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Abstract

Seventy years ago, in a series of publications, Jacques Riguet introduced the
notions of a “relation difonctionelle”, the “différence” of a relation and “relations
de Ferrers”. He also presented a number of properties of these notions, including
an “analogie frappante” between “relations de Ferrers” and the “différence” of a
relation. Riguet’s definitions, particularly of the central concept of the “différence”
of a relation, use formulae involving nested complements. Riguet’s proofs make
extensive use of natural language making them difficult to understand. The primary
purpose of this paper is to bring Riguet’s work up to date using modern calculational
methods. Other goals are to document and extend Riguet’s work as fully as possible,
and to correct extant errors in the literature.

We call a “relation difonctionelle” a “difunctional relation”, the “différence” of
a relation we call the “diagonal” of a relation and a “relation de Ferrers” we call
a “staircase relation” — a special case of a “block-ordered relation”. We avoid as
much as possible the use of nested complements by exploiting the left and right factor
operators (aka division or residual operators) on relations.

We present complete, calculational proofs of two fundamental properties of di-
functional relations: a relation is difunctional if and only if it can be represented
by a pair of functional relations and that a relation is difunctional if and only if it
is the union of a set of completely disjoint rectangles. The diagonal of a relation
(Riguet’s “différence”) is a difunction that plays a very significant réle in the study
of block-ordered relations; accordingly, we study its properties in depth. For com-
pleteness, we also present a second method for constructing a difunction from an
arbitrary relation: Riguet’s “fermeture difonctionelle”.

Riguet used an informal, mental picture of a staircase-like structure to introduce
“relations de Ferrers” in the case of finite relations. Riguet also stated a necessary and
sufficient condition for a “relation de Ferrers” to be the union of a totally ordered class
of rectangles, where the ordering has a property that we call “polar”. By omitting
the totality requirement, we abstract the more general notion of a block-ordered
relation. We explore conditions under which a given relation has a non-redundant,
polar covering and when it is block-ordered. In doing so, we formulate and prove a



theorem establishing an equivalence between the property of a relation being block-
ordered and properties of the diagonal of a relation. Our theorem generalises Riguet’s
“analogie frappante”.

The primary novelty of our work is the introduction of the notion of the “core”
of a relation. This is a notion that is of general applicability and not just in the
context of block-ordered relations. For example, the core of a difunctional relation
is a bijection, the core of a preorder is an ordering (a special case of the core of a
block-ordered relation, which is also an ordering), and the core of a finite graph is an
acyclic graph connecting its strongly connected components. Our generalisation of
Riguet’s “analogie frappante” shows how the core of a relation in combination with its
diagonal is used —under certain conditions— to construct a non-redundant, injective
polar covering of a given relation. The theorem may have practical application in
the concise representation of very large databases.

Finally, we consider the special case of staircase relations. We consider different
definitions that formalise Riguet’s mental picture. Contrary to claims made in the
published literature, we show that the definitions are not equivalent in general. We
do prove their equivalence in the case of (block-)finite relations, a fact that is often
taken for granted in the extant literature but of which we have never seen a proof.
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1 Introduction

The interface between requirements and specifications poses a major challenge for prac-
tising programmers because it is intrinsically a social process that is largely unsupported
by mathematical method: requirements are informal and customer-led whereas speci-
fications are formal (even if, as is often the case, the “specification” is the actual im-
plementation of the requirements). There is no mathematically verifiable “correctness”
relation between requirements and specifications.

The challenge of assuring the customer that their requirements have indeed been met
can be overcome in different ways. We would argue that one of the most important ways
is by deriving —by mathematical calculation— properties of the specification which are
then interpreted in a way that can be understood by the customer. This process is vital
to the integrity of the science of computing.

Seventy years ago, in a series of publications [Rig48, Rig50, Rigb1], Jacques Riguet
introduced the notions of a “relation difonctionelle”, the “différence” of a relation and
“relations de Ferrers”. In the case of finite relations, he provided an informal mental
picture of a “relation de Ferrers” in the form of a staircase-like structure. But his formal
definition of a “relation de Ferrers” bears little or no resemblance to the mental picture
and it is difficult to see how the formal corresponds to the informal. The name “relation
de Ferrers” also gives little clue as to the practical relevance of the notion. Riguet’s def-
initions, particularly of the “différence” of a relation, use (in our view) over-complicated
and outdated formulae involving nested complements that are better formulated using
the factor operators (aka division or residual operators). Riguet also relies heavily on
natural language justifications of important properties as well as asserting several prop-
erties without proof. More recent publications, some of which do not cite Riguet but
which copy his definitions, introduce errors by failing to recognise the restrictions that
Riguet made clear in his account of the properties of the notions.

The writing of this paper initially began as an exercise in applying modern calcu-
lational reasoning to bring Riguet’s work up to date and more accessible to a wider
audience. In view of the extant errors in relatively recent publications and to try to
avoid introducing yet more errors, we decided to include full details of all proofs. In the
process, we decided that some changes in terminology were desirable: for reasons that
we explain later, we call the “différence” of a relation the “diagonal” of the relation and
we call “relations de Ferrers” staircase relations. We also realised that certain generalisa-
tions of Riguet’s work were desirable, the primary one being from “staircase” relations to
“block-ordered relations”: the property of being a “staircase” relation demands a certain
total ordering on “blocks” (“rectangles totalement ordonnées par inclusion” [Rig51]), be-
ing “block-ordered” does not require the ordering to be total. In summary, the goals of
this paper are as follows:



1. To demonstrate the efficacy of modern calculational reasoning in developing a the-
ory of block-ordered relations.

2. To document as fully as possible the precise relation between difunctional relations
and block-ordered relations (Riguet’s “analogie frappante”).

3. To set the record straight with respect to the origin of the concepts and theorems
relating difunctional relations to block-ordered relations.

4. To correct extant errors in the literature.

1.1 Mental Pictures

Partly as a consequence of our decision to include all proofs, this document has become
quite long and it is inappropriate to introduce all parts in one go. In order to set the scene,
this section gives a very informal account of the principle notions introduced. In doing
so, we use notation that will be introduced in later sections. Readers unfamiliar with
the notation are invited to read the section nevertheless,postponing full understanding
until later.

For many, it is useful to have a “mental picture” of formal mathematical statements.
Fig. 1 is such a mental picture of what we shall call a “staircase relation”. (Riguet
[Righ1] presents a similar picture of a “relation de Ferrers”.) The shaded area depicts a
binary relation on sets A and B, the vertical axis depicting the set A, the horizontal
axis depicting the set B, and the shaded area depicting the set of pairs (a,b) for which
the relation holds. Informally a staircase relation is any relation that can be depicted in
such a way.

Figure 1: Mental Picture of a Staircase Relation

One of the problems we address in this paper is how to formulate the notion of a
“staircase” relation in a way that is both amenable to mathematical calculation and



captures the very informal definition just given. In the process of so doing, it is nec-
essary to resolve ambiguities and/or misconceptions that inevitably arise from informal
definitions.

Fig. 2 is a “mental picture” of a difunctional relation of type A~B. Informally,
a difunctional relation is a (heterogeneous) relation that is the union of a collection
of “completely disjoint rectangles'”. The relation shown in fig. 2 is what we call the
“diagonal” of the staircase relation shown in fig. 1.

A

A

-
!

B

Figure 2: Mental Picture of a Difunctional Relation

The mental picture of a difunctional relation suggests a second property that appears
to be folklore: each point a in the left domain and each point b in the right domain of a
difunctional relation defines a rectangle whereby related pairs define the same rectangle.
In this way, a difunctional relation is characterised by a pair of functional relations.

As mentioned earlier, Riguet [Rig51] uses the name “différence” for what we call the
“diagonal”. Fig. 3 explains in picture-form the reasoning behind the naming as well as
how our formulation differs from Riguet’s.

The four parts of fig. 3 depict in turn

(a) arelation R (coloured green),

(b) the factor R“\R”/R"” (in red, where R” denotes the converse of R),

(c) the diagonal of R (in blue — more precisely, the relation R N R”\R” /R"),
(d) the relation Ro—R”0R.

Informally, the diagonal of R (shown in fig. 3(c)) is that part of the relation R (shown
in fig. 3(a)) that is common to the factor R”\R”/R" (shown in fig. 3(b)).

Riguet formulated the diagonal as the “différence” between R and the relation
Ro—R"0R, i.e. as RN—(Ro—R"”oR). (Note the nested complements, denoted by the

1See definition 123 for a formal definition of “completely disjoint rectangles”.
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Figure 3: Riguet’s “Différence”
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symbol “—”.) Fig. 3(d) shows the relation Ro—R”oR. It has two parts: the parts not
coloured red, i.e. the shaded part and the white part. The part coloured red is the “use-
ful” part R<o R”\R”/R” o R> of the relation depicted in (b). Here R< and R- denote
the left and right “domains” of R (not to be confused with the target and source of
R). The shaded part of fig. 3(d) depicts the relation ReoTT U TT oR=» : the set of pairs
(a,b) such that either a is not related by R to any element of B or no element of A
is related by R to b. Riguet’s “différence” is the difference between the green part of
fig. 3(a) and the non-red part of fig. 3(d).

Hopefully, by way of these informal pictures, we can now give an overview of the
remainder of the paper.

1.2 Overview

To begin, we present the axiomatic basis for our formal reasoning in section 2. The basis
for the axiom system originated in the work of De Morgan, Pierce, Schroder, Tarksi and,
no doubt, many others. This section is an abbreviated version of the presentation in
[BDGv21] to which the reader is referred for full details (including proofs of the stated
theorems).

Section 3 goes into more detail on basic elements of relation algebra. At this point,
we adhere to our maxim of providing proofs of all stated properties. Whilst the topics in
this section —in particular factors (section 3.2), the domain operators (definition 42) and
“provisional orderings” (definition 114)— all play a significant réle later, we recommend
that the reader skim the section briefly in the first instance, returning to it later as and
when necessary. (The notion of a “provisional ordering” is new but the motivation for
its introduction only becomes apparent later.)

Section 4 is the beginning of topics specific to block-orderings. “Blocks” or “rectan-
gles” are particular sorts of relations that are pictured as rectangles. As pictured in fig. 2,
a difunctional relation can be characterised as a collection of “completely disjoint rectan-
gles”. Section 4.1 presents a number of elementary properties of squares and rectangles
whilst section 4.2 introduces some important definitions and properties: the notion of
an “indexed set” of rectangles (definition 129), the notion of “completely disjoint rect-
angles” (definition 130) and the characterisation of an indexed set of completely disjoint
rectangles by a pair of functional relations (theorem 141).

In section 5 we formulate properties of partial equivalence relations that will be fa-
miliar to most readers. The main topic is a theorem characterising a partial equivalence
relation as a collection of disjoint squares. In more familiar terminology, a partial equiv-
alence relation partitions its domain into disjoint equivalence classes. Note that we focus
on partial equivalence relations (of which equivalence relations form a special case). In
general, we are obliged to reason about the left and right domains of relations, particu-
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larly when reasoning about the diagonal of a relation (definition 183) — a topic that is
central to this investigation. Recall our discussion of the shaded area of fig. 3(d).

We formulate several proofs of the per characterisation theorem, theorem 143, in
section 5. Later we do the same for the characterisation of difunctional relations, theorem
161, one of the proofs being based on theorem 143. We do so in order to evaluate different
calculational methods. In this case, contrary to the view we ourselves have propagated,
the calculations exploiting points and the saturation axiom are preferable to the point-
free calculations. Our formalism allows us to mitigate the negative aspects of pointwise
reasoning so that points appear in formulae only where this is desirable. This is discussed
further in section 12.

The main results of this investigation are presented in section 6 on difunctional rela-
tions, section 7 on the “diagonal” of a relation and sections 9 and 11 on block-ordered
and staircase relations, respectively.

Section 6 is about the basis for the name “difunction”: a difunctional relation is
characterised by a pair of functional relations (theorem 161); moreover, such a charac-
terisation is (essentially) unique (theorem 166). This is a well-known generalisation of
the properties of partial equivalence relations and, as mentioned above, is included in
order to evaluate different calculational methods.

For completeness, section 6.4 documents the properties of the “difunctional closure”
of a relation: the “fermeture difonctionelle” introduced by Riguet [Rig50].

Section 7 is a detailed examination of the properties of the diagonal of a relation.
Riguet’s account of “relations de Ferrers” includes a theorem characterising such relations
as the “réunion” of “rectangles” that have a very special property. Referring to fig. 1,
each individual “tread” of a staircase relation defines a unique rectangle (exact details
of which are given later) and the relation is the “réunion” of them all. With this as
motivation, we abstract the notion of a “polar covering” and we prove a theorem that
every relation has a polar covering. See definition 209 and theorem 211 in section 8. As
a step towards Riguet’s characterisation of “relations de Ferrers”, we define the notion of
a “non-redundant” polar covering. For finite relations, it is straightforward to show that
a non-redundant polar covering can always be constructed from a given polar covering of
the relation. The algorithm may, however, not be practical; moreover, there are infinite
relations that do not have a non-redundant polar covering. (The less-than relation on
real numbers is an example.) A focus of section 7 is to investigate when the diagonal
of a relation defines a non-redundant polar covering of the relation. The main result in
this section is thus theorem 222 (which we believe to be original to this paper).

Block-ordered relations are defined in section 9. Although we don’t discuss it in
any detail, the practical application of block-ordering a relation is efficient storage and
recovery of information. Dividing the left and right domains of a relation into “blocks” is
an obvious first step. We take the opportunity in section 9.1 to point out the pioneering
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contribution to information science made by Hartmanis and Stearns [HS64, HS66] in their
study of so-called “pair algebras”. The relevance to block-ordered relations is that so-
called “perfect” Galois connections provide a rich source of examples. Section 9.2 relates
block-orderings to diagonals. The section is entitled “analogie frappante” because the
concluding theorem of the section (theorem 262) is a necessary and sufficient condition
for a relation to be block-ordered expressed as a property of the diagonal of a relation,
thus generalising Riguet’s “analogie frappante” between the properties of a “relation
de Ferrers” and difunctional relations. Theorem 234 proves that every block-ordered
relation has a non-redundant polar covering, the non-redundancy of which is witnessed
by the relation’s diagonal.

Section 10 introduces a less-restrictive notion of “(possibly) imperfect” block-orderings.
Every relation has an imperfect block-ordering as witnessed by the “grips” of the rela-
tion. The “grips” of a relation are “blocks” that are essentially the same as the so-called
“Begriffen” (“concepts”) of the relation [DP90].

Section 11 was the starting point of this investigation: principally, how should the
informal mental picture of a “staircase” relation be made precise and what then are its
properties? Unsurprisingly (at least to us) it turns out that pictures can be deceiving.
We have been able to verify that all the claims made by Riguet are valid and much of
the section is devoted to that task; in particular, theorem 334 establishes the (unproven)
theorem in [Rigb1| that every staircase relation has a linear polar covering. On the other
hand, we provide examples showing that other claims in the extant literature are not
valid. In particular, theorem 319 proves, by way of concrete examples, that not every
staircase relation is block-ordered. It is the case, however, as correctly stated by Riguet
[Rigb1], that every finite staircase relation is block-ordered but we have been unable to
find a proof anywhere in the literature. Theorem 335 and its proof rectify this lacuna.

Section 12 concludes the paper with a summary and discussion of publications in
the last thirty years. (We have been unable to fill the forty-year gap —in respect of
non-finite relations— from 1950 to 1990 and would welcome receiving information about
relevant publications in that period.)
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2 The Axiom System

We assume familiarity with a number of basic concepts of relation algebra: composition,
converse, left and right domains, and left and right factors (aka “residuals”). Our pre-
sentation is based on the system of axioms formulated by Voermans [Voe99]; full details
can be found in [BDGv21]. In addition to the axioms we give a pointwise interpretation
of each of the operators. That is, we say, for each operator that we introduce, how the
operator defines a set of pairs. In giving the interpretation we use the notation [E] to
mean “the interpretation of E”. Thus we write x[R]y instead of xRy; this enhances
readability and also emphasises the difference between the objects of an abstract relation
algebra and the interpretation of such objects as binary relations.

2.1 Point-Free Relation Algebra

We begin with a point-free axiomatisation of homogeneous relations. Later we extend
the axiomatisation to heterogeneous relations (section 2.4) and to points (section 2.5).

The first unit is a lattice structure. Specifically, let (. A, C ) be a partially-ordered set.
We postulate that A forms a complete, universally distributive lattice. The infimum
and supremum operators will be denoted by N and U, respectively. The top and bottom
elements of the lattice will be denoted by TT and 1l , respectively. We call elements
of A relations and denote them by variables R, S and T. The interpretation of A is
the set of relations of some fixed type. The interpretation of a relation is a set; so A is
a powerset.

As suggested by the choice of notation, the interpretation of C is the subset ordering,
the interpretation of N is set intersection, and the interpretation of U is set union.
Formally,

[RES] = ("xy : x[R]y : x[S]y)
x [RNS]y = x[R]Jy A x[S]y , and

x [RUS] y

x[Rly V x[S]y

The interpretation of TT is the universal relation and the interpretation of 1l 1is the
empty relation. That is,

(Vxy = x[TT]y=true) A (Vx,yux[LlL]y=false) ,

This is the most complicated unit in the framework but one which should be familiar to
the reader.
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Every binary relation has a converse; the converse operator, denoted by a postfix
symbol (pronounced “wok”), is interpreted by

x[R°]y = y[R]x

for all x and y. Axiomatically, we postulate the existence of a (total) unary function
from relations to relations such that, for all relations R and S

(1) R'CS = RCS™ .

The Galois connection (1) is all that is necessary to define the converse operator and its
interface with the lattice structure. Its being a Galois connection makes it so attractive.

The set of homogeneous binary relations over some universe includes the identity
relation, I, with the interpretation

X[y = x=y

for all x and y. Relations may also be composed via the binary composition operator,
o, defined at the point level by

x[ReS]z = (Fy:x[R]ly Ay[S]z)

We capture these two notions axiomatically by demanding the existence of a relation I
and a binary operator, o , mapping a pair of relations to a relation, such that (.A,-,I)
is a monoid.

There are two interfaces to be specified. The interface with the converse operator is
soon dealt with. Bearing in mind the intended relational interpretations of converse and
composition we postulate

(2) (ReS)” = S”oR”

for all relations R and S. For the interface with the lattice structure we postulate that
a relation algebra is a regular algebra. In particular, we postulate that for all relations R
the functions ( Ro) and ( °R) are universally distributive. This is equivalent to postulating
the existence of two factor operators; these are discussed in detail in section 3.2.

In the theory developed in this paper, the converse operator plays a very significant
role. Because converse has such strong distributivity properties, it is frequently possible
to “dualise” a property by simply applying the converse operator to obtain a property
that is the mirror image of the original. (See, for example, (3) and (4).) Also, operators
we define frequently have left and right variants with mirror properties. (See, for example,
the domain operators introduced in definition 42.)
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2.2 Operator Precedence

We have now introduced quite a large number of operators. In order to reduce the
number of parentheses in formulae we should agree on a precedence between the different
operators.

A general rule we use throughout is that all prefix and postfix operators as well as
subscripting and superscripting take precedence over infix operators and infix operators
in turn take precedence over multifix operators. When both prefix and postfix operators
are applied to an expression, we use parentheses to clarify the order of evaluation. An
exception is when a prefix and postfix operator obey an “associative” law, in which case
we omit the parentheses. For example —as observed by De Morgan— complement and
converse “associate”. So we can safely write —R", parsing it as —(R") or as (—R)”
depending on the calculational needs. Thus it remains to discuss the relative precedence
of the infix operators.

For infix operators, the general rule is that metaoperators (operators like = and /)
have the lowest precedence. Next come relations like < and C. The operators of relation
algebra have the next highest precedence, and function application (which we denote by
an infix dot) has the highest precedence of all. Among the infix operators of relation
algebra the precedence is: intersection and union have the same, lowest precedence, and
the highest precedence is given to composition.

2.3 Modularity Rule and Cone Rule

Although composition distributes through suprema, it does not distribute through in-
fima. This creates difficulties in calculations that combine infima with composition. The
rule we now introduce to overcome this difficulty acts as an interface between all three
units of the framework. Riguet [Rig48] named the rule after the famous mathematician
J.W.R. Dedekind (he called it “la relation de Dedekind”) because of its resemblance to
the modular identity, a property of normal subgroups attributed to Dedekind. Schmidt
and Strohlein [SS93] have adopted Riguet’s terminology (they refer to “the Dedekind
formula” ) whereas Freyd and S¢edrov [Fv90] call it the law of modularity (possibly for
the same reason as Riguet). We call it the modularity rule.
The modularity rule is that, for all relations R, S and T,

(3)  ReSNT C Ro(S N R7eT) .

The dual property, obtained by exploiting properties of the converse operator, is, for all
relations R, S and T,

(4) SeRNT C (S N ToR")oR .
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(This the first of many examples of mirror-image duality that we forewarned of in section
2.1.)

An additional rule, sometimes called “Tarski’s rule”, is called the cone rule below:
for all relations R,

(5) (VR = TToReTT =TT = R#ALL)

Axiom systems for relation algebra often include a complementation (negation) operator
and, instead of the modularity rule, the so-called Schroder rule is postulated. Our
formulation of Schroder’s rule is slightly different from standard accounts, as we now
explain.

Suppose we consider an algebra that obeys all the axioms of relation algebra except
for the modularity rule. Suppose that the algebra is complemented (i.e. every relation
has a complement); we denote the complement of relation R by —R. Then the middle-
exchange rule: for all R, S, X and Y,

(6) Ro—=XoS C =Y = R’0YoS” C X
is equivalent to the modularity rule. Occasionally, its equivalent, the rotation rule:
(7) ReSC—T" = ToRC —S”

is used.

The middle-exchange rule gets its name from the fact that the middle term in a com-
position is exchanged with the right side of an inclusion. It has an attractive, symmetric
form, making it easy to remember in spite of having four free variables. The standard
rule, due to Schroder, is the conjunction of the two equivalences obtained by instantiat-
ing R and S to the identity relation. The rotation rule (so called because of the way
the variables are rotated) also has an attractive form.

This concludes our discussion of the point-free algebraic framework. In a few sen-
tences, a relation algebra is a complete, universally distributive lattice on which is de-
fined a monoid structure and a unary converse operator. Composition on the left and
on the right are both universally distributive (with the implication that they both have
upper adjoints: the factor operators to be introduced in section 3.2). Converse is a lat-
tice isomorphism that preserves the unit of composition and distributes contravariantly
through composition. Finally, the lattice structure, converse and the monoid structure
are all interrelated via the modularity rule.

2.4 Heterogeneous Relations

A heterogeneous relation R has a type given by two sets A and B, which we call the
target and source of R. We use the notation A~B to denote the type of a relation.
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Formally, a relation of type A~B is a subset of AxB. (Equivalently, it is a function
with domain AxB and range Bool.) A homogeneous relation is a relation of type A~A
for some A.

The operators in the algebra of heterogeneous relations are typed. For example, the
composition of two relations R and S, denoted as always by RoS, is only defined when
the source of R equals the target of S. Moreover, the target of RoS is the target of R
and the source of RoS is the source of S. That is, if R has type A~B and S has type
B~C then RoS has type A~C. We assume the reader is familiar with such rules.

The rules of the untyped calculus are applicable in the typed calculus, with some
restrictions on types. Restrictions are necessary on types for, for example, the middle-
exchange rule: (6).

Care must be taken with the overloading of notation. It is tempting, for example, to
state the rule:

T =TT

without qualification. But, if R has type A~B, its converse R” has type B~A. Thus
the notation “ TT ” on the left side of the equation denotes the universal relation of type
A~B, for some types A and B; on the other hand, the notation “TT” on the right
side of the equation denotes the universal relation of type B~A . Rather than overload
the notation in this way, we could decorate every occurrence of TT with its type. For
example, we could rephrase the rule as

(A—|_|—B)U = B—|_|—A .

The same applies to LI . We prefer not to do so because the type information is usually
easy to infer. An exception is that we occasionally decorate the identity relation I with
its type: In denotes the identity relation of type A~A.

Typed relation algebra, as briefly summarised above, extends category theory to what
has been called allegory theory. See Freyd and Séedrov [Fv90] for more details.

2.5 Points

The relations of a given type form a powerset. A powerset forms a complete, universally
distributive, complemented lattice under the subset ordering. However, these properties
do not characterise the properties of the elements of the sets in the powerset. For this,
we need the notion of a “saturated”, “atomic” lattice: elements of a set are modelled by
so-called “atoms”.

Let us recall the appropriate definitions , first in an arbitrary lattice and later spe-
cialising to relations.
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Definition 8 (Atom and Atomicity) Consider an arbitrary poset ordered by the
relation C and with least element Ll . Then the element p is an atom iff

(Vg = qSp = q=p V q=11)

Note that Ll is an atom according to this definition. If p is an atom that is different
from 1l we say that it is a proper atom. A lattice is said to be atomic if

(Vq = q#1L = (Ha:atom.aNa#1ll:aCq)) .

In words, a lattice is atomic if every proper element includes a proper atom.
O

Definition 9 (Saturated) A complete lattice is saturated iff

(Vp = p = (Ua:atom.aANaCp:a)) .

The following theorem is central to the use of saturated lattices as a model of pow-
ersets.

Theorem 10 Suppose A is a complete, universally distributive lattice. Then the
following statements are equivalent.

(a) A is saturated,
(b) A is atomic and complemented,

(c) A is isomorphic to the powerset of its atoms.
O

Given a type A, the homogeneous relations of a given type A~A form a powerset.
A corefiexive relation is a relation of type A~A, for some A, that is a subset of the
identity relation. (Coreflexives are also called partial identities, monotypes and tests.)
To our axiom system, we add the following postulates.

1. For each type A, the poset of coreflexives is a complete, universally distributive,
saturated lattice.

2. The all-or-nothing rule [Glil7):
(Va,b,R : AC.a A AC.b : acReb=_11 V aoRob=aoTTob)

where AC abbreviates “atomic and coreflexive”.



19

The combination of these two properties is equivalent to the postulate that the lattice
of relations of a given type is atomic and saturated. The proper atoms are events of the
form aoTTob where a and b are proper atomic coreflexives; such an event models the
pair (a,b) in conventional pointwise formulations of relation algebra.

Theorem 11  Suppose that, for all types A, the lattice of coreflexives of type A~A
is a complete, universally distributive, saturated lattice. Then, if the all-or-nothing rule
is universally valid, the lattice of relations of type A~B (for arbitrary types A and B)
is also a saturated, atomic lattice; the atoms are elements of the form aoTTob where a
and b are atoms of the lattice of coreflexives of types A and B, respectively. It follows
that the lattice of relations is isomorphic to the powerset of the set of elements of the
form aoTTob where a and b are atoms of the lattice of coreflexives.

O

(See Voermans [Voe99, section 4.5] for further discussion of so-called “extensional-
ity” properties of relations. Note that Voermans gives the name “singleton” to proper
atoms. Thus —perhaps confusingly— what we have just referred to as “pairs” are, in
his terminology, also “singletons”.)

In common with all coreflexives, a point is a homogeneous relation of type A~A.
However, in keeping with the idea that points represent elements of type A, we often
abbreviate the type A~A to just A.

Definition 12 (Point) A point is a proper, atomic, coreflexive relation.
O

For the purposes of this paper, we don’t need all the details of what is meant by
“atomic”. If A is a type, we use a, a’ etc. to denote points of type A. Similarly for
points of type B. Properties we use of a point a of type A are:

(13) aa=a=a |,

(14)  TTeaeTT = TT ,

(15) aoTlTea = a ,

(16) (vp = pCIa = p=(Ua:aCp:a))
Also, for points a and a’ of the same type,
(17) a=a' V aed'=11 .

Property (14) is equivalent to the property that a point is non-empty (“proper”). The
property is an instance of the rule we call the “cone rule” introduced earlier. In general,
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if a is a point of type A and b is a point of type B, the relation a-TTob represents
the pair (a,b); given a relation R of type A~B and points a and b of type A and
B, respectively, the statement

aoclTob C R

has the interpretation that the pair a and b are related by R. Specifically, for all
relations R and points a and b of appropriate type,

(18)  (acReb # 1l) = (aeTTeb CR) = (acTTob = acReb) .

(In conformance with long-standing mathematical practice, property (18) should be read
conjunctionally: that is as the equality of three terms. In this case, each term is boolean.)
The saturation property is that

(19) (VR = R=(Ua,b:a°TTebCR: a-TTeb)) .

The 2rreducibility property is that, if R is a function with range relations of type A~B
and source K, then, for all points a and b of appropriate type,

(20)  @cTTeb C UR = (Jk:keK: aoTTobCR.K) .

The identity relation I, of type A has the property that, for all points a and a’ of
type A,

(21) @ TTea’ CIp = a=a’ .

Relations of the form RobeoS, where b is a point, play a central réle in what follows.
The interpretation of RoboS is a relation that holds between points a and c iff the
relation R holds between a and b, and the relation S holds between b and c. This
is expressed precisely by the property:

(22)  @cTToc CRoboS = @ TTob CR A boTToc CS .
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3 Basic Structures

This section contains a miscellany of topics that are referred to repeatedly in subsequent
sections. We recommend that the reader scans it briefly in the first instance, postponing
a more detailed reading until later.

3.1 Specifications

Sometimes we want to define functions indirectly via a property relating input and output
values. The property is formalised and then it is shown that the formal specification
relates each input value to exactly one output value. That is, the formal specification
relates each input value to at most one and at least one output value. In order to reason
within our axiom system, we then want to conclude that output values are points. See,
for example, section 3.5, where we define the meaning of functionality and exhibit an
expression that formulates, in very general terms, the result of applying a function to an
argument.

Although the process seems to be obvious, we want to stick to our goal of validating
every step within our axiom system. For this reason, we now present the technical
justification. As just mentioned, we refer the reader to section 3.5 for a concrete example.

In the following lemmas, p is a coreflexive relation and dummies a and a’ are points
of the same type as p.

We begin with the consequence of showing that specification p has at least one
solution.

Lemma 23

p#1lL = (Ha:alp)

Proof
p#LlL
= { cone rule: (5) }
TTopeTT = TT

= {  saturation property: (19) }
TTo(Ua:aCp:a)e Tl = TT

— {  distributivity }
(Ua:aCp:TTeaeTT) = TT

= { a ranges over points: (15) }
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(Ua:aCp:TT) = TT
= { (Ua:false: TT)=11 and LL#TT }
(JazaCp)
= { a ranges over points: so 1l #a
predicate calculus, (details left to the reader) }

p#ALL .

O
Next we formulate the consequence of showing that specification p has at most one
solution.

Lemma 24
(Va:aCp:a=p) = (Va,a':aCpAadCp:a=d) .
Proof
(Va:aCp:a=p)
= { anti-symmetry }
(Va:aCp:a2p)
= { saturation: (16) }
(Va:aCp:a2(Ua:a'Cp:a’))
= { suprema |}
(Va:aCp:(Va':a’'Cp:ada’))
& { reflexivity of the subset relation }
(Va:aCp:(Va':a'Cp:a=a’))
= { nesting of quantifications }
Va,a’ : aCpAad'Cp:a=a’)
& { Leibniz and predicate calculus }
(Va:aCp:a=p) .
O

Theorem 25 Suppose p is a coreflexive relation. Then p is a point equivales

(JazaCp) N (Vaa':aCpAad'Cp:a=d) .
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(As above, dummies a and a’ range over points of the same type as p.)
In words, a specification p defines a point iff it has at least one solution and at most
one solution.

Proof In the following dummy q ranges over coreflexives of the same type as p and
a ranges over points of the same type as p.

p is atomic

= { definition 8 }
(Vq:qCp:q=pVq=1l)

= { trading }
(Vq:qCpAq#LlL:q=p)

= { lemma 23 }
(Vg:qCp/A(JazaCq):q=p)

= { distributivity (of conjunction over disjunction),

range disjunction }

(Vg,a:aCqCp:q=p)

& { anti-symmetry }
(Va:aCp:a=p)

= { lemma 24 }

(Va,a’ : aCpANad'Cp:a=a') .

p is atomic
= { definition 8 }
(Vg:qCp:q=pVq=1L)
= { points a and a’ are coreflexives, weakening }
(Va,a’ :aCpAad'Cp:(a=pVa=1ll)A(a'=pVa'=1L))
= { points are proper (i.e. a# 1l and a’#1l) }
Va,a’:aCpAad'Cp:a=p/Aa=p)
= { transitivity of equality }

(Va,a’:aCpAad'Cp:a=a’) .
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Combining the two calculations, we have established by mutual implication that

(26) pisatomic = (Va,a’':aCpAa'Cp:a=a’)
It follows that, for all coreflexives p,
p is a point
= { definitions 8 and 12, assumption: p is coreflexive }
p# 1L A p is atomic
= { lemma 23 and (26) }
(JazaCp) N (Va,a’ :aCpAad'Cp:a=a’)
O

3.2 Factors

If R is a relation of type A~B and S is a relation of type A~C, the relation R\S of
type B~C is defined by the Galois connection, for all T (of type B~C),

R\SDT = SDRT .

Similarly, if R is a relation of type A~B and S is a relation of type C~B, the relation
R/S of type A~C is defined by the Galois connection, for all T,

R/SDT = RDToS .

(The existence of these operators is equivalent to the universal distributivity of compo-
sition over union.)

In relation algebra, factors are also known as “residuals”. We prefer the term “factor”
because it emphasises calculational properties whereas “residual” emphasises an opera-
tional understanding (what is left after taking something away). In particular, factors
have the cancellation properties:

ToT\U C U A R/SoS C R .

The factor operators (which we pronounce “under” and “over” respectively) are mutually
associative. That is

27)  R\(S/T) = (R\S)/T .

This means that it is unambiguous to write R\S/T — which we shall do in order to
promote the associativity property by making its use invisible (in the same way that the
use of the associativity of composition is made invisible).



25

The relations R\R (of type B~B if R has type A~B) and R/R (of type A~A if
R has type A~B) play a central réle in what follows. As is easily verified, both are
preorders. That is, both are transitive:

R\Ro.R\R € R\R A R/R°R/R C R/R
and both are reflexive:
ICR\R AN TCR/R.

(The notation “I” is overloaded in the above equation. In the left conjunct, it denotes
the identity relation of type B~B and, in the right conjunct, it denotes the identity
relation of type A~A, assuming R has type A~B. We often overload constants in this
way. Note, however, that we do not attempt to combine the two inclusions into one.) In
addition, for all R,

(28) RoR\R = R = R/RoR ,
(29) R/(R\R) = R = (R/R)\R
(30)  (R\R)/(R\R) = R\R = (R\R)\(R\R) and

(31)  (R/R)\(R/R) = R/R = (R/R)/(R/R) .

In fact, we don’t use (29) directly; its relevance is as the initial step in proving the
leftmost equations of (30) and (31). We choose not to exploit the associativity of the
over and under operators in (30) and (31) —by writing, for example, (R\R)/(R\R) as
R\R/(R\R) — in order to emphasise their r6le as properties of the preorders R\R and
R/R.

In relation algebra (as opposed to regular algebra) it is possible to eliminate the
factor operators altogether because they can be expressed in terms of complements and
converse. The rule for doing so is given in lemma 32. Although the elimination of factors
is highly undesirable, we are obliged to introduce complements and it is useful to exploit
the lemma occasionally.

Lemma 32 Forall R, S and T,
R\S/T = —(R"o—=SoT") .

Proof We have, for all X,
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X C R\S/T

= { definition of factors }
RoXoT C S

= { middle-exchange: (6) }
R70=SoT” C —X

= { complements }
X C ~(R%e=SoTY) .

The lemma follows by indirect equality (i.e. by instantiating X to the left and right
sides of the claimed equality and then using reflexivity and anti-symmetry of the subset
ordering).
O

For the purpose of providing examples, extreme cases are often the most illuminating.
Instantiating lemma 32 with R,S,T := —I,—I,1, and R,S,T :=I,—I,—I (where I denotes
an identity relation of some unspecified type), we get

(33) —I\-I =1 = —I/-1 .

Thus the equality relation on a type is the preorder of the form R\R (or R/R) obtained
by the instantiation R:=—1I.

Let 1 denote the type with exactly one element. Then the universal relation 3 TTq
equals the identity relation Iy . Thus the type 1 is an example of a finite, non-empty
type such that —I; is the empty relation 511y .

Property (28) exemplifies how much easier calculations with factors can be compared
to calculations that combine complements with converses. The property is very easy to
spot and apply. Expressed using lemma 32, it is equivalent to

Ro—=(R”o—R) = R = —(-RoR”)oR .

In this form, the property is difficult to spot and its correct application is difficult to
check.
It is useful to record the distributivity properties of converse over the factor operators:

Lemma 34 For all R and S,
(35) R'\S” = (S/R)” = —R/-S .

Symmetrically,
(36) R’/S” = (S\R)” = —R\-S .
Also,

(37)  (R\S/T)” = T“\S"/R" .
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Proof We prove the first equation of (35) using indirect equality. For any R, S and
T, we have:

T C (S/R)

= { converse: (1) }
T C S/R

= { Galois connection defining factors }
ToRC S

= { converse: (1) and (2) }
R7-T C S”

= { Galois connection defining factors }
T C R\S" .

The second equation of (35) is proved using the property
(38) R\S = =(R"—=8) A S/T = =(=S-T) .
We have:

—R/—=S
= { (38) with S,T :=—R,—S,
properties of negation and converse }
~(Re—SY)
= { (38) with R,S :=R",S”
properties of negation and converse }
R\ S
= { first equality }
(S/R)” .

Property (36) proved using symmetrical calculations and (37) is a combination of (35)
and (36).

(Note how the associativity property —(R”)=(—R)" is used silently in the above
calculation.)
O

The following corollary is relevant to section 11 on staircase relations.



28

Corollary 39  For all R,
R\RU(R\R)” = (R"/R”)” U R’/R” = —R\—RU (—-R\—R)” .
Proof

R\R U (R\R)"
= { converse and lemma 34
(in particular (35) with R,S:=R”,R”) }
(R®/RY)” U RY/R"
= { lemma 34
(in particular (36) with R,S := —R,—R) }
(-R\—-R)” U =R\ —R .

O

When considering concrete examples, it is sometimes necessary to know the pointwise
definition of the factor operators. The following lemma is needed in theorem 319 where
we exhibit a concrete counterexample to an error in the extant literature.

Lemma 40 For all relations R and points a and b (of appropriate type),
asTTeb C (R\R/R)” = (Va',b’: a’oTTeb C R A acTTob’ CR : a’oTTob’ C R)
Proof

aoTTob C (R\R/R)"
= { definition of converse and factors }
RoboTToaoR C R
= { saturation property: (19) }
(Va',b’ :: a’oRebeTTeacReb’ C a’oReb’)
= { all-or-nothing: theorem 11 }
(Va',b" : @’eTTeb C R A acTTeb’ C R : a’oTTeboTToeacTTeb’ C R)
= { cone rule, a and b are points }

(Va,b" : @’oTTeb C R A aeTTeb’ CR : a’oTTeb’ C R) .
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3.3 The Domain Operators

Within relation algebra, there are various ways that sets can be represented as relations.
Schmidt and Strohlein [SS93] use “conditions” (relations of the form RoTT or TToR —
called “vectors” by Schmidt and Strohlein), Freyd and Séedrov [Fv90] use coreflexives.
A third possibility is to use “squares” (as suggested by Voermans [Voe99)).

Definition 41 A (homogeneous) relation R is a square iff R = RoTT oR".
]

Points are squares. Also if a and b are points (of appropriate type), the relations
R7oaoR and RoboR” are squares. (This is an easy consequence of the properties (13)
and (15).) We see later (lemma 57) that R”caoR represents the set of all points b such
that a and b are related by R, and similarly for RoboR".

Formally, coreflexives, conditionals and squares are isomorphic representations of sets.
Nevertheless, choosing which to use can make a considerable difference to concise calcu-
lation. Squares have the disadvantage that they are not closed under union (although
squares are closed under intersection); coreflexives and conditionals are both closed un-
der union and intersection. The only advantage of using conditionals over coreflexives
and squares is that they are closed under negation but the advantage is not signifi-
cant. (Schmidt and Strohlein [SS93] make extensive use of negation but most can be
eliminated by the use of factors.) The overwhelming advantage of using coreflexives is
their convenience in expressing restrictions on the left and right domain of relations,
in combination with the associativity of composition. So, if p is a coreflexive, RopoS
simultaneously restricts the right domain of R and the left domain of S to elements
in the set represented by p. If conditions are used, one must choose between using a
right condition to restrict the right domain of R and a left condition to restrict the left
domain of S. Squares can also be used to restrict the left or right domain of a relation
—there are several instances in section 6.3.1— but cannot be used to simultaneously
restrict the right and left domains of two relations. For this reason, we generally prefer
to use coreflexives to represent sets, except in very special circumstances.

Definition 42 (Domain Operators) Given relation R of type A~B, the coreflezive
representation R< of the left domain of R is defined by the equation

R< = 1IN RoR"

and the coreflerive representation R> of the right domain of R is defined by the
equation

R- = INRR .
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The name “domain operator” is chosen because of the fundamental properties: for
all R and all coreflexives p,

(43) R=Rep = R-Cp

and

(44) R=peR = R<Cp .

A simple, often used consequence of (43) and (44) is the property:
(45) R-oR = R = RoR- .

In words, R-> is the least coreflexive p such that restricting the “domain” of R on the
right has no effect on R. It is in this sense that R< and R> represent the set of points
on the left and on the right on which the relation R is “defined”, i.e. its left and right
“domains”.

Aside Freyd and Scedrov [Fv90] call R- the “domain” of R; they do not appear to
give a name to R>. Like us, they also use the names “source” and “target”. In their
account a relation of type A~B has source A and target B; we reverse the names. (See
the warning above.) Bird and De Moor [BdM97] call R> the “domain” of R and R< the
“range” of R. End of Aside

In our earlier work on relation algebra, the domain operators play a very significant
role, and the same is true here. We regard knowledge of their properties as so funda-
mental that we often explain steps making use of domain calculus with the simple hint
“domains”. The most fundamental property of the domain operators —monotonicity—
we use silently. Sometimes (for example in the proof of lemma 55) we state the properties
within everywhere brackets.

For readers unfamiliar with the domain operators, we summarise their properties
below. We restrict our attention here to the right-domain operator. The reader is
requested to dualise the results to the left-domain operator.

The intended interpretation of R> (read R “right”) for relation R is {x|(Jy::y[R]x)}.
Two ways we can reformulate this requirement without recourse to points are formulated
in the following theorem.

Theorem 46 (Right Domain)  For all relations R and coreflexives p,
(47) R-Cp = RCTTop
and

(48) R-Cp = R=Rep .
O
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The characterisations (47) and (48) predict a number of useful calculational properties
of the right domain operator. Some are immediate, some involve a little bit of work for
their verification. Immediate from (47) —a Galois connection— is that the right domain
operator is universally U-junctive, and ( TTo) is universally distributive over infima of
coreflexives. In particular,

TTe(png) = (TTep) N (TTeq)

(RUS)> =R>US> |
and

l>=11 .
The last of these can in fact be strengthened to
(49) R-=1l = R=1L .

The proof is straightforward: use (47) in combination with TToll = 11 .

From (47) we may also deduce a number of cancellation properties. But, in combina-
tion with the modularity rule, the cancellation properties can be strengthened. We leave
their proofs together with a couple of other interesting applications of Galois connections
as exercises.

Theorem 50  For all relations R, S and T
(a) TToR>=TT<R ,

(b) RN SeTTeT = S<oRoT> |

(c) (RY)>=R-,

(d) (RNSeT)>=(SRNT)> ,

(€) (RoTToS)> =S & R£ALL .
O

We complete this section by documenting the isomorphism between coreflexives and
conditions. Recall that the right conditions are, by definition, the fixed points of the
function ( TTo).

Theorem 51 The coreflexives are the fixed points of the right domain operator. That
is, for all R,

() R=R-=RCI .



32

Also, for all coreflexives p and all right conditions C,

(b)  (TTep)-=p ,and
(c) TToC>=C .

Moreover, for all relations R and S,
(d) R>CS> = TTeRCTTeS .
Hence,

(e) R>=S8> = TToR=TToS .

The right-domain operator is thus a poset isomorphism mapping the set of right
conditions to the set of coreflexives and its inverse is the function ( TTo).
]

Some powerful and far from obvious theorems about coreflexives are proved by map-
ping the theorems to statements about conditionals and then exploiting the characteristic
properties of TT — TT DR for all R, and TT =TT~ — to prove these statements. An
illustration of the technique is afforded by the proof of the following lemma.

(52)  (RoS)>=(R>0S)> .
We begin the proof by invoking theorem 51
(RoS)> = (R=0S)>
= { theorem 51(e) }
TToReS = TT oR>0S§
= { TToR>= TToR }
TToRoS = TToReS
= { reflexivity }
true .
Another useful property is:
(63) X=l1lL=X-=11 .
The proof is by mutual implication. First,

X=11 = {Leibniz} X-=1l> = {ll-=11} X>

I
=

Second,
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X>=11
= { 11 is least relation }
X>C 1L
= { theorem 46 }
[NTTeX C 1L
= { monotonicity of composition,

preparing for use of the modularity rule }

(INXeTT)eTT C 1L

= {  modularity rule: (3), TT=T1" }
TTNXC 1L

= { TT is greatest relation, |l is least relation }
X=1 .

We conclude this section with a basic property that becomes very obvious with a little
knowledge of the domain operators. Specifically, we have, for all relations R,

(54) R CRoR6R

The proof is easy:

R C RoR"oR

& { R> C R”oR and monotonicity of composition }
R = RoR>

= { domains }
true .

3.4 Properties of Points

This section documents properties of points with respect to domains and factors.
Lemma 55  For all relations R and points a and b (of appropriate type),

a CR< = (aeR)># 1L , and

b CR> = (Rob)< # LL .

Proof We prove the second equation.
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(Reb)< # L1
{ cone rule: (5) }
TTo(Rob)<o TT = TT

{ [ReoTT = RoTT ] with R:=Reb }
TToRoboTT = TT
{ [ TToR> = TToR ] }

TToR>0boTT = TT
{ cone rule: (5) }
R-ob #£ LI
{  ReebChb;
so, by atomicity of b, R=cb=b V R>ob = 1L ;
also, b # 1L }
R>ob =D
{ R>ob=R-Nb }
bCR- .

For a point b the square RoboR" represents the set of all points a such that a and
b are related by R. This is made precise in lemma 56 and its corollary, lemma 57.

Lemma 56  For all relations R of type A~B , all coreflexives p of type A~A and
all points b of type B,

p C RoboR” = poTTeb C R .

Symmetrically, for all relations R of type A~B , all coreflexives q of type B~B and
all points a of type A,

q - RuoaoR = ao—|_|—oq - R .

Proof By mutual implication:

=

=

p C RoboR"
{ monotonicity }
peTTob C RoboR"0TTob
{ RoTT C TT ; b is a point: (15) and bCI }
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peTTeb C R
= { converse and monotonicity }
peTToboboTTop” C RoboR”
= { b is a point: (13) and (14)
p is a coreflexive, so p” =p ; monotonicity }
peTTop C RoboR”
= { ICTl and pep=p }

p € RoboR” .
O
Property (18) is the most basic formulation of membership of pairs in a relation. It
can also be formulated in terms of squares and in terms of domains:

Lemma 57  For all relations R and points a and b (of appropriate type),
(a € RoboR”) = (aTTebCR) = (b C R’0aoR) .
Proof Straightforward instantiation of lemma 56:
a € RoboR”
= { lemma 56 with p:=a }
acTTeb C R
= { lemma 56 with p:=b }

b C RVsboR .
O

Lemma 58  For all relations R and points a and b (of appropriate type),
(a € (Reb)<) = (a°TTeb CR) = (b C (aeR)>) .
Proof

aolTob C R

= { monotonicity and a is a coreflexive, so aca=a }
ao [Tob C aoR

= { monotonicity }

((10—|_|—ob)> C (aoR)>
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= { domains: definition 42, a and b are points: (14) and (15) }
b C (aoR)-

= { monotonicity }
a°TTob C aoTT o(acR)>

= { domains: [ TToR> = TToR ] with R:=a-sR }
aolTob C aoTTeacR

= { a is a point, so a°TTea=a }
acTTeb C aoR

= { a is a coreflexive, monotonicity }
aclTob C R .

That is, we have shown by mutual implication that
aTTeb CR = b C (aR)> .
A symmetric calculation establishes that

@TTob CR = a C (Reb)- .

O
Combined with property (18), lemmas 57 and 58 give six alternative ways of formu-
lating the membership relation aoTTob C R. All are useful.

Lemma 59  For all relations R and points a (of appropriate type),
aCR< = (db:bCR>:acTTeb C R)
Also, for all relations R and points b (of appropriate type),

bCR> = (Jda:aCR<:acTTeb CR) .

Proof We prove the first equation:

a C R«

= { lemma 55 }
(a-R)- £ 1L

= { lemma 23 }
(3b :: b C (acR)>)
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= { lemma 58 }
(b aeTTeb C R)

= { domains (specifically, acTTob CR=bCR>) }
(b : bCR>:aeTTob CR) .

|

Lemma 60 gives a pointwise interpretations of the factor operators. Although we
typically try to avoid pointwise reasoning, the lemma is sometimes indispensable.

Lemma 60  For all relations R of type A~C and S of type B~C (for some A, B
and C) and all points a and b,

aTTob CR/S = (beS)> C (asR)> .
Dually, for all relations R of type C~A and S of type C~B, and all points a and b,
@ TTeb CR\S = (Rea)< C (Sob)< .

Proof By mutual implication:

aoTTob C R/S
= { definition of factor }
aoTToboS C R
= { a and b are points, monotonicity and domains

(see initial steps in proof of lemma 58) }
(beS)> C (a°R)-
= { monotonicity }
aoTTo(boS)> C aoTTo(asR)>
— { domains }
ao [TobeS C aoTToacR
— { a is a point (so a°TTea=a) }
aoTToboS C aoR
= { a is a coreflexive }
aoTTobeS C R
= {  definition of factor }

aoTTob C R/S .
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The second equivalence is proved similarly.

aoTTob C R\S

= { definition of factor }
RoaoTTob C S

= { monotonicity and coreflexives

(see initial steps in proof of lemma 58) }
(Rea)- C (Seb)-
= { (as in above calculation) }
aoTTob C R\S .

O

For relations R and S with the same source, the relation R/SN(S/R)” is the “sym-
metric left division” of R and S. Dually, for relations R and S with the same target,
the relation R\SN(S\R)" is their “symmetric right division”. (See the discussion at
the beginning of section 3.7.) The following corollary of lemma 60 gives a pointwise
interpretation of these “division” operators.

Corollary 61  For all relations R and S with the same source, and all points a and
b (of appropriate type),

aoTTob € R/SN(S/R)” = (acR)> = (boS)> .
Dually, for all relations R and S with the same target, and all points a and b (of
appropriate type),
aoTTob € R\SN(S\R)” = (Rea)< = (Seb)< .
Proof Straightforward application of lemma 60 and anti-symmetry:
asTTob C R/SN(S/R)”
= { infima and converse }
acTTob CR/S A beTTea CS/R
= { lemma 60 }
(beS)> C (aeR)> /A (acR)> C (beS)-
= { anti-symmetry }

(asR)> = (boS)- .
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3.5 Functionality

A relation R of type A~B is said to be functional if RoR” C I, . A relation R of type
A~B is said to be surjective if RoR” D I, . Equivalently, a relation R of type A~B is
surjective if R<=1.. A relation R of type A~B that is both functional and surjective
is thus defined by the property RoR” =1, .

(Other words used for functional are “quasi-fonctionelle” [Rig48|, “simple” [Fv90,
BdM97] and “univalent” [SS93].)

Dual to functionality and surjectivity are the notions of injectivity and totality, re-
spectively. A relation R of type A~B is said to be injective if R“oR C Iz . A relation
R of type A~B is said to be total if R"oR D Iz. Equivalently, a relation R of type
A~B is surjective if R>=1y.

Typically, we use lowercase letters f, g, h to denote functional relations. As the
terminology suggests, these point-free definitions correspond to notions that are more
usually defined in terms of points. The pointwise interpretations are explained below,
beginning with the interpretation of a functional relation as what others might call a
“partial function”.

The standard notion of a partial function is a relation that defines a unique output
value for each input value in its domain. In our axiom system we formulate this as
follows.

Suppose R of type A~B is functional and suppose b is a point of type B such that
b CR>. We assert that the equation

(62) a: a€A: a°TTebCR

has exactly one solution. Conversely, we assert that if equation (62) has exactly one
solution for all points b such that b CR>, the relation R is functional. (In (62) the ex-
pression “a€cA” limits the range of the dummy a to points of type A ; this notation will
be used later where the range of a dummy cannot be deduced from other considerations.)

Equation (62) is an example of the sort of indirect specification anticipated in section
2.5. (See in particular theorem 25.) More formally, for functional relation f and point
b such that b Cf>, equation (62) defines f.b as the unique solution of the equation:

a: point.a /\ aoTTobCf .
Suppose we denote this unique solution by f.b. The defining property of f.b is thus
(63) (Va,b : bCf> : aTTobCf = a=f.b)

But it is not immediately obvious that f.b is well-defined in our axiom system. Theorem
64 provides a formal justification.



40

Theorem 64  Suppose relation R has type A~B. Then
(65) RoR”C Iy = (Vb:bCR-:point.(RoboR"))

Moreover, if f is a relation of type A~B and fof” C I, the relation fobof” is a point
of type A and

(66) (Vab : bCf> : aTTobCf = a=fobof’) .

In words, f is functional iff, for all points b in the right domain of f, the relation
fobof” defines a unique point of type A, which point we denote by f.b.

Proof We prove (65) by mutual implication. First,

RoR” C Ix

= { domains }
RoR>0oR” C I

= { saturation axiom: (16) }
Ro(Ub : bCR>: b)oR” C I

= { distributivity }
(Vb : DCR>: RoboR” C 1)

& { definition 12 of a point }
(Vb : bCR>: point.(ReboR"))

Thus we have established the “if” part of the equivalence. Now, for the “only-if”, assume
RoR” C I,.

We first note that, for all b such that b CR>, equation (62) has at most one solution
since, for all points a and a’ of type A,

acTTob C R A a’oTTob CR
= { converse and monotonicity }
ao TToboboTToa’ C RoR"
= { b is a point, so TTobobeTT =TT }
a°TToa’ € RoR”
= { assumption: RoR” C I, , transitivity of the subset relation }
aoTToa’ C I,
= { a and a’ are points: (21) }

a=a’
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That is,
(67) (Vb :bCR-: (Va,a’ : aeTTobCR A a’°TTebCR: a=d')) .

By lemma 55, equation (62) has at least one solution for all points b such that b CR-.
That is,

(68) (Vb:bCR-:(Ja:aeTlTeb CR)) .
Thus equation (62) has ezactly one solution for all points b such that b Cf-. So:

(Vb : bCR>: point.(ReboR"))

= { RoboR”
C { assumption: b CR>, monotonicity }
RoR>oR"
= { domains }
RoR”
- { assumption: RoR” C Iy }

Ia
theorem 25 with p := RoboR"™ }
(Vb:bCR>:(Ja = a C RoboR"))
A (Yb:bCR>:(Va,a’:a CRoboR” A a’ CRoboR”:a=a’))
= { lemma 57 }
(Vb :bCR>:(Ja:asTTeb C R))
A (Yb:bCR>:(Va,a’:aTTeb CR A a’oTTeb C R:a=a’))
= { (67) and (68) }
true .

This concludes the proof of (65).
Now, assuming that fof” C I, it follows from (65) (with R:=f) that fobof” is a
point. Also, for all points a and b (of types A and B, respectively),

bCf- A aTTeb C f
= { lemma 58 (aiming to eliminate first conjunct) }
bCf> A bC(aef)> A\ aeTTeb C f

— { monotonicity and lemma 58 }
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aoTTob C f
= { lemma 57 }
aC fobof”

= { fobof” is a point, definitions 12 and 8 }

a="fobof’ .
O
Occasionally we need to define a functional relation. Sometimes we specify the re-
lation by means of an equation: “we define f of type ... by f.b=...”. More often,
we use the notation (b: ...) to denote a total function, or (b: ... :...) to denote a

(non-total) functional, the range part being used to specify a restriction on the domain.
This is consistent with our notation for suprema and infima (such as in universal and
existential quantifications).

A consequence of the unicity property expressed by (63) is the property that, for all
functional relations f of type C~A and g of type C~B, and all points a and b,

(69) aoTTebCfog = aCf-Afa=gbAblg- .
The proof exploits the irreducibility of points:
acTTeb C fog
= { domains, saturation axiom: (16) and distributivity }
aoTTeb C (Uc:ceC:f’ocog)
= { points are irreducible: (20) }
(Jc : ceC : aoTTob C f ocog)
= { (22 }
(Jc : ceC : aoTToc C 7 A ¢oTTeb C g)
= { converse, lemma 58 and (63) }
(Jc : ceC : alf> AN c=f.a AN bCg> N\ c=g.b)
= { Leibniz and predicate calculus }
aCf- A f.a=g.b A bCg- .

Now suppose R is a surjective relation of type A~B. In this case, for all points a of
type A, the equation

(70)  b: beB: a-TTebCR

has at least one solution since:
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Ig CR76R

= { saturation axiom: (16) and supremum }
(Vb : beB : b C RY6R)

= { saturation axiom: (16) and distributivity }
(Vb : beB : b C (Ua:a€A :R7caoR))

= { points are irreducible: (20) }
(Vb : beB : (Ja : a€A : b C R7cacR))

= { lemma 57 }
(Vb : beB : (Ja:a€A :a-TTob CR))

In the same way, pointwise formulations of the dual notions of injectivity and totality
can be derived. Our terminology reflects a bias in the interpretation of relations as
having output on the left and input on the right. A more neutral terminology such as
“left-functional”, “right-functional”, “left-total” and “right-total” would be preferable.
Care must be taken when using the above pointwise definitions in our axiom system.
The problem is the overloading of the symbol TT : sometimes the type information is
essential. For example, the left-domain operator (which we denote by the postfix symbol
<) defines a total function of type Cor.A + (A~B), for all types A and B, where Cor.A
denotes the set of coreflexives of type A . Denoting this function by Ldom, we must be
careful to distinguish between Ldom.R and R-<. This is because, according to (62),

(71)  Ldom.ReTToR C Ldom ;

on the other hand,

(72)  R<oTToR = RoTTeR

and it doesn’t make sense to write
R<ocTToR C < !

In equation (71), both R and Ldom.R are points of type A~B and Cor.A , respectively,
and the symbol “TT ” has type Cor.A~ (A ~B) whereas in equation (72) R< is not a
point, the leftmost occurrence of the symbol “TT” has type A~A and its rightmost
occurrence has type A~B.

We conclude this section with a number of properties of functional relations. The
properties stem from the observation that functionality can be defined via a Galois
connection. Specifically, the relation f is functional iff, for all relations R and S (of
appropriate type),

(73) fRCS = f>0R C foS .
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It is a simple exercise to show that (73) is equivalent to the property fof” C I. (Although
(73) doesn’t immediately fit the standard definition of a Galois connection, it can be
turned into standard form by restricting the range of the dummy R to relations that
satisfy f>oR = R, i.e. relations R such that R<Cf>.)

The converse-dual of (73) is also used frequently: g is functional iff, for all R and
S,
(74) Rog’ €S = Rog> C Seg .
Comparing the Galois connections defining the over and under operators (see section 3.2)
with the Galois connection defining functionality (see (73)) suggests a formal relationship
between “division” by a functional relation and composition with the relation’s converse.
The precise form of this relationship is given by the following lemma.

Lemma 75  For all R and all functional relations f,
f-of\R = f oR .
Proof We use the anti-symmetry of the subset relation. First,
f7oR C f>of\R
= { domains }

f-of“oR C f-of\R

& { monotonicity }
fYoR C f\R
= { factors }
fof'oR C R
& { definition and monotonicity }

f is functional
Second,

f-of\R C f'oR

& { f> C f”of; monotonicity and transitivity }
fYofof\R C f'oR

& { monotonicity }
fof\R C R

= { cancellation }

true .
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]

Two lemmas that will be needed later now follow. Lemma 76 allows the converse of a
functional relation (i.e. an injective relation) to be cancelled, whilst lemma 77 expresses
a distributivity property.

Lemma 76  For all R and all functional relations f,
f<of'\(f’oR) = f<oR .
Proof

f<of7\ (f"oR)
= { assumption: f is functional }

fofof \(foR)

C { cancellation }
fof”oR
= { assumption: f is functional }
f<oR .
Also,

f<oR C f<o f'\ (f°oR)
& { monotonicity }
R C '\ (f°oR)
= { factors }

true .

The lemma follows by anti-symmetry of the subset relation.
O

Lemma 77 For all R and S and all functional relations f ,
R\(Sef)of> = R\Sof .

Proof
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R\(Sof)of> C R\Sof
& { f> C f”of, monotonicity }
R\(Sef)of” C R\S

= { factors }

RoR\(Sef)of” C S

& { cancellation }
Sofof” C S
= { assumption: f is functional }
true .
Also,

R\Sof C R\(Sof)of>

& { monotonicity, f = fof> }
R\Seof C R\(Sof)

= { factors and cancellation }

true .

The lemma follows by anti-symmetry of the subset relation.
O

The following lemma is crucial to fully understanding Riguet’s “analogie frappante”;
see lemma 248 in section 9.2. (The lemma is complicated by the fact that it has five free
variables. Simpler, possibly better known, instances can be obtained by instantiating
one or more of f, g, U and W to the identity relation.)

Lemma 78 Suppose f and g are functional. Then for all U, V and W,
o (g W\V/(Wot<)ag
= f>o(guoUof)\(gUoVof)/(guoWof)og> .

Proof Guided by the assumed functionality of f and g, we use the rule of indirect
equality. Specifically, we have, for all R, U, V and W,

f>oRog> - fuo(g<OU)\V/(Wof<)og
= { assumption: f and g are functional, (73) and (74) }
foRog” C (g=oU)\V/(Wofx)
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= { factors }
g<oUofoRog oWof< C V
= { assumption: f and g are functional
ie. fof'=1f< A gog’=g- |}
geg eUofoRog oWofof’ C V
= { assumption: f and g are functional, (73) and (74) }
g-og oUocfoRog oWofof> C g oVof
= { domains (four times) }
g oUofof-0Rog=0g"oWof C g oVof
= { factors }
f-oRog> C (g oUef)\(g o Vor)/(g o W)
= { f> and g- are coreflexives }

f>oRog> - f>o(gUOUOf)\<gUoVof)/<gUoWof)og>

The lemma follows by instantiating R to the left and right sides of the claimed equation,
simplifying using domain calculus, and then applying the reflexivity and anti-symmetry
of the subset relation.

O

The final lemma in this section anticipates the discussion of per domains in section
3.8.

Lemma 79  Suppose relations R, f and g are such that
fof’ = f< = R< A g< = gog .

Then, for all S,

(80) g-o(f'oReg)\(f'oS) = g oR\S .

It follows that

(81)  g-e(f eRog)\(f eReg)og- = g oR\Reg .

Proof The proof of (80) is as follows.

g>o(f"oRog)\(f = 5)

= { factors }

9> g\((f"eR)\(f"= 5))
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= { lemma 75 with f,R:= g, (f"oR)\(f"=S) }
g o(f oR)\(f"=S)
= { factors }
g oR\(f"\ (f"=5))
= { [R\S=R\(R<0S) ] with R,S := R, 7\ (f"0S)
assumption: f<=R< }
g~ oR\(f<o f7\ (f"0S))
= { lemma 76 with f,R:=f,S }
gUOR\(f<OS)
= { assumption: f<=R<, [R\S=R\(R<oS)] }
g oR\S .
Now we prove (81).
g>o(onRog)\(onRog)og>
= { (80) with S:=Reg }
g~ eR\(Reg)eg-
= { lemma 77 }
g oR\Rog .
O

3.6 Isomorphic Relations

Several theorems we present “characterise” classes of relations in terms of functional
relations. Typically these characterisations are not unique but unique “up to isomor-
phism”. See, for example, section 5.2. The definition of “isomorphic” relations and some
properties of the notion are given below.

Definition 82 Suppose R and S are two relations (not necessarily of the same type).
Then we say that R and S are isomorphic and write R=S iff

(3,0
Pod” =R A pTohp =5 A pop’ =R- A Prep=S-
R=doSer)”
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~Y

Lemma 83  The relation = is reflexive, transitive and symmetric. That is, = is an
equivalence relation.

Proof This is very straightforward. For example, here is how symmetry is proved.

R=oSoyp’

= { Leibniz }
PUoRoY = dUodoSeor

= { assume: ¢~ odp = S< and P o = S>, domains }
¢ oRep = §

= { Leibniz }
Pog oRopep” = PoSoyp’

= { ssume: ¢pod” = R< and Pop” = R>, domains }
R=doSoh” .

That is, for all ¢, P, R and S,

(R=doSop” = ¢ oRop = S)
& ¢od =R A ¢Teh =5 A Ppop’ =R- A Yo =5- .

Symmetry of = follows by definition of =, properties of converse, and Leibniz’s rule.
O

The task of proving that two relations are isomorphic involves constructing ¢ and
1 that satisfy the conditions of the existential quantification in definition 82; we call the
constructed values witnesses to the isomorphism.

Note that the requirement on ¢ in definition 82 is that it is both functional and
injective; thus it is required to “witness” a (1-1) correspondence between the points in
the left domain of R and the points in the left domain of S. Similarly, the requirement on
P is that it “witnesses” a (1-1) correspondence between the points in the right domain
of R and the points in the right domain of S. Formally, R< and S< are isomorphic as
“witnessed” by ¢ and R> and S- are isomorphic as “witnessed” by :

Lemma 84 Suppose R and S are relations such that R=S. Then R<Z=S< and
R>2S>.
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Proof Suppose ¢ and 1 are such that
dod” =R« A ¢ op =S« A Yo’ =R> A P op =S> .

Then

R-

— { R< is coreflexive }
R<oR<

— { assumption }
Podp’e ped”

— { assumption }
$hoS<od” .

That is R<= ¢oS<od”. Similarly, R> =1oS>01p”~. But also (because the domain
operators are closure operators),

(1)0(])U = (R<)< A\ d)uod) = (S<)< A\ ‘Ll)oLl)U = (R>)> A\ 'LI)UO'LI) = (S>)> .

Applying definition 82 with R,S,b,p := R<;S<,¢,d and R,S,b,p := R>,S>,1V,, the
lemma is proved.
O

3.7 Formulations of Power Transpose

Warning This section makes use of the notion of “symmetric division” as defined in
[BAM97, Olil8] but not as defined in [Fv90]. “Symmetric division” can be defined in
two non-equivalent ways which we call symmetric left-division and symmetric right-
diviston. Given relations R of type A~B and S of type A~C, the symmetric right-
division is a relation of type B~C defined in terms of right factors as

R\S N (S\R)" .

Dually, given relations R of type B~A and S of type C~A , the symmetric left-division
is a relation of type B~C defined in terms of left factors as

R/S N (S/R)” .

Clearly, just from their types, neither the “symmetric” left-division nor the “symmetric”
right-division is a symmetric relation. Possibly the justification for the use of the word
“symmetric” is that, for homogeneous relation R, RNR" is a symmetric relation (indeed



51

the largest symmetric relation included in R). Both [BdM97, Olil8] and [Fv90] use
the notation § (in the case of [BAM97, Olil8] to denote symmetric right-division and
in the case of [Fv90] to denote symmetric left-division). The motivation for this is
that the notation suggests a number of cancellation rules similar to the ones used in
ordinary arithmetic. Great care must be taken, however, because —unlike in ordinary
arithmetic— the cancellation rules are one-sided. For example, for symmetric right-

division, we have the rule

R
R = Roﬁ
but this is not valid if % is defined to be symmetric left-division. Even worse, the
expression RoR does not even make sense (if § is defined to be symmetric right-division)
if R is a truly heterogeneous relation —with unequal source and target— purely on type
grounds! For this reason, the notation R\S will be used here to denote the symmetric
right-division. The reader should take great care when comparing formulae with those
in [Fv90]. End of Warning
Given a relation R of type A~B, the (left) power transpose [Fv90, BAM97| of R is
a total function, denoted in this paper? by 'R, of type 22«B. A pointwise definition
of the (left) power transpose (using traditional set notation) is

'Rb = {alaRDb} .

As discussed in section 3.3, there are three different but isomorphic mechanisms for
representing sets in relation algebra: as coreflexives, (left or right) conditionals and
squares. Using coreflexives, the power transpose 'R of R is represented by the function

(b = (Reb)<)

It has type Cor.A « B where Cor.A denotes the type of coreflexives of type A~A.

Rather than use coreflexives to define power transpose, Freyd and Séedrov [Fv90]
postulate a number of axioms that define 'R in terms of set membership. Their approach
is followed by Bird and De Moor [BdM97]. For our purposes, only two properties are
needed. The first is that 'R is a total function. That is, for all R, S and T of
appropriate type,

(85) 'RoS Q T = S g (FR)UOT .

2Freyd and Sé¢edrov [Fv90] use the symbol “ A” rather than “I'”. In just the same way that we prefer
the symbols “\” and “/” for asymmetric, but dual, operators, we prefer to use an asymmetric symbol
for left power transpose, thus opening the possibility of using its mirror image for right power transpose.



52

This is the Galois connection (73) with f:=T'R and specialised to the case that f>=1 (i.e.
f is total); in line with our common policy when using well-known Galois connections,
we refer to the rule as a “shunting rule”. The second property of 'R that we use is

(86) (TR)”oTS = R\S N (S\R)” .

From a calculational viewpoint, the two rules together enable reasoning about power
transpose on the smaller and larger side of a set inclusion, respectively.

The property (86) can be derived from the definition of 'R in our axiom system.
Here is the proof.

Lemma 87  For all relations R and S,
(TR)"oT'S = R\S N (S\R)” .
Proof We use indirect equality. For all relations X, R and S, we have
X C (TR)"TS
= { saturation property: (19) }
(Va,b : acTTeb C X : aoTTob C (T'R)”oTS)
= { (69) with f,g:=T'R,['S and definition of I" }
(Va,b : acTTob C X : (Rea)< = (Sob)<)
= { corollary 61 }
(Va,b : acTTeb C X : acTTob C R\S N (S\R)")
= { saturation property: (19) }
X C R\SN(S\R)” .
Summarising, for all X, R and S,
X C(TR)”=TS = X C R\SN (S\R)” .
That is, by indirect equality,

(TR)"oTS = R\SN (S\R)" .
O
Abbreviating the right side of lemma 87 to R\\S, viz.

(88) R\S = R\SN(S\R)" ,
the lemma becomes, for all R and S,
(89) (TR)"oTS = R\S .

We use both forms of the lemma below.
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3.8 Pers and Per Domains

The relation R\R is an equivalence relation®. Voermans [Voe99| calls it the “greatest
right domain” of R. Riguet [Rig48] calls R\R the “noyau” of R (but defines it using
nested complements). Others (see [Oli18] for references) call it the “kernel” of R.

As remarked elsewhere [Olil8|, the symmetric left division inherits a number of
(left) cancellation properties from the properties of factorisation in terms of which it
is defined. For our purposes, the only cancellation property we use is the following
(inherited from the property RoR\R = R).

Lemma 90 For all R,
RoR\R = R .

Proof By mutual inclusion:

R o R\R
= { definition: (88) with R,S:=R,R }
Ro (R\RN (R\R)")
C { monotonicity }
R o R\R
= { cancellation [ RoR\S C S ] (with R,S:=R,R) and [ICR\R] }
R
C { [ICS\S] with S:=R }
RoR\R .

O

Voermans [Voe99| emphasises the importance of the relation R>oR\R, which is a
partial equivalence relation that better reflects the right (per-)domain of R. (In acc-
cordance with his thesis, “domains” are pers rather than coreflexives.) Unlike Riguet
and others, Voermans gives equal importance to the dual equivalence relation R/R and
the left (per-)domain R/RoR<. The combination of the two per-domains enables the
definition of what we call the “core” of a relation. The “core” of a relation is important
to understanding the nature of difunctional relations and block-ordered relations. See
theorems 205 and 207 in section 7.3. See also section 12 for further discussion.

3This is a well-known fact: the relation R\R is the symmetric closure of the preorder R\R. The easy
proof is left to the reader.
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Definition 91 (Partial Equivalence Relation (per)) A relation is a partial equiv-
alence relation iff it is symmetric and transitive. That is, R is a partial equivalence
relation iff

R=R” A RoRCR .

Henceforth we abbreviate partial equivalence relation to per.
O

An equivalence relation is a reflexive, symmetric and transitive relation. Reflexivity
means that the left domain, the right domain, the source and the target of the relation are
all the same. A partial equivalence relation is not necessarily reflexive;, the absence of
the reflexivity property is, however, of no consequence. Its réle is taken by the following
lemma.

Lemma 92  Suppose R is a per. Then
R< =R~ C R .

Proof The equality R< = R> is immediate from the definition of the domain operators
and the fact that a per is symmetric. Also,

R> C R

& { R> = I N R"0R, transitivity of subset relation }
R"oR C R

= { assumption: R is a per, definition 91 and Leibniz }

true .
O
Because the left and right domain of a per are equal, we refer to its domain, omitting
the adjective left or right.
Definition 91 is the standard definition of a partial equivalence relation. A better
definition —because it is just one equation— is expressed by the following theorem.

Theorem 93  For all relations R, R is a per equivales R = RoR”. Symmetrically, for
all relations R, R is a per equivales R = R"oR.

Proof By mutual implication. First, suppose R is a per. Then

ReoR

- { assumption: R is transitive }
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= { domains }
RoR>

C { assumption: R is a per, lemma 92 }
ReR .

That is, by the anti-symmetry of the subset relation, R=RocR. But R is symmetric.
That is, R=R". So, by Leibniz’s rule, R = RoR".
For the follows-from, we have:

R = RoR”
= RR) =RR )
R = RoR” = R”
= { subset relation is reflexive, Leibniz }

R-RCR A R=R"
= { definition }

per.R .
O

The following lemma is a straightforward consequence of theorem 93.

Lemma 94  Suppose f is a functional relation. Then f”of is a per.
O

Pers are studied in more detail in section 5. In this section the focus is on the left
and right “per-domains” introduced by Voermans [Voe99].

Definition 95 (Right and Left Per Domains)  The right per-domain of relation
R, denoted R-, is defined by the equation

(96) R~ = R-oR\R .

Dually, the left per-domain of relation R, denoted R=, is defined by the equation
(97) R< = R/RoR< .

O

Although the theorems below focus on the properties of R-, each can, of course, be
dualised to properties of R<.

The left and right per-domains are called “domains” because, like the coreflexive
domains, we have the properties:

(98) R<oR = R = RoR- .
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(The second of these equalities is an immediate consequence of lemma 90 and the prop-
erties of (coreflexive-) domains; the first is symmetric.) Indeed, R< and R- are the
“least” pers that satisfy these equalities. (See [Voe99] for details of the ordering relation
on pers.)

That R~ and R- are indeed pers is a direct consequence of the symmetry and tran-
sitivity of R\R. For example, the transitivity of R- is inherited from the transitivity of

R\R:
R-oR-

= {  (96)and (100) }
R>oR\RoR\RoR>

{ R\R is transitive }
R-oR\ReR>
= { lemma 99 and (96) }

R~ .

N

The symmetry of R~ (i.e. R-=(R-)") is a similar combination of (96), (100) and the
symmetry of R\R. Thus R- is a per. Dually R< is also a per.

In order to prove additional properties, it is useful to record the left and right domains
of the relation R\RoR>:

Lemma 99 For all R,
(R\ReR-)- = R- = (R-2R\R)- ,
(R\ReR-)< = R- = (R-2R\R)- ,
R\RoR> = R>oR\ReoR> = R>cR\R .
Proof The first two equations follow from the fact that
(R\R)< = T = (R\R)~
(because ICR\R and R\R is the symmetric closure of R\R). For example:
(R-=R\R)-
= { domains }
(R-o (R\R)<)-
= { (R\R)<=1 }
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(R-)=
= { R> is a coreflexive, domains }
R> .
The second two equations follow from lemma 90.
(R\\R o R>)<
= { domains }
(Re (R\R)")~
= { R\R is symmetric }
(RoR\R)>
= { lemma 90 }
R- |
and
(R->R\R)-
= { domains }
(RoR\R)>
= { lemma 90 }
R> .

Combining the domain equations, we have

R\Ro R~

= { (R=oR\R)< = R, domains }
R-oR\RoR>

= { (R=oR\R)> = R-~, domains }
R-oR\R .

O
Lemma 99 has the consequence that R- can be defined equivalently by the equation

(100) R> = R\\ROR>
and, moreover,
(101) (R-)< = R> = (R-)> .

A property that we need later is
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Lemma 102  For all relations R,
R\RoR~ = R\RoR> .
Proof By anti-symmetry of the subset relation:
R\R e R~
C { by (88), (100) and monotonicity, R- C R\RoR> }
R\RoR\RoR>
C { by cancellation, R\R-R\R C R\R }
R\R©oR>
C { ICR\R, so by (100) and montonicity, R~CR- }

R\RoR- .
O

The pointwise interpretations of the left and right per domains are given by the
following lemma.

Lemma 103  For all relations R of type A~B and all points a and a’ of type A,
aTlea’ CR< = aCR< A (aR)>=(asR)> A a'CR-< .
Dually, for all relations R of type A~B and all points b and b’ of type B,
boTTeb’ CR- = bCR> A (Rob)<=(Rob’)< A b'CR> .
Proof Assume that b and b’ are points. Then
boTTob! C R-
= { definition (96) and lemma 99 }
boTTob’ C R-oR\RoR-
= { domains (using mutual implication) }
bCR> A boTlTeb’ € R\R A b'CR>
= { corollary 61, with R,S:=R,R }
bCR> A (Reb)< = (Reb’)< A Db'CR> .

The dual property follows from the distributivity properties of converse.
O
Given relation R, the relation R“oR is symmetric but not necessarily transitive.
However, it is an upper bound on the right per domain of R. That is,
(104) RoR D R~ .

The proof is as follows:
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R'oR D R-

— { definition: (96) }
R"oR D R>oR\R

— { cancellation: (90) }
R”sRoR\R D R-oR\R

& { monotonicity }
RVoR D R-

&= { definition 42 }

true .
Dually, of course, we have:
(105) RoR” D R< .

It is useful to investigate the circumstances in which the inclusions in (104) and (105)
become equalities.

Lemma 106 For all relations R,
(R< = RoR”) = (R = RoR’eR) = (R"oR=R-) .

(As usual, we overload the equality symbol: its usage here alternates between equality
of relations and equality of booleans. As always, continued equalities should be read
conjunctionally.)

Proof We have:

R"oR = R~
= { (104) and anti-symmetry }
RVoR C R-
= { definition: (96) }
RV6R C R-oR\R
& { R>0oR” = R” and monotonicity }
RVsR C R\R
{ R”oR is symmetric, R\R = R\RN(R\R)” }
RVoR C R\R



& { factors }
RoR”“oR C R

< { (98 }
R"oR = R~ .

We have thus proved (by mutual implication), that

(ReR“eR C R) = (R7eR=R-) .

But,
RoR"oR C R
= { (54 }
RoR“eR € R A R CRoR"6R
= { anti-symmetry }

R = RoR”0R

Combining the two calculations (using the transitivity of boolean equality),

(R = RoR"70R)
The dual property,
(R< = RoR")

(R = RoR“6R)

follows by symmetry.
O
Two special cases of lemma 106:

Lemma 107
f- = f of .
Proof
f- = fof
= { lemma 106 with R:=f
f=fofof
= |
f = f<of
= |

true .

domains }

For all functional relations f (that is, for all

(R7oR =R-) .

}

assumption: f is functional, i.e. fof’ = f< }

f such that fof” =

60
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]
The following lemma extends [Rig48, Corollaire, p.134] from equivalence relations to
pers.

Lemma 108  For all relations R, the following statements are all equivalent.

(i) R is a per (i.e. R=R? ARRCR) ,

(i) R=R"R ,
(iii) R=R< ,
(iv) R=R-~-

Proof The equivalence of (i) and (ii) was shown in theorem 93. It remains to prove the
equivalence of (ii) and (iii); the equivalence of (ii) and (iv) is the dual proposition.
R=R-
- { [R=RoR-] and [R-=(R-)"] }
R =RoR” =R~
= { R=RoR” = R=RoR”=RoR’6oR
(by Leibniz and predicate calculus) }
R =RoR”=RoR’oR =R~
= { lemma 106 }
R =RoR” =RoR”cR
- { see above }
R =RoR" .

O
Coreflexives are, of course, pers. This implies that they are closed under the left and
right per-domain operators:

Lemma 109  For all coreflexives p,
'p< = ‘p = 'p> .

Proof The lemma follows from lemma 108 since, for all coreflexives p,

pP=p =pp -
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O
The dual of lemma 107 is that, for all injective relations f (that is, for all f such
that f'of = f>),

f< = fof” .

Noting that f is injective equivales f~ is functional, we seek a convenient way of com-
bining the two properties. Such is the following.

Lemma 110  Suppose that f and g are functional relations and R is an arbitrary
relation such that

fOfU = f< = R< /\ gogU = g< = R> .
Then
(onRog)< = foR<ofU /\ (onRog)> = gUoR>og

Proof First note that

((f"eReg)-)=
= { (o1 }
(f"°Reg)-
— {  assumption: f<= R<, domains }
(Reg)-
= { assumption: g< = R-, domains }
g- -
That is,
(111) ((f'eReg))< = g .

Now,
g>o(onRog)\(onRog)og>
- { lemma 79 with S:=Reg  }
g oR\(Reg)<g-
= { lemma 77 with R,S,f:=R,R,g }
g °R\Reg .



That is
(112) g-o(f eRog)\(f eReg)og- = g oR\Reg .
Thus

g>o<onRog)>og>
= { definition 95, lemma 99 and (111) }

g=o((f"oReg)\(f"eRog) N ((f"oRog)\(f oRog))”)og~

= { distributivity of coreflexives over intersection }
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g-o(f"oReg)\(f"eRog)og> N (g=o(f oReg)\(f"eReg)og>)"

= { (@112) }
g eR\Reg N (g”eR\Reg)"

= { distributivity (g is functional) }
g~ o (R\RN (R\R)") g

= { definition 95 }

gUoR>og .
O

Lemma 107 is an instance of lemma 110 (obtained by instantiating both R and g to
f< and using lemma 109 to eliminate R<). Similarly, the dual of lemma 107 is also an

instance. Another instance is:

Lemma 113  For all relations f and g such that
fof’ = f< = gog” = g=

we have
(fPeg)- =g A (flog)< = fr .

Proof

(f7eg)-

= { heading for lemma 110, domains }
(fPog<cg)-

= { domains and lemma 110 with R,f,g := g<,f,g
g o(g9<)-°g

}
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= { lemma 109 and domains }

— { lemma 107 with f:=g }
g- .

The second equality is now straightforward:

(f7og)-
= { converse }
((g7ef)")=
— { definitions : (100) and (97) }
(g7 =f)
= { [ (fuog)>:g>¢fofu:f<:gOgU:g< ]
(just proved) with f,g:=g,f }

- .
O

3.9 Provisional Orderings

There are various well-known notions of ordering: preorder, partial and linear (aka total)
ordering. For our purposes all of these are too strict. So, in this section, we introduce the
notion of a “provisional ordering”. The adjective “provisional” has been chosen because
the notion “provides” just what we need.

The standard definition of an ordering is an anti-symmetric preorder whereby a pre-
order is required to be reflexive and transitive. It is the reflexivity requirement that is
too strict for our purposes. So, with the intention of weakening the standard definition
of a preorder to requiring reflexivity of a relation over some superset of its left and right
domains, we propose the following definition.

Definition 114 Suppose T is a homogeneous relation. Then T is said to be a
provisional preorder if

T<CT AN T-=CT A TTCT .

Fig. 4 depicts a provisional preorder on a set of eight elements as a directed graph.
The blue squares should be ignored for the moment. (See the discussion following lemma
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Figure 4: A Provisional Preorder

120.) Note that the relation depicted is not a preorder because it is not reflexive: the
top-right node depicts an element that is not in the left or right domain of the relation.

An immediate consequence of the definition is that the left and right domains of a
provisional preorder must be equal:

Lemma 115 If T is a provisional preorder then
T<=T> .

Proof Suppose T is a provisional preorder. Then

T-CT-

= { domains }
(T-)< C T=

& { monotonicity }
T-CT

= { assumption: T>CT }
true .

That is, T> C T<. Dually, T< C T>. Thus, by anti-symmetry, T< = T>.
O
A trivial property that is nevertheless used frequently:
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Lemma 116 T is a provisional preorder equivales T is a provisional preorder.

Proof Immediate from the definition and properties of converse.
O

A preorder is a provisional preorder with left (equally right) domain equal to the
identity relation. In other words, a preorder is a total provisional preorder. It is easy
to show that, for any relation R, the relations R\R and R/R are preorders. It is also
easy to show that R is a preorder if and only if R=R\R (or equivalently if and only if
R=R/R). These properties generalise to provisional preorders.

Lemma 117  For all relations R, the relations R>oR\R and R/RoR< are provisional
preorders.

Proof The proof is very straightforward. First,

(R-=R\R)-
= { [CR\R, so (R\R)<=1I; domains }
(R>)<
= { R> is a coreflexive }
R-

C { [ CR\R, monotonicity }

R-oR\R .
Second,
(R=oR\R)>
= { domains }
(RoR\R)>
= { cancellation }
R>

C { [ CR\R, monotonicity }
R>oR\R .

Third,

R-oR\RoR>0R\R

N

{ R>C1I, monotonicity }
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R-oR\RoR\R
{  R\RoR\R C R\R

N

(easy use of definition of factors and cancellation) }

R-oR\R .

Comparing the above properties with definition 114, we have shown that R>oR\R is a
provisional preorder. The dual property, R/RoR< is a provisional preorder, is obtained
by the instantiation R:=R" and application of distributivity properties of converse.

O

Lemma 118 T is a provisional preorder equivales
T = T<oT\T = T/ToT> = T<oT\T/ToT> .

Proof Follows-from is a straightforward consequence of the fact that T\T is a preorder
for arbitrary T.

Implication is also straightforward. Assume that T is a provisional preorder. The
proof of the leftmost equality is by mutual inclusion. First

TCT<oT\T

& { T =T<oT and monotonicity }
TCT\T

= { factors }
ToTCT

= { assumption: T is transitive }
true .

For the opposite inclusion we have

T<ocT\TCT

& { assumption: T<C T, monotonicity }
T-T\TCT

= { cancellation }
true .

Thus T = T<oT\T by anti-symmetry. That T =T/ToT> follows from lemma 116 and
the properties of converse. Finally,
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T

= { T=ToT> and T = T<oT\T (proved above) }
T<oT\ToT>

= { T=T/ToT> (proved above) }
T<oT\(T/ToT>)oT>

= {  [R\(SoR-)oR>=R\SoR-] with R,S:=T,T }
T<oT\T/ToT> .

O
Lemma 118 is sometimes used in a form where the domains are replaced by per
domains.

Lemma 119 Suppose T is a provisional preorder. Then
T = T<oT\T = T/ToT- = T=<oT\T/ToT- .

Proof Immediate from lemma 118 and the per domain equations, for all R,
R = R<oR = R<oR<oR = RoR- = RoR>0oR- .

For example,

.

= { [ R = R<eR ] with R:=T }
T<oT

= { lemma 118 }
T<oT<oT\T

= { [ R<cR< = R=< ] with R:=T }
T<oT\T .

O

Lemma 120 Suppose T is a provisional preorder. Then
T~ = TNnT’ = T~ .
Hence TNT" is a per.

Proof We exploit lemma 118:
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T-

= { definition: (96) and (88), lemma 99 }
T>o (T\TN (T\T)") o T~

= { distributivity ( T> is coreflexive) }
T>oT\ToT> N (T)<o T /T o (T)<

= { lemma 115

(twice, once with T:=T" using lemma 116) }

T<oT\ToT> N (T)<o T /T o (T)>

= { lemma 118 }
ToT> N (T7)<oT"

= { domains }
TTnT" .

The dual property T< = TNT" is immediate from the properties of converse.
O
Referring back to fig. 4, the blue squares depict the equivalence classes of the sym-
metric closure of a provisional preorder. As remarked earlier, the depicted relation is not
a preorder; correspondingly, the blue squares depict a truly partial equivalence relation.
We assume the reader is familiar with the notions of an ordering and a linear (or total)
ordering. We now extend these notions to provisional orderings. (The at-most relation
on the integers is both anti-symmetric and linear. The at-most relation restricted to some
arbitrary subset of the integers is an example of a linear provisional ordering according
to the definition below.)

Definition 121 Suppose T is a homogeneous relation of type A~A, for some A.
Then T is said to be provisionally anti-symmetric if

TNT  C 1A .

Also, T is said to be a provisional ordering if T is provisionally anti-symmetric and T
is a provisional preorder. Finally, T is said to be a linear provisional ordering if T is
a provisional ordering and

TUT® = (TNT)eTTo(TNT") .
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Definition 121 weakens the equality in the standard notion of anti-symmetry to an
inclusion. The standard definition of a partial ordering —an anti-symmetric preorder—
is weakened accordingly (as mentioned earlier, in order to “provide” for our needs).

The following lemma anticipates the use of provisional preorders/orderings in exam-
ples presented later.

Lemma 122  Suppose T is a provisional ordering. Then
T< = TNT” = T- .
Proof For the first equality, we have

TNT  C T<
= { I is unit of composition, definition of T< }

(TAT )l C INToTT

= { assumption: TNT” C I ; infimum and monotonicity }
true .
Also,
T<-CTNT”
- { infimum }

T-CT A T-CT"
= { T is a provisional preorder, so T<CT; (T<)"=T< }

true .

The second equality is obtained by instantiating T to T .
O
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4 Squares and Rectangles

Squares are by definition homogeneous relations. We now introduce the notion of a
“rectangle”; rectangles are typically heterogeneous. Squares are rectangles; properties
of squares are typically obtained by specialising properties of rectangles. (For example,
lemma 127 shows that the intersection of two rectangles is a rectangle by giving an
explicit construction; the same construction applies to squares from which it is easily
shown that the intersection of two squares is a square.)

Definition 123 (Rectangle) A relation R is a rectangle iff R=RoTT<R.
]

An example of a rectangle is the “pair” aoTTob where a and b are points. More
generally, we have:

Lemma 124  For all relations R and S, RoTTeS is a rectangle. It follows that RoToS
is a rectangle if T is a rectangle. In particular, if R has type A~B, S has type B~C,
and b is a point of type B, the relation RebeS is a rectangle.

Proof Because the proof is based on the cone rule, a case analysis is necessary. In the
case that either R or S is the empty relation, the lemma clearly holds (because RoTT oS
is the empty relation, and the empty relation is a rectangle). Suppose now that both R
and S are non-empty. Then

RoTToSeTToRoTT S
= { cone rule: (5) (applied twice), assumption: R# 1l and S# 1L }
RoTToS .
If T is a rectangle, RoToS =ReToTToToS; thus RoToS is a rectangle. That RoboS is a

rectangle is an instance since, by (15), b is a rectangle if b is a point.
O

The type information in the statement of lemma 124 provides a useful guide when
introducing definitions of particular rectangles.

4.1 Inclusion and Intersection

Using colloquial terminology, the left and right domain of a rectangle are the “sides” of
the rectangle. In general, a rectangle is defined by its two sides. More precisely:
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Lemma 125 Suppose R and S are rectangles of the same type. Then
RCS = R<CS< A R-CS> .
It follows that

R=S = R«=S§< A R-=8§>.

Proof By mutual implication:

RCS
= { monotonicity }
R<CS< A R-CS-
= { monotonicity }
R-oTToR> C S<oTT oS>
= { domains }
RoTToR C SeTToS
= { assumption: R and S are rectangles, definition 123 }
RCS .
The second property follows straightforwardly from the anti-symmetry of the subset

relation.
O

For squares R and S, lemma 125 simplifies the check for equality to checking that
their included points are the same:

Corollary 126 If R and S are both squares then

R=S = (Va:aCR = aCS§)

Proof
R=S
= { lemma 125 and assumption: R and S are squares }
R< = S<
& { saturation axiom: (16) }

(Va :: aCR< = aCS-)

= { lemma 125 and assumption: R and S are squares }
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(Va:aCR = acCs)
& { Leibniz }
R=S .
O

Lemma 127 The intersection of two rectangles is a rectangle. Specifically, for all
rectangles R and S,

RNS = (R<NS<)oTTo(R>NS>) .
Proof We have, for all R, S, T and U,

RoTTeS N ToTToU

= { property of conditionals }
RoTT N TTeS N ToTT N TToU

= { property of conditionals }
(RNT)eTT N TTo(SNU)

= { property of conditionals }
(RNT)oTTo(SNU) .

(The properties of conditionals used above are not shown in this paper but easily proven.
Hint: use the modularity rule (3).) Also, for all R and S, ReTTeS = R<oTT oS>. So

RNS
= { assumption: R and S are rectangles }
RoTToR N SoTT oS
= { [ RoTToS = R<oTT oS> | with R;S:=R,R and R,S:=S,S }

R<oTToR> N S<oTT oS>
= { above with R,S,T,U := R<,R>,S<,S> }

(R=NS<)sTTo(R-NS-) .
O

Lemma 128 If U is a rectangle then, for all points b (of appropriate type)
(Uob)< = U< V (Uob)< = LL .

Proof
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(Usb)-

= { assumption: U is a rectangle }
(UOTFouob)<

= { domains }
(UoTT o U>ob)-<

= { assumption: b is a point. So U>ob=b V Usob =11 }
if U=ob=Db — (UcTTob)< O U>ob =11 — 1L fi

= { assumption: b is a point. So (TTeb)<=1 }
if U>ecb=Db — U< O Useb=_1L — 1L fi .

O

4.2 Completely Disjoint Rectangles

As is well-known, an equivalence relation partitions its domain into a set of disjoint
classes. Also well-known is that the existence of such a partitioning is precisely formu-
lated by the function that maps an element of the domain to its equivalence class: two
elements are equivalent if and only if their equivalence classes are equal. When repre-
sented by relations, equivalence classes are squares. The theory of difunctional relations
generalises this partitioning property to “completely disjoint” rectangles. This section
lays the foundations for this theory. Specifically, theorem 141 formulates a correspon-
dence between pairs of functional relations and sets of completely disjoint rectangles.

Definition 129 (Indexed Bag/Set) Suppose R is a function with source K. Then
R is said to be a bag indexed by K. The values R.k, where k ranges over K, are said
to be the elements of R. In the case that R is injective, it is said to be an indezed
set.

O

The distinction between “bag” and “set” in definition 129 emphasises the fact that
the same element may occur repeatedly in an indexed bag whereas each element occurs
exactly once in an indexed set. That is, an indexed set R has the property that, for all
j and k in K,

Rj=Rk = j=k .

We normally apply definition 129 to bags/sets of rectangles. Specifically, suppose A, B
and K are types and R 1is a function with source K and target rectangles of type A~B.
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Then ‘R is said to be an indezed bag of rectangles; it is an indexed set of rectangles
if it is injective.

Two relations R and S are disjoint if RNS = 11 . One can show that, for all rectan-
gles R and S,

RNS=1 = R<NS<=1L V R-NS>= 1L .

(This is a consequence of lemma 127.) The definition of “completely” disjoint strengthens
the disjunction to a conjunction. Note that we don’t use continued equality because the
symbol “ LI " is overloaded.

Definition 130 (Completely Disjoint) Two rectangles R and S are said to be
completely disjoint iff

R<NS<=1L A R-NS>=1L .

Suppose R is an indexed bag of rectangles. Then R is said to be a completely disjoint
bag of rectangles iff, for all j and k in the index set of R,

Rj#Rk = (Rj)<N(RK)<=1L A (Rj)>N(RXK)>= 1L .

R is said to be a completely disjoint set of rectangles iff in addition it is injective. That
is, R is a completely disjoint set of rectangles iff, for all j and k in the index set of
R,

j£k = (Rj)<N(RK)<=1L A (Rj)-N(RK)> =1L .

We give several constructions of bags/sets of rectangles. When we do so, the ver-
ification that the bag/sets are completely disjoint is achieved by mutual implication.
The “if” part is established by proving its contrapositive. That is, the proof obligation
becomes to show that, for all indices j and k,

Ri=Rk = (Rj)-<N(RK)<# L A (Rj)>N(RK)># LL
which simplifies to, for all j,
Rj# 1L .

(The same simplification is valid whether the construction yields a bag or a set.) Thus
the first step is to show that the construction yields non-empty elements. The “only-if”
part is to show that, for all indices j and k,

Rj#ARk = (Rj)-<N(RK)<= 1L A (Rj)>N(RXK)>= 1L .

For this part, the following lemma is exploited.
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Lemma 131  For all relations R and S,

R<NS< =1l = R'=S= 1l .
Symmetrically,
R-NS> = 1l = RoS" = 1L .

Proof First note that
R<NS< = 1L = R<oS< = 1L
since the intersection of coreflexives is the same as their composition. Then

R<oS< = 1L
= { 11 is zero of composition }
RVoR<0S<0S — ||
= { domains: (45) }
R”eS = 1L
= { 1l 1is zero of composition }
RoR”0S0oS” = 11
= { monotonicity, [ R=1L =RC 1l | (applied twice) }
(INReR”)o(INS-S”) =1L
= { domains: definition 42 }

R<oS< = 1l .

The lemma follows by mutual implication.
O

The foregoing discussion is formalised in the following lemma.
Lemma 132 Suppose R is an indexed bag of rectangles. Then R is completely
disjoint iff
(Vj=Rj#LL)
A (Vik = Rj#REk = (Rj) Rk = 1L A Rjo(RKk)” = 1L) .
Also, R is completely disjoint and injective —i.e. an indexed set— iff
(Vj=Rj#LL)
A (Vik = j#£k = (Rj)7oRk = 1L A Rjo(Rk) = 11) .
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Proof

R is completely disjoint
= { definition 130 }
Vjk = Rj#Rk = (Rj)<N(R.k)<=1L N (Rj)>N(R.K)>= 1L)

= { mutual implication }
(Vjk = Rj#Rk & (Rj)<N(R.k)<=1L A (R.j)>N(R.K)>= 1L)
N (Vik @ Rj#RXKk = (Rj)<N(R.k)< =1L N (Rj)>N(R.k)>

I
E

= { contrapositive; lemma 131 }
(Vjk = Rj=Rk = (Rj)<N(R.k)<# LL V (R.j)>N(R.K)> # LL)
AN (Vik @ Rj#Rk = Rjo(RK) =1L A (Rj) -Rk=_1L)
= { Leibniz, reflexivity of equality, idempotence of intersection }
(W = (Rj)<#1L V (Rj)-#1L)
A (Vik = Rj#Rk = R.jo(RX)” =1L A (Rj)’ Rk = 1L)
= { domains
([(Re=1L)=(R=1L)=(R>=11)] with R:=R.j)) }
(Vj = Rj#1L)
A (Vjk © Rj#RXKk = Rjo(Rk)” =1L A (R.j)"eR.k=1L) .
Injectivity of R is the property that (Vj,k @ Rj=R.k = j=k) . The characterisation

of completely disjoint and injective thus follows by the use of Leibniz’s rule.
O

Here is the first example of such a construction.

Lemma 133 Suppose f and g are relations with common target C such that

U

fOfU:f<:gog :g< .
Then the relation f”og is the supremum of an indexed set of completely disjoint rect-
angles. Specifically, with dummy c¢ ranging over points of type C,

flog = (Uc:cCg=:foceg) .

Proof As remarked in lemma 124, the relation RocoS 1is a rectangle, for all points c
and all relations R and S; so this is also true of f”ocog. This collection of rectangles
covers f~og since
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fog
{ g = g<og and saturation axiom: (16) }
f7o(Uc : cCg<:c)og
{ distributivity }
(Uc:cCg<:flocog) .
To show that the function (c:cCg<:f'ocog) is an indexed set of completely disjoint

rectangles, we apply lemma 132. First, if ¢ Cg<, the rectangle f"ocog is non-empty
since

flocog = 1L
= { monotonicity }
(Focog)- = 1L
= { domains }
(f<ocog)> = 1L
= { f<=g< and cCg= }
(cog)> = LL
= { monotonicity }
((ceg)eg7)> = 1L
= { domains }
(cogeg’)- = LL
= { g°g  =g-andcCg- |}
c=10
= { c is a point }
false .
That is,
(134) (Ve : cCg= : flocog # 1L) .
Also, assuming that ¢ Cg< and c#c’, we have:
(ffeceog) o (fToc’og)
= { distributivity, c=c¢” }
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gUoCofoonC/og
= { assumption: fof” = g< }

gUoCog<oC/og

= { cCg- }
gUoCoC/og

= { assumption: c=#c’, (17) with a,a’:=c,c’ }
L.

That is,

(135) (Ve : ¢ Cg=:cs#c’ = (flocog)’o(foc’og)=1L) .
An almost identical argument shows that

(136) (Vee' :cCg=:cs#c’ = (flocog)o(foc’og) =1L) .

Applying lemma 132 with R:=(c:cCg<:f ocog), properties (134), (135) and (136)
establish that f~og is indeed an indexed set of completely disjoint rectangles.
O

We now establish the converse of lemma 133. (The proof is quite long because of all
the details that need to be checked.)

Lemma 137 Suppose relation R is the supremum of a completely disjoint set of
rectangles. Then

<E|f,g : fOfU = f< = gogu = g< : R:fuog> .

Proof Suppose R is a completely disjoint set of rectangles indexed by the set K.
Suppose also that R=UR . Define the relations f and g by, for all k in K and all
points a such that a CR<,

(138) keTTea Cf = ao(RXK)<=a ,
and, for all k in Kand all points b such that b CR-
(139) keTTobC g = (R.k)>ob=D .

Both f and g are functional. For example, here is the proof that f is functional: for
all j and k in K,
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joTTok C fof"

= { saturation axiom: (16) and irreducibility: (20) }
(Fa : joTTeoa C f A aoTToj C )

= { (138) and converse }
(Ja = a°(Rj)<=a N a°(R.k)<=aq)

= { coreflexives }
(Rj)<N (RXk)< # 1L .

So

joTTok C fof*

= { fof” is symmetric (i.e. joTTok C fof” = koTToj C fof”’) }
joTTok C fof' A keTToj C fof*

= { above (applied twice, once with j,k:=k,j) }
(Rj)<N(Rk)< # 1L AN (Rk)<N(R.j)< # 1L

= { R is a completely disjoint set of rectangles, definition 130 }
j=k .

That is, by the saturation axiom and the definition of Iy, fof” C Ik.
Both f and g are also surjective. For suppose k isin K. Then

true

— { definition 130 with j:=k }
R+ LL

- { saturation axiom: (16) }
(Ja = ao(R.k)< = a)

— [ () )

(Ja :: ke TTea C f)
= { a and k are points, so k=koTTok=koTToaoTTok }
k C fof” .

That is, by the saturation axiom, Ix C fof”.
Combining the functionality of f with its surjectivity, we conclude that fof~ = Ik.
Similarly, gog” = Ix. So we have constructed relations f and g such that

(140) fof’ = f<=1Ix = gog = g= .
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We now have to show that R = f“og. A first step is to show that f>=R< and g>=R-.
We have, for all points a,

a CR<

— { R=UR }
aC (UR)<

— { distributivity }
a C (Uk : (R.X)<)

= { irreducibility of points }
(Fk = a C (R.k)<)

= { coreflexives }
(Fk = ae(RK)<=a)

— {39 )
(Fk 2 ke TTea C f)

= { domains }
aCf< .

We conclude by the saturation axiom (16) that f>=R<. Again, the property g>=R- is
proved similarly. It follows that

(f7eg)-

= { domains }
(f< [} g)>

= { (140) (specifically, f<=g<) }
g>

= { above }
R~ .

Similarly, (f”og)<=R=<. So, for all points a and b such that a CR< and bCR>,

aof’ogob

= { saturation axiom: (16) and distributivity }
(Uk : kKCf< AkCg=<: aof’okogob)

= { (140) }
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(Uk : k€K :aof okogob)
= { all-or-nothing: theorem 11 }
(Uk : @oTTok Cf” A keTTobC g : aoTTokeokoTTob)
= { assumption: a CR< and b CR>; (138) and (139), and k is a point }
(Uk @ ae(RXKk)<=a A (Rk)>cb=Db : aoTTeb)
= { a is a point, so ao(R.k)<=a V a(R.k)< = 1L
b is a point, so (R.k)>eb=b V (R.K)>ob = 1L
range disjunction and 1l isleast }
(Uk ::ao(R.Kk)<eTT o (R.k)>0b)
= { domains and R.k is a rectangle: definition 123 }
(Uk : aeR.Kkob)
= { R=(Uk:R.k) and distributivity }
aoReb .

We conclude that R = f”og by the saturation property (19).
]

Theorem 141 A relation R is the supremum of a set of completely disjoint rectangles
if and only if
(3f,g : fof = f<=gog’ =g<: R="fog) .

Proof “If” is lemma 133 and “only-if” is lemma 137.
O

In terms of the mental picture of a relation R as the supremum of a set of completely
disjoint rectangles, the set of vertical and the set of horizontal sides each defines a per
on the source and target of the relation. These two pers are the relations R< and R-
(defined by (96) and (97)). Formally, we have:

Lemma 142  Suppose R, f and g are relations such that
fof' = f< = gog" =g A R =flog .
Then
R< = f- = f of = RoR™ A R- =g~ = g og = R7oR .

Proof Immediate application of lemmas 113 and 107.
O
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5 Characterisations of Partial Equivalence Relations

The theorem we prove in this section is that every partial equivalence relation is the
supremum of a set of disjoint squares. Specifically, the goal of this section is the proof
of the following characterisation of pers:

Theorem 143  For all relations R, the following statements are equivalent:
(i) R is a per,

(ii) R is the supremum of an indexed set of disjoint squares,

(iii) (3f : fof” = f< : R=1"0of)

O

An informal understanding of theorem 143 is that a per partitions its domain into
disjoint sets — commonly called equivalence classes. Two ways of representing the
equivalence classes are given by either —theorem 143(ii)— a set of disjoint squares or
—theorem 143(iii)— a functional relation f whereby two points in the domain of a per
are in the same equivalence class iff they are mapped to the same value by f. (There
are, of course, other ways of representing the classes.)

The proof that 143(iii) implies 143(i) is straightforward. See lemma 94. The converse
(143(i) implies 143(iii)) is also easy to prove. Thus 143(i) is equivalent to 143(iii). See
theorem 144.

To prove that both 143(i) and 143(iii) are equivalent to 143(ii), we first show that
143(ii) implies 143(i). See lemma 145. We complete the proof by showing that 143(iii)
implies 143(ii). See lemma 150. (The equivalence then follows from the equivalence of
143(i) and 143(iii).)

5.1 Proof of the Characterisation Theorem

As outlined above, we begin with the proof that 143(i) is equivalent to 143(iii). Note
that NRoR> is a functional relation and thus witnesses the existential quantification in
143(iii).

Theorem 144 A relation R is a per iff R = ('RoR>)"o(I'RoR>).
Proof By mutual implication. First, assume that R is a per. Then

R

= { assumption: R=R", domains }
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R>0oR
= { assumption: R is a per; theorem 108 and definition 95 }
R-oR\RoR>
= { (89) with R,S:=R,R }
R-o(I'R)“oTRoR-
= { converse |
(TRoR>)"0(I'RoR>) .

The converse is immediate from lemma 94.
O

The next step is to show that 143(ii) implies 143(i).
Lemma 145 Suppose R is a bag of disjoint squares. Then UR is a per.

Proof We aim to apply theorem 93 with R:=UR.
URo (UR)”
= { distributivity }
(Uj,k = Rje(R.Kk)7)
= { R is a bag of disjoint squares, so
R.jo(RXk)" =1L = Rj#RXk }
(Uj = Rije(R.)°)
= { for all j, R.j is a square }
(Uj 2 RjoTT o(Rj) oRjoTT o (R.j)")
= { for all j, R.j# LL; cone rule }
(Uj = RjoTT o(RG))
= { for all j, R.j is a square }
(Uj=R.g)
= { definition }
UR .

That is, UR = UR(UR)" . Applying theorem 93, we conclude that UR is a per.
O

The final step is to show that 143(iii) implies 143(ii). We aim to use lemma 133. In
order to do so, we make use of the fact that 143(iii) and 143(i) are equivalent.
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Lemma 146  Suppose R is a per and suppose f and g are such that
fofU:f<:gogU:g< /\ R:fuog .

Then f'of =R=g"0g.

Proof

foof

= { domains }
fYof<of

= { assumption: f< = gog” '}
flogog’of

= { converse }
flogo(fiog)”

= { assumption: R=1f"og }
RoR”

= { assumption: R is a per, theorem 93 }
R .

Thus f~”of = R. The dual statement R = g”og is proved similarly.
]

Lemma 147 Suppose R=UR where R is an indexed bag of completely disjoint
rectangles and suppose R is a per. Then R is an indexed bag of disjoint squares.

Proof We exploit theorem 93. That is, we assume that R = R“oR. Then

R”6R
= { R=UR }
(UR)" s UR

= { distributivity }
(Ujk = (Rj)" o R.K)
= { domains }
(Ujk = (Rj)7 o (Rg)<o(R.Kk)<oR.k)
= { R is a bag of completely disjoint rectangles



s0 (R.j)<eo(R.k)< =1L & R.j#R.k;
range splitting (on R.j=R.k and Rj#R.k) }
(Uj,k:Rj=R.k:(Rj) °(R.j)<c(R.k)<eR.K)
= { Leibniz, idempotency of set union }
(Uk 2 (R.Xk)7 o (R.K)<o(R.k)<oR.K)
= { domains }
(Uk = (R.k)oR.k) .
That is,
(148) R"oR = (Uk: (R.k) °oR.k) .
Also, for all k,
(R.k)<°R
= { R=UR and distributivity }
(Uj = (R.k)<oR.j)
= { (RXK)<e(R.j)< =1L & R.j#R.k

range splitting (see above) }

(R.k)<oR.k
= { domains }
Rk .

Together with its dual, we thus have, for all k,
(149) (R.k)<eR = R.k = Ro(R.k)> .
Hence, for all k,

Rk
= { (149) }
Ro(R.K)>
-~ {  R=RYR }
RYoRo (R.K)>
- {  (148) }
(Uj = (R§)%oRS) o (RK)>

86
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= {  distributivity, (Rk)<c(Rj)< = 1L & Rj#Rk

range splitting (see above) }

(R.Xk)”oR.Xko(R.k)>
= { domains }
(RXk)" oRX .

That is, for all k, R.k = (R.k)"oR.k. Applying theorem 93, for all k, R.k is a per,
and hence symmetric. It is also a rectangle and a symmetric rectangle is a square. We
conclude that R is a bag of disjoint squares.

O

Lemma 150 Suppose f is such that
fof’ = f< .
Then the relation f~of is the supremum of an indexed set of disjoint squares.

Proof This an instance of lemmas 133 and 147. From lemma 133 (with g:=f), f of is
the supremum of a set of completely disjoint rectangles. But f~of is a per. (See lemma
94.) So, by lemma 147, f~of is the supremum of a set of completely disjoint squares.
O

This completes the proof of theorem 143. We have shown that 143(i) and 143(iii) are
equivalent (theorem 144), that 143(ii) implies 143(i) (lemma 145) and 143(iii) implies
143(ii) (lemma 150).

5.2 Unicity of Characterisations

The characterisation of a per in the form f”of where f is a functional relation is not
unique. The characterisation is sometimes described as being “essentially” unique or
sometimes as unique “up to isomorphism”. This is made precise by theorem 151:

Theorem 151 Suppose R is a per and suppose f and g are functional relations such
that R = f'of = g”og. Then fXg.

Proof We have
fog o(fog”)”
= { converse |

foguogofU



assumption: f is functional, i.e. fof” = f<

{ assumption: f7of = g og
fof ofof”

{
f< .

That is,

(152) fog o(fog’)” = f< .

}

U

Similarly,
(183) (feg) ofog = g= .
Also,
g-
— { domains }
(g7°9)
= { assumption: f'of = g“og
(2 1)-
= { domains }
f> .
That is,
(154) f- = g- .
Hence,
f
— { domains }
f<of
- { (152) }
fog“o(fog”) of
= { properties of converse
fog ogof of
= { assumption: f7of = ¢

°g

}

}

}

88
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fo gU ogo gU og
= { assumption: ¢ is functional, i.e. gog” =g=< }
fog og .

Applying definition 82 with R,S,b,p := f, g, fog”~, g>, we conclude that f = ¢g. (Prop-
erties (152) and (153) are the required properties of ¢ ; property (154) together with
straightforward properties of the right-domain operator establish the required properties
of ¥ .)

O

It is important to note that theorem 151 assumes that there is at least one character-
isation of per R by a functional relation; it thus establishes that there is at most one
such characterisation (“up to isomorphism”).

Uniqueness “up to isomorphism” is a common phenomenon. We see it again, for
example, in the characterisation of difunctional relations by means of a pair of functional
relations: section 6.2 shows that there is at most one characterisation whilst section 6.3
shows that there is at least one (in fact, that there are several). Dealing with this
phenomenon can be awkward. See the definition of the “core” of a relation in section
7.3.

5.3 Decomposition of Provisional Preorders

In this section, we exploit the characterisation of pers, in particular the equivalence of
theorem 143(i) and 143(iii), to show how a provisional preorder is decomposed into a
per and a provisional ordering of the per’s equivalence classes. (This generalises the
well-known decomposition of a preorder into an equivalence relation and an ordering on
the equivalence classes.)

We assume that T is a provisional preorder. That is, by definition 114 and lemma
118,

(155) T<=T> AN T<CT A T-CT A ToTCT .
Also, by lemma 120,

(156) TNT = T< = T~ .

Theorem 157 Suppose T is a provisional preorder and assume that f partitions
TNT" as prescribed by theorem 143(iii). (TNT" is a per by (156).) That is,

(158) fof’ = f< A flof = TNT" .

Then the relation foTof” is a provisional ordering and T = "o (foTof")of.



Proof The equation T = f"o(foTof”)of is easily proved:
T

= { per domains }
T<oToT>

= { (156) }
(TAT)oTo(TNT)

— { (188) }
frofoTof of .

We now prove that foTof” is a provisional ordering. It is transitive:

foTof ofoTof”
= { (156), (158) and per domains }

foToTof”
C { assumption: T is transitive; monotonicity }
foTof” .

It is provisionally reflexive:

(foTof”)< C foTof”
& { [ (ReS)< C R<] with R,S := f, Tof” }
f< C foTof"
— { (188) }
fof? C foTof”
= { domains }
fof-of’ C foTof"

& { monotonicity }

f-CT
& { [R =INRR] }
flof C T

= { by (158), f"of = TNT" ; infima }

true .

90
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Finally, it is anti-symmetric:

foTof N (foTof")"
= { converse |
foTof" N foT of

{ modularity rules: (3) and (4) }
fo(fPofoTof of N TY)of"

N

= { (156), (158) and per domains }
fo(TNT)of"

- (158) )
fof ofof”

C { (158) and domains }

O

Fig. 4 (page 65) illustrates theorem 157: as mentioned earlier, the square boxes
depict the equivalence classes and the arrows connecting the boxes depict the provisional
ordering.

As we shall see, theorem 157 establishes that all provisional preorders are “block-
ordered”. See example 228.
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6 Difunctional Relations

This section is where our study of difunctional relations and block-ordered relations
begins.

As Riguet remarked, difunctional relations generalise both functional relations [Rig48|
and pers [Righ0, “quasi-equivalences”] in the sense that a difunctional relation is charac-
terised by a pair of functional relations whilst a per is characterised by a single functional
relation (theorem 143); equivalently, a difunctional relation is a union of completely dis-
joint rectangles whilst a per is the union of disjoint squares (theorem 143). See theorems
161 and 163. We present several different calculational proofs of theorem 161 in section
6.3 using both point-free and pointwise calculations, with a view to gaining insight into
the efficacy and aesthetics of the calculational method. Note that, although the proofs
are quite different, the constructed characterisations are essentially the same, as is made
precise in section 6.2. Theorem 163 is a straightforward combination of theorem 161 and
the (already-proven) theorem 141.

The “difunctional closure” of a relation is the smallest difunctional relation that is a
superset of a given relation. Its definition and properties, given in section 6.4, involve
the application of standard techniques of Galois connections and fixed-point calculus; as
such, it is included here for completeness.

Whereas the “difunctional closure” of a relation is a superset of the relation, the
“diagonal” of a relation is a subset of the relation. The “diagonal” of a relation is
introduced in section 7. (Recall the mental picture, depicted in fig. 2, of the “diagonal”
of the “staircase” relation depicted in fig. 1.)

Both the “diagonal” and the “difunctional closure” (“fermeture difonctionelle”) are
due to Riguet [Rig50, Righ1]; our contribution is partly historical —giving true credit to
the original publications— , partly to make the constructions more accessible to modern
readers, but primarily as an application of the calculational method.

6.1 Formal Definition and Characterisation

In this subsection we give the formal definition of a “difunctional relation” and state the
theorem (theorem 161) that we prove in subsection 6.3. Theorem 161 uses the notion
of a “characterisation” of a difunctional relation; this notion is also introduced in this
subsection.

Formally, relation R is difunctional equivales

(159) RoR”oR C R .

As for pers, there are several equivalent definitions of “difunctional”. We begin with the
simplest:
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Theorem 160 For all R, the following statements are all equivalent.
(i) R is difunctional (i.e. ReR"=R C R) ,

(i) R = ReR"=R

(iii) R- = R7oR

(iv) R< = RoR”

(v) R = RN(R\R/R)"

Proof For the equivalence of (i) and (ii), we first observe that, for all R,

R C RoR"6R
since
R C RoRYoR
& { R> C R”0oR and monotonicity }
R = RoR>
= { domains }
true .

That (i) and (ii) are equivalent thus follows from the anti-symmetry of the subset relation.
For the equivalence of (i) and (iii), we again begin by observing a property that holds
for all R, namely

R"oR D R~ .
The proof is as follows:

R”"oR D R~

= { definition: (96) }
R“oR D R-oR\R

= { cancellation: (90) }
R“oRoR\R D R-oR\R

& { monotonicity }
R"oR D R-

& { definition 42 }

true .
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We now prove that the opposite inclusion follows from (i).
R"oR C R~
= { definition: (96) }
R”7oR C R>oR\R
& { R>oR” = R” and monotonicity }
R”7oR C R\R
= { R”oR is symmetric, R\R = R\RN(R\R)” }
R”oR C R\R
& { factors }
RoR”oR C R .
Thus, by anti-symmetry, (iii) follows from (i). But
R- = R7oR
= { Leibniz }
RoR- = RoR"0R
= { per domains }
R = RoR"6R .

That is, (iii) implies (ii) which, as we have shown, is equivalent to (i). We conclude, by
mutual implication, that (iii) and (i) are equivalent.

The equivalence of (i) and (iv) is obtained by instantiating R to R”.

The proof that (v) is equivalent to (159) is straightforward:

R = RN(R\R/R)"
= { definition of infimum }
R C (R\R/R)"
= { converse and factors }
RoR”YoR C R .
O
The equivalence of 160(i) and 160(ii) is well-known and due to Riguet [Rig48|; the
equivalence of 160(i), (iii) and (iv) is due to Voermans [Voe99|. Definition (159) is the
most useful when it is required to establish that a particular relation is difunctional,

whereas properties 160(ii)-(iv) are more useful when it is required to exploit the fact
that a particular relation is difunctional.
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In order to relate this formal definition to the informal mental picture, an important
step on the way is to characterise difunctional relations via a pair of functional relations.
Recall that a relation R is said to be functional iff RoR” = R< (where R< denotes the
left domain of R: see definition 42). We use lower case letters f, g, h and k to denote
functional relations. The theorem is the following.

Theorem 161 (Characterisation Theorem) For all relations R,

R is difunctional = (3f,g : fof = f< = gog” = g< : R=f"og) .

Theorem 161 —which is due to Riguet [Righ0]— is key to establishing the property
that difunctional relations are exactly the relations that fit the mental picture shown in
fig. 2 of a collection of completely disjoint rectangles. Later, we say that difunctional
relations are “characterised” by a pair of functional relations. The formal definition is
as follows.

Definition 162 A characterisation (of a difunctional relation) is a pair of functional
relations with the same target (but possibly different sources). A minimal characteri-
sation (of a difunctional relation) is a pair of relations f and g with the same target
such that

fOfU —= f< frmnd gogU frmnd g< .
That is, a minimal characterisation is a pair of functional relations with equal left do-
mains.
O

The mental picture of a difunctional relation (fig. 2) is a set of completely disjoint
rectangles. We can now make the picture precise.

Recall the definition of minimal characterisations, definition 162. Theorem 141 ex-
presses the equivalence of minimal characterisations with sets of completely disjoint
rectangles. So, by combining theorems 161 and 141, we have:

Theorem 163 A relation R is difunctional if and only if it is the supremum of a set
of completely disjoint rectangles.
O

The “minimality” requirement —the domain restrictions on f and g— may be
omitted (“without loss of generality” in mathematical jargon). It is necessary, however,
to establishing the “essential” uniqueness of the characterisation. (See theorem 166.)
Formally we have:
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Lemma 164 Suppose f and g are functional relations with the same target. Then

flog = (g=of) o (feog) .
Moreover, g<of and f<og are functional relations and
(g<of) o (g<o‘[")U = <g<of)< = <f<og) o (f<og)u = (f<og)< .

That is, the pair g<of and f<og is a minimal characterisation.

Proof We show that g<of is functional as follows.

(g=cf)e(g=f)"

— { associativity and converse }
g< o f o fU o g<

= {  f isfunctional, so fof’ =f< }
g<o f<o g-<

= { coreflexives commute and are idempotent }
f< o g< .

Symmetrically,

(]"‘<og>o(]"‘<og)U = g<of< .

That is, f<og is functional. The lemma follows immediately from the fact that compo-
sition of coreflexives is symmetric and yields a coreflexive.
O

The characterisation theorem for difunctional relations (theorem 161) has the con-
sequence that a difunctional relation divides its left and right domains into classes that
are in (1-1) correspondence.

Lemma 165 Suppose f and g are relations with common target C such that
fOfU —= f< frmnd gogU frmnd g< .

Then the functions (X : g ofoXof’og) and (Y :f’ogoYog of) define a (1-1) corre-
spondence between the classes of the partial equivalence relations f~of and g”og. That
is, for all c,

(XzglofoXof’og).(fPocof) = g ocog
and

(Y:uflogoYogiof)y.(g7ocog) = flocof .
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Proof The verification of the first equality is as follows.

(X g ofoXof’og).(f"ocof)

= { definition of function application }
g ofoflocofoflog

= { assumption: fof” = f< = gog” = g< }
guog<oCog<og

= { domains }
true .

The second equality is verified in the same way.
O

See also section 7.3 for a more explicit formulation of lemma 165.

Warning Symmetry places a major role in reasoning about difunctional relations. (Obvi-
ously, R is difunctional equivales R” is difunctional.) But our definition of “functional”
is asymmetric and reflects a right-to-left bias in our interpretation of relations as having
inputs and outputs. Jaoua et al [JMBD91] choose a left-to-right interpretation: they
use the term “deterministic” to mean R“oR C I. Their formulation of theorem 161 is
correspondingly different. See also our earlier warning on “symmetric division”. End of
Warning

The name “difunctional” is suggestive of theorem 161; Riguet’s 1948 paper [Rig48,
Proposition 11] introduces the notion and gives a (natural-language-based) proof. Riguet’s
1950 paper [Rig50] states that it is a generalisation of the theorem that a relation R is
a partial equivalence relation equivales R = f”of for some functional relation f. Since
then it appears to have become a folklore theorem. Hutton and Voermans [GE92, lemma
39|, for example, state the theorem but do not provide a proof nor an attribution. The
English text of [SS93, p.75] suggests that Schmidt and Strohlein may be aware of the the-
orem but they also do not provide a proof. (They prove the easy “if” part of the theorem
but not the converse; [SS93, Proposition 4.4.10] states that the characterisation “may
be achieved in essentially one fashion” (their emphasis) but the accompanying proof
actually establishes that the characterisation can be achieved in at most one fashion.
That is, if such a characterisation exists, it is unique “up to a bijection”.)

A theme of this section is how to formalise different proofs of theorem 161. One issue
is whether or not the so-called “power transpose” of a relation, espoused by Freyd and
Séedrov [Fv90] and Bird and De Moor [BAM97], is sufficiently expressive. A second issue
is the extent to which pointwise (as opposed to point-free) reasoning is desirable.

Section 6.2 sets the scene. The proof of theorem 161 is an “if-and-only-if” proof and
the section begins with the (trivial) proof of the “if” part. The main task is thus to give
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an explicit construction of a characterisation of a given difunction (the “only-if” part).
A formal theorem —theorem 166— states that although the details of the proof may
be different, the constructed characterisations are formally equivalent (in a way made
precise by the theorem). A very informal outline of several different ways of making the
construction is then given.

The informal account in section 6.2 is made precise in sections 6.3.1 and 6.3.2; the
former proves theorem 161 by showing how to construct a set of “rectangles” that “cov-
ers” a given difunctional relation whilst the latter presents a construction in terms of the
“power transpose” of the given relation. Section 6.3.3 gives a third method of proving
theorem 161 that exploits theorem 143. As already remarked —see theorem 163— no
matter how a characterisation is constructed, it defines a “completely disjoint covering”
of the given difunction.

6.2 Different Proofs, Identical Characterisations

The proof of theorem 161 is by mutual implication. Follows-from is straightforward.
Assume

(3f,g : fof = f< = gog” =g : R="f"og) .

Then

RoR”6R

= { assumption and converse }
flogog ofofiog

= { assumption: fof’ = g< =gog” }
flog<og-og

= {  geeg=g,and R=1f"og }
R .

The much more demanding task —which occupies all of subsection 6.3— is to establish
the existence of a (minimal) characterisation of a given difunction. The theorem that
there is at most one (up to isomorphism) is the following.

Theorem 166  Suppose f and g are relations such that
fOfU:f<:gogU:g< .
Suppose also that h and k are relations such that

hoh” = h< = kok™ = k=< .
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Suppose further that
flog = h'ok .
Then
f=h A g=k .

Proof Our task is to construct witnesses ¢ and P satisfying definition 82 (with
R,S:=f,h and R,S:=g,k). Define ¢ by ¢ = foh”. We prove that

(167) dod” = f< A ¢ odb = h< .

(In words, ¢ is a bijection with left domain the common left domain of f and g, and
right domain the common left domain of h and k.) The proof is as follows.

$od”
— { definition, converse }
foh”ohof”

= { assumption: h< = kok” }

foh”okok”ohof”

- {  assumption: f’og = h”ck }
fof'ogog ofof”

= {  assumption: fof’ = f< = gog” }
f<

and

¢ od

= { definition, converse }
hof”ofoh”

= { assumption: f< = gog” }
hof’ogog”ofoh”

= { assumption: fog = h”ok (used twice) }
hoh”okok”ohoh”

= { assumption: hoh” = h< = kok” }
h< .
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We now prove that f=¢oh.

¢eoh
= { definition }
foh”oh
= { assumption: h< = kok” }
foh”okok”oh
= { assumption: fog = h”’ok (used twice) }
fofuogoguof
= { assumption: fof’ = f< = gog” }
f .
It follows that
(168) f = ¢pohoh- A h-=f- .

The combination of (167) and (168) (together with straightforward properties of h-)
establishes that ¢ and h- witness the isomorphism f=h. The property g=k is
proved similarly.

O

As the name “functional” suggests, the only-if part of theorem 161 is established by
defining a type C, for each a in the left domain of R, a point f.a in C, and, for each
point b in the right domain of R, a point g.b in C. The requirement is that, f.a and
g.b are equal exactly when a and b are related by R. Fig. 5 shows three different but
isomorphic (in the sense of theorem 166) characterisations of the relation depicted in fig.
2.

In the top-left figure, the type C is the set of rectangles (relations of type A~B)
defined by the relation R: the functional relation f maps a point a in the left domain
of R to the rectangle defined by a and, similarly, the functional relation g maps a
point b in the right domain of R to the rectangle defined by b. If a and b are points
related by R, the rectangles f.a and g.b are equal; if a and b are not related by R,
the rectangles f.a and g¢.b are not equal (and, in fact, they are “completely disjoint”
in the sense that there are no points common to their sides).

In the top-right figure, the type C is a set of squares of type B~B and, in the
bottom-left figure the type C is a set of squares of type A~A . In the case of the top-
right figure, the functional relation g maps point b to the square defined by b. The
definition of f is more complicated: for a point a in the left domain of R, the value
of f.a is the square defined by some point b such that a and b are points related by
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\

a A

Figure 5: Three Different (but Isomorphic) Characterisations

R. The definitions of f and g are similar in the case of the bottom-left figure. (Just
interchange the réles of a and b.)

Of course, a “square” is defined by a “side” of the square. So there is a fourth and a
fifth way of representing a difunctional relation as a pair of functional relations: the type
C can be defined to be the set of subsets of the left domain of R or the set of subsets
of the right domain of R and, in each case, appropriate definitions of f and g must be
constructed.

As mentioned earlier, all of these characterisations are the same — in the sense made
precise by theorem 166.

6.3 The Characterisation Theorem

As illustrated by fig. 5, there are three different ways to approach the proof* of theorem
161. The top-right and bottom-left figures are “dual” in the sense that one depicts
a homogeneous relation on the target of the given relation whilst the other depicts a
homogeneous relation on the source of the given relation. The top-left figure is more
attractive because it does not exhibit any bias towards the source or target of the given
relation. Section 6.3.1 presents such an unbiased proof of theorem 161 whilst section

4Strictly, the “only-if” part of the proof. Recall from section 6.2 that the “if” part is trivial.
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6.3.2 presents the dual proofs. Section 6.3.3 gives yet another proof based on exploiting
theorem 143.

6.3.1 The Rectangle Proof

A relation R is a partial equivalence relation exactly when RoR” = R; the “classes” of R
are the squares RoaoR"” where a is a point such that a CR. A relation R is a difunction
exactly when RoR”oR = R. By analogy and type considerations, this suggests that, if
a CR=<, the rectangle defined by a is given by RoR”caoR; similarly, if b CR>, the
rectangle defined by b is given by RoboR”0oR. This is the key to the proof.

Lemma 169 Suppose R of type A~B is difunctional. Then, for all points a and b,
aTTob C R = RoR”0cacR = RoboR”0aocR = RoboR’60R .
Proof Assume R is difunctional. Assume also that a-TTob C R. Then

RoboR"0R
= { b is a point }
RoboboR"6R

N

{ assumption: aoTTob C R , lemma 57 }
RoboR”0aoRoR"6oR
C { R is difunctional }

RoboR”0caoR .
That is,
RoboR"0R C RoboR’caoR .
By a symmetric argument
RoR"0aoR C RoboR"caoR .
But, since a is a point (and thus coreflexive),
RoboR"0aoR C RoboR”oR .
Symmetrically,
RoboR”0caoR C RoR”0caoR .

The lemma follows by the anti-symmetry of equality.
O
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The “only-if” part of theorem 161 is a consequence of lemma 169. Specifically, suppose
R is difunctional. Let C be the set of subsets of the relation R defined as follows:

C = {a:aCR<:ReR%0aoR} .
(The dummy a ranges over points.) Note that C=C’ where
C' = {b:bCR-:ReboR’oR}
since
{a:aCR<:RoR”0aoR}
= { domains }
{a : (3b: acReb = aoTTob) : RoR”caoR}
= { range disjunction }
{a,b: acReb = @oTTeb : RoR”0aoR}
= { assumption: R is difunctional; lemma 169 }
{a,b: acRob = @oTTob : RoboR”6 R}
= { range disjunction and domains (as in first two steps) }
{b:bCR-:RoboReR} |
Define f and g by, for all points a such that a CR< and all points b such that b CR>,
(170) f.a = RoR”oaoR A g.b = RoboR”oR .

Then, by definition, f and g are both functional, and surjective onto C and C’,
respectively. That is —exploiting the fact that C and C’ are equal—

fof' =1c =gog~ .

We must now show that R = f~og. Guided by the definitions of f and g, we calculate
that:

RoR”0aoR = RoboR”6R
= { Leibniz }
RoR”0aoRoR” = RoboR”0RoR"
= { assumption: R is difunctional (thus so too is R”),
R- C RoR" )}
R=o@oR< C RoboR"
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= { assumption: aCR< }
a C RoboR”
= { lemma 57 }
aTTeb C R
= { assumption: R is difunctional; lemma 169 }
RoR"0aoR = RoboR’0R .
We conclude (by mutual implication) that
RoR’0aoR = RoboR"eR = aoTlTebCR .
But, by the definitions of f and g and the definition of function application,
RoR”0asR = RoboR“6R = aoTTob C flog .

Thus R = f’og by the saturation axiom: (16).

6.3.2 The Power-Transpose Construction

Recalling fig. 5 once again, two alternative —but dual— ways of proving theorem 161
are to construct functional relations that return square relations. Equivalently, one
can construct functional relations that return the “side” of such a square, i.e. a subset
of the source or, dually, a subset of the target of the given difunctional relation. In
this section, we present such a construction using the power transpose function. The
proof was obtained by revising the proof given by Jaoua et al [JMBD91] in a way that
eliminated the unnecessary assumption that R is homogeneous. One component of the
characterisation is the relation 'RoR". Since this is not obviously functional, we need a
lemma to show that it is.

Lemma 171  For all relations R,
R is difunctional = TRoR” C T(RoR”)oR< .
Proof
RoR’ C T(RoRY)oR-
= { domains (specifically, R"oR< =R"”) }
RoR’ C T(RoRY)
= { 'R is a total function; shunting rule }

R C (TR)” o T(RoRY)
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= { lemma 87 }
R” C R\(ReR”) N ((ReR“)\R)*

= { converse is an order isomorphism, factors }
RoR” C RoR” A RoR7oRCR

= { definition }

R 1is difunctional
O

Corollary 172  For all difunctional relations R,
(TRoR"”) o (TRoR”)” = TRoR>o(TR)” .
In particular, if R is difunctional, TRoR" is functional.
Proof The proof is by mutual inclusion. First, for all relations R,
(TRoR") o (TRoR")"
= { converse |}

'R o R“eRo(TR)"

U

{ R”oR D R> , monotonicity }
'R o R-o(TR)" .
Second, for all difunctional relations R,

MRoRYoRs(I'R)” C TRoR-o(TR)"

& { assumption: R is difunctional; lemma 171 }
I'RoR”)oR<o(I'(RoR"))” C TRoR>0(I'R)"

{ I'(RoR") is a total function, shunting : (85), and (89) }
R< € (ReR")\Ro R-o((ReR")\R)”
& { domains (specifically R< C RoR” and R = RoR>) }
RoR-oR” C (RoRY)\R o R-o((RoRY)\R)"

& { monotonicity and converse }
R € (ReRV)N\R
= { assumption: R is difunctional
as in last two steps of proof of lemma 171 }

true .
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Theorem 173  Suppose R is a difunctional relation. Then the relations 'R o R” and

'R o R> are both functional. Moreover,

(TRoR") o (TRoR")” = (I'RoR>)o (TRoR>)"
and

R = (TRoR”)” o (TRoR>) .

That is, these two relations fulfill the requirements of f and g in theorem 161.
Dually, the relations I'(R”)oR and T'(R”)oR< are both functional. Moroever,

(F(R7)oR<) o (M(R7)oR<)" = (F(R")eR) o (I(R”)eR)"
and
R = (MRY)eR)” o (M(RY)R) .

That is, these two functions also fulfill the requirements of f and g theorem 161.

Proof That 'R o R> is functional is immediate from the fact that 'R is a total function
(by definition) and R- is a subset of the identity relation. That I'RoR" is functional

was shown in corollary 172. It remains to prove the final equation.

(TRoRY)” o (TRoR-)

= { converse |
Rs(I'R)"sTRoR-

- [ (89 )
RoR\RoR-

= { lemma 90 }
RoR>

= { domains }

R .

The dual theorem is obtained by instantiating R to R” (and noting that R is difunctional

equivales R is difunctional) and simplifying.
O
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Theorem 144 is an instance of theorem 173. In order to show that this is the case, it
is necessary to prove that, for a per R,

TRoR” = TRoR> .
This is done as follows:

MTRoR” = TReR>
- { R is a per, so R"=R; lemma 92 }
'ReR C TRoR-
& { 'R is functional }
C (IR)“oTRoR-
- { lemma 87 }
C R\RoR-
- { definition 95 and theorem 108 }

true .

6.3.3 The Per Construction

The third method of proving theorem 161 exploits theorem 144. We owe the construction
to Winter [Win04].
The basis for the construction is the construction of a per from a difunctional relation:

Lemma 174  For all relations R, RoR” is a per if R is difunctional.
Proof Suppose R is difunctional. We exploit theorem 93:
RoR” is a per

= { theorem 93 with R := RoR"” and converse }
RoR” = RoRY6oRoR”

{ Leibniz }
R = RoR"0R
= { theorem 160 }

R 1is difunctional.
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Suppose now that R is difunctional. Exploiting lemma 174 combined with theorem
143,
(175) (3f : fof’ = f<: RoR” =f"of) .

Suppose therefore that fof” = f< and RoR” = f”of. Define the relation g by

(176) g = foR .
Then
gog-
= { (176) and converse }
foRoR”of”
- [ am) )
fof ofof”
- am) )
f<of<
= { f< is a coreflexive }
f< .

It follows that g< = gog~. Thus
(177) fof’ = f<=g<=gog .
Moreover,
fog
= { (176) }
f ofoR
= { RoR” =f"of }
RoR”0R
= { R is difunctional: theorem 160 }
R .

Combined with (177), we have thus shown that

(178) (3f,g : fof = f< = gog =g : R=f"og)
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as required to prove the only-if part of theorem 161.

Winter does not prove theorem 144; instead he assumes the theorem is valid. It
is interesting to compare the details of Winter’s construction with the functionals con-
structed in theorem 173. Applying the instantiation R := RoR" in theorem 144 and
simplifying, Winter’s construction yields

R = (I(RsR”)sR=)" s (N(RsR")sR) .

This is, of course, an isomorphic characterisation of R in the sense of theorem 166.
Recalling our earlier informal account of how to prove the theorem, the construction
corresponds in essence to the bottom-left figure of fig. 5.

6.4 Difunctional Closure

Because a difunctional relation is a prefix point of a monotonic function (the function
(X 2 XoX” X)) fixed-point calculus predicts that the least prefix point

(uX = RUXoX o X)

is the least difunctional relation that includes R — the difunctional closure of R. More
precisely,

(uX = RUXoX"oX) is difunctional
and
<VS :§05§76SC S :RCS = <},LX : RUXoXUoX> - S> .

(The general theorem is that, if f is a monotonic endofunction on a complete lattice,
the function f* defined by

*x = (ny = xUfy)
has the property that
Wy @ fyCy : xCy = "xCvy)

The straightforward proof is left to the reader. Examples include the transitive closure
and the reflexive-transitive closure of a relation. See [Bac02] for an exposition of the
techniques involved.)
In this section, we explore simplifications of the definition of difunctional closure.
The following theorem expresses the same result but in more familiar terms (specifi-
cally in terms of the reflexive-transitive closure operator).
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Theorem 179 (Difunctional Closure) For all relations R,
(uX = RUXeoX"eX) = (uX = RUXoR"0X) .
Hence,
(uX = RUXeX"eX) = Ro(ReR)* .
Also,
Ro(R”0R)* is difunctional
and
(VS : S80S CS : RCS = Ro(R7eR)*CS) .

(Thus (R : Ro(R”0R)*) is the upper adjoint in a Galois connection (of the relations of a
given type and the difunctional relations of the same type) of the function that “forgets”
that a difunctional relation is indeed difunctional.)

Proof @ We establish the equality by mutual inclusion. We begin by noting that the
equality

(uX  RUXoR"eX) = Ro(R"oR)*
is an instance of (the possibly little known) exercise 67(c) in [Bac02]. Also
(X = RUXeX"0X)
= { diagonal rule of fixed-point calculus }
(uX = (LY = RUYoX"0Y))
= { [Bac02, exercise 67(c)] }
(uX = Ro(X7oR)*) .
S0
(uX = RUXeX"0X) C (uX = RUXoR"0X)
= { above }
(uX = Ro(X"oR)*) C Ro(R7oR)*
& { fixed-point induction }
Ro((Ro(R7oR)*)?oR)* C Ro(R”oR)*

{ properties of converse }
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Ro((RVoR)*oRYoR)* C Ro(RVoR)*

& { Leibniz and reflexivity of the subset relation }
((R7eR)*oR"eR)" = (R"eR)"

= { properties of reflexive-transitive closure }
true .

For the converse, we have:

(uX = RUXoR”eX) C (uX = RUXoX"0X)

= { for brevity, let rhs denote (uX = RU XoX"oX) }
(uX = RUXoR”eX) C ths

& { fixed-point induction }
RUTthsoR"orhs C rths

= { fixed-point computation and definition of rhs }
RUThsoR”oths C R U thsorhs”orhs

& { monotonicity }
R C rhs

= { fixed-point computation and definition of rhs }

true .

O

Theorem is observed by Jaoua et al [JMBD91, Proposition 4.12] but is expressed
using the definition of S* as the sum of powers of S. Their (incomplete) proof uses
induction over the natural numbers. Just as the notion of the “différence” of a relation
is due to Riguet [Rigbh1], theorem 179 is also due to Riguet [Rig50]. He calls the relation
Ro(R”oR)" the “difunctional closure” (“fermeture difonctionelle”) of R. Note the dif-
ference. This suggests that there is a mistake in Riguet’s definition or in theorem 179.
In fact, both are correct:

Lemma 180 For arbitrary relation R,
R C RoR"6R .

It follows that, for all relations R,
Ro(R7eR)T = Ro(R7oR)* .

Proof We have:



So,

V)

V)

RoR”6R
{ monotonicity }

Ro(INRYoR)

{ modularity rule: (3) }
ReI N R

{ I is identity of composition, infimum is idempotent
R .

Rs(R¥oR)™ = Ro(RYoR)*

{ fixed-point computation and distributivity }
Ro(RVoR)* = Ro(RYR)* UR

{ supremum }

R C Ro(RVoR)"

{ fixed-point computation and distributivity }
R C RoR“oR

{ above }
true .

}

112
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7 The Diagonal

This section anticipates the study of block-ordered relations in section 9. We intro-
duce the notion of the “diagonal” of a relation in section 7.1 and formulate some basic
properties in section 7.2. We then introduce the notion of a “non-redundant”, “polar”
covering of a relation by rectangles in section 8. We prove that every relation has a polar
covering but that not every relation has a non-redundant polar covering. Our definition
of “non-redundancy” does not preclude the possibility that elements of a covering are
duplicated: a “polar covering” is a bag of rectangles, and not necessarily a set, in the
sense of definition 129. This is remedied in section 8.1 where we show that every relation
has an injective polar covering. The key to doing so is the notion of the “core” of a
relation introduced in section 7.3. Finally, in section 8.2, we explore conditions under
which the diagonal of the relation guarantees the non-redundancy of the covering.

The principal driving force behind the investigation reported in this section was to
gain a full understanding of Riguet’s “analogie frappante” (theorem 262) which exploits
polar coverings to link the notion of the diagonal of a relation with the notion of being
block-ordered. However, on the way, several results were obtained that are independent of
Riguet’s “analogie”. The idea of reducing a relation to its “core” discussed in section 7.3
stands out. The germs of this idea were sown by Voermans’ [Voe99] introduction of the
left-per-domain < and right-per-domain - operators. (See definition 95.) Some of the
theorems in this section, for example theorem 205, have their origins in Riguet’s study
of difunctional relations [Rig50]. (See the reference to an “application biunivoque”.)
However, we have to admit to being too lazy to try to properly understand Riguet’s
theorems and so are unable to give a precise correspondence.

7.1 Definition and Examples

Straightforwardly from the definition of factors, properties of converse and set intersec-
tion,

(181) Ris difunctional = R = RN(R\R/R)” .
More generally, we have:
Lemma 182 For all R, RN(R\R/R)" is difunctional.

Proof Let S denote RN(R\R/R)”. We have to prove that S is difunctional. That is,
by definition,

SoS"eS C S .
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Since the right side is an intersection, this is equivalent to
S05§”eS C R A S0570S C (R\R/R)” .
The first is (almost) trivial:
SoS§70S
C { SCR, SC(R\R/R),
converse, monotonicity }

RoR\R/RoR

N

{ cancellation }
R .

In the above calculation, the trick was to replace the outer occurrences of S on the
left side by R and the middle occurrence by (R\R/R)”. The replacement is done the
opposite way around in the second calculation.
S0§”-S C (R\R/R)"
& { SC(R\R/R)”, SCR, monotonicity and transitivity }
(R\R/R)”=R"= (R\R/R)" C (R\R/R)"
= { converse |
R\R/RoR=R\R/R C R\R/R
= { Galois connection }
RoR\R/RoRoR\R/RoR C R
= { cancellation, monotonicity and transitivity }

true .

O

In order to reflect the mental picture of a difunctional relation, we call the relation
RN (R\R/R)" the diagonal of R; Riguet [Righ1] calls it the “différence” of the relation.
(Riguet’s definition does not use factors but is equivalent.)

Definition 183 (Diagonal) The diagonal of relation R is the relation RN (R\R/R)".
For brevity, RN (R\R/R)"” will sometimes be denoted by AR.
O

Many readers will be familiar with the decomposition of a preorder into a partial
ordering on a set of equivalence classes. The diagonal of a preorder T is the equivalence
relation TNT". More generally:
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Example 184  The diagonal of a provisional preorder T is TNT~. This is because,
for an arbitrary relation T,

TN(M\T/T)” = TN T<o(T\T/T) oT> .
But, if T is a provisional preorder,
T<o(MT\T/T) oT> = T° .

(See lemmas 115 and 118.)
]

For readers familiar with algorithmic graph theory (acyclic graphs, topological or-
derings, strongly connected components), we include a running example. (See examples
185, 229.) Briefly, a finite graph can be represented by a homogeneous relation G on its
nodes: the relation holds between nodes a and b if there is an edge from a to b. The
(reflexive, transitive) relation G* holds between nodes a and b if there is a path from
a to b. See [BDGv22, BDGv21] for full details.

Example 185 A particular instance of example 184 is if G is the edge relation of a
finite graph. Then A(G*) is G*N(G")*, the relation that holds between nodes a and b
if there is a path from a to b and a path from b to a in the graph. Thus A(G*) is the
equivalence relation that holds between nodes that are in the same strongly connected
component of G.

O

Example 186 In this example, we consider three versions of the less-than relation: the
homogeneous less-than relation on integers, which we denote by <z, the homogeneous
less-than relation on real numbers, which we denote by <g, and the heterogeneous less-
than relation on integers and real numbers, which we denote by z<gr. Specifically, the
relation z<g relates integer m to real number x when m<x (using the conventional
over-loaded notation). We also subscript the at-most symbol < in the same way in order
to indicate the type of the relation in question.

The diagonal of the less-than relation on integers is the predecessor relation (i.e. it
relates integer m to integer n exactly when n=m-+1). This is because <z\<z = <z,
and <z/<z relates integer m to integer n exactly when m <zn+1 (where the sub-
script Z indicates the type of the ordering). The diagonal is thus functional and injec-
tive.

The diagonal of the less-than relation on real numbers is the empty relation. This
is because <gr\<gr = <gr, <gr/<r =<g and <gN>gr=_1lLg. (Again, the subscript
indicates the type of the ordering.)
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The diagonal of the heterogeneous less-than relation z<g relates integer m to real
number x when m<x<m+1. This is equivalent to [x] =m+1. The diagonal is thus a
difunctional relation characterised by —in the sense of theorem 161— the ceiling function
(x::[x]) and the successor function (m : m+1).

We leave the reader to check the details of this example. See also examples 212, 244
and 315, and theorem 319.

O

The following example introduces a general mechanism for constructing illustrative
examples of the concepts introduced later. The example exploits the observation that
AR is injective if the preorder R\R is anti-symmetric; that is, AR is injective if R\R is a
partial ordering. (Equivalently, AR is functional if R/R is a partial ordering.) We leave
the straightforward proof to the reader. (See section 3.5 for the point-free definitions of
functionality and injectivity.)

Example 187 Suppose X is a finite type. We use dummy x to range over elements
of type X . Let S denote a subset of 2. Let in denote the membership relation of
type X~S. That is, if S is a subset of &, xoTTeSCin exactly when x is an element
of the set S. The relation in\in is the subset relation of type S~S.

(Conventionally, in is denoted by the symbol “€” and one writes x€S instead of
xoTToS Cin. Also, the relation in\in is conventionally denoted by the symbol “C”. That
is, if S and S’ are both elements of S, SoTToS’ Cin\in exactly when SCS’. Were we
to adopt conventional practice, the overloading of the notation that occurs is likely to
cause confusion, so we choose to avoid it.)

The relation in\in is anti-symmetric. As a consequence, Ain is injective. (Equiva-
lently, (Ain)” is functional.) Specifically, for all x of type X and S of type S,

xoTToS C Ain = xoTToSCin A (VS':xoTToS' Cin: SoTToS' Cin\in) ,

where dummy S’ ranges over elements of S. Using conventional notation, the right side
of this equation is recognised as the definition of a minimum, and one might write

x [Ain] S = S= (MINS":xeS":S")

)

where the venturi tube “="
expression on its right side.
Fig. 6 shows a particular instance. The set A" is the set of numbers from 0 to 3.
The set S is a subset of 210123 the chosen subset and the relation in\in for this choice
are depicted by the directed graph forming the central portion of fig. 6. The relation Ain
of type X ~S is depicted by the undirected graph whereby the atoms of the relation
are depicted as rectangles. Note that the numbers 0 and 3 are not related by Ain to
any of the elements of S. See example 264 for further discussion of this example.
O

indicates an equality assuming the well-definedness of the
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()—Cew)) G2

Figure 6: Diagonal of an Instance of the Membership Relation

7.2 Basic Properties
Primarily for notational convenience, we note a simple property of the diagonal:
Lemma 188

(AR)” = A(R") .

Proof
(AR)”
= { definition and distributivity }
RYNR\R/R
= { factors }
RYN(RY\RY/RY)"
= { definition }
A(R") .
O

A consequence of lemma 188 is that we can write AR” without ambiguity. This we
do from now on.

Very straightforwardly, the relation RoR" is a per if R is difunctional. For a difunc-
tional relation R, the relation RoR" is the per representation of the left domain of R.
Symmetrically, R”oR is the per representation of the right domain of R. (See theorem
160, parts (iii) and (iv).) Thus ARo(AR)” is the per representation of the left domain
of the diagonal of R. The following lemma is the basis of the construction, in certain
cases, of an economic representation of the diagonal of R and, hence, of R itself. See
definition 209 and theorems 218 and 222.
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Lemma 189  For all relations R,
(AR)< = (AR)<oR=< .
Dually,
(AR)- = (AR)>oR~- .
Proof We prove the first equation by mutual inclusion. First,
(AR)< C (AR)<oR=<
= { AR is difunctional, theorem 160; definition: (96) }
ARARY C (AR)<oR/R
& { domains and monotonicity }
AR-AR” C R/R
= { definition of R/R, converse and factors }
ARoAR”6oR C R
= { ARCR; AR”"CR\R/R and cancellation }
true .
Second,
(AR)<oR< C (AR)<
= { AR is difunctional, theorem 160 }
(AR)<oR< C ARsAR"
& { domains and definition: (96) }
ARoARYoR/R C ARoAR”
& { monotonicity and converse }
R/RoAR C AR
= { definition of diagonal }
R/RoAR C R A R/RsAR C (R\R/R)"
& { ARCR ; converse }
R/Ro.R C R A AR”-.R/R C R\R/R
= { cancellation; factors }

true A RoAR“oR/RoR C R
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& { cancellation and AR CR\R/R }
RoR\R/RoR C R
= { cancellation }

true .

The dual properties are obtained by instantiating R to R” and simplifying using prop-
erties of converse.
O

The following corollary of lemma 189 proves to be crucial later: see the discussion
following lemma 259.

Lemma 190 For all relations R,
(AR)< = R< = (AR)<=R-< .
Dually,
(AR)- = R- = (AR)>=R-> .
Proof The proof is by mutual implication:
(AR)< = R<
= { lemma 189 and Leibniz }
(AR)< = R<oR~
= { dual of (101) }
(AR)< = R<
= { Leibniz }
((AR)<)< = (R-)-
= { dual of (101) with R:=AR and R:=R }
(AR)< = R< .

O

7.3 Reduction to the Core

Suppose R is an arbitrary relation. Both R< and R- are pers so can be characterised
by their equivalence classes. Specifically, for a given R, suppose

R<=A"A A R-=p"cp
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where A and p are functional relations. (The existence of A and p is guaranteed by
theorem 143.) Then

R =2A"6AoRop op .

The relation AoRop”, which we denote by |R|, is a relation on the equivalence classes.
For a mental picture of such a relation, refer to fig. 18 (page 199): the individual blocks
of the relation R become points of the relation [R|.

Definition 191 (Core) Suppose R is an arbitrary relation and suppose
R—<:}\Uo7\ /\ R»:puop

where A and p are functional relations. Then the core of R, which is denoted by |R|,
is defined by

IRl = AoRop” .
O

Example 192 Fig. 7 depicts a relation (on the left) and its core (on the right). Both
are depicted as bipartite graphs. The relation R is a relation on blue and red nodes. Its
core |R| is depicted as a relation on squares of blue nodes and squares of red nodes, each
square being an equivalence class of R« (on the left) or of R~ (on the right).

O
O
O

\A/

Figure 7: A Relation and Its Core

Generally, in order to avoid the clutter that is evident in fig. 7, examples from now
on will almost invariably be of relations that are isomorphic to their cores. However,
this is not the case for example 224 because it has been chosen to illustrate some of the
limitations of the theory we develop.
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Lemma 193 Suppose R, A and p are as in definition 191. Then

R = A o|Rlop .
Proof
R
= { per domains: (98) }
R<oRoR~
= { R<=A"0oA and R~ =p”op }
A“oAoRopop
= { definition 191 }
Ao|Rlop .
O

As previously observed, there are several different ways in which a per can be written
as f’of for some functional relation f. However, all are “isomorphic”. (See theorem
151.) Correspondingly, there are several different ways to construct a core of a relation,
but all are “isomorphic” in the sense of definition 82:

Theorem 194  Suppose Sy and S; are both cores of R. Then S$,=S;.

Proof Suppose, for i=0 and i=1, S; = A;oRop. where R< = AoA; and R~ = p{op;.
(That is, So and S; are both cores of R.) Then

So

= { assumption }
AooRo p(L)J

= { lemma 193 }
AooA]eSiepreopy .

Applying definition 82 with f,g := AgoA{, p1op, in combination with theorem 151, we
conclude that Sy =S;.
O

For later use, we calculate the left and right domains of the core of a relation.

Lemma 195 Suppose R, A and p are as in definition 191. Then
R< = }\> /\ ’R’< = }\< /\ R> = p> /\ |R’> = p< .

Proof We prove the middle two equations. First,
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R~

— (o) }
(R-)-

= { definition 191 }
(p7op)<

= { domains }
p> .

The dual equation, R< = A~, is proved similarly. Second,

Rl<

= { definition 191 }
(AeRep”)<

= { R> = p> (just proved) }
(AoRoR-)<

= { domains }
(AoR<)=

— { R< = A- (see above) }
A< .

The final equation is also proved similarly.
O

A distinguishing feature of the core of a relation is that its left and right per-domains
equal its left and right domains, respectively.

Theorem 196 Suppose R, A and p are as in definition 191. Then

(197) Rl = R .

Also,

(198) R« = [Rl< .

Proof The proof of (197) has several (non-trivial) steps. First, we show that
(199) [R]- = SNS”

where

(200) S = p<o(AeRop )\(AeRep)op- .

Then we simplify several subcomponents of S. We have
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IRI-

— { (96) and (101) }
RI><[R\[R|<[R[-

= { lemma 195 and definition 191 }
p<o(AoRop”)\(AoRop”)op<

= { (88), converse and distributivity of coreflexives over infima }
p<e(AeRep”)\(AeRep)ops N (p<o(AoRop”)\(AeRep”)op<)”

= (200) }
Sns” .

Next we show that

(201) (AeRep”)\(AoRop”) = (Rep”)\(Rep") .
We have
(AeRep™)\(AeRop™)
= { factors }
(Rep)\(A\(AeRep”))
= { in order to cancel the two occurrences of A,
we aim to apply lemma 75
[R\S = R\(R=<0S) ] with R,S := Rop” , A\(AoRop”) }
(Rep)\((Rep”)< o A\(AeRop™))
= { by lemma 195, (Rop”)< = R< = A> }
(Rep”)\(A> e A\(AoRep”))
= { lemma 75 with f,R := A, AoRop” }
(Rep”)\(A"eA=Rep")
= { A"oA =R< and R<eR=R }
(Rep )\(Rep”) .
The next step is to show that

(202) p<o(Rop )\(Rep”) = poR\(Rep") .

We have
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p<o(Rep”)\(Reop”)

= {  p==pop }
pop”o(Rop”)\(Rop”)

= { lemma 75 with f,R := p, (Rop”)\(Rop”) }
pop=ep\((Rep”)\(Rep”))

= { domains and factors }
po(Ropop)\(Rop”)

= { p"op=R- and RoR-=R }
poR\(Rep”) .

We have thus proven (202). Now we show that

(203) R\(Rep )op< = R\Rep™ .

We have
R\(Rop”)ep=
= {  p==pop }
R\(Rop“)opop”
= { lemma 77 with R,S,;f := R, Rop”,p }
R\(Rep~op)op-op”

= {  plep=R-
[ RoR-=R ] and [ R>oR”" =R"” ] with R:=p }
R\Rop“~ .
We have thus proven (203). Now we put the above steps together:

p=c(AeRop”)\(AoRep”)op=
= { (201) }
p=c(Rop”)\(Rep")op=
= { (202) }
poR\(Rop™)op=

= { (203 }
poR\Rop” .
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That is,
(204) p<c(AeRep)\(AcRop )op< = poR\Rep
So
IR[~
=  {  (199) and (200) }
p<e(AeRep”)\(AeRep)ops N (p<o(AoRop”)\(AoRep”)ep<)”
= { (204) }
poR\Rep” N (poR\Rep”)”
= { converse }

poR\Rep” N po(R\R) op”

= { see below }
poR-op”

= { R-=pep }
pop opop

- { pop”’ = p< = [R]>, coreflexives }
Rl .

The unproven middle step asserts that
poR\Rep” N po(R\R)7cp” = poR-op”’ .
This is proved using the anti-symmetry of the subset relation. Note first that
poR-op” = po(R\RN(R\R)")ep"
since
poR-op”
= { definition 95, (96) and (101) }
poR>o(R\RN(R\R)") e R-cp"
= { lemma 195 (in particular, R>=p>) }
po(R\RN(R\R)")ep” .
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So our task is to prove that
PoR\Rop” N po(R\R)”op” = po(R\RN(R\R)")ep” .

We begin with the right side because its inclusion in the left side is easy.
pe(R\RN(R\R)") < p

{ infima and monotonicity }
pPoR\Rep” N po(R\R) op”

{ modularity rules: (3) and (4) }
po(popoR\Rep“op N (R\R)”)op”
= { R-=pop }
po(R-oR\ReR~ N (R\R)")op”

{ by definition 95 and monotonicity, R- CR\R }
po(R\ReR\RoR\R N (R\R)")ep"
C { R\RoR\RoR\R C R\R and monotonicity }

po(R\RN(R\R)")ep” .

N

N

N

This completes the proof of the middle step and, hence, of (197).
The proof of (198) involves instantiating (197). Since R<=(R")~ and R-=(R")<, we
can define |R”| to be poR"oA”. Then

true
= { @) }
R~ = [R"|>

— { definition of [R”| }
(PoR7oAY)- = (poR7eA")-

— { converse |
(AeRop”)< = (AoRop")<

= { definition of |[R] }

Rl= = [R]< .
O
The diagonal of a relation is difunctional. A general property of the core of a difunc-
tion is the following.
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Theorem 205 Suppose R is difunctional. Then the core of R is functional and
injective. Specifically, if R = f og where fof’ = f< = gog~ = g<, then

RIo[RI" = f< A [RI"o|R| = g= .

Thus, if R is difunctional, its core |R| defines a (1-1) correspondence between the equiv-
alence classes of R< and the equivalence classes of R-.

Proof If R is difunctional, the characterisation of difunctional relations given by
theorem 161 allows us to assume that R = f”og where fof” = f< = gog” = g<. Then,
by lemma 142,

R< = f'of = RoR” A R- = g’cg = R“eR .
So
Rl R
= { definition 191 }
foRogUogoRuofu
= { definition 191 }
foRoR~oR”of"
= { per domains: (98) }

foRoR"of"

= {  f'of = RoRY }
fof’ofof”

— { fof' =1 }
f< .

That is, |R| is functional with left domain f<, (the coreflexive representation of) the set
of equivalence classes of R<. By symmetry, |R| is injective with right domain g<, (the
coreflexive representation of) the set of equivalence classes of R-.
O

A relation that is both injective and functional establishes a (1-1) correspondence
between the points of its left and right domains. If these points are ordered arbitrarily
but in such a way that the ordering respects the correspondence, and the relation is
depicted by a graph whose axes depict the orderings of the domains, the relation will
form a subdiagonal of the graph. Thus the mental picture of the core |R| of a difunctional
relation R is a subdiagonal of a graph; the mental picture of the (difunctional) relation
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R itself is a collection of completely disjoint rectanges arranged along the diagonal of a
graph. It follows from theorem 205 that the core |AR| of the diagonal of an arbitrary
relation R is functional and injective. The mental picture we have just sketched thus
applies to the diagonal AR; this is the motivation for our chosen terminology.

Now we turn to properties of the diagonal of the core of a relation.

Lemma 206 Suppose R, A and p are as in definition 191. Then
R-oR\R/ReR< = p~o[R\IR|/IR[A .
Proof For brevity, the calculation introduces the abbreviation S for [R].

R>0oR\R/RoR<

= { (1) }
(R-)-=R\R/R+ (R<)-

= { R< = A”oA, R- = p”0p, and domains }
0-oR\R/RoA~

= { lemma 193, S=|R| }
p=e(A70Sep)\(A"eSep)/(A"eSep)eh-

= { lemma 78 with f,g,U,V,W:=pA,S,S,S }
0”0 (A= S\S/(Sop-) oA

— { S=R
p” o (A= [RD\IRI/ (IRl p<) oA

— [ [RI=AeRep’;s0 A<=[Rl =Rl = [Rlep- )
P~ o [RN\IRI/IReA .

O

Theorem 207 Suppose R, A and p are as in definition 191. Then
AR = A oARlep A ARl = AcARop” .
Proof As in lemma 206, we abbreviate |R| to S.

AR
= { definition }
RN (R\R/R)"
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= { domains and converse }
R N (R>oR\R/RoR<)"

— { S=|R|, lemma 206 }
R N (p”oS\S/SoN)”

— { S=|R|, lemma 193 }
A%oSop N (p”oS\S/SoA)”

= { distributivity of converse and functional relations }
Ao (SN(S\S/S)*) o p

— { definition 183, S=|R| }
A oA|R|op .

Hence

AoARop”

= { above }
AoA"oA[R[opop”

— { A and p are functional }
A=oAlR|o p=

{  AIRICIR[; so (A[R[)< € [R|< and (A[R[)> C [R[>

lemma 195 and domains }
AlR| .
O

Theorem 207 may have practical importance for very large datasets. In applications
where computing the diagonal of a relation R is required it may be more efficient to
first reduce it to its core |R| instead of computing the diagonal directly. This of course
requires computing partitionings of R< and R-. The task of determining whether or
not a given relation can be block-ordered is an example: see theorem 265.

Small examples that one encounters in the literature typically have the property that
R =|R|, in order to avoid unnecessary clutter. The same is true for the concrete examples
that we present here. See the discussion following theorem 265.

The final theorem in this section is motivated by theorem 205. The diagonal of an
arbitrary relation R is difunctional, so theorem 205 (with R:=AR) states that |AR|
—the core of the diagonal of R— defines a (1-1) connection between the equivalence
classes of (AR)< and (AR)-. Theorem 208 is a slightly weaker property of A|R|] —the
diagonal of the core of R— in relation to the per domains R~ and R-.
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Theorem 208 Suppose R, A and p are as in definition 191. Then
AR[cAR]” C A< A AR["<AR| C p- .

That is, A|R| defines a (1-1) correspondence between a subset of the equivalence classes
of R~ (specifically, the points in |R|<) and a subset of the equivalence classes of R~ (the
points in [R|>).

Proof

AR[oAR]"

= { theorem 207 and converse }
AoARop“opoAR" 0 A"

= { definition 191 }
AoARoR-oAR" o A"

= { domains }
AoARo(AR)>0R-oAR” 0 A"

= { lemma 189 and per domains: (98) }
AoARoAR" o A"

= { AR is difunctional, theorem 160 with R:=AR }
Ao (AR)<o "

- { lemma 189 }
AoR=<oA”

= { definition 191 }
AoA"oAoA”

= { A is functional, i.e. AoA” = A<, domains }
A< .

The fact that A|R| is functional follows from the fact that A is functional (and, of
course, the transitivity of the subset relation). The property that A[R|” is injective is
the converse dual.

O
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8 Polar Coverings

This section is, at first sight, a detour from the study of the diagonal of a relation. We
introduce the notion of a “polar covering” of a relation R and show that every relation
has such a covering. See theorem 211. In a sense, theorem 211 is a generalisation of
theorem 163 (the theorem that every difunctional relation is the supremum of a set of
completely disjoint rectangles). The relevance to the diagonal of a relation becomes
clearer when we study “non-redundant” polar coverings in section 8.2.

Definition 209 (Polar Covering) Suppose R is an indexed bag of rectangles. (See
definition 129.) Then R is said to be polar if, for all elements U and V of R,

U<C V< = U-DV> .

Also, R is said to be linear if, for all elements U and V of R,
U<Ccv< V V<ClU- .

(Equivalently,
u-cv- Vv V-Cu- .

A relation R is covered by R if R=UR. The covering R is non-redundant if there
is a total function D from indices of R to a set of completely disjoint subrectangles of
UR that “defines” the elements of R . To be precise, the covering R is non-redundant
if there is a function D with the same source as R such that

(Vk = rectangle.(D.k) A D.kCR.K)
A (Vik = Dj£Dk = (Dj)-N(DK)<= 1L A (Dj)-N(D.Kk)> = LL)
N (Vjk = Dj=Dk = Rj=R.K)

In such a case, we call the indexed bag D a definiens of R.
O

Definition 210  Suppose R is a polar covering of relation R. The polar ordering of
the elements of R, denoted henceforth by the symbol C, is defined by, for all indices j
and k of R,

RJCERk = (Rj)<C (RK)< .
Equivalently,
RJCRk = (RX)>C(Rj)> .
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As suggested by the notation, the relation C is a provisional ordering on the elements
of any indexed bag of relations; it is anti-symmetric whenever R is an indexed bag of
polar rectangles by virtue of lemma 125 and definition 209 of “polar”.

Definition 209 defines an indexed bag of rectangles rather than an indexed set of
rectangles. (Recall that a set is an injective bag: see definition 129.) This is because it is
easier to construct a bag rather than a set of polar rectangles that cover a given relation.
Nevertheless, (indexed) sets are more desirable than (indexed) bags. The process we use
to construct such sets is to first construct a bag and then show how to reduce the bag
to a set. See theorem 215. Note that a definiens D of an indexed set R is also a set
(because R.j=TR.k equivales j=k).

The adjective “polar” alludes to the property that the left and right domains of a
covering are “polar” opposites: the larger the one, the smaller the other. The notion was
introduced by Riguet [Righ1] in the context of a theorem on “relations de Ferrers”. More
precisely, Riguet introduced the notion of a lznear polar covering. For further details of
Riguet’s theorem see section 11.

As we shall see, Riguet’s theorem is straightforward. The following, equally straight-
forward theorem, is a generalisation of the “only-if” part of the theorem.

Theorem 211  Suppose R is a relation of type A~B. Define the function R by
R = (b:bCR>:RoboR\R) .
Then ‘R is a polar covering of R.

Proof The elements of R are obviously rectangles because its index set is a set of
points. (See lemma 124.) The property

R = (Ub:bCR>:ReoboR\R)

is immediate from the saturation axiom (16), distributivity and cancellation.
The “polar” property is established as follows. For all b, b’ such that b CR- and
b’ CR>,
(Reb’oR\R)> C (RoboR\R)>
= { assumption: bCR> and b’ CR>, domains }
(b’oR\R)> C (boR\R)>
= { lemma 60 with R,a,a’:= R\R,b,b’ }
beTTeb’ C (R\R)/(R\R)
= { (30) }
boTTeb’ C R\R
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= { lemma 60 }
(Reb)- C (Reb')-
= { ICR\R, domains }
(RoboR\R)< C (Rob’oR\R)= .
O

Example 212  The less-than relation on real numbers has a polar covering. Specif-
ically, suppose x is a real number. Let lt.x denote {y:y€R:y<x} and al.x denote
{y:yeR:x<y}. Theorem 211 predicts that

{x:xeR: lt.xoTT ocal.x}

is a polar covering of the less-than relation. (The only non-trivial part is to check that
the at-most relation < equals <\<.)

This covering is, of course, not unique. More significantly, it is not non-redundant
since

(Vuy o ou<x<v o x#s(utx) A u<i(utx)<v) .

For any real number x, it is possible to remove the rectangle defined by x without
affecting the supremum.
O

Given the straightforwardness of theorem 211, it is inevitable that our focus is not
on the polarity of coverings but on the existence of non-redundant coverings. The
adjective “non-redundant” is meant to express the property that removal of any element
from a covering R will have the effect of strictly reducing UR . (Removal of an element
may involve removing several elements of K since there is no requirement that R is
injective.) Example 212 demonstrates that the less-than relation on real numbers has a
polar covering but, as we shall see, the less-than relation on real numbers is an example
of a relation for which there is no non-redundant covering.

The notation “D” in definition 209 is chosen primarily to express the property that
D.k uniquely “defines” (or “identifies”) R.k. Conveniently, it also expresses the prop-
erty that the relation covered by a definiens (the relation UD) is always difunctional:
see theorem 163.

A polar covering is not obviously redundant in the sense that, for all elements U
and V of R,

ucv = u=v .
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(The easy proof is left to the reader.) That is, it is not possible to identify two elements
U and V such that U is a proper subset of V and, thus, U can be removed from R
without affecting UR . Example 212 shows that the less-than relation on real numbers
has a polar covering that has non-obvious redundancies. Example 213 is an example of a
finite relation for which the polar covering constructed by theorem 211 has a non-obvious
redundancy.

Example 213  Fig. 8 shows a relation R of type {A,B,C}~{«,3,y,0}. The four re-
lations depicted in fig. 9 are rectangles of type {A,B,C}~{«x,p,y,0} (as indicated by the
surrounding rectangular boxes); for greater clarity only edges connecting nodes in their
left and right domains have been displayed.

Figure 8: A Relation of Type {A,B,C}~{«,f3,y,0}

These four rectangles are the elements of the polar covering constructed by theorem
211. The (reflexive-transitive reduction of the) ordering on the elements of the covering
is depicted by arrowed brown lines. Take care to note how the depicted edges correspond
to the ordering of the left domains of the rectangles:

{B}c{AB} A {B}JC{B,C} N {AB}C{AB,C} A {B,C}CS{AB,C}
and to the “polar” ordering of their right domains:

{o6Byv,8) 2{e,d) A {o,B,v,0} 2{B,0} N {x,6}2{8} A {B,6}2{d} .

The top rectangle is redundant (but not “obviously” so). By removing this rectangle,
one obtains a non-redundant polar covering: this is the polar covering that is the dual of
the covering detailed in theorem 211 (thus indexed by {A,B,C} rather than {«,(,y,5}).
The definiens of this covering is depicted by the bold green edges in fig. 9.

The red and blue squares surrounding instances of the elements of {A,B,C} and
{e,B,v,0} should be ignored for the moment. We return to this example later; see
example 284.

O
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Figure 9: Polar Covering
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8.1 Injective Polar Coverings

Separate from the issue of non-redundancy is the issue of duplications: our definition of
a polar covering does not exclude the possibility of there being distinct indices j and
k such that R.j="R.k. In general, this will be the case for the construction given in
theorem 211. This can be remedied by taking as index set the equivalence classes of the
per R-. With p being a functional relation such that R- = p”op as in definition 191
(so, for all b such that b CR>, p.b is the equivalence class of b according to the right
per-domain R-), the function R defined by

R = (c:cCp=<:Rop’oceopoR\R)

is a polar covering of R with the property that all elements are distinct. This is formalised
in theorem 215. The crucial property is that, when applied to the core of a relation, the
construction of theorem 211 yields an injective covering.

(Duplications are not evident in small examples because, as mentioned earlier, when
constructing small examples, it is common to construct a relation that is isomorphic to
its core. This is the case, for instance, for example 213.)

Lemma 214  The covering (Uc : c C|R|>: |[R[oco|R[\|R]} of the core |R| of a relation
R is injective.

Proof By the (pointwise) definition of injectivity, we have to prove that
(Vee! @ ¢ CREACCIR= & [Rloco|RN\R| = [Rlec’o[R\R| = c=c')
where ¢ and ¢’ range over points in |R|>. We have
[Rleco[RN\IR| = [R[ec’o[RA\IR]
= { both terms are rectangles, lemma 125 }
(Rlsc)- = (Rlsc)= A (coRNR])- = (c’=[RNR])-
= { the covering is polar: theorem 211 }
(IRlc)= = (Rkc’)-
= { ¢ and ¢’ are points in |R|>, lemma 103 }
coTToc” C |R|-
= { lemma 197 }
coTToc” C |R]>
= { c and ¢’ are points, (21) }

c=c’
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Theorem 215  Suppose R, A and p are as in definition 191. Define the function C
by

C = {c:cCp=<:AoRop ocopoR\Rop”) |

where the dummy c¢ ranges over points. Then C is a polar covering of [R|. It follows
that the function R defined by

R = (c:cCp=<:Rop’oceopoR\R)
is a polar covering of R. Moreover, both C and R are injective.

Proof First let us show that C is the same as the covering of |R| defined by theorem
211.

= { definition of C }
(c:cCp<:AoRop ocopoR\Rop”)
= { (204) }
(c:cCp=:AoRop ocop=o(AoRop”)\(AoRop")op<)
= { lemma 195 and domains }
(¢ : ¢cCIR[> : AocRop~oco(AoRop”)\(AeoRop”))
= { definition 191 of |R| }
(c : cCIR]> : [Rleco|RN\R]) .

It follows, by theorem 211 that C is a polar covering of |R].
Now we show that R is a polar covering of R. It is a covering of R since

R
= { lemma 193 }

A o[Rlep
= { C is a covering of [R| }

A“o(Uc : cCp<: AoRop”ocopoR\Rop )op
= { distributivity }
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(Uc : ¢Cp=<: A oAoRop ocopoR\Rop”op)
= { by definition 191, A”oA = R< and p"op = R~-,
R<oR = R = RoR~ }
(Uc : ¢cCp<: Rop’ocopoR\RoR>)
= (02) }
(Uc : cCp=<: Rop’ocopoR\RoR>)
= { using properties of domains, lemma 195 and cancellation,
(PoR\R)> =R~}
(Uc : cCp=<: Rop’ocopoR\R) .

We conclude that the function R is a covering of R.
In order to prove that R is polar, we first note that

(216) (ROQUOC)< - (Ropuoc’)< = (AoRoonc)< - ()\oRoonc')<

and

(217) (copeR\R)> 2 (c’opoR\R)> = (copoR\Rop’)> 2 (c’opoR\Rop’)-

since
(Rop“oc)< C (Rop”oc’)<
= { domains and monotonicity }
(AoRop“oc)< C (AcRop“oc!)<
= { domains and monotonicity }
(A“oAsRop oc)s C (AYoAoRop oc’)<
= { A”oA =R< and R<cR=R }
(Rep“oc)< C (Ropuocl)<
and
(cepoR\R)> D (c’opoR\R)~
= { domains and monotonicity }
(copoR\Rep”)> D (c’epoR\Rep”)>
= { domains and monotonicity }

(CopoR\Ropuop)> 2 (C/opoR\Roonp)>
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— { p'op=R- and (102) }
(copoR\RoR>)> D (c’opoR\RoR>)>
= {  (p:R\R)} = (ReR\R)- =R~ ]
(copoR\R)> D (c’opoR\R)> .
We are now in a position to prove that R is polar:

(RoonCopoR\R)< g (RoonCopoR\R)<

= { c and c¢’ are points, domains of rectangles }
(RepZoc)< C (Rep”oc’)<

— { (216) }
(AoRop oc)< C (AoRop oc’)<

= { C is a polar covering of |[R| }
(copoR\Rep”)> D (c’epoR\Rep”)>

= { (@7 3

(CopoR\R)> 2 (C/opoR\R)>
= { c and c¢’ are points, domains of rectangles }
(RoonCopoR\R>> 2 (RopuoclopoR\R>> .

Thus, by definition, the function R is polar.

Now we turn to the injectivity of C and R. Lemma 214 establishes that C is
injective. In order to show that R is injective, assume ¢ and c’ are points such that
cCp< and ¢’ Cp<. Then

Rop“ocopoR\R = Ropoc’opoR\R
= { Leibniz }

AoRop ocopoR\Rop” = AoRop oc’opoR\Rop"
= { C is injective }

c=c’

Since the converse follows from Leibniz’s rule, we have thus proved that R is injective.
We conclude that R is an injective, polar covering of R.
O

Our definition of a definiens does not include any maximality requirement. (In gen-
eral, given a definiens D of a covering R, a minimal definiens can be constructed by
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choosing exactly one point of each element of D. On the other hand, maximality means
that no additional points can be added without invalidating the definiens property.) It
is possible that the definiens that we construct are indeed maximal but this is something
we have not investigated.

If R is a finite relation, the construction of theorem 211 can be used to construct a
non-redundant, injective, polar covering and its definiens. The covering is initialised to
R as constructed by theorem 211 and the index set K of R is initialised to all points
b in R>. The index set K’ of D is initialised to the empty set. Then each point b
in K is examined, one by one. If RoboR\R is redundant (i.e. b can be removed from
K without affecting UR ) then b is removed from K. If not, b is retained in K and
added to K’. Also D.b is defined by

D.b = RoboR\RN —(Ub" : b’eKAb#Db': Rob’oR\R) .

(So D.b is that part of the covering identified by b.) Assuming R- is finite, this process
will terminate with a non-redundant, injective, polar covering of R indexed by K.

8.2 Non-Redundant Polar Coverings

We have shown in theorem 215 how to construct an injective polar covering of a given
relation R. Now we consider circumstances in which the covering is non-redundant. In
the case that R is difunctional, it is straightforward to show that the covering constructed
in theorem 211 is non-redundant and is its own definiens. (It is in this sense that theorem
211 generalises theorem 163.) This suggests that, in general, a covering of the diagonal
of a relation R can be used as the definiens of a covering of R. This is indeed true
so long as the diagonal is sufficiently large®. Specifically, we prove below that, for all
relations R, if (AR)>=R>, the covering R defined by theorem 215 is non-redundant as
witnessed by the function D defined by

D.c = ARop ocop .
First, we show that it is a covering of AR.

Theorem 218 Suppose R is a relation and R~ = p”op where pop~ = p<. Then the
function D defined by

D = (c:cCp<:ARop ocop)
is a covering of AR. That is,

AR = (Uc:cCp<:AReop ocop) .

5But note example 224 below.
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Moreover, if (AR)>=R>, for all points ¢ and ¢’ such that ¢ Cp< and c’Cp-,
c#c' = (ARopocop)<o(ARop oc’op)s = LL

and
c#c’ = (ARop ocop)> o (ARop oc’op)> = 1L .

It follows that, if (AR)>=R>, D is a completely disjoint, injective covering of AR.

Proof That each element of D is a rectangle is a consequence of lemma 124. Now we
show that D covers AR:

(Uc:cCp=<:ARop ocop)
= { distributivity }
ARop”o(Uc:cCp=<:c)op

— { saturation axiom: (16) }
ARop~op<op

= { domains, R- = p~op }
AR o R~

— { domains }

AR o (AR)=oR~

= { lemma 189 }
AR o (AR)~

= {  (96) with R:=AR }
AR .

We use lemma 132 to show that D is completely disjoint and injective. First, we show
that the elements are non-empty.

ARop“ocop = 1L

= { monotonicity }
(ARop“ocop)> = 1L

= {  domains }
((AR)> o p” o cop)> = 1L

= { assumption: (AR)>=R- }
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(cop)> = LL

= { domains: (45) and 1L is zero of composition }
cop = L

= { 11 is zero of composition }

Copopuoc = J_|_
= { pop’ = p<and cCp=< }

= { c is a point }

false .
That is,
(219) (Ve : cCp= : ARop ocop # L) .

For the second proof obligation (see lemma 132), assume that c#c’. Because the
calculation is easier, we begin with the right domains. We have:

ARop ocopopUoc’opoAR”
= {  cCp<and pop=p- }
ARop“ococ’opoAR”
= { assumption: c#c’, (17) }
L.
That is, applying properties of converse,
(220) (Ve,e! @ cCp< Ac#c’ @ (ARop ocop) o (ARopoc’op)’ = 11) .
The calculation for the left domains is similar but slightly more complex. We have:
p”ocopo(AR) oARcp oc o p
= { AR is difunctional, theorem 160 (with R:=AR) }
pocopo(AR)op oc’op
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= { assumption: (AR)>=R>, lemma 190 }
p ocopoR-op oc/op
= {  R-=pop, pop =p<=p<op<and cCp< }
p ococ’op
= { assumption: c#c’, (17) }
L.
That is, again applying properties of converse,
(221) (Vee! @ cCps Ac#c’ @ (ARop ocop)” o (ARopoc’op) = 11) .

The combination of (219), (220) and (221) together with lemma 132 establishes that D
is completely disjoint and injective.
O

It is now easy to see that D is a definiens of the injective polar covering of R defined
in theorem 215:

Theorem 222  Suppose R is a relation such that (AR)>=R>. Suppose also that
R- = p”op where pop” = p<. Then the indexed bag R of rectangles defined by

R = (c:cCp=<:Rop’ocopoR\R)

is a non-redundant, injective polar covering of R. (In particular, R is an indexed set.)
A definiens of the covering is the indexed set D defined by

D = (c:cCp<:ARop ocop) .
Moreover, by theorem 218, D is a covering of AR.

Proof Theorem 215 shows that R is an injective polar covering of R. It remains to
show that it is non-redundant as witnessed by the function D.
For all ¢ such that cCp<, the property D.cCR.c is immediate from ARCR,
[ CR\R and monotonicity of composition. That the elements of D form a completely
disjoint set of rectangles was shown in theorem 218. It remains to show that D “defines”
R . We have, for all ¢ and ¢’ such that ¢ Cp< and ¢’ Cp-<,
R.c =R.c/
= { theorem 215 }
c=c
= { theorem 218 }
D.c=D.c’ .
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Example 223

Fig. 10 pictures a small example of the theorems in this section. Fig. 10(a) depicts a
relation R of type {«,B,y}~{A,B}; other parts of the figure depict the result of applying
different functions to the relation R. (Heterogeneous relations are depicted as bipartite
graphs whereas homogeneous relations are depicted as directed graphs.) Specifically,
these are as follows.

(a) R ) (b) AR ,

(c) R\R , (d) R/R,
(e) ReAoR\R ,  (f) ReBoR\R ,
(g) ARoAoR- ,  (h) ARoBoR~ ,

(i) R/ReaoR , (j) R/ReBoR , (k) R/RoyoR .

We have chosen to depict the relation as a graph (rather than a boolean matrix)
because —for very small examples such as this— it is much easier for a human being to
perform the necessary calculations by manipulating the graphs. For example, computing
the composition of two relations is executed by chasing edges. Also —again for such very
small examples— the definition of factors in terms of nested complements is much easier
to use. This said, we leave the reader to check our calculations.

The example has been chosen deliberately to illustrate a number of aspects simulta-
neously. Note particularly that, for the relation depicted, (AR)>=R> but (AR)<#R-.
This means that theorem 222 is applicable but its dual is not.

Note that (as forewarned: see example 192) the relation R is isomorphic to its own
core. So the functional p in theorem 222 is effectively the identity function and the
construction given there is identical to the construction in theorem 211.

Considering the application of theorem 211, note that the combination of figs. 10(e)
and 10(f) covers the relation R; also the relation depicted by 10(g) uniquely identifies
the rectangle Ro A oR\R shown in fig. 10(e) whilst 10(h) uniquely identifies the rectangle
RoAoR\R shown in fig. 10(f). In contrast, figs. 10(i), (j) and (k) depict the relations
R/RoxoR, R/Rof3oR and R/ReyeR but none of these is identified by any subrectangle:
the rectangles depicted by figs. 10(i) and (k) are disjoint but both have a non-empty
intersection with the rectangle depicted by fig. 10(j).

O



145

@ () O @ ® O
\gu\ ® (b)

CACANERCATAT
©

(d)
@ (® O @ & O
o] ® \
(e ()

QDD ©6OF
\@() @

(h)

@ ® © @ O O 6 @

N\ N\ N\
ol ® ® &
(i) @) (k)

Figure 10: A Small Example



146
Example 223 is an example of a relation R such that (AR)>=R> but (AR)<#R<. It
is thus the case that, for this example,
R = (Ub:bC (AR)>: ReboR\R) .

(Note the range restriction on the dummy b.) Curiously, in spite of the fact that
(AR)<#R<, it is also the case that

R = (Ua:aC(AR)<:R/RecaeR) .

(Again, note the range restriction on the dummy a. To check the validity of the equation,
it suffices to observe that the relation R is the union of the relations depicted by figs.
10(i) and (k).) This is also a non-redundant polar covering of R. One might thus
conjecture that, in general, the diagonal AR is the key to finding a non-redundant polar
covering of a given relation R. However, this is not always the case, as evidenced by the
following example.

Example 224

OPOPH
0"966

(@) Relation

N 5D

(b) Non-redundant covering

e Ne @

(c) A Definiens

Figure 11: Empty Diagonal and Non-Redundant Covering
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The top diagram of fig. 11 pictures a relation R of type {«,fB,y}~{A,B,C,D} such
that AR is the empty relation. The example is a simplification of the example on p.161
of [KGJ00].

The three components of the polar covering predicted by the dual of theorem 211 are
depicted in the second row. (The index set of the covering is {«,(,y}.) Note that the
covering is non-redundant: the third row pictures a function that satisfies the definition
of a definiens of the covering. (Again, the index set is {«,(3,vy}.)

Note that, although the definiens shown in fig. 11 is maximal, it is not unique: the
edges from o to B and from y to C may be replaced by edges from « to C and from
v to B. Other choices are also possible.

Note also that the relation R is not isomorphic to its core since {B,C} is an equiv-
alence class of R-. Conflating B and C to one node in figs. 11(a) and (b) does give a
non-redundant covering of the core but this is not witnessed by the graph obtained by
conflating B and C in fig. 11(c).

O
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9 Block-Ordered Relations

In general, dividing a subset of a set A into blocks is formulated by specifying a func-
tional relation f, say, with source® the set A; elements a0 and al are in the same
block equivales f.a0 and f.al are both defined and f.a0=f.al. In mathematical ter-
minology, a functional relation f defines the partial equivalence relation f”of and the
“blocks” are the equivalence classes of f~of. (Partiality means that some elements may
not be in an equivalence class.)

Given functional relations f and g with sources A and B, respectively, and equal
left domains, relation R of type A~B is said to be block-structured by f and g if there
is a relation S such that R = f’oSog. Informally, whether or not a and b are related
by R depends entirely on the “block” (f.a, g.b) to which they belong. Note that it is
not required that f and g be total functions: it suffices that f>=R< and g>=R>. The
type of S is C~C where C includes {a: aof> = a: f.a} (equally {b: bof> = b: g.b}).

Definition 225 (Block-Ordered Relation) Suppose T is a relation of type C~C,
f is a relation of type C~A and g is a relation of type C~B. Suppose further that T
is a provisional ordering, i.e. that

(226) TNT CI A T=(TNT)eTo(TNT) A TTCT .
Suppose also that f and g are functional and onto the domain of T. That is, suppose
(227) fofU g f< —= TﬂTU e g< = gogU .

Then we say that the relation f”oTog is a block-ordered relation. A relation R of
type A~B is said to be block-ordered by f, g and T if R=1"0Tog and f'oTog is
a block-ordered relation.

]

Example 228 The archetypical example of a block-ordered relation is a preorder.
Informally, if R is a preorder, its symmetric closure RNR"” is an equivalence relation,
and the relation R defines a partial ordering on the equivalence classes. Theorem 157
is a precise statement of the more general theorem that a provisional preorder is block-
ordered. Briefly, if R is a provisional preorder, RNR" is a partial equivalence relation;
so, by theorem 143, there is a functional relation f such that

RARY = f7of .
Since R = (RNR”)oRo(RNR"”) (when R is a provisional preorder), it follows that
R = f'o(foRof")of .

6In the terminology we use, a relation of type A~B has target A and source B.
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The parenthesised relation is a provisional ordering of the equivalence classes of RNR".
Thus a provisional preorder R is block-ordered by f, f and foRof” .
O

Identifying a block-ordering of a relation —if it exists— is important for efficiency.
Although a relation is defined to be a set of pairs, relations —even relations on finite
sets— are rarely stored as such; instead some base set of pairs is stored and an algo-
rithm used to generate, on demand, additional information about the relation. This is
particularly so of ordering relations. For example, a test m<mn on integers m and n
in a computer program is never implemented as a table lookup; instead an algorithm
is used to infer from the basic relations 0 <1 together with the internal representation
of m and n what the value of the test is. In the case of block-structured relations,
functional relations f and g define partial equivalence relations f”of and g”og on
their respective sources. (The relations f~of and g~ og are partial because f and ¢ are
not required to be total.) Combining the functional relations with an ordering relation
on their (common) target is an effective way of implementing a relation (assuming the
ordering relation is also implemented effectively).

Example 229 Suppose G is the edge relation of a finite graph. The relation G*
is, of course, a preorder and so is block-ordered. The block-ordering of G* given by
theorem 157 —see example 228— is, however, not very useful. For practical purposes a
block-ordering constructed from G (rather than G*) is preferable. Here we outline how
this is done.

Recall from example 185, that the diagonal A(G*) is the relation G*N(G")* and that
this is an equivalence relation on the nodes of G, whereby the equivalence classes are
the strongly connected components of G. Let N denote the nodes of G and C denote
the set of strongly connected components of G. By theorem 143, there is a function sc
of type C+N such that

(230) G*N(G")* = sc osc .
The relation A defined by
scoGosc” N —l¢

is a homogeneous relation on the strongly connected components of G, i.e. a relation of
type C~C. Informally, it is a graph obtained from the graph G by coalescing the nodes
in a strongly connected component of G into a single node whilst retaining the edges
of G that connect nodes in distinct strongly connected components’. A fundamental
theorem is that

(231) G* = sc oA*osc .

"Although we don’t go into details, for any function f of appropriate type, the graph foGof” is
“pathwise homomorphic” [McN67] to G.
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Moreover, A is acyclic. That is,
(232) Icn A" = 1L .

(See [BDGv22, BDGv21]| for the details of the proof of (231) and (232). In fact the
theorem is valid for all relations G; finiteness is not required.)

The relation A* is, of course, transitive. It is also reflexive; combined with its
acyclicity, it follows that

(233) A*NAY)” = Ic .

That is, A* is a (total) provisional ordering on C. The conclusion is that G* is block-
ordered by sc, sc and A*.

Informally, a finite graph can always be decomposed into its strongly connected com-
ponents together with an acyclic graph connecting the components.

Although the informal interpretation of this theorem is well-known, the formal proof
is non-trivial. Although not formulated in the same way, it is essentially the “transitive
reduction” of an arbitrary (not necessarily acyclic) graph formulated by Aho, Garey and
Ullman [AGU72, Theorem 2.

The decomposition (231) is (implicitly) exploited when computing the inverse A~
of a real matrix A in order to minimise storage requirements: using an elimination tech-
nique, a so-called “product form” is computed for each strongly connected component,
whilst the process of “forward substitution” is applied to the acyclic-graph structure.

O

It is important to note the very strict requirement (227) on the functionals f and
g. Note its similarity with the requirement on functionals f and g in the definition of
the characterisation of a difunctional relation: definition 162. Were this requirement to
be omitted (retaining only that f and g are functional relations into —not onto— the
domain of T), there would be no guarantee of non-redundancy. As we shall see, our def-
inition of block-ordering does guarantee the existence of a non-redundant polar covering
(theorem 255) but not vice-versa (corollary 258). This suggests that the requirement
may be too strong. See section 10 and the conclusions for further discussion.

Theorem 234 makes precise the statement that block orderings —where they exist—
are unique “up to isomorphism”.

Theorem 234  Suppose T is a provisional ordering. That is, suppose
TNT"CIT A T=(TNT)eTo(TNT) A ToTCT .
Suppose also that f and g are functional and onto the domain of T. That is, suppose

U

fof” f<« = TNT = g< = gog
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Suppose further® that S, h and k satisfy the same properties as T, f and g (respec-
tively) and that
(235) f oTog = h'oSck .
Then
(236) f-=h- A g-=k- ,
(237) fog=h’ok ,
(238) f'oT’og = h"oS”ok , and
(239) foh” = gok~
Also, letting ¢ denote foh” (equally, by (239), gok”),
(240) ¢odp” =TNT A ¢ op =SNS" A doT=Sed .
In words, ¢ is an order isomorphism of the domains of T and S.

Proof In combination with the assumption (235), properties (236), (238) and (237) are
immediate from (249), (250) and (251), respectively.

Proof of (239) is a step on the way to proving (240). From symmetry considerations,
it is an obvious first step.

foh”

= { assumption: kok” =h< }
foh”okok”

- @)
foflogok”

= { assumption: fof’ =g< }
gok” .

Now,

8The types of T and S may be different. The types of f and h, and of g and k will then also be
different. As in lemma 248, the requirement is that the types are compatible with the type restrictions on
the operators in all assumed properties. The symbol “1” in (240) is overloaded: if the type of T is A~A
and the type of S is B~B, ¢po¢dp” has type A~A and ¢~ o¢ has type B~B.
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pod”

- { definition of ¢, converse }
foh“ohof"

— { (239) }
gok’ohof”

= { (237) and converse }
go gU ofo fU
= { assumption: fof’ =TNT" =gog~ }
TTnT” .
Symmetrically, ¢“o¢p = TNT" . Finally,

Tod
= { definition of ¢ }
Tofoh”
= { assumptions: fof”’ =TNT" = gog"”
T = (TNTY)eTo(TATY) )

foonTogogUofohU
= { assumption: f oTog = h”oSok , (237) and converse }
foh”oSokok”ohoh”
= { assumption: hoh” =SNS” =kok” }
foh”oS
= { definition of ¢ }
¢S .

O

9.1 Pair Algebras and Galois Connections

In order to find lots of examples of block-ordered relations one need look no further than
the theory of Galois connections (which are, of course, ubiquitous). In this section, we
briefly review the notion of a “pair algebra” —due to Hartmanis and Stearns [HS64,
HS66]— and its relation to Galois connections.
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Hartmanis and Stearns studied a particular practical problem: the so-called “state
assignment problem”. This is the problem of how to encode the states and inputs of a
sequential machine in such a way that state transitions can be implemented economically
using logic circuits. However, as they made clear in the preface of their book [HS66],
their contribution was to “information science” in general:

It should be stressed, however, that although many structure theory results
describe possible physical realizations of machines, the theory itself is in-
dependent of the particular physical components of technology used in the
realization.

The mathematical foundations of this structure theory rest on an algebraiza-
tion of the concept of “information” in a machine and supply the algebraic
formalism necessary to study problems about the flow of this information.

Hartmanis and Stearns limited their analysis to finite, complete posets, and their
analysis was less general than is possible. This work was extended in [Bac98| to non-
finite posets and the current section is a short extract.

A Galois connection involves two posets (A,C) and (B,=<) and two functions,
Fe A—B and GeB«.A. These four components together form a Galois connection
iff for all beB and acA

(241) FbCa=b=<G.a .

We refer to F as the lower adjoint and to G as the upper adjoint.

A Galois connection is thus a connection between two functions between posets.
Typical accounts of the properties of Galois connections (for e.g. [GHK * 80]) focus on
the properties of these functions. For example, given a function F, one may ask whether
F is a lower adjoint in a Galois connection. The question posed by Hartmanis and Stearns
was, however, rather different.

To motivate their question, note that the statement F.b C a defines a relation be-
tween B and A. So too does b<G.a. The existence of a Galois connection states
that these two relations are equal. A natural question is therefore: under which condi-
tions does an arbitrary (binary) relation between two posets define a Galois connection
between the sets?

Exploring the question in more detail leads to two separate questions. The first is:
suppose R is a relation between posets (A,C) and (B,=). What is a necessary and
sufficient condition that there exist a function F such that

(a,b)eR = FbCa ?
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The second is the dual of the first: given relation R, what is a necessary and sufficient
condition that there exist a function G such that

(a,b)eR = b<G.a 7

The conjunction of these two conditions is a necessary and sufficient condition for a
relation R to define a Galois connection. Such a relation is called a pair algebra.

Example 242 It is easy to demonstrate that the two questions are separate. To
this end, fig. 12 depicts two posets and a relation between them. The posets are {«,f3}
and {A,B}; both are ordered lexicographically: the reflexive-transitive reduction of the
lexicographic ordering is depicted by the directed edges. The relation of type {,p}~{A,B}
is depicted by the undirected edges.

B—— B

a A

Figure 12: A Relation on Two Posets

Let the relation be denoted by R. Define the function F of type {«,3}«{A,B} by
F.B=«o and FFA=f. Then it is easy to check that. for ac{x,f} and be{A,B},

(a,b)eR = FbCa .

(There are just four cases to be considered.) On the other hand, there is no function G
of type {A,B}+{«x,} such that

(a,b)eR = b=<G.a .

To check that this is indeed the case, it suffices to check that the assignment G.A=«
is invalid (because «C « but («,A)¢R) and the assignment G.A=f is also invalid
(because o= 3 but («,A)&R).

]

Example 243 A less artificial, general way to demonstrate that the two questions
are separate is to consider the membership relation. Specifically, suppose S is a set.
Then the membership relation, denoted as usual by the —overloaded— symbol “€”, is
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a heterogeneous relation of type S~25 (where 25 denotes the type of subsets of S).
Now, for all x of type S and X of type 2%,

xeX = {x}CX .

The right side of this equation has the form F.bC a where F is the function that maps
an element into a singleton set and the ordering is the subset ordering. Also, its left side
has the form (a,b)€R, where the relation R is the membership relation and a and
b are x and X, respectively. (This is where the overloading of notation can become
confusing, for which our apologies!) It is, however, not possible to express x € X in the
form x <G.X (except in the trivial cases where S has cardinality at most one). We
leave the proof to the reader.

O

Example 244 An example of a Galois connection is the definition of the ceiling
function on real numbers: for all real numbers x, [x]| is an integer such that, for all
integers m,

x<m = [x]<m .

To properly fit the definition of a Galois connection, it is necessary to make explicit
the implicit coercion from integers to real numbers in the left side of this equation.
Specifically, we have, for all real numbers x and integers m,

x <grealm = [x] <zm

where real denotes the function that “coerces” an integer to a real, and <g and <z
denote the (homogeneous) at-most relations on, respectively, real numbers and integers.
If, however, we consider the symbol “<” on the left side of the equation to denote the
heterogeneous at-most relation of type R~ Z, the fact that

x<m = [x] <zm

gives a representation of the (heterogeneous) “<” relation of type R~Z as a block-
ordered relation: referring to definition 225, the provisional ordering is <z, f is the
ceiling function and ¢ is the identity function.

More interesting is if we take the contrapositive. We have, for all real numbers x and
integers m,

m<x = m<|[x]-1

On the right of this equation is the (homogeneous) at-most relation on integers. On the
left is the (heterogeneous) less-than relation of type Z ~R. The equation demonstrates
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that this relation is block-ordered; the “blocks” of real numbers being all the numbers
that have the same ceiling. (The functional f is the identity function, the functional g
maps real number x to [x]—1 and the provisional ordering is the ordering <z.) The
example is interesting because we show in theorem 319 that the (homogeneous) less-than
relation on real numbers is not block-ordered.

O

Returning to the discussion immediately preceding example 242, the two separate
questions are each of interest in their own right: a positive answer to either question
may predict that a given relation has a block-ordering of a specific form: in the case
of the first question, where the functional g in definition 225 is the identity function,
and, in the case of the second question, where the functional f in definition 225 is the
identity function. In both cases, a further step is to check the requirement on f and g:
in the first case, one has to check that the function F is surjective and in the second case
that the function G is surjective. (A Galois connection is said to be “perfect” if both F
and G are surjective.) For example, the fact that

x<m = x <grealm

does not define a block-ordering because the function real is not surjective.

The relevant theory predicting exactly when the first of the two questions has a
positive answer is as follows. Suppose (B,C) is a complete poset. Let M denote the
infimum operator for B and suppose p is a predicate on B. Then we define wnf-
preserving by

(245) p is inf-preserving = (Vg : p.(Ng) = (Vx = p.(g.x))) .

So, for a given a, the predicate (b:: (a,b)€R) is inf-preserving equivales
(Vg = (a,MNg)eR = (¥x: (a, g.x)ER)) .

Then we have:

Theorem 246 Suppose A is a set and (B,C) is a complete poset. Suppose RC AxB
is a relation between the two sets. Define F by

(247) Fa = (b : (a,b)eR :b)
Then the following two statements are equivalent.
e (Va,b : acAADbeEB : (a,b)eR = FalCb).

e For all a, the predicate (b: (a,b)€R) is inf-preserving.
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The answer to the second question is, of course, obtained by formulating the dual of
theorem 246.

In general, for most relations occurring in practical information systems the answer
to the pair-algebra questions will be negative: the required inf- and sup-preserving prop-
erties just do not hold. However, a common way to define a pair algebra is to extend a
given relation to a relation between sets in such a way that the infimum and supremum
preserving properties are automatically satisfied. Hartmanis and Stearns’ [HS64, HS66]
solution to the state assignment problem was to consider the lattice of partitions of a
given set; in so-called “concept analysis”, the technique is to extend a given relation to
a relation between rectangles. For more detail of the latter, see section 10.

An important property of Galois connections is the (well-known) theorem we call the
“unity of opposites”: if F and G are the adjoint functions in a Galois connection of the
posets (A,C) and (B,=), then there is an isomorphism between the posets (F.3, C)
and (G.A4,=). (F.B denotes the “image” of the function F, and similarly for G.A.)
Knowledge of the unity-of-opposites theorem suggests theorem 234, which expresses an
isomorphism between different representations of block-ordered relations.

9.2 Analogie Frappante

In this section, we relate block-orderings to diagonals. The main results are theorems 255
and 262. We have named theorem 262 the “analogie frappante” because it generalises
Riguet’s “analogie frappante” connecting “relation de Ferrers” to diagonals.

Lemma 248  Suppose T is a provisional ordering of type C~C. That is, suppose
TNT  CIe A T=(TNT)eTo(TNT) A ToTCT .

Suppose also that f and g are functional and onto the domain of T. That is, suppose®
that

fof”

f<« = TNT® = g< = gogU .
Let R denote f”oTog. Then
(249) R-=f- A R-=g- ,

(250) f“oT’og = R<o(R\R/R)”oR>, and

9The ordering T must be homogeneous but f and g may be heterogeneous and of different type, so
long as both have target C.
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(251) f'og = AR ,
(252) R<= (AR)< A R-=(AR)> ,
(253) R< = ARoAR” = f'of A R- = AR72AR = g og .

Proof Property (249) is a straightforward application of domain calculus:

R~
= { definition: R=1"0Tog }
(fU OTO g)>
= { domains (specifically, [ (UsV)>=(U>>V)>] and [ (U”)>=U<]) }
(f< oTo g)>
= { assumption: T = f<oTog< (so T="f<oT) }
(Teg)-
= { domains (specifically, [ (UeV)>=(U>oV)>]) }
(T> o g)>

= {  lemma 122 and assumption: TNT” =g« }
g .

By a symmetric argument, (f"oTog)<=f>.

Now we consider (250). The raison d’étre of (250) is that it expresses the left side as a
function of f"oTog. In a pointwise calculation a natural step is to use indirect ordering.
In a point-free calculation, this corresponds to using factors. That is, we exploit lemma
119:

foT 0 g
= { assumption: T is a provisional ordering
lemmas 116, 120 and 119 }

o (TATY) o TONTY /T o (TAT) o g

= { assumption: f<=TNT =g=< }
fPoT\T /T 0og

= { lemma 78 and assumption: T = f<oTog< }
foo(gieT ef)\(g"eT of) /(g eT of) o g

= { (249) and definition of R}
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R- o R“\R”/R" o R~
= { factors }

R<o(R\R/R)”oR> .

Note the use of lemma 78. The discovery of this lemma is driven by the goal of the
calculation.

The pointwise interpretation of f”og is a relation expressing equality between values
of f and g. This suggests that, in order to prove (251), we begin by exploiting the
anti-symmetry of T:

fog
= { f< = TNT’ = ¢g< and domains }
f7o(TNT )og
= { distributivity (valid because f and g are functional) }

f7oTog N 70T 0g
= { definition of R and (250) }
freTog N fo((fTeTeg)\(feTog)/(feTeg)) og-
= { (254) (see below) }
frofioTogeg- N ((fTeTog)\(feTog)/(feTeg))"
= { domains (specifically, f>of” =~ and gog>=g¢g) }
froTog N ((feTog)\(feTog)/(feTeg))"
= { definition of R and AR }
AR .

A crucial step in the above calculation is the use of the property
(2564) UNpeVeq = po(UNV)eq = polleq NV

for all relations U and V and coreflexive relations p and q. This is a frequently used
property of domain restriction.
The remaining equations (252) and (253) are straightforward. First

(AR)<
= { (251) }
(frog)=



160

= { domains and assumption: f<=g< }
f>

= { assumption: f< = TNT~ }
(TNT7)of)>

= { domains and converse }
(1o (TN T))-

= { lemma 122 and domains }
(fVoT)=

= { domains and assumption: g< =TNT"

and lemma 122 }
(f7oTog)< .

That is (AR)< = R<. The dual equation (AR)> = R> is immediate from the fact that
(AR)”=A(R") and properties of the domain operators. For the per domains, we have:

R~

= { R< = (AR)< and R> = (AR)> (above); lemma 190 }
(AR)=

= { AR is difunctional, theorem 160 (with R:=AR) }
AR AR”

= { lemma 248 and definition of AR}
froge(fiog)”

= { converse and f< = g< = gog~ }
foof .

Again, the dual equation is immediate.
O

Theorem 255  Suppose R=1f"oTog where f, g and T have the properties stated
in definition 225. Then the function R defined by

(256) R = (c:cCTNT : foTocoTog)
is a non-redundant, injective, polar covering of R, and the function D defined by

(257) D = (c:cCTNT : focog)
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is a definiens of R such that UD=AR. That is, a block-ordered relation has a non-
redundant, injective, polar covering such that the definiens of the covering is a covering
of the diagonal of R.

Proof The theorem is a consequence of lemma 248, theorem 222 and theorem 218.
Specifically, lemma 248 (in particular (253) and (252)) states that the conditions required
to apply theorem 222 are met with p instantiated to g. Thus,

R = (c:cCg=:Rog ocogoR\R)

is a non-redundant, injective polar covering of R. The definition of R is simplified as
follows. First,

goR\R
= { R=foTeg }
go(fTeTog)\(f eTog)
= { lemma 79 with R,S,f,g:=T,Teg,f,g }
geg oT\(Teg)
= { geg=9g- }
g<oT\(Teg) .

So, for all ¢ such that cCg-,

Rog”ocogoR\R
= { R covers R, s0 (Reg”ocogoR\R)>CR> ; R>-=g>
(in preparation for lemma 77) }
Rog”ocogeR\Rog>
= { R=1"0Tog and goR\R = g<oT\(Teg) (see above) }
foTogog ocog=oT\(Tog)og>
= { gog” = g<, assumption: ¢ Cg<, lemma 77 with R;f:=T,g }
f'oTocoT\Tog
= { T is a provisional ordering, TNT~ = g<,
lemma 118 }

f7oTocoTog .
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Since g< = TNT’ by assumption, we have established (256).
Theorem 222 defines the definiens of the covering as the indexed set D where

D = (c:cCg<:AReg ocogoR-) .
But, for all ¢ such that cCg-,
ARogUocogoR>
= {  (253)and (251) }
fuogogUoCogogUog
= { geg” = g<, assumption: ¢cCg=< }
fZocog .
Using the assumption that g< = TNT” once again, we have established (257). That
UD = f“og = AR follows from f’og = AR and the saturation axiom.

O
Lemma 248 has as immediate corollary that the converse of theorem 255 is invalid.

Corollary 258  There are relations that have a non-redundant polar covering but are
not block-ordered.

Proof Examples 223 and 224 are both examples of finite relations that have non-
redundant polar coverings. Example 223 has the property that (AR)<#R<; however,
(AR)>=R>. Example 224 has an empty diagonal; that is, (AR)<#R< (and (AR)>#R>).
So by (the converse of) lemma 248 (specifically, (252)), neither relation is block-ordered.
O

We now prove the converse of lemma 248.

Lemma 259 A relation R is block-ordered if R< = (AR)< and R> = (AR)-.

Proof Suppose R< = (AR)< and R> = (AR)>. Our task is to construct relations f, g
and T such that

R:onTog y
TAT"CIT A T=(TNT)To(TNT’) A TTCT and

fof' = f< = TNT = g< = gog

Since AR is difunctional, theorem 161 is the obvious place to start. Applying the
theorem, we can construct f and ¢ such that AR =1f"og and

AR:ong AN fofl = f< = gogU = g< .
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(The proof of theorem 161 gives several ways of doing this.) Using standard properties of
the domain operators together with the assumption that R< = (AR)< and R> = (AR)>,
it follows that

R<:f>/\R>:g>.

It remains to construct the provisional ordering T. The appropriate construction is
suggested by lemma 248, in particular (250). Specifically, we define T by the equation

(260) T = goR\R/Rof" .
The proof that R = f”oTog is by mutual inclusion. First note that
(261) foTog = ARoR\R/ReAR
since
onTog
- (260) )
f?ogoR\R/Rof”og
= { AR=fog }
ARoR\R/RcAR .
So
onTog
{ (261) and ARCR }
RoR\R/R-R

N

N

{ cancellation }

Also,
RC f'eTog
= { (281) }
R C ARoR\R/RoAR
= { per domains: (98) }
R<oRoR- C ARoR\R/RoAR
= { assumption: R< = (AR)< and R> = (AR)>, lemma 190 }



164

(AR)<oRs(AR)- C ARsR\R/RoAR
= { AR is difunctional, theorem 160 (with R:=AR) }
ARoAR”oRoAR“sAR C ARoR\R/RsAR
& { monotonicity }
AR“oRoAR” C R\R/R
& { AR” C R\R/R, monotonicity }
R\R/RoRsR\R/R C R\R/R
= { factors }
RoR\R/RoRoR\R/RoR C R
= { cancellation }

true .

Combining the two inclusions we conclude that indeed R =f"oTog.
We now establish the requirements on T. First,

TnT"
= { definition and converse }

goR\R/Rof” N fo(R\R/R)"og"

N

{ modular law }
fo(f ogoR\R/Rof’og N (R\R/R)")og"
- { AR=1f"eg }
fo(ARoR\R/RoAR N (R\R/R)”)og"

N

{ AR CR, monotonicity and cancellation }
fo(R N (R\R/R)")og"
= { AR =R N (R\R/R)” }
foARog"”
= { AR =f"og }
fofuogogU
= { fofU:f<:gogU:g< }
f< .

Thus TNT" C f<. So TNT” C I. Now
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f<CTNT"

= { infima and f< is coreflexive }
f<CT

& { domains }
fof’ C T

& { definition of T and monotonicity }
f C goR\R/R

& { f< = gog”, domains and monotonicity }
g“of C R\R/R

= { fPog=AR }
AR” C R\R/R

= { AR = RN (R\R/R)", converse }

true .

So, by anti-symmetry we have established that TNT” = f<. Since also f<=g<, we
conclude from the definition of T and properties of domains that

T = (TﬂT“)oTo(TﬂT“) )
The final task is to show that T is transitive:

ToT
= { definition }
goR\R/RofsgoR\R/Rof"
= {  AR=feg }
goR\R/RoAR6R\R/Rof"
{ ARCR }
goR\R/RoRoR\R/Rof
{ factors }
goR\R/Rof"
= { definition }

N

N
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O

It is interesting to reflect on the proof of lemma 259. The hardest part is to find
appropriate definitions of f, g and T such that R =f’oTog. The key to constructing
f and g is Riguet’s “analogie frappante” [Rig51] whereby he introduced the “différence”
—the diagonal AR— of the relation R. Expressing the diagonal in terms of factors as
we have done makes many parts of the calculations very straightforward. One much less
straightforward step is the use of lemma 190 in the proof that R C f"oTog. Note how
calculational needs drive the search for the lemma: in order to simplify the inclusion it
is necessary to expose the term R\R/R on the right side, and that is precisely what the
lemma enables.

We conclude with the theorem that we call the “analogie frappante”. It is not the
theorem that Riguet presented but we have chosen to give it this name in order to
recognise Riguet’s contribution.

Theorem 262 (Analogie Frappante) A relation R is block-ordered if and only if
R< = (AR)< and R> = (AR)-.

Proof Lemma 248 establishes “only-if” and lemma 259 establishes “if”.
O

Example 263 Recall that example 223 is of a relation R such that R< = (AR)<
but R- # (AR)>. Because of the simplicity of the example, it is possible to check,
by exhausting all possible assignments to f and g, that the relation is not block-
ordered. For suppose, on the contrary, that R = f"oTog, where f, T and ¢ satisfy
the conditions for a block-ordering. Then it must be the case that g.A#g.B (since
(ReA)<# (RoB)<). But also it must be the case that f.c, f. and f.y are distinct (be-
cause, eg., (xoR)>#(poR)>). This has the consequence that f<+#g<. But, by defining
f.ox=x, f.p=y, f.y=z, gA=x, g.B=z and yCx and yCz, it is the case that
R=1f"0Cog. We say that the relation has an “imperfect” block-ordering. See section
10.

O

Example 264 A generic way to construct examples of relations that are not block-
ordered is to exploit example 187. In order to avoid unnecessary repetition, we refer the
reader to that example for the definition of the relation in given a finite set A and a
set S of subsets of A".

(Example 263 is a slightly disguised instance of the generic construction: the nodes
A and B can be identified with, respectively, {«,} and {B,y}.)

Recall that the diagonal Ain of type X'~S is injective. It follows that the size of
(Ain)< is at most the size of S. If, however, the set S has X' as one of its elements, the
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size of in< equals the size of X'. Theorem 262 thus predicts that, if A is an element of
S, a necessary condition for in to be block-ordered is that the sizes of X and S must
be equal; conversely, if A is an element of S, in is not block-ordered if the sizes of X
and S are different.

Fig. 6 (example 187) shows that, even if the sizes of X and S are equal, the relation
in may not be block-ordered: as remarked then, for the choice of § shown in fig. 6, in<
and (Ain)< are different since 0 and 3 are elements of the former but not the latter.

It is straightforward to construct instances of X and S such that the relation in is
block-ordered. It suffices to ensure that three conditions are satisfied: X" is an element of
S, the sizes of X and S are equal, and, for each x in X', the set of sets represented by
(xein)> is totally ordered. Fig. 13 is one such. Referring to definition 225, the functional
f is Ain~ (depicted by rectangles) and the functional g is Is; the ordering relation is
the subset relation in\in (depicted by the directed graph).

Q

{0} {3} @

Figure 13: A Block-Ordered Membership Relation

The following theorem is a corollary of theorem 207. In combination with theorem
262 it states that a relation is block-ordered iff its core is block-ordered. Testing whether
or not a given relation is block-ordered can thus be decomposed into computing the core
of the relation and then testing whether or not that is block-ordered.

Theorem 265  Suppose R is an arbitrary relation. Then
R< = (AR)< = [R]< = (AR|)< .
Dually,

R- = (AR)-

Rl = (ARR)- .
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Proof Suppose R, A and p are as in definition 191. Then

Rl = (A[R])<

= { definition 191 and theorem 207 }
(AeRep)< = (Ao ARep")-

= { Leibniz }
(Ao (AoRop”)<)< = (A% (Ao AR p”)<)-

= { domains }
(A”oAeRep”)c = (A”eAoARop")<

— { A"oAoR = R<oR = R,

(p”)< = (p”op)< = (R-)< = R>, and domains }

R< = (A”oAeARsp")-

= { (p”)< = (p”op)< and domains }
R< = (A”oAoARop”op)=

= { theorem 207 }
R< = ()\UOA|R|op)<

= { theorem 207 }

R< = (AR)< .
Similarly,
R< = (AR)<

= { definition 191, theorem 207 and Leibniz }
(A"e[Rlep)< = (A" AR|ep)<

= { Leibniz and domains }
(AeA"e[Rlep)< = (AeA"cAlR|op)<

= { p< = (pop”)< and domains }
(AeA"eRlepop”)< = (AcA"e AR[opep”)<

= { theorem 207 (applied twice) }
Rl- = (AIR)-

The property

R- = (AR)< = [Rl- = (AR)-
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follows by mutual implication. The dual follows by instantiating R to R” and applying
the properties of converse.
O

By combining the definition of block-ordering with theorem 207, it is immediately
clear that R is block-ordered if |R| is a provisional ordering. In general, a core of a
block-ordered relation will not be a provisional ordering. This is because the types of
the targets of the components A and p in the definition of a core are not required to
be the same; on the other hand, orderings are required to be homogeneous relations.
However by carefully restricting the choice of core, it is possible to construct a core that
is indeed a provisional ordering.

Theorem 266  Suppose R is an arbitrary relation. Then if R is block-ordered it has
a core that is a provisional ordering.

Proof Suppose R is block-ordered. That is, suppose that f, g and T are relations
such that T is a provisional ordering,

R frmnd fUOTog
and

fof”

f<« = TNT = g< = gog .

Then, by lemma 248, R< = f~of and, R- = g og. Thus f and g satisfy the conditions
for defining [R|. (See definition 191.) Consequently,

R

= { definition 191 }
foRogU

= { R=foTeg }
foonTogogU

= { fof” = f< = TNT” = g< = gog~ }
(TATH)oTo(TNT)

= { T is a provisional ordering, lemma 122 and domains }
T .

We conclude that [R| is the provisional ordering T.
O

Combining theorem 266 with theorem 194, we conclude that any core of a block-
ordered relation is isomorphic to a provisional ordering. Loosely speaking, block-ordered
relations are provisional orderings up to isomorphism and reduction to the core.
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Example 267 From the Galois connection, for all reals x and integers m,
[x]<m = x<m

defining the ceiling function, we deduce that the heterogeneous relation g<z has core
the provisional ordering <z. This is because the ceiling function is surjective. Its core
in not the ordering <gr because the coercion real from integers to reals is not surjective.
(See also example 244.)

On the other hand, if a Galois connection

FbCa=b=<G.a

of posets (A,C) and (B,=) is “perfect” (i.e. both F and G are surjective), both the
orderings T and = are cores of the defined heterogeneous relation. That the orderings
are isomorphic is an instance of the unity-of-opposites theorem [Bac02].

O
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10 Imperfect Block-Orderings

Following definition 225 we remarked that the condition on the functional relations f
and g in a block-ordering is very strict. Later we remarked that a Galois connection
satisfies the condition if it is so-called “perfect”. (See the discussion following example
244 and also example 267.) In this section we study what might be called “(possibly)
imperfect” block-orderings. The results presented here are used later to show that finite
“staircase relations” are indeed block-ordered.

Some of the results presented in this section are inspired by what has been called
“concept analysis” (the English translation of the German “Begriffenanalyse”). “Concept
analysis” was briefly mentioned in section 9.1 as an example of how Hartmanis and
Stearns’ theory of pair algebras leads to the identification of Galois connections. As
we shall see, the fundamental notion in “concept analysis” is closely related to Riguet’s
polar coverings.

Aside The research presented here was undertaken under the restrictions of the
coronavirus pandemic an unfortunate consequence of which has been that access to
library facilities has been impossible. This means that I have not been able to investigate
the original (or, indeed, subsequent) literature in order to determine to what extent the
relationship between Riguet’s work and “concept analysis” is already known. The sole
source of my knowedge of “concept analysis” is the text by Davey and Priestley [DP90,
chapter 11]. End of Aside

10.1 Grips

Suppose R is a relation of type A~B and suppose U is a rectangle such that UCR.
Then, because U=U-TToU (by definition of a rectangle), we have

(268) (U CR/(TTsU)) = (UCR) = (UC (UTT)\R) .

The equality between the outer two terms immediately suggests the identification of a
Galois connection, which possibility we now explore.
It is easy to check that, for all relations R and S,

R/(TTsS) = R/(TTeS)oTT .

(For completeness, the proof is given in section 10.2.) That is, R/(TTS) is a left condi-
tion!? for all relations R and S. Also, for all relations R and S,

(SeTTI\R = TTo(SeTT)\R .

10Recall that a left condition is a relation R such that R=RoTT . Dually, a right condition is a relation
R such that R=TTToR.
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That is, (SeTT)\R is a right condition for all relations R and S.
Returning to (268), we recognise the equality between the outer two terms as an
instance of the equality, for all X and Y such that X = R<oXoTT and Y = TToYoR>,

(269) XCR/Y = X\RDY .

The relation R<oXoTT 1is a left condition representing a subset of the left domain of
R, and the relation TT oYoR> is a right condition representing a subset of the right
domain of R. Conversely, if U is such that UCR, UeTT = R<o(UeTT)oTT and
TToll = TTo(TToU)oR>. Thus the equality between the outer two terms of (268) is
the Galois connection (269) between the (left condition representation of the) subsets of
the left domain of R and the (right condition representation of the) subsets of the right
domain of R, where in one case the ordering relation is the subset relation and in the
other case the ordering relation is the superset relation.

One of the most important characteristics of a Galois connection is the theorem
that we have dubbed the unity-of-opposites theorem [Bac02] and which we have already
mentioned several times. Specifically, if

FbCa=b=<G.a
is a Galois connection of posets (\A,C) and (B, =), elements a and b are opposites if
Fb=a A b=G.a .

The unity-of-opposites theorem states that opposites form isomorphic sub-posets of
(A,C) and (B, <) and, moreover, completeness properties of A and/or B are inherited
by these sub-posets.

Guided by (268), it is convenient to package two “opposites” into one rectangle. Such
rectangles we call “grips”:

Definition 270 (Grip) A rectangle U is said to be a grip of relation R if

UoTT = R/(TToU) A TToll = (UsTT)\R .

The word “grip” is an abbreviation of the Dutch word “begrip” which has the same
meaning as the German word “Begriff”. One meaning of the word “grip” in both Dutch
and English is “handle”; the same is true of the German word “Griff”. In American-
English, the word “grip” also means “bag” or “holder”. Thus our notion of a “grip” is
a “handle” or “holder” for two opposites in the Galois connection defined by (269).

We have chosen to introduce new terminology partly in order to emphasise a subtle
but important difference between our use of rectangles as holders of opposites and the
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way such holders are defined in “Begriffenanalyse”. In the field of “Begriffenanalyse”,
the opposites of a relation of type A~B are elements of 2* and 2% (the sets of subsets
of A and B) and a “Begriff” is a pair (U,V) where U and V are opposites of each
other. Typically, although not always, ()4 (the empty subset of A) and B are opposites,
as are A and (p (the empty subset of B). In such cases, (05, B) and (A, () are by
definition “Begriffen”. Our definition of a grip excludes this possibility because a grip
of a relation R is always a non-empty rectangle. (A disadvantage of our definition is
that greater care needs to be exercised when applying the unity-of-opposites theorem.
Fortunately this is not relevant here.)

Note how the subset ordering on the left side of (269) is flipped to become the superset
ordering on the right side. The “opposites” are thus “polar” opposites in the sense that
if U and V are grips of relation R then

UeTT g VoIT = TToU 2 TToV .

Example 271 Fig. 14 shows the grips of a relation of type {V,E,P,J,U}~{x,n,s,y,f,Im}.
The example is a simplification! of one presented by Davey and Priestley [DP90, table
11.1 and figure 11.1].

The grips are depicted by (larger black) rectangles, the left domain of each rectangle
being formed by the set of upper-case letters listed vertically and the right domain of
each rectangle being formed by the set of lower-case letters listed horizontally. The
graph structure anticipates results presented in section 10.2, namely that the grips of a
relation form a polar covering. The significance of the blue and red squares is explained
in example 285. For the moment, it suffices to note that there is no least and no greatest
grip whereas the relation does have a least and greatest “Begriff”, the least “Begriff”
having the empty set as its left component and the greatest “Begriff” having the empty
set as its right component.

O

10.2 Polar Covering and Properties

In this section we show that the set of grips of a relation R is a polar covering of R. (See
definition 209.) Simultaneously we show that the grips of a relation define a “(possibly)
imperfect” block-ordering of the relation.

11The upper-case letters V, E, etc. stand for planets: Venus, Earth, etc. The lower-case letters stand
for attributes of the planets: for example, y stands for “has a moon” whilst x stands for “does not have a
moon”. The simplification that has been made is to reduce the relation presented by Davey and Priestley
to its core. The letter V, for example, represents the equivalence class {Venus,Mercury} in Davey and
Priestley’s presentation.
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Figure 14: Grips

An important insight is that the polar coverings indexed by points in the left and
right domain of a given relation that formed the basis of theorem 211 define a subset
of the grips of the relation. It is this subset that defines the “(possibly) imperfect”
block-ordering; it also enables one to construct the diagonal of the relation.

We begin with a couple of lemmas that are needed later.

Lemma 272 For all R and S of the same type,
R/(TTeS) = R/(TTeS)oTT .
Proof
R/(TTeS) = R/(TTeS)oTT
= { anti-symmetry of the subset relation
assumption: R and S have the same type, so ICTT }
R/(TTeS) D R/(TTeS)eTT
= { factors }
R DO R/(TTeS)eTToTToS
{ by cone rule, TToTT =TT }
R D R/(TTeS)eTTeS

= { cancellation }
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true .
O

Lemma 273  For all relations R and all points b (of appropriate type),
R/(TTeb) = RoboTT .

Proof The proof is by indirect equality. Suppose U is a left condition (i.e. U=U-TT ).
Then

UeTTob C R

= { b is coreflexive, so b=Dbob; monotonicity }
UoTToboTT C RoboTT

= { b# 1L, cone rule }

UoTT C RoboTT
= | [cTr 1}
U C RoboTT
= { monotonicity }

UoTTob C RoboTTob
= { b is a point, so beTTob=b }
UoTTob C Rob
= { b is coreflexive, i.e. bCI }
UeTTob C R .
We have thus shown (by mutual implication) that, for all left conditions U,
UeTTob C R = U C Rebo 1T .
But UeTTob C R = U C R/(TTeb). That is, for all left conditions U,
U C R/(TTeb) = U C RoboTT .

The lemma follows by applying lemma 272 and the rule of indirect equality.
O

We now turn to the proof that the grips of a relation form a polar covering of the
relation.

Lemma 274  For all relations R and all rectangles U of the same type as R, if U is
a grip of R then UCR.
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Proof Suppose U is a grip of R. Then

u
= { U is a rectangle, definition 123 }
UoTToU
= { definition 270 }
R/(TToU)oU
= { lemma 272 }
R/(TToW)oTToU
- { cancellation }
R .

O

Lemma 275  Suppose U and V are grips of R. Then
u<g\/< = U>:_)V> .

= { condition-coreflexive isomorphism  }
UeTT C VoTT
= { U and V are grips of R, definition 270 and Leibniz }
R/(TTeU) C R/(TToV)
& { factors }
TTolU D TTeV
= { condition-coreflexive isomorphism  }
Uu-oVvV- .
That is, U<C V<& U>-D V> for all grips U and V of R.
Dually, U>C V> & U<D V<. Since the latter property holds for all grips U and V of
R, we can interchange U and V toget V-CU> & V<D U< . Thatis, U>DV> & U<C V-

for all grips U and V of R.
Combining the two implications, we conclude that, for all grips U and V of R,

u<g\/< = U>:_)V> .
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O

Lemma 275 is the first step in showing that the grips satisfy definition 209 of a polar
covering. Specifically, the lemma allows us to introduce an ordering on grips as per the
definition. For future reference, here is the definition.

Definition 276  Suppose U and V are grips of a relation R. Then we define the
relation C by

UCV = U<CV-< .
Equivalently (in view of lemma 275)

UCV = uU-2V- .
O

Lemma 277  The relation T of definition 276 is a provisional ordering of grips.

Proof That C is reflexive and transitivity is a straightforward conseqgence of the reflex-
ivity and transitivity of the subset relation. That it is anti-symmetric is a consequence
of the fact that grips are rectangles, lemma 275 and lemma 125.
O

Theorem 211 showed how to construct a polar covering of a given relation R, in-
dexed by points b in R>. Dually, one can construct a polar covering of R indexed by
points a in R<. The elements of these two coverings are particularly special grips of
R. Specifically —see lemma 279— comparing the grip with index a with the grip with
index b enables the determination of whether or not a and b are related by R.

First, we show that both coverings define grips.

Lemma 278 For all relations R and all points b such that b CR>, the rectangle
RoboR\R is a grip of R. Dually, for all relations R and all points a such that a CR<,
the rectangle R/ReaoR is a grip of R.

Proof Assume that b is a point such that b CR>. Then
R/(TToRoboR\R)
= { [ TToR = TToR> ]; assumption: bCR>,s0 R=cb=Db }
R/(TT oboR\R)
= { factors, specifically [ R/(SeT)=(R/T)/S] }
(R/(R\R))/(TTeD)
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= { factors, specifically (29) }
R/(TTeb)
= { assumption: b is a point; lemma 273 }
Robo TT
= [ (RWR-=I )
RoboR\RoTT .
Also

(RoboR\RoTT)\R
= { R\RDI, so (R\R)>=1 }
(RoboTT)\R
= { factors, specifically [ (SeT)\R=T\(S\R) | with R,S;T := R,R,boTT }
(boTT)\(R\R)
= { dual of lemma 273 with R:=R\R }
TToboR\R
- { [ TToR = TToR> ]; assumption: bCR>,s0 R=cb=b }
TToRoboR\R .
Combining the two calculations, we have shown that RoboR\R satisfies the condition
on U in definition 270.
O

Now we show how to use the two polar coverings to determine whether or not points
are related. Recalling definition 276 of the ordering T on grips, we have:

Lemma 279  For all relations R and all points a and b such that a CR<,

(280) acTTeb CR = R/RoacR L RoboR\R .
That is,
(281) aoTTob CR = (R/Roa)< C (Reb)< .

Dually, for all relations R and all points a and b such that bCR>,
(282) acTTob CR = (boR\R)> C (a<R)> .

Proof We begin by proving (281) by mutual implication. Note that, by lemma 58, the
left side of (281) is equivalent to a C (Reb)<. This fact is exploited below.



179

(R/Rea)- C (Rob)-

= { ICR/R, monotonicity and transitivity }
a C (Reb)=

= { monotonicity }
(R/Req) C (R/R(Reb)<)-

= { domains }
(R/Rea)< C (R/ReRob)-

= { cancellation: (28) }
(R/Rea)< C (Reb)=< .

Applying lemma 58, we have proved (281). Property (280) now follows easily:

R/RoaoR = RoboR\R

= { definition 276 of C  }
(R/RoasR)< C (RoboR\R)<

= { domains and assumption: aCR< ; (R\R)<=1 }
(R/Roa)- C (Rob)-

= { (281) and lemma 58 }
aclTeb C R .

|

Theorem 283 For all relations R, the set of grips of R is a polar covering of R. That
is,

R = (UU : grip.U.R : W)

where the grips of R are ordered by the relation T introduced in definition 276. More-
over,

R = foCog

where the functional f mapping points a in R< to grips of R is defined by
f.a = R/RoaoR |

the functional g mapping points b in R> to grips of R is defined by

g.b = RoboR\R .
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Proof We have

(ua @ grip.U.R : U)

) { lemma 278 and monotonicity }
(Ub : bCR- : RoboR\R)

= { theorem 211 }

D) { lemma 274 }
(uua - grip.W.R @ U)

Thus, by anti-symmetry of the subset relation, , R = (UU : grip.LL.R : U).

That R = f’oCog is immediate from lemma 279 and the definition of function
application (as discussed in section 3.5).
O

Note that theorem 283 does not prove that every relation is block-ordered: the
functionals f and g are not surjective onto the domain of the provisional ordering as
required by definition 225. The equation

R = fu o E o g
in theorem 283 expresses a (possibly) imperfect block-ordering of R.

Example 284  As discussed in example 213, fig. 8 (page 134) shows a relation R of
type {A,B,C}~{a,B,y,0} and fig. 9 (page 135) shows the (reflexive-transitive reduction
of the) provisional ordering defined by theorem 211 .

Recall that the four relations depicted in fig. 9 are rectangles of the same type as R.
These four rectangles are the values of the functional relation g. Specifically, the topmost
rectangle depicts the relation g.6, the middle-left rectangle depicts g.«, the middle-right
rectangle depicts g.y and the bottom rectangle depicts g.3. This is indicated by the
small red squares.

The bottom three rectangles are also the values of the functional relation f. Specif-
ically, the bottom-most rectangle depicts the relation f.B, the middle-left rectangle
depicts f.A and the middle-right rectangle depicts f.C. This is indicated by the small
blue squares.

The provisional ordering T on the rectangles is depicted by the brown arrowed edges.
We leave the reader to check that R=f"oCog.

These four rectangles are the only grips of the relation. (This is not generally the
case.) The ordering shown is thus also the ordering of grips introduced in definition 276.
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Note that we have not constructed a block-ordering of the relation R because f< # g-<.
(That is, f is not surjective.) The diagonal AR is the relation depicted by the three
edges that connect red and blue squares. (Theorem 292 establishes that this is a general
property of the diagonal.) Thus it is the case that R< # (AR)< but R> = (AR)-.

]

Several lemmas and theorems we present (including theorem 283 and lemma 279)
require points a and b to be elements of the left and right domain, respectively, of the
relation R. This is very important to note since many authors assume, often without
mention, that relations are “total”, i.e. that their source and targets equal their right
and left domains.

Assuming this requirement is met, for finite relations whether or not points are related
can be determined by a graph searching algorithm. The nodes of the graph are the grips
of the relation and the edges of the graph are defined by the reflexive-transitive reduction
of the polar ordering of grips. (Borrowing terminology from ordered-set theory, the graph
might sometimes be called the “Hasse diagram” of the polar ordering of grips.) Example
285 provides further explanation.

Example 285  As explained in example 271, the black rectangles in fig. 14 depict the
grips of a relation; the edges connecting these rectangles depict the polar ordering on
the grips in a way that should be self-explanatory. The collection of rectangles marked
by small blue squares depicts the polar covering of the relation indexed by elements of
its left domain, whilst the collection of rectangles marked by small red squares depicts
the polar covering of the relation indexed by elements of its right domain; the squares
identify the point defining the enclosing rectangle. (Cf. lemma 278.) For example, the
bottom-left grip corresponds to V and to x.

Taken together, theorem 283 and lemma 279 state formally how the blue and red
squares enable one to calculate whether or not the corresponding points are related. The
blue squares depict a function f whose source is the left domain of the relation and whose
target is the set of grips; similarly, the red squares depict a function g whose source is
the right domain of the relation and whose target is also the set of grips. The ordering
C on grips is the reflexive-transitive closure G* of the graph G and the relation R is
f’oG*og. That is, for points a and b, acTTob CR iff there is a path in the graph G
from the grip enclosing the blue square labelled a to the grip enclosing the red square
labelled b. For example, V and y are not related by R because there is not a path from
the bottom-left grip to the topmost grip whereas E and y are related by R because
there is such a path.

As in example 284, the blue and red squares also enable the identification of the
diagonal of the relation. Specifically, consider the rectangles that have both a blue and
a red square; then the pairs of points identified by the squares form the diagonal of the
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relation. That is, the diagonal is the set of pairs {(V,x),(J,1),(U,m)}. (See theorem
292.)
]

The final task in this section is to formulate and prove the assertion mentioned in
examples 284 and 285 that the diagonal of a relation is determined by coincident blue
and red squares. The property we prove —see theorem 292— is, in fact, much stronger,
although difficult to put in words.

Lemma 286  Suppose R is an arbitrary relation. Suppose a and b are points such
that aoTTob C R. Then the following properties of a, b and R are all equivalent.

(287) (aR)> = (b°R\R)- ,

(288) (aR)- C (boR\R)- ,

(289) R/RoaoR = RoboR\R ,

(290) (Reb)< C (R/Rea)< .

(201) (R/Rea)- = (Reb)-

Proof The equivalence of (287), (288) and (289) is proved as follows.

(a:R)- = (boR\R)-
= { anti-symmetry of the subset relation }
(aR)> € (bR\R)> A (boR\R)- C (aR)-
= { assumption: asTTob CR (so aCR< and bCR>); (282) }
(aR)- C (boR\R)-
= { definition 276 of 2 and domains }
R/RoaoR I RoboR\R
= { assumption: aoTTob C R (so aCR< and bCR>);
(280) and anti-symmetry of C  }
R/RoaoR = RoboR\R .

The equivalence of (290) and (291) with (289) is the converse dual.
]
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Theorem 292  Suppose R is an arbitrary relation. Suppose a and b are points such
that acTTob C R. Then the following three properties of a, b and R are all equivalent.

(293) (Va' : a’©TTob CR : R/Rca’eR C R/RoacR)
(294) R/RoacR = RoboR\R ,
(205) (Vb’ : asTTeb’ C R : RoboR\R C Rob/oR\R) .

It follows that all three properties are also equivalent to the property

(296) a-TTob C AR .

Proof We prove the equivalence of (294) and (295) by mutual implication. The equiv-
alence of (293) and (294) is the converse-dual.

For the “if” part we exploit the fact that the two sides of the equation to be proved
are grips of R and the grips of R form a polar covering of R. Specifically, assuming a
and b are points such that a-TTob C R,

R/RoasR = RoboR\R
= { assumption: acTTeb C R (so bCR>) ; lemma 286 }
(aeR)> C (boR\R)>

= { saturation axiom: (16) }
(Vb’ : b'C(acR)> : b’ C (boR\R)>)
& { [ b’ C (b'oR\R)> ], transitivity of the subset relation }

(Vb" : 'C(acR)> : (b’2R\R)> C (boR\R)>)
= { lemma 58 }
(Vb" : aoTTeb’ CR : (b’oR\R)> C (boR\R)>) .
Also

R/RoacR = RoboR\R

= { assumption: aoTTeb C R, (so bCR>); lemma 286 }
(a:R)- = (boR\R)-

= { saturation axiom: (16) }
(Vb’ = b’C(aoR)> = b'C(boR\R)>)

= { weakening equivalence to implication and lemma 58 }
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(Vb’ 1 aeTTeb’ C R : b’ C(boR\R)>)
= { monotonicity }
(Vb’ ¢ aeTTeb’ C R : (b’oR\R)> C ((boR\R)>oR\R)>)
= { domains and R\ReR\R C R\R }
(Vb’ ¢ aeTTeb’ C R : (b’oR\R)> C (boR\R)>) .
Putting the two calculations together we have shown that (294) is equivalent to
(297) (Vb' : a°TTeb’ CR : (b'oR\R)> C (boR\R)>) .

That (297) is equivalent to (295) is an immediate consequence of the definition of C and
properties of the domain operator. (Take care with applying definition 276.)
The dual of (297) is

(298) (Va' : aoTTeb C R : (R/Roa’)< C (R/Reoa)<) .

That (298) is equivalent to (295) is also an immediate consequence of the definition of C
and properties of the domain operator. (Again, take care with applying definition 276.)
The proof of (296) is now straightforward:

boTToasR C R\R

= { b is a point so b=Dbob ; monotonicity }
boTToasR C boR\R

= { monotonicity and domains }
(awR)- C (boR\R)-

= { monotonicity and domains }
boTToasR C boTT oboR\R

= { b is a point so b=boTTob }
boTToasR C R\R .

So

acTob C AR
= { AR=RN(R\R/R) )}
aTTob CR A aoTTob C (R\R/R)”
= { assumption: aoTTob C R ; converse and factors }

boTToasR C R\R
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— { monotonicity and domains }
(aeR)> C (boR\R)-
- { lemma 286 }

R/ReaecR = RoboR\R .

O

Theorem 292 is difficult to express precisely in words. Informally (and very impre-
cisely), it characterises the diagonal AR of a relation R as the collection of rectangles
each of which is simultaneously the infimum of the grips indexed by points a in the left
domain of R and the supremum of the grips indexed by points b in the right domain of
R. Careful study of examples 284 and 271, as outlined below, will hopefully make this
clear. (Example 271 is not such a good example because the duality between left and
right domains is not evident.)

Example 299  We refer to example 284 (page 180). As remarked, the diagonal AR is
the collection of rectangles having both a blue and a red square.

Note carefully how the rectangles making up the diagonal AR are each the infima of a
subset of the ordered set of grips indexed by points in the left domain of R. For example
the rectangle defined by the pair (A, «) is the infimum of itself and the topmost rectangle;
these are the grips indexed by A. The same is true with “left” replaced by “right” and
“Infimum” replaced by “supremum”: the rectangle defined by the pair (A, «) is the
supremum of itself and the bottom-most rectangle, these being the rectangles indexed
by «.

O

Example 300 We return again to example 271, in particular fig. 14 on page 174.

As in example 284, the blue and red squares enable the identification of the diagonal of
the relation. Specifically, consider the rectangles that have both a blue and a red square;
then the pairs of points identified by the squares form the diagonal of the relation. That
is, the diagonal is the set of pairs {(V,x),(J,1),(U,m)}.

Note carefully how the rectangles making up the diagonal AR are each the infima of
the subset of the ordered set of grips indexed by points in the left domain of R. For
example the rectangle defined by the pair (V,x) is the infimum of the three rectangles
with the point V in their left domains. The same is true with “left” replaced by “right”
and “infimum” replaced by “supremum” but the sets of grips degenerates to a singleton
set.

O
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Example 301 Fig. 15 shows the grips of the converse!? in” of the membership relation
in defined in example 187. The blue and red squares have the same function as in
examples 299 and 300. As in those examples, the diagonal of the relation is identified
by the rectangles that have both a blue and a red square.

023}
013
{0,2}
{0,1}
013 0,23} 0,23}
0.1} 013} 0.2}
ol1] o[3] o[2]
01,3} {0.2.3}
013 023

Figure 15: Grips of a Membership Relation
]

10.3 Grips of Provisional Orderings

If grips are to be used to represent membership of a relation, a practical question is just
how many grips might a relation have (as a function of the sizes of its left and right
domains). Some insight into this question can be obtained by considering an interesting
special case: when the relation is a provisional ordering.

Suppose T is a provisional ordering and x is a point such that x C TNT"”. Then
ToxoT is a grip of T. Indeed, by lemma 118,

ToxoT\T = ToxoeT = T/ToxoT .

This raises the question whether every grip of T is of this form.
The answer is no and a very instructive counterexample is given by the provisional
at-most ordering on rational numbers, which we denote by <. For a given rational

12The converse in~ has been used simply because the figure would have been too wide if in had been
used.
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number q, the grip <qoqe<q is a rectangle that relates rational number p to rational
number r whenever p <q<r (using the conventional overloaded notation). An easily
proved property is that, for all rational numbers q and q’,

<q°qe<q = <q°q"°<q = q=¢'
so each grip of <q equals <qgoqe<q for at most one rational number q.

To see that not every grip of <q is of the form <goqe<q, consider all the rational
numbers p and r such that p? <2 <t? (again using the conventional overloaded nota-
tion). We leave it to the reader to check that the corresponding rectangle is a grip of
<q - However, it cannot be expressed in the form <qgeqe<qy for any rational number ¢
since, as is well-known, /2 is an irrational number.

The so-called “Dedekind-MacNeille completion” of the rationals Q defines R, the set
of real numbers, to be the grips of <q; in so doing, the rational number q is identified
with the grip <qoqe<q and the irrational numbers (such as \/2) are identified with the
grips that are different from <qgoqo<q for all rational numbers q.

We see from this example that the cardinality of the grips of a relation may be greater
than the cardinality of the relation. This suggests that the number of grips of a finite
relation may, in the worst case, be an exponential function of the size of the relation. If
so, representing a finite relation by the transitive-reflexive reduction of the polar ordering
of its grips and testing membership of the relation via a graph-searching algorithm may
not be practical. However, this is not something I have investigated.
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11 Staircase Relations

As mentioned immediately after its definition, the notion of a polar covering was intro-
duced by Riguet in connection with what he called “relations de Ferrers”. Riguet [Rig51]
states the following theorem:

Pour que R soit une relation de Ferrers, il faut et il suffit que R soit réunion
de rectangles dont les projections de méme nom sont totalement ordonnées
par inclusion et tels que si la premiere projection de I'un des rectangles est
contenue dans la premiére projection d’un autre rectangle, la seconde projec-
tion du second est contenue dans la seconde projection du premier.

(For those unable to read French, the theorem states a necessary and sufficient con-
dition for a relation to be “de Ferrers”. The formal statement and proof of the theorem
is given below: see theorem 334. The theorem clearly begs the question what is the
definition of a “relation de Ferrers”. We postpone answering this question until later.
The reason for doing so is that Riguet gives both a formal definition and a mental picture
—the picture shown in fig. 1 of what we call a “staircase relation”— but it is far from
obvious how Riguet’s definition and the mental picture are related.)

Riguet does not give a proof of the theorem. He also states that there is a striking
analogy (“analogie frappante”) between the definitions and properties of “relations de
Ferrers” and difunctional relations but leaves the analogy unclear. In this section, we
formalise the mental picture of a “staircase relation” (fig. 1) in several different but
equivalent ways, one of which is Riguet’s orginal definition. We then prove Riguet’s
theorem. This is quite straightforward. However, clarifying the “analogie frappante” is
more difficult. To this end, we formulate the notion of a “polar covering” of a staircase
relation and a “non-redundant” polar covering. We show how Riguet’s theorem predicts
that the less-than relation on real numbers has a polar covering but not a non-redundant
polar covering. The non-redundancy property is the vital link between difunctional
relations and (a proper subclass of) staircase relations. It is also the link between (a
proper subclass of) staircase relations and block-ordered relations.

11.1 Formal Definition

Let us now turn to the formalisation of the mental picture of a “staircase” relation.
Suppose the relation R of type A~B can be depicted as a “staircase”. Then, for any
element b of B, the set of elements a of A such that a and b are related by R is
depicted by the region where a vertical line drawn at the point that depicts b intersects
with the shaded area in the staircase depiction of R. See fig. 16. (Conversely, the set of
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elements b of B that are related to a given element a of A is depicted by drawing a
horizontal line at the point depicted by a.)

A

elementsof Arelatedto b

-

b B

Figure 16: Preordering Defined By a Staircase Relation

The characteristic property of a “staircase” is that such lines increase in length —of
course, not strictly— as one proceeds from the left to the right of the picture. But
“length” and “left” and “right” are features of pictures and not properties of relations.
A better characterisation that is not specific to drawing pictures is suggested by focusing
on the subset of A comprising elements related by R to a given element b of B. In
relation algebra, this is denoted by (Rob)< and the characteristic property of a “staircase”
is that, for any two elements b0 and bl of B, either (R-b0)< is a subset of (Rob1)< or,
vice-versa, (Rebl)< is a subset of (Rob0)<. In terms of the mental picture, b0 is to the
left or to the right of bl.

At this point, certain concepts central to relation algebra spring to mind. First, the
subset relation is an ordering relation. This immediately leads to the observation that
the relation S defined by

bO[S[bT = (Rob0)= C (Rob1)-

is a preorder. Then the “vice-versa” statement also looks familiar: it is the statement
that SUS" is total (i.e. equal to the universal relation).

Those familiar with factors will immediately spot a much better characterisation.
For any binary relation R, the relations R\R and R/R are preorders. That is, both are
transitive and reflexive. (If R has type A~B then R\R has type B~B and R/R has
type A~A.) If R is itself a preorder, then R=R\R=R/R=R\R/R. (Transitivity of R
is equivalent to R C R\R and reflexivity of R implies R\R C R; similarly for R/R.) This
fact underlies the use of the rule called indirect ordering.
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The pointwise formulation of the relation R\R is
bO[R\R]bT = (Va:a[R]b0: a[R]b1) .

That is R\R is the relation S defined above. This is the eureka moment in this pre-
liminary investigation: that relation R is a “staircase” relation means formally that the
preorder R\R is linear®®. (Later we show that this is equivalent to R/R being linear.)
For brevity, we denote this property by SC. That is:

Definition 302  The predicate SC on (binary) relations is defined by, for all R,

SCR = R\RU(R\R" = TT .

The boolean SC.R should be read as “R is a staircase relation”. This section is
thus about the properties of R\R, for arbitrary relation R, when R\R is linear. The
properties we investigate are driven by the need to provide further justification for the
“correctness” of the formal definition with respect to the informal mental picture of such
a relation.

Inevitably, we sometimes need to exploit pointwise definitions of “staircase” relations.
Such a definition is formulated in lemma 303. Informally, the lemma states that there
is a linear ordering on the depths of the “stairs” of a “staircase” relation. (Later we see
that this is equivalent to there being a linear ordering on the heights of the “stairs”.)

Lemma 303 The property SC.R is equivalent to:

(Vb,b' : bCR> ADB'CR>: (Rob)< C (Reb’)< V (Rob’)< C (Rob)<)
(Dummies b and b’ range over points of the appropriate type.)
Proof

SC.R

= { definition 302 }
R\RU(R\R)V = TT

= { saturation axiom: (16) }
(Vb,b’ :: beTTob’ C R\RU(R\R)")

= { boTTob’ is an (irreducible) atom, and converse }

13An ordering S —of any sort— is said to be linear if SUS” = TI' . Sometimes the word “total” is
used instead of linear. For example, Riguet [Righ1] uses the term “totalement ordonnées”.
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(Vb,b’ = boTTob’ C R\R V b’eTTob C R\R)
= { lemma 60 }
(Yb,b’ = (Reb)< C (Rob’)= /' (Reb’)< C (Rob)<)
= { b and b’ are points;
hence, (bCR>AD'CR>) V (Reb)<=1L V (Reb')<=_1L
case analysis (further details omitted) }
(Yb,b" : bCR> A b’ CR> : (Reb)< C (Reb’)< V (Rob’)=< C (Reb)<) .

O

The final step in the proof of lemma 303 restricts the range of the dummies b and
b’. This is an indication that our definition of SC demands refinement: the relation
R\R typically includes irrelevant information. We return to this topic in section 11.6.

11.2 Equivalent Formulations

Lemma 34 enables a simple proof that linearity of R\R is equivalent to linearity of R/R.
Specifically:

Lemma 304  The following are all equivalent formulations of SC.R:
(305) R\RU (R\R)” = TT ,

(306) R/RU (R/R)” = TT ,

(307) RU (R\R/R)” = TT ,

(308) Ro—R”oR C R .

Proof We prove first that (306) and (308) are equivalent:

Ro—R“sR C R
= { factors }
Ro—R” C R/R
— { complements }
TT C R/RU—(Ro—R")
= { (38) with R,S:=R”,R” (and R=(R")") }
TT C R/R U R“\R
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= { (35) with R,S:=R,R }
T C R/RU (R/R)"
= { [SCTT] with S:=R/RU (R/R)” and anti-symmetry }
T = R/RU (R/R)" .
A symmetric argument establishes the equivalence of (305) and (308):
Ro—R“oR C R
= { factors }
—R“sR C R\R
= { complements }
TT C R\RU —(—R"<R)
= { (38)with S,T:=R",R" }
TT C R\R URY/R"
= { (36) with R,S:=R,R (and R=(R")") }
TT C R\RU (R\R)"
= { [SCTT] with S:=R\RU (R\R)” and anti-symmetry }
TT = R\RU (R\R)" .
Finally,
Ro—R“oR C R
= { factors }
—R" C R\R/R
= { converse and complements  }
TT C RU (R\R/R)"
= { [SCTT] with S:=RU (R\R/R)” and anti-symmetry }
TT = RU (R\R/R)" .
O
Note that, in lemma 304, the symbol “ TT ” denoting the universal relation is over-
loaded: if R has type A~B, its occurrence in (305) has type B~B, its occurrence in

(306) has type A~A and its occurrence in (307) has type A~B. This means that any
attempt to prove, for example, that

R U (R\R/R)” = R/R U (R/R)"
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is doomed to fail. One might conjecture that it is possible to establish the equivalence of
(305) and (306) without introducing complements by showing that both are equivalent
to (307). However, the use of (308) is inevitable because of the algebraic properties of
set union: when a set union is on the greater side of a set inclusion, there is no other
choice but to introduce set negation.

11.3 General Constructions

Two general methods for identifying examples of staircase relations are given in lemmas
309 and 310.

Lemma 309 A linear preorder is a staircase relation. That is, for all (homogeneous)
R,

SCR & RoRCR A ICR A RUR =TT .
Proof We have
R=R\R/R & RoRCR A ICR
since
R C R\R/R
= { factors }
RoRoR C R
& { monontonicity and transitivity }
Ro-RCR
and
R\R/R C R
= { [R=I\R/TI] }
R\R/R C I\R/I
& { (anti)monotonicity }
ICR .
Also,
R"oR"CR” A ICR® = RoRCR A ICR .

(The converse of a preorder is a preorder.) So
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SC.R
= { lemma 304, in particular (307) }
RU (R\R/R)® = TT
= { assumption: R is a preorder
(hence, R” is a preorder and R” = R”\R”/R")
lemma 34, in particular (37) }
RURY = TT
= { assumption: R is linear (i.e. RUR" =TT) }
true .

O

An example of a staircase relation predicted by lemma 309 is the at-most relation —
on natural numbers, integers, rational numbers or reals.

The second way of constructing a staircase relation is to reduce a linear preorder by
eliminating its reflexive part (making it so-called “strict”). For example, the less-than
relation (on natural numbers, integers, rational numbers or reals) is a staircase relation.
(Lemma 311 is an alternative way of establishing that the less-than relation is a staircase
relation. See example 315.) Formally, we have:

Lemma 310 For all (homogeneous) R,
SC.R & ReRCR A RUIUR =TT .
Proof

SC.R
— (@) )
RU (R\R/R)” = TT
= { [XCTT] and antisymmetry }
TT C RU (R\R/R)"
& { assumption: RUIUR” =TT, so0 TT C RUIUR"
monotonicity and transitivity }
TURY C (R\R/R)"
= { converse, factors and distributivity }

RoIcRURSReR C R
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= { supremum and monotonicity }
RoR C R

= { assumption }
true .

O

11.4 Invariant Properties

In this section, we prove that the class of linear preorders characterised by the predicate
SC is invariant under a variety of operators. Lemma 311 is supported by the mental

picture shown in fig. 17.

(a) Staircase (b) Converse (c) Complement

Figure 17: Staircase Invariants

Lemma 311 For all R,
SCR = SC.-R = SC.R" .

(As always, equality is used conjunctionally.)

Proof
SC.R
= { definition 302 }
R\RU(R\R)” = TT
= { corollary 39 }
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—~R\—=R U (-R\—R)” = TT

= { definition 302 }
SC.—R .
Also,
SC.R
= { definition 302 }
R\RU(R\R)” = TT
= { lemma 304 (in particular (308)) }
Ro—R“oR C R
= { properties of converse }
R”"o—RoR” C R”
= { lemma 304 (in particular (308)) with R:=R” }
SC.R"” .
O
Lemma 312  The functions (R:R\R) and (R:R/R) are closure operators. That is

(RARN(R\R) = R\R A~ (R/R)/(R/R) = R/R .

Proof This is a straightforward application of standard properties of factors:

(R\R)\(R\R)
= { [ R\(S\T)=(SeR)\T ] with R,S,T:=R,R,R }
(ReR\R)\R
= { (28): [ Re.R\R=R ] }
R\R .
The second equation is proved in the same way.
O
Lemma 313  For all R,

SC.R =

SC.(R\R) = SC.(R/R) .

Proof Straightforward application of definition 302 and lemma 312.

O
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Lemma 314 Forall S, R and T (of appropriate type),

SC.(SeReT) <« SC.R .

Proof

SC.(SeReT)
= { lemma 304, in particular (308) with R:=SoRoT }
SoRoTo—(SoReT)"0oSoRoT C SoRoT
{ monotonicity of composition }
RoTo—(SoReT)”0SoR C R
= { middle-exchange rule (and double negation) }
(RoT)” o =R o (SoR)” C  (SoRoT)”
= { converse |}
T'oRY6—RoR“6SY C TYoRYoSY
& { monotonicity of composition }
R"o—RoR” C R"
= { R=(R")” and lemma 304 with R:=R” }
SC.R”
= { lemma 311 }
SC.R .
O

Example 315 The above properties allow us to identify a number of examples of
staircase relations that prove to be significant later.

The at-most relation (commonly denoted by the symbol “<”) is a linear ordering
relation — on the integers, on the rationals and on the real numbers. By lemma 309 all
three relations are staircase relations. By applying lemma 311 it is thus the case that
the greater-than relation (commonly denoted by “>"), the less-than relation (commonly
denoted by the symbol “<”) and the at-least relation (commonly denoted by the symbol
“>7) are all staircase relations — again, on the integers, on the rationals and on the
real numbers. This is because the greater-than relation is the complement of the at-most
relation, the less-than relation is the converse of the greater-than relation, and, in turn,
the at-least relation is the complement of the less-than relation.
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Note that the less-than relation is not a preorder. (It is transitive but not reflexive.)
Thus it is an example of a relation R such that R#R\R (and R# R/R) but is nevertheless
a staircase relation according to definition 302.

The reader is invited to picture the less-than relation on the integers as a “staircase”.
Picturing the less-than relation on the rational numbers (or on the real numbers) as
a “staircase” is, however, more difficult — in fact impossible in a formal sense to be
made precise later. This raises doubts as to whether definition 302 is the appropriate
abstraction from the mental picture of a “staircase”.

O

We conclude this section with a property due to Riguet [Rig51]. (See the discussion
following the lemma.)

Lemma 316  For all R, the relation R\R/R is a staircase relation if R is a staircase
relation.

Proof For brevity, let S denote R\R/R. Then

SC.S
= { lemma 304 }
So=§".S C S

= { lemma 32 and definition of S}
R\R/RoRo—R“oRoR\R/R C R\R/R

= { definition of factors }
RoR\R/RoRo—RYoRoR\R/RoR C R

& { cancellation }
Ro—R"”6R

= { lemma 304 }
SC.R .

O

The combination of lemmas 182 and 316 is the second of two theorems stated by
Riguet [Righl]. More precisely, he states that Ro—R”oR is a “relation de Ferrers” if
R is a “relation de Ferrers” (cf. lemma 316) and their “différence” RN —(Ro—R”oR)
(i.e. AR) is a difunctional relation (cf. lemma 182). This explains his use of the term
“différence” for what we call the “diagonal” of a relation.
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11.5 Linear Orderings

In this section and the next we return to the mental picture of “staircases” as illustrated
by fig. 1. An alternative perspective on a staircase relation of type A~B is that it
divides the elements of A into “blocks”; similarly the elements of B are also divided
into “blocks”. Fig. 18 is an example where A and B are each divided into five blocks.
The effect is to divide the “staircase” into fifteen ( 14+2+3+445) blocks. A pair (a,b)
is related by the staircase relation if the number assigned to a is at most the number
assigned to b. Note that the at-most relation on numbers is a linear ordering.

A

0 %
B
0 1 2 3 4

Figure 18: Block Structure of a Staircase Relation

In section 11.6, we show that every linearly block-ordered relation is a staircase
relation. However, as we show in this section, a staircase relation does not necessarily
have a block-ordering. See theorem 319. Thus, contrary to claims made in the literature
—see section 12— it is not the case that these two concepts are equivalent.

Lemma 317  Suppose R has type A~B and f and g are relations with targets A
and B, respectively, such that fof” = R< and gog” = R>. Then

SC.(f'oRog) = SC.R .
Proof The equivalence is proved by mutual implication.
SC.R
= { assumption: fof’ = R< and gog” = R> ; domains }
SC.(fof”oRogog”)
& { lemma 314 with S,;T:=f,g”~ }
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SC.(f"oRog)
& { lemma 314 with S;T:=f",g }
SC.R .
O
Corollary 318 Suppose T of type C~C is a linear ordering and suppose f and g are

functional and surjective relations of types C~A and C~B, respectively. Then f"oTog
is a staircase relation.

Proof An ordering is also a preorder (and a linear ordering is a linear preorder). So
the corollary follows immediately from the combination of lemmas 309 and 317.
O

Theorem 319 Not every staircase relation is block-ordered. Specifically, the less-than
relation on the real numbers (or the rational numbers) is a staircase relation but is not
block-ordered.

Proof We remarked in example 315 that the less-than relation on the real numbers is
a staircase relation. To show that it is not block-ordered, we exploit lemma 248.

Suppose that the less-than relation on the real numbers is block-ordered by the func-
tions f and g and the provisional ordering T. That is, suppose

R = f'oTo g ,

where f and g are functionals of type A+R, for some A, and
fof =TNT =gog” A Ig C flofngleg

T is a provisional ordering of type A~A and for all x and y of type R, and
xo[Toy CR = x<y .

We begin by showing that fog is the empty relation. Inevitably, we need to exploit
the pointwise definition of the diagonal, as formulated in lemma 40.

xoTToy C fog
= { lemma 248, in particular (251) }
xoTToy € RN R”\R”/R"
= { definition of intersection and lemma 40 }

xoTToy CR A (Vu,v : ueTToy CRAXxoTTov C R : ueTTov C R)
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= { definition of R}
x<y A (Vuyv:ru<y Ax<v:u<v)
= { wv = y—(y—x)x%, x+ (y—x)x1
(Note that x<y = y—(y—x)x3 <y A x <x+(y—x)x3) }
y—(y—x)x3 < x+ (y—x)x3

= { arithmetic }
y—x < y—x

= { the less-than relation is irreflexive }
false .

That is, by the saturation axiom (16), f’og = LLg. This contradicts theorem 262 since
the left (and right) domain of the empty relation is the empty relation and the left and
right domains of the less-than relation are both non-empty.
O

A Drief, informal summary of the proof of theorem 319 is that the less-than relation
on real numbers is indeed a staircase relation but has no “diagonal” (more formally its
“diagonal” is the empty relation) and no such staircase relation can be block-ordered.
The informal contrapositive is that a necessary step in the process of block-ordering a
staircase relation is to begin by identifying its diagonal; this is a difunctional relation
and can be represented by f’og where f and g are functional. If the right domain of g
equals the right domain, and the right domain of f equals the left domain of the given
relation, the process is completed by identifying the ordering relation T.

For example, the less-than relation on the integers is block-ordered. Indeed, for all
integers m and n

m<n = m+1<n .

The relation f is thus the successor function, the relation T is the at-most relation and
the relation g is the identity function (on the integers). The “diagonal” is the set of
pairs (m, m+1).

The less-than relation on the natural numbers is also block-ordered but more care
needs to be taken in the definition of the block-ordering. The relation f is the successor
function; its source is the natural numbers and its target is the strictly positive natu-
ral numbers. The provisional ordering T is a subset of the at-most relation on natural
numbers (specifically, the at-most relation restricted to the strictly positive natural num-
bers) and g is the partial identity relation on the natural numbers with left (and right)
domain the strictly positive natural numbers. (Thus no number is related by g to the
number 0.)
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That the less-than relation on the real numbers is not block-ordered is a consequence
of the fact that if x <y the interval between x and y can always be subdivided at will.
(That is, it is always possible to find a real number z such that x<z and z<vy.) The
same is also true of the rationals and the proof of theorem 319 is equally valid in this
case. Abstracting from the details of the less-than relation, we get the following theorem.

Theorem 320 Suppose R is a homogeneous relation such that
R#1L A INR=1L A R=R-R A RUIUR =TT .

Then R is a staircase relation and AR= 11 .
It follows that any such relation is not block-ordered.

Proof Lemma 310 proves that R is a staircase relation.

Comparing the above conditions on R with those in lemma 310, the additions are the
non-emptiness property R+ 1|, the “strictness” property INR= 1l and the “subdivi-
sion” property R C RoR. (The less-than relation on real numbers has the subdivision
property whereas the less-than relation on the integers does not.) Applying lemma 321
(below), the subdivision and strictness properties imply that AR=_11. That R is not
block-ordered follows from theorem 262 and the assumption that R=# LI .

O

The lemma used to prove theorem 320 is the following:
Lemma 321
RCRR = (AR=1L =INRC 1) .
Proof
R C Ro—R“sR
= { monotonicity }
INR € I N Ro—R”6R
= { modular law }
INR C Ro(RVoRY N —RY)oR
= { assumption: RCRoR }
INR C Ro(R” N —RY)eR
= { complements }
INRC 1L

= { I[=1", converse and shunting }
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I C —R”

= { monotonicity }
RoR C Ro—R"0R

= { assumption: RCRoR and transitivity }
R C Ro—R"oR .

That is,
(322) RCReR = (R C Ro—R"6oR = INRC 1) .
So

AR=11
= { [LL CX] and antisymmetry, definition of AR }
RN (R\R/R)” C LL
= { shunting }
R C =(R\R/R)"
= { (32 }
R C Ro—RYoR
= { assumption: RCReR, (322) }
INRC 11 .

O

The assumption that R 1l in theorem 320 is necessary. The relation —I; (see
(33)) is the empty relation; it is also a block-ordered staircase relation on a finite type
that satisfies all the assumptions of theorem 320 except for the assumption that it is
non-empty.

Note that, if R is a homogeneous relation such that

R#1L A R=RR A INR=_1L ,

the left and right domains of R cannot be finite. (The easy proof involves constructing
an infinite sequence of points (i:i€N:aq;) such that,

(VizapeTTea CR) A (Vijrai=a; =i=j) .

This raises the question whether all finite staircase relations are linearly block-ordered.
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11.6 Linear Block Ordering

Recall that, immediately following lemma 303, we remarked that the definition of SC
demands refinement. This is more evident from the limitations of corollary 318: the
corollary assumes a linear ordering —and not a provisional linear ordering— and, more
importantly, that f and g are surjective. In practice, one might be tempted to fudge
the application of the corollary by restricting a given ordering to a subset of the elements
on which it is defined (for example, restricting the at-most ordering on integers to the
at-most ordering on even integers). Rather than resort to such measures, we prefer to
make the process precise within our axiom system. Indeed, it is necessary for us to
do so in order to establish a sufficient condition for a staircase relation to be linearly
block-ordered. See theorem 333 below.

In the following lemmas R= denotes the complement of R> in the lattice of coreflex-
ives. That is, for arbitrary relation R, we have

(323) R-UR»=1 A R-NR== 1L

(where T and 1| denote the identity and empty relations of appropriate type). Similarly
Re denotes the complement of R< That is

(324) R<URe=1 A R<NRe= 11 .
Domain calculus enables the proof of the following:
(325) RoRe= 1l A ReoR=1l .

Given a relation R, the points in Re (or, dually R=») are arguably irrelevant since they
are precisely the points that are not related to any other point by R. Similar statements
can be made about factors. In general, for arbitrary relations R and S, the factor R\S
is arguably too big because its left domain includes R=. Similarly, the factor R/S is too
big because its right domain includes Se, as is shown in the following lemma.

Lemma 326 For all R and S,
R#oR\S = R»oTT A R/SoSe« = TToSe« .
Proof We prove the first equation:
ReoTT
= { complements }
R0 (R\S U —(R\S))
= { distributivity }
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R»oR\S U R=o—(R\S)
= { (38 }
ReoR\S U ReoR"o—S
= { (325) and converse }
ReoR\S U Ll o—S
= { 11 is zero of composition and unit of union }
ReoR\S .

O

The argument that factors typically include irrelevant information extends to the
preorders R\R and R/R. In particular, note the terms involving R= in the following
lemma.

Lemma 327 For all R,
R\RU(R\R)” = R-o(R\RU(R\R)”)oR> U R#oTT U TToR= .
Proof
R\RU (R\R)"
= { (323) }
(R=UR=) o R\R U (R\R)" o (R>URs=)
= { distributivity }
R-oR\R U RwoR\R
U  (R\R)”oR- U (R\R)" o R
= { lemma 326 and rearranging }
R-oR\R U TToRe
U (R\R)"oR> U ReoTT
= { (323) and distributivity (as in first two steps) }
R-oR\RoR> U R-oR\RoR= U TT oRe
U R-o(R\R)“oR> U R=o(R\R)”sR> U ReoTT
= { R-oR\RCTT and (R\R)%eR-C TT
and definition of subset relation }

R-oR\RoR> U TToRw
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U R>0(R\R)"oR> U R=oTT
= { rearranging and distributivity }

R>0o(R\RU(R\R)")oR> U TToR» U R»oTT .
O
(Lemma 327 is essentially the case analysis that was omitted in the proof of lemma
303.) Avoiding the useless information introduced by the factor operators was the moti-
vation for our introducing the notion of “provisional” (pre)orders. The following lemma
enables the conventional notion of a linear ordering to be extended to provisional order-
ings.

Lemma 328  For all R,
R\RU(R\R)" = TT = R>0(R\RU(R\R)")oR> =R>0TToR> .
Proof By mutual implication. First,
R\RU (R\R)" = TT
= { Leibniz }
R-o(R\RU(R\R)”)oR> = R-oTToR- .
Second,
R\RU (R\R)"
= { lemma 327 }
R-o(R\RU(R\R)”)oR> U ReoTT U TTcRe
= { assume: R>o(R\RU(R\R)”)oR>=R-oTToR> }
R>oTT oR> U R=oTT U TT oR
= { (323), distributivity and rearranging
(as in proof of lemma 327) }
R>0 1T oR> U R»o TT oR> U Rwo TT
U R>oTToR> U R>0TToR=e U TToRe
= { (323), distributivity and rearranging }
TToR> U Reo TT
U R>oTT U TToR»
= { (323), distributivity and rearranging }
T .
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(Note the assumption in the second step.) That is,

R-o(R\RU(R\R)")oR> = R=o TToR> = R\RU(R\R)” = TT .

O

As always, for practical purposes it is preferable to express properties in terms of
the core of a relation rather than the relation itself. Lemma 328 is easily rewritten
accordingly:

Theorem 329  Suppose |R| is a core of relation R as determined by the functionals
A and p. (See definition 191.) Then R is a staircase relation iff

Rl<o (IR\IRI U (IRN\[R))?) e [R[< = [R[zoTT o[R[> .
Proof

R-o(R\RU(R\R)”)oR> = R-oTT oR-
= { lemma 195 }
p-=(RIRU(R\R)")ep- = p-oTTcp-
= { by lemma 193, R = A”¢[R|op, (81) with f,g:=A,p }
p o (IRNIRI U (IRNIR)")ep = p=oTTop-
= { (=) monotonicity and domains; (<) ditto and p op =p=< }
pop o (RN\IR| U (R\IR[)")epop” = p<oTT op=
= { by lemma 195, pop” = p<=[R|> }
IRI=o (IR\R[ U (IRAR)")[Rl> = [R[>cTT <[R|> .

The theorem follows by combining lemma 328 with definition 302.
O

Lemma 330 A linear provisional ordering is a staircase relation.

Proof Suppose T is a linear provisional ordering. Then

SC.T

= { definition 302 }
T\TU(M\T)" =TT

= { lemma 328 }
T>o(T\TU(T\T))oT>=T>0TToT>
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= { lemma 122 }
(TAT) o (M\TU(T\T)")o(TNT") = (TNT)eTTo(TNT")
= { assumption: T is a provisional ordering
lemma 119 and definition 121 }
(TAT) o (TUT)o(TNTY) = (TNT)oTTo(TNT")
= { assumption: T is linear, definition 121 }
true .

O

Lemma 331  Suppose R is a linearly block-ordered relation. Then R is a staircase
relation.

Proof This is an immediate consequence of lemmas 317 and 330. Specifically, by
definition 225, R is a block-ordered relation if R = f"oTog where f and g satisfy (227)
and T is a provisional ordering (i.e. satisfies (226)). It is a linearly block-ordered relation
if, in addition, T is a linear provisional ordering. Applying lemma 317 (with R:=T), R
is a staircase relation if T is a staircase relation. But this is indeed the case by lemma
330.

O

Lemma 332 Suppose R is a staircase relation. Then

R is linearly block-ordered < (AR)< = R< /A (AR)> = R> .

Proof By lemma 259, R is block-ordered. Specifically, lemma 259 shows how to
construct functionals f and g and a provisional ordering T satisfying the properties
(227) and (226) such that R = f"oTog. The task is thus to prove that T is linear if R
is a staircase relation.

We have:

R-o (R\R/R)"oR>
— { R=1f"2Tog and (227) }
f> o ((fuoTog)\(fUOTog)/(fUOTO g))u ° g
— { converse and factors: (37) }
f> o (gUoTUof)\(gUoTUof)/(gUoTUof) o g>
= { lemma 78 with U,V,\W:=T",T",T® }
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7o (T\T/T) o g
— { domains and (227) }
fro(TNT?) o (T\T/T) o (TNT")og

= { T is a provisional ordering, lemmas 116 and 118 }
f7oT 0g .
So
SC.R
= { (307) }

RU (R\R/R)” = TT
= { [SCTT], domains and monotonicity }
R U R=(R\R/R)”oR- = R<oTT oR-
= { R = f7oTog and above calculation }
fPoTog U foT0g = f>0TTog>
= { distributivity }
fPo(TUT")og = f>0TTog>
= { Leibniz }
fof o (TUT")ogog” D fof-oTTog-o0g”
= { definition 225 of block-ordered
in particular (227); domains }
(TNT)o(TUTY)o(TNTY) = (TNT)eTTo(TNT")
= { lemma 122 and definition 121 }
T is linear .

|

Theorem 333  Suppose R is a staircase relation. Then

R is linearly block-ordered = (AR)< = R< A (AR)> = R> .

Proof By mutual implication. “Only-if” is an instance of theorem 262. “If” is lemma
332.
O
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11.7 Riguet’s Rectangle Theorem

As mentioned earlier, the purpose of undertaking this exercise was to demonstrate how
reasoning with factors is so much more straightforward than reasoning with nested nega-
tions. It was a surprise to discover an error in the extant literature. This section is about
our attempt to trace the source of the material on difunctional and staircase relations
and, in particular, the source of the error.

Riguet introduces the notion of a difunctional relation in [Rig48| and the notion of
a staircase relation in [Righ1l] — but uses the name “relation de Ferrers”. His definition
corresponds to property (308). He lists a number of properties related to the ones stated
above. Direct comparison is slightly complicated by the fact that he does not make use
of factors. For example, he states that R is a “relation de Ferrers” if and only if Ro—R"
is a “relation de Ferrers”. This is a combination of lemma 304 (in particular (305)) and
lemma 311.

Riguet does not give a proof of the theorem. Riguet [Righl] states that there is a
striking analogy (“une analogie frappante”) between the definitions and properties of
“relations de Ferrers” and difunctional relations. He states that the analogy is clarified
by!* a theorem similar to our lemma 182 but does not go into further details. As
mentioned earlier, his theorem is that, if R is a staircase relation (a “relation de Ferrers”),
then so too is Ro—R"”oR and their “différence” RN—(Ro—R”<R) is difunctional. Lemma
182 is stronger than Riguet’s difunctionality property because it does not require R to
be a staircase relation.

Note that in the case that R is the less-than relation on real numbers, Ro—R"oR
is also the less-than relation and RN—(Ro—R"oR) is trivially difunctional (since it is
the empty relation). This observation leads one to wonder precisely how the “analogie
frappante” is clarified by Riguet’s theorem. (We invite the reader to verify the claims
we have just made and then work out the difference when “real number” is replaced by
“integer”.)

As announced earlier, the proof of Riguet’s theorem is straightforward'®:

Theorem 334 (Riguet’s theorem) A relation is a staircase relation if and only if it
has a linear polar covering.

Proof By mutual implication.

For the “only-if” part, theorem 211 establishes that every relation has a polar cover-
ing. So it suffices to show that if R is a staircase relation the covering is linear. Recall
the construction of R in theorem 211. If R is a staircase relation, that the set R< is
linearly ordered by inclusion is immediate from lemma 303.

l4«Cette analogie s’éclaire par”
15This may explain why he didn’t provide a proof.
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For the “if” part, suppose R of type A~B has a linear polar covering R . Our task
is to show that R is a staircase relation. Aiming to apply lemma 303, we consider points
b and b’ such that bCR> and b’ CR>. Our task becomes to show that

(Rob)< C (Reb’)< V' (Rob’)< C (Rob)< .
This is achieved as follows:
(Rob)< C (Reb’)< V' (Reb’)< C (Reb)<
= { R=UR }
(UReob)< C (Reb’)< V (UR=Db’)< C (Reb)<
= { distributivity properties }
(VU : UER : (Ueb)< C (Rob’)<) V (YU :UER : (Ueb’)< C (Rob)<)
= { lemma 128,
case analyses on (b’ CU> A (Ueb’)<=U<) V (Ueb’)<= 1L
and (bCU> A (Usb)<=U<) V (Usb)<=11L }
VU : UER AbCU> : U< C (Rob’)<)
VU : UER A b’ CU> : U< C (Reb)<)
{ R=UR, monotonicity and lemma 128 }
(VU : UER ADCU>: (FV: VERAD' CV>: U< C V<))
VoYU : UERAD' CU>: (IV: VERADCV>: U= C V<))
{ assumption: R is a polar covering
so UsC V< = U-DV> }
(VU : UERADCU>: (FIV: VERAD' CV-:U>D V=)
VoYU : UERAD' CU>: (IV: VERADCV>: U> D V>))
= { [pVq = (—q=7p)] together with the calculation below }

true .
The justification of the final step is as follows.
(VU : UER ADB'CU>: (IV: VER ADCV-: U D V>))
= { predicate calculus (and dummy change: W,V:=V,U) }
(AV : VER ADB'CV>: (YU : UER ADCU> : =(V> D U>)))

= { assumption: R is a linear polar covering
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in particular, the inclusion ordering on left domains is linear }
(FV : VERAD'CV>: (YU : UER ADCU> : V> C U>))
= { predicate calculus and V>-Cc U> = U-DV> }
- VU : UeERADCU>: (IV: VERAD' CV>:U>-2DV>)) .
In the proof of theorem 334 we have chosen a covering that is indexed by points in
the source of the given relation R. We could, of course, have chosen a covering that is

indexed by points in the relation’s target. Fig. 19 is a mental picture of the different
choices.

:

Figure 19: Choices of Polar Covering

Highlighted in fig. 19 are a point —the point a-TT<b in our formalism— and two
rectangles. The (highlighted) long, low rectangle depicts the relation

R/RoaoR ,
whilst the (highlighted) short, tall rectangle depicts the relation
ReboR\R .

Rather than choosing the latter as the elements of the polar covering —as we did— , we
could have chosen the former. The (highlighted) corner rectangle depicts the relation

R/RoaoTT oboR\R .
Indeed, for all relations R,
R/ReaoR M RebeoR\R = R/ReaoTT oboR\R
& aofTob CR .
We leave the proof of this property to the reader. (Hint: use lemma 125.)



213

11.8 Finite Staircase Relations

As we have seen in theorems 319 and 320, not every staircase relation is block-ordered.
However, for a relation to satisfy the assumptions made in theorem 320 it must be infinite.
In this section we show that every finite staircase relation is indeed block-ordered.

Theorem 335  Suppose R is a finite relation. (That is, the sets represented by R<
and R- are finite.) Then R is a staircase relation equivales R is a linear block-ordered
relation.

Proof Lemma 331 shows that R is a staircase relation if it is a linear block-ordered
relation (whether or not R is finite). It remains to show that, if R is finite and a staircase
relation then it is a linear block-ordered relation.

Given a finite, staircase relation R, our task is to costruct functionals f and g and
a provisional ordering T satisfying definition 225. The key is a combination of theorems
283, 334 and 292.

Theorem 283 states that R = f~oCog, where the ordering C is as in definition 276,
and

f>=R< A (Va: aCR<: f.a=R/RecacR)
and
g>=R> A (Vb : bCR>: g.b=ReboR\R)
To complete our task, we must show that f<=g<. That is, we must show that
(336) (Va: aCR<: (dJb:bCR>:f.a=g.b))
and vice-versa
(337) (vb : bCR>: (Ja:aCR<:f.a=g.b))

Riguet’s theorem (theorem 334) states that, if R is a staircase relation, both f and ¢
are linear polar coverings of R; although not stated explicitly there, the ordering on the
elements of both coverings is the ordering C introduced in definition 276.

Now, a characteristic feature of a finite linear ordering is that the suprema and infima
of any non-empty set always exist and are the maxima and minima. That is, for all points
a such that a CR<, the minimum

(MINC b’ : aoTTob’ CR : g.b')

is well-defined. More precisely, the minimum value “witnesses” the existentially quanti-
fied dummy b in the property

(Va : aCR<: (Fb:aTTobCR: (Vb':aoTTob'CR:g.bCg.b)))
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assuming that the ordering C is a linear ordering of a finite set. Similarly, for all points
b such that b CR>, the maximum

(MAXca':aoTTebCR: f.a’)
exists and “witnesses” the existentially quantified dummy a in the property
(Vb : bCR>: (Ja:aTTebCR: (Va': a’sTTobCR: f.a'Cf.a))) .
With this knowledge, we can now prove (336). Suppose a CR<. Then

(db : bCR>: f.a=g.b)
= { definition of f and g }
(3b : bCR- : R/RoacR = RoboR\R)
= { aTTebCR=bCR- }
(3b : aeTTebCR : R/RoaoR = RoboR\R)
= { theorem 292 }
(Ib: aeTTebCR: (Vb' : acTTeb’CR : RoboR\R C Rob’oR\R))
= { definition of g }
(Fb: @ TTebCR: (Vb':acTTeb’CR:g.bCg.b’))
& { definition of MIN  }
(Fb:aeTTebCR:g.b=(MINcb':aTTeb’CR: g.b"))
= { assumption: R is a finite relation }

true .

We have thus established (336). Property (337) is the converse dual.
O

Although theorem 335 assumes that the relation R is finite, it can of course be
applied to the core |R| of the relation R. From the definition of a core (definition 191)
and lemma 193, it is easy to establish the equivalence of properties of a relation and
properties of its core, in particular, being a staircase relation and being block-ordered.
Thus, the theorem is more generally applicable to relations whose core is finite.
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12 Discussion

The writing of this paper began after reading a paper by Wolfram Kahl (see [Kah20])
which included a section on “Ferrers-type relations” citing not Riguet [Righl] (where
the notion is introduced) but the textbook by Schmidt and Strohlein [SS93]. Although
Schmidt and Strohlein also do not cite [Righl], they do use Riguet’s definitions. It
was immediately clear that substantial improvements could be made to Schmidt and
Strohlein’s calculations by exploiting the properties of the factors of a relation. Fur-
ther study also revealed an obvious error in their “definition” [SS93, Definition 4.4.11].
(Schmidt and Strohlein’s “definitions” often include what they call “definition variants”
which, in most cases, they deem to be obviously equivalent. This is not the case here
— see below.) This led to an investigation of the origin of the error which, in turn, led
to the discovery of the original paper by [Rigbl]. Several more recent publications were
also discovered where the opportunity to correct Schmidt and Strohlein’s error is not
taken. Intrigued, it was decided to embark on a thorough investigation of the notions
introduced in [Rig51]: the notion of the “différence” of a relation and the notion of a
“relation de Ferrers” as well as Riguet’s “analogie frappante” connecting the two. In
the process, it became clear that a more general notion of “block-ordering” was relevant
than the total ordering demanded by Riguet. This led to the four goals enumerated in
the introduction.

The need for the first two goals is clear from a study of Riguet’s paper. Although
his work is comprehensive (in particular [Rig48]), the typography of publications written
70 years ago makes them difficult to read; the notation chosen by Riguet is also often
rather quaint (and in some cases impossible to reproduce!). Ironically in a paper about
“correspondances de Galois”, Riguet does not introduce the Galois connection defining
the factors of a relation and, instead, makes copious use of (nested) complements. Also,
Riguet states many properties without proof: for example, [Rig51] lists ten definitions of
a “relation de Ferrers” with justification that it is easy to see (“il est facile de voir”) that
they are all equivalent. Moreover, subsequent literature leaves many gaps. For example,
we have been unable to find any proof of theorem 335, even though we have seen several
publications that assume the theorem (correctly in the case of finite relations).

Experience shows that the most important concepts —the ones with wide applica-
bility— tend to be discovered and rediscovered, often quite independently, in several
different and apparently unrelated contexts. Different formulations, that turn out to
be equivalent, and different terminology, reflecting particular application areas, is intro-
duced, making the task of proper attribution almost impossible. All that an author can
be expected to do is to cite the publications that have had a significant influence on their
own work — which is what we have done here.

For the reasons given above, the initial steps in the writing of this document were
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influenced by section 4.4 of the textbook by Schmidt and Strohlein [SS93]. Like Riguet,
Schmidt and Strohlein do not introduce the factor operators and, implicitly, use the
equivalent definition in terms of nested complements. (See lemma 32.) The longest and
arguably most opaque calculation in this section of Schmidt and Strohlein’s book is their
proof of proposition 4.4.13(ii). Aside from its extensive use of nested complements, it
fails to make clear what is being proved, why it is being proved and where and when
assumptions are invoked (at least in our view). The proposition is formulated in theorem
234. Various properties are used in their proof which we have formulated and proven in
lemma 248 in terms of factors. Properties (249) and —more significantly— (250) are not
observed by Schmidt and Strohlein. Their derivation of (251) is asymmetric in f and ¢
and involves several unexplained steps.

We have not been able to avoid the use of complements altogether. As pointed
out at the time, the equivalence of several different formulations of the notion of a
staircase relation formulated in lemma 304 uses the definition of factors in terms of nested
complements. Also, for concrete examples of (small) finite relations, such as examples
223, 224 and 284, the use of complements often makes calculations easier. Nevertheless
our use of complements has been minimal.

We have attributed the two principal concepts of a “relation difonctionelle” and
a “relation de Ferrers” to Riguet ([Rig48|] and [Rig51|, respectively) but we have not
explored any publications prior to Riguet’s. Riguet himself cites two papers by Norbert
Wiener, dated 1912-1914 and 1914-1916, as giving an equivalent definition of a “relation
de Ferrers” but no other indication of their content is provided (not even their titles).
We have also been unable to find publications on either topic in the forty or so years
following their publication. (Riguet [Righ1] announces a “prochaine Note” that will make
precise a correspondence between “relations equivalence conjuguées” and “relations de
Ferrers” but we have not been able to find the publication.) So the current work should
not be regarded as a history of the concepts.

The notion of a difunctional relation is now generally attributed to Riguet [Rig48];
Jaoua et al [JMBD91] use the name “regular relation” but later publications [KGJ0O]
use the name “difunctional relation”. Voermans [Voe99] emphasises their importance
in developing a theory of datatypes with laws; Oliveira [Oli18] argues that difunctional
relations are “metaphors” for program specification. Much of our presentation on difunc-
tional relations and non-redundant polar coverings is influenced by the goal of gaining a
complete understanding of Riguet’s “analogie frappante” [Rig51].

The notions of a rectangle and completely disjoint rectangles, and elementary facts
about difunctional relations, in particular theorems 141 and 161, are discussed by Riguet
[Rig48]. The corresponding properties of pers are well-known. The construction given
in section 6.3.3 is not made explicit in [Rig50] but was possibly the basis of Riguet’s
statement that the characterisation of difunctional relations as a pair of functional rela-
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tions (theorem 161) is a generalisation of the theorem that a partial equivalence relation
is characterised by a single functional relation (theorem 143). (Evidence for this is that
Riguet effectively states lemma 174.)

Theorem 161 is also stated in [JMBD91, Proposition 4.12] and a proof given. Their
proof assumes the relation is homogeneous; the proof of theorem 173 is inspired by
their proof whilst avoiding the assumption. Winter [Win04| assumes theorem 144 and
then uses it to prove theorem 161 (thus making precise Riguet’s generalisation). His
(very short and elegant) proof, which we have reproduced here, gives different —albeit
isomorphic— characterisations of a difunctional relation. Our contribution has been
to compare different algebraic proofs of the theorem: point-free and pointwise proofs.
Perhaps surprisingly, our conclusion is that the pointwise proof is preferable to the
proof that exploits a point-free characterisation of power transpose. This is because of
the simplicity of the step from the elementary characterisation of difunctional relations
(theorem 160) to a set of rectangles (“réunions de rectangles”): see section 6.3.1.

Theorem 166 is Schmidt and Strohlein’s proposition 4.4.10(ii) . Their statement of
the theorem is unclear: it appears to state that a difunctional relation has exactly one
representation as a pair of functional, surjective relations but they only prove that there
is at most one such representation. (Both here and in the statement of proposition
proposition 4.4.13(ii) they use the phrase “may be achieved in essentially one fashion”.
The English is ambiguous: “may be achieved” suggests “at least one” and “in essentially
one fashion” suggests “at most one”, the combination being exactly one. But they only
prove at most one.) Lemma 164 is novel and permits a subtle difference in presentation,
in particular of theorem 166.

There is much in common between our section 8 and Khchérif, Gammoudi and Jaoua
[KGJ00]. Khchérif, Gammoudi and Jaoua [KGJO0O0| correctly attribute the concept of
the diagonal to Riguet but do not cite [Rigbl]; like Riguet, they define the diagonal
in terms of nested complements and do not exploit factors. Their notion of a covering
specifies the rectangles to be “maximal”. This is the property of not being “obviously
redundant” as discussed immediately following definition 209. Slightly confusingly'®,
Khchérif, Gammoudi and Jaoua [KGJ0O| define two rectangles to be “disjoint” when
they are what we call “completely disjoint”. With this caveat, they list theorem 163 as a
property of difunctional relations. They do not seem to be aware of theorem 211. Their
focus is on what they call “minimal” coverings and “isolated points”; “minimal” coverings
appear to correspond to what we call “non-redundant” coverings whilst “isolated points”
appear to correspond to the points of a definiens of a relation. They seem to suggest a
dichotomy: for each relation R, either (AR)< = R< and (AR)> = R>, or AR=_11 . (See

18The term “disjoint” is commonly used to describe sets with an empty intersection; the confusion arises
because relations are sets of pairs.
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[KGJO0O0, p.161, Problem|.) Example 223 shows that this is not the case: it is indeed
possible to construct a non-redundant covering of a relation R where (AR)< # R< so
long as (AR)> = R> (and, of course, dually when (AR)> # R> so long as (AR)< = R<).
The statements of theorems 1 and 2 in [KGJO00] are unclear (in my view), making them
difficult to verify or refute.

Schmidt and Strohlein [SS93, p.80] cite the paper by Jacques Riguet [Righ0] with the
word “difonctionelle” in the title; they also use the same definition of a “Ferrers type re-
lation” as Riguet but do not cite [Rig51]. (They do cite [Rig48] earlier in the text but not
in connection with difunctional relations.) Schmidt and Stréhlein appear to claim that
“staircase” and “linearly block-ordered” are equivalent properties of a relation: Their
definition of “Ferrers type” [SS93, Definition 4.4.11] comprises five properties connected
by the symbol “&”. Presumably the symbol denotes logical equivalence (an implicit
universal quantification over all free variables combined with boolean equality) but it
is nowhere defined'”. From definition 2.1.3, and experience with common mathemat-
ical practice, one infers that Schmidt and Strohlein use the keyword “Definition” to
simultaneously introduce a definition and to state properties of the defined entity that
are deemed to be obvious. The problem is that the equality of the predicates “stair-
case” and “linearly block-ordered” is far from obvious and, as we have shown in theorem
319, it is just not true! Other papers that cite Riguet assume that the relations under
consideration are finite —in which case the equivalence is valid (see lemma 331 and the-
orem 335)— ; consequently, it would appear that the erroneous claim was introduced by
Schmidt and Strohlein.

Winter restates the erroneous claim made by Schmidt and Strohlein [SS93, Definition
4.4.11]:

A concrete relation of Ferrers type may be written as a Boolean matrix in
staircase block form by suitably rearranging rows and columns.

There does not appear to be a definition of the word “concrete” in the paper; the use
of the word “matrix” suggests that “concrete” means “finite”. In this case, the claim
is a special case of theorem 335. However, we have been unable to find any proof of
the theorem in the published literature: Riguet [Righ1l] states the theorem but does not
provide a proof; he does make very clear that his definition of a “relation de Ferrers”
extends to infinite relations, specifically by giving a concrete example. (In addition to
finiteness, Riguet [Rig51]| adds a second condition that we do not understand.)

17Page 1 introduces set notation and properties of sets. It uses the symbol “ = ” —presumably meaning
“only if” — but the symbol is also nowhere defined. The symbol “& ” first appears on p.7 and continued
equivalences first appear on p.8 in definition 2.1.3 (reflexive and irreflexive relations). No explanation is
given of how a continued equivalence is to be read. (Boolean equality is associative and transitive. So a
continued equivalence could be read associatively or conjunctionally.)
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Winter is clearly aware that the claim is invalid in general because immediately af-
terwards [Win04, lemma 5] states that the claim is invalid for “dense” relations. (Winter
formulates a property of “ dense linear strict-orderings” that is essentially theorem 320.)
Winter does not, however, give the most obvious example of a “dense” relation — the
less-than relation on real numbers. Schmidt [Sch08] does observe that the less-than rela-
tion is “dense” but does not take the opportunity to correct the error in [SS93, Definition
4.4.11].

As previously stated, the notion of the diagonal of a relation is due to Riguet [Rig5h1];
Riguet called it the “différence”. (See the discussion immediately following lemma 316.)
The notion of a “polar” covering was also introduced by Riguet in [Rig51], albeit with a
slightly stricter definition to fit the topic of his paper ( “relations de Ferrers”): he requires
the subset ordering on domains to be total (“linear” in the terminology used here).

Winter [Win04| does not give the diagonal function a name but denotes the “différence”
of relation R by R?¢ (as do Khchérif, Gammoudi and Jaoua [KGJ00]); Winter cites
[Righ1] but does not ascribe the concept to Riguet. Schmidt [Sch08] calls it the “fringe”
of the relation; Schmidt [Sch08] does cite Winter [Win04] but does not cite Riguet [Righ1].
Berghammer and Winter [BW12, p.8] state that Riguet’s notion of the “différence” of a
relation was “introduced” by Winter [Win04| and Schmidt [Sch08]; like Schmidt [Sch08],
Berghammer and Winter [BW12] do not cite Riguet [Rigb1]. Although Winter [Win04]
and Berghammer and Winter [BW12] define the “différence” using residuals, they fre-
quently use Riguet’s definition in terms of nested complements.

Theorem 317 introduces two constraints slightly weaker than those imposed by Schm-
idt and Strohlein in their proposition 4.4.13(i); it is also stronger because it states an
equality rather than an implication. Lemma 309, in combination with lemma 314 also
yields a stronger theorem than their proposition 4.4.13(i). (No constraints are imposed
on the parameters f and g.)

The primary novel contribution of this paper is the introduction and exploitation of
the notion of the core of a relation. (See definition 191.) Section 9.1 has been included
partly to make Hartmanis and Stearn’s [HS66] pioneering contribution to information
science better known. Their theory of “pair algebras” anticipates results in what has
since become known as “concept analysis” [DP90], as discussed in section 10. Some of
the properties of grips presented in section 10 may be novel but, as mentioned in the
introduction to the section, we have not been able to determine whether or not this is
the case. Much emphasis has been placed on illustrative examples which we hope will
make the theory more accessible.

Finally, a few words on notation. The very rich algebraic properties of the converse
of a relation mean that many notions and properties come in pairs, each element of the
pair being the dual mirror-image of the other. For example, we have defined both the
left domain and right domain of a relation; lemma 55 is an example of mirror-image
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properties of the relations. Some authors emphasise such mirroring by their choice of
notation. Freyd and S¢edrov [Fv90], for example, denote the source and target of a
relation R by OR and RO, respectively.

A consequence of this is that it is possible to get away with defining just one of a
pair of operators, leaving its mirror image to have an “obvious” definition in terms of
relational converse. For example, in section 3.7 we gave only the definition of the “left”
power transpose of a relation, leaving the definition of the “right” power transpose to the
reader. Doing this systematically would mean introducing the notation R< for the left
domain of relation R and then using the notation (R”)< to denote the right domain of
R. Similarly, one might introduce just the left factor R/S and then write (S”/R")" for
the right factor R\S. This is, of course, very undesirable because then the associativity
of the operators (the rule that R\(S/T) and (R\S)/T are equal, which we exploit by
using the notation R\S/T) becomes the very cumbersome

(S/T)"/R)" = (S7/R)7/T .

Even worse is when a symmetric notation is used for an operator that has both left and
right variants — as is done by both Freyd and Séedrov [Fv90] and Schmidt and Strohlein
[SS93, p.80] in the case of the so-called “symmetric division/quotient” of a relation. By
writing % (or R=S), the reader may be misled into supposing that either the operator
has no mirror image or that the mirror image is 3 (or S+R). The main drawback,
however, is that the notation gives —literally and figuratively— a one-sided view of
relation algebra that inhibits progress. The notion of the “core” of a relation introduced
in section 7.3 is, so far as we know, novel; the insight leading to its introduction is the
simple formula

R —= R<OROR>

combined with the well-known characterisation of a partial equivalence relation as f~of
for some functional relation f. It is, in our view, a striking example of the sort of insight
that is obscured using Freyd and S¢edrov’s or Schmidt and Stréhlein’s notation.



221

Acknowledgement Many thanks to Jules Desharnais for helping to locate Riguet’s
publications and to José Nuno Oliveira for the proof of theorem 173.

I would also like to express heartfelt thanks to John Horton Conway who sadly died
just as I was completing the first draft of this report. As a young PhD student in the
early 1970s I chanced upon his little book on Regular Algebra and Finite Machines. It
was like a breath of fresh air. I was particularly impressed by Chapter 6 on Factors
and the Factor Matrix and its subsequent exploitation in Chapter 7 on biregulators (in
particular the later entries in the table of biregulators). Here was an excellent example
of the power of algebra! Conway’s factor theory has influenced much of my work since
then, as should be evident from this report.

References

[AGU72] A.V. Aho, M.R. Garey, and J.D. Ullman. The transitive reduction of a directed
graph. SIAM J. of Computing, 1(2):131-137, 1972.

[Bac98] Roland Backhouse. Pair algebras and Galois connections. Information Pro-
cessing Letters, 67(4):169-176, 31 August 1998.

[Bac00] Roland Backhouse. Fixed point calculus. Summer School and Workshop on
Algebraic and Coalgebraic Methods in the Mathematics of Program Construc-
tion, available at http:/www.cs.nott.ac.uk/ psarb2/MPC/acmmpc.pdf, April
2000.

[Bac02] Roland Backhouse. Galois connections and fixed point calculus. In Roland
Backhouse, Roy Crole, and Jeremy Gibbons, editors, Algebraic and Coalge-
braic Methods in the Mathematics of Program Construction, volume 2297
of LNCS Tutorial, chapter 4, pages 89—148. Springer, 2002. International Sum-
mer School and Workshop, Oxford, UK, April 2000, Revised Lectures (Abridged
version of [Bac00]).

[BDGv21]| Roland Backhouse, Henk Doornbos, Roland Gliick, and Jaap van der Woude.
Elements of algorithmic graph theory. an exercise in combining precision with
concision. Working Document. Extended version of [BDGv22]. Available from
ResearchGate, 2021.

[BDGv22| Roland Backhouse, Henk Doornbos, Roland Gliick, and Jaap van der Woude.
Components and acyclicity of graphs. an exercise in combining precision with
concision. Journal of Logical and Algebraic Methods in Programming,
124:100730, 2022.



222

[BAM97] Richard S. Bird and Oege de Moor. Algebra of Programming. Prentice-Hall

[(BW12]

[DP90]

[Fva0]

[GE92]

International, 1997.

Rudolf Berghammer and Michael Winter. Decomposition of relations and con-
cept lattices. Fundamenta Informaticae, pages 1-46, 2012.

B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cam-
bridge Mathematical Textbooks. Cambridge University Press, first edition,
1990.

P.J. Freyd and A. S¢edrov. Categories, Allegories. North-Holland, 1990.

G.Hutton and E.Voermans. Making functionality more general. In R. Heldal,
C. K. Holst, and P. Wadler, editors, Functional Programming (Proceedings
of the 1991 Glasgow Workshop on Functional Programmaing, Portree, Isle
of Skye, UK, August 12-14, 1991 ), Workshops in Computing, pages 177-190.
Springer, Berlin, 1992.

[GHK * 80] G. Gierz, K. H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D. S.

[Gliil7]

[HS64]

[HS66]

Scott. A Compendium of Continuous Lattices. Springer-Verlag, 1980.

Roland Gliick. Algebraic investigation of connected components. In P. Hofner,
D. Pous, and G. Struth, editors, Relational and Algebraic Methods in Com-
puter Science — 16th International Conference, RAMiCS 2017, volume
10226 of Lecture Notes in Computer Science, pages 109-126. Springer, May
15-18 2017.

J. Hartmanis and R.E. Stearns. Pair algebras and their application to automata
theory. Information and Control, 7(4):485-507, 1964.

J. Hartmanis and R.E. Stearns. Algebraic Structure Theory of Sequential
Machines. Prentice-Hall, 1966.

[JMBD91] A. Jaoua, A. Mili, N. Boudriga, and J.L. Durieux. Regularity of relations: A

measure of uniformity. Theoretical Computer Science, 79:323-339, 1991.

[Kah20] Wolfram Kahl. Calculational relation-algebraic proofs in the teaching tool

calccheck. Journal of Logical and Algebraic Methods in Programming,
117(100581), December 2020.

[KGJ00] Raoudha Khchérif, Mohamed Mohsen Gammoudi, and Ali Jaoua. Using difunc-

tional relations in information organization. Information Sciences, 125:153—
166, 2000.



223

[McN67] R. McNaughton. The loop complexity of pure-group events. Info. and Control,

(Oli18]

[Rig48|

[Rig50]

[Righ1]

[Scho8|

593

[Voe99]

[Win04]

11:167-176, 1967.

José Nuno Oliveira. Programming from metaphorisms. Journal of Logical
and Algebraic Programming Methods in Programmaing, 94:15-44, 2018.

J. Riguet. Relations binaire, fermetures, correspondances de Galois. Bulletin
de la Société Mathématiques de France, 76:114—155, 1948.

J. Riguet. Quelques propriétés des relations difonctionelles. C.R.Acad.Scs.
Paris, 230:1999-2000, 1950.

J. Riguet. Les relations de Ferrers. Compte Rendus des Séances hebdo-
madatres de I’Acadamie des Sciences (Parts), 232:1729-1730, 1951.

Gunther Schmidt. Rectangles, fringes and inverses. In Struth G. Bergham-
mer R., Moller B., editor, Relations and Kleene Algebra in Computer Sci-
ence. RelM1CS 2008., volume 4988 of LNCS, pages 352—-366, 2008.

Gunther Schmidt and Thomas Strohlein. Relations and Graphs. EATCS
Monographs on Theoretical Computer Science. Springer-Verlag Berlin Heidel-
berg, 1993.

Ed (Theodorus Sebastiaan) Voermans. Inductive Datatypes with Laws and
Subtyping — A Relational Model. PhD thesis, Department of Mathematics
and Computer Science, Technische Universiteit Eindhoven, 1999.

Michael Winter. @ Decomposing relations into orderings. In B. Moller
R. Berghammer and G. Struth, editors, Proc. of the Internat. Workshop
RelM1CS ’7 and 2nd Internat. Workshop on Applications of Kleene Alge-
bra, in combination with a workshop of the COST Action 274: TARSKI
Revised Selected Papers, volume 3051 of LNCS, pages 261-272. Springer-
Verlag, 2004.



