ◦b = b ∨ R> ◦b = ⊥⊥ ;

also, b 6= ⊥⊥ }

R> ◦b = b

= { R> ◦b = R>∩b }

b ⊆ R> .

✷

For a point b the square R ◦b ◦R
∪

represents the set of all points a su
h that a and

b are related by R . This is made pre
ise in lemma 56 and its 
orollary, lemma 57.

Lemma 56 For all relations R of type A∼B , all 
ore
exives p of type A∼A and

all points b of type B ,

p ⊆ R ◦b ◦R
∪ ≡ p◦⊤⊤◦b ⊆ R .

Symmetri
ally, for all relations R of type A∼B , all 
ore
exives q of type B∼B and

all points a of type A ,

q ⊆ R
∪

◦a ◦R ≡ a◦⊤⊤◦q ⊆ R .

Proof By mutual impli
ation:

p ⊆ R ◦b ◦R
∪

⇒ { monotoni
ity }

p◦⊤⊤◦b ⊆ R ◦b ◦R
∪
◦⊤⊤ ◦b

⇒ { R
∪
◦⊤⊤ ⊆ ⊤⊤ ; b is a point: (15) and b⊆ I }
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p◦⊤⊤◦b ⊆ R

⇒ { 
onverse and monotoni
ity }

p ◦⊤⊤ ◦b ◦b ◦⊤⊤ ◦p
∪ ⊆ R ◦b ◦R

∪

⇒ { b is a point: (13) and (14)

p is a 
ore
exive, so p
∪ =p ; monotoni
ity }

p◦⊤⊤◦p ⊆ R ◦b ◦R
∪

⇒ { I⊆⊤⊤ and p◦p=p }

p ⊆ R ◦b ◦R
∪

.

✷

Property (18) is the most basi
 formulation of membership of pairs in a relation. It


an also be formulated in terms of squares and in terms of domains:

Lemma 57 For all relations R and points a and b (of appropriate type),

(a ⊆ R ◦b ◦R
∪

) = (a◦⊤⊤◦b ⊆ R) = (b ⊆ R
∪

◦a ◦R) .

Proof Straightforward instantiation of lemma 56:

a ⊆ R ◦b ◦R
∪

= { lemma 56 with p :=a }

a◦⊤⊤◦b ⊆ R

= { lemma 56 with p :=b }

b ⊆ R
∪
◦b ◦R .

✷

Lemma 58 For all relations R and points a and b (of appropriate type),

(a ⊆ (R◦b)<) = (a◦⊤⊤◦b ⊆ R) = (b ⊆ (a◦R)>) .

Proof

a◦⊤⊤◦b ⊆ R

⇒ { monotoni
ity and a is a 
ore
exive, so a◦a=a }

a◦⊤⊤◦b ⊆ a◦R

⇒ { monotoni
ity }

(a◦⊤⊤◦b)> ⊆ (a◦R)>
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= { domains: de�nition 42, a and b are points: (14) and (15) }

b ⊆ (a◦R)>

⇒ { monotoni
ity }

a◦⊤⊤◦b ⊆ a ◦⊤⊤ ◦ (a◦R)>

= { domains: [ ⊤⊤ ◦R> = ⊤⊤◦R ] with R :=a◦R }

a◦⊤⊤◦b ⊆ a◦⊤⊤◦a◦R

= { a is a point, so a◦⊤⊤◦a=a }

a◦⊤⊤◦b ⊆ a◦R

⇒ { a is a 
ore
exive, monotoni
ity }

a◦⊤⊤◦b ⊆ R .

That is, we have shown by mutual impli
ation that

a◦⊤⊤◦b ⊆ R ≡ b ⊆ (a◦R)> .

A symmetri
 
al
ulation establishes that

a◦⊤⊤◦b ⊆ R ≡ a ⊆ (R◦b)< .

✷

Combined with property (18), lemmas 57 and 58 give six alternative ways of formu-

lating the membership relation a◦⊤⊤◦b ⊆ R . All are useful.

Lemma 59 For all relations R and points a (of appropriate type),

a⊆R< ≡ 〈∃b : b⊆R> : a◦⊤⊤◦b ⊆ R〉 .

Also, for all relations R and points b (of appropriate type),

b⊆R> ≡ 〈∃a : a⊆R< : a◦⊤⊤◦b ⊆ R〉 .

Proof We prove the �rst equation:

a ⊆ R<

= { lemma 55 }

(a◦R)> 6= ⊥⊥
= { lemma 23 }

〈∃b :: b ⊆ (a◦R)>〉
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= { lemma 58 }

〈∃b :: a◦⊤⊤◦b ⊆ R〉
= { domains (spe
i�
ally, a◦⊤⊤◦b ⊆ R⇒ b⊆R>

) }

〈∃b : b⊆R> : a◦⊤⊤◦b ⊆ R〉 .
✷

Lemma 60 gives a pointwise interpretations of the fa
tor operators. Although we

typi
ally try to avoid pointwise reasoning, the lemma is sometimes indispensable.

Lemma 60 For all relations R of type A∼C and S of type B∼C (for some A , B

and C ) and all points a and b ,

a◦⊤⊤◦b ⊆ R/S ≡ (b◦S)> ⊆ (a◦R)> .

Dually, for all relations R of type C∼A and S of type C∼B , and all points a and b ,

a◦⊤⊤◦b ⊆ R\S ≡ (R◦a)< ⊆ (S◦b)< .

Proof By mutual impli
ation:

a◦⊤⊤◦b ⊆ R/S

= { de�nition of fa
tor }

a◦⊤⊤◦b◦S ⊆ R

⇒ { a and b are points, monotoni
ity and domains

(see initial steps in proof of lemma 58) }

(b◦S)> ⊆ (a◦R)>

⇒ { monotoni
ity }

a ◦⊤⊤ ◦ (b◦S)> ⊆ a ◦⊤⊤ ◦ (a◦R)>

= { domains }

a◦⊤⊤◦b◦S ⊆ a◦⊤⊤◦a◦R

= { a is a point (so a◦⊤⊤◦a=a ) }

a◦⊤⊤◦b◦S ⊆ a◦R

⇒ { a is a 
ore
exive }

a◦⊤⊤◦b◦S ⊆ R

= { de�nition of fa
tor }

a◦⊤⊤◦b ⊆ R/S .
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The se
ond equivalen
e is proved similarly.

a◦⊤⊤◦b ⊆ R\S

= { de�nition of fa
tor }

R◦a◦⊤⊤◦b ⊆ S

⇒ { monotoni
ity and 
ore
exives

(see initial steps in proof of lemma 58) }

(R◦a)< ⊆ (S◦b)<

⇒ { (as in above 
al
ulation) }

a◦⊤⊤◦b ⊆ R\S .

✷

For relations R and S with the same sour
e, the relation R/S∩ (S/R)∪ is the \sym-

metri
 left division" of R and S . Dually, for relations R and S with the same target,

the relation R\S∩ (S\R)∪ is their \symmetri
 right division". (See the dis
ussion at

the beginning of se
tion 3.7.) The following 
orollary of lemma 60 gives a pointwise

interpretation of these \division" operators.

Corollary 61 For all relations R and S with the same sour
e, and all points a and

b (of appropriate type),

a◦⊤⊤◦b ⊆ R/S∩ (S/R)
∪ ≡ (a◦R)> = (b◦S)> .

Dually, for all relations R and S with the same target, and all points a and b (of

appropriate type),

a◦⊤⊤◦b ⊆ R\S∩ (S\R)
∪ ≡ (R◦a)< = (S◦b)< .

Proof Straightforward appli
ation of lemma 60 and anti-symmetry:

a◦⊤⊤◦b ⊆ R/S∩ (S/R)∪

= { in�ma and 
onverse }

a◦⊤⊤◦b ⊆ R/S ∧ b◦⊤⊤◦a ⊆ S/R

= { lemma 60 }

(b◦S)> ⊆ (a◦R)> ∧ (a◦R)> ⊆ (b◦S)>

= { anti-symmetry }

(a◦R)> = (b◦S)> .

✷
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3.5 Functionality

A relation R of type A∼B is said to be fun
tional if R ◦R
∪ ⊆ IA . A relation R of type

A∼B is said to be surje
tive if R ◦R
∪ ⊇ IA . Equivalently, a relation R of type A∼B is

surje
tive if R<= IA . A relation R of type A∼B that is both fun
tional and surje
tive

is thus de�ned by the property R ◦R
∪ = IA .

(Other words used for fun
tional are \quasi-fon
tionelle" [Rig48℄, \simple" [Fv90,

BdM97℄ and \univalent" [SS93℄.)

Dual to fun
tionality and surje
tivity are the notions of inje
tivity and totality, re-

spe
tively. A relation R of type A∼B is said to be inje
tive if R
∪
◦R ⊆ IB . A relation

R of type A∼B is said to be total if R
∪
◦R ⊇ IB . Equivalently, a relation R of type

A∼B is surje
tive if R>= IB .

Typi
ally, we use lower
ase letters f , g , h to denote fun
tional relations. As the

terminology suggests, these point-free de�nitions 
orrespond to notions that are more

usually de�ned in terms of points. The pointwise interpretations are explained below,

beginning with the interpretation of a fun
tional relation as what others might 
all a

\partial fun
tion".

The standard notion of a partial fun
tion is a relation that de�nes a unique output

value for ea
h input value in its domain. In our axiom system we formulate this as

follows.

Suppose R of type A∼B is fun
tional and suppose b is a point of type B su
h that

b⊆R>
. We assert that the equation

a: a∈A: a◦⊤⊤◦b⊆R(62)

has exa
tly one solution. Conversely, we assert that if equation (62) has exa
tly one

solution for all points b su
h that b⊆R>
, the relation R is fun
tional. (In (62) the ex-

pression \a∈A " limits the range of the dummy a to points of type A ; this notation will

be used later where the range of a dummy 
annot be dedu
ed from other 
onsiderations.)

Equation (62) is an example of the sort of indire
t spe
i�
ation anti
ipated in se
tion

2.5. (See in parti
ular theorem 25.) More formally, for fun
tional relation f and point

b su
h that b⊆ f> , equation (62) de�nes f.b as the unique solution of the equation:

a:: point.a ∧ a◦⊤⊤◦b⊆ f .

Suppose we denote this unique solution by f.b . The de�ning property of f.b is thus

〈∀a,b : b⊆ f> : a◦⊤⊤◦b⊆ f ≡ a= f.b〉 .(63)

But it is not immediately obvious that f.b is well-de�ned in our axiom system. Theorem

64 provides a formal justi�
ation.
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Theorem 64 Suppose relation R has type A∼B . Then
R ◦R

∪ ⊆ IA ≡
〈

∀b : b⊆R> : point.(R ◦b ◦R
∪

)
〉

.(65)

Moreover, if f is a relation of type A∼B and f ◦ f
∪ ⊆ IA , the relation f ◦b ◦ f

∪

is a point

of type A and

〈

∀a,b : b⊆ f> : a◦⊤⊤◦b⊆ f ≡ a = f ◦b ◦ f
∪
〉

.(66)

In words, f is fun
tional i�, for all points b in the right domain of f , the relation

f ◦b ◦ f
∪

de�nes a unique point of type A , whi
h point we denote by f.b .

Proof We prove (65) by mutual impli
ation. First,

R ◦R
∪ ⊆ IA

= { domains }

R ◦R> ◦R
∪ ⊆ IA

= { saturation axiom: (16) }

R ◦ 〈∪b : b⊆R> : b〉 ◦R∪ ⊆ IA

= { distributivity }

〈∀b : b⊆R> : R ◦b ◦R
∪ ⊆ IA〉

⇐ { de�nition 12 of a point }

〈∀b : b⊆R> : point.(R ◦b ◦R
∪)〉 .

Thus we have established the \if" part of the equivalen
e. Now, for the \only-if", assume

R ◦R
∪ ⊆ IA .

We �rst note that, for all b su
h that b⊆R>
, equation (62) has at most one solution

sin
e, for all points a and a ′
of type A ,

a◦⊤⊤◦b ⊆ R ∧ a ′◦⊤⊤◦b ⊆ R

⇒ { 
onverse and monotoni
ity }

a◦⊤⊤◦b◦b◦⊤⊤◦a ′ ⊆ R ◦R
∪

= { b is a point, so ⊤⊤◦b◦b◦⊤⊤=⊤⊤ }

a◦⊤⊤◦a ′ ⊆ R ◦R
∪

⇒ { assumption: R ◦R
∪ ⊆ IA , transitivity of the subset relation }

a◦⊤⊤◦a ′ ⊆ IA

⇒ { a and a ′
are points: (21) }

a=a ′ .



41

That is,

〈∀b : b⊆R> : 〈∀a,a ′ : a◦⊤⊤◦b ⊆ R ∧ a ′
◦⊤⊤◦b ⊆ R : a=a ′〉〉 .(67)

By lemma 55, equation (62) has at least one solution for all points b su
h that b⊆R>
.

That is,

〈∀b : b⊆R> : 〈∃a :: a◦⊤⊤◦b ⊆ R〉〉 .(68)

Thus equation (62) has exa
tly one solution for all points b su
h that b⊆ f> . So:

〈∀b : b⊆R> : point.(R ◦b ◦R
∪)〉

= { R ◦b ◦R
∪

⊆ { assumption: b⊆R>
, monotoni
ity }

R ◦R> ◦R
∪

= { domains }

R ◦R
∪

⊆ { assumption: R ◦R
∪ ⊆ IA }

IA ,

theorem 25 with p := R ◦b ◦R
∪

}

〈∀b : b⊆R> : 〈∃a :: a ⊆ R ◦b ◦R
∪〉〉

∧ 〈∀b : b⊆R> : 〈∀a,a ′ : a ⊆ R ◦b ◦R
∪

∧ a ′ ⊆ R ◦b ◦R
∪

: a=a ′〉〉
= { lemma 57 }

〈∀b : b⊆R> : 〈∃a :: a◦⊤⊤◦b ⊆ R〉〉
∧ 〈∀b : b⊆R> : 〈∀a,a ′ :a◦⊤⊤◦b ⊆ R ∧ a ′◦⊤⊤◦b ⊆ R :a=a ′〉〉

= { (67) and (68) }

true .

This 
on
ludes the proof of (65).

Now, assuming that f ◦ f∪ ⊆ I , it follows from (65) (with R := f ) that f ◦b ◦ f∪ is a

point. Also, for all points a and b (of types A and B , respe
tively),

b⊆ f> ∧ a◦⊤⊤◦b ⊆ f

= { lemma 58 (aiming to eliminate �rst 
onjun
t) }

b⊆ f> ∧ b⊆ (a◦f)> ∧ a◦⊤⊤◦b ⊆ f

= { monotoni
ity and lemma 58 }
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a◦⊤⊤◦b ⊆ f

= { lemma 57 }

a ⊆ f ◦b ◦ f
∪

= { f ◦b ◦ f
∪

is a point, de�nitions 12 and 8 }

a = f ◦b ◦ f
∪

.

✷

O

asionally we need to de�ne a fun
tional relation. Sometimes we spe
ify the re-

lation by means of an equation: \we de�ne f of type . . . by f.b= . . .". More often,

we use the notation 〈b :: . . .〉 to denote a total fun
tion, or 〈b : . . . : . . .〉 to denote a

(non-total) fun
tional, the range part being used to spe
ify a restri
tion on the domain.

This is 
onsistent with our notation for suprema and in�ma (su
h as in universal and

existential quanti�
ations).

A 
onsequen
e of the uni
ity property expressed by (63) is the property that, for all

fun
tional relations f of type C∼A and g of type C∼B , and all points a and b ,

a◦⊤⊤◦b ⊆ f
∪

◦g ≡ a⊆ f> ∧ f.a=g.b ∧ b⊆g> .(69)

The proof exploits the irredu
ibility of points:

a◦⊤⊤◦b ⊆ f
∪
◦g

= { domains, saturation axiom: (16) and distributivity }

a◦⊤⊤◦b ⊆ 〈∪c : c∈C : f
∪
◦ c ◦g〉

= { points are irredu
ible: (20) }

〈∃c : c∈C : a◦⊤⊤◦b ⊆ f
∪
◦ c ◦g〉

= { (22) }

〈∃c : c∈C : a◦⊤⊤◦c ⊆ f
∪

∧ c◦⊤⊤◦b ⊆ g〉
= { 
onverse, lemma 58 and (63) }

〈∃c : c∈C : a⊆ f> ∧ c= f.a ∧ b⊆g> ∧ c=g.b〉
= { Leibniz and predi
ate 
al
ulus }

a⊆ f> ∧ f.a=g.b ∧ b⊆g> .

Now suppose R is a surje
tive relation of type A∼B . In this 
ase, for all points a of

type A , the equation

b: b∈B: a◦⊤⊤◦b⊆R(70)

has at least one solution sin
e:
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IB ⊆ R
∪
◦R

= { saturation axiom: (16) and supremum }

〈∀b : b∈B : b ⊆ R
∪
◦R〉

= { saturation axiom: (16) and distributivity }

〈∀b : b∈B : b ⊆ 〈∪a : a∈A : R
∪
◦a ◦R〉〉

= { points are irredu
ible: (20) }

〈∀b : b∈B : 〈∃a : a∈A : b ⊆ R
∪
◦a ◦R〉〉

= { lemma 57 }

〈∀b : b∈B : 〈∃a : a∈A : a◦⊤⊤◦b⊆R〉〉 .
In the same way, pointwise formulations of the dual notions of inje
tivity and totality


an be derived. Our terminology re
e
ts a bias in the interpretation of relations as

having output on the left and input on the right. A more neutral terminology su
h as

\left-fun
tional", \right-fun
tional", \left-total" and \right-total" would be preferable.

Care must be taken when using the above pointwise de�nitions in our axiom system.

The problem is the overloading of the symbol ⊤⊤ : sometimes the type information is

essential. For example, the left-domain operator (whi
h we denote by the post�x symbol

<
) de�nes a total fun
tion of type Cor.A← (A∼B) , for all types A and B , where Cor.A

denotes the set of 
ore
exives of type A . Denoting this fun
tion by Ldom , we must be


areful to distinguish between Ldom.R and R<
. This is be
ause, a

ording to (62),

Ldom.R ◦⊤⊤ ◦R ⊆ Ldom ;(71)

on the other hand,

R< ◦⊤⊤ ◦R = R◦⊤⊤◦R(72)

and it doesn't make sense to write

R< ◦⊤⊤ ◦R ⊆ <
!

In equation (71), both R and Ldom.R are points of type A∼B and Cor.A , respe
tively,

and the symbol \⊤⊤ " has type Cor.A∼ (A∼B) whereas in equation (72) R<
is not a

point, the leftmost o

urren
e of the symbol \⊤⊤ " has type A∼A and its rightmost

o

urren
e has type A∼B .
We 
on
lude this se
tion with a number of properties of fun
tional relations. The

properties stem from the observation that fun
tionality 
an be de�ned via a Galois


onne
tion. Spe
i�
ally, the relation f is fun
tional i�, for all relations R and S (of

appropriate type),

f◦R ⊆ S ≡ f> ◦R ⊆ f
∪

◦S .(73)
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It is a simple exer
ise to show that (73) is equivalent to the property f ◦ f
∪ ⊆ I . (Although

(73) doesn't immediately �t the standard de�nition of a Galois 
onne
tion, it 
an be

turned into standard form by restri
ting the range of the dummy R to relations that

satisfy f> ◦R = R , i.e. relations R su
h that R<⊆ f> .)
The 
onverse-dual of (73) is also used frequently: g is fun
tional i�, for all R and

S ,

R ◦g
∪ ⊆ S ≡ R ◦g> ⊆ S◦g .(74)

Comparing the Galois 
onne
tions de�ning the over and under operators (see se
tion 3.2)

with the Galois 
onne
tion de�ning fun
tionality (see (73)) suggests a formal relationship

between \division" by a fun
tional relation and 
omposition with the relation's 
onverse.

The pre
ise form of this relationship is given by the following lemma.

Lemma 75 For all R and all fun
tional relations f ,

f> ◦ f\R = f
∪

◦R .

Proof We use the anti-symmetry of the subset relation. First,

f
∪
◦R ⊆ f> ◦ f\R

= { domains }

f> ◦ f
∪
◦R ⊆ f> ◦ f\R

⇐ { monotoni
ity }

f
∪
◦R ⊆ f\R

= { fa
tors }

f ◦ f
∪
◦R ⊆ R

⇐ { de�nition and monotoni
ity }

f is fun
tional .

Se
ond,

f> ◦ f\R ⊆ f
∪
◦R

⇐ { f> ⊆ f
∪
◦ f ; monotoni
ity and transitivity }

f
∪
◦ f ◦ f\R ⊆ f

∪
◦R

⇐ { monotoni
ity }

f ◦ f\R ⊆ R

= { 
an
ellation }

true .
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✷

Two lemmas that will be needed later now follow. Lemma 76 allows the 
onverse of a

fun
tional relation (i.e. an inje
tive relation) to be 
an
elled, whilst lemma 77 expresses

a distributivity property.

Lemma 76 For all R and all fun
tional relations f ,

f< ◦ f
∪

\ (f
∪

◦R) = f< ◦R .

Proof

f< ◦ f
∪

\ (f∪ ◦R)

= { assumption: f is fun
tional }

f ◦ f
∪

◦ f
∪

\ (f∪ ◦R)

⊆ { 
an
ellation }

f ◦ f
∪
◦R

= { assumption: f is fun
tional }

f< ◦R .

Also,

f< ◦R ⊆ f< ◦ f
∪

\ (f∪ ◦R)

⇐ { monotoni
ity }

R ⊆ f
∪

\ (f∪ ◦R)

= { fa
tors }

true .

The lemma follows by anti-symmetry of the subset relation.

✷

Lemma 77 For all R and S and all fun
tional relations f ,

R\(S◦f) ◦ f> = R\S ◦ f .

Proof
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R\(S◦f) ◦ f> ⊆ R\S ◦ f

⇐ { f> ⊆ f
∪
◦ f , monotoni
ity }

R\(S◦f) ◦ f∪ ⊆ R\S

= { fa
tors }

R ◦R\(S◦f) ◦ f∪ ⊆ S

⇐ { 
an
ellation }

S ◦ f ◦ f
∪ ⊆ S

= { assumption: f is fun
tional }

true .

Also,

R\S ◦ f ⊆ R\(S◦f) ◦ f>

⇐ { monotoni
ity, f = f ◦ f> }

R\S ◦ f ⊆ R\(S◦f)

= { fa
tors and 
an
ellation }

true .

The lemma follows by anti-symmetry of the subset relation.

✷

The following lemma is 
ru
ial to fully understanding Riguet's \analogie frappante";

see lemma 248 in se
tion 9.2. (The lemma is 
ompli
ated by the fa
t that it has �ve free

variables. Simpler, possibly better known, instan
es 
an be obtained by instantiating

one or more of f , g , U and W to the identity relation.)

Lemma 78 Suppose f and g are fun
tional. Then for all U , V and W ,

f
∪
◦ (g< ◦U)\V/(W ◦ f<) ◦g

= f> ◦ (g∪
◦U ◦ f)\(g∪

◦V ◦ f)/(g∪
◦W ◦ f) ◦g> .

Proof Guided by the assumed fun
tionality of f and g , we use the rule of indire
t

equality. Spe
i�
ally, we have, for all R , U , V and W ,

f> ◦R ◦g> ⊆ f
∪
◦ (g< ◦U)\V/(W ◦ f<) ◦g

= { assumption: f and g are fun
tional, (73) and (74) }

f ◦R ◦g
∪ ⊆ (g< ◦U)\V/(W ◦ f<)
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= { fa
tors }

g< ◦U ◦ f ◦R ◦g
∪
◦W ◦ f< ⊆ V

= { assumption: f and g are fun
tional

i.e. f ◦ f
∪ = f< ∧ g ◦g

∪ = g< }

g ◦g
∪
◦U ◦ f ◦R ◦g

∪
◦W ◦ f ◦ f

∪ ⊆ V

= { assumption: f and g are fun
tional, (73) and (74) }

g> ◦g
∪
◦U ◦ f ◦R ◦g

∪
◦W ◦ f ◦ f> ⊆ g

∪
◦V ◦ f

= { domains (four times) }

g
∪
◦U ◦ f ◦ f> ◦R ◦g> ◦g

∪
◦W ◦ f ⊆ g

∪
◦V ◦ f

= { fa
tors }

f> ◦R ◦g> ⊆ (g∪
◦U ◦ f)\(g∪

◦V ◦ f)/(g∪
◦W ◦ f)

= { f> and g>
are 
ore
exives }

f> ◦R ◦g> ⊆ f> ◦ (g∪
◦U ◦ f)\(g∪

◦V ◦ f)/(g∪
◦W ◦ f) ◦g>

The lemma follows by instantiating R to the left and right sides of the 
laimed equation,

simplifying using domain 
al
ulus, and then applying the re
exivity and anti-symmetry

of the subset relation.

✷

The �nal lemma in this se
tion anti
ipates the dis
ussion of per domains in se
tion

3.8.

Lemma 79 Suppose relations R , f and g are su
h that

f ◦ f
∪

= f< = R< ∧ g< = g ◦g
∪

.

Then, for all S ,

g> ◦ (f
∪

◦R ◦g)\(f
∪

◦S) = g
∪

◦R\S .(80)

It follows that

g> ◦ (f
∪

◦R ◦g)\(f
∪

◦R ◦g) ◦g> = g
∪

◦R\R ◦g .(81)

Proof The proof of (80) is as follows.

g> ◦ (f∪ ◦R ◦g)\(f∪ ◦S)

= { fa
tors }

g> ◦g\((f∪ ◦R)\(f∪ ◦S))
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= { lemma 75 with f,R := g , (f∪ ◦R)\(f∪ ◦S) }

g
∪
◦ (f∪ ◦R)\(f∪ ◦S)

= { fa
tors }

g
∪
◦R\(f∪ \ (f∪ ◦S))

= { [ R\S=R\(R< ◦S) ] with R,S := R , f
∪

\ (f∪ ◦S)

assumption: f<=R< }

g
∪
◦R\(f< ◦ f

∪

\ (f∪ ◦S))

= { lemma 76 with f,R := f,S }

g
∪
◦R\(f< ◦S)

= { assumption: f<=R<
, [ R\S=R\(R< ◦S) ] }

g
∪
◦R\S .

Now we prove (81).

g> ◦ (f∪ ◦R ◦g)\(f∪ ◦R ◦g) ◦g>

= { (80) with S :=R◦g }

g
∪
◦R\(R◦g) ◦g>

= { lemma 77 }

g
∪
◦R\R ◦g .

✷

3.6 Isomorphic Relations

Several theorems we present \
hara
terise" 
lasses of relations in terms of fun
tional

relations. Typi
ally these 
hara
terisations are not unique but unique \up to isomor-

phism". See, for example, se
tion 5.2. The de�nition of \isomorphi
" relations and some

properties of the notion are given below.

Definition 82 Suppose R and S are two relations (not ne
essarily of the same type).

Then we say that R and S are isomorphi
 and write R∼=S i�

〈∃φ,ψ
: φ ◦φ

∪ = R< ∧ φ
∪
◦φ = S< ∧ ψ ◦ψ

∪ = R> ∧ ψ
∪
◦ψ = S>

: R = φ ◦S ◦ψ
∪

〉 .
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✷

Lemma 83 The relation

∼= is re
exive, transitive and symmetri
. That is,

∼= is an

equivalen
e relation.

Proof This is very straightforward. For example, here is how symmetry is proved.

R = φ ◦S ◦ψ
∪

⇒ { Leibniz }

φ
∪
◦R ◦ψ = φ

∪
◦φ ◦S ◦ψ

∪
◦ψ

= { assume: φ
∪
◦φ = S<

and ψ
∪
◦ψ = S>

, domains }

φ
∪
◦R ◦ψ = S

⇒ { Leibniz }

φ ◦φ
∪
◦R ◦ψ ◦ψ

∪ = φ ◦S ◦ψ
∪

= { ssume: φ ◦φ
∪ = R<

and ψ ◦ψ
∪ = R>

, domains }

R = φ ◦S ◦ψ∪ .

That is, for all φ , ψ , R and S ,

(R = φ ◦S ◦ψ
∪ ≡ φ

∪
◦R ◦ψ = S)

⇐ φ ◦φ
∪ = R< ∧ φ

∪
◦φ = S< ∧ ψ ◦ψ

∪ = R> ∧ ψ
∪
◦ψ = S> .

Symmetry of

∼= follows by de�nition of

∼= , properties of 
onverse, and Leibniz's rule.

✷

The task of proving that two relations are isomorphi
 involves 
onstru
ting φ and

ψ that satisfy the 
onditions of the existential quanti�
ation in de�nition 82; we 
all the


onstru
ted values witnesses to the isomorphism.

Note that the requirement on φ in de�nition 82 is that it is both fun
tional and

inje
tive; thus it is required to \witness" a (1{1) 
orresponden
e between the points in

the left domain of R and the points in the left domain of S . Similarly, the requirement on

ψ is that it \witnesses" a (1{1) 
orresponden
e between the points in the right domain

of R and the points in the right domain of S . Formally, R<
and S<

are isomorphi
 as

\witnessed" by φ and R>
and S>

are isomorphi
 as \witnessed" by ψ :

Lemma 84 Suppose R and S are relations su
h that R∼=S . Then R<∼=S<
and

R>∼=S>
.
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Proof Suppose φ and ψ are su
h that

φ ◦φ
∪

= R< ∧ φ
∪

◦φ = S< ∧ ψ ◦ψ
∪

= R> ∧ ψ
∪

◦ψ = S> .

Then

R<

= { R<
is 
ore
exive }

R< ◦R<

= { assumption }

φ ◦φ
∪
◦φ ◦φ

∪

= { assumption }

φ ◦S< ◦φ
∪

.

That is R< = φ ◦S< ◦φ
∪

. Similarly, R> = ψ ◦S> ◦ψ
∪

. But also (be
ause the domain

operators are 
losure operators),

φ ◦φ
∪

= (R<)< ∧ φ
∪

◦φ = (S<)< ∧ ψ ◦ψ
∪

= (R>)> ∧ ψ
∪

◦ψ = (S>)> .

Applying de�nition 82 with R,S,φ,ψ := R< , S< ,φ ,φ and R,S,φ,ψ := R> , S> ,ψ ,ψ , the

lemma is proved.

✷

3.7 Formulations of Power Transpose

Warning This se
tion makes use of the notion of \symmetri
 division" as de�ned in

[BdM97, Oli18℄ but not as de�ned in [Fv90℄. \Symmetri
 division" 
an be de�ned in

two non-equivalent ways whi
h we 
all symmetri
 left-division and symmetri
 right-

division. Given relations R of type A∼B and S of type A∼C , the symmetri
 right-

division is a relation of type B∼C de�ned in terms of right fa
tors as

R\S ∩ (S\R)
∪

.

Dually, given relations R of type B∼A and S of type C∼A , the symmetri
 left-division

is a relation of type B∼C de�ned in terms of left fa
tors as

R/S ∩ (S/R)
∪

.

Clearly, just from their types, neither the \symmetri
" left-division nor the \symmetri
"

right-division is a symmetri
 relation. Possibly the justi�
ation for the use of the word

\symmetri
" is that, for homogeneous relation R , R∩R∪

is a symmetri
 relation (indeed
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the largest symmetri
 relation in
luded in R ). Both [BdM97, Oli18℄ and [Fv90℄ use

the notation

R
S
(in the 
ase of [BdM97, Oli18℄ to denote symmetri
 right-division and

in the 
ase of [Fv90℄ to denote symmetri
 left-division). The motivation for this is

that the notation suggests a number of 
an
ellation rules similar to the ones used in

ordinary arithmeti
. Great 
are must be taken, however, be
ause |unlike in ordinary

arithmeti
| the 
an
ellation rules are one-sided. For example, for symmetri
 right-

division, we have the rule

R = R◦
R

R

but this is not valid if

R
S

is de�ned to be symmetri
 left-division. Even worse, the

expression

R
R
◦R does not even make sense (if

R
S
is de�ned to be symmetri
 right-division)

if R is a truly heterogeneous relation |with unequal sour
e and target| purely on type

grounds! For this reason, the notation R\\S will be used here to denote the symmetri


right-division. The reader should take great 
are when 
omparing formulae with those

in [Fv90℄. End of Warning

Given a relation R of type A∼B , the (left) power transpose [Fv90, BdM97℄ of R is

a total fun
tion, denoted in this paper

2

by ΓR , of type 2A←B . A pointwise de�nition

of the (left) power transpose (using traditional set notation) is

ΓR.b = {a |a R b} .

As dis
ussed in se
tion 3.3, there are three di�erent but isomorphi
 me
hanisms for

representing sets in relation algebra: as 
ore
exives, (left or right) 
onditionals and

squares. Using 
ore
exives, the power transpose ΓR of R is represented by the fun
tion

〈b :: (R◦b)<〉 .

It has type Cor.A←B where Cor.A denotes the type of 
ore
exives of type A∼A .

Rather than use 
ore
exives to de�ne power transpose, Freyd and

�

S�
edrov [Fv90℄

postulate a number of axioms that de�ne ΓR in terms of set membership. Their approa
h

is followed by Bird and De Moor [BdM97℄. For our purposes, only two properties are

needed. The �rst is that ΓR is a total fun
tion. That is, for all R , S and T of

appropriate type,

ΓR ◦S ⊆ T ≡ S ⊆ (ΓR)
∪

◦T .(85)

2

Freyd and

�

S�
edrov [Fv90℄ use the symbol \Λ " rather than \ Γ ". In just the same way that we prefer

the symbols \ \\ " and \ // " for asymmetri
, but dual, operators, we prefer to use an asymmetri
 symbol

for left power transpose, thus opening the possibility of using its mirror image for right power transpose.
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This is the Galois 
onne
tion (73) with f := ΓR and spe
ialised to the 
ase that f>= I (i.e.

f is total); in line with our 
ommon poli
y when using well-known Galois 
onne
tions,

we refer to the rule as a \shunting rule". The se
ond property of ΓR that we use is

(ΓR)
∪

◦ ΓS = R\S ∩ (S\R)
∪

.(86)

From a 
al
ulational viewpoint, the two rules together enable reasoning about power

transpose on the smaller and larger side of a set in
lusion, respe
tively.

The property (86) 
an be derived from the de�nition of ΓR in our axiom system.

Here is the proof.

Lemma 87 For all relations R and S ,

(ΓR)
∪

◦ ΓS = R\S ∩ (S\R)
∪

.

Proof We use indire
t equality. For all relations X , R and S , we have

X ⊆ (ΓR)∪ ◦ ΓS

= { saturation property: (19) }

〈∀a,b : a◦⊤⊤◦b ⊆ X : a◦⊤⊤◦b ⊆ (ΓR)∪ ◦ ΓS〉
= { (69) with f,g := ΓR,ΓS and de�nition of Γ }

〈∀a,b : a◦⊤⊤◦b ⊆ X : (R◦a)< = (S◦b)<〉
= { 
orollary 61 }

〈∀a,b : a◦⊤⊤◦b ⊆ X : a◦⊤⊤◦b ⊆ R\S ∩ (S\R)∪〉
= { saturation property: (19) }

X ⊆ R\S ∩ (S\R)∪ .

Summarising, for all X , R and S ,

X ⊆ (ΓR)
∪

◦ ΓS ≡ X ⊆ R\S ∩ (S\R)
∪

.

That is, by indire
t equality,

(ΓR)
∪

◦ ΓS = R\S ∩ (S\R)
∪

.

✷

Abbreviating the right side of lemma 87 to R\\S , viz.

R\\S = R\S ∩ (S\R)
∪

,(88)

the lemma be
omes, for all R and S ,

(ΓR)
∪

◦ ΓS = R\\S .(89)

We use both forms of the lemma below.
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3.8 Pers and Per Domains

The relation R\\R is an equivalen
e relation

3

. Voermans [Voe99℄ 
alls it the \greatest

right domain" of R . Riguet [Rig48℄ 
alls R\\R the \noyau" of R (but de�nes it using

nested 
omplements). Others (see [Oli18℄ for referen
es) 
all it the \kernel" of R .

As remarked elsewhere [Oli18℄, the symmetri
 left division inherits a number of

(left) 
an
ellation properties from the properties of fa
torisation in terms of whi
h it

is de�ned. For our purposes, the only 
an
ellation property we use is the following

(inherited from the property R ◦R\R = R ).

Lemma 90 For all R ,

R ◦R\\R = R .

Proof By mutual in
lusion:

R ◦ R\\R

= { de�nition: (88) with R,S :=R,R }

R ◦ (R\R∩ (R\R)∪)

⊆ { monotoni
ity }

R ◦ R\R

= { 
an
ellation [ R ◦ R\S ⊆ S ] (with R,S :=R,R ) and [ I⊆R\R ] }

R

⊆ { [ I⊆S\\S ] with S :=R }

R ◦ R\\R .

✷

Voermans [Voe99℄ emphasises the importan
e of the relation R> ◦R\\R , whi
h is a

partial equivalen
e relation that better re
e
ts the right (per-)domain of R . (In a

-


ordan
e with his thesis, \domains" are pers rather than 
ore
exives.) Unlike Riguet

and others, Voermans gives equal importan
e to the dual equivalen
e relation R//R and

the left (per-)domain R//R ◦R<
. The 
ombination of the two per-domains enables the

de�nition of what we 
all the \
ore" of a relation. The \
ore" of a relation is important

to understanding the nature of difun
tional relations and blo
k-ordered relations. See

theorems 205 and 207 in se
tion 7.3. See also se
tion 12 for further dis
ussion.

3

This is a well-known fa
t: the relation R\\R is the symmetri
 
losure of the preorder R\R . The easy

proof is left to the reader.
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Definition 91 (Partial Equivalence Relation (per)) A relation is a partial equiv-

alen
e relation i� it is symmetri
 and transitive. That is, R is a partial equivalen
e

relation i�

R=R
∪

∧ R◦R⊆R .

Hen
eforth we abbreviate partial equivalen
e relation to per.

✷

An equivalen
e relation is a re
exive, symmetri
 and transitive relation. Re
exivity

means that the left domain, the right domain, the sour
e and the target of the relation are

all the same. A partial equivalen
e relation is not ne
essarily re
exive;, the absen
e of

the re
exivity property is, however, of no 
onsequen
e. Its rôle is taken by the following

lemma.

Lemma 92 Suppose R is a per. Then

R< = R> ⊆ R .

Proof The equality R< = R>
is immediate from the de�nition of the domain operators

and the fa
t that a per is symmetri
. Also,

R> ⊆ R

⇐ { R> = I ∩ R∪
◦R , transitivity of subset relation }

R
∪
◦R ⊆ R

= { assumption: R is a per, de�nition 91 and Leibniz }

true .

✷

Be
ause the left and right domain of a per are equal, we refer to its domain, omitting

the adje
tive left or right.

De�nition 91 is the standard de�nition of a partial equivalen
e relation. A better

de�nition |be
ause it is just one equation| is expressed by the following theorem.

Theorem 93 For all relations R , R is a per equivales R = R ◦R
∪

. Symmetri
ally, for

all relations R , R is a per equivales R = R∪
◦R .

Proof By mutual impli
ation. First, suppose R is a per. Then

R◦R

⊆ { assumption: R is transitive }

R
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= { domains }

R ◦R>

⊆ { assumption: R is a per, lemma 92 }

R◦R .

That is, by the anti-symmetry of the subset relation, R=R◦R . But R is symmetri
.

That is, R=R∪

. So, by Leibniz's rule, R = R◦R
∪

.

For the follows-from, we have:

R = R◦R
∪

= { (R◦R
∪)∪ = R◦R

∪

}

R = R◦R
∪ = R∪

⇒ { subset relation is re
exive, Leibniz }

R◦R⊆R ∧ R=R∪

= { de�nition }

per.R .

✷

The following lemma is a straightforward 
onsequen
e of theorem 93.

Lemma 94 Suppose f is a fun
tional relation. Then f
∪
◦ f is a per.

✷

Pers are studied in more detail in se
tion 5. In this se
tion the fo
us is on the left

and right \per-domains" introdu
ed by Voermans [Voe99℄.

Definition 95 (Right and Left Per Domains) The right per-domain of relation

R , denoted R≻
, is de�ned by the equation

R≻ = R> ◦R\\R .(96)

Dually, the left per-domain of relation R , denoted R≺
, is de�ned by the equation

R≺ = R//R ◦R< .(97)

✷

Although the theorems below fo
us on the properties of R≻
, ea
h 
an, of 
ourse, be

dualised to properties of R≺
.

The left and right per-domains are 
alled \domains" be
ause, like the 
ore
exive

domains, we have the properties:

R≺ ◦R = R = R ◦R≻ .(98)
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(The se
ond of these equalities is an immediate 
onsequen
e of lemma 90 and the prop-

erties of (
ore
exive-) domains; the �rst is symmetri
.) Indeed, R≺
and R≻

are the

\least" pers that satisfy these equalities. (See [Voe99℄ for details of the ordering relation

on pers.)

That R≺
and R≻

are indeed pers is a dire
t 
onsequen
e of the symmetry and tran-

sitivity of R\\R . For example, the transitivity of R≻
is inherited from the transitivity of

R\\R :

R≻ ◦R≻

= { (96) and (100) }

R> ◦R\\R ◦R\\R ◦R>

⊆ { R\\R is transitive }

R> ◦R\\R ◦R>

= { lemma 99 and (96) }

R≻ .

The symmetry of R≻
(i.e. R≻=(R≻)∪ ) is a similar 
ombination of (96), (100) and the

symmetry of R\\R . Thus R≻
is a per. Dually R≺

is also a per.

In order to prove additional properties, it is useful to re
ord the left and right domains

of the relation R\\R ◦R>
:

Lemma 99 For all R ,

(R\\R ◦R>)> = R> = (R> ◦R\\R)< ,

(R\\R ◦R>)< = R> = (R> ◦R\\R)> ,

R\\R ◦R> = R> ◦R\\R ◦R> = R> ◦R\\R .

Proof The �rst two equations follow from the fa
t that

(R\\R)< = I = (R\\R)>

(be
ause I⊆R\R and R\\R is the symmetri
 
losure of R\R ). For example:

(R> ◦R\\R)<

= { domains }

(R> ◦ (R\\R)<)<

= { (R\\R)< = I }



57

(R>)<

= { R>
is a 
ore
exive, domains }

R> .

The se
ond two equations follow from lemma 90.

(R\\R ◦R>)<

= { domains }

(R ◦ (R\\R)∪)>

= { R\\R is symmetri
 }

(R ◦R\\R)>

= { lemma 90 }

R> ,

and

(R> ◦R\\R)>

= { domains }

(R ◦R\\R)>

= { lemma 90 }

R> .

Combining the domain equations, we have

R\\R ◦R>

= { (R> ◦R\\R)< = R>
, domains }

R> ◦R\\R ◦R>

= { (R> ◦R\\R)> = R>
, domains }

R> ◦R\\R .
✷

Lemma 99 has the 
onsequen
e that R≻

an be de�ned equivalently by the equation

R≻ = R\\R ◦R>
(100)

and, moreover,

(R≻)< = R> = (R≻)> .(101)

A property that we need later is
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Lemma 102 For all relations R ,

R\R ◦R≻ = R\R ◦R> .

Proof By anti-symmetry of the subset relation:

R\R ◦R≻

⊆ { by (88), (100) and monotoni
ity, R≻ ⊆ R\R ◦R> }

R\R ◦R\R ◦R>

⊆ { by 
an
ellation, R\R ◦R\R ⊆ R\R }

R\R ◦R>

⊆ { I⊆R\\R , so by (100) and montoni
ity, R>⊆R≻ }

R\R ◦R≻ .
✷

The pointwise interpretations of the left and right per domains are given by the

following lemma.

Lemma 103 For all relations R of type A∼B and all points a and a ′
of type A ,

a◦⊤⊤◦a ′ ⊆ R≺ ≡ a⊆R< ∧ (a◦R)> = (a ′
◦R)> ∧ a ′⊆R< .

Dually, for all relations R of type A∼B and all points b and b ′
of type B ,

b◦⊤⊤◦b ′ ⊆ R≻ ≡ b⊆R> ∧ (R◦b)< = (R◦b ′)< ∧ b ′⊆R> .

Proof Assume that b and b ′
are points. Then

b◦⊤⊤◦b ′ ⊆ R≻

= { de�nition (96) and lemma 99 }

b◦⊤⊤◦b ′ ⊆ R> ◦R\\R ◦R>

= { domains (using mutual impli
ation) }

b⊆R> ∧ b◦⊤⊤◦b ′ ⊆ R\\R ∧ b ′⊆R>

= { 
orollary 61, with R,S :=R,R }

b⊆R> ∧ (R◦b)< = (R◦b ′)< ∧ b ′⊆R> .

The dual property follows from the distributivity properties of 
onverse.

✷

Given relation R , the relation R
∪
◦R is symmetri
 but not ne
essarily transitive.

However, it is an upper bound on the right per domain of R . That is,

R
∪

◦R ⊇ R≻ .(104)

The proof is as follows:
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R
∪
◦R ⊇ R≻

= { de�nition: (96) }

R
∪
◦R ⊇ R> ◦R\\R

= { 
an
ellation: (90) }

R
∪
◦R ◦R\\R ⊇ R> ◦R\\R

⇐ { monotoni
ity }

R
∪
◦R ⊇ R>

⇐ { de�nition 42 }

true .

Dually, of 
ourse, we have:

R ◦R
∪ ⊇ R≺ .(105)

It is useful to investigate the 
ir
umstan
es in whi
h the in
lusions in (104) and (105)

be
ome equalities.

Lemma 106 For all relations R ,

(R≺ = R ◦R
∪

) = (R = R ◦R
∪

◦R) = (R
∪

◦R = R≻) .

(As usual, we overload the equality symbol: its usage here alternates between equality

of relations and equality of booleans. As always, 
ontinued equalities should be read


onjun
tionally.)

Proof We have:

R
∪
◦R = R≻

= { (104) and anti-symmetry }

R
∪
◦R ⊆ R≻

= { de�nition: (96) }

R
∪
◦R ⊆ R> ◦R\\R

⇐ { R> ◦R
∪ = R∪

and monotoni
ity }

R
∪
◦R ⊆ R\\R

= { R
∪
◦R is symmetri
, R\\R = R\R∩ (R\R)∪ }

R
∪
◦R ⊆ R\R
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⇐ { fa
tors }

R ◦R
∪
◦R ⊆ R

⇐ { (98) }

R
∪
◦R = R≻ .

We have thus proved (by mutual impli
ation), that

(R ◦R
∪

◦R ⊆ R) = (R
∪

◦R = R≻) .

But,

R ◦R
∪
◦R ⊆ R

= { (54) }

R ◦R
∪
◦R ⊆ R ∧ R ⊆ R ◦R

∪
◦R

= { anti-symmetry }

R = R ◦R
∪
◦R

Combining the two 
al
ulations (using the transitivity of boolean equality),

(R = R ◦R
∪

◦R) = (R
∪

◦R = R≻) .

The dual property,

(R≺ = R ◦R
∪

) = (R = R ◦R
∪

◦R)

follows by symmetry.

✷

Two spe
ial 
ases of lemma 106:

Lemma 107 For all fun
tional relations f (that is, for all f su
h that f ◦ f
∪ = f< ),

f≻ = f
∪

◦ f .

Proof

f≻ = f
∪
◦ f

= { lemma 106 with R := f }

f = f ◦ f
∪
◦ f

= { assumption: f is fun
tional, i.e. f ◦ f
∪ = f< }

f = f< ◦ f

= { domains }

true .
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✷

The following lemma extends [Rig48, Corollaire, p.134℄ from equivalen
e relations to

pers.

Lemma 108 For all relations R , the following statements are all equivalent.

(i) R is a per (i.e. R=R∪

∧ R◦R⊆R ) ,

(ii) R = R∪
◦R ,

(iii) R=R≺
,

(iv) R=R≻
.

Proof The equivalen
e of (i) and (ii) was shown in theorem 93. It remains to prove the

equivalen
e of (ii) and (iii); the equivalen
e of (ii) and (iv) is the dual proposition.

R=R≻

= { [ R = R ◦R≻ ] and [ R≻=(R≻)∪ ] }

R = R ◦R
∪ = R≻

= { R = R ◦R
∪ ≡ R = R ◦R

∪ = R ◦R
∪
◦R

(by Leibniz and predi
ate 
al
ulus) }

R = R ◦R
∪ = R ◦R

∪
◦R = R≻

= { lemma 106 }

R = R ◦R
∪ = R ◦R

∪
◦R

= { see above }

R = R ◦R
∪

.

✷

Core
exives are, of 
ourse, pers. This implies that they are 
losed under the left and

right per-domain operators:

Lemma 109 For all 
ore
exives p ,

p≺ = p = p≻ .

Proof The lemma follows from lemma 108 sin
e, for all 
ore
exives p ,

p = p
∪

= p◦p .
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✷

The dual of lemma 107 is that, for all inje
tive relations f (that is, for all f su
h

that f
∪
◦ f = f> ),

f≺ = f ◦ f
∪

.

Noting that f is inje
tive equivales f
∪

is fun
tional, we seek a 
onvenient way of 
om-

bining the two properties. Su
h is the following.

Lemma 110 Suppose that f and g are fun
tional relations and R is an arbitrary

relation su
h that

f ◦ f
∪

= f< = R< ∧ g ◦g
∪

= g< = R> .

Then

(f
∪

◦R ◦g)≺ = f ◦R≺ ◦ f
∪

∧ (f
∪

◦R ◦g)≻ = g
∪

◦R≻ ◦g

Proof First note that

((f∪ ◦R ◦g)≻)<

= { (101) }

(f∪ ◦R ◦g)>

= { assumption: f< = R<
, domains }

(R◦g)>

= { assumption: g< = R>
, domains }

g> .

That is,

((f
∪

◦R ◦g)≻)< = g> .(111)

Now,

g> ◦ (f∪ ◦R ◦g)\(f∪ ◦R ◦g) ◦g>

= { lemma 79 with S :=R◦g }

g
∪
◦R\(R◦g) ◦g>

= { lemma 77 with R,S,f :=R,R,g }

g
∪
◦R\R ◦g .
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That is

g> ◦ (f
∪

◦R ◦g)\(f
∪

◦R ◦g) ◦g> = g
∪

◦R\R ◦g .(112)

Thus

g> ◦ (f∪ ◦R ◦g)≻ ◦g>

= { de�nition 95, lemma 99 and (111) }

g> ◦ ((f∪ ◦R ◦g)\(f∪ ◦R ◦g) ∩ ((f∪ ◦R ◦g)\(f∪ ◦R ◦g))∪) ◦g>

= { distributivity of 
ore
exives over interse
tion }

g> ◦ (f∪ ◦R ◦g)\(f∪ ◦R ◦g) ◦g> ∩ (g> ◦ (f∪ ◦R ◦g)\(f∪ ◦R ◦g) ◦g>)∪

= { (112) }

g
∪
◦R\R ◦g ∩ (g∪

◦R\R ◦g)∪

= { distributivity (g is fun
tional) }

g
∪

◦ (R\R ∩ (R\R)∪) ◦ g

= { de�nition 95 }

g
∪
◦R≻ ◦g .

✷

Lemma 107 is an instan
e of lemma 110 (obtained by instantiating both R and g to

f< and using lemma 109 to eliminate R≺
). Similarly, the dual of lemma 107 is also an

instan
e. Another instan
e is:

Lemma 113 For all relations f and g su
h that

f ◦ f
∪

= f< = g ◦g
∪

= g<

we have

(f
∪

◦g)≻ = g≻ ∧ (f
∪

◦g)≺ = f≻ .

Proof

(f∪ ◦g)≻

= { heading for lemma 110, domains }

(f∪ ◦g< ◦g)≻

= { domains and lemma 110 with R,f,g := g< , f , g }

g
∪
◦ (g<)≻ ◦g
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= { lemma 109 and domains }

g
∪
◦g

= { lemma 107 with f :=g }

g≻ .

The se
ond equality is now straightforward:

(f∪ ◦g)≺

= { 
onverse }

((g∪
◦ f)∪)≺

= { de�nitions : (100) and (97) }

(g∪
◦ f)≻

= { [ (f∪ ◦g)≻ = g≻ ⇐ f ◦ f
∪ = f< = g ◦g

∪ = g< ]

(just proved) with f,g :=g,f }

f≻ .

✷

3.9 Provisional Orderings

There are various well-known notions of ordering: preorder, partial and linear (aka total)

ordering. For our purposes all of these are too stri
t. So, in this se
tion, we introdu
e the

notion of a \provisional ordering". The adje
tive \provisional" has been 
hosen be
ause

the notion \provides" just what we need.

The standard de�nition of an ordering is an anti-symmetri
 preorder whereby a pre-

order is required to be re
exive and transitive. It is the re
exivity requirement that is

too stri
t for our purposes. So, with the intention of weakening the standard de�nition

of a preorder to requiring re
exivity of a relation over some superset of its left and right

domains, we propose the following de�nition.

Definition 114 Suppose T is a homogeneous relation. Then T is said to be a

provisional preorder if

T< ⊆ T ∧ T> ⊆ T ∧ T ◦T ⊆T .

✷

Fig. 4 depi
ts a provisional preorder on a set of eight elements as a dire
ted graph.

The blue squares should be ignored for the moment. (See the dis
ussion following lemma
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Figure 4: A Provisional Preorder

120.) Note that the relation depi
ted is not a preorder be
ause it is not re
exive: the

top-right node depi
ts an element that is not in the left or right domain of the relation.

An immediate 
onsequen
e of the de�nition is that the left and right domains of a

provisional preorder must be equal:

Lemma 115 If T is a provisional preorder then

T< = T> .

Proof Suppose T is a provisional preorder. Then

T> ⊆ T<

= { domains }

(T>)< ⊆ T<

⇐ { monotoni
ity }

T> ⊆ T

= { assumption: T> ⊆ T }

true .

That is, T> ⊆ T<
. Dually, T< ⊆ T>

. Thus, by anti-symmetry, T< = T>
.

✷

A trivial property that is nevertheless used frequently:
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Lemma 116 T is a provisional preorder equivales T
∪

is a provisional preorder.

Proof Immediate from the de�nition and properties of 
onverse.

✷

A preorder is a provisional preorder with left (equally right) domain equal to the

identity relation. In other words, a preorder is a total provisional preorder. It is easy

to show that, for any relation R , the relations R\R and R/R are preorders. It is also

easy to show that R is a preorder if and only if R=R\R (or equivalently if and only if

R=R/R ). These properties generalise to provisional preorders.

Lemma 117 For all relations R , the relations R> ◦R\R and R/R ◦R<
are provisional

preorders.

Proof The proof is very straightforward. First,

(R> ◦R\R)<

= { I⊆R\R , so (R\R)<= I ; domains }

(R>)<

= { R>
is a 
ore
exive }

R>

⊆ { I⊆R\R , monotoni
ity }

R> ◦R\R .

Se
ond,

(R> ◦R\R)>

= { domains }

(R ◦R\R)>

= { 
an
ellation }

R>

⊆ { I⊆R\R , monotoni
ity }

R> ◦R\R .

Third,

R> ◦R\R ◦R> ◦R\R

⊆ { R>⊆ I , monotoni
ity }
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R> ◦R\R ◦R\R

⊆ { R\R ◦R\R ⊆ R\R

(easy use of de�nition of fa
tors and 
an
ellation) }

R> ◦R\R .

Comparing the above properties with de�nition 114, we have shown that R> ◦R\R is a

provisional preorder. The dual property, R/R ◦R<
is a provisional preorder, is obtained

by the instantiation R :=R∪

and appli
ation of distributivity properties of 
onverse.

✷

Lemma 118 T is a provisional preorder equivales

T = T< ◦T\T = T/T ◦T> = T< ◦T\T/T ◦T> .

Proof Follows-from is a straightforward 
onsequen
e of the fa
t that T\T is a preorder

for arbitrary T .

Impli
ation is also straightforward. Assume that T is a provisional preorder. The

proof of the leftmost equality is by mutual in
lusion. First

T ⊆ T< ◦T\T

⇐ { T = T< ◦T and monotoni
ity }

T ⊆ T\T

= { fa
tors }

T ◦T ⊆ T
= { assumption: T is transitive }

true .

For the opposite in
lusion we have

T< ◦ T\T ⊆ T

⇐ { assumption: T<⊆ T , monotoni
ity }

T ◦T\T ⊆ T

= { 
an
ellation }

true .

Thus T = T< ◦T\T by anti-symmetry. That T = T/T ◦ T>
follows from lemma 116 and

the properties of 
onverse. Finally,
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T

= { T = T ◦T>
and T = T< ◦T\T (proved above) }

T< ◦ T\T ◦T>

= { T = T/T ◦T>
(proved above) }

T< ◦ T\(T/T ◦ T>) ◦ T>

= { [ R\(S ◦R>) ◦R> = R\S ◦R> ] with R,S :=T,T }

T< ◦ T\T/T ◦ T> .

✷

Lemma 118 is sometimes used in a form where the domains are repla
ed by per

domains.

Lemma 119 Suppose T is a provisional preorder. Then

T = T≺ ◦T\T = T/T ◦T≻ = T≺ ◦T\T/T ◦T≻ .

Proof Immediate from lemma 118 and the per domain equations, for all R ,

R = R≺ ◦R = R≺ ◦R< ◦R = R ◦R≻ = R ◦R> ◦R≻ .

For example,

T

= { [ R = R≺ ◦R ] with R :=T }

T≺ ◦T

= { lemma 118 }

T≺ ◦T< ◦T\T

= { [ R≺ ◦R< = R≺ ] with R :=T }

T≺ ◦T\T .

✷

Lemma 120 Suppose T is a provisional preorder. Then

T≺ = T ∩ T∪

= T≻ .

Hen
e T ∩ T∪

is a per.

Proof We exploit lemma 118:
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T≻

= { de�nition: (96) and (88), lemma 99 }

T> ◦ (T\T ∩ (T\T)∪) ◦ T>

= { distributivity ( T>
is 
ore
exive) }

T> ◦ T\T ◦T> ∩ (T∪)< ◦ T
∪

/ T
∪

◦ (T∪)<

= { lemma 115

(twi
e, on
e with T :=T∪

using lemma 116) }

T< ◦ T\T ◦T> ∩ (T∪)< ◦ T
∪

/ T
∪

◦ (T∪)>

= { lemma 118 }

T ◦T> ∩ (T∪)< ◦T
∪

= { domains }

T ∩T∪

.

The dual property T≺ = T ∩T∪

is immediate from the properties of 
onverse.

✷

Referring ba
k to �g. 4, the blue squares depi
t the equivalen
e 
lasses of the sym-

metri
 
losure of a provisional preorder. As remarked earlier, the depi
ted relation is not

a preorder; 
orrespondingly, the blue squares depi
t a truly partial equivalen
e relation.

We assume the reader is familiar with the notions of an ordering and a linear (or total)

ordering. We now extend these notions to provisional orderings. (The at-most relation

on the integers is both anti-symmetri
 and linear. The at-most relation restri
ted to some

arbitrary subset of the integers is an example of a linear provisional ordering a

ording

to the de�nition below.)

Definition 121 Suppose T is a homogeneous relation of type A∼A , for some A .

Then T is said to be provisionally anti-symmetri
 if

T ∩T∪ ⊆ IA .

Also, T is said to be a provisional ordering if T is provisionally anti-symmetri
 and T

is a provisional preorder. Finally, T is said to be a linear provisional ordering if T is

a provisional ordering and

T ∪T∪

= (T ∩ T∪

)◦⊤⊤◦(T ∩T∪

) .

✷
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De�nition 121 weakens the equality in the standard notion of anti-symmetry to an

in
lusion. The standard de�nition of a partial ordering |an anti-symmetri
 preorder|

is weakened a

ordingly (as mentioned earlier, in order to \provide" for our needs).

The following lemma anti
ipates the use of provisional preorders/orderings in exam-

ples presented later.

Lemma 122 Suppose T is a provisional ordering. Then

T< = T ∩T∪

= T> .

Proof For the �rst equality, we have

T ∩T∪ ⊆ T<

= { I is unit of 
omposition, de�nition of T< }

(T ∩T∪)◦I ⊆ I∩ T ◦⊤⊤
= { assumption: T ∩T∪ ⊆ I ; in�mum and monotoni
ity }

true .

Also,

T< ⊆ T ∩T∪

= { in�mum }

T< ⊆ T ∧ T< ⊆ T
∪

= { T is a provisional preorder, so T<⊆ T ; (T<)∪= T< }

true .

The se
ond equality is obtained by instantiating T to T
∪

.

✷
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4 Squares and Rectangles

Squares are by de�nition homogeneous relations. We now introdu
e the notion of a

\re
tangle"; re
tangles are typi
ally heterogeneous. Squares are re
tangles; properties

of squares are typi
ally obtained by spe
ialising properties of re
tangles. (For example,

lemma 127 shows that the interse
tion of two re
tangles is a re
tangle by giving an

expli
it 
onstru
tion; the same 
onstru
tion applies to squares from whi
h it is easily

shown that the interse
tion of two squares is a square.)

Definition 123 (Rectangle) A relation R is a re
tangle i� R=R◦⊤⊤◦R .

✷

An example of a re
tangle is the \pair" a◦⊤⊤◦b where a and b are points. More

generally, we have:

Lemma 124 For all relations R and S , R◦⊤⊤◦S is a re
tangle. It follows that R◦T ◦S

is a re
tangle if T is a re
tangle. In parti
ular, if R has type A∼B , S has type B∼C ,

and b is a point of type B , the relation R◦b◦S is a re
tangle.

Proof Be
ause the proof is based on the 
one rule, a 
ase analysis is ne
essary. In the


ase that either R or S is the empty relation, the lemma 
learly holds (be
ause R◦⊤⊤◦S

is the empty relation, and the empty relation is a re
tangle). Suppose now that both R

and S are non-empty. Then

R◦⊤⊤◦S◦⊤⊤◦R◦⊤⊤◦S

= { 
one rule: (5) (applied twi
e), assumption: R 6=⊥⊥ and S 6=⊥⊥ }

R◦⊤⊤◦S .

If T is a re
tangle, R◦T ◦S=R◦T ◦⊤⊤◦T ◦S ; thus R◦T ◦S is a re
tangle. That R◦b◦S is a

re
tangle is an instan
e sin
e, by (15), b is a re
tangle if b is a point.

✷

The type information in the statement of lemma 124 provides a useful guide when

introdu
ing de�nitions of parti
ular re
tangles.

4.1 Inclusion and Intersection

Using 
olloquial terminology, the left and right domain of a re
tangle are the \sides" of

the re
tangle. In general, a re
tangle is de�ned by its two sides. More pre
isely:
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Lemma 125 Suppose R and S are re
tangles of the same type. Then

R⊆S ≡ R< ⊆ S< ∧ R> ⊆ S> .

It follows that

R=S ≡ R< = S< ∧ R> = S> .

Proof By mutual impli
ation:

R⊆S
⇒ { monotoni
ity }

R< ⊆ S< ∧ R> ⊆ S>

⇒ { monotoni
ity }

R< ◦⊤⊤ ◦R> ⊆ S< ◦⊤⊤ ◦S>

= { domains }

R◦⊤⊤◦R ⊆ S◦⊤⊤◦S

= { assumption: R and S are re
tangles, de�nition 123 }

R⊆S .

The se
ond property follows straightforwardly from the anti-symmetry of the subset

relation.

✷

For squares R and S , lemma 125 simpli�es the 
he
k for equality to 
he
king that

their in
luded points are the same:

Corollary 126 If R and S are both squares then

R=S ≡ 〈∀a :: a⊆R ≡ a⊆S〉 .

Proof

R=S

= { lemma 125 and assumption: R and S are squares }

R< = S<

⇐ { saturation axiom: (16) }

〈∀a :: a⊆R< ≡ a⊆S<〉
= { lemma 125 and assumption: R and S are squares }
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〈∀a :: a⊆R ≡ a⊆S〉
⇐ { Leibniz }

R=S .

✷

Lemma 127 The interse
tion of two re
tangles is a re
tangle. Spe
i�
ally, for all

re
tangles R and S ,

R∩S = (R<∩S<)◦⊤⊤◦(R>∩S>) .

Proof We have, for all R , S , T and U ,

R◦⊤⊤◦S ∩ T ◦⊤⊤◦U

= { property of 
onditionals }

R◦⊤⊤ ∩ ⊤⊤◦S ∩ T ◦⊤⊤ ∩ ⊤⊤◦U

= { property of 
onditionals }

(R∩T)◦⊤⊤ ∩ ⊤⊤◦(S∩U)
= { property of 
onditionals }

(R∩T)◦⊤⊤◦(S∩U) .

(The properties of 
onditionals used above are not shown in this paper but easily proven.

Hint: use the modularity rule (3).) Also, for all R and S , R◦⊤⊤◦S = R< ◦⊤⊤ ◦S>
. So

R∩S
= { assumption: R and S are re
tangles }

R◦⊤⊤◦R ∩ S◦⊤⊤◦S

= { [ R◦⊤⊤◦S = R< ◦⊤⊤ ◦S> ] with R,S :=R,R and R,S :=S,S }

R< ◦⊤⊤ ◦R> ∩ S< ◦⊤⊤ ◦S>

= { above with R,S,T ,U := R< , R> , S< , S> }

(R<∩S<)◦⊤⊤◦(R>∩S>) .

✷

Lemma 128 If U is a re
tangle then, for all points b (of appropriate type)

(U◦b)< = U< ∨ (U◦b)< = ⊥⊥ .

Proof
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(U◦b)<

= { assumption: U is a re
tangle }

(U◦⊤⊤◦U◦b)<

= { domains }

(U ◦⊤⊤ ◦U> ◦b)<

= { assumption: b is a point. So U> ◦b = b ∨ U> ◦b = ⊥⊥ }

if U> ◦b = b → (U◦⊤⊤◦b)< ✷ U> ◦b = ⊥⊥ → ⊥⊥ fi

= { assumption: b is a point. So (⊤⊤◦b)<= I }

if U> ◦b = b → U< ✷ U> ◦b = ⊥⊥ → ⊥⊥ fi .

✷

4.2 Completely Disjoint Rectangles

As is well-known, an equivalen
e relation partitions its domain into a set of disjoint


lasses. Also well-known is that the existen
e of su
h a partitioning is pre
isely formu-

lated by the fun
tion that maps an element of the domain to its equivalen
e 
lass : two

elements are equivalent if and only if their equivalen
e 
lasses are equal. When repre-

sented by relations, equivalen
e 
lasses are squares. The theory of difun
tional relations

generalises this partitioning property to \
ompletely disjoint" re
tangles. This se
tion

lays the foundations for this theory. Spe
i�
ally, theorem 141 formulates a 
orrespon-

den
e between pairs of fun
tional relations and sets of 
ompletely disjoint re
tangles.

Definition 129 (Indexed Bag/Set) Suppose R is a fun
tion with sour
e K . Then

R is said to be a bag indexed by K . The values R.k , where k ranges over K , are said

to be the elements of R . In the 
ase that R is inje
tive, it is said to be an indexed

set.

✷

The distin
tion between \bag" and \set" in de�nition 129 emphasises the fa
t that

the same element may o

ur repeatedly in an indexed bag whereas ea
h element o

urs

exa
tly on
e in an indexed set. That is, an indexed set R has the property that, for all

j and k in K ,

R.j = R.k ≡ j=k .

We normally apply de�nition 129 to bags/sets of re
tangles. Spe
i�
ally, suppose A , B

and K are types and R is a fun
tion with sour
e K and target re
tangles of type A∼B .
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Then R is said to be an indexed bag of re
tangles ; it is an indexed set of re
tangles

if it is inje
tive.

Two relations R and S are disjoint if R∩S=⊥⊥ . One 
an show that, for all re
tan-

gles R and S ,

R∩S=⊥⊥ ≡ R<∩S< = ⊥⊥ ∨ R>∩S> = ⊥⊥ .

(This is a 
onsequen
e of lemma 127.) The de�nition of \
ompletely" disjoint strengthens

the disjun
tion to a 
onjun
tion. Note that we don't use 
ontinued equality be
ause the

symbol \⊥⊥ " is overloaded.

Definition 130 (Completely Disjoint) Two re
tangles R and S are said to be


ompletely disjoint i�

R<∩S< = ⊥⊥ ∧ R>∩S> = ⊥⊥ .

Suppose R is an indexed bag of re
tangles. Then R is said to be a 
ompletely disjoint

bag of re
tangles i�, for all j and k in the index set of R ,

R.j 6=R.k ≡ (R.j)<∩ (R.k)< = ⊥⊥ ∧ (R.j)>∩ (R.k)> = ⊥⊥ .

R is said to be a 
ompletely disjoint set of re
tangles i� in addition it is inje
tive. That

is, R is a 
ompletely disjoint set of re
tangles i�, for all j and k in the index set of

R ,

j 6=k ≡ (R.j)<∩ (R.k)< = ⊥⊥ ∧ (R.j)>∩ (R.k)> = ⊥⊥ .

✷

We give several 
onstru
tions of bags/sets of re
tangles. When we do so, the ver-

i�
ation that the bag/sets are 
ompletely disjoint is a
hieved by mutual impli
ation.

The \if" part is established by proving its 
ontrapositive. That is, the proof obligation

be
omes to show that, for all indi
es j and k ,

R.j=R.k ⇒ (R.j)<∩ (R.k)< 6= ⊥⊥ ∧ (R.j)>∩ (R.k)> 6= ⊥⊥

whi
h simpli�es to, for all j ,

R.j 6=⊥⊥ .

(The same simpli�
ation is valid whether the 
onstru
tion yields a bag or a set.) Thus

the �rst step is to show that the 
onstru
tion yields non-empty elements. The \only-if"

part is to show that, for all indi
es j and k ,

R.j 6=R.k ⇒ (R.j)<∩ (R.k)< = ⊥⊥ ∧ (R.j)>∩ (R.k)> = ⊥⊥ .

For this part, the following lemma is exploited.
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Lemma 131 For all relations R and S ,

R<∩S< = ⊥⊥ ≡ R
∪

◦S = ⊥⊥ .

Symmetri
ally,

R>∩S> = ⊥⊥ ≡ R ◦S
∪

= ⊥⊥ .

Proof First note that

R<∩S< = ⊥⊥ ≡ R< ◦S< = ⊥⊥

sin
e the interse
tion of 
ore
exives is the same as their 
omposition. Then

R< ◦S< = ⊥⊥
⇒ { ⊥⊥ is zero of 
omposition }

R
∪
◦R< ◦S< ◦S = ⊥⊥

= { domains: (45) }

R∪
◦S = ⊥⊥

⇒ { ⊥⊥ is zero of 
omposition }

R ◦R
∪
◦S ◦S

∪ = ⊥⊥
⇒ { monotoni
ity, [ R=⊥⊥≡R⊆⊥⊥ ] (applied twi
e) }

(I ∩ R ◦R
∪) ◦ (I ∩ S ◦S

∪) = ⊥⊥
= { domains: de�nition 42 }

R< ◦S< = ⊥⊥ .

The lemma follows by mutual impli
ation.

✷

The foregoing dis
ussion is formalised in the following lemma.

Lemma 132 Suppose R is an indexed bag of re
tangles. Then R is 
ompletely

disjoint i�

〈∀j :: R.j 6=⊥⊥〉
∧ 〈∀ j,k :: R.j 6=R.k ⇒ (R.j)∪ ◦R.k = ⊥⊥ ∧ R.j ◦ (R.k)∪ = ⊥⊥〉 .

Also, R is 
ompletely disjoint and inje
tive |i.e. an indexed set| i�

〈∀j :: R.j 6=⊥⊥〉
∧ 〈∀ j,k :: j 6=k ⇒ (R.j)∪ ◦R.k = ⊥⊥ ∧ R.j ◦ (R.k)∪ = ⊥⊥〉 .
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Proof

R is 
ompletely disjoint

= { de�nition 130 }

〈∀ j,k :: R.j 6=R.k ≡ (R.j)<∩ (R.k)< = ⊥⊥ ∧ (R.j)>∩ (R.k)> = ⊥⊥〉
= { mutual impli
ation }

〈∀ j,k :: R.j 6=R.k ⇐ (R.j)<∩ (R.k)< = ⊥⊥ ∧ (R.j)>∩ (R.k)> = ⊥⊥〉
∧ 〈∀ j,k :: R.j 6=R.k ⇒ (R.j)<∩ (R.k)< = ⊥⊥ ∧ (R.j)>∩ (R.k)> = ⊥⊥〉

= { 
ontrapositive; lemma 131 }

〈∀ j,k :: R.j=R.k ⇒ (R.j)<∩ (R.k)< 6= ⊥⊥ ∨ (R.j)>∩ (R.k)> 6= ⊥⊥〉
∧ 〈∀ j,k :: R.j 6=R.k ⇒ R.j ◦ (R.k)∪ = ⊥⊥ ∧ (R.j)∪ ◦R.k = ⊥⊥〉

= { Leibniz, re
exivity of equality, idempoten
e of interse
tion }

〈∀j :: (R.j)< 6=⊥⊥ ∨ (R.j)> 6=⊥⊥〉
∧ 〈∀ j,k :: R.j 6=R.k ⇒ R.j ◦ (R.k)∪ = ⊥⊥ ∧ (R.j)∪ ◦R.k = ⊥⊥〉

= { domains

( [ (R<=⊥⊥)= (R=⊥⊥)= (R>=⊥⊥) ] with R :=R.j )) }

〈∀j :: R.j 6=⊥⊥〉
∧ 〈∀ j,k :: R.j 6=R.k ⇒ R.j ◦ (R.k)∪ = ⊥⊥ ∧ (R.j)∪ ◦R.k = ⊥⊥〉 .

Inje
tivity of R is the property that 〈∀ j,k :: R.j=R.k ≡ j=k〉 . The 
hara
terisation

of 
ompletely disjoint and inje
tive thus follows by the use of Leibniz's rule.

✷

Here is the �rst example of su
h a 
onstru
tion.

Lemma 133 Suppose f and g are relations with 
ommon target C su
h that

f ◦ f
∪

= f< = g ◦g
∪

= g< .

Then the relation f
∪
◦g is the supremum of an indexed set of 
ompletely disjoint re
t-

angles. Spe
i�
ally, with dummy c ranging over points of type C ,

f
∪
◦g =

〈

∪c : c⊆g< : f
∪
◦ c ◦g

〉

.

Proof As remarked in lemma 124, the relation R◦c◦S is a re
tangle, for all points c

and all relations R and S ; so this is also true of f
∪
◦ c ◦g . This 
olle
tion of re
tangles


overs f
∪
◦g sin
e
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f
∪
◦g

= { g = g< ◦g and saturation axiom: (16) }

f
∪
◦ 〈∪c : c⊆g< : c〉 ◦g

= { distributivity }

〈∪c : c⊆g< : f
∪
◦ c ◦g〉 .

To show that the fun
tion 〈c : c⊆g< : f
∪
◦ c ◦g〉 is an indexed set of 
ompletely disjoint

re
tangles, we apply lemma 132. First, if c⊆g<
, the re
tangle f

∪
◦ c ◦g is non-empty

sin
e

f
∪
◦ c ◦g = ⊥⊥

⇒ { monotoni
ity }

(f∪ ◦ c ◦g)> = ⊥⊥
= { domains }

(f< ◦ c ◦g)> = ⊥⊥
= { f<=g<

and c⊆g< }

(c◦g)> = ⊥⊥
⇒ { monotoni
ity }

((c◦g)> ◦g
∪)> = ⊥⊥

= { domains }

(c ◦g ◦g
∪)> = ⊥⊥

= { g ◦g
∪ = g<

and c⊆g< }

c = ⊥⊥
= { c is a point }

false .

That is,

〈

∀c : c⊆g< : f
∪

◦ c ◦g 6= ⊥⊥
〉

.(134)

Also, assuming that c⊆g<
and c 6=c ′ , we have:

(f∪ ◦ c ◦g)∪ ◦ (f∪ ◦ c ′ ◦g)

= { distributivity, c= c∪ }
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g
∪
◦ c ◦ f ◦ f

∪
◦ c ′ ◦g

= { assumption: f ◦ f
∪ = g< }

g
∪
◦ c ◦g< ◦ c ′ ◦g

= { c⊆g< }

g
∪
◦ c ◦ c ′ ◦g

= { assumption: c 6= c ′ , (17) with a,a ′ := c,c ′ }

⊥⊥ .

That is,

〈

∀ c,c ′ : c⊆g< : c 6= c ′ ⇒ (f
∪

◦ c ◦g)
∪

◦ (f
∪

◦ c ′ ◦g)=⊥⊥
〉

.(135)

An almost identi
al argument shows that

〈

∀ c,c ′ : c⊆g< : c 6= c ′ ⇒ (f
∪

◦ c ◦g) ◦ (f
∪

◦ c ′ ◦g)
∪

=⊥⊥
〉

.(136)

Applying lemma 132 with R := 〈c : c⊆g< : f
∪
◦ c ◦g〉 , properties (134), (135) and (136)

establish that f
∪
◦g is indeed an indexed set of 
ompletely disjoint re
tangles.

✷

We now establish the 
onverse of lemma 133. (The proof is quite long be
ause of all

the details that need to be 
he
ked.)

Lemma 137 Suppose relation R is the supremum of a 
ompletely disjoint set of

re
tangles. Then

〈

∃ f,g : f ◦ f
∪

= f< = g ◦g
∪

= g< : R = f
∪
◦g

〉

.

Proof Suppose R is a 
ompletely disjoint set of re
tangles indexed by the set K .

Suppose also that R=∪R . De�ne the relations f and g by, for all k in K and all

points a su
h that a⊆R<
,

k◦⊤⊤◦a ⊆ f ≡ a ◦ (R.k)< = a ,(138)

and, for all k in K and all points b su
h that b⊆R>

k◦⊤⊤◦b ⊆ g ≡ (R.k)> ◦b = b .(139)

Both f and g are fun
tional. For example, here is the proof that f is fun
tional: for

all j and k in K ,
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j◦⊤⊤◦k ⊆ f ◦ f
∪

= { saturation axiom: (16) and irredu
ibility: (20) }

〈∃a :: j◦⊤⊤◦a ⊆ f ∧ a◦⊤⊤◦j ⊆ f
∪〉

= { (138) and 
onverse }

〈∃a :: a ◦ (R.j)< = a ∧ a ◦ (R.k)< = a〉
⇒ { 
ore
exives }

(R.j)< ∩ (R.k)< 6= ⊥⊥ .

So

j◦⊤⊤◦k ⊆ f ◦ f
∪

= { f ◦ f
∪

is symmetri
 (i.e. j◦⊤⊤◦k ⊆ f ◦ f
∪ ≡ k◦⊤⊤◦j ⊆ f ◦ f

∪

) }

j◦⊤⊤◦k ⊆ f ◦ f
∪

∧ k◦⊤⊤◦j ⊆ f ◦ f
∪

⇒ { above (applied twi
e, on
e with j,k :=k,j ) }

(R.j)< ∩ (R.k)< 6= ⊥⊥ ∧ (R.k)< ∩ (R.j)< 6= ⊥⊥
= { R is a 
ompletely disjoint set of re
tangles, de�nition 130 }

j=k .

That is, by the saturation axiom and the de�nition of IK , f ◦ f
∪ ⊆ IK .

Both f and g are also surje
tive. For suppose k is in K . Then

true

= { de�nition 130 with j :=k }

R.k 6=⊥⊥
= { saturation axiom: (16) }

〈∃a :: a ◦ (R.k)< = a〉
= { (138) }

〈∃a :: k◦⊤⊤◦a ⊆ f〉
⇒ { a and k are points, so k=k◦⊤⊤◦k=k◦⊤⊤◦a◦⊤⊤◦k }

k ⊆ f ◦ f
∪

.

That is, by the saturation axiom, IK ⊆ f ◦ f
∪

.

Combining the fun
tionality of f with its surje
tivity, we 
on
lude that f ◦ f
∪ = IK .

Similarly, g ◦g
∪ = IK . So we have 
onstru
ted relations f and g su
h that

f ◦ f
∪

= f< = IK = g ◦g
∪

= g< .(140)
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We now have to show that R = f∪ ◦g . A �rst step is to show that f>=R<
and g>=R>

.

We have, for all points a ,

a⊆R<

= { R=∪R }

a ⊆ (∪R)<

= { distributivity }

a ⊆ 〈∪k :: (R.k)<〉
= { irredu
ibility of points }

〈∃k :: a⊆ (R.k)<〉
= { 
ore
exives }

〈∃k :: a ◦ (R.k)< = a〉
= { (138) }

〈∃k :: k◦⊤⊤◦a ⊆ f〉
= { domains }

a⊆ f< .

We 
on
lude by the saturation axiom (16) that f>=R<
. Again, the property g>=R>

is

proved similarly. It follows that

(f∪ ◦g)>

= { domains }

(f< ◦g)>

= { (140) (spe
i�
ally, f<=g<
) }

g>

= { above }

R> .

Similarly, (f∪ ◦g)<=R<
. So, for all points a and b su
h that a⊆R<

and b⊆R>
,

a ◦ f
∪
◦g ◦b

= { saturation axiom: (16) and distributivity }

〈∪k : k⊆ f< ∧ k⊆g< : a ◦ f
∪
◦k ◦g ◦b〉

= { (140) }
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〈∪k : k∈K : a ◦ f
∪
◦k ◦g ◦b〉

= { all-or-nothing: theorem 11 }

〈∪k : a◦⊤⊤◦k⊆ f∪ ∧ k◦⊤⊤◦b⊆g : a◦⊤⊤◦k◦k◦⊤⊤◦b〉
= { assumption: a⊆R<

and b⊆R>
; (138) and (139), and k is a point }

〈∪k : a ◦ (R.k)< = a ∧ (R.k)> ◦b = b : a◦⊤⊤◦b〉
= { a is a point, so a ◦ (R.k)< = a ∨ a ◦ (R.k)< = ⊥⊥

b is a point, so (R.k)> ◦b = b ∨ (R.k)> ◦b = ⊥⊥
range disjun
tion and ⊥⊥ is least }

〈∪k :: a ◦ (R.k)< ◦⊤⊤ ◦ (R.k)> ◦b〉
= { domains and R.k is a re
tangle: de�nition 123 }

〈∪k :: a ◦R.k ◦b〉
= { R= 〈∪k ::R.k〉 and distributivity }

a◦R◦b .

We 
on
lude that R = f∪ ◦g by the saturation property (19).

✷

Theorem 141 A relation R is the supremum of a set of 
ompletely disjoint re
tangles

if and only if

〈

∃ f,g : f ◦ f
∪

= f< = g ◦g
∪

= g< : R = f
∪

◦g
〉

.

Proof \If" is lemma 133 and \only-if" is lemma 137.

✷

In terms of the mental pi
ture of a relation R as the supremum of a set of 
ompletely

disjoint re
tangles, the set of verti
al and the set of horizontal sides ea
h de�nes a per

on the sour
e and target of the relation. These two pers are the relations R≺
and R≻

(de�ned by (96) and (97)). Formally, we have:

Lemma 142 Suppose R , f and g are relations su
h that

f ◦ f
∪

= f< = g ◦g
∪

= g< ∧ R = f
∪

◦g .

Then

R≺ = f≻ = f
∪

◦ f = R ◦R
∪

∧ R≻ = g≻ = g
∪

◦g = R
∪

◦R .

Proof Immediate appli
ation of lemmas 113 and 107.

✷
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5 Characterisations of Partial Equivalence Relations

The theorem we prove in this se
tion is that every partial equivalen
e relation is the

supremum of a set of disjoint squares. Spe
i�
ally, the goal of this se
tion is the proof

of the following 
hara
terisation of pers:

Theorem 143 For all relations R , the following statements are equivalent:

(i) R is a per,

(ii) R is the supremum of an indexed set of disjoint squares,

(iii) 〈∃f : f ◦ f
∪ = f< : R = f∪ ◦ f〉 .

✷

An informal understanding of theorem 143 is that a per partitions its domain into

disjoint sets | 
ommonly 
alled equivalen
e 
lasses. Two ways of representing the

equivalen
e 
lasses are given by either |theorem 143(ii)| a set of disjoint squares or

|theorem 143(iii)| a fun
tional relation f whereby two points in the domain of a per

are in the same equivalen
e 
lass i� they are mapped to the same value by f . (There

are, of 
ourse, other ways of representing the 
lasses.)

The proof that 143(iii) implies 143(i) is straightforward. See lemma 94. The 
onverse

(143(i) implies 143(iii)) is also easy to prove. Thus 143(i) is equivalent to 143(iii). See

theorem 144.

To prove that both 143(i) and 143(iii) are equivalent to 143(ii), we �rst show that

143(ii) implies 143(i). See lemma 145. We 
omplete the proof by showing that 143(iii)

implies 143(ii). See lemma 150. (The equivalen
e then follows from the equivalen
e of

143(i) and 143(iii).)

5.1 Proof of the Characterisation Theorem

As outlined above, we begin with the proof that 143(i) is equivalent to 143(iii). Note

that ΓR ◦R>
is a fun
tional relation and thus witnesses the existential quanti�
ation in

143(iii).

Theorem 144 A relation R is a per i� R = (ΓR ◦R>)∪ ◦ (ΓR ◦R>) .

Proof By mutual impli
ation. First, assume that R is a per. Then

R

= { assumption: R=R∪

, domains }
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R> ◦R

= { assumption: R is a per; theorem 108 and de�nition 95 }

R> ◦R\\R ◦R>

= { (89) with R,S :=R,R }

R> ◦ (ΓR)∪ ◦ ΓR ◦R>

= { 
onverse }

(ΓR ◦R>)∪ ◦ (ΓR ◦R>) .

The 
onverse is immediate from lemma 94.

✷

The next step is to show that 143(ii) implies 143(i).

Lemma 145 Suppose R is a bag of disjoint squares. Then ∪R is a per.

Proof We aim to apply theorem 93 with R :=∪R .

∪R ◦ (∪R)∪

= { distributivity }

〈∪ j,k :: R.j ◦ (R.k)∪〉
= { R is a bag of disjoint squares, so

R.j ◦ (R.k)∪ = ⊥⊥ ≡ R.j 6=R.k }

〈∪j :: R.j ◦ (R.j)∪〉
= { for all j , R.j is a square }

〈∪j :: R.j ◦⊤⊤ ◦ (R.j)∪ ◦R.j ◦⊤⊤ ◦ (R.j)∪〉
= { for all j , R.j 6=⊥⊥ ; 
one rule }

〈∪j :: R.j ◦⊤⊤ ◦ (R.j)∪〉
= { for all j , R.j is a square }

〈∪j ::R.j〉
= { de�nition }

∪R .

That is, ∪R = ∪R ◦ (∪R)∪ . Applying theorem 93, we 
on
lude that ∪R is a per.

✷

The �nal step is to show that 143(iii) implies 143(ii). We aim to use lemma 133. In

order to do so, we make use of the fa
t that 143(iii) and 143(i) are equivalent.
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Lemma 146 Suppose R is a per and suppose f and g are su
h that

f ◦ f
∪

= f< = g ◦g
∪

= g< ∧ R = f
∪

◦g .

Then f
∪
◦ f = R = g∪

◦g .

Proof

f
∪
◦ f

= { domains }

f
∪
◦ f< ◦ f

= { assumption: f< = g ◦g∪

}

f
∪
◦g ◦g

∪
◦ f

= { 
onverse }

f
∪
◦g ◦ (f∪ ◦g)∪

= { assumption: R = f∪ ◦g }

R ◦R
∪

= { assumption: R is a per, theorem 93 }

R .

Thus f
∪
◦ f = R . The dual statement R = g∪

◦g is proved similarly.

✷

Lemma 147 Suppose R=∪R where R is an indexed bag of 
ompletely disjoint

re
tangles and suppose R is a per. Then R is an indexed bag of disjoint squares.

Proof We exploit theorem 93. That is, we assume that R = R∪
◦R . Then

R
∪
◦R

= { R=∪R }

(∪R)∪ ◦∪R
= { distributivity }

〈∪ j,k :: (R.j)∪ ◦R.k〉
= { domains }

〈∪ j,k :: (R.j)∪ ◦ (R.j)< ◦ (R.k)< ◦R.k〉
= { R is a bag of 
ompletely disjoint re
tangles



86

so (R.j)< ◦ (R.k)< = ⊥⊥ ⇐ R.j 6=R.k ;
range splitting (on R.j=R.k and R.j 6=R.k ) }

〈∪ j,k : R.j=R.k : (R.j)∪ ◦ (R.j)< ◦ (R.k)< ◦R.k〉
= { Leibniz, idempoten
y of set union }

〈∪k :: (R.k)∪ ◦ (R.k)< ◦ (R.k)< ◦R.k〉
= { domains }

〈∪k :: (R.k)∪ ◦R.k〉 .

That is,

R
∪

◦R =
〈

∪k :: (R.k)∪ ◦R.k
〉

.(148)

Also, for all k ,

(R.k)< ◦R

= { R=∪R and distributivity }

〈∪j :: (R.k)< ◦R.j〉
= { (R.k)< ◦ (R.j)< = ⊥⊥ ⇐ R.j 6=R.k

range splitting (see above) }

(R.k)< ◦R.k
= { domains }

R.k .

Together with its dual, we thus have, for all k ,

(R.k)< ◦R = R.k = R ◦ (R.k)> .(149)

Hen
e, for all k ,

R.k
= { (149) }

R ◦ (R.k)>

= { R = R∪
◦R }

R
∪
◦R ◦ (R.k)>

= { (148) }

〈∪j :: (R.j)∪ ◦R.j〉 ◦ (R.k)>
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= { distributivity, (R.k)< ◦ (R.j)< = ⊥⊥ ⇐ R.j 6=R.k
range splitting (see above) }

(R.k)∪ ◦R.k ◦ (R.k)>

= { domains }

(R.k)∪ ◦R.k .

That is, for all k , R.k = (R.k)∪ ◦R.k . Applying theorem 93, for all k , R.k is a per,

and hen
e symmetri
. It is also a re
tangle and a symmetri
 re
tangle is a square. We


on
lude that R is a bag of disjoint squares.

✷

Lemma 150 Suppose f is su
h that

f ◦ f
∪

= f< .

Then the relation f
∪
◦ f is the supremum of an indexed set of disjoint squares.

Proof This an instan
e of lemmas 133 and 147. From lemma 133 (with g := f ), f∪ ◦ f is

the supremum of a set of 
ompletely disjoint re
tangles. But f
∪
◦ f is a per. (See lemma

94.) So, by lemma 147, f
∪
◦ f is the supremum of a set of 
ompletely disjoint squares.

✷

This 
ompletes the proof of theorem 143. We have shown that 143(i) and 143(iii) are

equivalent (theorem 144), that 143(ii) implies 143(i) (lemma 145) and 143(iii) implies

143(ii) (lemma 150).

5.2 Unicity of Characterisations

The 
hara
terisation of a per in the form f
∪
◦ f where f is a fun
tional relation is not

unique. The 
hara
terisation is sometimes des
ribed as being \essentially" unique or

sometimes as unique \up to isomorphism". This is made pre
ise by theorem 151:

Theorem 151 Suppose R is a per and suppose f and g are fun
tional relations su
h

that R = f
∪
◦ f = g

∪
◦g . Then f∼=g .

Proof We have

f ◦g
∪
◦ (f ◦g∪)∪

= { 
onverse }

f ◦g
∪
◦g ◦ f

∪



88

= { assumption: f
∪
◦ f = g

∪
◦g }

f ◦ f
∪
◦ f ◦ f

∪

= { assumption: f is fun
tional, i.e. f ◦ f
∪ = f< }

f< .

That is,

f ◦g
∪

◦ (f ◦g
∪

)
∪

= f< .(152)

Similarly,

(f ◦g
∪

)
∪
◦ f ◦g

∪

= g< .(153)

Also,

g>

= { domains }

(g∪
◦g)>

= { assumption: f
∪
◦ f = g

∪
◦g }

(f∪ ◦ f)>

= { domains }

f> .

That is,

f> = g> .(154)

Hen
e,

f

= { domains }

f< ◦ f

= { (152) }

f ◦g
∪
◦ (f ◦g∪)∪ ◦ f

= { properties of 
onverse }

f ◦g
∪
◦g ◦ f

∪
◦ f

= { assumption: f
∪
◦ f = g

∪
◦g }
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f ◦g
∪
◦g ◦g

∪
◦g

= { assumption: g is fun
tional, i.e. g ◦g
∪ = g< }

f ◦g
∪
◦g .

Applying de�nition 82 with R,S,φ,ψ := f , g , f ◦g
∪

, g>
, we 
on
lude that f ∼= g . (Prop-

erties (152) and (153) are the required properties of φ ; property (154) together with

straightforward properties of the right-domain operator establish the required properties

of ψ .)

✷

It is important to note that theorem 151 assumes that there is at least one 
hara
ter-

isation of per R by a fun
tional relation; it thus establishes that there is at most one

su
h 
hara
terisation (\up to isomorphism").

Uniqueness \up to isomorphism" is a 
ommon phenomenon. We see it again, for

example, in the 
hara
terisation of difun
tional relations by means of a pair of fun
tional

relations: se
tion 6.2 shows that there is at most one 
hara
terisation whilst se
tion 6.3

shows that there is at least one (in fa
t, that there are several). Dealing with this

phenomenon 
an be awkward. See the de�nition of the \
ore" of a relation in se
tion

7.3.

5.3 Decomposition of Provisional Preorders

In this se
tion, we exploit the 
hara
terisation of pers, in parti
ular the equivalen
e of

theorem 143(i) and 143(iii), to show how a provisional preorder is de
omposed into a

per and a provisional ordering of the per's equivalen
e 
lasses. (This generalises the

well-known de
omposition of a preorder into an equivalen
e relation and an ordering on

the equivalen
e 
lasses.)

We assume that T is a provisional preorder. That is, by de�nition 114 and lemma

118,

T< = T> ∧ T< ⊆ T ∧ T> ⊆ T ∧ T ◦T ⊆ T .(155)

Also, by lemma 120,

T ∩T∪

= T≺ = T≻ .(156)

Theorem 157 Suppose T is a provisional preorder and assume that f partitions

T ∩T∪

as pres
ribed by theorem 143(iii). ( T ∩T∪

is a per by (156).) That is,

f ◦ f
∪

= f< ∧ f
∪

◦ f = T ∩T∪

.(158)

Then the relation f ◦T ◦ f
∪

is a provisional ordering and T = f∪ ◦ (f ◦T ◦ f
∪) ◦ f .
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Proof The equation T = f∪ ◦ (f ◦T ◦ f
∪) ◦ f is easily proved:

T

= { per domains }

T≺ ◦T ◦T≻

= { (156) }

(T ∩T∪) ◦T ◦ (T ∩ T∪)

= { (158) }

f
∪
◦ f ◦T ◦ f

∪
◦ f .

We now prove that f ◦T ◦ f
∪

is a provisional ordering. It is transitive:

f ◦T ◦ f
∪
◦ f ◦T ◦ f

∪

= { (156), (158) and per domains }

f ◦T ◦T ◦ f
∪

⊆ { assumption: T is transitive; monotoni
ity }

f ◦T ◦ f
∪

.

It is provisionally re
exive:

(f ◦T ◦ f
∪)< ⊆ f ◦T ◦ f

∪

⇐ { [ (R◦S)< ⊆ R< ] with R,S := f , T ◦ f
∪

}

f< ⊆ f ◦T ◦ f
∪

= { (158) }

f ◦ f
∪ ⊆ f ◦T ◦ f

∪

= { domains }

f ◦ f> ◦ f
∪ ⊆ f ◦T ◦ f

∪

⇐ { monotoni
ity }

f> ⊆ T

⇐ { [ R> = I ∩ R∪
◦R ] }

f
∪
◦ f ⊆ T

= { by (158), f
∪
◦ f = T ∩T∪

; in�ma }

true .
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Finally, it is anti-symmetri
:

f ◦T ◦ f
∪ ∩ (f ◦T ◦ f

∪)∪

= { 
onverse }

f ◦T ◦ f
∪ ∩ f ◦T∪

◦ f
∪

⊆ { modularity rules: (3) and (4) }

f ◦ (f∪ ◦ f ◦T ◦ f
∪
◦ f ∩ T

∪) ◦ f∪

= { (156), (158) and per domains }

f ◦ (T ∩T∪) ◦ f∪

= { (158) }

f ◦ f
∪
◦ f ◦ f

∪

⊆ { (158) and domains }

I .

✷

Fig. 4 (page 65) illustrates theorem 157: as mentioned earlier, the square boxes

depi
t the equivalen
e 
lasses and the arrows 
onne
ting the boxes depi
t the provisional

ordering.

As we shall see, theorem 157 establishes that all provisional preorders are \blo
k-

ordered". See example 228.
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6 Difunctional Relations

This se
tion is where our study of difun
tional relations and blo
k-ordered relations

begins.

As Riguet remarked, difun
tional relations generalise both fun
tional relations [Rig48℄

and pers [Rig50, \quasi-equivalen
es"℄ in the sense that a difun
tional relation is 
hara
-

terised by a pair of fun
tional relations whilst a per is 
hara
terised by a single fun
tional

relation (theorem 143); equivalently, a difun
tional relation is a union of 
ompletely dis-

joint re
tangles whilst a per is the union of disjoint squares (theorem 143). See theorems

161 and 163. We present several di�erent 
al
ulational proofs of theorem 161 in se
tion

6.3 using both point-free and pointwise 
al
ulations, with a view to gaining insight into

the eÆ
a
y and aestheti
s of the 
al
ulational method. Note that, although the proofs

are quite di�erent, the 
onstru
ted 
hara
terisations are essentially the same, as is made

pre
ise in se
tion 6.2. Theorem 163 is a straightforward 
ombination of theorem 161 and

the (already-proven) theorem 141.

The \difun
tional 
losure" of a relation is the smallest difun
tional relation that is a

superset of a given relation. Its de�nition and properties, given in se
tion 6.4, involve

the appli
ation of standard te
hniques of Galois 
onne
tions and �xed-point 
al
ulus; as

su
h, it is in
luded here for 
ompleteness.

Whereas the \difun
tional 
losure" of a relation is a superset of the relation, the

\diagonal" of a relation is a subset of the relation. The \diagonal" of a relation is

introdu
ed in se
tion 7. (Re
all the mental pi
ture, depi
ted in �g. 2, of the \diagonal"

of the \stair
ase" relation depi
ted in �g. 1.)

Both the \diagonal" and the \difun
tional 
losure" (\fermeture difon
tionelle") are

due to Riguet [Rig50, Rig51℄; our 
ontribution is partly histori
al |giving true 
redit to

the original publi
ations| , partly to make the 
onstru
tions more a

essible to modern

readers, but primarily as an appli
ation of the 
al
ulational method.

6.1 Formal Definition and Characterisation

In this subse
tion we give the formal de�nition of a \difun
tional relation" and state the

theorem (theorem 161) that we prove in subse
tion 6.3. Theorem 161 uses the notion

of a \
hara
terisation" of a difun
tional relation; this notion is also introdu
ed in this

subse
tion.

Formally, relation R is difun
tional equivales

R ◦R
∪

◦R ⊆ R .(159)

As for pers, there are several equivalent de�nitions of \difun
tional". We begin with the

simplest:
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Theorem 160 For all R , the following statements are all equivalent.

(i) R is difun
tional (i.e. R ◦R
∪
◦R ⊆ R ) ,

(ii) R = R ◦R
∪
◦R ,

(iii) R≻ = R
∪
◦R ,

(iv) R≺ = R ◦R
∪

,

(v) R = R∩ (R\R/R)∪ .

Proof For the equivalen
e of (i) and (ii), we �rst observe that, for all R ,

R ⊆ R ◦R
∪

◦R

sin
e

R ⊆ R ◦R
∪
◦R

⇐ { R> ⊆ R
∪
◦R and monotoni
ity }

R = R ◦R>

= { domains }

true .

That (i) and (ii) are equivalent thus follows from the anti-symmetry of the subset relation.

For the equivalen
e of (i) and (iii), we again begin by observing a property that holds

for all R , namely

R
∪

◦R ⊇ R≻ .

The proof is as follows:

R
∪
◦R ⊇ R≻

= { de�nition: (96) }

R
∪
◦R ⊇ R> ◦R\\R

= { 
an
ellation: (90) }

R
∪
◦R ◦R\\R ⊇ R> ◦R\\R

⇐ { monotoni
ity }

R
∪
◦R ⊇ R>

⇐ { de�nition 42 }

true .



94

We now prove that the opposite in
lusion follows from (i).

R
∪
◦R ⊆ R≻

= { de�nition: (96) }

R
∪
◦R ⊆ R> ◦R\\R

⇐ { R> ◦R
∪ = R∪

and monotoni
ity }

R
∪
◦R ⊆ R\\R

= { R
∪
◦R is symmetri
, R\\R = R\R∩ (R\R)∪ }

R
∪
◦R ⊆ R\R

⇐ { fa
tors }

R ◦R
∪
◦R ⊆ R .

Thus, by anti-symmetry, (iii) follows from (i). But

R≻ = R
∪
◦R

⇒ { Leibniz }

R ◦R≻ = R ◦R
∪
◦R

= { per domains }

R = R ◦R
∪
◦R .

That is, (iii) implies (ii) whi
h, as we have shown, is equivalent to (i). We 
on
lude, by

mutual impli
ation, that (iii) and (i) are equivalent.

The equivalen
e of (i) and (iv) is obtained by instantiating R to R
∪

.

The proof that (v) is equivalent to (159) is straightforward:

R = R∩ (R\R/R)∪

= { de�nition of in�mum }

R ⊆ (R\R/R)∪

= { 
onverse and fa
tors }

R ◦R
∪
◦R ⊆ R .

✷

The equivalen
e of 160(i) and 160(ii) is well-known and due to Riguet [Rig48℄; the

equivalen
e of 160(i), (iii) and (iv) is due to Voermans [Voe99℄. De�nition (159) is the

most useful when it is required to establish that a parti
ular relation is difun
tional,

whereas properties 160(ii)-(iv) are more useful when it is required to exploit the fa
t

that a parti
ular relation is difun
tional.
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In order to relate this formal de�nition to the informal mental pi
ture, an important

step on the way is to 
hara
terise difun
tional relations via a pair of fun
tional relations.

Re
all that a relation R is said to be fun
tional i� R ◦R∪ = R<
(where R<

denotes the

left domain of R : see de�nition 42). We use lower 
ase letters f , g , h and k to denote

fun
tional relations. The theorem is the following.

Theorem 161 (Characterisation Theorem) For all relations R ,

R is difun
tional ≡
〈

∃ f,g : f ◦ f
∪

= f< = g ◦g
∪

= g< : R = f
∪

◦g
〉

.

✷

Theorem 161 |whi
h is due to Riguet [Rig50℄| is key to establishing the property

that difun
tional relations are exa
tly the relations that �t the mental pi
ture shown in

�g. 2 of a 
olle
tion of 
ompletely disjoint re
tangles. Later, we say that difun
tional

relations are \
hara
terised" by a pair of fun
tional relations. The formal de�nition is

as follows.

Definition 162 A 
hara
terisation (of a difun
tional relation) is a pair of fun
tional

relations with the same target (but possibly di�erent sour
es). A minimal 
hara
teri-

sation (of a difun
tional relation) is a pair of relations f and g with the same target

su
h that

f ◦ f
∪

= f< = g ◦g
∪

= g< .

That is, a minimal 
hara
terisation is a pair of fun
tional relations with equal left do-

mains.

✷

The mental pi
ture of a difun
tional relation (�g. 2) is a set of 
ompletely disjoint

re
tangles. We 
an now make the pi
ture pre
ise.

Re
all the de�nition of minimal 
hara
terisations, de�nition 162. Theorem 141 ex-

presses the equivalen
e of minimal 
hara
terisations with sets of 
ompletely disjoint

re
tangles. So, by 
ombining theorems 161 and 141, we have:

Theorem 163 A relation R is difun
tional if and only if it is the supremum of a set

of 
ompletely disjoint re
tangles.

✷

The \minimality" requirement |the domain restri
tions on f and g| may be

omitted (\without loss of generality" in mathemati
al jargon). It is ne
essary, however,

to establishing the \essential" uniqueness of the 
hara
terisation. (See theorem 166.)

Formally we have:
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Lemma 164 Suppose f and g are fun
tional relations with the same target. Then

f
∪

◦g = (g< ◦ f)
∪

◦ (f< ◦g) .

Moreover, g< ◦ f and f< ◦g are fun
tional relations and

(g< ◦ f) ◦ (g< ◦ f)
∪

= (g< ◦ f)< = (f< ◦g) ◦ (f< ◦g)
∪

= (f< ◦g)< .

That is, the pair g< ◦ f and f< ◦g is a minimal 
hara
terisation.

Proof We show that g< ◦ f is fun
tional as follows.

(g< ◦ f) ◦ (g< ◦ f)∪

= { asso
iativity and 
onverse }

g< ◦ f ◦ f
∪
◦g<

= { f is fun
tional, so f ◦ f
∪ = f< }

g< ◦ f< ◦g<

= { 
ore
exives 
ommute and are idempotent }

f< ◦g< .

Symmetri
ally,

(f< ◦g) ◦ (f< ◦g)
∪

= g< ◦ f< .

That is, f< ◦g is fun
tional. The lemma follows immediately from the fa
t that 
ompo-

sition of 
ore
exives is symmetri
 and yields a 
ore
exive.

✷

The 
hara
terisation theorem for difun
tional relations (theorem 161) has the 
on-

sequen
e that a difun
tional relation divides its left and right domains into 
lasses that

are in (1{1) 
orresponden
e.

Lemma 165 Suppose f and g are relations with 
ommon target C su
h that

f ◦ f
∪

= f< = g ◦g
∪

= g< .

Then the fun
tions 〈X :: g
∪
◦ f ◦X ◦ f

∪
◦g〉 and 〈Y :: f

∪
◦g ◦Y ◦g

∪
◦ f〉 de�ne a (1{1) 
orre-

sponden
e between the 
lasses of the partial equivalen
e relations f
∪
◦ f and g

∪
◦g . That

is, for all c ,

〈

X :: g
∪

◦ f ◦X ◦ f
∪

◦g
〉

. (f
∪

◦ c ◦ f) = g
∪

◦ c ◦g

and

〈

Y :: f
∪

◦g ◦Y ◦g
∪

◦ f
〉

. (g
∪

◦ c ◦g) = f
∪

◦ c ◦ f .
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Proof The veri�
ation of the �rst equality is as follows.

〈X :: g
∪
◦ f ◦X ◦ f

∪
◦g〉 . (f∪ ◦ c ◦ f)

= { de�nition of fun
tion appli
ation }

g∪
◦ f ◦ f∪ ◦ c ◦ f ◦ f∪ ◦g

= { assumption: f ◦ f
∪ = f< = g ◦g

∪ = g< }

g
∪
◦g< ◦ c ◦g< ◦g

= { domains }

true .

The se
ond equality is veri�ed in the same way.

✷

See also se
tion 7.3 for a more expli
it formulation of lemma 165.

Warning Symmetry pla
es a major rôle in reasoning about difun
tional relations. (Obvi-

ously, R is difun
tional equivales R
∪

is difun
tional.) But our de�nition of \fun
tional"

is asymmetri
 and re
e
ts a right-to-left bias in our interpretation of relations as having

inputs and outputs. Jaoua et al [JMBD91℄ 
hoose a left-to-right interpretation: they

use the term \deterministi
" to mean R
∪
◦R ⊆ I . Their formulation of theorem 161 is


orrespondingly di�erent. See also our earlier warning on \symmetri
 division". End of

Warning

The name \difun
tional" is suggestive of theorem 161; Riguet's 1948 paper [Rig48,

Proposition 11℄ introdu
es the notion and gives a (natural-language-based) proof. Riguet's

1950 paper [Rig50℄ states that it is a generalisation of the theorem that a relation R is

a partial equivalen
e relation equivales R = f∪ ◦ f for some fun
tional relation f . Sin
e

then it appears to have be
ome a folklore theorem. Hutton and Voermans [GE92, lemma

39℄, for example, state the theorem but do not provide a proof nor an attribution. The

English text of [SS93, p.75℄ suggests that S
hmidt and Str�ohlein may be aware of the the-

orem but they also do not provide a proof. (They prove the easy \if" part of the theorem

but not the 
onverse; [SS93, Proposition 4.4.10℄ states that the 
hara
terisation \may

be a
hieved in essentially one fashion" (their emphasis) but the a

ompanying proof

a
tually establishes that the 
hara
terisation 
an be a
hieved in at most one fashion.

That is, if su
h a 
hara
terisation exists, it is unique \up to a bije
tion".)

A theme of this se
tion is how to formalise di�erent proofs of theorem 161. One issue

is whether or not the so-
alled \power transpose" of a relation, espoused by Freyd and

�

S�
edrov [Fv90℄ and Bird and De Moor [BdM97℄, is suÆ
iently expressive. A se
ond issue

is the extent to whi
h pointwise (as opposed to point-free) reasoning is desirable.

Se
tion 6.2 sets the s
ene. The proof of theorem 161 is an \if-and-only-if" proof and

the se
tion begins with the (trivial) proof of the \if" part. The main task is thus to give
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an expli
it 
onstru
tion of a 
hara
terisation of a given difun
tion (the \only-if" part).

A formal theorem |theorem 166| states that although the details of the proof may

be di�erent, the 
onstru
ted 
hara
terisations are formally equivalent (in a way made

pre
ise by the theorem). A very informal outline of several di�erent ways of making the


onstru
tion is then given.

The informal a

ount in se
tion 6.2 is made pre
ise in se
tions 6.3.1 and 6.3.2; the

former proves theorem 161 by showing how to 
onstru
t a set of \re
tangles" that \
ov-

ers" a given difun
tional relation whilst the latter presents a 
onstru
tion in terms of the

\power transpose" of the given relation. Se
tion 6.3.3 gives a third method of proving

theorem 161 that exploits theorem 143. As already remarked |see theorem 163| no

matter how a 
hara
terisation is 
onstru
ted, it de�nes a \
ompletely disjoint 
overing"

of the given difun
tion.

6.2 Different Proofs, Identical Characterisations

The proof of theorem 161 is by mutual impli
ation. Follows-from is straightforward.

Assume

〈

∃ f,g : f ◦ f
∪

= f< = g ◦g
∪

= g< : R = f
∪

◦g
〉

.

Then

R ◦R
∪
◦R

= { assumption and 
onverse }

f
∪
◦g ◦g

∪
◦ f ◦ f

∪
◦g

= { assumption: f ◦ f
∪ = g< = g ◦g

∪

}

f
∪
◦g< ◦g< ◦g

= { g< ◦g = g , and R = f∪ ◦g }

R .

The mu
h more demanding task |whi
h o

upies all of subse
tion 6.3| is to establish

the existen
e of a (minimal) 
hara
terisation of a given difun
tion. The theorem that

there is at most one (up to isomorphism) is the following.

Theorem 166 Suppose f and g are relations su
h that

f ◦ f
∪

= f< = g ◦g
∪

= g< .

Suppose also that h and k are relations su
h that

h ◦h
∪

= h< = k ◦k
∪

= k< .
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Suppose further that

f
∪

◦g = h
∪

◦k .

Then

f∼=h ∧ g∼=k .

Proof Our task is to 
onstru
t witnesses φ and ψ satisfying de�nition 82 (with

R,S := f,h and R,S :=g,k ). De�ne φ by φ = f ◦h∪

. We prove that

φ ◦φ
∪

= f< ∧ φ
∪

◦φ = h< .(167)

(In words, φ is a bije
tion with left domain the 
ommon left domain of f and g , and

right domain the 
ommon left domain of h and k .) The proof is as follows.

φ ◦φ
∪

= { de�nition, 
onverse }

f ◦h∪
◦h ◦ f∪

= { assumption: h< = k ◦k
∪

}

f ◦h
∪
◦k ◦k

∪
◦h ◦ f

∪

= { assumption: f
∪
◦g = h

∪
◦k }

f ◦ f
∪
◦g ◦g

∪
◦ f ◦ f

∪

= { assumption: f ◦ f
∪ = f< = g ◦g

∪

}

f<

and

φ
∪
◦φ

= { de�nition, 
onverse }

h ◦ f
∪
◦ f ◦h

∪

= { assumption: f< = g ◦g
∪

}

h ◦ f
∪
◦g ◦g

∪
◦ f ◦h

∪

= { assumption: f
∪
◦g = h

∪
◦k (used twi
e) }

h ◦h
∪
◦k ◦k

∪
◦h ◦h

∪

= { assumption: h ◦h
∪ = h< = k ◦k

∪

}

h< .
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We now prove that f=φ◦h .

φ◦h

= { de�nition }

f ◦h
∪
◦h

= { assumption: h< = k ◦k
∪

}

f ◦h
∪
◦k ◦k

∪
◦h

= { assumption: f
∪
◦g = h

∪
◦k (used twi
e) }

f ◦ f
∪
◦g ◦g

∪
◦ f

= { assumption: f ◦ f
∪ = f< = g ◦g

∪

}

f .

It follows that

f = φ ◦h ◦h> ∧ h> = f> .(168)

The 
ombination of (167) and (168) (together with straightforward properties of h>
)

establishes that φ and h>
witness the isomorphism f∼=h . The property g∼=k is

proved similarly.

✷

As the name \fun
tional" suggests, the only-if part of theorem 161 is established by

de�ning a type C , for ea
h a in the left domain of R , a point f.a in C , and, for ea
h

point b in the right domain of R , a point g.b in C . The requirement is that, f.a and

g.b are equal exa
tly when a and b are related by R . Fig. 5 shows three di�erent but

isomorphi
 (in the sense of theorem 166) 
hara
terisations of the relation depi
ted in �g.

2.

In the top-left �gure, the type C is the set of re
tangles (relations of type A∼B )
de�ned by the relation R : the fun
tional relation f maps a point a in the left domain

of R to the re
tangle de�ned by a and, similarly, the fun
tional relation g maps a

point b in the right domain of R to the re
tangle de�ned by b . If a and b are points

related by R , the re
tangles f.a and g.b are equal; if a and b are not related by R ,

the re
tangles f.a and g.b are not equal (and, in fa
t, they are \
ompletely disjoint"

in the sense that there are no points 
ommon to their sides).

In the top-right �gure, the type C is a set of squares of type B∼B and, in the

bottom-left �gure the type C is a set of squares of type A∼A . In the 
ase of the top-

right �gure, the fun
tional relation g maps point b to the square de�ned by b . The

de�nition of f is more 
ompli
ated: for a point a in the left domain of R , the value

of f.a is the square de�ned by some point b su
h that a and b are points related by
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Figure 5: Three Di�erent (but Isomorphi
) Chara
terisations

R . The de�nitions of f and g are similar in the 
ase of the bottom-left �gure. (Just

inter
hange the rôles of a and b .)

Of 
ourse, a \square" is de�ned by a \side" of the square. So there is a fourth and a

�fth way of representing a difun
tional relation as a pair of fun
tional relations: the type

C 
an be de�ned to be the set of subsets of the left domain of R or the set of subsets

of the right domain of R and, in ea
h 
ase, appropriate de�nitions of f and g must be


onstru
ted.

As mentioned earlier, all of these 
hara
terisations are the same | in the sense made

pre
ise by theorem 166.

6.3 The Characterisation Theorem

As illustrated by �g. 5, there are three di�erent ways to approa
h the proof

4

of theorem

161. The top-right and bottom-left �gures are \dual" in the sense that one depi
ts

a homogeneous relation on the target of the given relation whilst the other depi
ts a

homogeneous relation on the sour
e of the given relation. The top-left �gure is more

attra
tive be
ause it does not exhibit any bias towards the sour
e or target of the given

relation. Se
tion 6.3.1 presents su
h an unbiased proof of theorem 161 whilst se
tion

4

Stri
tly, the \only-if" part of the proof. Re
all from se
tion 6.2 that the \if" part is trivial.
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6.3.2 presents the dual proofs. Se
tion 6.3.3 gives yet another proof based on exploiting

theorem 143.

6.3.1 The Rectangle Proof

A relation R is a partial equivalen
e relation exa
tly when R ◦R
∪ = R ; the \
lasses" of R

are the squares R ◦a ◦R
∪

where a is a point su
h that a⊆R . A relation R is a difun
tion

exa
tly when R ◦R
∪
◦R = R . By analogy and type 
onsiderations, this suggests that, if

a⊆R<
, the re
tangle de�ned by a is given by R ◦R

∪
◦a ◦R ; similarly, if b⊆R>

, the

re
tangle de�ned by b is given by R ◦b ◦R
∪
◦R . This is the key to the proof.

Lemma 169 Suppose R of type A∼B is difun
tional. Then, for all points a and b ,

a◦⊤⊤◦b ⊆ R ⇒ R ◦R
∪

◦a ◦R = R ◦b ◦R
∪

◦a ◦R = R ◦b ◦R
∪

◦R .

Proof Assume R is difun
tional. Assume also that a◦⊤⊤◦b ⊆ R . Then

R ◦b ◦R
∪
◦R

= { b is a point }

R ◦b ◦b ◦R
∪
◦R

⊆ { assumption: a◦⊤⊤◦b ⊆ R , lemma 57 }

R ◦b ◦R
∪
◦a ◦R ◦R

∪
◦R

⊆ { R is difun
tional }

R ◦b ◦R∪
◦a ◦R .

That is,

R ◦b ◦R
∪

◦R ⊆ R ◦b ◦R
∪

◦a ◦R .

By a symmetri
 argument

R ◦R
∪

◦a ◦R ⊆ R ◦b ◦R
∪

◦a ◦R .

But, sin
e a is a point (and thus 
ore
exive),

R ◦b ◦R
∪

◦a ◦R ⊆ R ◦b ◦R
∪

◦R .

Symmetri
ally,

R ◦b ◦R
∪

◦a ◦R ⊆ R ◦R
∪

◦a ◦R .

The lemma follows by the anti-symmetry of equality.

✷
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The \only-if" part of theorem 161 is a 
onsequen
e of lemma 169. Spe
i�
ally, suppose

R is difun
tional. Let C be the set of subsets of the relation R de�ned as follows:

C =
{
a : a⊆R< : R ◦R

∪

◦a ◦R
}
.

(The dummy a ranges over points.) Note that C=C ′
where

C ′ =
{
b : b⊆R> : R ◦b ◦R

∪

◦R
}

sin
e

{a : a⊆R< : R ◦R
∪
◦a ◦R}

= { domains }

{a : 〈∃b :: a◦R◦b = a◦⊤⊤◦b〉 : R ◦R
∪
◦a ◦R}

= { range disjun
tion }

{a,b : a◦R◦b = a◦⊤⊤◦b : R ◦R
∪
◦a ◦R}

= { assumption: R is difun
tional; lemma 169 }

{a,b : a◦R◦b = a◦⊤⊤◦b : R ◦b ◦R
∪
◦R}

= { range disjun
tion and domains (as in �rst two steps) }

{b : b⊆R> : R ◦b ◦R
∪
◦R} .

De�ne f and g by, for all points a su
h that a⊆R<
and all points b su
h that b⊆R>

,

f.a = R ◦R
∪

◦a ◦R ∧ g.b = R ◦b ◦R
∪

◦R .(170)

Then, by de�nition, f and g are both fun
tional, and surje
tive onto C and C ′
,

respe
tively. That is |exploiting the fa
t that C and C ′
are equal|

f ◦ f
∪

= IC = g ◦g
∪

.

We must now show that R = f∪ ◦g . Guided by the de�nitions of f and g , we 
al
ulate

that:

R ◦R
∪
◦a ◦R = R ◦b ◦R

∪
◦R

⇒ { Leibniz }

R ◦R
∪
◦a ◦R ◦R

∪ = R ◦b ◦R
∪
◦R ◦R

∪

⇒ { assumption: R is difun
tional (thus so too is R
∪

),

R< ⊆ R ◦R
∪

}

R< ◦a ◦R< ⊆ R ◦b ◦R
∪



104

= { assumption: a⊆R< }

a ⊆ R ◦b ◦R
∪

= { lemma 57 }

a◦⊤⊤◦b ⊆ R

⇒ { assumption: R is difun
tional; lemma 169 }

R ◦R
∪
◦a ◦R = R ◦b ◦R

∪
◦R .

We 
on
lude (by mutual impli
ation) that

R ◦R
∪
◦a ◦R = R ◦b ◦R

∪
◦R ≡ a◦⊤⊤◦b ⊆ R .

But, by the de�nitions of f and g and the de�nition of fun
tion appli
ation,

R ◦R
∪

◦a ◦R = R ◦b ◦R
∪

◦R ≡ a◦⊤⊤◦b ⊆ f
∪

◦g .

Thus R = f∪ ◦g by the saturation axiom: (16).

6.3.2 The Power-Transpose Construction

Re
alling �g. 5 on
e again, two alternative |but dual| ways of proving theorem 161

are to 
onstru
t fun
tional relations that return square relations. Equivalently, one


an 
onstru
t fun
tional relations that return the \side" of su
h a square, i.e. a subset

of the sour
e or, dually, a subset of the target of the given difun
tional relation. In

this se
tion, we present su
h a 
onstru
tion using the power transpose fun
tion. The

proof was obtained by revising the proof given by Jaoua et al [JMBD91℄ in a way that

eliminated the unne
essary assumption that R is homogeneous. One 
omponent of the


hara
terisation is the relation ΓR ◦R
∪

. Sin
e this is not obviously fun
tional, we need a

lemma to show that it is.

Lemma 171 For all relations R ,

R is difun
tional ≡ ΓR ◦R
∪ ⊆ Γ(R ◦R

∪

) ◦R< .

Proof

ΓR ◦ R
∪ ⊆ Γ(R ◦R

∪) ◦R<

= { domains (spe
i�
ally, R
∪
◦R< = R∪

) }

ΓR ◦ R
∪ ⊆ Γ(R ◦R

∪)

= { ΓR is a total fun
tion; shunting rule }

R
∪ ⊆ (ΓR)∪ ◦ Γ(R ◦R

∪)
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= { lemma 87 }

R
∪ ⊆ R\(R ◦R

∪) ∩ ((R ◦R
∪)\R)∪

= { 
onverse is an order isomorphism, fa
tors }

R ◦R
∪ ⊆ R ◦R

∪

∧ R ◦R
∪
◦R ⊆ R

= { de�nition }

R is difun
tional .
✷

Corollary 172 For all difun
tional relations R ,

(ΓR ◦R
∪

) ◦ (ΓR ◦R
∪

)
∪

= ΓR ◦ R> ◦ (ΓR)
∪

.

In parti
ular, if R is difun
tional, ΓR ◦R
∪

is fun
tional.

Proof The proof is by mutual in
lusion. First, for all relations R ,

(ΓR ◦R
∪) ◦ (ΓR ◦R

∪)∪

= { 
onverse }

ΓR ◦ R
∪
◦R ◦ (ΓR)∪

⊇ { R
∪
◦R ⊇ R>

, monotoni
ity }

ΓR ◦ R> ◦ (ΓR)∪ .

Se
ond, for all difun
tional relations R ,

ΓR ◦ R
∪
◦R ◦ (ΓR)∪ ⊆ ΓR ◦ R> ◦ (ΓR)∪

⇐ { assumption: R is difun
tional; lemma 171 }

Γ(R ◦R
∪) ◦R< ◦ (Γ(R ◦R

∪))∪ ⊆ ΓR ◦ R> ◦ (ΓR)∪

= { Γ(R ◦R
∪) is a total fun
tion, shunting : (85), and (89) }

R< ⊆ (R ◦R
∪)\\R ◦ R> ◦ ((R ◦R

∪)\\R)∪

⇐ { domains (spe
i�
ally R< ⊆ R ◦R
∪

and R = R ◦R>
) }

R ◦R> ◦R
∪ ⊆ (R ◦R

∪)\\R ◦ R> ◦ ((R ◦R
∪)\\R)∪

⇐ { monotoni
ity and 
onverse }

R ⊆ (R ◦R
∪)\\R

= { assumption: R is difun
tional

as in last two steps of proof of lemma 171 }

true .
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✷

Theorem 173 Suppose R is a difun
tional relation. Then the relations ΓR ◦ R
∪

and

ΓR ◦ R>
are both fun
tional. Moreover,

(ΓR ◦R
∪

) ◦ (ΓR ◦R
∪

)
∪

= (ΓR ◦R>) ◦ (ΓR ◦R>)
∪

and

R = (ΓR ◦R
∪

)
∪

◦ (ΓR ◦R>) .

That is, these two relations ful�ll the requirements of f and g in theorem 161.

Dually, the relations Γ(R∪) ◦R and Γ(R∪) ◦R<
are both fun
tional. Moroever,

(Γ(R
∪

) ◦R<) ◦ (Γ(R
∪

) ◦R<)
∪

= (Γ(R
∪

)◦R) ◦ (Γ(R
∪

)◦R)
∪

and

R = (Γ(R
∪

) ◦R<)
∪

◦ (Γ(R
∪

) ◦R) .

That is, these two fun
tions also ful�ll the requirements of f and g theorem 161.

Proof That ΓR ◦ R>
is fun
tional is immediate from the fa
t that ΓR is a total fun
tion

(by de�nition) and R>
is a subset of the identity relation. That ΓR ◦R

∪

is fun
tional

was shown in 
orollary 172. It remains to prove the �nal equation.

(ΓR ◦R
∪)∪ ◦ (ΓR ◦R>)

= { 
onverse }

R ◦ (ΓR)∪ ◦ ΓR ◦R>

= { (89) }

R ◦R\\R ◦R>

= { lemma 90 }

R ◦R>

= { domains }

R .

The dual theorem is obtained by instantiating R to R
∪

(and noting that R is difun
tional

equivales R
∪

is difun
tional) and simplifying.

✷
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Theorem 144 is an instan
e of theorem 173. In order to show that this is the 
ase, it

is ne
essary to prove that, for a per R ,

ΓR ◦ R
∪

= ΓR ◦ R> .

This is done as follows:

ΓR ◦ R
∪ = ΓR ◦ R>

= { R is a per, so R
∪=R ; lemma 92 }

ΓR ◦R ⊆ ΓR ◦ R>

⇐ { ΓR is fun
tional }

R ⊆ (ΓR)∪ ◦ ΓR ◦ R>

= { lemma 87 }

R ⊆ R\\R ◦ R>

= { de�nition 95 and theorem 108 }

true .

6.3.3 The Per Construction

The third method of proving theorem 161 exploits theorem 144. We owe the 
onstru
tion

to Winter [Win04℄.

The basis for the 
onstru
tion is the 
onstru
tion of a per from a difun
tional relation:

Lemma 174 For all relations R , R ◦R
∪

is a per if R is difun
tional.

Proof Suppose R is difun
tional. We exploit theorem 93:

R ◦R
∪

is a per

= { theorem 93 with R := R ◦R
∪

and 
onverse }

R ◦R
∪ = R ◦R

∪
◦R ◦R

∪

⇐ { Leibniz }

R = R ◦R
∪
◦R

= { theorem 160 }

R is difun
tional.

✷



108

Suppose now that R is difun
tional. Exploiting lemma 174 
ombined with theorem

143,

〈

∃f : f ◦ f
∪

= f< : R ◦R
∪

= f
∪

◦ f
〉

.(175)

Suppose therefore that f ◦ f
∪ = f< and R ◦R

∪ = f∪ ◦ f . De�ne the relation g by

g = f◦R .(176)

Then

g ◦g
∪

= { (176) and 
onverse }

f ◦R ◦R
∪
◦ f

∪

= { (175) }

f ◦ f
∪
◦ f ◦ f

∪

= { (175) }

f< ◦ f<

= { f< is a 
ore
exive }

f< .

It follows that g< = g ◦g
∪

. Thus

f ◦ f
∪

= f< = g< = g ◦g
∪

.(177)

Moreover,

f
∪
◦g

= { (176) }

f
∪
◦ f ◦R

= { R ◦R
∪ = f∪ ◦ f }

R ◦R
∪
◦R

= { R is difun
tional: theorem 160 }

R .

Combined with (177), we have thus shown that

〈

∃ f,g : f ◦ f
∪

= f< = g ◦g
∪

= g< : R = f
∪

◦g
〉

(178)
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as required to prove the only-if part of theorem 161.

Winter does not prove theorem 144; instead he assumes the theorem is valid. It

is interesting to 
ompare the details of Winter's 
onstru
tion with the fun
tionals 
on-

stru
ted in theorem 173. Applying the instantiation R := R ◦R
∪

in theorem 144 and

simplifying, Winter's 
onstru
tion yields

R = (Γ(R ◦R
∪

) ◦R<)
∪

◦ (Γ(R ◦R
∪

) ◦R) .

This is, of 
ourse, an isomorphi
 
hara
terisation of R in the sense of theorem 166.

Re
alling our earlier informal a

ount of how to prove the theorem, the 
onstru
tion


orresponds in essen
e to the bottom-left �gure of �g. 5.

6.4 Difunctional Closure

Be
ause a difun
tional relation is a pre�x point of a monotoni
 fun
tion (the fun
tion

〈X :: X ◦X
∪
◦X〉 ) �xed-point 
al
ulus predi
ts that the least pre�x point

〈

µX :: R ∪ X ◦X
∪

◦X
〉

is the least difun
tional relation that in
ludes R | the difun
tional 
losure of R . More

pre
isely,

〈

µX :: R ∪ X ◦X
∪

◦X
〉

is difun
tional

and

〈

∀S : S ◦S
∪

◦S ⊆ S : R⊆S ≡
〈

µX :: R ∪ X ◦X
∪

◦X
〉

⊆ S
〉

.

(The general theorem is that, if f is a monotoni
 endofun
tion on a 
omplete latti
e,

the fun
tion f⋆ de�ned by

f⋆.x = 〈µy :: x⊔ f.y〉

has the property that

〈∀y : f.y⊑y : x⊑y ≡ f⋆.x ⊑ y〉 .

The straightforward proof is left to the reader. Examples in
lude the transitive 
losure

and the re
exive-transitive 
losure of a relation. See [Ba
02℄ for an exposition of the

te
hniques involved.)

In this se
tion, we explore simpli�
ations of the de�nition of difun
tional 
losure.

The following theorem expresses the same result but in more familiar terms (spe
i�-


ally in terms of the re
exive-transitive 
losure operator).
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Theorem 179 (Difunctional Closure) For all relations R ,

〈

µX :: R ∪ X ◦X
∪

◦X
〉

=
〈

µX :: R ∪ X ◦R
∪

◦X
〉

.

Hen
e,

〈

µX :: R ∪ X ◦X
∪

◦X
〉

= R ◦ (R
∪

◦R)∗ .

Also,

R ◦ (R
∪

◦R)∗ is difun
tional

and

〈

∀S : S ◦S
∪

◦S ⊆ S : R⊆S ≡ R ◦ (R
∪

◦R)∗ ⊆ S
〉

.

(Thus 〈R :: R ◦ (R∪
◦R)∗〉 is the upper adjoint in a Galois 
onne
tion (of the relations of a

given type and the difun
tional relations of the same type) of the fun
tion that \forgets"

that a difun
tional relation is indeed difun
tional.)

Proof We establish the equality by mutual in
lusion. We begin by noting that the

equality

〈

µX :: R ∪ X ◦R
∪

◦X
〉

= R ◦ (R
∪

◦R)∗

is an instan
e of (the possibly little known) exer
ise 67(
) in [Ba
02℄. Also

〈µX :: R ∪ X ◦X
∪
◦X〉

= { diagonal rule of �xed-point 
al
ulus }

〈µX :: 〈µY :: R ∪ Y ◦X
∪
◦Y〉〉

= { [Ba
02, exer
ise 67(
)℄ }

〈µX :: R ◦ (X∪
◦R)∗〉 .

So

〈µX :: R ∪ X ◦X
∪
◦X〉 ⊆ 〈µX :: R ∪ X ◦R

∪
◦X〉

= { above }

〈µX :: R ◦ (X∪
◦R)∗〉 ⊆ R ◦ (R∪

◦R)∗

⇐ { �xed-point indu
tion }

R ◦ ((R ◦ (R∪
◦R)∗)∪ ◦R)∗ ⊆ R ◦ (R∪

◦R)∗

= { properties of 
onverse }
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R ◦ ((R∪
◦R)∗ ◦R

∪
◦R)∗ ⊆ R ◦ (R∪

◦R)∗

⇐ { Leibniz and re
exivity of the subset relation }

((R∪
◦R)∗ ◦R

∪
◦R)∗ = (R∪

◦R)∗

= { properties of re
exive-transitive 
losure }

true .

For the 
onverse, we have:

〈µX :: R ∪ X ◦R
∪
◦X〉 ⊆ 〈µX :: R ∪ X ◦X

∪
◦X〉

= { for brevity, let rhs denote 〈µX :: R ∪ X ◦X
∪
◦X〉 }

〈µX :: R ∪ X ◦R
∪
◦X〉 ⊆ rhs

⇐ { �xed-point indu
tion }

R ∪ rhs ◦R∪
◦ rhs ⊆ rhs

= { �xed-point 
omputation and de�nition of rhs }

R ∪ rhs ◦R∪
◦ rhs ⊆ R ∪ rhs ◦ rhs∪ ◦ rhs

⇐ { monotoni
ity }

R ⊆ rhs

= { �xed-point 
omputation and de�nition of rhs }

true .

✷

Theorem is observed by Jaoua et al [JMBD91, Proposition 4.12℄ but is expressed

using the de�nition of S∗ as the sum of powers of S . Their (in
omplete) proof uses

indu
tion over the natural numbers. Just as the notion of the \di��eren
e" of a relation

is due to Riguet [Rig51℄, theorem 179 is also due to Riguet [Rig50℄. He 
alls the relation

R ◦ (R∪
◦R)+ the \difun
tional 
losure" (\fermeture difon
tionelle") of R . Note the dif-

feren
e. This suggests that there is a mistake in Riguet's de�nition or in theorem 179.

In fa
t, both are 
orre
t:

Lemma 180 For arbitrary relation R ,

R ⊆ R ◦R
∪

◦R .

It follows that, for all relations R ,

R ◦ (R
∪
◦R)+ = R ◦ (R

∪
◦R)∗ .

Proof We have:
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R ◦R
∪
◦R

⊇ { monotoni
ity }

R ◦ (I ∩ R∪
◦R)

⊇ { modularity rule: (3) }

R◦I ∩ R
= { I is identity of 
omposition, in�mum is idempotent }

R .

So,

R ◦ (R∪
◦R)+ = R ◦ (R∪

◦R)∗

= { �xed-point 
omputation and distributivity }

R ◦ (R∪
◦R)+ = R ◦ (R∪

◦R)+ ∪ R
= { supremum }

R ⊆ R ◦ (R∪
◦R)+

⇐ { �xed-point 
omputation and distributivity }

R ⊆ R ◦R∪
◦R

= { above }

true .

✷
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7 The Diagonal

This se
tion anti
ipates the study of blo
k-ordered relations in se
tion 9. We intro-

du
e the notion of the \diagonal" of a relation in se
tion 7.1 and formulate some basi


properties in se
tion 7.2. We then introdu
e the notion of a \non-redundant", \polar"


overing of a relation by re
tangles in se
tion 8. We prove that every relation has a polar


overing but that not every relation has a non-redundant polar 
overing. Our de�nition

of \non-redundan
y" does not pre
lude the possibility that elements of a 
overing are

dupli
ated: a \polar 
overing" is a bag of re
tangles, and not ne
essarily a set, in the

sense of de�nition 129. This is remedied in se
tion 8.1 where we show that every relation

has an inje
tive polar 
overing. The key to doing so is the notion of the \
ore" of a

relation introdu
ed in se
tion 7.3. Finally, in se
tion 8.2, we explore 
onditions under

whi
h the diagonal of the relation guarantees the non-redundan
y of the 
overing.

The prin
ipal driving for
e behind the investigation reported in this se
tion was to

gain a full understanding of Riguet's \analogie frappante" (theorem 262) whi
h exploits

polar 
overings to link the notion of the diagonal of a relation with the notion of being

blo
k-ordered. However, on the way, several results were obtained that are independent of

Riguet's \analogie". The idea of redu
ing a relation to its \
ore" dis
ussed in se
tion 7.3

stands out. The germs of this idea were sown by Voermans' [Voe99℄ introdu
tion of the

left-per-domain

≺
and right-per-domain

≻
operators. (See de�nition 95.) Some of the

theorems in this se
tion, for example theorem 205, have their origins in Riguet's study

of difun
tional relations [Rig50℄. (See the referen
e to an \appli
ation biunivoque".)

However, we have to admit to being too lazy to try to properly understand Riguet's

theorems and so are unable to give a pre
ise 
orresponden
e.

7.1 Definition and Examples

Straightforwardly from the de�nition of fa
tors, properties of 
onverse and set interse
-

tion,

R is difun
tional ≡ R = R∩ (R\R/R)
∪

.(181)

More generally, we have:

Lemma 182 For all R , R∩ (R\R/R)∪ is difun
tional.

Proof Let S denote R∩ (R\R/R)∪ . We have to prove that S is difun
tional. That is,

by de�nition,

S ◦S
∪

◦S ⊆ S .
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Sin
e the right side is an interse
tion, this is equivalent to

S ◦S
∪

◦S ⊆ R ∧ S ◦S
∪

◦S ⊆ (R\R/R)
∪

.

The �rst is (almost) trivial:

S ◦S
∪
◦S

⊆ { S⊆R , S⊆ (R\R/R)∪ ,


onverse, monotoni
ity }

R ◦R\R/R ◦R

⊆ { 
an
ellation }

R .

In the above 
al
ulation, the tri
k was to repla
e the outer o

urren
es of S on the

left side by R and the middle o

urren
e by (R\R/R)∪ . The repla
ement is done the

opposite way around in the se
ond 
al
ulation.

S ◦S
∪
◦S ⊆ (R\R/R)∪

⇐ { S⊆ (R\R/R)∪ , S⊆R , monotoni
ity and transitivity }

(R\R/R)∪ ◦R
∪
◦ (R\R/R)∪ ⊆ (R\R/R)∪

= { 
onverse }

R\R/R ◦R ◦R\R/R ⊆ R\R/R

= { Galois 
onne
tion }

R ◦R\R/R ◦R ◦R\R/R ◦R ⊆ R

= { 
an
ellation, monotoni
ity and transitivity }

true .

✷

In order to re
e
t the mental pi
ture of a difun
tional relation, we 
all the relation

R∩ (R\R/R)∪ the diagonal of R ; Riguet [Rig51℄ 
alls it the \di��eren
e" of the relation.

(Riguet's de�nition does not use fa
tors but is equivalent.)

Definition 183 (Diagonal) The diagonal of relation R is the relation R∩ (R\R/R)∪ .

For brevity, R∩ (R\R/R)∪ will sometimes be denoted by ∆R .

✷

Many readers will be familiar with the de
omposition of a preorder into a partial

ordering on a set of equivalen
e 
lasses. The diagonal of a preorder T is the equivalen
e

relation T ∩T∪

. More generally:
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Example 184 The diagonal of a provisional preorder T is T ∩ T∪

. This is be
ause,

for an arbitrary relation T ,

T ∩ (T\T/T)
∪

= T ∩ T< ◦ (T\T/T)
∪

◦T> .

But, if T is a provisional preorder,

T< ◦ (T\T/T)
∪

◦T> = T
∪

.

(See lemmas 115 and 118.)

✷

For readers familiar with algorithmi
 graph theory (a
y
li
 graphs, topologi
al or-

derings, strongly 
onne
ted 
omponents), we in
lude a running example. (See examples

185, 229.) Brie
y, a �nite graph 
an be represented by a homogeneous relation G on its

nodes: the relation holds between nodes a and b if there is an edge from a to b . The

(re
exive, transitive) relation G∗
holds between nodes a and b if there is a path from

a to b . See [BDGv22, BDGv21℄ for full details.

Example 185 A parti
ular instan
e of example 184 is if G is the edge relation of a

�nite graph. Then ∆(G∗) is G∗∩ (G∪)∗ , the relation that holds between nodes a and b

if there is a path from a to b and a path from b to a in the graph. Thus ∆(G∗) is the

equivalen
e relation that holds between nodes that are in the same strongly 
onne
ted


omponent of G.

✷

Example 186 In this example, we 
onsider three versions of the less-than relation: the

homogeneous less-than relation on integers, whi
h we denote by <ZZ , the homogeneous

less-than relation on real numbers, whi
h we denote by <IR , and the heterogeneous less-

than relation on integers and real numbers, whi
h we denote by ZZ<IR . Spe
i�
ally, the

relation ZZ<IR relates integer m to real number x when m<x (using the 
onventional

over-loaded notation). We also subs
ript the at-most symbol ≤ in the same way in order

to indi
ate the type of the relation in question.

The diagonal of the less-than relation on integers is the prede
essor relation (i.e. it

relates integer m to integer n exa
tly when n=m+1 ). This is be
ause <ZZ\<ZZ = ≤ZZ ,

and ≤ZZ/<ZZ relates integer m to integer n exa
tly when m≤ZZn+1 (where the sub-

s
ript ZZ indi
ates the type of the ordering). The diagonal is thus fun
tional and inje
-

tive.

The diagonal of the less-than relation on real numbers is the empty relation. This

is be
ause <IR\<IR = ≤IR , ≤IR/<IR = ≤IR and <IR∩≥IR=⊥⊥IR . (Again, the subs
ript

indi
ates the type of the ordering.)
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The diagonal of the heterogeneous less-than relation ZZ<IR relates integer m to real

number x when m<x≤m+1 . This is equivalent to ⌈x⌉=m+1 . The diagonal is thus a

difun
tional relation 
hara
terised by |in the sense of theorem 161| the 
eiling fun
tion

〈x :: ⌈x⌉〉 and the su

essor fun
tion 〈m :: m+1〉 .
We leave the reader to 
he
k the details of this example. See also examples 212, 244

and 315, and theorem 319.

✷

The following example introdu
es a general me
hanism for 
onstru
ting illustrative

examples of the 
on
epts introdu
ed later. The example exploits the observation that

∆R is inje
tive if the preorder R\R is anti-symmetri
; that is, ∆R is inje
tive if R\R is a

partial ordering. (Equivalently, ∆R is fun
tional if R/R is a partial ordering.) We leave

the straightforward proof to the reader. (See se
tion 3.5 for the point-free de�nitions of

fun
tionality and inje
tivity.)

Example 187 Suppose X is a �nite type. We use dummy x to range over elements

of type X . Let S denote a subset of 2X . Let in denote the membership relation of

type X∼S . That is, if S is a subset of S , x◦⊤⊤◦S⊆ in exa
tly when x is an element

of the set S . The relation in\in is the subset relation of type S∼S .

(Conventionally, in is denoted by the symbol \∈ " and one writes x∈S instead of

x◦⊤⊤◦S⊆ in . Also, the relation in\in is 
onventionally denoted by the symbol \⊆ ". That

is, if S and S ′
are both elements of S , S◦⊤⊤◦S ′⊆ in\in exa
tly when S⊆S ′

. Were we

to adopt 
onventional pra
ti
e, the overloading of the notation that o

urs is likely to


ause 
onfusion, so we 
hoose to avoid it.)

The relation in\in is anti-symmetri
. As a 
onsequen
e, ∆in is inje
tive. (Equiva-

lently, (∆in)∪ is fun
tional.) Spe
i�
ally, for all x of type X and S of type S ,

x◦⊤⊤◦S ⊆ ∆in ≡ x◦⊤⊤◦S⊆ in ∧ 〈∀S ′ : x◦⊤⊤◦S ′⊆ in : S◦⊤⊤◦S ′⊆ in\in〉 ,
where dummy S ′

ranges over elements of S . Using 
onventional notation, the right side

of this equation is re
ognised as the de�nition of a minimum, and one might write

x [[∆in]] S ≡ S 〈MINS ′ :x∈S ′ :S ′〉
where the venturi tube \ " indi
ates an equality assuming the well-de�nedness of the

expression on its right side.

Fig. 6 shows a parti
ular instan
e. The set X is the set of numbers from 0 to 3 .

The set S is a subset of 2{0,1,2,3} ; the 
hosen subset and the relation in\in for this 
hoi
e

are depi
ted by the dire
ted graph forming the 
entral portion of �g. 6. The relation ∆in

of type X ∼S is depi
ted by the undire
ted graph whereby the atoms of the relation

are depi
ted as re
tangles. Note that the numbers 0 and 3 are not related by ∆in to

any of the elements of S . See example 264 for further dis
ussion of this example.

✷
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1 2{0,1} {0,2}

{0,1,3} {0,2,3}

Figure 6: Diagonal of an Instan
e of the Membership Relation

7.2 Basic Properties

Primarily for notational 
onvenien
e, we note a simple property of the diagonal:

Lemma 188

(∆R)
∪

= ∆(R
∪

) .

Proof

(∆R)∪

= { de�nition and distributivity }

R
∪∩R\R/R

= { fa
tors }

R
∪∩ (R∪

\R
∪

/R
∪)∪

= { de�nition }

∆(R∪) .

✷

A 
onsequen
e of lemma 188 is that we 
an write ∆R
∪

without ambiguity. This we

do from now on.

Very straightforwardly, the relation R ◦R
∪

is a per if R is difun
tional. For a difun
-

tional relation R , the relation R ◦R
∪

is the per representation of the left domain of R .

Symmetri
ally, R
∪
◦R is the per representation of the right domain of R . (See theorem

160, parts (iii) and (iv).) Thus ∆R ◦ (∆R)∪ is the per representation of the left domain

of the diagonal of R . The following lemma is the basis of the 
onstru
tion, in 
ertain


ases, of an e
onomi
 representation of the diagonal of R and, hen
e, of R itself. See

de�nition 209 and theorems 218 and 222.
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Lemma 189 For all relations R ,

(∆R)≺ = (∆R)< ◦R≺ .

Dually,

(∆R)≻ = (∆R)> ◦R≻ .

Proof We prove the �rst equation by mutual in
lusion. First,

(∆R)≺ ⊆ (∆R)< ◦R≺

= { ∆R is difun
tional, theorem 160; de�nition: (96) }

∆R ◦∆R
∪ ⊆ (∆R)< ◦R//R

⇐ { domains and monotoni
ity }

∆R ◦∆R
∪ ⊆ R//R

= { de�nition of R//R , 
onverse and fa
tors }

∆R ◦∆R
∪
◦R ⊆ R

= { ∆R⊆R ; ∆R∪⊆R\R/R and 
an
ellation }

true .

Se
ond,

(∆R)< ◦R≺ ⊆ (∆R)≺

= { ∆R is difun
tional, theorem 160 }

(∆R)< ◦R≺ ⊆ ∆R ◦∆R
∪

⇐ { domains and de�nition: (96) }

∆R ◦∆R
∪
◦R//R ⊆ ∆R ◦∆R

∪

⇐ { monotoni
ity and 
onverse }

R//R ◦∆R ⊆ ∆R

= { de�nition of diagonal }

R//R ◦∆R ⊆ R ∧ R//R ◦∆R ⊆ (R\R/R)∪

⇐ { ∆R⊆R ; 
onverse }

R//R ◦R ⊆ R ∧ ∆R
∪
◦R//R ⊆ R\R/R

= { 
an
ellation; fa
tors }

true ∧ R ◦∆R
∪
◦R//R ◦R ⊆ R
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⇐ { 
an
ellation and ∆R
∪ ⊆R\R/R }

R ◦R\R/R ◦R ⊆ R

= { 
an
ellation }

true .

The dual properties are obtained by instantiating R to R
∪

and simplifying using prop-

erties of 
onverse.

✷

The following 
orollary of lemma 189 proves to be 
ru
ial later: see the dis
ussion

following lemma 259.

Lemma 190 For all relations R ,

(∆R)≺ = R≺ ≡ (∆R)< = R< .

Dually,

(∆R)≻ = R≻ ≡ (∆R)> = R> .

Proof The proof is by mutual impli
ation:

(∆R)< = R<

⇒ { lemma 189 and Leibniz }

(∆R)≺ = R< ◦R≺

= { dual of (101) }

(∆R)≺ = R≺

⇒ { Leibniz }

((∆R)≺)< = (R≺)<

= { dual of (101) with R :=∆R and R :=R }

(∆R)< = R< .

✷

7.3 Reduction to the Core

Suppose R is an arbitrary relation. Both R≺
and R≻

are pers so 
an be 
hara
terised

by their equivalen
e 
lasses. Spe
i�
ally, for a given R , suppose

R≺ = λ
∪

◦λ ∧ R≻ = ρ
∪

◦ρ
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where λ and ρ are fun
tional relations. (The existen
e of λ and ρ is guaranteed by

theorem 143.) Then

R = λ
∪

◦λ ◦R ◦ρ
∪

◦ρ .

The relation λ ◦R ◦ρ
∪

, whi
h we denote by |R| , is a relation on the equivalen
e 
lasses.

For a mental pi
ture of su
h a relation, refer to �g. 18 (page 199): the individual blo
ks

of the relation R be
ome points of the relation |R| .

Definition 191 (Core) Suppose R is an arbitrary relation and suppose

R≺ = λ
∪

◦λ ∧ R≻ = ρ
∪

◦ρ

where λ and ρ are fun
tional relations. Then the 
ore of R , whi
h is denoted by |R| ,

is de�ned by

|R| = λ ◦R ◦ρ
∪

.

✷

Example 192 Fig. 7 depi
ts a relation (on the left) and its 
ore (on the right). Both

are depi
ted as bipartite graphs. The relation R is a relation on blue and red nodes. Its


ore |R| is depi
ted as a relation on squares of blue nodes and squares of red nodes, ea
h

square being an equivalen
e 
lass of R≺
(on the left) or of R≻

(on the right).

Figure 7: A Relation and Its Core

✷

Generally, in order to avoid the 
lutter that is evident in �g. 7, examples from now

on will almost invariably be of relations that are isomorphi
 to their 
ores. However,

this is not the 
ase for example 224 be
ause it has been 
hosen to illustrate some of the

limitations of the theory we develop.
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Lemma 193 Suppose R , λ and ρ are as in de�nition 191. Then

R = λ
∪

◦ |R| ◦ρ .

Proof

R

= { per domains: (98) }

R≺ ◦R ◦R≻

= { R≺ = λ∪
◦λ and R≻ = ρ∪

◦ρ }

λ
∪
◦λ ◦R ◦ρ

∪
◦ρ

= { de�nition 191 }

λ
∪
◦ |R| ◦ρ .

✷

As previously observed, there are several di�erent ways in whi
h a per 
an be written

as f
∪
◦ f for some fun
tional relation f . However, all are \isomorphi
". (See theorem

151.) Correspondingly, there are several di�erent ways to 
onstru
t a 
ore of a relation,

but all are \isomorphi
" in the sense of de�nition 82:

Theorem 194 Suppose S0 and S1 are both 
ores of R . Then S0∼=S1 .

Proof Suppose, for i= 0 and i=1 , Si = λi ◦R ◦ρ
∪

i where R≺ = λ
∪

i
◦λi and R≻ = ρ

∪

i
◦ρi .

(That is, S0 and S1 are both 
ores of R .) Then

S0

= { assumption }

λ0 ◦R ◦ρ
∪

0

= { lemma 193 }

λ0 ◦λ
∪

1
◦S1 ◦ρ1 ◦ρ

∪

0 .

Applying de�nition 82 with f,g := λ0 ◦λ
∪

1 , ρ1 ◦ρ
∪

0 in 
ombination with theorem 151, we


on
lude that S0∼=S1 .
✷

For later use, we 
al
ulate the left and right domains of the 
ore of a relation.

Lemma 195 Suppose R , λ and ρ are as in de�nition 191. Then

R< = λ> ∧ |R|< = λ< ∧ R> = ρ> ∧ |R|> = ρ< .

Proof We prove the middle two equations. First,
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R>

= { (101) }

(R≻)<

= { de�nition 191 }

(ρ∪
◦ρ)<

= { domains }

ρ> .

The dual equation, R< = λ>
, is proved similarly. Se
ond,

|R|<

= { de�nition 191 }

(λ ◦R ◦ρ
∪)<

= { R> = ρ>
(just proved) }

(λ ◦R ◦R>)<

= { domains }

(λ ◦R<)<

= { R< = λ>
(see above) }

λ< .

The �nal equation is also proved similarly.

✷

A distinguishing feature of the 
ore of a relation is that its left and right per-domains

equal its left and right domains, respe
tively.

Theorem 196 Suppose R , λ and ρ are as in de�nition 191. Then

|R|≻ = |R|> .(197)

Also,

|R|≺ = |R|< .(198)

Proof The proof of (197) has several (non-trivial) steps. First, we show that

|R|≻ = S∩S∪

(199)

where

S = ρ< ◦ (λ ◦R ◦ρ
∪

)\(λ ◦R ◦ρ
∪

) ◦ρ< .(200)

Then we simplify several sub
omponents of S . We have
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|R|≻

= { (96) and (101) }

|R|> ◦ |R|\\|R| ◦ |R|>

= { lemma 195 and de�nition 191 }

ρ< ◦ (λ ◦R ◦ρ
∪)\\(λ ◦R ◦ρ

∪) ◦ρ<

= { (88), 
onverse and distributivity of 
ore
exives over in�ma }

ρ< ◦ (λ ◦R ◦ρ
∪)\(λ ◦R ◦ρ

∪) ◦ρ< ∩ (ρ< ◦ (λ ◦R ◦ρ
∪)\(λ ◦R ◦ρ

∪) ◦ρ<)∪

= { (200) }

S∩S∪

.

Next we show that

(λ ◦R ◦ρ
∪

)\(λ ◦R ◦ρ
∪

) = (R ◦ρ
∪

)\(R ◦ρ
∪

) .(201)

We have

(λ ◦R ◦ρ
∪)\(λ ◦R ◦ρ

∪)

= { fa
tors }

(R ◦ρ
∪)\(λ\(λ ◦R ◦ρ

∪))

= { in order to 
an
el the two o

urren
es of λ ,

we aim to apply lemma 75

[ R\S = R\(R< ◦S) ] with R,S := R ◦ρ
∪

, λ\(λ ◦R ◦ρ
∪) }

(R ◦ρ
∪)\((R ◦ρ

∪)< ◦ λ\(λ ◦R ◦ρ
∪))

= { by lemma 195, (R ◦ρ
∪)< = R< = λ> }

(R ◦ρ
∪)\(λ> ◦ λ\(λ ◦R ◦ρ

∪))

= { lemma 75 with f,R := λ , λ ◦R ◦ρ
∪

}

(R ◦ρ
∪)\(λ∪

◦λ ◦R ◦ρ
∪)

= { λ
∪
◦λ = R≺

and R≺ ◦R = R }

(R ◦ρ
∪)\(R ◦ρ

∪) .

The next step is to show that

ρ< ◦ (R ◦ρ
∪

)\(R ◦ρ
∪

) = ρ ◦R\(R ◦ρ
∪

) .(202)

We have
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ρ< ◦ (R ◦ρ
∪)\(R ◦ρ

∪)

= { ρ< = ρ ◦ρ
∪

}

ρ ◦ρ
∪
◦ (R ◦ρ

∪)\(R ◦ρ
∪)

= { lemma 75 with f,R := ρ , (R ◦ρ
∪)\(R ◦ρ

∪) }

ρ ◦ρ> ◦ρ\((R ◦ρ
∪)\(R ◦ρ

∪))

= { domains and fa
tors }

ρ ◦ (R ◦ρ
∪
◦ρ)\(R ◦ρ

∪)

= { ρ
∪
◦ρ = R≻

and R ◦R≻ = R }

ρ ◦R\(R ◦ρ
∪) .

We have thus proven (202). Now we show that

R\(R ◦ρ
∪

) ◦ρ< = R\R ◦ρ
∪

.(203)

We have

R\(R ◦ρ
∪) ◦ρ<

= { ρ< = ρ ◦ρ
∪

}

R\(R ◦ρ
∪) ◦ρ ◦ρ

∪

= { lemma 77 with R,S,f := R , R ◦ρ
∪

, ρ }

R\(R ◦ρ
∪
◦ρ) ◦ρ> ◦ρ

∪

= { ρ
∪
◦ρ = R≻

,

[ R ◦R≻ = R ] and [ R> ◦R
∪ = R∪

] with R :=ρ }

R\R ◦ρ
∪

.

We have thus proven (203). Now we put the above steps together:

ρ< ◦ (λ ◦R ◦ρ
∪)\(λ ◦R ◦ρ

∪) ◦ρ<

= { (201) }

ρ< ◦ (R ◦ρ
∪)\(R ◦ρ

∪) ◦ρ<

= { (202) }

ρ ◦R\(R ◦ρ
∪) ◦ρ<

= { (203) }

ρ ◦R\R ◦ρ
∪

.
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That is,

ρ< ◦ (λ ◦R ◦ρ
∪

)\(λ ◦R ◦ρ
∪

) ◦ρ< = ρ ◦R\R ◦ρ
∪

.(204)

So

|R|≻

= { (199) and (200) }

ρ< ◦ (λ ◦R ◦ρ
∪)\(λ ◦R ◦ρ

∪) ◦ρ< ∩ (ρ< ◦ (λ ◦R ◦ρ
∪)\(λ ◦R ◦ρ

∪) ◦ρ<)∪

= { (204) }

ρ ◦R\R ◦ρ
∪ ∩ (ρ ◦R\R ◦ρ

∪)∪

= { 
onverse }

ρ ◦R\R ◦ρ
∪ ∩ ρ ◦ (R\R)∪ ◦ρ

∪

= { see below }

ρ ◦R≻ ◦ρ
∪

= { R≻ = ρ∪
◦ρ }

ρ ◦ρ
∪
◦ρ ◦ρ

∪

= { ρ ◦ρ
∪ = ρ< = |R|> , 
ore
exives }

|R|> .

The unproven middle step asserts that

ρ ◦R\R ◦ρ
∪ ∩ ρ ◦ (R\R)

∪

◦ρ
∪

= ρ ◦R≻ ◦ρ
∪

.

This is proved using the anti-symmetry of the subset relation. Note �rst that

ρ ◦R≻ ◦ρ
∪

= ρ ◦ (R\R∩ (R\R)
∪

) ◦ρ
∪

sin
e

ρ ◦R≻ ◦ρ∪

= { de�nition 95, (96) and (101) }

ρ ◦R> ◦ (R\R∩ (R\R)∪) ◦R> ◦ρ
∪

= { lemma 195 (in parti
ular, R>=ρ>
) }

ρ ◦ (R\R∩ (R\R)∪) ◦ρ∪

.
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So our task is to prove that

ρ ◦R\R ◦ρ
∪ ∩ ρ ◦ (R\R)

∪

◦ρ
∪

= ρ ◦ (R\R∩ (R\R)
∪

) ◦ρ
∪

.

We begin with the right side be
ause its in
lusion in the left side is easy.

ρ ◦ (R\R∩ (R\R)∪) ◦ρ∪

⊆ { in�ma and monotoni
ity }

ρ ◦R\R ◦ρ
∪ ∩ ρ ◦ (R\R)∪ ◦ρ

∪

⊆ { modularity rules: (3) and (4) }

ρ ◦ (ρ∪
◦ρ ◦R\R ◦ρ

∪
◦ρ ∩ (R\R)∪) ◦ρ∪

= { R≻ = ρ∪
◦ρ }

ρ ◦ (R≻ ◦R\R ◦R≻ ∩ (R\R)∪) ◦ρ∪

⊆ { by de�nition 95 and monotoni
ity, R≻⊆R\R }

ρ ◦ (R\R ◦R\R ◦R\R ∩ (R\R)∪) ◦ρ∪

⊆ { R\R ◦R\R ◦R\R ⊆ R\R and monotoni
ity }

ρ ◦ (R\R∩ (R\R)∪) ◦ρ∪

.

This 
ompletes the proof of the middle step and, hen
e, of (197).

The proof of (198) involves instantiating (197). Sin
e R≺=(R∪)≻ and R≻=(R∪)≺ , we


an de�ne |R
∪

| to be ρ ◦R
∪
◦λ

∪

. Then

true

= { (197) }

|R
∪

|≻ = |R
∪

|>

= { de�nition of |R
∪

| }

(ρ ◦R
∪
◦λ

∪)≻ = (ρ ◦R
∪
◦λ

∪)>

= { 
onverse }

(λ ◦R ◦ρ
∪)≺ = (λ ◦R ◦ρ

∪)<

= { de�nition of |R| }

|R|≺ = |R|< .

✷

The diagonal of a relation is difun
tional. A general property of the 
ore of a difun
-

tion is the following.
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Theorem 205 Suppose R is difun
tional. Then the 
ore of R is fun
tional and

inje
tive. Spe
i�
ally, if R = f∪ ◦g where f ◦ f
∪ = f< = g ◦g

∪ = g<
, then

|R| ◦ |R|
∪

= f< ∧ |R|
∪

◦ |R| = g< .

Thus, if R is difun
tional, its 
ore |R| de�nes a (1{1) 
orresponden
e between the equiv-

alen
e 
lasses of R≺
and the equivalen
e 
lasses of R≻

.

Proof If R is difun
tional, the 
hara
terisation of difun
tional relations given by

theorem 161 allows us to assume that R = f∪ ◦g where f ◦ f
∪ = f< = g ◦g

∪ = g<
. Then,

by lemma 142,

R≺ = f
∪

◦ f = R ◦R
∪

∧ R≻ = g
∪

◦g = R
∪

◦R .

So

|R| ◦ |R|
∪

= { de�nition 191 }

f ◦R ◦g
∪
◦g ◦R

∪
◦ f

∪

= { de�nition 191 }

f ◦R ◦R≻ ◦R
∪
◦ f

∪

= { per domains: (98) }

f ◦R ◦R
∪
◦ f

∪

= { f
∪
◦ f = R ◦R

∪

}

f ◦ f
∪
◦ f ◦ f

∪

= { f ◦ f
∪ = f< }

f< .

That is, |R| is fun
tional with left domain f< , (the 
ore
exive representation of) the set

of equivalen
e 
lasses of R≺
. By symmetry, |R| is inje
tive with right domain g<

, (the


ore
exive representation of) the set of equivalen
e 
lasses of R≻
.

✷

A relation that is both inje
tive and fun
tional establishes a (1{1) 
orresponden
e

between the points of its left and right domains. If these points are ordered arbitrarily

but in su
h a way that the ordering respe
ts the 
orresponden
e, and the relation is

depi
ted by a graph whose axes depi
t the orderings of the domains, the relation will

form a subdiagonal of the graph. Thus the mental pi
ture of the 
ore |R| of a difun
tional

relation R is a subdiagonal of a graph; the mental pi
ture of the (difun
tional) relation
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R itself is a 
olle
tion of 
ompletely disjoint re
tanges arranged along the diagonal of a

graph. It follows from theorem 205 that the 
ore |∆R| of the diagonal of an arbitrary

relation R is fun
tional and inje
tive. The mental pi
ture we have just sket
hed thus

applies to the diagonal ∆R ; this is the motivation for our 
hosen terminology.

Now we turn to properties of the diagonal of the 
ore of a relation.

Lemma 206 Suppose R , λ and ρ are as in de�nition 191. Then

R> ◦R\R/R ◦R< = ρ
∪

◦ |R|\|R|/|R| ◦λ .

Proof For brevity, the 
al
ulation introdu
es the abbreviation S for |R| .

R> ◦R\R/R ◦R<

= { (101) }

(R≻)> ◦R\R/R ◦ (R≺)<

= { R≺ = λ
∪
◦λ , R≻ = ρ

∪
◦ρ , and domains }

ρ> ◦R\R/R ◦λ>

= { lemma 193, S= |R| }

ρ> ◦ (λ∪
◦S ◦ρ)\(λ∪

◦S ◦ρ)/(λ∪
◦S ◦ρ) ◦λ>

= { lemma 78 with f,g,U,V,W :=ρ,λ,S,S,S }

ρ
∪
◦ (λ< ◦S)\S/(S ◦ρ<) ◦λ

= { S= |R| }

ρ
∪
◦ (λ< ◦ |R|)\|R|/(|R| ◦ρ<) ◦λ

= { |R| = λ ◦R ◦ρ
∪

; so λ< ◦ |R| = |R| = |R| ◦ρ< }

ρ
∪
◦ |R|\|R|/|R| ◦λ .

✷

Theorem 207 Suppose R , λ and ρ are as in de�nition 191. Then

∆R = λ
∪
◦∆|R| ◦ρ ∧ ∆|R| = λ ◦∆R ◦ρ

∪

.

Proof As in lemma 206, we abbreviate |R| to S .

∆R

= { de�nition }

R∩ (R\R/R)∪
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= { domains and 
onverse }

R ∩ (R> ◦R\R/R ◦R<)∪

= { S= |R| , lemma 206 }

R ∩ (ρ∪
◦S\S/S ◦λ)∪

= { S= |R| , lemma 193 }

λ
∪
◦S ◦ρ ∩ (ρ∪

◦S\S/S ◦λ)∪

= { distributivity of 
onverse and fun
tional relations }

λ
∪
◦ (S∩ (S\S/S)∪) ◦ρ

= { de�nition 183, S= |R| }

λ
∪
◦∆|R| ◦ρ .

Hen
e

λ ◦∆R ◦ρ
∪

= { above }

λ ◦λ
∪
◦∆|R| ◦ρ ◦ρ

∪

= { λ and ρ are fun
tional }

λ< ◦∆|R| ◦ρ<

= { ∆|R|⊆ |R| ; so (∆|R|)< ⊆ |R|< and (∆|R|)> ⊆ |R|>

lemma 195 and domains }

∆|R| .
✷

Theorem 207 may have pra
ti
al importan
e for very large datasets. In appli
ations

where 
omputing the diagonal of a relation R is required it may be more eÆ
ient to

�rst redu
e it to its 
ore |R| instead of 
omputing the diagonal dire
tly. This of 
ourse

requires 
omputing partitionings of R≺
and R≻

. The task of determining whether or

not a given relation 
an be blo
k-ordered is an example: see theorem 265.

Small examples that one en
ounters in the literature typi
ally have the property that

R= |R| , in order to avoid unne
essary 
lutter. The same is true for the 
on
rete examples

that we present here. See the dis
ussion following theorem 265.

The �nal theorem in this se
tion is motivated by theorem 205. The diagonal of an

arbitrary relation R is difun
tional, so theorem 205 (with R :=∆R ) states that |∆R|

|the 
ore of the diagonal of R| de�nes a (1{1) 
onne
tion between the equivalen
e


lasses of (∆R)≺ and (∆R)≻ . Theorem 208 is a slightly weaker property of ∆|R| |the

diagonal of the 
ore of R| in relation to the per domains R≺
and R≻

.
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Theorem 208 Suppose R , λ and ρ are as in de�nition 191. Then

∆|R| ◦∆|R|
∪ ⊆ λ< ∧ ∆|R|

∪

◦∆|R| ⊆ ρ< .

That is, ∆|R| de�nes a (1{1) 
orresponden
e between a subset of the equivalen
e 
lasses

of R≺
(spe
i�
ally, the points in |R|< ) and a subset of the equivalen
e 
lasses of R≻

(the

points in |R|> ).

Proof

∆|R| ◦∆|R|
∪

= { theorem 207 and 
onverse }

λ ◦∆R ◦ρ
∪
◦ρ ◦∆R

∪
◦λ

∪

= { de�nition 191 }

λ ◦∆R ◦R≻ ◦∆R
∪
◦λ

∪

= { domains }

λ ◦∆R ◦ (∆R)> ◦R≻ ◦∆R
∪
◦λ

∪

= { lemma 189 and per domains: (98) }

λ ◦∆R ◦∆R
∪
◦λ

∪

= { ∆R is difun
tional, theorem 160 with R :=∆R }

λ ◦ (∆R)≺ ◦λ
∪

⊆ { lemma 189 }

λ ◦R≺ ◦λ
∪

= { de�nition 191 }

λ ◦λ
∪
◦λ ◦λ

∪

= { λ is fun
tional, i.e. λ ◦λ
∪ = λ<

, domains }

λ< .

The fa
t that ∆|R| is fun
tional follows from the fa
t that λ is fun
tional (and, of


ourse, the transitivity of the subset relation). The property that ∆|R|
∪

is inje
tive is

the 
onverse dual.

✷
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8 Polar Coverings

This se
tion is, at �rst sight, a detour from the study of the diagonal of a relation. We

introdu
e the notion of a \polar 
overing" of a relation R and show that every relation

has su
h a 
overing. See theorem 211. In a sense, theorem 211 is a generalisation of

theorem 163 (the theorem that every difun
tional relation is the supremum of a set of


ompletely disjoint re
tangles). The relevan
e to the diagonal of a relation be
omes


learer when we study \non-redundant" polar 
overings in se
tion 8.2.

Definition 209 (Polar Covering) Suppose R is an indexed bag of re
tangles. (See

de�nition 129.) Then R is said to be polar if, for all elements U and V of R ,

U< ⊆ V< ≡ U> ⊇ V> .

Also, R is said to be linear if, for all elements U and V of R ,

U< ⊆ V< ∨ V< ⊆ U< .

(Equivalently,

U> ⊆ V> ∨ V> ⊆ U>
.)

A relation R is 
overed by R if R=∪R . The 
overing R is non-redundant if there

is a total fun
tion D from indi
es of R to a set of 
ompletely disjoint subre
tangles of

∪R that \de�nes" the elements of R . To be pre
ise, the 
overing R is non-redundant

if there is a fun
tion D with the same sour
e as R su
h that

〈∀k :: rectangle.(D.k) ∧ D.k⊆R.k〉
∧ 〈∀ j,k :: D.j 6=D.k ≡ (D.j)<∩ (D.k)< = ⊥⊥ ∧ (D.j)>∩ (D.k)> = ⊥⊥〉
∧ 〈∀ j,k :: D.j=D.k ≡ R.j=R.k〉 .

In su
h a 
ase, we 
all the indexed bag D a de�niens of R .

✷

Definition 210 Suppose R is a polar 
overing of relation R . The polar ordering of

the elements of R , denoted hen
eforth by the symbol ⊑ , is de�ned by, for all indi
es j

and k of R ,

R.j ⊑ R.k ≡ (R.j)< ⊆ (R.k)< .

Equivalently,

R.j ⊑ R.k ≡ (R.k)> ⊆ (R.j)> .

✷
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As suggested by the notation, the relation ⊑ is a provisional ordering on the elements

of any indexed bag of relations; it is anti-symmetri
 whenever R is an indexed bag of

polar re
tangles by virtue of lemma 125 and de�nition 209 of \polar".

De�nition 209 de�nes an indexed bag of re
tangles rather than an indexed set of

re
tangles. (Re
all that a set is an inje
tive bag: see de�nition 129.) This is be
ause it is

easier to 
onstru
t a bag rather than a set of polar re
tangles that 
over a given relation.

Nevertheless, (indexed) sets are more desirable than (indexed) bags. The pro
ess we use

to 
onstru
t su
h sets is to �rst 
onstru
t a bag and then show how to redu
e the bag

to a set. See theorem 215. Note that a de�niens D of an indexed set R is also a set

(be
ause R.j=R.k equivales j=k ).

The adje
tive \polar" alludes to the property that the left and right domains of a


overing are \polar" opposites: the larger the one, the smaller the other. The notion was

introdu
ed by Riguet [Rig51℄ in the 
ontext of a theorem on \relations de Ferrers". More

pre
isely, Riguet introdu
ed the notion of a linear polar 
overing. For further details of

Riguet's theorem see se
tion 11.

As we shall see, Riguet's theorem is straightforward. The following, equally straight-

forward theorem, is a generalisation of the \only-if" part of the theorem.

Theorem 211 Suppose R is a relation of type A∼B . De�ne the fun
tion R by

R = 〈b : b⊆R> : R ◦b ◦R\R〉 .

Then R is a polar 
overing of R .

Proof The elements of R are obviously re
tangles be
ause its index set is a set of

points. (See lemma 124.) The property

R = 〈∪b : b⊆R> : R ◦b ◦R\R〉

is immediate from the saturation axiom (16), distributivity and 
an
ellation.

The \polar" property is established as follows. For all b , b ′
su
h that b⊆R>

and

b ′⊆R>
,

(R ◦b ′ ◦R\R)> ⊆ (R ◦b ◦R\R)>

= { assumption: b⊆R>
and b ′⊆R>

, domains }

(b ′ ◦R\R)> ⊆ (b ◦R\R)>

= { lemma 60 with R,a,a ′ := R\R ,b ,b ′ }

b◦⊤⊤◦b ′ ⊆ (R\R)/(R\R)

= { (30) }

b◦⊤⊤◦b ′ ⊆ R\R
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= { lemma 60 }

(R◦b)< ⊆ (R◦b ′)<

= { I⊆R\R , domains }

(R ◦b ◦R\R)< ⊆ (R ◦b ′ ◦R\R)< .

✷

Example 212 The less-than relation on real numbers has a polar 
overing. Spe
if-

i
ally, suppose x is a real number. Let lt.x denote {y :y∈IR :y<x} and al.x denote

{y :y∈IR :x≤y} . Theorem 211 predi
ts that

{x : x∈IR : lt.x ◦⊤⊤ ◦al.x}

is a polar 
overing of the less-than relation. (The only non-trivial part is to 
he
k that

the at-most relation ≤ equals <\< .)

This 
overing is, of 
ourse, not unique. More signi�
antly, it is not non-redundant

sin
e

〈

∀u,v : u<x≤ v : x 6= 1
2
(u+x) ∧ u< 1

2
(u+x)≤ v

〉

.

For any real number x , it is possible to remove the re
tangle de�ned by x without

a�e
ting the supremum.

✷

Given the straightforwardness of theorem 211, it is inevitable that our fo
us is not

on the polarity of 
overings but on the existen
e of non-redundant 
overings. The

adje
tive \non-redundant" is meant to express the property that removal of any element

from a 
overing R will have the e�e
t of stri
tly redu
ing ∪R . (Removal of an element

may involve removing several elements of K sin
e there is no requirement that R is

inje
tive.) Example 212 demonstrates that the less-than relation on real numbers has a

polar 
overing but, as we shall see, the less-than relation on real numbers is an example

of a relation for whi
h there is no non-redundant 
overing.

The notation \D " in de�nition 209 is 
hosen primarily to express the property that

D.k uniquely \de�nes" (or \identi�es") R.k . Conveniently, it also expresses the prop-

erty that the relation 
overed by a de�niens (the relation ∪D ) is always difun
tional:

see theorem 163.

A polar 
overing is not obviously redundant in the sense that, for all elements U

and V of R ,

U⊆V ≡ U=V .
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(The easy proof is left to the reader.) That is, it is not possible to identify two elements

U and V su
h that U is a proper subset of V and, thus, U 
an be removed from R
without a�e
ting ∪R . Example 212 shows that the less-than relation on real numbers

has a polar 
overing that has non-obvious redundan
ies. Example 213 is an example of a

�nite relation for whi
h the polar 
overing 
onstru
ted by theorem 211 has a non-obvious

redundan
y.

Example 213 Fig. 8 shows a relation R of type {A,B,C}∼{α,β,γ,δ} . The four re-

lations depi
ted in �g. 9 are re
tangles of type {A,B,C}∼{α,β,γ,δ} (as indi
ated by the

surrounding re
tangular boxes); for greater 
larity only edges 
onne
ting nodes in their

left and right domains have been displayed.

A B C

α β γ

δ

Figure 8: A Relation of Type {A,B,C}∼{α,β,γ,δ}

These four re
tangles are the elements of the polar 
overing 
onstru
ted by theorem

211. The (re
exive-transitive redu
tion of the) ordering on the elements of the 
overing

is depi
ted by arrowed brown lines. Take 
are to note how the depi
ted edges 
orrespond

to the ordering of the left domains of the re
tangles:

{B}⊆ {A,B} ∧ {B}⊆ {B,C} ∧ {A,B}⊆ {A,B,C} ∧ {B,C}⊆ {A,B,C} ,

and to the \polar" ordering of their right domains:

{α,β,γ,δ}⊇ {α,δ} ∧ {α,β,γ,δ}⊇ {β,δ} ∧ {α,δ}⊇ {δ} ∧ {β,δ}⊇ {δ} .

The top re
tangle is redundant (but not \obviously" so). By removing this re
tangle,

one obtains a non-redundant polar 
overing: this is the polar 
overing that is the dual of

the 
overing detailed in theorem 211 (thus indexed by {A,B,C} rather than {α,β,γ,δ} ).

The de�niens of this 
overing is depi
ted by the bold green edges in �g. 9.

The red and blue squares surrounding instan
es of the elements of {A,B,C} and

{α,β,γ,δ} should be ignored for the moment. We return to this example later; see

example 284.

✷
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A B C

δ

B

δ

α

A

γ

B C

δ

B

β

δ

γα

Figure 9: Polar Covering
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8.1 Injective Polar Coverings

Separate from the issue of non-redundan
y is the issue of dupli
ations: our de�nition of

a polar 
overing does not ex
lude the possibility of there being distin
t indi
es j and

k su
h that R.j=R.k . In general, this will be the 
ase for the 
onstru
tion given in

theorem 211. This 
an be remedied by taking as index set the equivalen
e 
lasses of the

per R≻
. With ρ being a fun
tional relation su
h that R≻ = ρ∪

◦ρ as in de�nition 191

(so, for all b su
h that b⊆R>
, ρ.b is the equivalen
e 
lass of b a

ording to the right

per-domain R≻
), the fun
tion R de�ned by

R =
〈

c : c⊆ρ< : R ◦ρ
∪

◦ c ◦ρ ◦R\R
〉

is a polar 
overing of R with the property that all elements are distin
t. This is formalised

in theorem 215. The 
ru
ial property is that, when applied to the 
ore of a relation, the


onstru
tion of theorem 211 yields an inje
tive 
overing.

(Dupli
ations are not evident in small examples be
ause, as mentioned earlier, when


onstru
ting small examples, it is 
ommon to 
onstru
t a relation that is isomorphi
 to

its 
ore. This is the 
ase, for instan
e, for example 213.)

Lemma 214 The 
overing 〈∪c : c⊆ |R|> : |R| ◦ c ◦ |R|\|R|〉 of the 
ore |R| of a relation

R is inje
tive.

Proof By the (pointwise) de�nition of inje
tivity, we have to prove that

〈∀ c,c ′ : c⊆ |R|> ∧ c ′⊆ |R|> : |R| ◦ c ◦ |R|\|R| = |R| ◦ c ′ ◦ |R|\|R| ≡ c=c ′〉

where c and c ′ range over points in |R|> . We have

|R| ◦ c ◦ |R|\|R| = |R| ◦ c ′ ◦ |R|\|R|

= { both terms are re
tangles, lemma 125 }

(|R| ◦ c)< = (|R| ◦ c ′)< ∧ (c ◦ |R|\|R|)> = (c ′ ◦ |R|\|R|)>

= { the 
overing is polar: theorem 211 }

(|R|◦c)< = (|R|◦c ′)<

= { c and c ′ are points in |R|> , lemma 103 }

c◦⊤⊤◦c ′ ⊆ |R|≻

= { lemma 197 }

c◦⊤⊤◦c ′ ⊆ |R|>

= { c and c ′ are points, (21) }

c = c ′ .
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✷

Theorem 215 Suppose R , λ and ρ are as in de�nition 191. De�ne the fun
tion C
by

C =
〈

c : c⊆ρ< : λ ◦R ◦ρ
∪

◦ c ◦ρ ◦R\R ◦ρ
∪
〉

,

where the dummy c ranges over points. Then C is a polar 
overing of |R| . It follows

that the fun
tion R de�ned by

R =
〈

c : c⊆ρ< : R ◦ρ
∪

◦ c ◦ρ ◦R\R
〉

is a polar 
overing of R . Moreover, both C and R are inje
tive.

Proof First let us show that C is the same as the 
overing of |R| de�ned by theorem

211.

C
= { de�nition of C }

〈c : c⊆ρ< : λ ◦R ◦ρ
∪
◦ c ◦ρ ◦R\R ◦ρ

∪〉
= { (204) }

〈c : c⊆ρ< : λ ◦R ◦ρ
∪
◦ c ◦ρ< ◦ (λ ◦R ◦ρ

∪)\(λ ◦R ◦ρ
∪) ◦ρ<〉

= { lemma 195 and domains }

〈c : c⊆ |R|> : λ ◦R ◦ρ
∪
◦ c ◦ (λ ◦R ◦ρ

∪)\(λ ◦R ◦ρ
∪)〉

= { de�nition 191 of |R| }

〈c : c⊆ |R|> : |R| ◦ c ◦ |R|\|R|〉 .

It follows, by theorem 211 that C is a polar 
overing of |R| .

Now we show that R is a polar 
overing of R . It is a 
overing of R sin
e

R

= { lemma 193 }

λ
∪
◦ |R| ◦ρ

= { C is a 
overing of |R| }

λ
∪
◦ 〈∪c : c⊆ρ< : λ ◦R ◦ρ

∪
◦ c ◦ρ ◦R\R ◦ρ

∪〉 ◦ρ

= { distributivity }



138

〈∪c : c⊆ρ< : λ
∪
◦λ ◦R ◦ρ

∪
◦ c ◦ρ ◦R\R ◦ρ

∪
◦ρ〉

= { by de�nition 191, λ
∪
◦λ = R≺

and ρ
∪
◦ρ = R≻

,

R≺ ◦R = R = R ◦R≻ }

〈∪c : c⊆ρ< : R ◦ρ
∪
◦ c ◦ρ ◦R\R ◦R≻〉

= { (102) }

〈∪c : c⊆ρ< : R ◦ρ
∪
◦ c ◦ρ ◦R\R ◦R>〉

= { using properties of domains, lemma 195 and 
an
ellation,

(ρ ◦R\R)> = R> }

〈∪c : c⊆ρ< : R ◦ρ
∪
◦ c ◦ρ ◦R\R〉 .

We 
on
lude that the fun
tion R is a 
overing of R .

In order to prove that R is polar, we �rst note that

(R ◦ρ
∪

◦ c)< ⊆ (R ◦ρ
∪

◦ c ′)< ≡ (λ ◦R ◦ρ
∪

◦ c)< ⊆ (λ ◦R ◦ρ
∪

◦ c ′)<(216)

and

(c ◦ρ ◦R\R)> ⊇ (c ′ ◦ρ ◦R\R)> ≡ (c ◦ρ ◦R\R ◦ρ
∪

)> ⊇ (c ′ ◦ρ ◦R\R ◦ρ
∪

)>(217)

sin
e

(R ◦ρ
∪
◦ c)< ⊆ (R ◦ρ

∪
◦ c ′)<

⇒ { domains and monotoni
ity }

(λ ◦R ◦ρ
∪
◦ c)< ⊆ (λ ◦R ◦ρ

∪
◦ c ′)<

⇒ { domains and monotoni
ity }

(λ∪
◦λ ◦R ◦ρ

∪
◦ c)< ⊆ (λ∪

◦λ ◦R ◦ρ
∪
◦ c ′)<

= { λ
∪
◦λ = R≺

and R≺ ◦R = R }

(R ◦ρ
∪
◦ c)< ⊆ (R ◦ρ

∪
◦ c ′)<

and

(c ◦ρ ◦R\R)> ⊇ (c ′ ◦ρ ◦R\R)>

⇒ { domains and monotoni
ity }

(c ◦ρ ◦R\R ◦ρ
∪)> ⊇ (c ′ ◦ρ ◦R\R ◦ρ

∪)>

⇒ { domains and monotoni
ity }

(c ◦ρ ◦R\R ◦ρ
∪
◦ρ)> ⊇ (c ′ ◦ρ ◦R\R ◦ρ

∪
◦ρ)>
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= { ρ
∪
◦ρ = R≻

and (102) }

(c ◦ρ ◦R\R ◦R>)> ⊇ (c ′ ◦ρ ◦R\R ◦R>)>

= { (ρ ◦R\R)> = (R ◦R\R)> = R> }

(c ◦ρ ◦R\R)> ⊇ (c ′ ◦ρ ◦R\R)> .

We are now in a position to prove that R is polar:

(R ◦ρ
∪
◦ c ◦ρ ◦R\R)< ⊆ (R ◦ρ

∪
◦ c ◦ρ ◦R\R)<

= { c and c ′ are points, domains of re
tangles }

(R ◦ρ
∪
◦ c)< ⊆ (R ◦ρ

∪
◦ c ′)<

= { (216) }

(λ ◦R ◦ρ
∪
◦ c)< ⊆ (λ ◦R ◦ρ

∪
◦ c ′)<

= { C is a polar 
overing of |R| }

(c ◦ρ ◦R\R ◦ρ
∪)> ⊇ (c ′ ◦ρ ◦R\R ◦ρ

∪)>

= { (217) }

(c ◦ρ ◦R\R)> ⊇ (c ′ ◦ρ ◦R\R)>

= { c and c ′ are points, domains of re
tangles }

(R ◦ρ
∪
◦ c ◦ρ ◦R\R)> ⊇ (R ◦ρ

∪
◦ c ′ ◦ρ ◦R\R)> .

Thus, by de�nition, the fun
tion R is polar.

Now we turn to the inje
tivity of C and R . Lemma 214 establishes that C is

inje
tive. In order to show that R is inje
tive, assume c and c ′ are points su
h that

c⊆ρ<
and c ′⊆ρ<

. Then

R ◦ρ
∪
◦ c ◦ρ ◦R\R = R ◦ρ

∪
◦ c ′ ◦ρ ◦R\R

⇒ { Leibniz }

λ ◦R ◦ρ
∪
◦ c ◦ρ ◦R\R ◦ρ

∪ = λ ◦R ◦ρ
∪
◦ c ′ ◦ρ ◦R\R ◦ρ

∪

= { C is inje
tive }

c=c ′ .

Sin
e the 
onverse follows from Leibniz's rule, we have thus proved that R is inje
tive.

We 
on
lude that R is an inje
tive, polar 
overing of R .

✷

Our de�nition of a de�niens does not in
lude any maximality requirement. (In gen-

eral, given a de�niens D of a 
overing R , a minimal de�niens 
an be 
onstru
ted by
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hoosing exa
tly one point of ea
h element of D . On the other hand, maximality means

that no additional points 
an be added without invalidating the de�niens property.) It

is possible that the de�niens that we 
onstru
t are indeed maximal but this is something

we have not investigated.

If R is a �nite relation, the 
onstru
tion of theorem 211 
an be used to 
onstru
t a

non-redundant, inje
tive, polar 
overing and its de�niens. The 
overing is initialised to

R as 
onstru
ted by theorem 211 and the index set K of R is initialised to all points

b in R>
. The index set K ′

of D is initialised to the empty set. Then ea
h point b

in K is examined, one by one. If R ◦b ◦R\R is redundant (i.e. b 
an be removed from

K without a�e
ting ∪R ) then b is removed from K . If not, b is retained in K and

added to K ′
. Also D.b is de�ned by

D.b = R ◦b ◦R\R ∩ ¬〈∪b ′ : b ′∈K∧b 6=b ′ : R ◦b ′
◦R\R〉 .

(So D.b is that part of the 
overing identi�ed by b .) Assuming R>
is �nite, this pro
ess

will terminate with a non-redundant, inje
tive, polar 
overing of R indexed by K .

8.2 Non-Redundant Polar Coverings

We have shown in theorem 215 how to 
onstru
t an inje
tive polar 
overing of a given

relation R . Now we 
onsider 
ir
umstan
es in whi
h the 
overing is non-redundant. In

the 
ase that R is difun
tional, it is straightforward to show that the 
overing 
onstru
ted

in theorem 211 is non-redundant and is its own de�niens. (It is in this sense that theorem

211 generalises theorem 163.) This suggests that, in general, a 
overing of the diagonal

of a relation R 
an be used as the de�niens of a 
overing of R . This is indeed true

so long as the diagonal is suÆ
iently large

5

. Spe
i�
ally, we prove below that, for all

relations R , if (∆R)>=R>
, the 
overing R de�ned by theorem 215 is non-redundant as

witnessed by the fun
tion D de�ned by

D.c = ∆R ◦ρ
∪

◦ c ◦ρ .

First, we show that it is a 
overing of ∆R .

Theorem 218 Suppose R is a relation and R≻ = ρ∪
◦ρ where ρ ◦ρ

∪ = ρ<
. Then the

fun
tion D de�ned by

D =
〈

c : c⊆ρ< : ∆R ◦ρ
∪

◦ c ◦ρ
〉

is a 
overing of ∆R . That is,

∆R =
〈

∪c : c⊆ρ< : ∆R ◦ρ
∪

◦ c ◦ρ
〉

.

5

But note example 224 below.
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Moreover, if (∆R)>=R>
, for all points c and c ′ su
h that c⊆ρ<

and c ′⊆ρ<
,

c 6= c ′ ≡ (∆R ◦ρ
∪

◦ c ◦ρ)< ◦ (∆R ◦ρ
∪

◦ c ′ ◦ρ)< = ⊥⊥

and

c 6= c ′ ≡ (∆R ◦ρ
∪

◦ c ◦ρ)> ◦ (∆R ◦ρ
∪

◦ c ′ ◦ρ)> = ⊥⊥ .

It follows that, if (∆R)>=R>
, D is a 
ompletely disjoint, inje
tive 
overing of ∆R .

Proof That ea
h element of D is a re
tangle is a 
onsequen
e of lemma 124. Now we

show that D 
overs ∆R :

〈∪c : c⊆ρ< : ∆R ◦ρ
∪
◦ c ◦ρ〉

= { distributivity }

∆R ◦ρ
∪
◦ 〈∪c : c⊆ρ< : c〉 ◦ρ

= { saturation axiom: (16) }

∆R ◦ρ
∪
◦ρ< ◦ρ

= { domains, R≻ = ρ∪
◦ρ }

∆R ◦ R≻

= { domains }

∆R ◦ (∆R)> ◦R≻

= { lemma 189 }

∆R ◦ (∆R)≻

= { (96) with R :=∆R }

∆R .

We use lemma 132 to show that D is 
ompletely disjoint and inje
tive. First, we show

that the elements are non-empty.

∆R ◦ρ
∪
◦ c ◦ρ = ⊥⊥

⇒ { monotoni
ity }

(∆R ◦ρ
∪
◦ c ◦ρ)> = ⊥⊥

= { domains }

((∆R)> ◦ ρ
∪

◦ c ◦ ρ)> = ⊥⊥
= { assumption: (∆R)>=R> }
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(R> ◦ ρ
∪

◦ c ◦ ρ)> = ⊥⊥
= { R> = (R≻)> = (ρ∪

◦ρ)> = ρ>
, (ρ> ◦ ρ

∪)> = ρ< }

(ρ< ◦ c ◦ ρ)> = ⊥⊥
= { c⊆ρ< }

(c◦ρ)> = ⊥⊥
⇒ { domains: (45) and ⊥⊥ is zero of 
omposition }

c◦ρ = ⊥⊥
⇒ { ⊥⊥ is zero of 
omposition }

c ◦ρ ◦ρ
∪
◦ c = ⊥⊥

= { ρ ◦ρ
∪ = ρ<

and c⊆ρ< }

c = ⊥⊥
= { c is a point }

false .

That is,

〈

∀c : c⊆ρ< : ∆R ◦ρ
∪

◦ c ◦ρ 6= ⊥⊥
〉

.(219)

For the se
ond proof obligation (see lemma 132), assume that c 6= c ′ . Be
ause the


al
ulation is easier, we begin with the right domains. We have:

∆R ◦ρ∪
◦ c ◦ρ ◦ρ∪

◦ c ′ ◦ρ ◦∆R∪

= { c⊆ρ<
and ρ ◦ρ

∪ = ρ< }

∆R ◦ρ
∪
◦ c ◦ c ′ ◦ρ ◦∆R

∪

= { assumption: c 6= c ′ , (17) }

⊥⊥ .

That is, applying properties of 
onverse,

〈

∀ c,c ′ : c⊆ρ< ∧ c 6=c ′ : (∆R ◦ρ
∪

◦ c ◦ρ) ◦ (∆R ◦ρ
∪

◦ c ′ ◦ρ)
∪

= ⊥⊥
〉

.(220)

The 
al
ulation for the left domains is similar but slightly more 
omplex. We have:

ρ
∪
◦ c ◦ρ ◦ (∆R)∪ ◦∆R ◦ρ

∪
◦ c ′ ◦ρ

= { ∆R is difun
tional, theorem 160 (with R :=∆R ) }

ρ
∪
◦ c ◦ρ ◦ (∆R)≻ ◦ρ

∪
◦ c ′ ◦ρ
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= { assumption: (∆R)>=R>
, lemma 190 }

ρ
∪
◦ c ◦ρ ◦R≻ ◦ρ

∪
◦ c ′ ◦ρ

= { R≻ = ρ∪
◦ρ , ρ ◦ρ

∪ = ρ< = ρ< ◦ρ<
and c⊆ρ< }

ρ
∪
◦ c ◦ c ′ ◦ρ

= { assumption: c 6= c ′ , (17) }

⊥⊥ .

That is, again applying properties of 
onverse,

〈

∀ c,c ′ : c⊆ρ< ∧ c 6=c ′ : (∆R ◦ρ
∪

◦ c ◦ρ)
∪

◦ (∆R ◦ρ
∪

◦ c ′ ◦ρ) = ⊥⊥
〉

.(221)

The 
ombination of (219), (220) and (221) together with lemma 132 establishes that D
is 
ompletely disjoint and inje
tive.

✷

It is now easy to see that D is a de�niens of the inje
tive polar 
overing of R de�ned

in theorem 215:

Theorem 222 Suppose R is a relation su
h that (∆R)>=R>
. Suppose also that

R≻ = ρ∪
◦ρ where ρ ◦ρ

∪ = ρ<
. Then the indexed bag R of re
tangles de�ned by

R =
〈

c : c⊆ρ< : R ◦ρ
∪
◦ c ◦ρ ◦R\R

〉

is a non-redundant, inje
tive polar 
overing of R . (In parti
ular, R is an indexed set.)

A de�niens of the 
overing is the indexed set D de�ned by

D =
〈

c : c⊆ρ< : ∆R ◦ρ
∪

◦ c ◦ρ
〉

.

Moreover, by theorem 218, D is a 
overing of ∆R .

Proof Theorem 215 shows that R is an inje
tive polar 
overing of R. It remains to

show that it is non-redundant as witnessed by the fun
tion D .

For all c su
h that c⊆ρ<
, the property D.c⊆R.c is immediate from ∆R⊆R ,

I⊆R\R and monotoni
ity of 
omposition. That the elements of D form a 
ompletely

disjoint set of re
tangles was shown in theorem 218. It remains to show that D \de�nes"

R . We have, for all c and c ′ su
h that c⊆ρ<
and c ′⊆ρ<

,

R.c = R.c ′

= { theorem 215 }

c = c ′

= { theorem 218 }

D.c = D.c ′ .



144

✷

Example 223

Fig. 10 pi
tures a small example of the theorems in this se
tion. Fig. 10(a) depi
ts a

relation R of type {α,β,γ}∼{A,B} ; other parts of the �gure depi
t the result of applying

di�erent fun
tions to the relation R . (Heterogeneous relations are depi
ted as bipartite

graphs whereas homogeneous relations are depi
ted as dire
ted graphs.) Spe
i�
ally,

these are as follows.

(a) R , (b) ∆R ,

(
) R\R , (d) R/R ,

(e) R ◦A ◦R\R , (f) R ◦B ◦R\R ,

(g) ∆R ◦A ◦R≻
, (h) ∆R ◦B ◦R≻

,

(i) R/R ◦α ◦R , (j) R/R ◦β ◦R , (k) R/R ◦γ ◦R .

We have 
hosen to depi
t the relation as a graph (rather than a boolean matrix)

be
ause |for very small examples su
h as this| it is mu
h easier for a human being to

perform the ne
essary 
al
ulations by manipulating the graphs. For example, 
omputing

the 
omposition of two relations is exe
uted by 
hasing edges. Also |again for su
h very

small examples| the de�nition of fa
tors in terms of nested 
omplements is mu
h easier

to use. This said, we leave the reader to 
he
k our 
al
ulations.

The example has been 
hosen deliberately to illustrate a number of aspe
ts simulta-

neously. Note parti
ularly that, for the relation depi
ted, (∆R)>=R>
but (∆R)< 6=R<

.

This means that theorem 222 is appli
able but its dual is not.

Note that (as forewarned: see example 192) the relation R is isomorphi
 to its own


ore. So the fun
tional ρ in theorem 222 is e�e
tively the identity fun
tion and the


onstru
tion given there is identi
al to the 
onstru
tion in theorem 211.

Considering the appli
ation of theorem 211, note that the 
ombination of �gs. 10(e)

and 10(f) 
overs the relation R ; also the relation depi
ted by 10(g) uniquely identi�es

the re
tangle R ◦A ◦R\R shown in �g. 10(e) whilst 10(h) uniquely identi�es the re
tangle

R ◦A ◦R\R shown in �g. 10(f). In 
ontrast, �gs. 10(i), (j) and (k) depi
t the relations

R/R ◦α ◦R , R/R ◦β ◦R and R/R ◦γ ◦R but none of these is identi�ed by any subre
tangle:

the re
tangles depi
ted by �gs. 10(i) and (k) are disjoint but both have a non-empty

interse
tion with the re
tangle depi
ted by �g. 10(j).

✷
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α β γ

BA

α γ

BA

βα β γ

BA

α β γ

BA

α β γ

BA

A B α β γ

α β γ

BA

α β γ

BA

α β γ

BA

(a) (b)

(e) (f)

(g) (h)

(i) (j) (k)

(c) (d)

α β γ

BA

Figure 10: A Small Example
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Example 223 is an example of a relation R su
h that (∆R)>=R>
but (∆R)< 6=R<

. It

is thus the 
ase that, for this example,

R = 〈∪b : b⊆ (∆R)> : R ◦b ◦R\R〉 .

(Note the range restri
tion on the dummy b .) Curiously, in spite of the fa
t that

(∆R)< 6=R<
, it is also the 
ase that

R = 〈∪a : a⊆ (∆R)< : R/R ◦a ◦R〉 .

(Again, note the range restri
tion on the dummy a . To 
he
k the validity of the equation,

it suÆ
es to observe that the relation R is the union of the relations depi
ted by �gs.

10(i) and (k).) This is also a non-redundant polar 
overing of R . One might thus


onje
ture that, in general, the diagonal ∆R is the key to �nding a non-redundant polar


overing of a given relation R . However, this is not always the 
ase, as eviden
ed by the

following example.

Example 224

A B C

α γ

C DBD

β

A

γ

C DB

α β

A

A

β

D

α

B

γ

C

(a)  Relation 

(b) Non−redundant covering

(c) A Definiens

Figure 11: Empty Diagonal and Non-Redundant Covering
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The top diagram of �g. 11 pi
tures a relation R of type {α,β,γ}∼{A,B,C,D} su
h

that ∆R is the empty relation. The example is a simpli�
ation of the example on p.161

of [KGJ00℄.

The three 
omponents of the polar 
overing predi
ted by the dual of theorem 211 are

depi
ted in the se
ond row. (The index set of the 
overing is {α,β,γ} .) Note that the


overing is non-redundant: the third row pi
tures a fun
tion that satis�es the de�nition

of a de�niens of the 
overing. (Again, the index set is {α,β,γ} .)

Note that, although the de�niens shown in �g. 11 is maximal, it is not unique: the

edges from α to B and from γ to C may be repla
ed by edges from α to C and from

γ to B . Other 
hoi
es are also possible.

Note also that the relation R is not isomorphi
 to its 
ore sin
e {B,C} is an equiv-

alen
e 
lass of R≻
. Con
ating B and C to one node in �gs. 11(a) and (b) does give a

non-redundant 
overing of the 
ore but this is not witnessed by the graph obtained by


on
ating B and C in �g. 11(
).

✷
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9 Block-Ordered Relations

In general, dividing a subset of a set A into blo
ks is formulated by spe
ifying a fun
-

tional relation f , say, with sour
e

6

the set A ; elements a0 and a1 are in the same

blo
k equivales f.a0 and f.a1 are both de�ned and f.a0= f.a1 . In mathemati
al ter-

minology, a fun
tional relation f de�nes the partial equivalen
e relation f
∪
◦ f and the

\blo
ks" are the equivalen
e 
lasses of f
∪
◦ f . (Partiality means that some elements may

not be in an equivalen
e 
lass.)

Given fun
tional relations f and g with sour
es A and B , respe
tively, and equal

left domains, relation R of type A∼B is said to be blo
k-stru
tured by f and g if there

is a relation S su
h that R = f∪ ◦S ◦g . Informally, whether or not a and b are related

by R depends entirely on the \blo
k" (f.a , g.b) to whi
h they belong. Note that it is

not required that f and g be total fun
tions: it suÆ
es that f>=R<
and g>=R>

. The

type of S is C∼C where C in
ludes {a: a ◦ f> = a: f.a} (equally {b: b ◦ f> = b: g.b} ).

Definition 225 (Block-Ordered Relation) Suppose T is a relation of type C∼C ,

f is a relation of type C∼A and g is a relation of type C∼B . Suppose further that T
is a provisional ordering, i.e. that

T ∩T∪ ⊆ I ∧ T = (T ∩T∪

) ◦T ◦ (T ∩ T∪

) ∧ T ◦T ⊆ T .(226)

Suppose also that f and g are fun
tional and onto the domain of T . That is, suppose

f ◦ f
∪

= f< = T ∩T∪

= g< = g ◦g
∪

.(227)

Then we say that the relation f
∪
◦ T ◦g is a blo
k-ordered relation. A relation R of

type A∼B is said to be blo
k-ordered by f , g and T if R = f∪ ◦T ◦g and f
∪
◦T ◦g is

a blo
k-ordered relation.

✷

Example 228 The ar
hetypi
al example of a blo
k-ordered relation is a preorder.

Informally, if R is a preorder, its symmetri
 
losure R∩R∪

is an equivalen
e relation,

and the relation R de�nes a partial ordering on the equivalen
e 
lasses. Theorem 157

is a pre
ise statement of the more general theorem that a provisional preorder is blo
k-

ordered. Brie
y, if R is a provisional preorder, R∩R∪

is a partial equivalen
e relation;

so, by theorem 143, there is a fun
tional relation f su
h that

R∩R∪

= f
∪

◦ f .

Sin
e R = (R∩R∪) ◦R ◦ (R∩R∪) (when R is a provisional preorder), it follows that

R = f
∪

◦ (f ◦R ◦ f
∪

) ◦ f .

6

In the terminology we use, a relation of type A∼B has target A and sour
e B .
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The parenthesised relation is a provisional ordering of the equivalen
e 
lasses of R∩R∪

.

Thus a provisional preorder R is blo
k-ordered by f , f and f ◦R ◦ f
∪

.

✷

Identifying a blo
k-ordering of a relation |if it exists| is important for eÆ
ien
y.

Although a relation is de�ned to be a set of pairs, relations |even relations on �nite

sets| are rarely stored as su
h; instead some base set of pairs is stored and an algo-

rithm used to generate, on demand, additional information about the relation. This is

parti
ularly so of ordering relations. For example, a test m<n on integers m and n

in a 
omputer program is never implemented as a table lookup; instead an algorithm

is used to infer from the basi
 relations 0<1 together with the internal representation

of m and n what the value of the test is. In the 
ase of blo
k-stru
tured relations,

fun
tional relations f and g de�ne partial equivalen
e relations f
∪
◦ f and g

∪
◦g on

their respe
tive sour
es. (The relations f
∪
◦ f and g

∪
◦g are partial be
ause f and g are

not required to be total.) Combining the fun
tional relations with an ordering relation

on their (
ommon) target is an e�e
tive way of implementing a relation (assuming the

ordering relation is also implemented e�e
tively).

Example 229 Suppose G is the edge relation of a �nite graph. The relation G∗

is, of 
ourse, a preorder and so is blo
k-ordered. The blo
k-ordering of G∗
given by

theorem 157 |see example 228| is, however, not very useful. For pra
ti
al purposes a

blo
k-ordering 
onstru
ted from G (rather than G∗
) is preferable. Here we outline how

this is done.

Re
all from example 185, that the diagonal ∆(G∗) is the relation G∗∩ (G∪)∗ and that

this is an equivalen
e relation on the nodes of G , whereby the equivalen
e 
lasses are

the strongly 
onne
ted 
omponents of G . Let N denote the nodes of G and C denote

the set of strongly 
onne
ted 
omponents of G. By theorem 143, there is a fun
tion sc

of type C←N su
h that

G∗∩ (G
∪

)∗ = sc
∪

◦ sc .(230)

The relation A de�ned by

sc ◦G ◦ sc
∪ ∩ ¬IC

is a homogeneous relation on the strongly 
onne
ted 
omponents of G , i.e. a relation of

type C∼C . Informally, it is a graph obtained from the graph G by 
oales
ing the nodes

in a strongly 
onne
ted 
omponent of G into a single node whilst retaining the edges

of G that 
onne
t nodes in distin
t strongly 
onne
ted 
omponents

7

. A fundamental

theorem is that

G∗ = sc
∪

◦A∗
◦ sc .(231)

7

Although we don't go into details, for any fun
tion f of appropriate type, the graph f ◦G ◦ f
∪

is

\pathwise homomorphi
" [M
N67℄ to G .
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Moreover, A is a
y
li
. That is,

IC ∩ A+ = ⊥⊥ .(232)

(See [BDGv22, BDGv21℄ for the details of the proof of (231) and (232). In fa
t the

theorem is valid for all relations G ; �niteness is not required.)

The relation A∗
is, of 
ourse, transitive. It is also re
exive; 
ombined with its

a
y
li
ity, it follows that

A∗∩ (A∗)
∪

= IC .(233)

That is, A∗
is a (total) provisional ordering on C. The 
on
lusion is that G∗

is blo
k-

ordered by sc , sc and A∗
.

Informally, a �nite graph 
an always be de
omposed into its strongly 
onne
ted 
om-

ponents together with an a
y
li
 graph 
onne
ting the 
omponents.

Although the informal interpretation of this theorem is well-known, the formal proof

is non-trivial. Although not formulated in the same way, it is essentially the \transitive

redu
tion" of an arbitrary (not ne
essarily a
y
li
) graph formulated by Aho, Garey and

Ullman [AGU72, Theorem 2℄.

The de
omposition (231) is (impli
itly) exploited when 
omputing the inverse A−1

of a real matrix A in order to minimise storage requirements: using an elimination te
h-

nique, a so-
alled \produ
t form" is 
omputed for ea
h strongly 
onne
ted 
omponent,

whilst the pro
ess of \forward substitution" is applied to the a
y
li
-graph stru
ture.

✷

It is important to note the very stri
t requirement (227) on the fun
tionals f and

g . Note its similarity with the requirement on fun
tionals f and g in the de�nition of

the 
hara
terisation of a difun
tional relation: de�nition 162. Were this requirement to

be omitted (retaining only that f and g are fun
tional relations into |not onto| the

domain of T ), there would be no guarantee of non-redundan
y. As we shall see, our def-

inition of blo
k-ordering does guarantee the existen
e of a non-redundant polar 
overing

(theorem 255) but not vi
e-versa (
orollary 258). This suggests that the requirement

may be too strong. See se
tion 10 and the 
on
lusions for further dis
ussion.

Theorem 234 makes pre
ise the statement that blo
k orderings |where they exist|

are unique \up to isomorphism".

Theorem 234 Suppose T is a provisional ordering. That is, suppose

T ∩T∪ ⊆ I ∧ T = (T ∩T∪

) ◦T ◦ (T ∩ T∪

) ∧ T ◦T ⊆ T .

Suppose also that f and g are fun
tional and onto the domain of T . That is, suppose

f ◦ f
∪

= f< = T ∩T∪

= g< = g ◦g
∪

.
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Suppose further

8

that S , h and k satisfy the same properties as T , f and g (respe
-

tively) and that

f
∪

◦T ◦g = h
∪

◦S ◦k .(235)

Then

f>=h> ∧ g>=k> ,(236)

f
∪

◦g = h
∪

◦k ,(237)

f
∪

◦T
∪

◦g = h
∪

◦S
∪

◦k , and(238)

f ◦h
∪

= g ◦k
∪

.(239)

Also, letting φ denote f ◦h
∪

(equally, by (239), g ◦k
∪

),

φ ◦φ
∪

= T ∩ T∪

∧ φ
∪

◦φ = S∩S∪

∧ φ◦T =S◦φ .(240)

In words, φ is an order isomorphism of the domains of T and S .

Proof In 
ombination with the assumption (235), properties (236), (238) and (237) are

immediate from (249), (250) and (251), respe
tively.

Proof of (239) is a step on the way to proving (240). From symmetry 
onsiderations,

it is an obvious �rst step.

f ◦h
∪

= { assumption: k ◦k
∪ = h< }

f ◦h
∪
◦k ◦k

∪

= { (237) }

f ◦ f
∪
◦g ◦k

∪

= { assumption: f ◦ f
∪ = g< }

g ◦k
∪

.

Now,

8

The types of T and S may be di�erent. The types of f and h , and of g and k will then also be

di�erent. As in lemma 248, the requirement is that the types are 
ompatible with the type restri
tions on

the operators in all assumed properties. The symbol \ I " in (240) is overloaded: if the type of T is A∼A
and the type of S is B∼B , φ ◦φ

∪

has type A∼A and φ
∪

◦φ has type B∼B .
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φ ◦φ
∪

= { de�nition of φ , 
onverse }

f ◦h
∪
◦h ◦ f

∪

= { (239) }

g ◦k
∪
◦h ◦ f

∪

= { (237) and 
onverse }

g ◦g
∪
◦ f ◦ f

∪

= { assumption: f ◦ f
∪ = T ∩T∪ = g ◦g

∪

}

T ∩T∪

.

Symmetri
ally, φ
∪
◦φ = T ∩ T∪

. Finally,

T ◦φ

= { de�nition of φ }

T ◦ f ◦h
∪

= { assumptions: f ◦ f
∪ = T ∩ T∪ = g ◦g

∪

T = (T ∩T∪) ◦T ◦ (T ∩ T∪) }

f ◦ f
∪
◦T ◦g ◦g

∪
◦ f ◦h

∪

= { assumption: f
∪
◦T ◦g = h

∪
◦S ◦k , (237) and 
onverse }

f ◦h
∪
◦S ◦k ◦k

∪
◦h ◦h

∪

= { assumption: h ◦h
∪ = S∩S∪ = k ◦k

∪

}

f ◦h
∪
◦S

= { de�nition of φ }

φ◦S .

✷

9.1 Pair Algebras and Galois Connections

In order to �nd lots of examples of blo
k-ordered relations one need look no further than

the theory of Galois 
onne
tions (whi
h are, of 
ourse, ubiquitous). In this se
tion, we

brie
y review the notion of a \pair algebra" |due to Hartmanis and Stearns [HS64,

HS66℄| and its relation to Galois 
onne
tions.
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Hartmanis and Stearns studied a parti
ular pra
ti
al problem: the so-
alled \state

assignment problem". This is the problem of how to en
ode the states and inputs of a

sequential ma
hine in su
h a way that state transitions 
an be implemented e
onomi
ally

using logi
 
ir
uits. However, as they made 
lear in the prefa
e of their book [HS66℄,

their 
ontribution was to \information s
ien
e" in general:

It should be stressed, however, that although many stru
ture theory results

des
ribe possible physi
al realizations of ma
hines, the theory itself is in-

dependent of the parti
ular physi
al 
omponents of te
hnology used in the

realization.

. . .

The mathemati
al foundations of this stru
ture theory rest on an algebraiza-

tion of the 
on
ept of \information" in a ma
hine and supply the algebrai


formalism ne
essary to study problems about the 
ow of this information.

Hartmanis and Stearns limited their analysis to �nite, 
omplete posets, and their

analysis was less general than is possible. This work was extended in [Ba
98℄ to non-

�nite posets and the 
urrent se
tion is a short extra
t.

A Galois 
onne
tion involves two posets (A,⊑) and (B ,� ) and two fun
tions,

F∈A←B and G∈B←A . These four 
omponents together form a Galois 
onne
tion

i� for all b∈B and a∈A

F.b⊑a ≡ b�G.a .(241)

We refer to F as the lower adjoint and to G as the upper adjoint.

A Galois 
onne
tion is thus a 
onne
tion between two fun
tions between posets.

Typi
al a

ounts of the properties of Galois 
onne
tions (for e.g. [GHK

+
80℄) fo
us on

the properties of these fun
tions. For example, given a fun
tion F , one may ask whether

F is a lower adjoint in a Galois 
onne
tion. The question posed by Hartmanis and Stearns

was, however, rather di�erent.

To motivate their question, note that the statement F.b⊑a de�nes a relation be-

tween B and A . So too does b�G.a . The existen
e of a Galois 
onne
tion states

that these two relations are equal. A natural question is therefore: under whi
h 
ondi-

tions does an arbitrary (binary) relation between two posets de�ne a Galois 
onne
tion

between the sets?

Exploring the question in more detail leads to two separate questions. The �rst is:

suppose R is a relation between posets (A,⊑) and (B ,� ). What is a ne
essary and

suÆ
ient 
ondition that there exist a fun
tion F su
h that

(a, b)∈R ≡ F.b⊑a ?
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The se
ond is the dual of the �rst: given relation R , what is a ne
essary and suÆ
ient


ondition that there exist a fun
tion G su
h that

(a, b)∈R ≡ b�G.a ?

The 
onjun
tion of these two 
onditions is a ne
essary and suÆ
ient 
ondition for a

relation R to de�ne a Galois 
onne
tion. Su
h a relation is 
alled a pair algebra .

Example 242 It is easy to demonstrate that the two questions are separate. To

this end, �g. 12 depi
ts two posets and a relation between them. The posets are {α,β}

and {A,B} ; both are ordered lexi
ographi
ally: the re
exive-transitive redu
tion of the

lexi
ographi
 ordering is depi
ted by the dire
ted edges. The relation of type {α,β}∼{A,B}

is depi
ted by the undire
ted edges.

α

β

A

B

Figure 12: A Relation on Two Posets

Let the relation be denoted by R . De�ne the fun
tion F of type {α,β}← {A,B} by

F.B=α and F.A=β . Then it is easy to 
he
k that. for a∈{α,β} and b∈{A,B} ,

(a, b)∈R ≡ F.b⊑a .

(There are just four 
ases to be 
onsidered.) On the other hand, there is no fun
tion G

of type {A,B}← {α,β} su
h that

(a, b)∈R ≡ b�G.a .

To 
he
k that this is indeed the 
ase, it suÆ
es to 
he
k that the assignment G.A=α

is invalid (be
ause α⊑α but (α,A) 6∈R ) and the assignment G.A=β is also invalid

(be
ause α⊑β but (α,A) 6∈R ).
✷

Example 243 A less arti�
ial, general way to demonstrate that the two questions

are separate is to 
onsider the membership relation. Spe
i�
ally, suppose S is a set.

Then the membership relation, denoted as usual by the |overloaded| symbol \∈ ", is
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a heterogeneous relation of type S ∼2S (where 2S denotes the type of subsets of S ).

Now, for all x of type S and X of type 2S ,

x∈X ≡ {x}⊆X .

The right side of this equation has the form F.b⊑a where F is the fun
tion that maps

an element into a singleton set and the ordering is the subset ordering. Also, its left side

has the form (a, b)∈R , where the relation R is the membership relation and a and

b are x and X , respe
tively. (This is where the overloading of notation 
an be
ome


onfusing, for whi
h our apologies!) It is, however, not possible to express x∈X in the

form x�G.X (ex
ept in the trivial 
ases where S has 
ardinality at most one). We

leave the proof to the reader.

✷

Example 244 An example of a Galois 
onne
tion is the de�nition of the 
eiling

fun
tion on real numbers: for all real numbers x , ⌈x⌉ is an integer su
h that, for all

integers m ,

x≤m ≡ ⌈x⌉≤m .

To properly �t the de�nition of a Galois 
onne
tion, it is ne
essary to make expli
it

the impli
it 
oer
ion from integers to real numbers in the left side of this equation.

Spe
i�
ally, we have, for all real numbers x and integers m ,

x ≤IR real.m ≡ ⌈x⌉ ≤ZZ m

where real denotes the fun
tion that \
oer
es" an integer to a real, and ≤IR and ≤ZZ

denote the (homogeneous) at-most relations on, respe
tively, real numbers and integers.

If, however, we 
onsider the symbol \≤ " on the left side of the equation to denote the

heterogeneous at-most relation of type IR∼ZZ , the fa
t that

x≤m ≡ ⌈x⌉ ≤ZZ m

gives a representation of the (heterogeneous) \≤ " relation of type IR∼ZZ as a blo
k-

ordered relation: referring to de�nition 225, the provisional ordering is ≤ZZ , f is the


eiling fun
tion and g is the identity fun
tion.

More interesting is if we take the 
ontrapositive. We have, for all real numbers x and

integers m ,

m<x ≡ m≤⌈x⌉−1 .

On the right of this equation is the (homogeneous) at-most relation on integers. On the

left is the (heterogeneous) less-than relation of type ZZ∼ IR . The equation demonstrates
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that this relation is blo
k-ordered; the \blo
ks" of real numbers being all the numbers

that have the same 
eiling. (The fun
tional f is the identity fun
tion, the fun
tional g

maps real number x to ⌈x⌉−1 and the provisional ordering is the ordering ≤ZZ .) The

example is interesting be
ause we show in theorem 319 that the (homogeneous) less-than

relation on real numbers is not blo
k-ordered.

✷

Returning to the dis
ussion immediately pre
eding example 242, the two separate

questions are ea
h of interest in their own right: a positive answer to either question

may predi
t that a given relation has a blo
k-ordering of a spe
i�
 form: in the 
ase

of the �rst question, where the fun
tional g in de�nition 225 is the identity fun
tion,

and, in the 
ase of the se
ond question, where the fun
tional f in de�nition 225 is the

identity fun
tion. In both 
ases, a further step is to 
he
k the requirement on f and g :

in the �rst 
ase, one has to 
he
k that the fun
tion F is surje
tive and in the se
ond 
ase

that the fun
tion G is surje
tive. (A Galois 
onne
tion is said to be \perfe
t" if both F

and G are surje
tive.) For example, the fa
t that

x≤m ≡ x ≤IR real.m

does not de�ne a blo
k-ordering be
ause the fun
tion real is not surje
tive.

The relevant theory predi
ting exa
tly when the �rst of the two questions has a

positive answer is as follows. Suppose (B,⊑) is a 
omplete poset. Let ⊓ denote the

in�mum operator for B and suppose p is a predi
ate on B . Then we de�ne inf-

preserving by

p is inf-preserving ≡ 〈∀g :: p.(⊓g) ≡ 〈∀x :: p.(g.x)〉〉 .(245)

So, for a given a , the predi
ate 〈b:: (a, b)∈R〉 is inf-preserving equivales

〈∀g :: (a , ⊓g)∈R ≡ 〈∀x :: (a , g.x)∈R〉〉 .

Then we have:

Theorem 246 Suppose A is a set and (B,⊑) is a 
omplete poset. Suppose R⊆A×B
is a relation between the two sets. De�ne F by

F.a = 〈⊓b : (a, b)∈R : b〉 .(247)

Then the following two statements are equivalent.

� 〈∀a,b : a∈A∧b∈B : (a, b)∈R ≡ F.a⊑b〉 .

� For all a , the predi
ate 〈b:: (a, b)∈R〉 is inf-preserving.
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✷

The answer to the se
ond question is, of 
ourse, obtained by formulating the dual of

theorem 246.

In general, for most relations o

urring in pra
ti
al information systems the answer

to the pair-algebra questions will be negative: the required inf- and sup-preserving prop-

erties just do not hold. However, a 
ommon way to de�ne a pair algebra is to extend a

given relation to a relation between sets in su
h a way that the in�mum and supremum

preserving properties are automati
ally satis�ed. Hartmanis and Stearns' [HS64, HS66℄

solution to the state assignment problem was to 
onsider the latti
e of partitions of a

given set; in so-
alled \
on
ept analysis", the te
hnique is to extend a given relation to

a relation between re
tangles. For more detail of the latter, see se
tion 10.

An important property of Galois 
onne
tions is the (well-known) theorem we 
all the

\unity of opposites": if F and G are the adjoint fun
tions in a Galois 
onne
tion of the

posets (A,⊑) and (B,� ), then there is an isomorphism between the posets (F.B , ⊑)

and (G.A ,� ). ( F.B denotes the \image" of the fun
tion F , and similarly for G.A .)

Knowledge of the unity-of-opposites theorem suggests theorem 234, whi
h expresses an

isomorphism between di�erent representations of blo
k-ordered relations.

9.2 Analogie Frappante

In this se
tion, we relate blo
k-orderings to diagonals. The main results are theorems 255

and 262. We have named theorem 262 the \analogie frappante" be
ause it generalises

Riguet's \analogie frappante" 
onne
ting \relation de Ferrers" to diagonals.

Lemma 248 Suppose T is a provisional ordering of type C∼C . That is, suppose

T ∩T∪ ⊆ IC ∧ T = (T ∩ T∪

) ◦ T ◦ (T ∩T∪

) ∧ T ◦T ⊆T .

Suppose also that f and g are fun
tional and onto the domain of T . That is, suppose9

that

f ◦ f
∪

= f< = T ∩T∪

= g< = g ◦g
∪

.

Let R denote f
∪
◦T ◦g . Then

R< = f> ∧ R>=g> ,(249)

f
∪

◦T
∪

◦g = R< ◦ (R\R/R)
∪

◦R>
, and(250)

9

The ordering T must be homogeneous but f and g may be heterogeneous and of di�erent type, so

long as both have target C .
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f
∪

◦g = ∆R ,(251)

R< = (∆R)< ∧ R> = (∆R)> ,(252)

R≺ = ∆R ◦∆R
∪

= f
∪

◦ f ∧ R≻ = ∆R
∪

◦∆R = g
∪

◦g .(253)

Proof Property (249) is a straightforward appli
ation of domain 
al
ulus:

R>

= { de�nition: R = f∪ ◦ T ◦g }

(f∪ ◦T ◦g)>

= { domains (spe
i�
ally, [ (U◦V)>=(U> ◦V)> ] and [ (U∪)>=U< ] ) }

(f< ◦T ◦g)>

= { assumption: T = f< ◦T ◦g<
(so T = f< ◦T ) }

(T ◦g)>

= { domains (spe
i�
ally, [ (U◦V)>=(U> ◦V)> ] ) }

(T> ◦g)>

= { lemma 122 and assumption: T ∩ T∪ = g< }

g> .

By a symmetri
 argument, (f∪ ◦T ◦g)< = f> .

Now we 
onsider (250). The raison d'être of (250) is that it expresses the left side as a

fun
tion of f
∪
◦T ◦g . In a pointwise 
al
ulation a natural step is to use indire
t ordering.

In a point-free 
al
ulation, this 
orresponds to using fa
tors. That is, we exploit lemma

119:

f
∪
◦T

∪
◦g

= { assumption: T is a provisional ordering

lemmas 116, 120 and 119 }

f
∪

◦ (T ∩ T∪) ◦ T
∪

\ T
∪

/ T
∪

◦ (T ∩T∪) ◦ g

= { assumption: f< = T ∩T∪ = g< }

f
∪

◦ T
∪

\ T
∪

/ T
∪

◦ g

= { lemma 78 and assumption: T = f< ◦T ◦g< }

f> ◦ (g∪
◦ T

∪
◦ f) \ (g∪

◦ T
∪
◦ f) / (g∪

◦T
∪
◦ f) ◦ g>

= { (249) and de�nition of R }
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R< ◦ R
∪

\R
∪

/R
∪

◦ R>

= { fa
tors }

R< ◦ (R\R/R)∪ ◦R> .

Note the use of lemma 78. The dis
overy of this lemma is driven by the goal of the


al
ulation.

The pointwise interpretation of f∪ ◦g is a relation expressing equality between values

of f and g . This suggests that, in order to prove (251), we begin by exploiting the

anti-symmetry of T :

f
∪
◦g

= { f< = T ∩ T∪ = g<
and domains }

f
∪
◦ (T ∩ T∪) ◦g

= { distributivity (valid be
ause f and g are fun
tional) }

f
∪
◦T ◦g ∩ f

∪
◦T

∪
◦g

= { de�nition of R and (250) }

f∪ ◦T ◦g ∩ f> ◦ ((f∪ ◦T ◦g) \ (f∪ ◦T ◦g) / (f∪ ◦T ◦g))∪ ◦g>

= { (254) (see below) }

f> ◦ f
∪
◦T ◦g ◦g> ∩ ((f∪ ◦T ◦g) \ (f∪ ◦T ◦g) / (f∪ ◦ T ◦g))∪

= { domains (spe
i�
ally, f> ◦ f
∪ = f∪ and g ◦g> = g ) }

f
∪
◦T ◦g ∩ ((f∪ ◦T ◦g) \ (f∪ ◦T ◦g) / (f∪ ◦ T ◦g))∪

= { de�nition of R and ∆R }

∆R .

A 
ru
ial step in the above 
al
ulation is the use of the property

U ∩ p◦V◦q = p◦(U∩V)◦q = p◦U◦q ∩ V(254)

for all relations U and V and 
ore
exive relations p and q . This is a frequently used

property of domain restri
tion.

The remaining equations (252) and (253) are straightforward. First

(∆R)<

= { (251) }

(f∪ ◦g)<
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= { domains and assumption: f< = g< }

f>

= { assumption: f< = T ∩ T∪

}

((T ∩T∪) ◦ f)>

= { domains and 
onverse }

(f∪ ◦ (T ∩ T∪))<

= { lemma 122 and domains }

(f∪ ◦T)<

= { domains and assumption: g< = T ∩T∪

and lemma 122 }

(f∪ ◦T ◦g)< .

That is (∆R)< = R<
. The dual equation (∆R)> = R>

is immediate from the fa
t that

(∆R)∪=∆(R∪) and properties of the domain operators. For the per domains, we have:

R≺

= { R< = (∆R)< and R> = (∆R)> (above); lemma 190 }

(∆R)≺

= { ∆R is difun
tional, theorem 160 (with R :=∆R ) }

∆R ◦∆R
∪

= { lemma 248 and de�nition of ∆R }

f
∪
◦g ◦ (f∪ ◦g)∪

= { 
onverse and f< = g< = g ◦g
∪

}

f
∪
◦ f .

Again, the dual equation is immediate.

✷

Theorem 255 Suppose R = f∪ ◦T ◦g where f , g and T have the properties stated

in de�nition 225. Then the fun
tion R de�ned by

R =
〈

c : c ⊆ T ∩T∪

: f
∪

◦T ◦ c ◦T ◦g
〉

(256)

is a non-redundant, inje
tive, polar 
overing of R , and the fun
tion D de�ned by

D =
〈

c : c ⊆ T ∩ T∪

: f
∪

◦ c ◦g
〉

(257)
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is a de�niens of R su
h that ∪D=∆R . That is, a blo
k-ordered relation has a non-

redundant, inje
tive, polar 
overing su
h that the de�niens of the 
overing is a 
overing

of the diagonal of R .

Proof The theorem is a 
onsequen
e of lemma 248, theorem 222 and theorem 218.

Spe
i�
ally, lemma 248 (in parti
ular (253) and (252)) states that the 
onditions required

to apply theorem 222 are met with ρ instantiated to g . Thus,

R =
〈

c : c⊆g< : R ◦g
∪

◦ c ◦g ◦R\R
〉

is a non-redundant, inje
tive polar 
overing of R . The de�nition of R is simpli�ed as

follows. First,

g ◦R\R

= { R = f∪ ◦T ◦g }

g ◦ (f∪ ◦T ◦g)\(f∪ ◦ T ◦g)

= { lemma 79 with R,S,f,g := T , T ◦g , f , g }

g ◦g
∪
◦T\(T ◦g)

= { g ◦g
∪ = g< }

g< ◦T\(T ◦g) .

So, for all c su
h that c⊆g<
,

R ◦g
∪
◦ c ◦g ◦R\R

= { R 
overs R , so (R ◦g
∪
◦ c ◦g ◦R\R)>⊆R>

; R>=g>

(in preparation for lemma 77) }

R ◦g
∪
◦ c ◦g ◦R\R ◦g>

= { R = f∪ ◦T ◦g and g ◦R\R = g< ◦T\(T ◦g) (see above) }

f
∪
◦T ◦g ◦g

∪
◦ c ◦g< ◦T\(T ◦g) ◦g>

= { g ◦g
∪ = g<

, assumption: c⊆g<
, lemma 77 with R,f :=T,g }

f
∪
◦T ◦ c ◦T\T ◦g

= { T is a provisional ordering, T ∩T∪ = g<
,

lemma 118 }

f
∪
◦T ◦ c ◦T ◦g .
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Sin
e g< = T ∩T∪

by assumption, we have established (256).

Theorem 222 de�nes the de�niens of the 
overing as the indexed set D where

D =
〈

c : c⊆g< : ∆R ◦g
∪

◦ c ◦g ◦R≻

〉

.

But, for all c su
h that c⊆g<
,

∆R ◦g
∪
◦ c ◦g ◦R≻

= { (253) and (251) }

f
∪
◦g ◦g

∪
◦ c ◦g ◦g

∪
◦g

= { g ◦g
∪ = g<

, assumption: c⊆g< }

f
∪
◦ c ◦g .

Using the assumption that g< = T ∩T∪

on
e again, we have established (257). That

∪D = f∪ ◦g = ∆R follows from f
∪
◦g = ∆R and the saturation axiom.

✷

Lemma 248 has as immediate 
orollary that the 
onverse of theorem 255 is invalid.

Corollary 258 There are relations that have a non-redundant polar 
overing but are

not blo
k-ordered.

Proof Examples 223 and 224 are both examples of �nite relations that have non-

redundant polar 
overings. Example 223 has the property that (∆R)< 6=R<
; however,

(∆R)>=R>
. Example 224 has an empty diagonal; that is, (∆R)< 6=R<

(and (∆R)> 6=R>
).

So by (the 
onverse of) lemma 248 (spe
i�
ally, (252)), neither relation is blo
k-ordered.

✷

We now prove the 
onverse of lemma 248.

Lemma 259 A relation R is blo
k-ordered if R< = (∆R)< and R> = (∆R)> .

Proof Suppose R< = (∆R)< and R> = (∆R)> . Our task is to 
onstru
t relations f , g

and T su
h that

R = f
∪

◦ T ◦g ,

T ∩T∪ ⊆ I ∧ T = (T ∩T∪

) ◦T ◦ (T ∩ T∪

) ∧ T ◦T ⊆ T and

f ◦ f
∪

= f< = T ∩T∪

= g< = g ◦g
∪

.

Sin
e ∆R is difun
tional, theorem 161 is the obvious pla
e to start. Applying the

theorem, we 
an 
onstru
t f and g su
h that ∆R = f∪ ◦g and

∆R = f
∪

◦g ∧ f ◦ f
∪

= f< = g ◦g
∪

= g< .
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(The proof of theorem 161 gives several ways of doing this.) Using standard properties of

the domain operators together with the assumption that R< = (∆R)< and R> = (∆R)> ,

it follows that

R< = f> ∧ R> = g> .

It remains to 
onstru
t the provisional ordering T . The appropriate 
onstru
tion is

suggested by lemma 248, in parti
ular (250). Spe
i�
ally, we de�ne T by the equation

T = g ◦R\R/R ◦ f
∪

.(260)

The proof that R = f∪ ◦T ◦g is by mutual in
lusion. First note that

f
∪

◦T ◦g = ∆R ◦R\R/R ◦∆R(261)

sin
e

f
∪
◦T ◦g

= { (260) }

f
∪
◦g ◦R\R/R ◦ f

∪
◦g

= { ∆R = f∪ ◦g }

∆R ◦R\R/R ◦∆R .

So

f
∪
◦T ◦g

⊆ { (261) and ∆R⊆R }

R ◦R\R/R ◦R

⊆ { 
an
ellation }

R .

Also,

R ⊆ f
∪
◦T ◦g

= { (261) }

R ⊆ ∆R ◦R\R/R ◦∆R

= { per domains: (98) }

R≺ ◦R ◦R≻ ⊆ ∆R ◦R\R/R ◦∆R

= { assumption: R< = (∆R)< and R> = (∆R)> , lemma 190 }
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(∆R)≺ ◦R ◦ (∆R)≻ ⊆ ∆R ◦R\R/R ◦∆R

= { ∆R is difun
tional, theorem 160 (with R :=∆R ) }

∆R ◦∆R
∪
◦R ◦∆R

∪
◦∆R ⊆ ∆R ◦R\R/R ◦∆R

⇐ { monotoni
ity }

∆R
∪
◦R ◦∆R

∪ ⊆ R\R/R

⇐ { ∆R
∪⊆R\R/R , monotoni
ity }

R\R/R ◦R ◦R\R/R ⊆ R\R/R

= { fa
tors }

R ◦R\R/R ◦R ◦R\R/R ◦R ⊆ R

= { 
an
ellation }

true .

Combining the two in
lusions we 
on
lude that indeed R = f∪ ◦ T ◦g .

We now establish the requirements on T . First,

T ∩T∪

= { de�nition and 
onverse }

g ◦R\R/R ◦ f
∪ ∩ f ◦ (R\R/R)∪ ◦g

∪

⊆ { modular law }

f ◦ (f∪ ◦g ◦R\R/R ◦ f
∪
◦g ∩ (R\R/R)∪) ◦g∪

= { ∆R = f∪ ◦g }

f ◦ (∆R ◦R\R/R ◦∆R ∩ (R\R/R)∪) ◦g∪

⊆ { ∆R⊆R , monotoni
ity and 
an
ellation }

f ◦ (R ∩ (R\R/R)∪) ◦g∪

= { ∆R = R ∩ (R\R/R)∪ }

f ◦∆R ◦g
∪

= { ∆R = f∪ ◦g }

f ◦ f
∪
◦g ◦g

∪

= { f ◦ f
∪ = f< = g ◦g

∪ = g< }

f< .

Thus T ∩ T∪ ⊆ f< . So T ∩T∪ ⊆ I . Now
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f< ⊆ T ∩T∪

= { in�ma and f< is 
ore
exive }

f< ⊆ T

⇐ { domains }

f ◦ f
∪ ⊆ T

⇐ { de�nition of T and monotoni
ity }

f ⊆ g ◦R\R/R

⇐ { f< = g ◦g
∪

, domains and monotoni
ity }

g
∪
◦ f ⊆ R\R/R

= { f
∪
◦g = ∆R }

∆R
∪ ⊆ R\R/R

= { ∆R = R ∩ (R\R/R)∪ , 
onverse }

true .

So, by anti-symmetry we have established that T ∩T∪ = f< . Sin
e also f<=g<
, we


on
lude from the de�nition of T and properties of domains that

T = (T ∩ T∪

) ◦T ◦ (T ∩T∪

) .

The �nal task is to show that T is transitive:

T ◦T

= { de�nition }

g ◦R\R/R ◦ f
∪
◦g ◦R\R/R ◦ f

∪

= { ∆R = f∪ ◦g }

g ◦R\R/R ◦∆R ◦R\R/R ◦ f
∪

⊆ { ∆R⊆R }

g ◦R\R/R ◦R ◦R\R/R ◦ f∪

⊆ { fa
tors }

g ◦R\R/R ◦ f
∪

= { de�nition }

T .
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✷

It is interesting to re
e
t on the proof of lemma 259. The hardest part is to �nd

appropriate de�nitions of f , g and T su
h that R = f∪ ◦ T ◦g . The key to 
onstru
ting

f and g is Riguet's \analogie frappante" [Rig51℄ whereby he introdu
ed the \di��eren
e"

|the diagonal ∆R| of the relation R . Expressing the diagonal in terms of fa
tors as

we have done makes many parts of the 
al
ulations very straightforward. One mu
h less

straightforward step is the use of lemma 190 in the proof that R ⊆ f
∪
◦T ◦g . Note how


al
ulational needs drive the sear
h for the lemma: in order to simplify the in
lusion it

is ne
essary to expose the term R\R/R on the right side, and that is pre
isely what the

lemma enables.

We 
on
lude with the theorem that we 
all the \analogie frappante". It is not the

theorem that Riguet presented but we have 
hosen to give it this name in order to

re
ognise Riguet's 
ontribution.

Theorem 262 (Analogie Frappante) A relation R is blo
k-ordered if and only if

R< = (∆R)< and R> = (∆R)> .

Proof Lemma 248 establishes \only-if" and lemma 259 establishes \if".

✷

Example 263 Re
all that example 223 is of a relation R su
h that R< = (∆R)<

but R> 6= (∆R)> . Be
ause of the simpli
ity of the example, it is possible to 
he
k,

by exhausting all possible assignments to f and g , that the relation is not blo
k-

ordered. For suppose, on the 
ontrary, that R = f∪ ◦T ◦g , where f , T and g satisfy

the 
onditions for a blo
k-ordering. Then it must be the 
ase that g.A 6=g.B (sin
e

(R◦A)< 6=(R◦B)< ). But also it must be the 
ase that f.α , f.β and f.γ are distin
t (be-


ause, eg., (α◦R)> 6=(β◦R)> ). This has the 
onsequen
e that f< 6=g<
. But, by de�ning

f.α=x , f.β=y , f.γ= z , g.A=x , g.B= z and y⊑x and y⊑ z , it is the 
ase that

R = f∪ ◦⊑ ◦g . We say that the relation has an \imperfe
t" blo
k-ordering. See se
tion

10.

✷

Example 264 A generi
 way to 
onstru
t examples of relations that are not blo
k-

ordered is to exploit example 187. In order to avoid unne
essary repetition, we refer the

reader to that example for the de�nition of the relation in given a �nite set X and a

set S of subsets of X .

(Example 263 is a slightly disguised instan
e of the generi
 
onstru
tion: the nodes

A and B 
an be identi�ed with, respe
tively, {α,β} and {β,γ} .)

Re
all that the diagonal ∆in of type X∼S is inje
tive. It follows that the size of

(∆in)< is at most the size of S . If, however, the set S has X as one of its elements, the
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size of in<
equals the size of X . Theorem 262 thus predi
ts that, if X is an element of

S , a ne
essary 
ondition for in to be blo
k-ordered is that the sizes of X and S must

be equal; 
onversely, if X is an element of S , in is not blo
k-ordered if the sizes of X
and S are di�erent.

Fig. 6 (example 187) shows that, even if the sizes of X and S are equal, the relation

in may not be blo
k-ordered: as remarked then, for the 
hoi
e of S shown in �g. 6, in<

and (∆in)< are di�erent sin
e 0 and 3 are elements of the former but not the latter.

It is straightforward to 
onstru
t instan
es of X and S su
h that the relation in is

blo
k-ordered. It suÆ
es to ensure that three 
onditions are satis�ed: X is an element of

S , the sizes of X and S are equal, and, for ea
h x in X , the set of sets represented by

(x◦in)> is totally ordered. Fig. 13 is one su
h. Referring to de�nition 225, the fun
tional

f is ∆in
∪

(depi
ted by re
tangles) and the fun
tional g is IS ; the ordering relation is

the subset relation in\in (depi
ted by the dire
ted graph).

{0,1,2,3,4}

{0,1}

{0}

{3,4}1

2

0

4

{3} 3

Figure 13: A Blo
k-Ordered Membership Relation

✷

The following theorem is a 
orollary of theorem 207. In 
ombination with theorem

262 it states that a relation is blo
k-ordered i� its 
ore is blo
k-ordered. Testing whether

or not a given relation is blo
k-ordered 
an thus be de
omposed into 
omputing the 
ore

of the relation and then testing whether or not that is blo
k-ordered.

Theorem 265 Suppose R is an arbitrary relation. Then

R< = (∆R)< ≡ |R|< = (∆|R|)< .

Dually,

R> = (∆R)> ≡ |R|> = (∆|R|)> .
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Proof Suppose R , λ and ρ are as in de�nition 191. Then

|R|< = (∆|R|)<

= { de�nition 191 and theorem 207 }

(λ ◦R ◦ρ
∪)< = (λ ◦∆R ◦ρ

∪)<

⇒ { Leibniz }

(λ∪
◦ (λ ◦R ◦ρ

∪)<)< = (λ∪
◦ (λ ◦∆R ◦ρ

∪)<)<

= { domains }

(λ∪
◦λ ◦R ◦ρ

∪)< = (λ∪
◦λ ◦∆R ◦ρ

∪)<

= { λ
∪
◦λ ◦R = R≺ ◦R = R ,

(ρ∪)< = (ρ∪
◦ρ)< = (R≻)< = R>

, and domains }

R< = (λ∪
◦λ ◦∆R ◦ρ

∪)<

= { (ρ∪)< = (ρ∪
◦ρ)< and domains }

R< = (λ∪
◦λ ◦∆R ◦ρ

∪
◦ρ)<

= { theorem 207 }

R< = (λ∪
◦∆|R| ◦ρ)<

= { theorem 207 }

R< = (∆R)< .

Similarly,

R< = (∆R)<

= { de�nition 191, theorem 207 and Leibniz }

(λ∪
◦ |R| ◦ρ)< = (λ∪

◦∆|R| ◦ρ)<

⇒ { Leibniz and domains }

(λ ◦λ
∪
◦ |R| ◦ρ)< = (λ ◦λ

∪
◦∆|R| ◦ρ)<

= { ρ< = (ρ ◦ρ
∪)< and domains }

(λ ◦λ
∪
◦ |R| ◦ρ ◦ρ

∪)< = (λ ◦λ
∪
◦∆|R| ◦ρ ◦ρ

∪)<

= { theorem 207 (applied twi
e) }

|R|< = (∆|R|)< .

The property

R< = (∆R)< ≡ |R|< = (∆|R|)<
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follows by mutual impli
ation. The dual follows by instantiating R to R
∪

and applying

the properties of 
onverse.

✷

By 
ombining the de�nition of blo
k-ordering with theorem 207, it is immediately


lear that R is blo
k-ordered if |R| is a provisional ordering. In general, a 
ore of a

blo
k-ordered relation will not be a provisional ordering. This is be
ause the types of

the targets of the 
omponents λ and ρ in the de�nition of a 
ore are not required to

be the same; on the other hand, orderings are required to be homogeneous relations.

However by 
arefully restri
ting the 
hoi
e of 
ore, it is possible to 
onstru
t a 
ore that

is indeed a provisional ordering.

Theorem 266 Suppose R is an arbitrary relation. Then if R is blo
k-ordered it has

a 
ore that is a provisional ordering.

Proof Suppose R is blo
k-ordered. That is, suppose that f , g and T are relations

su
h that T is a provisional ordering,

R = f
∪

◦ T ◦g

and

f ◦ f
∪

= f< = T ∩T∪

= g< = g ◦g
∪

.

Then, by lemma 248, R≺ = f∪ ◦ f and , R≻ = g∪
◦g . Thus f and g satisfy the 
onditions

for de�ning |R| . (See de�nition 191.) Consequently,

|R|

= { de�nition 191 }

f ◦R ◦g
∪

= { R = f∪ ◦T ◦g }

f ◦ f
∪
◦T ◦g ◦g

∪

= { f ◦ f
∪ = f< = T ∩T∪ = g< = g ◦g

∪

}

(T ∩T∪) ◦T ◦ (T ∩ T∪)

= { T is a provisional ordering, lemma 122 and domains }

T .

We 
on
lude that |R| is the provisional ordering T .

✷

Combining theorem 266 with theorem 194, we 
on
lude that any 
ore of a blo
k-

ordered relation is isomorphi
 to a provisional ordering. Loosely speaking, blo
k-ordered

relations are provisional orderings up to isomorphism and redu
tion to the 
ore.
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Example 267 From the Galois 
onne
tion, for all reals x and integers m ,

⌈x⌉≤m ≡ x≤m

de�ning the 
eiling fun
tion, we dedu
e that the heterogeneous relation IR≤ZZ has 
ore

the provisional ordering ≤ZZ . This is be
ause the 
eiling fun
tion is surje
tive. Its 
ore

in not the ordering ≤IR be
ause the 
oer
ion real from integers to reals is not surje
tive.

(See also example 244.)

On the other hand, if a Galois 
onne
tion

F.b⊑a ≡ b�G.a

of posets (A,⊑) and (B ,� ) is \perfe
t" (i.e. both F and G are surje
tive), both the

orderings ⊑ and � are 
ores of the de�ned heterogeneous relation. That the orderings

are isomorphi
 is an instan
e of the unity-of-opposites theorem [Ba
02℄.

✷
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10 Imperfect Block-Orderings

Following de�nition 225 we remarked that the 
ondition on the fun
tional relations f

and g in a blo
k-ordering is very stri
t. Later we remarked that a Galois 
onne
tion

satis�es the 
ondition if it is so-
alled \perfe
t". (See the dis
ussion following example

244 and also example 267.) In this se
tion we study what might be 
alled \(possibly)

imperfe
t" blo
k-orderings. The results presented here are used later to show that �nite

\stair
ase relations" are indeed blo
k-ordered.

Some of the results presented in this se
tion are inspired by what has been 
alled

\
on
ept analysis" (the English translation of the German \Begri�enanalyse"). \Con
ept

analysis" was brie
y mentioned in se
tion 9.1 as an example of how Hartmanis and

Stearns' theory of pair algebras leads to the identi�
ation of Galois 
onne
tions. As

we shall see, the fundamental notion in \
on
ept analysis" is 
losely related to Riguet's

polar 
overings.

Aside The resear
h presented here was undertaken under the restri
tions of the


oronavirus pandemi
 an unfortunate 
onsequen
e of whi
h has been that a

ess to

library fa
ilities has been impossible. This means that I have not been able to investigate

the original (or, indeed, subsequent) literature in order to determine to what extent the

relationship between Riguet's work and \
on
ept analysis" is already known. The sole

sour
e of my knowedge of \
on
ept analysis" is the text by Davey and Priestley [DP90,


hapter 11℄. End of Aside

10.1 Grips

Suppose R is a relation of type A∼B and suppose U is a re
tangle su
h that U⊆R .
Then, be
ause U=U◦⊤⊤◦U (by de�nition of a re
tangle), we have

(U ⊆ R/(⊤⊤◦U)) = (U⊆R) = (U ⊆ (U◦⊤⊤)\R) .(268)

The equality between the outer two terms immediately suggests the identi�
ation of a

Galois 
onne
tion, whi
h possibility we now explore.

It is easy to 
he
k that, for all relations R and S ,

R/(⊤⊤◦S) = R/(⊤⊤◦S) ◦⊤⊤ .

(For 
ompleteness, the proof is given in se
tion 10.2.) That is, R/(⊤⊤◦S) is a left 
ondi-

tion

10

for all relations R and S . Also, for all relations R and S ,

(S◦⊤⊤)\R = ⊤⊤ ◦ (S◦⊤⊤)\R .

10

Re
all that a left 
ondition is a relation R su
h that R= R◦⊤⊤ . Dually, a right 
ondition is a relation

R su
h that R=⊤⊤◦R .
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That is, (S◦⊤⊤)\R is a right 
ondition for all relations R and S .

Returning to (268), we re
ognise the equality between the outer two terms as an

instan
e of the equality, for all X and Y su
h that X = R< ◦X ◦⊤⊤ and Y = ⊤⊤ ◦Y ◦R>
,

X ⊆ R/Y ≡ X\R ⊇ Y .(269)

The relation R< ◦X ◦⊤⊤ is a left 
ondition representing a subset of the left domain of

R , and the relation ⊤⊤ ◦Y ◦R>
is a right 
ondition representing a subset of the right

domain of R . Conversely, if U is su
h that U⊆R , U◦⊤⊤ = R< ◦ (U◦⊤⊤) ◦⊤⊤ and

⊤⊤◦U = ⊤⊤ ◦ (⊤⊤◦U) ◦R>
. Thus the equality between the outer two terms of (268) is

the Galois 
onne
tion (269) between the (left 
ondition representation of the) subsets of

the left domain of R and the (right 
ondition representation of the) subsets of the right

domain of R , where in one 
ase the ordering relation is the subset relation and in the

other 
ase the ordering relation is the superset relation.

One of the most important 
hara
teristi
s of a Galois 
onne
tion is the theorem

that we have dubbed the unity-of-opposites theorem [Ba
02℄ and whi
h we have already

mentioned several times. Spe
i�
ally, if

F.b⊑a ≡ b�G.a

is a Galois 
onne
tion of posets (A,⊑) and (B ,� ), elements a and b are opposites if

F.b=a ∧ b=G.a .

The unity-of-opposites theorem states that opposites form isomorphi
 sub-posets of

(A,⊑) and (B ,� ) and, moreover, 
ompleteness properties of A and/or B are inherited

by these sub-posets.

Guided by (268), it is 
onvenient to pa
kage two \opposites" into one re
tangle. Su
h

re
tangles we 
all \grips":

Definition 270 (Grip) A re
tangle U is said to be a grip of relation R if

U◦⊤⊤ = R/(⊤⊤◦U) ∧ ⊤⊤◦U = (U◦⊤⊤)\R .

✷

The word \grip" is an abbreviation of the Dut
h word \begrip" whi
h has the same

meaning as the German word \Begri�". One meaning of the word \grip" in both Dut
h

and English is \handle"; the same is true of the German word \Gri�". In Ameri
an-

English, the word \grip" also means \bag" or \holder". Thus our notion of a \grip" is

a \handle" or \holder" for two opposites in the Galois 
onne
tion de�ned by (269).

We have 
hosen to introdu
e new terminology partly in order to emphasise a subtle

but important di�eren
e between our use of re
tangles as holders of opposites and the
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way su
h holders are de�ned in \Begri�enanalyse". In the �eld of \Begri�enanalyse",

the opposites of a relation of type A∼B are elements of 2A and 2B (the sets of subsets

of A and B ) and a \Begri�" is a pair (U,V) where U and V are opposites of ea
h

other. Typi
ally, although not always, ∅A (the empty subset of A ) and B are opposites,

as are A and ∅B (the empty subset of B ). In su
h 
ases, (∅A, B) and (A, ∅B) are by

de�nition \Begri�en". Our de�nition of a grip ex
ludes this possibility be
ause a grip

of a relation R is always a non-empty re
tangle. (A disadvantage of our de�nition is

that greater 
are needs to be exer
ised when applying the unity-of-opposites theorem.

Fortunately this is not relevant here.)

Note how the subset ordering on the left side of (269) is 
ipped to be
ome the superset

ordering on the right side. The \opposites" are thus \polar" opposites in the sense that

if U and V are grips of relation R then

U◦⊤⊤ ⊆ V◦⊤⊤ ≡ ⊤⊤◦U ⊇ ⊤⊤◦V .

Example 271 Fig. 14 shows the grips of a relation of type {V,E,P,J,U}∼ {x,n,s,y,f,l,m} .

The example is a simpli�
ation

11

of one presented by Davey and Priestley [DP90, table

11.1 and �gure 11.1℄.

The grips are depi
ted by (larger bla
k) re
tangles, the left domain of ea
h re
tangle

being formed by the set of upper-
ase letters listed verti
ally and the right domain of

ea
h re
tangle being formed by the set of lower-
ase letters listed horizontally. The

graph stru
ture anti
ipates results presented in se
tion 10.2, namely that the grips of a

relation form a polar 
overing. The signi�
an
e of the blue and red squares is explained

in example 285. For the moment, it suÆ
es to note that there is no least and no greatest

grip whereas the relation does have a least and greatest \Begri�", the least \Begri�"

having the empty set as its left 
omponent and the greatest \Begri�" having the empty

set as its right 
omponent.

✷

10.2 Polar Covering and Properties

In this se
tion we show that the set of grips of a relation R is a polar 
overing of R . (See

de�nition 209.) Simultaneously we show that the grips of a relation de�ne a \(possibly)

imperfe
t" blo
k-ordering of the relation.

11

The upper-
ase letters V , E , et
. stand for planets: Venus, Earth, et
. The lower-
ase letters stand

for attributes of the planets: for example, y stands for \has a moon" whilst x stands for \does not have a

moon". The simpli�
ation that has been made is to redu
e the relation presented by Davey and Priestley

to its 
ore. The letter V , for example, represents the equivalen
e 
lass {Venus,Mercury} in Davey and

Priestley's presentation.
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Figure 14: Grips

An important insight is that the polar 
overings indexed by points in the left and

right domain of a given relation that formed the basis of theorem 211 de�ne a subset

of the grips of the relation. It is this subset that de�nes the \(possibly) imperfe
t"

blo
k-ordering; it also enables one to 
onstru
t the diagonal of the relation.

We begin with a 
ouple of lemmas that are needed later.

Lemma 272 For all R and S of the same type,

R/(⊤⊤◦S) = R/(⊤⊤◦S) ◦⊤⊤ .

Proof

R/(⊤⊤◦S) = R/(⊤⊤◦S) ◦⊤⊤
= { anti-symmetry of the subset relation

assumption: R and S have the same type, so I⊆⊤⊤ }

R/(⊤⊤◦S) ⊇ R/(⊤⊤◦S) ◦⊤⊤
= { fa
tors }

R ⊇ R/(⊤⊤◦S) ◦⊤⊤ ◦⊤⊤ ◦S

= { by 
one rule, ⊤⊤◦⊤⊤=⊤⊤ }

R ⊇ R/(⊤⊤◦S) ◦⊤⊤ ◦S

= { 
an
ellation }
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true .

✷

Lemma 273 For all relations R and all points b (of appropriate type),

R/(⊤⊤◦b) = R◦b◦⊤⊤ .

Proof The proof is by indire
t equality. Suppose U is a left 
ondition (i.e. U=U◦⊤⊤ ).

Then

U◦⊤⊤◦b ⊆ R

⇒ { b is 
ore
exive, so b=b◦b ; monotoni
ity }

U◦⊤⊤◦b◦⊤⊤ ⊆ R◦b◦⊤⊤
= { b 6=⊥⊥ , 
one rule }

U◦⊤⊤ ⊆ R◦b◦⊤⊤
⇒ { I⊆⊤⊤ }

U ⊆ R◦b◦⊤⊤
⇒ { monotoni
ity }

U◦⊤⊤◦b ⊆ R◦b◦⊤⊤◦b

= { b is a point, so b◦⊤⊤◦b=b }

U◦⊤⊤◦b ⊆ R◦b

⇒ { b is 
ore
exive, i.e. b⊆ I }

U◦⊤⊤◦b ⊆ R .

We have thus shown (by mutual impli
ation) that, for all left 
onditions U ,

U◦⊤⊤◦b ⊆ R ≡ U ⊆ R◦b◦⊤⊤ .

But U◦⊤⊤◦b ⊆ R ≡ U ⊆ R/(⊤⊤◦b) . That is, for all left 
onditions U ,

U ⊆ R/(⊤⊤◦b) ≡ U ⊆ R◦b◦⊤⊤ .

The lemma follows by applying lemma 272 and the rule of indire
t equality.

✷

We now turn to the proof that the grips of a relation form a polar 
overing of the

relation.

Lemma 274 For all relations R and all re
tangles U of the same type as R , if U is

a grip of R then U⊆R .
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Proof Suppose U is a grip of R . Then

U

= { U is a re
tangle, de�nition 123 }

U◦⊤⊤◦U

= { de�nition 270 }

R/(⊤⊤◦U) ◦U

= { lemma 272 }

R/(⊤⊤◦U) ◦⊤⊤ ◦U

⊆ { 
an
ellation }

R .

✷

Lemma 275 Suppose U and V are grips of R . Then

U< ⊆ V< ≡ U>⊇V> .

Proof

U< ⊆ V<

= { 
ondition-
ore
exive isomorphism }

U◦⊤⊤ ⊆ V◦⊤⊤
= { U and V are grips of R , de�nition 270 and Leibniz }

R/(⊤⊤◦U) ⊆ R/(⊤⊤◦V)

⇐ { fa
tors }

⊤⊤◦U ⊇ ⊤⊤◦V

= { 
ondition-
ore
exive isomorphism }

U>⊇V> .

That is, U<⊆V< ⇐ U>⊇V>
for all grips U and V of R .

Dually, U>⊆V> ⇐ U<⊇V<
. Sin
e the latter property holds for all grips U and V of

R , we 
an inter
hange U and V to get V>⊆U> ⇐ V<⊇U<
. That is, U>⊇V> ⇐ U<⊆V<

for all grips U and V of R .

Combining the two impli
ations, we 
on
lude that, for all grips U and V of R ,

U<⊆V< ≡ U>⊇V> .
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✷

Lemma 275 is the �rst step in showing that the grips satisfy de�nition 209 of a polar


overing. Spe
i�
ally, the lemma allows us to introdu
e an ordering on grips as per the

de�nition. For future referen
e, here is the de�nition.

Definition 276 Suppose U and V are grips of a relation R . Then we de�ne the

relation ⊑ by

U⊑V ≡ U<⊆V< .

Equivalently (in view of lemma 275)

U⊑V ≡ U>⊇V> .

✷

Lemma 277 The relation ⊑ of de�nition 276 is a provisional ordering of grips.

Proof That ⊑ is re
exive and transitivity is a straightforward 
onseqen
e of the re
ex-

ivity and transitivity of the subset relation. That it is anti-symmetri
 is a 
onsequen
e

of the fa
t that grips are re
tangles, lemma 275 and lemma 125.

✷

Theorem 211 showed how to 
onstru
t a polar 
overing of a given relation R , in-

dexed by points b in R>
. Dually, one 
an 
onstru
t a polar 
overing of R indexed by

points a in R<
. The elements of these two 
overings are parti
ularly spe
ial grips of

R . Spe
i�
ally |see lemma 279| 
omparing the grip with index a with the grip with

index b enables the determination of whether or not a and b are related by R .

First, we show that both 
overings de�ne grips.

Lemma 278 For all relations R and all points b su
h that b⊆R>
, the re
tangle

R ◦b ◦R\R is a grip of R . Dually, for all relations R and all points a su
h that a⊆R<
,

the re
tangle R/R ◦a ◦R is a grip of R .

Proof Assume that b is a point su
h that b⊆R>
. Then

R/(⊤⊤ ◦R ◦b ◦R\R)

= { [ ⊤⊤◦R = ⊤⊤ ◦R> ] ; assumption: b⊆R>
, so R> ◦b = b }

R/(⊤⊤ ◦b ◦R\R)

= { fa
tors, spe
i�
ally [ R/(S◦T)= (R/T)/S ] }

(R/(R\R))/(⊤⊤◦b)
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= { fa
tors, spe
i�
ally (29) }

R/(⊤⊤◦b)

= { assumption: b is a point; lemma 273 }

R◦b◦⊤⊤
= { (R\R)< = I }

R ◦b ◦R\R ◦⊤⊤ .

Also

(R ◦b ◦R\R ◦⊤⊤)\R

= { R\R⊇ I , so (R\R)>= I }

(R◦b◦⊤⊤)\R

= { fa
tors, spe
i�
ally [ (S◦T)\R=T\(S\R) ] with R,S,T := R ,R ,b◦⊤⊤ }

(b◦⊤⊤)\(R\R)

= { dual of lemma 273 with R :=R\R }

⊤⊤ ◦b ◦R\R

= { [ ⊤⊤◦R = ⊤⊤ ◦R> ] ; assumption: b⊆R>
, so R> ◦b = b }

⊤⊤ ◦R ◦b ◦R\R .

Combining the two 
al
ulations, we have shown that R ◦b ◦R\R satis�es the 
ondition

on U in de�nition 270.

✷

Now we show how to use the two polar 
overings to determine whether or not points

are related. Re
alling de�nition 276 of the ordering ⊑ on grips, we have:

Lemma 279 For all relations R and all points a and b su
h that a⊆R<
,

a◦⊤⊤◦b ⊆ R ≡ R/R ◦a ◦R ⊑ R ◦b ◦R\R .(280)

That is,

a◦⊤⊤◦b ⊆ R ≡ (R/R ◦a)< ⊆ (R◦b)< .(281)

Dually, for all relations R and all points a and b su
h that b⊆R>
,

a◦⊤⊤◦b ⊆ R ≡ (b ◦R\R)> ⊆ (a◦R)> .(282)

Proof We begin by proving (281) by mutual impli
ation. Note that, by lemma 58, the

left side of (281) is equivalent to a⊆ (R◦b)< . This fa
t is exploited below.
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(R/R ◦a)< ⊆ (R◦b)<

⇒ { I⊆R/R , monotoni
ity and transitivity }

a ⊆ (R◦b)<

⇒ { monotoni
ity }

(R/R ◦a)< ⊆ (R/R ◦ (R◦b)<)<

= { domains }

(R/R ◦a)< ⊆ (R/R ◦R ◦b)<

= { 
an
ellation: (28) }

(R/R ◦a)< ⊆ (R◦b)< .

Applying lemma 58, we have proved (281). Property (280) now follows easily:

R/R ◦a ◦R ⊑ R ◦b ◦R\R

= { de�nition 276 of ⊑ }

(R/R ◦a ◦R)< ⊆ (R ◦b ◦R\R)<

= { domains and assumption: a⊆R<
; (R\R)<= I }

(R/R ◦a)< ⊆ (R◦b)<

= { (281) and lemma 58 }

a◦⊤⊤◦b ⊆ R .

✷

Theorem 283 For all relations R , the set of grips of R is a polar 
overing of R . That

is,

R = 〈∪U : grip.U.R : U〉

where the grips of R are ordered by the relation ⊑ introdu
ed in de�nition 276. More-

over,

R = f
∪

◦⊑ ◦g

where the fun
tional f mapping points a in R<
to grips of R is de�ned by

f.a = R/R ◦a ◦R ,

the fun
tional g mapping points b in R>
to grips of R is de�ned by

g.b = R ◦b ◦R\R .
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Proof We have

〈∪U : grip.U.R : U〉
⊇ { lemma 278 and monotoni
ity }

〈∪b : b⊆R> : R ◦b ◦R\R〉
= { theorem 211 }

R

⊇ { lemma 274 }

〈∪U : grip.U.R : U〉 .

Thus, by anti-symmetry of the subset relation, , R = 〈∪U : grip.U.R : U〉 .
That R = f

∪
◦⊑ ◦g is immediate from lemma 279 and the de�nition of fun
tion

appli
ation (as dis
ussed in se
tion 3.5).

✷

Note that theorem 283 does not prove that every relation is blo
k-ordered: the

fun
tionals f and g are not surje
tive onto the domain of the provisional ordering as

required by de�nition 225. The equation

R = f
∪

◦⊑ ◦g

in theorem 283 expresses a (possibly) imperfe
t blo
k-ordering of R .

Example 284 As dis
ussed in example 213, �g. 8 (page 134) shows a relation R of

type {A,B,C}∼{α,β,γ,δ} and �g. 9 (page 135) shows the (re
exive-transitive redu
tion

of the) provisional ordering de�ned by theorem 211 .

Re
all that the four relations depi
ted in �g. 9 are re
tangles of the same type as R .

These four re
tangles are the values of the fun
tional relation g . Spe
i�
ally, the topmost

re
tangle depi
ts the relation g.δ , the middle-left re
tangle depi
ts g.α , the middle-right

re
tangle depi
ts g.γ and the bottom re
tangle depi
ts g.β . This is indi
ated by the

small red squares.

The bottom three re
tangles are also the values of the fun
tional relation f . Spe
if-

i
ally, the bottom-most re
tangle depi
ts the relation f.B , the middle-left re
tangle

depi
ts f.A and the middle-right re
tangle depi
ts f.C . This is indi
ated by the small

blue squares.

The provisional ordering ⊑ on the re
tangles is depi
ted by the brown arrowed edges.

We leave the reader to 
he
k that R = f∪ ◦⊑ ◦g .

These four re
tangles are the only grips of the relation. (This is not generally the


ase.) The ordering shown is thus also the ordering of grips introdu
ed in de�nition 276.
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Note that we have not 
onstru
ted a blo
k-ordering of the relation R be
ause f< 6= g<
.

(That is, f is not surje
tive.) The diagonal ∆R is the relation depi
ted by the three

edges that 
onne
t red and blue squares. (Theorem 292 establishes that this is a general

property of the diagonal.) Thus it is the 
ase that R< 6= (∆R)< but R> = (∆R)> .

✷

Several lemmas and theorems we present (in
luding theorem 283 and lemma 279)

require points a and b to be elements of the left and right domain, respe
tively, of the

relation R . This is very important to note sin
e many authors assume, often without

mention, that relations are \total", i.e. that their sour
e and targets equal their right

and left domains.

Assuming this requirement is met, for �nite relations whether or not points are related


an be determined by a graph sear
hing algorithm. The nodes of the graph are the grips

of the relation and the edges of the graph are de�ned by the re
exive-transitive redu
tion

of the polar ordering of grips. (Borrowing terminology from ordered-set theory, the graph

might sometimes be 
alled the \Hasse diagram" of the polar ordering of grips.) Example

285 provides further explanation.

Example 285 As explained in example 271, the bla
k re
tangles in �g. 14 depi
t the

grips of a relation; the edges 
onne
ting these re
tangles depi
t the polar ordering on

the grips in a way that should be self-explanatory. The 
olle
tion of re
tangles marked

by small blue squares depi
ts the polar 
overing of the relation indexed by elements of

its left domain, whilst the 
olle
tion of re
tangles marked by small red squares depi
ts

the polar 
overing of the relation indexed by elements of its right domain; the squares

identify the point de�ning the en
losing re
tangle. (Cf. lemma 278.) For example, the

bottom-left grip 
orresponds to V and to x .

Taken together, theorem 283 and lemma 279 state formally how the blue and red

squares enable one to 
al
ulate whether or not the 
orresponding points are related. The

blue squares depi
t a fun
tion f whose sour
e is the left domain of the relation and whose

target is the set of grips; similarly, the red squares depi
t a fun
tion g whose sour
e is

the right domain of the relation and whose target is also the set of grips. The ordering

⊑ on grips is the re
exive-transitive 
losure G∗
of the graph G and the relation R is

f
∪
◦G∗ ◦g . That is, for points a and b , a◦⊤⊤◦b⊆R i� there is a path in the graph G

from the grip en
losing the blue square labelled a to the grip en
losing the red square

labelled b . For example, V and y are not related by R be
ause there is not a path from

the bottom-left grip to the topmost grip whereas E and y are related by R be
ause

there is su
h a path.

As in example 284, the blue and red squares also enable the identi�
ation of the

diagonal of the relation. Spe
i�
ally, 
onsider the re
tangles that have both a blue and

a red square; then the pairs of points identi�ed by the squares form the diagonal of the
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relation. That is, the diagonal is the set of pairs {(V, x) , (J, l) , (U,m)} . (See theorem

292.)

✷

The �nal task in this se
tion is to formulate and prove the assertion mentioned in

examples 284 and 285 that the diagonal of a relation is determined by 
oin
ident blue

and red squares. The property we prove |see theorem 292| is, in fa
t, mu
h stronger,

although diÆ
ult to put in words.

Lemma 286 Suppose R is an arbitrary relation. Suppose a and b are points su
h

that a◦⊤⊤◦b ⊆ R . Then the following properties of a , b and R are all equivalent.

(a◦R)> = (b ◦R\R)> ,(287)

(a◦R)> ⊆ (b ◦R\R)> ,(288)

R/R ◦a ◦R = R ◦b ◦R\R ,(289)

(R◦b)< ⊆ (R/R ◦a)< .(290)

(R/R ◦a)< = (R◦b)< ,(291)

Proof The equivalen
e of (287), (288) and (289) is proved as follows.

(a◦R)> = (b ◦R\R)>

= { anti-symmetry of the subset relation }

(a◦R)> ⊆ (b ◦R\R)> ∧ (b ◦R\R)> ⊆ (a◦R)>

= { assumption: a◦⊤⊤◦b ⊆ R (so a⊆R<
and b⊆R>

) ; (282) }

(a◦R)> ⊆ (b ◦R\R)>

= { de�nition 276 of ⊒ and domains }

R/R ◦a ◦R ⊒ R ◦b ◦R\R

= { assumption: a◦⊤⊤◦b ⊆ R (so a⊆R<
and b⊆R>

);

(280) and anti-symmetry of ⊑ }

R/R ◦a ◦R = R ◦b ◦R\R .

The equivalen
e of (290) and (291) with (289) is the 
onverse dual.

✷
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Theorem 292 Suppose R is an arbitrary relation. Suppose a and b are points su
h

that a◦⊤⊤◦b ⊆ R . Then the following three properties of a , b and R are all equivalent.

〈∀a ′ : a ′
◦⊤⊤◦b ⊆ R : R/R ◦a ′

◦R ⊑ R/R ◦a ◦R〉 ,(293)

R/R ◦a ◦R = R ◦b ◦R\R ,(294)

〈∀b ′ : a◦⊤⊤◦b ′ ⊆ R : R ◦b ◦R\R ⊑ R ◦b ′
◦R\R〉 .(295)

It follows that all three properties are also equivalent to the property

a◦⊤⊤◦b ⊆ ∆R .(296)

Proof We prove the equivalen
e of (294) and (295) by mutual impli
ation. The equiv-

alen
e of (293) and (294) is the 
onverse-dual.

For the \if" part we exploit the fa
t that the two sides of the equation to be proved

are grips of R and the grips of R form a polar 
overing of R . Spe
i�
ally, assuming a

and b are points su
h that a◦⊤⊤◦b ⊆ R ,

R/R ◦a ◦R = R ◦b ◦R\R

= { assumption: a◦⊤⊤◦b ⊆ R (so b⊆R>
) ; lemma 286 }

(a◦R)> ⊆ (b ◦R\R)>

= { saturation axiom: (16) }

〈∀b ′ : b ′⊆ (a◦R)> : b ′ ⊆ (b ◦R\R)>〉
⇐ { [ b ′ ⊆ (b ′ ◦R\R)> ] , transitivity of the subset relation }

〈∀b ′ : b ′⊆ (a◦R)> : (b ′ ◦R\R)> ⊆ (b ◦R\R)>〉
= { lemma 58 }

〈∀b ′ : a◦⊤⊤◦b ′ ⊆ R : (b ′ ◦R\R)> ⊆ (b ◦R\R)>〉 .

Also

R/R ◦a ◦R = R ◦b ◦R\R

= { assumption: a◦⊤⊤◦b ⊆ R , (so b⊆R>
); lemma 286 }

(a◦R)> = (b ◦R\R)>

= { saturation axiom: (16) }

〈∀b ′ :: b ′⊆ (a◦R)> ≡ b ′⊆ (b ◦R\R)>〉
⇒ { weakening equivalen
e to impli
ation and lemma 58 }
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〈∀b ′ : a◦⊤⊤◦b ′ ⊆ R : b ′⊆ (b ◦R\R)>〉
⇒ { monotoni
ity }

〈∀b ′ : a◦⊤⊤◦b ′ ⊆ R : (b ′ ◦R\R)> ⊆ ((b ◦R\R)> ◦R\R)>〉
⇒ { domains and R\R ◦R\R ⊆ R\R }

〈∀b ′ : a◦⊤⊤◦b ′ ⊆ R : (b ′ ◦R\R)> ⊆ (b ◦R\R)>〉 .

Putting the two 
al
ulations together we have shown that (294) is equivalent to

〈∀b ′ : a◦⊤⊤◦b ′ ⊆ R : (b ′
◦R\R)> ⊆ (b ◦R\R)>〉 .(297)

That (297) is equivalent to (295) is an immediate 
onsequen
e of the de�nition of ⊑ and

properties of the domain operator. (Take 
are with applying de�nition 276.)

The dual of (297) is

〈∀a ′ : a ′
◦⊤⊤◦b ⊆ R : (R/R ◦a ′)< ⊆ (R/R ◦a)<〉 .(298)

That (298) is equivalent to (295) is also an immediate 
onsequen
e of the de�nition of ⊑
and properties of the domain operator. (Again, take 
are with applying de�nition 276.)

The proof of (296) is now straightforward:

b◦⊤⊤◦a◦R ⊆ R\R

⇒ { b is a point so b=b◦b ; monotoni
ity }

b◦⊤⊤◦a◦R ⊆ b ◦R\R

⇒ { monotoni
ity and domains }

(a◦R)> ⊆ (b ◦R\R)>

⇒ { monotoni
ity and domains }

b◦⊤⊤◦a◦R ⊆ b ◦⊤⊤ ◦b ◦R\R

⇒ { b is a point so b=b◦⊤⊤◦b }

b◦⊤⊤◦a◦R ⊆ R\R .

So

a◦⊤⊤◦b ⊆ ∆R

= { ∆R = R∩ (R\R/R)∪ }

a◦⊤⊤◦b ⊆ R ∧ a◦⊤⊤◦b ⊆ (R\R/R)∪

= { assumption: a◦⊤⊤◦b ⊆ R ; 
onverse and fa
tors }

b◦⊤⊤◦a◦R ⊆ R\R
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= { monotoni
ity and domains }

(a◦R)> ⊆ (b ◦R\R)>

= { lemma 286 }

R/R ◦a ◦R = R ◦b ◦R\R .

✷

Theorem 292 is diÆ
ult to express pre
isely in words. Informally (and very impre-


isely), it 
hara
terises the diagonal ∆R of a relation R as the 
olle
tion of re
tangles

ea
h of whi
h is simultaneously the in�mum of the grips indexed by points a in the left

domain of R and the supremum of the grips indexed by points b in the right domain of

R . Careful study of examples 284 and 271, as outlined below, will hopefully make this


lear. (Example 271 is not su
h a good example be
ause the duality between left and

right domains is not evident.)

Example 299 We refer to example 284 (page 180). As remarked, the diagonal ∆R is

the 
olle
tion of re
tangles having both a blue and a red square.

Note 
arefully how the re
tangles making up the diagonal ∆R are ea
h the in�ma of a

subset of the ordered set of grips indexed by points in the left domain of R . For example

the re
tangle de�ned by the pair (A, α) is the in�mum of itself and the topmost re
tangle;

these are the grips indexed by A . The same is true with \left" repla
ed by \right" and

\in�mum" repla
ed by \supremum": the re
tangle de�ned by the pair (A, α) is the

supremum of itself and the bottom-most re
tangle, these being the re
tangles indexed

by α .

✷

Example 300 We return again to example 271, in parti
ular �g. 14 on page 174.

As in example 284, the blue and red squares enable the identi�
ation of the diagonal of

the relation. Spe
i�
ally, 
onsider the re
tangles that have both a blue and a red square;

then the pairs of points identi�ed by the squares form the diagonal of the relation. That

is, the diagonal is the set of pairs {(V, x) , (J, l) , (U,m)} .

Note 
arefully how the re
tangles making up the diagonal ∆R are ea
h the in�ma of

the subset of the ordered set of grips indexed by points in the left domain of R . For

example the re
tangle de�ned by the pair (V, x) is the in�mum of the three re
tangles

with the point V in their left domains. The same is true with \left" repla
ed by \right"

and \in�mum" repla
ed by \supremum" but the sets of grips degenerates to a singleton

set.

✷
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Example 301 Fig. 15 shows the grips of the 
onverse

12 in
∪

of the membership relation

in de�ned in example 187. The blue and red squares have the same fun
tion as in

examples 299 and 300. As in those examples, the diagonal of the relation is identi�ed

by the re
tangles that have both a blue and a red square.

1 3

{0,1,3}

0 30 2

{0,2,3}

{0,2,3}

{0,1,3}

{0,2}

{0,1}
0

0

{0,2,3}

3

{0,1,3}

0

{0,2,3}

{0,2}

{0,1,3}

0 1

{0,1}

2

Figure 15: Grips of a Membership Relation

✷

10.3 Grips of Provisional Orderings

If grips are to be used to represent membership of a relation, a pra
ti
al question is just

how many grips might a relation have (as a fun
tion of the sizes of its left and right

domains). Some insight into this question 
an be obtained by 
onsidering an interesting

spe
ial 
ase: when the relation is a provisional ordering.

Suppose T is a provisional ordering and x is a point su
h that x ⊆ T ∩T∪

. Then

T ◦x◦T is a grip of T . Indeed, by lemma 118,

T ◦x ◦ T\T = T ◦x ◦ T = T/T ◦x ◦ T .

This raises the question whether every grip of T is of this form.

The answer is no and a very instru
tive 
ounterexample is given by the provisional

at-most ordering on rational numbers, whi
h we denote by ≤Q . For a given rational

12

The 
onverse in
∪

has been used simply be
ause the �gure would have been too wide if in had been

used.
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number q , the grip ≤Q◦q◦≤Q is a re
tangle that relates rational number p to rational

number r whenever p≤q≤ r (using the 
onventional overloaded notation). An easily

proved property is that, for all rational numbers q and q ′
,

≤Q◦q◦≤Q = ≤Q◦q ′
◦≤Q ≡ q=q ′

so ea
h grip of ≤Q equals ≤Q◦q◦≤Q for at most one rational number q .

To see that not every grip of ≤Q is of the form ≤Q◦q◦≤Q , 
onsider all the rational

numbers p and r su
h that p2≤2≤ r2 (again using the 
onventional overloaded nota-

tion). We leave it to the reader to 
he
k that the 
orresponding re
tangle is a grip of

≤Q . However, it 
annot be expressed in the form ≤Q◦q◦≤Q for any rational number q

sin
e, as is well-known,

√
2 is an irrational number.

The so-
alled \Dedekind-Ma
Neille 
ompletion" of the rationals Q de�nes IR , the set

of real numbers, to be the grips of ≤Q ; in so doing, the rational number q is identi�ed

with the grip ≤Q◦q◦≤Q and the irrational numbers (su
h as

√
2 ) are identi�ed with the

grips that are di�erent from ≤Q◦q◦≤Q for all rational numbers q .

We see from this example that the 
ardinality of the grips of a relation may be greater

than the 
ardinality of the relation. This suggests that the number of grips of a �nite

relation may, in the worst 
ase, be an exponential fun
tion of the size of the relation. If

so, representing a �nite relation by the transitive-re
exive redu
tion of the polar ordering

of its grips and testing membership of the relation via a graph-sear
hing algorithm may

not be pra
ti
al. However, this is not something I have investigated.
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11 Staircase Relations

As mentioned immediately after its de�nition, the notion of a polar 
overing was intro-

du
ed by Riguet in 
onne
tion with what he 
alled \relations de Ferrers". Riguet [Rig51℄

states the following theorem:

Pour que R soit une relation de Ferrers, il faut et il suÆt que R soit r�eunion

de re
tangles dont les proje
tions de même nom sont totalement ordonn�ees

par in
lusion et tels que si la premi�ere proje
tion de l'un des re
tangles est


ontenue dans la premi�ere proje
tion d'un autre re
tangle, la se
onde proje
-

tion du se
ond est 
ontenue dans la se
onde proje
tion du premier.

(For those unable to read Fren
h, the theorem states a ne
essary and suÆ
ient 
on-

dition for a relation to be \de Ferrers". The formal statement and proof of the theorem

is given below: see theorem 334. The theorem 
learly begs the question what is the

de�nition of a \relation de Ferrers". We postpone answering this question until later.

The reason for doing so is that Riguet gives both a formal de�nition and a mental pi
ture

|the pi
ture shown in �g. 1 of what we 
all a \stair
ase relation"| but it is far from

obvious how Riguet's de�nition and the mental pi
ture are related.)

Riguet does not give a proof of the theorem. He also states that there is a striking

analogy (\analogie frappante") between the de�nitions and properties of \relations de

Ferrers" and difun
tional relations but leaves the analogy un
lear. In this se
tion, we

formalise the mental pi
ture of a \stair
ase relation" (�g. 1) in several di�erent but

equivalent ways, one of whi
h is Riguet's orginal de�nition. We then prove Riguet's

theorem. This is quite straightforward. However, 
larifying the \analogie frappante" is

more diÆ
ult. To this end, we formulate the notion of a \polar 
overing" of a stair
ase

relation and a \non-redundant" polar 
overing. We show how Riguet's theorem predi
ts

that the less-than relation on real numbers has a polar 
overing but not a non-redundant

polar 
overing. The non-redundan
y property is the vital link between difun
tional

relations and (a proper sub
lass of) stair
ase relations. It is also the link between (a

proper sub
lass of) stair
ase relations and blo
k-ordered relations.

11.1 Formal Definition

Let us now turn to the formalisation of the mental pi
ture of a \stair
ase" relation.

Suppose the relation R of type A∼B 
an be depi
ted as a \stair
ase". Then, for any

element b of B , the set of elements a of A su
h that a and b are related by R is

depi
ted by the region where a verti
al line drawn at the point that depi
ts b interse
ts

with the shaded area in the stair
ase depi
tion of R . See �g. 16. (Conversely, the set of
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elements b of B that are related to a given element a of A is depi
ted by drawing a

horizontal line at the point depi
ted by a .)
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elements of A related to b

A

Figure 16: Preordering De�ned By a Stair
ase Relation

The 
hara
teristi
 property of a \stair
ase" is that su
h lines in
rease in length |of


ourse, not stri
tly| as one pro
eeds from the left to the right of the pi
ture. But

\length" and \left" and \right" are features of pi
tures and not properties of relations.

A better 
hara
terisation that is not spe
i�
 to drawing pi
tures is suggested by fo
using

on the subset of A 
omprising elements related by R to a given element b of B . In

relation algebra, this is denoted by (R◦b)< and the 
hara
teristi
 property of a \stair
ase"

is that, for any two elements b0 and b1 of B , either (R◦b0)< is a subset of (R◦b1)< or,

vi
e-versa, (R◦b1)< is a subset of (R◦b0)< . In terms of the mental pi
ture, b0 is to the

left or to the right of b1 .

At this point, 
ertain 
on
epts 
entral to relation algebra spring to mind. First, the

subset relation is an ordering relation. This immediately leads to the observation that

the relation S de�ned by

b0[[S]]b1 ≡ (R◦b0)< ⊆ (R◦b1)<

is a preorder. Then the \vi
e-versa" statement also looks familiar: it is the statement

that S∪S∪

is total (i.e. equal to the universal relation).

Those familiar with fa
tors will immediately spot a mu
h better 
hara
terisation.

For any binary relation R , the relations R\R and R/R are preorders. That is, both are

transitive and re
exive. (If R has type A∼B then R\R has type B∼B and R/R has

type A∼A .) If R is itself a preorder, then R=R\R=R/R=R\R/R . (Transitivity of R

is equivalent to R⊆R\R and re
exivity of R implies R\R⊆R ; similarly for R/R .) This

fa
t underlies the use of the rule 
alled indire
t ordering.
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The pointwise formulation of the relation R\R is

b0[[R\R]]b1 ≡ 〈∀a : a[[R]]b0 : a[[R]]b1〉 .

That is R\R is the relation S de�ned above. This is the eureka moment in this pre-

liminary investigation: that relation R is a \stair
ase" relation means formally that the

preorder R\R is linear

13

. (Later we show that this is equivalent to R/R being linear.)

For brevity, we denote this property by SC . That is:

Definition 302 The predi
ate SC on (binary) relations is de�ned by, for all R ,

SC.R ≡ R\R∪ (R\R)
∪

= ⊤⊤ .

✷

The boolean SC.R should be read as \R is a stair
ase relation". This se
tion is

thus about the properties of R\R , for arbitrary relation R , when R\R is linear. The

properties we investigate are driven by the need to provide further justi�
ation for the

\
orre
tness" of the formal de�nition with respe
t to the informal mental pi
ture of su
h

a relation.

Inevitably, we sometimes need to exploit pointwise de�nitions of \stair
ase" relations.

Su
h a de�nition is formulated in lemma 303. Informally, the lemma states that there

is a linear ordering on the depths of the \stairs" of a \stair
ase" relation. (Later we see

that this is equivalent to there being a linear ordering on the heights of the \stairs".)

Lemma 303 The property SC.R is equivalent to:

〈∀b,b ′ : b⊆R> ∧ b ′⊆R> : (R◦b)< ⊆ (R◦b ′)< ∨ (R◦b ′)< ⊆ (R◦b)<〉 .

(Dummies b and b ′
range over points of the appropriate type.)

Proof

SC.R

= { de�nition 302 }

R\R∪ (R\R)∪ = ⊤⊤
= { saturation axiom: (16) }

〈∀b,b ′ :: b◦⊤⊤◦b ′ ⊆ R\R∪ (R\R)∪〉
= { b◦⊤⊤◦b ′

is an (irredu
ible) atom, and 
onverse }

13

An ordering S |of any sort| is said to be linear if S∪ S∪

= ⊤⊤ . Sometimes the word \total" is

used instead of linear. For example, Riguet [Rig51℄ uses the term \totalement ordonn�ees".
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〈∀b,b ′ :: b◦⊤⊤◦b ′ ⊆ R\R ∨ b ′◦⊤⊤◦b ⊆ R\R〉
= { lemma 60 }

〈∀b,b ′ :: (R◦b)< ⊆ (R◦b ′)< ∨ (R◦b ′)< ⊆ (R◦b)<〉
= { b and b ′

are points;

hen
e, (b⊆R> ∧ b ′⊆R>) ∨ (R◦b)<=⊥⊥ ∨ (R◦b ′)<=⊥⊥

ase analysis (further details omitted) }

〈∀b,b ′ : b⊆R> ∧ b ′⊆R> : (R◦b)< ⊆ (R◦b ′)< ∨ (R◦b ′)< ⊆ (R◦b)<〉 .
✷

The �nal step in the proof of lemma 303 restri
ts the range of the dummies b and

b ′
. This is an indi
ation that our de�nition of SC demands re�nement: the relation

R\R typi
ally in
ludes irrelevant information. We return to this topi
 in se
tion 11.6.

11.2 Equivalent Formulations

Lemma 34 enables a simple proof that linearity of R\R is equivalent to linearity of R/R .

Spe
i�
ally:

Lemma 304 The following are all equivalent formulations of SC.R :

R\R ∪ (R\R)
∪

= ⊤⊤ ,(305)

R/R ∪ (R/R)
∪

= ⊤⊤ ,(306)

R ∪ (R\R/R)
∪

= ⊤⊤ ,(307)

R ◦¬R
∪

◦R ⊆ R .(308)

Proof We prove �rst that (306) and (308) are equivalent:

R ◦¬R
∪
◦R ⊆ R

= { fa
tors }

R ◦¬R
∪ ⊆ R/R

= { 
omplements }

⊤⊤ ⊆ R/R ∪ ¬(R ◦¬R
∪)

= { (38) with R,S := R∪

, R
∪

(and R=(R∪)∪ ) }

⊤⊤ ⊆ R/R ∪ R
∪

\R
∪
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= { (35) with R,S :=R,R }

⊤⊤ ⊆ R/R ∪ (R/R)∪

= { [S⊆⊤⊤ ] with S := R/R ∪ (R/R)∪ and anti-symmetry }

⊤⊤ = R/R ∪ (R/R)∪ .

A symmetri
 argument establishes the equivalen
e of (305) and (308):

R ◦¬R
∪
◦R ⊆ R

= { fa
tors }

¬R
∪
◦R ⊆ R\R

= { 
omplements }

⊤⊤ ⊆ R\R ∪ ¬(¬R∪
◦R)

= { (38) with S,T := R∪

, R
∪

}

⊤⊤ ⊆ R\R ∪ R
∪

/R
∪

= { (36) with R,S :=R,R (and R=(R∪)∪ ) }

⊤⊤ ⊆ R\R ∪ (R\R)∪

= { [S⊆⊤⊤ ] with S := R\R ∪ (R\R)∪ and anti-symmetry }

⊤⊤ = R\R ∪ (R\R)∪ .

Finally,

R ◦¬R
∪
◦R ⊆ R

= { fa
tors }

¬R
∪ ⊆ R\R/R

= { 
onverse and 
omplements }

⊤⊤ ⊆ R ∪ (R\R/R)∪

= { [S⊆⊤⊤ ] with S := R ∪ (R\R/R)∪ and anti-symmetry }

⊤⊤ = R ∪ (R\R/R)∪ .

✷

Note that, in lemma 304, the symbol \⊤⊤ " denoting the universal relation is over-

loaded: if R has type A∼B , its o

urren
e in (305) has type B∼B , its o

urren
e in

(306) has type A∼A and its o

urren
e in (307) has type A∼B . This means that any

attempt to prove, for example, that

R ∪ (R\R/R)
∪

= R/R ∪ (R/R)
∪
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is doomed to fail. One might 
onje
ture that it is possible to establish the equivalen
e of

(305) and (306) without introdu
ing 
omplements by showing that both are equivalent

to (307). However, the use of (308) is inevitable be
ause of the algebrai
 properties of

set union: when a set union is on the greater side of a set in
lusion, there is no other


hoi
e but to introdu
e set negation.

11.3 General Constructions

Two general methods for identifying examples of stair
ase relations are given in lemmas

309 and 310.

Lemma 309 A linear preorder is a stair
ase relation. That is, for all (homogeneous)

R ,

SC.R ⇐ R◦R⊆R ∧ I⊆R ∧ R∪R∪

= ⊤⊤ .

Proof We have

R=R\R/R ⇐ R◦R⊆R ∧ I⊆R

sin
e

R ⊆ R\R/R

= { fa
tors }

R◦R◦R ⊆ R

⇐ { monontoni
ity and transitivity }

R◦R⊆R

and

R\R/R ⊆ R

= { [ R= I\R/I ] }

R\R/R ⊆ I\R/I

⇐ { (anti)monotoni
ity }

I⊆R .

Also,

R
∪

◦R
∪ ⊆ R

∪

∧ I⊆R∪ ≡ R◦R⊆R ∧ I⊆R .

(The 
onverse of a preorder is a preorder.) So
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SC.R

= { lemma 304, in parti
ular (307) }

R ∪ (R\R/R)∪ = ⊤⊤
= { assumption: R is a preorder

(hen
e, R
∪

is a preorder and R
∪ = R∪

\R
∪

/R
∪

)

lemma 34, in parti
ular (37) }

R ∪ R∪ = ⊤⊤
= { assumption: R is linear (i.e. R∪R∪ = ⊤⊤ ) }

true .

✷

An example of a stair
ase relation predi
ted by lemma 309 is the at-most relation |

on natural numbers, integers, rational numbers or reals.

The se
ond way of 
onstru
ting a stair
ase relation is to redu
e a linear preorder by

eliminating its re
exive part (making it so-
alled \stri
t"). For example, the less-than

relation (on natural numbers, integers, rational numbers or reals) is a stair
ase relation.

(Lemma 311 is an alternative way of establishing that the less-than relation is a stair
ase

relation. See example 315.) Formally, we have:

Lemma 310 For all (homogeneous) R ,

SC.R ⇐ R◦R⊆R ∧ R∪ I∪R∪

= ⊤⊤ .

Proof

SC.R

= { (307) }

R ∪ (R\R/R)∪ = ⊤⊤
= { [X⊆⊤⊤ ] and antisymmetry }

⊤⊤ ⊆ R ∪ (R\R/R)∪

⇐ { assumption: R∪ I∪R∪ = ⊤⊤ , so ⊤⊤ ⊆ R∪ I∪R∪

monotoni
ity and transitivity }

I∪R∪ ⊆ (R\R/R)∪

= { 
onverse, fa
tors and distributivity }

R◦I◦R∪R◦R◦R ⊆ R
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= { supremum and monotoni
ity }

R◦R ⊆ R

= { assumption }

true .

✷

11.4 Invariant Properties

In this se
tion, we prove that the 
lass of linear preorders 
hara
terised by the predi
ate

SC is invariant under a variety of operators. Lemma 311 is supported by the mental

pi
ture shown in �g. 17.
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(c) Complement(a) Staircase (b) Converse

Figure 17: Stair
ase Invariants

Lemma 311 For all R ,

SC.R = SC .¬R = SC . R
∪

.

(As always, equality is used 
onjun
tionally.)

Proof

SC.R

= { de�nition 302 }

R\R∪ (R\R)∪ = ⊤⊤
= { 
orollary 39 }
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¬R \¬R ∪ (¬R \¬R)∪ = ⊤⊤
= { de�nition 302 }

SC .¬R .

Also,

SC.R

= { de�nition 302 }

R\R∪ (R\R)∪ = ⊤⊤
= { lemma 304 (in parti
ular (308)) }

R ◦¬R
∪
◦R ⊆ R

= { properties of 
onverse }

R
∪
◦¬R ◦R

∪ ⊆ R
∪

= { lemma 304 (in parti
ular (308)) with R :=R∪

}

SC . R
∪

.

✷

Lemma 312 The fun
tions 〈R ::R\R〉 and 〈R ::R/R〉 are 
losure operators. That is

(R\R)\(R\R) = R\R ∧ (R/R)/(R/R) = R/R .

Proof This is a straightforward appli
ation of standard properties of fa
tors:

(R\R)\(R\R)

= { [ R\(S\T)= (S◦R)\T ] with R,S,T :=R,R,R }

(R ◦R\R)\R

= { (28): [ R ◦R\R = R ] }

R\R .

The se
ond equation is proved in the same way.

✷

Lemma 313 For all R ,

SC.R = SC.(R\R) = SC.(R/R) .

Proof Straightforward appli
ation of de�nition 302 and lemma 312.

✷
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Lemma 314 For all S , R and T (of appropriate type),

SC.(S◦R◦T) ⇐ SC.R .

Proof

SC.(S◦R◦T)

= { lemma 304, in parti
ular (308) with R :=S◦R◦T }

S ◦ R ◦ T ◦ ¬(S◦R◦T)∪ ◦ S ◦ R ◦ T ⊆ S ◦R ◦T

⇐ { monotoni
ity of 
omposition }

R ◦ T ◦ ¬(S◦R◦T)∪ ◦ S ◦ R ⊆ R

= { middle-ex
hange rule (and double negation) }

(R◦T)∪ ◦ ¬R ◦ (S◦R)∪ ⊆ (S◦R◦T)∪

= { 
onverse }

T
∪

◦ R
∪

◦ ¬R ◦ R
∪

◦ S
∪ ⊆ T

∪
◦ R

∪
◦ S

∪

⇐ { monotoni
ity of 
omposition }

R
∪

◦ ¬R ◦ R
∪ ⊆ R

∪

= { R=(R∪)∪ and lemma 304 with R :=R∪

}

SC . R
∪

= { lemma 311 }

SC.R .

✷

Example 315 The above properties allow us to identify a number of examples of

stair
ase relations that prove to be signi�
ant later.

The at-most relation (
ommonly denoted by the symbol \≤ ") is a linear ordering

relation | on the integers, on the rationals and on the real numbers. By lemma 309 all

three relations are stair
ase relations. By applying lemma 311 it is thus the 
ase that

the greater-than relation (
ommonly denoted by \> "), the less-than relation (
ommonly

denoted by the symbol \< ") and the at-least relation (
ommonly denoted by the symbol

\≥ ") are all stair
ase relations | again, on the integers, on the rationals and on the

real numbers. This is be
ause the greater-than relation is the 
omplement of the at-most

relation, the less-than relation is the 
onverse of the greater-than relation, and, in turn,

the at-least relation is the 
omplement of the less-than relation.



198

Note that the less-than relation is not a preorder. (It is transitive but not re
exive.)

Thus it is an example of a relation R su
h that R 6=R\R (and R 6=R/R ) but is nevertheless
a stair
ase relation a

ording to de�nition 302.

The reader is invited to pi
ture the less-than relation on the integers as a \stair
ase".

Pi
turing the less-than relation on the rational numbers (or on the real numbers) as

a \stair
ase" is, however, more diÆ
ult | in fa
t impossible in a formal sense to be

made pre
ise later. This raises doubts as to whether de�nition 302 is the appropriate

abstra
tion from the mental pi
ture of a \stair
ase".

✷

We 
on
lude this se
tion with a property due to Riguet [Rig51℄. (See the dis
ussion

following the lemma.)

Lemma 316 For all R , the relation R\R/R is a stair
ase relation if R is a stair
ase

relation.

Proof For brevity, let S denote R\R/R . Then

SC.S

= { lemma 304 }

S ◦¬S
∪
◦S ⊆ S

= { lemma 32 and de�nition of S }

R\R/R ◦R ◦¬R
∪
◦R ◦R\R/R ⊆ R\R/R

= { de�nition of fa
tors }

R ◦R\R/R ◦R ◦¬R
∪
◦R ◦R\R/R ◦R ⊆ R

⇐ { 
an
ellation }

R ◦¬R
∪
◦R

= { lemma 304 }

SC.R .

✷

The 
ombination of lemmas 182 and 316 is the se
ond of two theorems stated by

Riguet [Rig51℄. More pre
isely, he states that R ◦¬R
∪
◦R is a \relation de Ferrers" if

R is a \relation de Ferrers" (
f. lemma 316) and their \di��eren
e" R∩¬(R ◦¬R
∪
◦R)

(i.e. ∆R ) is a difun
tional relation (
f. lemma 182). This explains his use of the term

\di��eren
e" for what we 
all the \diagonal" of a relation.
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11.5 Linear Orderings

In this se
tion and the next we return to the mental pi
ture of \stair
ases" as illustrated

by �g. 1. An alternative perspe
tive on a stair
ase relation of type A∼B is that it

divides the elements of A into \blo
ks"; similarly the elements of B are also divided

into \blo
ks". Fig. 18 is an example where A and B are ea
h divided into �ve blo
ks.

The e�e
t is to divide the \stair
ase" into �fteen ( 1+2+3+4+5 ) blo
ks. A pair (a, b)

is related by the stair
ase relation if the number assigned to a is at most the number

assigned to b . Note that the at-most relation on numbers is a linear ordering.
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Figure 18: Blo
k Stru
ture of a Stair
ase Relation

In se
tion 11.6, we show that every linearly blo
k-ordered relation is a stair
ase

relation. However, as we show in this se
tion, a stair
ase relation does not ne
essarily

have a blo
k-ordering. See theorem 319. Thus, 
ontrary to 
laims made in the literature

|see se
tion 12| it is not the 
ase that these two 
on
epts are equivalent.

Lemma 317 Suppose R has type A∼B and f and g are relations with targets A

and B , respe
tively, su
h that f ◦ f
∪ = R<

and g ◦g
∪ = R>

. Then

SC.(f
∪

◦R ◦g) ≡ SC.R .

Proof The equivalen
e is proved by mutual impli
ation.

SC.R

= { assumption: f ◦ f
∪ = R<

and g ◦g
∪ = R>

; domains }

SC.(f ◦ f∪ ◦R ◦g ◦g
∪)

⇐ { lemma 314 with S,T := f , g∪

}
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SC.(f∪ ◦R ◦g)

⇐ { lemma 314 with S,T := f∪ , g }

SC.R .

✷

Corollary 318 Suppose T of type C∼C is a linear ordering and suppose f and g are

fun
tional and surje
tive relations of types C∼A and C∼B , respe
tively. Then f∪ ◦T ◦g

is a stair
ase relation.

Proof An ordering is also a preorder (and a linear ordering is a linear preorder). So

the 
orollary follows immediately from the 
ombination of lemmas 309 and 317.

✷

Theorem 319 Not every stair
ase relation is blo
k-ordered. Spe
i�
ally, the less-than

relation on the real numbers (or the rational numbers) is a stair
ase relation but is not

blo
k-ordered.

Proof We remarked in example 315 that the less-than relation on the real numbers is

a stair
ase relation. To show that it is not blo
k-ordered, we exploit lemma 248.

Suppose that the less-than relation on the real numbers is blo
k-ordered by the fun
-

tions f and g and the provisional ordering T . That is, suppose

R = f
∪

◦T ◦g ,

where f and g are fun
tionals of type A←IR , for some A , and

f ◦ f
∪

= T ∩T∪

= g ◦g
∪

∧ IIR ⊆ f
∪

◦ f ∩ g∪

◦g ,

T is a provisional ordering of type A∼A and for all x and y of type IR , and

x◦⊤⊤◦y ⊆ R ≡ x<y .

We begin by showing that f
∪
◦g is the empty relation. Inevitably, we need to exploit

the pointwise de�nition of the diagonal, as formulated in lemma 40.

x◦⊤⊤◦y ⊆ f
∪
◦g

= { lemma 248, in parti
ular (251) }

x◦⊤⊤◦y ⊆ R ∩ R∪

\R
∪

/R
∪

= { de�nition of interse
tion and lemma 40 }

x◦⊤⊤◦y ⊆ R ∧ 〈∀u,v : u◦⊤⊤◦y ⊆ R ∧ x◦⊤⊤◦v ⊆ R : u◦⊤⊤◦v ⊆ R〉
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= { de�nition of R }

x<y ∧ 〈∀u,v : u<y ∧ x<v : u<v〉
⇒ { u,v := y− (y−x)× 2

3
, x+ (y−x)× 1

3

(Note that x<y ⇒ y− (y−x)× 2
3
< y ∧ x < x+ (y−x)× 1

3
) }

y− (y−x)×2
3
< x+ (y−x)×1

3

= { arithmeti
 }

y−x < y−x

= { the less-than relation is irre
exive }

false .

That is, by the saturation axiom (16), f
∪
◦g = ⊥⊥IR . This 
ontradi
ts theorem 262 sin
e

the left (and right) domain of the empty relation is the empty relation and the left and

right domains of the less-than relation are both non-empty.

✷

A brief, informal summary of the proof of theorem 319 is that the less-than relation

on real numbers is indeed a stair
ase relation but has no \diagonal" (more formally its

\diagonal" is the empty relation) and no su
h stair
ase relation 
an be blo
k-ordered.

The informal 
ontrapositive is that a ne
essary step in the pro
ess of blo
k-ordering a

stair
ase relation is to begin by identifying its diagonal; this is a difun
tional relation

and 
an be represented by f
∪
◦g where f and g are fun
tional. If the right domain of g

equals the right domain, and the right domain of f equals the left domain of the given

relation, the pro
ess is 
ompleted by identifying the ordering relation T .

For example, the less-than relation on the integers is blo
k-ordered. Indeed, for all

integers m and n

m<n ≡ m+1≤n .

The relation f is thus the su

essor fun
tion, the relation T is the at-most relation and

the relation g is the identity fun
tion (on the integers). The \diagonal" is the set of

pairs (m, m+1) .

The less-than relation on the natural numbers is also blo
k-ordered but more 
are

needs to be taken in the de�nition of the blo
k-ordering. The relation f is the su

essor

fun
tion; its sour
e is the natural numbers and its target is the stri
tly positive natu-

ral numbers. The provisional ordering T is a subset of the at-most relation on natural

numbers (spe
i�
ally, the at-most relation restri
ted to the stri
tly positive natural num-

bers) and g is the partial identity relation on the natural numbers with left (and right)

domain the stri
tly positive natural numbers. (Thus no number is related by g to the

number 0 .)
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That the less-than relation on the real numbers is not blo
k-ordered is a 
onsequen
e

of the fa
t that if x<y the interval between x and y 
an always be subdivided at will.

(That is, it is always possible to �nd a real number z su
h that x<z and z<y .) The

same is also true of the rationals and the proof of theorem 319 is equally valid in this


ase. Abstra
ting from the details of the less-than relation, we get the following theorem.

Theorem 320 Suppose R is a homogeneous relation su
h that

R 6=⊥⊥ ∧ I∩R=⊥⊥ ∧ R=R◦R ∧ R∪ I∪R∪

= ⊤⊤ .

Then R is a stair
ase relation and ∆R=⊥⊥ .

It follows that any su
h relation is not blo
k-ordered.

Proof Lemma 310 proves that R is a stair
ase relation.

Comparing the above 
onditions on R with those in lemma 310, the additions are the

non-emptiness property R 6=⊥⊥ , the \stri
tness" property I∩R=⊥⊥ and the \subdivi-

sion" property R ⊆ R◦R . (The less-than relation on real numbers has the subdivision

property whereas the less-than relation on the integers does not.) Applying lemma 321

(below), the subdivision and stri
tness properties imply that ∆R=⊥⊥ . That R is not

blo
k-ordered follows from theorem 262 and the assumption that R 6=⊥⊥ .

✷

The lemma used to prove theorem 320 is the following:

Lemma 321

R⊆R◦R⇒ (∆R=⊥⊥ ≡ I∩R⊆⊥⊥) .

Proof

R ⊆ R ◦¬R
∪
◦R

⇒ { monotoni
ity }

I∩R ⊆ I ∩ R ◦¬R
∪
◦R

⇒ { modular law }

I∩R ⊆ R◦(R∪
◦R

∪ ∩ ¬R
∪)◦R

= { assumption: R⊆R◦R }

I∩R ⊆ R◦(R∪ ∩ ¬R
∪)◦R

= { 
omplements }

I∩R⊆⊥⊥
= { I= I∪ , 
onverse and shunting }
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I ⊆ ¬R
∪

⇒ { monotoni
ity }

R◦R ⊆ R ◦¬R
∪
◦R

⇒ { assumption: R⊆R◦R and transitivity }

R ⊆ R ◦¬R
∪
◦R .

That is,

R⊆R◦R ⇒ (R ⊆ R ◦¬R
∪

◦R ≡ I∩R⊆⊥⊥) .(322)

So

∆R=⊥⊥
= { [⊥⊥⊆X ] and antisymmetry, de�nition of ∆R }

R ∩ (R\R/R)∪ ⊆ ⊥⊥
= { shunting }

R ⊆ ¬(R\R/R)∪

= { (32) }

R ⊆ R ◦¬R
∪
◦R

= { assumption: R⊆R◦R , (322) }

I∩R⊆⊥⊥ .

✷

The assumption that R 6=⊥⊥ in theorem 320 is ne
essary. The relation ¬I11 (see

(33)) is the empty relation; it is also a blo
k-ordered stair
ase relation on a �nite type

that satis�es all the assumptions of theorem 320 ex
ept for the assumption that it is

non-empty.

Note that, if R is a homogeneous relation su
h that

R 6=⊥⊥ ∧ R=R◦R ∧ I∩R=⊥⊥ ,

the left and right domains of R 
annot be �nite. (The easy proof involves 
onstru
ting

an in�nite sequen
e of points 〈i : i∈IN :ai〉 su
h that,

〈∀i :: ai◦⊤⊤◦ai+1 ⊆ R〉 ∧ 〈∀ i,j :: ai=aj ≡ i= j〉 .

This raises the question whether all �nite stair
ase relations are linearly blo
k-ordered.
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11.6 Linear Block Ordering

Re
all that, immediately following lemma 303, we remarked that the de�nition of SC

demands re�nement. This is more evident from the limitations of 
orollary 318: the


orollary assumes a linear ordering |and not a provisional linear ordering| and, more

importantly, that f and g are surje
tive. In pra
ti
e, one might be tempted to fudge

the appli
ation of the 
orollary by restri
ting a given ordering to a subset of the elements

on whi
h it is de�ned (for example, restri
ting the at-most ordering on integers to the

at-most ordering on even integers). Rather than resort to su
h measures, we prefer to

make the pro
ess pre
ise within our axiom system. Indeed, it is ne
essary for us to

do so in order to establish a suÆ
ient 
ondition for a stair
ase relation to be linearly

blo
k-ordered. See theorem 333 below.

In the following lemmas R>•
denotes the 
omplement of R>

in the latti
e of 
ore
ex-

ives. That is, for arbitrary relation R , we have

R>∪R>• = I ∧ R>∩R>• = ⊥⊥(323)

(where I and ⊥⊥ denote the identity and empty relations of appropriate type). Similarly

R•<
denotes the 
omplement of R<

That is

R<∪R•< = I ∧ R<∩R•< = ⊥⊥ .(324)

Domain 
al
ulus enables the proof of the following:

R ◦R>• = ⊥⊥ ∧ R•< ◦R = ⊥⊥ .(325)

Given a relation R , the points in R•<
(or, dually R>•

) are arguably irrelevant sin
e they

are pre
isely the points that are not related to any other point by R . Similar statements


an be made about fa
tors. In general, for arbitrary relations R and S , the fa
tor R\S

is arguably too big be
ause its left domain in
ludes R>•
. Similarly, the fa
tor R/S is too

big be
ause its right domain in
ludes S•< , as is shown in the following lemma.

Lemma 326 For all R and S ,

R>• ◦R\S = R>• ◦⊤⊤ ∧ R/S ◦S•< = ⊤⊤ ◦S•< .

Proof We prove the �rst equation:

R>• ◦⊤⊤
= { 
omplements }

R>• ◦ (R\S ∪ ¬(R\S))

= { distributivity }
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R>• ◦R\S ∪ R>• ◦¬(R\S)

= { (38) }

R>• ◦R\S ∪ R>• ◦R
∪

◦ ¬S

= { (325) and 
onverse }

R>• ◦R\S ∪ ⊥⊥ ◦¬S

= { ⊥⊥ is zero of 
omposition and unit of union }

R>• ◦R\S .

✷

The argument that fa
tors typi
ally in
lude irrelevant information extends to the

preorders R\R and R/R . In parti
ular, note the terms involving R>•
in the following

lemma.

Lemma 327 For all R ,

R\R∪ (R\R)
∪

= R> ◦ (R\R∪ (R\R)
∪

) ◦R> ∪ R>• ◦⊤⊤ ∪ ⊤⊤ ◦R>• .

Proof

R\R∪ (R\R)∪

= { (323) }

(R>∪R>•) ◦ R\R ∪ (R\R)∪ ◦ (R>∪R>•)

= { distributivity }

R> ◦ R\R ∪ R>• ◦ R\R

∪ (R\R)∪ ◦ R> ∪ (R\R)∪ ◦ R>•

= { lemma 326 and rearranging }

R> ◦ R\R ∪ ⊤⊤ ◦R>•

∪ (R\R)∪ ◦ R> ∪ R>• ◦⊤⊤
= { (323) and distributivity (as in �rst two steps) }

R> ◦R\R ◦R> ∪ R> ◦R\R ◦R>• ∪ ⊤⊤ ◦R>•

∪ R> ◦ (R\R)∪ ◦R> ∪ R>• ◦ (R\R)∪ ◦R> ∪ R>• ◦⊤⊤
= { R> ◦ R\R ⊆ ⊤⊤ and (R\R)∪ ◦R> ⊆ ⊤⊤

and de�nition of subset relation }

R> ◦R\R ◦R> ∪ ⊤⊤ ◦R>•
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∪ R> ◦ (R\R)∪ ◦R> ∪ R>• ◦⊤⊤
= { rearranging and distributivity }

R> ◦ (R\R∪ (R\R)∪) ◦R> ∪ ⊤⊤ ◦R>• ∪ R>• ◦⊤⊤ .

✷

(Lemma 327 is essentially the 
ase analysis that was omitted in the proof of lemma

303.) Avoiding the useless information introdu
ed by the fa
tor operators was the moti-

vation for our introdu
ing the notion of \provisional" (pre)orders. The following lemma

enables the 
onventional notion of a linear ordering to be extended to provisional order-

ings.

Lemma 328 For all R ,

R\R∪ (R\R)
∪

= ⊤⊤ ≡ R> ◦ (R\R∪ (R\R)
∪

) ◦R> = R> ◦⊤⊤ ◦R> .

Proof By mutual impli
ation. First,

R\R∪ (R\R)∪ = ⊤⊤
⇒ { Leibniz }

R> ◦ (R\R∪ (R\R)∪) ◦R> = R> ◦⊤⊤ ◦R> .

Se
ond,

R\R∪ (R\R)∪

= { lemma 327 }

R> ◦ (R\R∪ (R\R)∪) ◦R> ∪ R>• ◦⊤⊤ ∪ ⊤⊤ ◦R>•

= { assume: R> ◦ (R\R∪ (R\R)∪) ◦R> = R> ◦⊤⊤ ◦R> }

R> ◦⊤⊤ ◦R> ∪ R>• ◦⊤⊤ ∪ ⊤⊤ ◦R>•

= { (323), distributivity and rearranging

(as in proof of lemma 327) }

R> ◦⊤⊤ ◦R> ∪ R>• ◦⊤⊤ ◦R> ∪ R>• ◦⊤⊤
∪ R> ◦⊤⊤ ◦R> ∪ R> ◦⊤⊤ ◦R>• ∪ ⊤⊤ ◦R>•

= { (323), distributivity and rearranging }

⊤⊤ ◦R> ∪ R>• ◦⊤⊤
∪ R> ◦⊤⊤ ∪ ⊤⊤ ◦R>•

= { (323), distributivity and rearranging }

⊤⊤ .



207

(Note the assumption in the se
ond step.) That is,

R> ◦ (R\R∪ (R\R)
∪

) ◦R> = R> ◦⊤⊤ ◦R> ⇒ R\R∪ (R\R)
∪

= ⊤⊤ .

✷

As always, for pra
ti
al purposes it is preferable to express properties in terms of

the 
ore of a relation rather than the relation itself. Lemma 328 is easily rewritten

a

ordingly:

Theorem 329 Suppose |R| is a 
ore of relation R as determined by the fun
tionals

λ and ρ . (See de�nition 191.) Then R is a stair
ase relation i�

|R|< ◦ (|R|\|R| ∪ (|R|\|R|)
∪

) ◦ |R|< = |R|> ◦⊤⊤ ◦ |R|> .

Proof

R> ◦ (R\R∪ (R\R)∪) ◦R> = R> ◦⊤⊤ ◦R>

= { lemma 195 }

ρ> ◦ (R\R∪ (R\R)∪) ◦ρ> = ρ> ◦⊤⊤ ◦ρ>

= { by lemma 193, R = λ
∪
◦ |R| ◦ρ , (81) with f,g :=λ,ρ }

ρ
∪
◦ (|R|\|R| ∪ (|R|\|R|)∪) ◦ρ = ρ> ◦⊤⊤ ◦ρ>

= { (⇒ ) monotoni
ity and domains; (⇐ ) ditto and ρ
∪
◦ρ = ρ< }

ρ ◦ρ
∪
◦ (|R|\|R| ∪ (|R|\|R|)∪) ◦ρ ◦ρ

∪ = ρ< ◦⊤⊤ ◦ρ<

= { by lemma 195, ρ ◦ρ
∪ = ρ< = |R|> }

|R|> ◦ (|R|\|R| ∪ (|R|\|R|)∪) ◦ |R|> = |R|> ◦⊤⊤ ◦ |R|> .

The theorem follows by 
ombining lemma 328 with de�nition 302.

✷

Lemma 330 A linear provisional ordering is a stair
ase relation.

Proof Suppose T is a linear provisional ordering. Then

SC.T

= { de�nition 302 }

T\T ∪ (T\T)∪ = ⊤⊤
= { lemma 328 }

T> ◦ (T\T ∪ (T\T)∪) ◦T> = T> ◦⊤⊤ ◦T>
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= { lemma 122 }

(T ∩T∪) ◦ (T\T ∪ (T\T)∪) ◦ (T ∩T∪) = (T ∩ T∪) ◦⊤⊤ ◦ (T ∩ T∪)

= { assumption: T is a provisional ordering

lemma 119 and de�nition 121 }

(T ∩T∪) ◦ (T ∪T∪) ◦ (T ∩ T∪) = (T ∩T∪) ◦⊤⊤ ◦ (T ∩ T∪)

= { assumption: T is linear, de�nition 121 }

true .

✷

Lemma 331 Suppose R is a linearly blo
k-ordered relation. Then R is a stair
ase

relation.

Proof This is an immediate 
onsequen
e of lemmas 317 and 330. Spe
i�
ally, by

de�nition 225, R is a blo
k-ordered relation if R = f∪ ◦T ◦g where f and g satisfy (227)

and T is a provisional ordering (i.e. satis�es (226)). It is a linearly blo
k-ordered relation

if, in addition, T is a linear provisional ordering. Applying lemma 317 (with R :=T ), R

is a stair
ase relation if T is a stair
ase relation. But this is indeed the 
ase by lemma

330.

✷

Lemma 332 Suppose R is a stair
ase relation. Then

R is linearly blo
k-ordered ⇐ (∆R)< = R< ∧ (∆R)> = R> .

Proof By lemma 259, R is blo
k-ordered. Spe
i�
ally, lemma 259 shows how to


onstru
t fun
tionals f and g and a provisional ordering T satisfying the properties

(227) and (226) su
h that R = f∪ ◦T ◦g . The task is thus to prove that T is linear if R

is a stair
ase relation.

We have:

R< ◦ (R\R/R)∪ ◦R>

= { R = f∪ ◦T ◦g and (227) }

f> ◦ ((f∪ ◦T ◦g)\(f∪ ◦T ◦g)/(f∪ ◦T ◦g))∪ ◦ g>

= { 
onverse and fa
tors: (37) }

f> ◦ (g∪
◦ T

∪
◦ f)\(g∪

◦T
∪
◦ f)/(g∪

◦T
∪
◦ f) ◦ g>

= { lemma 78 with U,V,W := T∪

, T
∪

, T
∪

}
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f
∪
◦ (T\T/T)∪ ◦g

= { domains and (227) }

f
∪
◦ (T ∩ T∪) ◦ (T\T/T)∪ ◦ (T ∩ T∪) ◦g

= { T is a provisional ordering, lemmas 116 and 118 }

f
∪
◦T

∪
◦g .

So

SC.R

= { (307) }

R ∪ (R\R/R)∪ = ⊤⊤
⇒ { [S⊆⊤⊤ ] , domains and monotoni
ity }

R ∪ R< ◦ (R\R/R)∪ ◦R> = R< ◦⊤⊤ ◦R>

= { R = f∪ ◦T ◦g and above 
al
ulation }

f
∪
◦T ◦g ∪ f

∪
◦T

∪
◦g = f> ◦⊤⊤ ◦g>

= { distributivity }

f∪ ◦ (T ∪ T∪) ◦g = f> ◦⊤⊤ ◦g>

⇒ { Leibniz }

f ◦ f
∪
◦ (T ∪ T∪) ◦g ◦g

∪ ⊇ f ◦ f> ◦⊤⊤ ◦g> ◦g
∪

= { de�nition 225 of blo
k-ordered

in parti
ular (227); domains }

(T ∩T∪) ◦ (T ∪ T∪) ◦ (T ∩ T∪) = (T ∩T∪) ◦⊤⊤ ◦ (T ∩ T∪)

= { lemma 122 and de�nition 121 }

T is linear .

✷

Theorem 333 Suppose R is a stair
ase relation. Then

R is linearly blo
k-ordered ≡ (∆R)< = R< ∧ (∆R)> = R> .

Proof By mutual impli
ation. \Only-if" is an instan
e of theorem 262. \If" is lemma

332.

✷
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11.7 Riguet’s Rectangle Theorem

As mentioned earlier, the purpose of undertaking this exer
ise was to demonstrate how

reasoning with fa
tors is so mu
h more straightforward than reasoning with nested nega-

tions. It was a surprise to dis
over an error in the extant literature. This se
tion is about

our attempt to tra
e the sour
e of the material on difun
tional and stair
ase relations

and, in parti
ular, the sour
e of the error.

Riguet introdu
es the notion of a difun
tional relation in [Rig48℄ and the notion of

a stair
ase relation in [Rig51℄ | but uses the name \relation de Ferrers". His de�nition


orresponds to property (308). He lists a number of properties related to the ones stated

above. Dire
t 
omparison is slightly 
ompli
ated by the fa
t that he does not make use

of fa
tors. For example, he states that R is a \relation de Ferrers" if and only if R ◦¬R
∪

is a \relation de Ferrers". This is a 
ombination of lemma 304 (in parti
ular (305)) and

lemma 311.

Riguet does not give a proof of the theorem. Riguet [Rig51℄ states that there is a

striking analogy (\une analogie frappante") between the de�nitions and properties of

\relations de Ferrers" and difun
tional relations. He states that the analogy is 
lari�ed

by

14

a theorem similar to our lemma 182 but does not go into further details. As

mentioned earlier, his theorem is that, if R is a stair
ase relation (a \relation de Ferrers"),

then so too is R ◦¬R
∪
◦R and their \di��eren
e" R∩¬(R ◦¬R

∪
◦R) is difun
tional. Lemma

182 is stronger than Riguet's difun
tionality property be
ause it does not require R to

be a stair
ase relation.

Note that in the 
ase that R is the less-than relation on real numbers, R ◦¬R
∪
◦R

is also the less-than relation and R∩¬(R ◦¬R
∪
◦R) is trivially difun
tional (sin
e it is

the empty relation). This observation leads one to wonder pre
isely how the \analogie

frappante" is 
lari�ed by Riguet's theorem. (We invite the reader to verify the 
laims

we have just made and then work out the di�eren
e when \real number" is repla
ed by

\integer".)

As announ
ed earlier, the proof of Riguet's theorem is straightforward

15

:

Theorem 334 (Riguet’s theorem) A relation is a stair
ase relation if and only if it

has a linear polar 
overing.

Proof By mutual impli
ation.

For the \only-if" part, theorem 211 establishes that every relation has a polar 
over-

ing. So it suÆ
es to show that if R is a stair
ase relation the 
overing is linear. Re
all

the 
onstru
tion of R in theorem 211. If R is a stair
ase relation, that the set R<
is

linearly ordered by in
lusion is immediate from lemma 303.

14

\Cette analogie s'�e
laire par"

15

This may explain why he didn't provide a proof.
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For the \if" part, suppose R of type A∼B has a linear polar 
overing R . Our task

is to show that R is a stair
ase relation. Aiming to apply lemma 303, we 
onsider points

b and b ′
su
h that b⊆R>

and b ′⊆R>
. Our task be
omes to show that

(R◦b)< ⊆ (R◦b ′)< ∨ (R◦b ′)< ⊆ (R◦b)< .

This is a
hieved as follows:

(R◦b)< ⊆ (R◦b ′)< ∨ (R◦b ′)< ⊆ (R◦b)<

= { R=∪R }

(∪R ◦b)< ⊆ (R◦b ′)< ∨ (∪R ◦b ′)< ⊆ (R◦b)<

= { distributivity properties }

〈∀U : U∈R : (U◦b)< ⊆ (R◦b ′)<〉 ∨ 〈∀U : U∈R : (U◦b ′)< ⊆ (R◦b)<〉
= { lemma 128,


ase analyses on (b ′⊆U> ∧ (U◦b ′)<=U<) ∨ (U◦b ′)<=⊥⊥
and (b⊆U> ∧ (U◦b)<=U<) ∨ (U◦b)<=⊥⊥ }

〈∀U : U∈R ∧ b⊆U> : U< ⊆ (R◦b ′)<〉
∨ 〈∀U : U∈R ∧ b ′⊆U> : U< ⊆ (R◦b)<〉

⇐ { R=∪R , monotoni
ity and lemma 128 }

〈∀U : U∈R ∧ b⊆U> : 〈∃V : V∈R ∧ b ′⊆V> : U< ⊆ V<〉〉
∨ 〈∀U : U∈R ∧ b ′⊆U> : 〈∃V : V∈R ∧ b⊆V> : U< ⊆ V<〉〉

= { assumption: R is a polar 
overing

so U< ⊆ V< ≡ U> ⊇ V> }

〈∀U : U∈R ∧ b⊆U> : 〈∃V : V∈R ∧ b ′⊆V> : U> ⊇ V>〉〉
∨ 〈∀U : U∈R ∧ b ′⊆U> : 〈∃V : V∈R ∧ b⊆V> : U> ⊇ V>〉〉

= { [ p∨q ≡ (¬q⇒p) ] together with the 
al
ulation below }

true .

The justi�
ation of the �nal step is as follows.

¬〈∀U : U∈R ∧ b ′⊆U> : 〈∃V : V∈R ∧ b⊆V> : U> ⊇ V>〉〉
= { predi
ate 
al
ulus (and dummy 
hange: U,V :=V,U ) }

〈∃V : V∈R ∧ b ′⊆V> : 〈∀U : U∈R ∧ b⊆U> : ¬(V> ⊇ U>)〉〉
= { assumption: R is a linear polar 
overing
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in parti
ular, the in
lusion ordering on left domains is linear }

〈∃V : V∈R ∧ b ′⊆V> : 〈∀U : U∈R ∧ b⊆U> : V> ⊂ U>〉〉
⇒ { predi
ate 
al
ulus and V> ⊂ U> ⇒ U>⊇V> }

〈∀U : U∈R ∧ b⊆U> : 〈∃V : V∈R ∧ b ′⊆V> : U> ⊇ V>〉〉 .
✷

In the proof of theorem 334 we have 
hosen a 
overing that is indexed by points in

the sour
e of the given relation R . We 
ould, of 
ourse, have 
hosen a 
overing that is

indexed by points in the relation's target. Fig. 19 is a mental pi
ture of the di�erent


hoi
es.

����������������������������������������

A

B

a

b

Figure 19: Choi
es of Polar Covering

Highlighted in �g. 19 are a point |the point a◦⊤⊤◦b in our formalism| and two

re
tangles. The (highlighted) long, low re
tangle depi
ts the relation

R/R ◦a ◦R ,

whilst the (highlighted) short, tall re
tangle depi
ts the relation

R ◦b ◦R\R .

Rather than 
hoosing the latter as the elements of the polar 
overing |as we did| , we


ould have 
hosen the former. The (highlighted) 
orner re
tangle depi
ts the relation

R/R ◦a ◦⊤⊤ ◦b ◦R\R .

Indeed, for all relations R ,

R/R ◦a ◦R ∩ R ◦b ◦R\R = R/R ◦a ◦⊤⊤ ◦b ◦R\R

⇐ a◦⊤⊤◦b ⊆ R .

We leave the proof of this property to the reader. (Hint: use lemma 125.)
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11.8 Finite Staircase Relations

As we have seen in theorems 319 and 320, not every stair
ase relation is blo
k-ordered.

However, for a relation to satisfy the assumptions made in theorem 320 it must be in�nite.

In this se
tion we show that every �nite stair
ase relation is indeed blo
k-ordered.

Theorem 335 Suppose R is a �nite relation. (That is, the sets represented by R<

and R>
are �nite.) Then R is a stair
ase relation equivales R is a linear blo
k-ordered

relation.

Proof Lemma 331 shows that R is a stair
ase relation if it is a linear blo
k-ordered

relation (whether or not R is �nite). It remains to show that, if R is �nite and a stair
ase

relation then it is a linear blo
k-ordered relation.

Given a �nite, stair
ase relation R , our task is to 
ostru
t fun
tionals f and g and

a provisional ordering T satisfying de�nition 225. The key is a 
ombination of theorems

283, 334 and 292.

Theorem 283 states that R = f∪ ◦⊑ ◦g , where the ordering ⊑ is as in de�nition 276,

and

f>=R< ∧ 〈∀a : a⊆R< : f.a = R/R ◦a ◦R〉

and

g>=R> ∧ 〈∀b : b⊆R> : g.b = R ◦b ◦R\R〉 .

To 
omplete our task, we must show that f<=g<
. That is, we must show that

〈∀a : a⊆R< : 〈∃b : b⊆R> : f.a=g.b〉〉(336)

and vi
e-versa

〈∀b : b⊆R> : 〈∃a : a⊆R< : f.a=g.b〉〉 .(337)

Riguet's theorem (theorem 334) states that, if R is a stair
ase relation, both f and g

are linear polar 
overings of R ; although not stated expli
itly there, the ordering on the

elements of both 
overings is the ordering ⊑ introdu
ed in de�nition 276.

Now, a 
hara
teristi
 feature of a �nite linear ordering is that the suprema and in�ma

of any non-empty set always exist and are the maxima and minima. That is, for all points

a su
h that a⊆R<
, the minimum

〈MIN⊑ b
′ : a◦⊤⊤◦b ′⊆R : g.b ′〉

is well-de�ned. More pre
isely, the minimum value \witnesses" the existentially quanti-

�ed dummy b in the property

〈∀a : a⊆R< : 〈∃b : a◦⊤⊤◦b⊆R : 〈∀b ′ : a◦⊤⊤◦b ′⊆R : g.b⊑g.b ′〉〉〉
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assuming that the ordering ⊑ is a linear ordering of a �nite set. Similarly, for all points

b su
h that b⊆R>
, the maximum

〈MAX⊑ a
′ : a ′

◦⊤⊤◦b⊆R : f.a ′〉

exists and \witnesses" the existentially quanti�ed dummy a in the property

〈∀b : b⊆R> : 〈∃a : a◦⊤⊤◦b⊆R : 〈∀a ′ : a ′
◦⊤⊤◦b⊆R : f.a ′⊑ f.a〉〉〉 .

With this knowledge, we 
an now prove (336). Suppose a⊆R<
. Then

〈∃b : b⊆R> : f.a=g.b〉
= { de�nition of f and g }

〈∃b : b⊆R> : R/R ◦a ◦R = R ◦b ◦R\R〉
⇐ { a◦⊤⊤◦b⊆R ⇒ b⊆R> }

〈∃b : a◦⊤⊤◦b⊆R : R/R ◦a ◦R = R ◦b ◦R\R〉
= { theorem 292 }

〈∃b : a◦⊤⊤◦b⊆R : 〈∀b ′ : a◦⊤⊤◦b ′⊆R : R ◦b ◦R\R ⊑ R ◦b ′ ◦R\R〉〉
= { de�nition of g }

〈∃b : a◦⊤⊤◦b⊆R : 〈∀b ′ : a◦⊤⊤◦b ′⊆R : g.b⊑g.b ′〉〉
⇐ { de�nition of MIN }

〈∃b : a◦⊤⊤◦b⊆R : g.b = 〈MIN⊑ b
′ : a◦⊤⊤◦b ′⊆R : g.b ′〉〉

= { assumption: R is a �nite relation }

true .

We have thus established (336). Property (337) is the 
onverse dual.

✷

Although theorem 335 assumes that the relation R is �nite, it 
an of 
ourse be

applied to the 
ore |R| of the relation R. From the de�nition of a 
ore (de�nition 191)

and lemma 193, it is easy to establish the equivalen
e of properties of a relation and

properties of its 
ore, in parti
ular, being a stair
ase relation and being blo
k-ordered.

Thus, the theorem is more generally appli
able to relations whose 
ore is �nite.
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12 Discussion

The writing of this paper began after reading a paper by Wolfram Kahl (see [Kah20℄)

whi
h in
luded a se
tion on \Ferrers-type relations" 
iting not Riguet [Rig51℄ (where

the notion is introdu
ed) but the textbook by S
hmidt and Str�ohlein [SS93℄. Although

S
hmidt and Str�ohlein also do not 
ite [Rig51℄, they do use Riguet's de�nitions. It

was immediately 
lear that substantial improvements 
ould be made to S
hmidt and

Str�ohlein's 
al
ulations by exploiting the properties of the fa
tors of a relation. Fur-

ther study also revealed an obvious error in their \de�nition" [SS93, De�nition 4.4.11℄.

(S
hmidt and Str�ohlein's \de�nitions" often in
lude what they 
all \de�nition variants"

whi
h, in most 
ases, they deem to be obviously equivalent. This is not the 
ase here

| see below.) This led to an investigation of the origin of the error whi
h, in turn, led

to the dis
overy of the original paper by [Rig51℄. Several more re
ent publi
ations were

also dis
overed where the opportunity to 
orre
t S
hmidt and Str�ohlein's error is not

taken. Intrigued, it was de
ided to embark on a thorough investigation of the notions

introdu
ed in [Rig51℄: the notion of the \di��eren
e" of a relation and the notion of a

\relation de Ferrers" as well as Riguet's \analogie frappante" 
onne
ting the two. In

the pro
ess, it be
ame 
lear that a more general notion of \blo
k-ordering" was relevant

than the total ordering demanded by Riguet. This led to the four goals enumerated in

the introdu
tion.

The need for the �rst two goals is 
lear from a study of Riguet's paper. Although

his work is 
omprehensive (in parti
ular [Rig48℄), the typography of publi
ations written

70 years ago makes them diÆ
ult to read; the notation 
hosen by Riguet is also often

rather quaint (and in some 
ases impossible to reprodu
e!). Ironi
ally in a paper about

\
orrespondan
es de Galois", Riguet does not introdu
e the Galois 
onne
tion de�ning

the fa
tors of a relation and, instead, makes 
opious use of (nested) 
omplements. Also,

Riguet states many properties without proof: for example, [Rig51℄ lists ten de�nitions of

a \relation de Ferrers" with justi�
ation that it is easy to see (\il est fa
ile de voir") that

they are all equivalent. Moreover, subsequent literature leaves many gaps. For example,

we have been unable to �nd any proof of theorem 335, even though we have seen several

publi
ations that assume the theorem (
orre
tly in the 
ase of �nite relations).

Experien
e shows that the most important 
on
epts |the ones with wide appli
a-

bility| tend to be dis
overed and redis
overed, often quite independently, in several

di�erent and apparently unrelated 
ontexts. Di�erent formulations, that turn out to

be equivalent, and di�erent terminology, re
e
ting parti
ular appli
ation areas, is intro-

du
ed, making the task of proper attribution almost impossible. All that an author 
an

be expe
ted to do is to 
ite the publi
ations that have had a signi�
ant in
uen
e on their

own work | whi
h is what we have done here.

For the reasons given above, the initial steps in the writing of this do
ument were
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in
uen
ed by se
tion 4.4 of the textbook by S
hmidt and Str�ohlein [SS93℄. Like Riguet,

S
hmidt and Str�ohlein do not introdu
e the fa
tor operators and, impli
itly, use the

equivalent de�nition in terms of nested 
omplements. (See lemma 32.) The longest and

arguably most opaque 
al
ulation in this se
tion of S
hmidt and Str�ohlein's book is their

proof of proposition 4.4.13(ii). Aside from its extensive use of nested 
omplements, it

fails to make 
lear what is being proved, why it is being proved and where and when

assumptions are invoked (at least in our view). The proposition is formulated in theorem

234. Various properties are used in their proof whi
h we have formulated and proven in

lemma 248 in terms of fa
tors. Properties (249) and |more signi�
antly| (250) are not

observed by S
hmidt and Str�ohlein. Their derivation of (251) is asymmetri
 in f and g

and involves several unexplained steps.

We have not been able to avoid the use of 
omplements altogether. As pointed

out at the time, the equivalen
e of several di�erent formulations of the notion of a

stair
ase relation formulated in lemma 304 uses the de�nition of fa
tors in terms of nested


omplements. Also, for 
on
rete examples of (small) �nite relations, su
h as examples

223, 224 and 284, the use of 
omplements often makes 
al
ulations easier. Nevertheless

our use of 
omplements has been minimal.

We have attributed the two prin
ipal 
on
epts of a \relation difon
tionelle" and

a \relation de Ferrers" to Riguet ([Rig48℄ and [Rig51℄, respe
tively) but we have not

explored any publi
ations prior to Riguet's. Riguet himself 
ites two papers by Norbert

Wiener, dated 1912{1914 and 1914-1916, as giving an equivalent de�nition of a \relation

de Ferrers" but no other indi
ation of their 
ontent is provided (not even their titles).

We have also been unable to �nd publi
ations on either topi
 in the forty or so years

following their publi
ation. (Riguet [Rig51℄ announ
es a \pro
haine Note" that will make

pre
ise a 
orresponden
e between \relations equivalen
e 
onjugu�ees" and \relations de

Ferrers" but we have not been able to �nd the publi
ation.) So the 
urrent work should

not be regarded as a history of the 
on
epts.

The notion of a difun
tional relation is now generally attributed to Riguet [Rig48℄;

Jaoua et al [JMBD91℄ use the name \regular relation" but later publi
ations [KGJ00℄

use the name \difun
tional relation". Voermans [Voe99℄ emphasises their importan
e

in developing a theory of datatypes with laws; Oliveira [Oli18℄ argues that difun
tional

relations are \metaphors" for program spe
i�
ation. Mu
h of our presentation on difun
-

tional relations and non-redundant polar 
overings is in
uen
ed by the goal of gaining a


omplete understanding of Riguet's \analogie frappante" [Rig51℄.

The notions of a re
tangle and 
ompletely disjoint re
tangles, and elementary fa
ts

about difun
tional relations, in parti
ular theorems 141 and 161, are dis
ussed by Riguet

[Rig48℄. The 
orresponding properties of pers are well-known. The 
onstru
tion given

in se
tion 6.3.3 is not made expli
it in [Rig50℄ but was possibly the basis of Riguet's

statement that the 
hara
terisation of difun
tional relations as a pair of fun
tional rela-
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tions (theorem 161) is a generalisation of the theorem that a partial equivalen
e relation

is 
hara
terised by a single fun
tional relation (theorem 143). (Eviden
e for this is that

Riguet e�e
tively states lemma 174.)

Theorem 161 is also stated in [JMBD91, Proposition 4.12℄ and a proof given. Their

proof assumes the relation is homogeneous; the proof of theorem 173 is inspired by

their proof whilst avoiding the assumption. Winter [Win04℄ assumes theorem 144 and

then uses it to prove theorem 161 (thus making pre
ise Riguet's generalisation). His

(very short and elegant) proof, whi
h we have reprodu
ed here, gives di�erent |albeit

isomorphi
| 
hara
terisations of a difun
tional relation. Our 
ontribution has been

to 
ompare di�erent algebrai
 proofs of the theorem: point-free and pointwise proofs.

Perhaps surprisingly, our 
on
lusion is that the pointwise proof is preferable to the

proof that exploits a point-free 
hara
terisation of power transpose. This is be
ause of

the simpli
ity of the step from the elementary 
hara
terisation of difun
tional relations

(theorem 160) to a set of re
tangles (\r�eunions de re
tangles"): see se
tion 6.3.1.

Theorem 166 is S
hmidt and Str�ohlein's proposition 4.4.10(ii) . Their statement of

the theorem is un
lear: it appears to state that a difun
tional relation has exa
tly one

representation as a pair of fun
tional, surje
tive relations but they only prove that there

is at most one su
h representation. (Both here and in the statement of proposition

proposition 4.4.13(ii) they use the phrase \may be a
hieved in essentially one fashion".

The English is ambiguous: \may be a
hieved" suggests \at least one" and \in essentially

one fashion" suggests \at most one", the 
ombination being exa
tly one. But they only

prove at most one.) Lemma 164 is novel and permits a subtle di�eren
e in presentation,

in parti
ular of theorem 166.

There is mu
h in 
ommon between our se
tion 8 and Kh
h�erif, Gammoudi and Jaoua

[KGJ00℄. Kh
h�erif, Gammoudi and Jaoua [KGJ00℄ 
orre
tly attribute the 
on
ept of

the diagonal to Riguet but do not 
ite [Rig51℄; like Riguet, they de�ne the diagonal

in terms of nested 
omplements and do not exploit fa
tors. Their notion of a 
overing

spe
i�es the re
tangles to be \maximal". This is the property of not being \obviously

redundant" as dis
ussed immediately following de�nition 209. Slightly 
onfusingly

16

,

Kh
h�erif, Gammoudi and Jaoua [KGJ00℄ de�ne two re
tangles to be \disjoint" when

they are what we 
all \
ompletely disjoint". With this 
aveat, they list theorem 163 as a

property of difun
tional relations. They do not seem to be aware of theorem 211. Their

fo
us is on what they 
all \minimal" 
overings and \isolated points"; \minimal" 
overings

appear to 
orrespond to what we 
all \non-redundant" 
overings whilst \isolated points"

appear to 
orrespond to the points of a de�niens of a relation. They seem to suggest a

di
hotomy: for ea
h relation R , either (∆R)< = R<
and (∆R)> = R>

, or ∆R=⊥⊥ . (See

16

The term \disjoint" is 
ommonly used to des
ribe sets with an empty interse
tion; the 
onfusion arises

be
ause relations are sets of pairs.



218

[KGJ00, p.161, Problem℄.) Example 223 shows that this is not the 
ase: it is indeed

possible to 
onstru
t a non-redundant 
overing of a relation R where (∆R)< 6= R<
so

long as (∆R)> = R>
(and, of 
ourse, dually when (∆R)> 6= R>

so long as (∆R)< = R<
).

The statements of theorems 1 and 2 in [KGJ00℄ are un
lear (in my view), making them

diÆ
ult to verify or refute.

S
hmidt and Str�ohlein [SS93, p.80℄ 
ite the paper by Ja
ques Riguet [Rig50℄ with the

word \difon
tionelle" in the title; they also use the same de�nition of a \Ferrers type re-

lation" as Riguet but do not 
ite [Rig51℄. (They do 
ite [Rig48℄ earlier in the text but not

in 
onne
tion with difun
tional relations.) S
hmidt and Str�ohlein appear to 
laim that

\stair
ase" and \linearly blo
k-ordered" are equivalent properties of a relation: Their

de�nition of \Ferrers type" [SS93, De�nition 4.4.11℄ 
omprises �ve properties 
onne
ted

by the symbol \⇔ ". Presumably the symbol denotes logi
al equivalen
e (an impli
it

universal quanti�
ation over all free variables 
ombined with boolean equality) but it

is nowhere de�ned

17

. From de�nition 2.1.3, and experien
e with 
ommon mathemat-

i
al pra
ti
e, one infers that S
hmidt and Str�ohlein use the keyword \Definition" to

simultaneously introdu
e a de�nition and to state properties of the de�ned entity that

are deemed to be obvious. The problem is that the equality of the predi
ates \stair-


ase" and \linearly blo
k-ordered" is far from obvious and, as we have shown in theorem

319, it is just not true! Other papers that 
ite Riguet assume that the relations under


onsideration are �nite |in whi
h 
ase the equivalen
e is valid (see lemma 331 and the-

orem 335)| ; 
onsequently, it would appear that the erroneous 
laim was introdu
ed by

S
hmidt and Str�ohlein.

Winter restates the erroneous 
laim made by S
hmidt and Str�ohlein [SS93, De�nition

4.4.11℄:

A 
on
rete relation of Ferrers type may be written as a Boolean matrix in

stair
ase blo
k form by suitably rearranging rows and 
olumns.

There does not appear to be a de�nition of the word \
on
rete" in the paper; the use

of the word \matrix" suggests that \
on
rete" means \�nite". In this 
ase, the 
laim

is a spe
ial 
ase of theorem 335. However, we have been unable to �nd any proof of

the theorem in the published literature: Riguet [Rig51℄ states the theorem but does not

provide a proof; he does make very 
lear that his de�nition of a \relation de Ferrers"

extends to in�nite relations, spe
i�
ally by giving a 
on
rete example. (In addition to

�niteness, Riguet [Rig51℄ adds a se
ond 
ondition that we do not understand.)

17

Page 1 introdu
es set notation and properties of sets. It uses the symbol \⇒ " |presumably meaning

\only if"| but the symbol is also nowhere de�ned. The symbol \⇔ " �rst appears on p.7 and 
ontinued

equivalen
es �rst appear on p.8 in de�nition 2.1.3 (re
exive and irre
exive relations). No explanation is

given of how a 
ontinued equivalen
e is to be read. (Boolean equality is asso
iative and transitive. So a


ontinued equivalen
e 
ould be read asso
iatively or 
onjun
tionally.)
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Winter is 
learly aware that the 
laim is invalid in general be
ause immediately af-

terwards [Win04, lemma 5℄ states that the 
laim is invalid for \dense" relations. (Winter

formulates a property of \ dense linear stri
t-orderings" that is essentially theorem 320.)

Winter does not, however, give the most obvious example of a \dense" relation | the

less-than relation on real numbers. S
hmidt [S
h08℄ does observe that the less-than rela-

tion is \dense" but does not take the opportunity to 
orre
t the error in [SS93, De�nition

4.4.11℄.

As previously stated, the notion of the diagonal of a relation is due to Riguet [Rig51℄;

Riguet 
alled it the \di��eren
e". (See the dis
ussion immediately following lemma 316.)

The notion of a \polar" 
overing was also introdu
ed by Riguet in [Rig51℄, albeit with a

slightly stri
ter de�nition to �t the topi
 of his paper (\relations de Ferrers"): he requires

the subset ordering on domains to be total (\linear" in the terminology used here).

Winter [Win04℄ does not give the diagonal fun
tion a name but denotes the \di��eren
e"

of relation R by Rd (as do Kh
h�erif, Gammoudi and Jaoua [KGJ00℄); Winter 
ites

[Rig51℄ but does not as
ribe the 
on
ept to Riguet. S
hmidt [S
h08℄ 
alls it the \fringe"

of the relation; S
hmidt [S
h08℄ does 
ite Winter [Win04℄ but does not 
ite Riguet [Rig51℄.

Berghammer and Winter [BW12, p.8℄ state that Riguet's notion of the \di��eren
e" of a

relation was \introdu
ed" by Winter [Win04℄ and S
hmidt [S
h08℄; like S
hmidt [S
h08℄,

Berghammer and Winter [BW12℄ do not 
ite Riguet [Rig51℄. Although Winter [Win04℄

and Berghammer and Winter [BW12℄ de�ne the \di��eren
e" using residuals, they fre-

quently use Riguet's de�nition in terms of nested 
omplements.

Theorem 317 introdu
es two 
onstraints slightly weaker than those imposed by S
hm-

idt and Str�ohlein in their proposition 4.4.13(i); it is also stronger be
ause it states an

equality rather than an impli
ation. Lemma 309, in 
ombination with lemma 314 also

yields a stronger theorem than their proposition 4.4.13(i). (No 
onstraints are imposed

on the parameters f and g .)

The primary novel 
ontribution of this paper is the introdu
tion and exploitation of

the notion of the 
ore of a relation. (See de�nition 191.) Se
tion 9.1 has been in
luded

partly to make Hartmanis and Stearn's [HS66℄ pioneering 
ontribution to information

s
ien
e better known. Their theory of \pair algebras" anti
ipates results in what has

sin
e be
ome known as \
on
ept analysis" [DP90℄, as dis
ussed in se
tion 10. Some of

the properties of grips presented in se
tion 10 may be novel but, as mentioned in the

introdu
tion to the se
tion, we have not been able to determine whether or not this is

the 
ase. Mu
h emphasis has been pla
ed on illustrative examples whi
h we hope will

make the theory more a

essible.

Finally, a few words on notation. The very ri
h algebrai
 properties of the 
onverse

of a relation mean that many notions and properties 
ome in pairs, ea
h element of the

pair being the dual mirror-image of the other. For example, we have de�ned both the

left domain and right domain of a relation; lemma 55 is an example of mirror-image
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properties of the relations. Some authors emphasise su
h mirroring by their 
hoi
e of

notation. Freyd and

�

S�
edrov [Fv90℄, for example, denote the sour
e and target of a

relation R by ✷R and R✷ , respe
tively.

A 
onsequen
e of this is that it is possible to get away with de�ning just one of a

pair of operators, leaving its mirror image to have an \obvious" de�nition in terms of

relational 
onverse. For example, in se
tion 3.7 we gave only the de�nition of the \left"

power transpose of a relation, leaving the de�nition of the \right" power transpose to the

reader. Doing this systemati
ally would mean introdu
ing the notation R<
for the left

domain of relation R and then using the notation (R∪)< to denote the right domain of

R . Similarly, one might introdu
e just the left fa
tor R/S and then write (S∪

/R
∪)∪ for

the right fa
tor R\S . This is, of 
ourse, very undesirable be
ause then the asso
iativity

of the operators (the rule that R\(S/T) and (R\S)/T are equal, whi
h we exploit by

using the notation R\S/T ) be
omes the very 
umbersome

((S/T)
∪

/R
∪

)
∪

= (S
∪

/R
∪

)
∪

/ T .

Even worse is when a symmetri
 notation is used for an operator that has both left and

right variants | as is done by both Freyd and

�

S�
edrov [Fv90℄ and S
hmidt and Str�ohlein

[SS93, p.80℄ in the 
ase of the so-
alled \symmetri
 division/quotient" of a relation. By

writing

R
S
(or R÷S ), the reader may be misled into supposing that either the operator

has no mirror image or that the mirror image is

S
R

(or S÷R ). The main drawba
k,

however, is that the notation gives |literally and �guratively| a one-sided view of

relation algebra that inhibits progress. The notion of the \
ore" of a relation introdu
ed

in se
tion 7.3 is, so far as we know, novel; the insight leading to its introdu
tion is the

simple formula

R = R≺ ◦R ◦R≻


ombined with the well-known 
hara
terisation of a partial equivalen
e relation as f
∪
◦ f

for some fun
tional relation f . It is, in our view, a striking example of the sort of insight

that is obs
ured using Freyd and

�

S�
edrov's or S
hmidt and Str�ohlein's notation.
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