
First-past-the-post Games

Roland Backhouse

School of Computer Science, University of Nottingham, Nottingham, NG8 1BB, England, United Kingdom

Abstract

Informally, a first-past-the-post game is a (probabilistic) game where the winner is the person who
predicts the event that occurs first among a set of events. Examples of first-past-the-post games include
so-called block and hidden patterns and the Penney-Ante game invented by Walter Penney. We formalise
the abstract notion of a first-past-the-post game, and the process of extending a probability distribution
on symbols of an alphabet to the plays of a game. We establish a number of properties of such games, for
example , the property that an incomplete first-past-the-post game is also a first-past-the-post game.

Penney-Ante games are multi-player games characterised by a collection of regular, prefix-free languages.
Analysis of such games is facilitated by a collection of simultaneous (non-linear) equations in languages.
Essentially, the equations are due to Guibas and Odlyzko. However, they did not formulate them as equations
in languages but as equations in generating functions detailing lengths of words. For such games, we show
how to use the equations in languages to calculate the probability of winning and how to calculate the
expected length of a game for a given outcome. We also exploit the properties of first-past-the-post games
to show how to calculate the probability of winning in the course of a play of the game. In this way, we
avoid the construction of a deterministic finite-state machine or the use of generating functions, the two
methods traditionally used for the task.

We observe that Aho and Corasick’s generalisation of the Knuth-Morris-Pratt pattern-matching algo-
rithm can be used to construct the deterministic finite-state machine that recognises the language underlying
a Penney-Ante game. The two methods of calculating the probabilities and expected values, one based on the
finite-state machine and the other based on the non-linear equations in languages, have been implemented
and verified to yield the same results.

Keywords: Algorithmic problem solving, Penney-Ante, Regular language, Probabilistic game, Generating
function

A first-past-the-post game is a game where the winner is the person who predicts the event that occurs
first among a set of events. There is no limit to the examples that can be invented. One example, which
was published in the Communications of the ACM just before the final version of this paper was prepared
[Win13], is the following:

“Alice and Bob roll a single die repeatedly. Alice is waiting until all six of the die’s faces appear
at least once. Bob is waiting for some face (any face) to appear four times. The winner is the
one who gets his or her wish first; for example, if the successive rolls are 2 , 5 , 4 , 5 , 3 , 6 ,
6 , 5 , 1 , then Alice wins, since all numbers have appeared, none more than three times. If the
successive rolls instead happen to be 4 , 6 , 3 , 6 , 6 , 1 , 2 , 2 , 6 , then Bob wins because he
has seen four 6 s and no 5 (yet).”

Different versions of this game are obtained by varying the numbers six and four in the specification; see
example 6.
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Perhaps the most widely studied example of a first-past-the-post game is the game that is now called
Penney-Ante, a game with pennies named after its inventor, Walter Penney [Pen74]. In the game, each
player chooses a coin sequence (a sequence of “head”s or “tail”s); a coin is then repeatedly tossed until one
of the sequences occurs. The winner is the player who chose the sequence that occurs first.

Typically in all such games, the interest is in determining the probability of winning for each of the
players and the expected length of the games (assuming a fair roll of the die or toss of the coin).

The two-player Penney-Ante game has attracted much interest because it is non-transitive [Gar74]; the
game is also used to demonstrate the use of generating functions in the calculation of probability distributions
[GO81, GKP89]. Our interest in the game began as a simple, (for us) introductory exercise in probability
generating functions. It has turned out to be an exercise in applying the calculational method to the analysis
of the game in the general case of an arbitrary number of players, with the added value of new insights in
the formalisation of complex probabilistic events.

Analysis of the Penney-Ante game is facilitated by a collection of simultaneous (non-linear) equations
between languages. In the literature, either the equations are stated without proof [GKP89] or the equa-
tions are not given explicitly but translated directly into generating functions detailing lengths of words
[GO81]. The primary contribution of this paper is to record a derivation of the equations and the associated
probability distributions in which naming of word length and the use of generating functions is avoided.

Our derivation has several novel features. We introduce the abstract notion of a first-past-the-post
game, and we formalise the process of extending a probability distribution on symbols of an alphabet to
the plays of such a game (section 2). (Multi-player) Penney-Ante games and so-called block and hidden
patterns [FS09] are shown to be instances of first-past-the-post games. Such games are characterised by a
collection of regular, prefix-free languages. We derive a collection of simultaneous non-linear equations in
these languages and use these to show how to calculate the probability of winning (section 4).

The equations are essentially the basis for the equations in generating functions derived by Guibas and
Odlyzko [GO81]. The formula we derive generalises a formula attributed to Conway [Gar74] for the original
two-player Penney-Ante game. Another instance is the formula due to Solov’ev [Sol66] for the expected
number of coin tosses until a given (contiguous) pattern appears. Like Guibas and Odlyzko [GO81], we
also consider the generalisation of Penney-Ante games to an arbitrary number of players; see subsection 4.2.
Subsection 4.3 briefly discusses how to obtain equations for the expected length of the game that ends with
a given outcome.

We show in section 4.4 that the equations in languages do not have a unique solution. Only when an
additional requirement is added to the equations is the uniqueness property satisfied. This is surprising be-
cause the additional requirement is not explicitly used in constructing the generating functions or calculating
probabilities.

Our work focuses on formalising and understanding the event space that underlies Penney-Ante games
rather than the calculation of probabilities of winning and expected lengths of games. We think it is
important to do so because then so-called “paradoxes” associated with Penney-Ante games can be explained.
First-past-the-post games are characterised by prefix-free languages. We prove several different properties
of such languages. For motivational purposes, these properties are interspersed throughout the text. Section
1 introduces some elementary properties in advance of the formal definition of a first-past-the-post game
in section 2. Section 2.2 helps to relate our use of prefix-free languages with other accounts of the games,
and section 2.3 exploits their properties to prove the fundamental property that the remainder of a game
after some (typically incomplete) play of the game is a first-past-the-post game. This is used later in section
5 where we generalise our results to such situations. Subsection 5.1 generalises the construction of the
equations in languages and subsection 5.2 then shows how the generating functions introduced by Guibas
and Odlyzko [GO81] are constructed from these equations; in so doing, we observe an error in the statement
of the central theorem of their paper.

Section 6 discusses the practical implementation of the calculations. The standard technique for calcu-
lating the probability of winning is based on the construction of a deterministic finite-state machine that
recognises the language underlying a Penney-Ante game. We observe that this construction can be carried
out most efficiently using an adaptation of Aho and Corasick’s [AC75] generalisation of the Knuth-Morris-
Pratt [KMP74] pattern-matching algorithm, rather than the standard textbook method. The two methods

2



of calculating the probabilities and expected values, one based on Aho and Corasick’s algorithm and the
other based on the non-linear equations in languages, have been implemented by Ngoc Do [ND12] and
verified to yield the same results.

Several intriguing challenges remain, which are discussed in section 7.

1. Preliminaries

We assume familiarity with the use of regular expressions to denote languages. To avoid confusion with
ordinary addition, the usual symbol “ ∪ ” is used to denote set union, and not “ + ” (as often used in regular
expressions). The alphabet is a finite set of symbols, denoted henceforth by T . Words are (finite) sequences
of symbols. The empty word (the word of length 0 ) is denoted by ε . In line with other literature on the
Penney-Ante game, capital letters at the beginning of the alphabet ( A , B , etc.) denote words and capital
letters at the end of the alphabet ( U , V , etc.) denote sets of words. An exception to this rule (also in order
to be in line with other literature) is the use of X to denote a word. Sets of words are called languages.
Symbols of the alphabet T are denoted by lower case letters ( a , b , etc.). The length of word A is denoted
by #A . Concatenation of words and of languages is denoted by juxtaposition and (as usual) no notational
distinction is made between symbols of the alphabet and words of length 1 . When parsing expressions,
concatenation takes precedence over other binary operators and unary operators take precedence over all
binary operators.

1.1. Prefixes
For any non-empty word A , pre.A is the prefix of A obtained by discarding the last symbol in A .

The function pre is extended to sets by the definition: for all languages V ,

pre.V = {A,a : A∈T ∗ ∧ a∈T ∧ Aa∈V : A} .

(We use Eindhoven notation [Bac86, GS93] for quantifications. Moreover, we use {dummies : range : term}
to abbreviate 〈∪dummies : range : {term}〉 . In conventional notation, the dummy a in the definition of
pre would be existentially quantified. Occasionally, we use the conventional notation {dummy | range} to
abbreviate {dummy : range :dummy} .)

Repeated application of pre one or more times is denoted by pre+ and zero or more times by pre∗ .
Thus pre+.V is the set of all proper prefixes of words in V , and pre∗.V is V ∪ pre+.V . Note that pre
distributes through set union.

For calculational purposes the following property of pre+ is used. For all words C and languages V ,

C ∈pre+.V ≡ {C}T+∩V 6= ∅ .

1.2. Derivatives
For any set V of words and word X we define X\V by

X\V = {A | XA∈V } .

The set X\V is called the derivative of V with respect to X [Brz64]. It is also a factor of V in Conway’s
terminology [Con71]; the notation reflects this property. An alternative, and sometimes preferable, definition
of the derivative operator is by the Galois connection: for all words X and languages U and V ,

{X}U ⊆V ≡ U ⊆X\V .

Lemma 1 through to lemma 4 give some insight into the properties of derivatives. They are all quite
straightforward and “well-known”. We document them here in order to ensure complete rigour in later
proofs.

Lemma 1. For all words X and sets of words V over the alphabet T ,

{X}(X\V ) = {X}T ∗ ∩V
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Proof Straightforward application of definitions:

B ∈ {X}(X\V )

= { definition of concatenation }

〈∃A : A∈X\V : B =XA〉

= { definition of X\V }

〈∃A : XA∈V : B =XA〉

= { one-point rule, distributivity }

〈∃A :: B =XA〉 ∧ B∈V

= { definition of concatenation and intersection }

B ∈ {X}T ∗ ∩V .

2

Remark: The equality symbol connecting expressions in a calculation (as used in the four steps of the above
calculation) means that the expressions have equal values for all instances of the variables. Similarly, if we
use an only-if symbol (“⇒ ”) or an if symbol (“⇐ ”) as connector, it means that the implication has the
value true for all instances of the variables. The hints, enclosed in braces, justify the claim. The connectives
in a sequence of steps are, of course, to be read conjunctionally. As is common in conventional calculations
in mathematics, we use Robert Recorde’s symbol for equality irrespective of the types of the expressions —
that is, whether the expressions denote numbers, or sets, or relations, or whatever. Uncommonly, we also
use Robert Recorde’s symbol when the expressions denote booleans. We use the equivales symbol (“≡ ”)
to form boolean expressions, i.e. expressions that can evaluate to either true or false . The value of p≡ q
is, as usual, true when p and q have the same (boolean) value and false if they have different values. Of
course, when such an expression is the subject of, for example, a lemma or theorem, it means that it always
evaluates to true . End of Remark

Corollary 2. For all words X and sets of words V ,

X ∈ pre∗.V ≡ X\V 6=∅ .

Proof

X ∈ pre∗.V

= { definition of pre∗ }

{X}T ∗ ∩V 6= ∅

= { lemma 1 }

{X}(X\V ) 6= ∅

= { cancellation property of concatenation }

X\V 6= ∅ .

2

Lemma 3. For all words X and sets of words V ,

X \pre.V = pre.(X\V ) ,

X \ pre+.V = pre+.(X\V ) , and

X \ pre∗.V = pre∗.(X\V ) .
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Proof For any word A , we have:

A ∈ X \pre.V

= { definition of X\ }

XA∈pre.V

= { definition of pre }

〈∃a : a∈T : XAa∈V 〉

= { definition of X\ }

〈∃a : a∈T : Aa∈X\V 〉

= { definition of pre }

A∈pre.(X\V ) .

Thus, by the definition of set equality, X \pre.V = pre.(X\V ) . The second equality follows by induction;
the third then follows from the distributivity of X\ over set union. 2

Lemma 4. For all words X and sets of words U and V ,

X\UV = (X\U)V ∪ 〈∪A,B : A∈U ∧ X =AB ∧ 1≤#B : B\V 〉 .

Proof

C ∈X\UV

= { definition of X\ }

XC ∈UV

= { definition of UV }

〈∃A,B : A∈U ∧B∈V : XC =AB〉

= { case analysis on #X≤#A }

〈∃A,B : A∈U ∧ B∈V ∧ #X≤#A : XC =AB〉

∨ 〈∃A,B : A∈U ∧ B∈V ∧ #X >#A : XC =AB〉

= { definition of X\ and concatenation,

#X >#A ∧ XC =AB ≡ 〈∃D : X =AD ∧ 1≤#D : DC =B〉 }

C ∈ (X\U)V

∨ 〈∃A,B,D : A∈U ∧ B∈V ∧ X =AD ∧ 1≤#D : DC =B〉

= { one-point rule, set comprehension, definition of X\ }

C ∈ (X\U)V

∨ C ∈ 〈∪A,D : A∈U ∧ X =AD ∧ 1≤#D : D\V 〉 .

2

2. First-past-the-post Games

In this section, we formulate the notion of a first-past-the-post game and introduce some simple examples.
Subsections 2.2 and 2.3 establish some properties of such games that will be exploited later.
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2.1. Definition and Examples
Penney-Ante is an instance of a class of probabilistic games for which winning is characterised by the

first occurrence of one of a set of events, and the events are words. We begin by formalising this class of
games.

Definition 5. Suppose S is a subset of T ∗ . The set S is said to be a first-past-the-post game if

(a) pre+.S ∩ S = ∅ .

In words, no proper prefix of a word in S is a word in S .

(b) pre∗.S = {ε} ∪ (pre+.S)T .

In words, appending an arbitrary symbol of the alphabet T to a proper prefix of a word in S gives
a word that prefixes a word in S .

(This informal statement expresses only that the righthand side of the equation is included in the
lefthand side. The opposite inclusion is obvious from the definitions of pre∗ and pre+ .)

A play of the game is an element of pre∗.S . A complete play of the game is an element of S . An incomplete
play of the game is an element of pre+.S . 2

A play of the game can be thought of as repeatedly throwing a die with sides labelled by the elements of
T . The play starts with the empty word and, as the die is thrown, the symbol that occurs is appended to
the end of the play. The play is complete when the play is in S . Property (a) states that no proper prefix of
a word in S is an element of S . That is, the game ends —the play is complete— immediately an element
of S is recognised. Property (b) states that the plays are the empty word or arbitrary continuations of an
incomplete play. It has the consequence that any throw of the die continues an incomplete play of the game.
A second consequence is that S is non-empty (because the righthand side of the equation is a non-empty
set).

Example 6. Taking the alphabet T to be {a,b} , the table below shows examples of languages and
whether or not they fulfil properties (a) and (b) of definition 5.

Language (a) (b)
{a}

√
×

{a,ab} × ×
T k (0≤k)

√ √

T≤k (0<k) ×
√

{a,ba,bb}
√ √

{b}∗{a}
√ √

{b}∗{a}{a}∗{b}{b}∗{a}
√ √

{aaa,bbb} ∪ {ab,aab,ba,bba}
√ √

The set T k , where k is some fixed natural number, exemplifies the set of complete plays in a first-past-
the-post game. It is the game where a die is thrown exactly k times. The last four rows of the table also
exemplify the abstract notion of a first-past-the-post game.

The final row in the table represents a simplified version of the game mentioned in the introduction. In
this game a coin is tossed repeatedly, the symbols a and b representing the two possible outcomes of a
single toss; one player waits for three a s or three b s, the other player waits for at least one a and at least
one b . The set {aaa,bbb} is the set of complete plays that result in a win for the first player and the set
{ab,aab,ba,bba} is the set of complete plays that result in a win for the second player; the incomplete plays
are given by {ε,a,b,aa,bb} .

The penultimate three rows of the tables are used again later in the text. 2
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Generally, the set S may be assumed to be split into disjoint sets each of which is owned by one of the
players. When the play is complete, the owner of the play is the winner. The Penney-Ante game assumes
that two players each choose one word. A consequence of this assumption, and one reason the game has
attracted so much attention, is that the game is then non-transitive: if one player chooses one word it is
always possible for the second player to choose a word that gives a better than evens chance of winning.
This, however, is not the focus of our investigation. For our purposes, the number of players can be arbitrary
as can be the number of words each player chooses. There is no reason why games with fewer or more than
two players should not be allowed, or why each player should choose just one word. “Games” with one
player are associated with pattern-matching problems; see section 4.

The notation S for the complete plays of a game is used by Graham, Knuth and Patashnik [GKP89].
They also use N for the set of incomplete plays. We adopt this convention throughout the paper. The two
clauses in definition 5 of a first-past-the-post game then become:

N ∩S = ∅ , and(7)

N ∪S = {ε} ∪ NT .(8)

2.2. Introducing Complements
In [GO81] plays are (implicitly) characterised by words that do not have a certain property. Theorem 12

explains the connection. Effectively, it states that, in the context of first-past-the-post games, any discussion
of properties of prefix sets that do hold can be rephrased in terms of properties of other sets that do not
hold.

Henceforth we overload the symbol “¬ ” using it both for boolean negation and for the complement of
a set. That is, for all sets of words U and all words A , A∈¬U ≡ ¬(A∈U) . (The lefthand occurrence of
“¬ ” is set complement and the righthand occurrence is boolean negation.) Recall our precedence convention
that unary operators always take precedence over binary operators. In particular, ¬UV should be read as
(¬U)V and UV + should be read as U(V +) .

Lemma 9. If S is an arbitrary language over alphabet T ,

¬(ST ∗) ∩ S = ∅ , and(10)

{ε} ∪ ¬(ST ∗)T = ¬(ST+) .(11)

Proof The proof of (10) is straightforward:

¬(ST ∗) ∩ S

⊆ { S⊆ST ∗ , antimonotonicity of complement }

¬S ∩ S

= { complement }

∅ .

The proof of (11) is by mutual inclusion. First,

{ε} ∪ ¬(ST ∗)T ⊆ ¬(ST+)

= { complement, distributivity }

({ε}∩ST+) ∪ (¬(ST ∗)T ∩ ST+) ⊆ ∅

= { ε 6∈ST+ , T+ =T ∗T }

∅ ∪ (¬(ST ∗)T ∩ ST ∗T ) ⊆ ∅

= { distributivity of concatenation with T over ∩ }

7



(¬(ST ∗) ∩ ST ∗)T ⊆ ∅

= { complement }

true .

Second,

¬(ST+) ⊆ {ε} ∪ ¬(ST ∗)T

= { complement, {ε}=¬(T+) }

¬(ST+)∩¬(¬(ST ∗)T ) ⊆ ¬(T+)

= { distributivity, antimonotonicity of complement }

T+ ⊆ ST+ ∪ ¬(ST ∗)T

= { T+ =T ∗T , distributivity of concatenation over ∪ }

T+ ⊆ (ST ∗ ∪ ¬(ST ∗))T

= { T+ =T ∗T , complement, monotonicity of concatenation }

true .

2

Theorem 12. S is a first-past-the-post game if and only if

¬(ST+) = pre∗.S , and(13)

¬(ST ∗) = pre+.S .(14)

Proof The proof is by mutual implication.
First, assume that S is a first-past-the-post game. We must prove (13) and (14). We prove (13) by

showing that

pre∗.S ∪ ST+ ⊇ T ∗ , and(15)

pre∗.S ∩ ST+ ⊆ ∅ .(16)

These are equivalent to, respectively, ¬(ST+) ⊆ pre∗.S and ¬(ST+) ⊇ pre∗.S from which the equality
follows by mutual inclusion.

First,

pre∗.S ∪ ST+ ⊇ T ∗

⇐ { T ∗ = 〈µX :: {ε} ∪ XT 〉 , fixed-point induction }

pre∗.S ∪ ST+ ⊇ {ε} ∪ (pre∗.S ∪ ST+)T

⇐ { S is a first-past-the-post game: 5(b) }

{ε} ∪ (pre+.S)T ∪ ST+ ⊇ {ε} ∪ (pre∗.S ∪ ST+)T

= { pre∗.S = S ∪ pre+.S ,

concatenation distributes over set union,

ST+ = ST ∪ ST+T }

true .

Second, for all words X ,
8



X ∈ pre∗.S ∩ ST+

= { distributivity, definition of concatenation }

X ∈ pre∗.S ∧ 〈∃A,B : A∈S ∧ B ∈T+ : X =AB〉

⇒ { definition of pre+ }

〈∃A : A∈S : A ∈ pre+.(pre∗.S)〉

⇒ { pre+.(pre∗.S) = pre+.S }

S ∩ pre+.S 6= ∅

= { S is a first-past-the-post game: 5(a) }

false .

We prove (14) similarly. Note that (15) is the same as

pre+.S ∪ ST ∗ ⊇ T ∗

since pre∗.S = pre+.S ∪ S and ST ∗ = S ∪ST+ (and, of course, set union is associative). So it remains
to prove the counterpart of (16), namely

pre+.S ∩ ST ∗ = ∅ .

We have, for all words X ,

X ∈ pre+.S ∩ ST ∗

= { distributivity, definition of concatenation }

X ∈ pre+.S ∧ 〈∃A,B :A∈S :X =AB〉

⇒ { definition of pre∗ }

〈∃A : A∈S : A ∈ pre∗.(pre+.S)〉

⇒ { pre∗.(pre+.S) = pre+.S }

S ∩ pre+.S 6= ∅

= { S is a first-past-the-post game: 5(a) }

false .

Now, assume (13) and (14). We must prove that S is a first-past-the-post game, i.e. S satisfies 5(a)
and (b). Part (a) is proved as follows.

pre+.S ∩ S

= { (14) }

¬(ST ∗) ∩ S

= { (10) }

∅ .

Part (b) is similarly straightforward:

pre∗.S = {ε} ∪ (pre+.S)T

= { (13) and (14) }

¬(ST+) = {ε} ∪ (¬(ST ∗))T
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= { (11) }

true .

2

Although theorem 12 allows us to circumvent the use of the pre function altogether, we choose to do so
only when it is more convenient.

2.3. Incomplete Games
In the course of a first-past-the-post game, players may want to reassess their position, asking questions

like ‘what is the probability of winning?’ and ‘what is the expected length of the remainder of the game?’.
In order to answer such questions, theorem 17, below, formulates the central property that the remainder of
a game after some (typically but not necessarily incomplete) play X of the game is also a first-past-the-post
game.

Recall that X\S denotes the derivative of language S with respect to word X ; see section 1.2.

Theorem 17. X\S is a first-past-the-post game if S is a first-past-the-post game and X is a play of
the game S . The incomplete plays of X\S are given by the set X\N where N is the set of incomplete
plays of the game S .

Proof Suppose S is a first-past-the-post game and X is a play of the game S . Suppose N is the set of
incomplete plays of the game S .

By definition, N = pre+.S . Moreover, by lemma 3, pre+.(X\S) = X\N . So if we prove that X\S
is a first-past-the-post game, it follows immediately that X\N is the set of incomplete plays of the game
X\S .

The two clauses in the definition of first-past-the-post are proved as follows. First,

X\S ∩ pre+.(X\S) = ∅

= { lemma 3 }

X\S ∩X\N = ∅

= { concatenation }

{X}(X\S ∩X\N) ⊆ ∅

⇐ { monotonicity of concatenation }

{X}(X\S) ∩ {X}(X\N) ⊆ ∅

⇐ { by lemma 1, {X}(X\V ) ⊆ V }

S∩N ⊆ ∅

⇐ { definition: (7) }

S is a first-past-the-post game .

So it remains to prove that

{ε} ∪ (X\N)T = X\N ∪ X\S .

The case when X = ε is trivial (since ε\V =V for all V and S is a first-past-the-post game). So let us
assume that X 6= ε . Then

X\N ∪ X\S

= { X\ distributes through set union

(used twice, once in each direction) and
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(8): {ε} ∪ NT = N ∪S }

X\{ε} ∪ X\NT

= { X\{ε}=∅ (because X 6= ε ) }

X\NT

= { lemma 4 }

(X\N)T ∪ 〈∪A,B : A∈N ∧ X =AB ∧ 1≤#B : B\T 〉

= { case analysis on 1=#B ∨ 1<#B :

1=#B ≡ B∈T ∧ B\T ={ε}

1<#B ≡ B\T =∅ }

(X\N)T ∪ 〈∪A,B : A∈N ∧X =AB ∧B∈T : {ε}〉

= { 〈∃A,B : A∈N ∧B∈T : X =AB〉

= { definition of concatenation }

X ∈NT

⇐ { (8): {ε} ∪ NT = N ∪S }

X ∈ N ∪S ∧ X 6= ε

= { assumption: X is a play of the game and X 6= ε }

true }

(X\N)T ∪ {ε} .

We conclude that X\N ∪ X\S = {ε} ∪ (X\N)T , as required. 2

2.4. Relating Probabilities and Expected Values
We assume that the outcome of each single throw of the die is given by some probability distribution p.

The outcomes of separate throws are assumed to be independent. This suggests the following definition.

Definition 18. Let p be a function with domain T and range the set of real numbers. We define the
function hp with domain T ∗ inductively by

(a) hp.ε = 1 ,

(b) hp.Ba = hp.B×p.a , for all B ∈T ∗ and a∈T .

The function hp is extended to languages by defining, for all V , where V ⊆T ∗ ,

hp.V = 〈ΣA : A∈V : hp.A〉 .

The function ep is defined on languages by, for all V , where V ⊆T ∗ ,

ep.V = 〈ΣA : A∈V : hp.A×#A〉 .

Note: these definitions assume that the summations are well defined. In all the concrete examples discussed
in this paper, this is indeed the case. 2

Theorem 23 shows that, if p is a probability distribution on T , hp is a probability distribution on a
first-past-the-post game S . The value of ep.S is then interpreted as the “expected” length of the game. It
is important to note, however, that definition 18 does not assume that p is a probability distribution. We
apply definition 18 just as often when p and/or hp cannot be viewed as probability distributions.
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Typically languages are defined syntactically — by a combination of regular expressions and equations
(aka grammars). “Unambiguity” of syntactic definitions is useful in the evaluation of the functions hp and
ep . This is made precise in the following definitions and lemmas.

Definition 19 (Unambiguous Expressions). Let U and V be expressions denoting languages L.U
and L.V , respectively. We say that the union operator in the expression “ U∪V ” is unambiguous if
L.U ∩ L.V = ∅ (i.e. the languages are disjoint). We say that the concatenation operator in the expression
“ UV ” is unambiguous if, for all words A , A′ , B and B′ ,

A,A′ ∈L.U ∧ B,B′ ∈L.V ∧ AB =A′B′ ⇒ A=A′ ∧B =B′ .

We say that the star operator in the expression “ U∗ ” is unambiguous if, for all natural numbers k and k′ ,
and sequences of words Ai ( 1≤ i≤k ) and Bj ( 1≤ j≤k′ ) all of which are elements of L.U ,

A1 . . . Ak =B1 . . . Bk′ ⇒ k =k′ ∧ 〈∀i : 1≤ i≤k :Ai =Bi〉 .

2

Expressions and languages are, of course, different in the same way that names and people are different.
(“Winston Churchill” is the name of a famous Englishman. The name consists of a forename and a surname,
whilst the person has a mother and father, etc.) Definition 19 has been formulated in a way that makes
the difference clear. Henceforth however, we are not so precise and we leave it to the reader to determine
whether we are referring to the syntactic form of an expression or to the language that is denoted by the
expression. So, for example, a less precise formulation of the first clause of definition 19 is

“the expression U∪V is unambiguous if U ∩V =∅”.

We trust that the reader will have no difficulty in understanding what is meant.
An example of unambiguity is the expression {ε}∪ (pre+.S)T in definition 5. Obviously {ε} and

(pre+.S)T have an empty intersection because {ε} is the set of words of length zero whilst (pre+.S)T
contains only words of length at least one. So the “ ∪ ” operator in the expression is unambiguous. Also
obvious on length considerations is that the (implicit) concatenation operator in the expression (pre+.S)T is
unambiguous. In general, an expression denoting the concatenation of two languages of which one is a subset
of T k for some k (i.e. all the words in the language have the same length) is unambiguous. Deterministic
finite-state machines also exemplify the use of unambiguous expressions in order to define a language. A
deterministic finite-state machine corresponds to a system of equations in languages; the righthand sides
of the equations are disjoint unions of expressions of the form ε or aU (where U denotes the language
recognised by some state of the machine). The union operators and the concatenation operators in these
expressions are all unambiguous.

(Tarjan [Tar81] uses the term “non-redundant” instead of “unambiguous”. We do not follow his ex-
ample because it might be misleading to say that an operator is “redundant”. Moreover, our terminology
corresponds to the standard notion of unambiguity in the case of regular grammars.)

The following lemma is the key to evaluating probabilities and expected values in the context of first-
past-the-post games. Using it, equations expressing languages are easily converted to equations expressing
real numbers; see, for example, section 4.2.

Lemma 20. If U∪V is an unambiguous expression,

hp.(U∪V ) = hp.U +hp.V , and

ep.(U∪V ) = ep.U + ep.V .

If UV is an unambiguous expression,

hp.UV = hp.U ×hp.V , and

ep.UV = hp.U × ep.V + ep.U ×hp.V .

12



Proof Straightforward manipulation of quantifier expressions. 2

In order to remember the rules for evaluating the function ep , it may help to note how the equations
resemble the rules for differentiating a sum and product of two terms.

Although we won’t use it elsewhere, it is interesting to add an additional clause to lemma 20 for the case
of expressions of the form U∗ . To do so, it is instructive to overload the star operator by defining x∗ for
real number x to be 1

1−x . Then we have the lemma:

Lemma 21. If U∗ is an unambiguous expression and 0≤hp.U <1 ,

hp.U
∗ = (hp.U)∗ , and

ep.U
∗ = ep.U × ((hp.U)∗)2 .

Proof If U∗ is an unambiguous expression then so is U i for each natural number i . Applying lemma
20, it is easy to show by induction on i that hp.U

i =(hp.U)i and ep.U
i = i× (hp.U)i−1× ep.U . The two

equations are then applications of the theorems that, for real number x satisfying 0≤x<1 ,

x∗ =
〈
Σi : 0≤ i : xi

〉
and

(x∗)2 =
〈
Σi : 0≤ i : i×xi−1

〉
.

(The infinite summations on the righthand side of these equations are, of course, formally expressed as
limits.) 2

Once again, an easy way to remember the equation for the function ep is to observe its similarity to the
rule for differentiation: using the notation y∗ for 1

1−y ,

d

dx
(y∗) =

dy

dx
× (y∗)2 .

Example 22. Suppose alphabet T equals {a,b} where p.a= q and p.b= r . The expression {a}∗{b} is
unambiguous so, assuming 0≤ q <1 , we have hp.({a}∗)= q∗ and ep.({a}∗)= q×(q∗)2 . It follows that

hp.({a}∗{b}) = q∗× r

and (using the fact that q∗ = 1 + q× q∗ )

ep.({a}∗{b}) = q×(q∗)2×r + q∗× r = (q∗)2×r .

Note that, when q+r =1 , hp.({a}∗{b}) simplifies to 1 and ep.({a}∗{b}) simplifies to q∗ , which equals
hp.({a}∗) .

The same calculations can be done using a deterministic finite-state machine that recognises the language
{a}∗{b} . Such a machine is shown in fig. 1.

b

a

U V

Figure 1: Deterministic finite-state machine

If we let U and V denote the languages recognised by the two states of the machine, we have

U = {ε}∪U{a} ∧ V=U{b} .

13



The righthand sides of these equations are unambiguous so, applying lemma 20, we have:

hp.U = 1 + hp.U×hp.{a} = 1 + hp.U× q

and

hp.V = hp.U×hp.{b} = hp.U× r .

Solving the equations, we get

hp.U= q∗ ∧ hp.V = q∗× r .

This confirms the previous calculation because U={a}∗ and V={a}∗{b} . Similarly, again applying lemma
20,

ep.U = 0 + ep.U×hp.{a} + hp.U× ep.{a} = ep.U× q + hp.U× q

and

ep.V = ep.U×hp.{b} + hp.U× ep.{b} = ep.U× r + hp.U× r .

Solving these equations, we get

ep.U = (q∗)2×q ∧ ep.V=(q∗)2×r .

This again confirms the previous calculations. 2

We now consider the consequences of the function p being a probability distribution. Recall that, using
S to denote a first-past-the-post game and N to denote pre+.S , S and N satisfy (8). From this equation,
it is easy to see that hp.T =1 ⇒ hp.S =1 :

hp.S = 1

= { heading towards (8) in definition of a game,

we add hp.N to both sides }

hp.N + hp.S = hp.N + 1

= { by definition, 1=hp.{ε} ; assumption: hp.T =1 }

hp.N + hp.S = hp.N × hp.T + hp.{ε}

= { expressions N∪S and NT ∪{ε} are unambiguous, lemma 20 }

hp.(N ∪S) = hp.(NT ∪{ε})

= { definition of a game: (8) }

true .

This suggests that, if p is a probability distribution on T , hp is a probability distribution on complete
plays. This fact appears to be taken for granted in [GKP89] and [GO81]. (At least, we have been unable to
find anything that we would recognise as a proof.) We think it is illuminating to make the theorem explicit
and provide a proof. The proof is not calculational because it links the formal definitions with the informal
notion of relative frequencies.

Theorem 23. If p is a probability distribution on the alphabet T (i.e. p.a is the relative frequency
of the occurrence of symbol a when the die is thrown and, thus, hp.T =1 ) and throws of the die are
independent, the function hp is a probability distribution on complete plays of a first-past-the-post game
S . Specifically, for an arbitrary word A in S , hp.A is the relative frequency that the word A is a complete
play of the game. Moreover, hp is a probability distribution on 2S (the set of subsets of S ); if U ⊆S ,
then hp.U is the relative frequency with which a word in U occurs as a complete play.

14



Proof Suppose A ∈ pre∗.S . We prove by induction on the length of A that hp.A is the relative frequency
with which the word A occurs as a prefix of a complete play of the game.

When the length of A is zero, A= ε . The empty word occurs in every play of the game. That is, the
relative frequency of ε as a prefix of a complete play of the game is 1 , which equals hp.ε by definition.
This proves the basis.

Now suppose the length of A is at least one. Suppose A=Ba for some B ∈T ∗ and a∈T . Since
B ∈ pre∗.S , and the length of B is less than the length of A , we may assume inductively that hp.B is
the relative frequency with which the word B occurs as a prefix of a complete play of the game. But
B ∈pre+.S and so, by definition 5(b), hp.B is the relative frequency with which words of the form Bb ,
for some b∈T , occur as a prefix of a complete play. Since p.a is the relative frequency that a occurs,
the independence assumption implies that hp.B×p.a is the relative frequency with which Ba occurs as a
prefix of a complete play. But hp.A = hp.B×p.a by definition. In this way, the induction step is verified.

A corollary of this inductive argument and definition 5(a) is that, when A is a complete play, hp.A is
the relative frequency of A among complete plays. (Because of definition 5(a), a complete play only occurs
as a prefix of itself and no other plays.)

By the definition of a probability distribution, it is an immediate corollary that the extension of hp to
subsets of S is a probability distribution. 2

Note that hp is just a function on arbitrary languages. As shown above, it is a probability distribution
on S and on 2S whenever p is a probability distribution on T but we apply it elsewhere to arbitrary
languages. An example of where hp is used in this way is the following lemma.

Theorem 24. Suppose S is the set of complete plays in a first-past-the-post game and N is the set of
incomplete plays. Suppose the symbols in T occur with probability distribution given by p . Then

ep.S = hp.N .

Proof

ep.S = hp.N

= { heading towards (8) in definition of a game,

we add ep.N to both sides }

ep.N + ep.S = ep.N + hp.N .

But

ep.N + ep.S

= { expression N∪S is unambiguous, lemma 20 }

ep.(N∪S)

= { (8) }

ep.(NT ∪{ε})

= { expression NT ∪{ε} is unambiguous, lemma 20 }

hp.N × ep.T + ep.N ×hp.T + ep.{ε}

= { p is a probability distribution on T , so hp.T =1 ;

also, for each A∈T , #A=1 . So ep.T =1 .

By definition, ep.{ε}=0 . }

hp.N + ep.N .

The lemma follows by combining the two calculations (using symmetry of addition). 2

15



Example 25. Suppose p.a= q and p.b= r , where q+r =1 .
If S ={a,ba,bb} , then N ={ε,b} and ep.S = 1×q +2×r×q +2×r×r = 1+r = hp.N . Note also that

hp.S = q + r×q + r×r = 1 .
If S = {a}∗{b} , then N ={a}∗ ; so ep.S = q∗ = 1

r . (Recall that q∗ denotes 1
1−q .) Note also that

hp.S = q∗× r = 1 . This confirms the calculations in example 22. Note how much easier it is to use the
lemma than to calculate ep.S directly from its definition. 2

Although very easily proved, we have given theorem 24 the status of a “theorem” because it explains sev-
eral of the so-called “paradoxes” associated with Penney-Ante games; see example 49 for further discussion.
So far as we have been able to determine, the theorem has not been observed elsewhere.

The following simple corollary is fundamental to Collings’ proofs [Col82] although it does not appear to
be explicitly stated.

Corollary 26. Suppose p is a probability distribution on the alphabet T . Suppose S is a first-past-
the-post game and X is a play of the game. Then hp.(X\S)=1 and the expected length of the game X\S
is hp.(X\N) .

Proof Simple combination of theorems 17, 23 and 24. 2

3. Prefix-free Languages

A requirement on games is that complete plays are prefix-free languages (definition 5(a)). Any language
V can be reduced to a maximal, prefix-free language by selecting the words that have no proper prefixes in
V . Specifically, if V is a language, the set PF .V , called the prefix-free reduction of V , is defined by

PF .V = V ∩ ¬(V T+) .

The element-wise formulation of PF .V is that, for all languages V and all words C ,

C ∈PF .V ≡ C∈V ∧ ¬
〈
∃D,E : D∈V ∧ E∈T+ : DE =C

〉
.

That is, PF .V is the set of words in V that do not have a proper prefix in V .

Example 27. It is sometimes of interest to determine the expected length of a sequence of observations
that culminates in a given “pattern”. Patterns are classified as either block or hidden [FS09]. Formally, let A
be an arbitrary word over the alphabet T . Then PF .T ∗{A} models the process of observing sequences of
letters until the word A first occurs contiguously (i.e. as a “block” pattern). If 1≤n and A=a1a2 . . . an ,
then PF .T ∗{a1}T ∗{a2} . . . T ∗{an} models the process of observing sequences of letters until all the letters
of A occur in order but not necessarily contiguously (i.e. as a “hidden” pattern).

Lemma 32 establishes that PF .T ∗W is a first-past-the-post game for arbitrary non-empty set W . Thus
PF .T ∗{A} and PF .T ∗{a1}T ∗{a2} . . . T ∗{an} are both first-past-the-post games.

(Of course, PF .W is not a first-past-the-post game for arbitrary non-empty set W . A simple counter-
example is W ={a} since PF .{a}={a} . When T 6={a} this is not a first-past-the-post game; see example
6.) 2

Several properties of the function PF will be used later. The following lemma expresses formally the
process of “reducing” V to PF .V .

Lemma 28. For all sets of words V ,

V ⊆ (PF .V )T ∗ .

Indeed, every word in V has a unique prefix in PF .V .
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Proof Let C be a word in V . Consider a linear search of the prefixes of C , starting with the empty
word and iteratively increasing the length of the prefix, to find a word that is an element of V . The search
will eventually terminate successfully because C is itself such a word. An invariant of the algorithm is that
the current prefix is an element of ¬(V T+) . The prefix B that is found is thus an element of both V
and ¬(V T+) , i.e. B is an element of PF .V , and C is an element of {B}T ∗ . The word B is clearly
unique because any other prefix of C is either shorter than B and so not in V , or longer than B and so
in V T+ . 2

Corollary 29. For all sets of words V ,

V T ∗ = (PF .V )T ∗ ∧ V T+ = (PF .V )T+ .

Proof For the first conjunct, we have:

V T ∗

⊆ { lemma 28, monotonicity of concatenation }

(PF .V )T ∗T ∗

= { T ∗ = T ∗T ∗ }

(PF .V )T ∗

⊆ { [ PF .V ⊆V ] , monotonicity of concatenation }

V T ∗ .

The second conjunct is an immediate corollary since T+ = T ∗T . 2

Lemma 30. PF .V is prefix-free. That is, for all sets of words V ,

pre+.(PF .V ) ∩ PF .V = ∅ .

Equivalently, for all sets of words V ,

pre+.(PF .V ) = pre∗.(PF .V ) ∩ ¬(PF .V ) .

Proof This is, in fact, a corollary of lemma 28 but is proved directly as follows. We have, for all words
C ,

C ∈ pre+.(PF .V ) ∩ PF .V

= { definition of pre+ }

〈∃D : D∈PF .V : D∈{C}T+〉 ∧ C ∈PF .V

⇒ { PF .V ⊆V }

〈∃D : D∈PF .V : D∈V T+〉

⇒ { PF .V ⊆¬(V T+) }

false .

That is, pre+.(PF .V ) ∩ PF .V = ∅ . The equivalent form is an immediate consequence of the definitions
of pre∗ and pre+ , and simple set calculus. 2

Remark: The prefix-free reduction of V is a maximal prefix-free reduction in the sense that it is prefix-free
(lemma 30) and it is the largest prefix-free subset of V , i.e. for all languages U ,

(U ⊆V ≡ U ⊆PF .V ) ⇐ U ∩pre+.U = ∅ .

End of Remark
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Lemma 31. For all languages V and U , the expression (PF .V )U is unambiguous. That is, for all
languages V and all words C , C ′ , D and D′ ,

CD =C ′D′ ∧ C ∈PF .V ∧ C ′ ∈PF .V ⇒ C =C ′ ∧ D =D′ .

Proof We begin with a simple property of words.

CD =C ′D′

⇒ { case analysis on #C and #C ′ , definition of pre+ }

C =C ′ ∨ C ∈pre+.C ′ ∨ C ′ ∈pre+.C .

We now show that, assuming C ∈PF .V ∧ C ′ ∈PF .V , the second and third disjuncts are false.

C ∈pre+.C ′ ∧ C ′ ∈PF .V

⇒ { definition of pre+ }

C ∈ pre+.(PF .V )

⇒ { lemma 30 }

¬(C ∈PF .V ) .

We conclude that

C ∈pre+.C ′ ∧ C ∈PF .V ∧ C ′ ∈PF .V ≡ false .

Interchanging the roles of C and C ′ , the third disjunct is also false. The lemma follows straightforwardly.
2

4. Block Patterns and Penney-Ante Games

We now specialise the analysis to block patterns and Penney-Ante-type games. In Penney-Ante games,
each player chooses a word. A die (with |T | faces each of which bears one of the elements of T , but not
necessarily fair) is then thrown repeatedly until one of the chosen words occurs as a suffix of the play. The
player who made the choice is declared the winner. For example, suppose the alphabet has two symbols a
and b , one player chooses the word a and the second player chooses the word bb . There are just three
complete plays of this game: the words a , ba and bb . The first player wins in the first two cases and
the second player wins in the third case. Note that this is a first-past-the-post game — see example 6.
Recognition of a block pattern (see example 27) is a special case of a Penney-Ante game with one player.

Consider a set W of words over an alphabet T . Note that we do not assume at this stage that W is
finite.

The set S is defined to be the set of minimal-length words that end in a word in W . Formally,

S = T ∗W ∩ ¬(T ∗WT+) .

Equivalently, S =PF .T ∗W .
Returning to the example above, taking W to be {a,bb} we have:

S = {a,b}∗{a,bb} ∩ ¬({a,b}∗{a,bb}{a,b}+) = {a,ba,bb} .

In this very simple example, the set S is finite; this is not the case in general.

Theorem 32. For all W such that W ⊆T ∗ and ∅ 6=W , PF .T ∗W is a first-past-the-post game.
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Proof Let S denote PF .T ∗W and let N denote pre+.S . Then that S satisfies 5(a) in the definition
of a first-past-the-post game, i.e.

N ∩S = ∅ ,(33)

is immediate from lemma 30 by instantiating V to T ∗W .
It remains to verify the property 5(b). Now,

pre∗.S = {ε} ∪ (pre+.S)T

= { pre∗.S = S ∪ pre+.S , N = pre+.S }

S ∪N = {ε}∪NT

= { T is the alphabet, T ∗ = {ε} ∪ T+ }

(S ∪N) ∩ ({ε} ∪ T+) = {ε}∪NT

= { distributivity of intersection over union,

assumption: ∅ 6=W . So {ε}⊆S ∪N }

{ε} ∪ ((S ∪N)∩T+) = {ε} ∪ NT

= { cancellation property of languages: ε has length 0

and words in T+ have length at least 1 }

(S ∪N)∩T+ = NT

= { definition of set concatenation and equality }

〈∀B,a : B ∈T ∗ ∧ a∈T : Ba∈S ∪N ≡ B∈N〉 .

Now, for all B ∈T ∗ and a∈T , we have

Ba∈S ∪N

⇒ { definition of pre }

B ∈pre.(S ∪N)

= { S ∪N = pre∗.S }

B ∈ pre+.S

= { N = pre+.S }

B∈N .

For the opposite implication, choose an arbitrary word C in W . Then, for all B ∈T ∗ and a∈T ,

B∈N

= { C∈W }

B∈N ∧ BaC ∈T ∗W

⇒ { lemma 28, definition of S }

B∈N ∧
〈
∃k : 0≤k≤#(BaC) : prek.(BaC)∈S

〉
⇒ { pre∗.B ∩ S

⊆ { assume: B∈N }

pre∗.N ∩ S
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= { pre∗.N = pre∗.(pre+.S) = pre+.S = N }

N ∩S

= { (33) }

∅ .

That is, assuming B∈N ,〈
∀k : #(aC)≤k≤#(BaC) : ¬(prek.(BaC)∈S)

〉
}〈

∃k : 0≤k≤#C : prek.(BaC)∈S
〉

⇒ { range splitting on k =#C , definition of N }

Ba∈S ∨ Ba∈N

= { definition of set union }

Ba∈S ∪N .

2

We now combine theorem 32 with theorem 12.

Lemma 34. For all W such that W ⊆T ∗ and ∅ 6=W ,

¬(pre+.(PF .T ∗W )) = T ∗WT ∗ , and(35)

¬(pre∗.(PF .T ∗W )) = T ∗WT+ .(36)

Proof The first equation is proved as follows:

¬(pre+.(PF .T ∗W ))

= { assumption: W ⊆T ∗ and ∅ 6=W , theorems 12 and 32 }

(PF .T ∗W )T ∗

= { corollary 29 with V :=T ∗W }

T ∗W T ∗ .

The second equation is proved in the same way. 2

Lemma 34 gives useful insight into the (complete) plays of a Penney-Ante game but also facilitates
comparison with [GO81]: Guibas and Odlyzko implicitly use ¬(T ∗ W T ∗) as the definition of a complete
play. (See, for example, their definition of the function f [GO81, p.184]; see also section 5.2.)

4.1. Equations in Languages
When W is a regular language, PF .T ∗W is also a regular language and so can be recognised by a

deterministic finite-state machine. A deterministic machine is an unambiguous representation of a regular
language; it is therefore possible to compute the expected length of a Penney-Ante game by using lemma
20 to construct a system of simultaneous equations in the expected length of the set of words recognised by
each state of the machine. If the set W is finite, the construction of the deterministic finite-state machine
can be adapted so that the probability of winning with a given word in W can also be computed. However,
the number of equations to be solved is equal to the number of states in the finite-state machine, which can
be commensurate with the total length of words in W . (See section 6 for further details.) In this section,
we show how to construct from a given language W a (non-linear) system of simultaneous equations in
languages. The system has one equation for each word in W (which is not necessarily finite); as we show
in section 4.4, these equations together with the equation 5(b) uniquely characterise PF .T ∗W . Although
W need not be finite, we do assume that it is “reduced”, as defined below.

20



The set W is said to be reduced if, for all words A and B in W , A is a subword1 of B equivales
A equals B . The assumption that W is reduced is sensible because without it the game would be either
unfair or ill-defined — if A is a proper suffix of B , the winner of complete play B is not well-defined,
and if A is a proper subword of B and not a proper suffix, the player who chooses B can never win.
For example the set {a,ba,bb} in example 25 is not reduced. (If the complete play is ba , it is not clear
whether the winner is the player choosing a or the player who chooses ba .) The need for the assumption
also appears formally in our calculations.

Theorem 38 shows how to construct a (non-linear) system of equations defining the sets of complete
plays, S , and incomplete plays, N , in a Penney-Ante game defined by the set of words W . An auxiliary
definition is needed in ordered to formulate the theorem. Specifically, for words A and B , we define

B⊃⊂A = {E,F ,G : B =EF ∧ A=FG ∧ 1≤#F : G} .(37)

We pronounce B⊃⊂A as B match A . Note that, in spite of the symbol by which it is denoted, the match
operator is not symmetric. See example 44 below for instances of the match operator and the application
of theorem 38.

Theorem 38. Suppose W is a reduced set of words. Define S , N and SA , for each word A in W ,
by

S = PF .T ∗W(39)
N = pre+.S(40)

SA = T ∗{A}∩S(41)

Then

S = 〈∪A : A∈W : SA〉(42)
N{A} = 〈∪B : B∈W : SB(B⊃⊂A)〉(43)

Proof Equation (42) is straightforward. For the proof of (43), we first note that

N{A} = 〈∪B : B∈W : SB(B⊃⊂A)〉

≡ 〈∀C :: C∈N ≡ 〈∃B : B∈W : CA∈SB(B⊃⊂A)〉〉 .

(This is a simple application of the definition of equality of sets, set concatenation and set union.) So our
task is to prove

C∈N ≡ 〈∃B : B∈W : CA∈SB(B⊃⊂A)〉

for all words A in W and all words C . The proof is in two parts. In the first part, we simplify the
righthand side. Then, in the second part, we prove the equivalence of the lefthandside with the simplified
righthand side.

For the first part we have:

〈∃B : B∈W : CA∈SB(B⊃⊂A)〉

= { definition of B⊃⊂A : (37) }

〈∃B,E,F ,G : B∈W ∧ B =EF ∧ A=FG ∧ 1≤#F : CA∈SB{G}〉

= { cancellation property of concatenation of words }

〈∃B,E,F ,G : B∈W ∧ B =EF ∧ A=FG ∧ 1≤#F : CF ∈SB〉

= { case analysis on #B <#F ∨ #F ≤#B :

1 A is a subword of B equivales there are words C and D such that B = CAD .
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#B <#F ∧ B∈W ∧ A=FG ∧ CF ∈SB

⇒ { SB ⊆ T ∗{B} }

B is a proper subword of A ∧ B∈W

⇒ { W is reduced, A∈W }

false .

}

〈∃B,E,F ,G : B∈W ∧ B =EF ∧ A=FG ∧ 1≤#F ≤#B : CF ∈SB〉

= { 〈∃E : B∈W ∧ B =EF ∧ #F ≤#B : CF ∈SB〉

= { SB ⊆ T ∗{B} }

#F ≤#B ∧ B∈W ∧ CF ∈SB . }

〈∃B,F ,G : B∈W ∧ 1≤#F ∧ A=FG : CF ∈SB〉

= { S = 〈∪B : B∈W : SB〉 }

〈∃F ,G : 1≤#F ∧ A=FG : CF ∈S〉 .

It remains to prove the equivalence of 〈∃B : B∈W : CA∈SB(B⊃⊂A)〉 and C∈N . This we do by mutual
implication.

〈∃F ,G : 1≤#F ∧ A=FG : CF ∈S〉

⇒ { definition of N : (40) }

C∈N

= { A∈W }

C∈N ∧ CA∈T ∗W

⇒ { definition of S : (39), lemma 28 }

C∈N ∧ 〈∃E,G : CA=EG : E∈S〉

⇒ { case analysis on #A≤#G ∨ #G<#A

#A≤#G ∧ C∈N ∧ CA=EG ∧ E∈S

⇒ { simple arithmetic on lengths }

C∈N ∧ E∈S ∧ E ∈ pre∗.{C}

⇒ { pre∗ is monotonic }

E ∈ S ∩ pre∗.N

⇒ { definitions of N and S : (40) and (39), pre∗ ◦pre+ = pre+

S is prefix-free: lemma 30 }

false .

}

C∈N ∧ 〈∃E,G : CA=EG ∧ #G<#A : E∈S〉

⇒ { cancellation property of concatenation of words }

〈∃F ,G : 1≤#F ∧ A=FG : CF ∈S〉 .

2
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Example 44. Suppose the alphabet has two symbols h and t . Suppose the set W has three elements
hh , ht and th . The set S is {hh,ht}∪{t}∗{th} and the sets Shh , Sht and Sth are, respectively, {hh} ,
{ht} and {t}∗{th} ; the set N is {ε,h} ∪ {t}∗{t} .

The following table shows B⊃⊂A for each of the 9 combinations of B and A . (Rows are indexed by
B and columns by A .)

⊃⊂ hh ht th
hh {ε,h} {t} ∅
ht ∅ {ε} {h}
th {h} {t} {ε}

The appropriate instances of (43) are thus as follows:

N{hh} = Shh{ε,h} ∪ Sth{h}
N{ht} = Shh{t} ∪ Sht ∪ Sth{t}
N{th} = Sht{h} ∪ Sth

(Some simplification has been applied to these equations. So, for example, in the first equation the term
Sht∅ has been omitted and, in the second equation, Sht{ε} has been simplified to Sht .)

These equations are complemented by the equations:

N ∪S = {ε} ∪ N{h,t}
S = Shh∪Sht∪Sth

The combination of the two sets of equations is the basis for calculating the probabilities of winning a game
with three players who each choose the three words hh , ht and th as the eventual outcome of the game,
as we discuss in the next section. 2

4.2. Solov’ev’s Equation and Conway’s Equation
Suppose we are given a probability distribution p on the elements of the alphabet T . Suppose W is

reduced and S equals PF .T ∗W . Then, for each word A in W , hp.SA is the relative frequency of words
ending in A among all complete plays of the game (theorem 23). We show how to use (43) to evaluate hp.SA

for each A . In the case that W has one element, this gives Solov’ev’s equation for the expected length of
a sequence of observations culminating in (the “block pattern”) A ; see theorem 48. In the case that W
has two elements, this gives Conway’s formula for the probability that each person wins in a two-person
Penney-Ante game; see theorem 50.

Lemma 45. Suppose V is a family of languages VB indexed by words B in W . Suppose W is reduced
and finite. Then 〈∪B : B∈W : SBVB〉 is unambiguous.

Proof By lemma 31, each term SBVB is unambiguous. Also, for all words D , D′ , E and E′ , and all
words B and C in W ,

DE =D′E′ ∧ D∈SB ∧ D′∈SC

⇒ { SB∪SC ⊆ PF .T ∗W , lemma 31 }

DE =D′E′ ∧ D∈SB ∧ D′∈SC ∧ D =D′

⇒ { W is reduced, SB ⊆T ∗{B} , SC ⊆T ∗{C} }

D =D′ ∧ E =E′ ∧ B =C .

2

We are now in a position to formulate the theorems attributed to Solov’ev and Conway. In the statement
of the theorems, the binary operator “ : ” is defined on pairs of words by, for all C and D ,

C : D =
hp.(C⊃⊂D)

hp.D
.(46)
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This operator generalises the one with the same name2 in [GKP89]. See theorem 50, below, for further
explanation of the generalisation. When applying the definition we assume, of course, that hp.D is non-
zero.

First, we combine lemmas 20 and 45 with theorem 38 to obtain a linear system of equations in the
quantities hp.N and hp.SA , for each A in W .

Theorem 47. For all A in W ,

hp.N = 〈ΣB : B∈W : hp.SB × (B : A)〉 .

Also, for all A and B in W ,

B : A =
〈
ΣE,F ,G : B =EF ∧ A=FG ∧ 1≤#F : (hp.F )−1

〉
.

Finally,

1 = 〈ΣB : B∈W : hp.SB〉 .

Proof The expression N{A} is obviously unambiguous. So, by lemma 20, hp.N{A} is the product of
hp.N and hp.{A} . Applying hp to both sides of (43) and dividing through by hp.A , this gives the left
side of the first equation above. The righthand side is immediate from lemma 20 and lemma 45.

For the second equation we have:

B : A

= { definition }
hp.(B⊃⊂A)

hp.A
= { (37) and lemma 20

(obviously, righthand side of (37) is unambiguous),

distributivity, Leibniz }〈
ΣE,F ,G : B =EF ∧ A=FG ∧ 1≤#F :

hp.G

hp.FG

〉
= { hp.FG = hp.F ×hp.G }〈

ΣE,F ,G : B =EF ∧ A=FG ∧ 1≤#F : (hp.F )−1
〉

.

The final equation is a consequence of theorem 23. (This is the only equation that assumes that p is a
probability distribution on T .) 2

Theorem 47 is invalid when, for some A∈W , hp.A=0 . The simple reason is that division by zero is
not allowed. The equations can obviously be reformulated so that division by zero is avoided. Even so, the
equations have no solution in the case that hp.A=0 for all A∈W . (This will happen if hp.a=0 for some
symbol a∈T that occurs in every word in W .) This is to be expected: such a game involves waiting for
an event that will never occur. Similarly, theorem 23 is invalid in such a case since the relative frequency of
a particular complete play occurring is zero divided by zero.

Typically A : A is greater than 1 ; it is the expected length of the first occurrence of block pattern A ,
as shown in the next theorem.

Theorem 48 (Solov’ev’s formula). Suppose S =PF .T ∗{A} . Then

ep.S = A : A .

2The notation used by Gardner [Gar74] in what appears to be the first publication of Conway’s formula is CD . In later
publications, several authors use Gardner’s notation.
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Proof

ep.S

= { theorem 24 }

hp.N

= { theorem 47 with W :={A} (using hp.S =1 ) }

A : A .

2

Example 49. Suppose the alphabet has two symbols h and t (for heads and tails). Suppose k is a
natural number and A is the word hkt and B is the word hk+1 . Then

A⊃⊂A = {ε}
B⊃⊂B =

{
j : 0≤ j≤k :hj

}
Suppose further that p.h= q and p.t= r , where q+r =1 . It follows that

hp.(A⊃⊂A) = 1

hp.(B⊃⊂B) =
1−qk+1

1−q

Since hp.A is qk×r and hp.B is qk+1 ,

A : A =
1

qk×r

and

B : B =
1−qk+1

(1−q)×qk+1
.

It follows from theorem 48 that

ep.(PF .T ∗{B})
ep.(PF .T ∗{A})

=
1−qk+1

q
.

In the literature, this property is sometimes described as “paradoxical” [Col82, GKP89]. An informal
summary might be: “the expected number of coin-tosses before hk+1 is encountered is approximately 1

q

times greater than the expected number of coin-tosses before hkt is encountered”, or as summarised in
[GKP89]: “patterns with no self-overlaps occur sooner than overlapping patterns do!”. Great care must
be taken, however, not to be misled by such informal statements. It does not mean that in the game
defined by W ={hkt,hk+1} the expected number of coin-tosses before hkt is encountered will be in the
ratio 1−qk+1

q to the expected number of coin-tosses before hk+1 is encountered. This is because, in gen-
eral, the set PF .T ∗{A,B} ∩ T ∗{A} is not equal to PF .T ∗{A} . (For example, hthh∈PF .T ∗{hh} but
hthh 6∈ (PF .T ∗{hh,ht} ∩ T ∗{hh}) .) In fact, in the Penney-Ante game defined by W ={hkt,hk+1} , we
have

hp.(PF .T ∗{hkt,hk+1} ∩ T ∗{hkt})
hp.(PF .T ∗{hkt,hk+1} ∩ T ∗{hk+1})

=
r

q

and

ep.(PF .T ∗{hkt,hk+1} ∩ T ∗{hkt})
ep.(PF .T ∗{hkt,hk+1} ∩ T ∗{hk+1})

=
r

q
.

Both equations are just what one would expect and not at all “paradoxical”. The “paradox” is caused by
comparing events in two quite different event spaces. 2
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Theorem 50. Suppose W ={A,B} . Suppose W is reduced. Then

hp.SA

hp.SB
=

B : B − B : A

A : A − A : B
.

Proof Instantiating theorem 47, we get two equations, one for each word in W :

hp.N = hp.SA× (A : A) + hp.SB × (B : A) , and

hp.N = hp.SA× (A : B) + hp.SB × (B : B) .

Eliminating hp.N gives the theorem. 2

Corollary 51 (Conway’s formula). If A and B have equal length, and p assigns equal values to
each element of T then

hp.SA

hp.SB
=

hp.(B⊃⊂B)−hp.(B⊃⊂A)
hp.(A⊃⊂A)−hp.(A⊃⊂B)

.

The latter is equivalent to the formula attributed to John Horton Conway in [Gar74] for the odds of A
winning against B in a Penney-Ante game where a coin is tossed and the probability of a head or tail
occurring is 1

2 . In Conway’s formula, the notation B : A is used for hp.(B⊃⊂A)×2#A− 1 . It is not clear
from the published literature whether or not Conway derived the general formula given in theorem 50. 2

The examples below test the use of theorem 50 on cases where it is easy to predict the relative frequency
of occurrence of words in SA and in SB .

Example 52. Suppose the alphabet has two symbols h and t (for heads and tails). Suppose k is a
natural number and A is the word hkt and B is the word hk+1 . Suppose further that p.h= q and p.t= r ,
where q+r =1 and both q and r are non-zero. A simple argument establishes that the relative frequency
of A compared to B in a Penney-Ante game is r

q . We can check that this is predicted by theorem 50 as
follows. We first calculate that

A⊃⊂A = {ε}
A⊃⊂B = ∅
B⊃⊂A =

{
j : 0≤ j <k :hjt

}
.

Then.

hp.(A⊃⊂B) = 0

hp.(B⊃⊂A) =
(qk−1)×r

q−1
.

Combining these with the calculations in example 49 and substituting in theorem 50, we get, for example,

B : A =
(qk−1)×r

(q−1)× (qk×r)

Hence, applying theorem 50 (top formula) (and a lot of simplification), we get

hp.SA

hp.SB
=

r

q

as expected. 2
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Example 53. Suppose the alphabet has two symbols a and b . Suppose the set W has two elements,
A and B , equal to a and bb , respectively. Suppose p.a= q and p.b= r , where q+r =1 . As observed
earlier, PF .({a,b}∗{a,bb})={a,ba,bb} . If q and r model the relative frequency of occurrences of a and b ,
respectively, it is clear that the relative frequency of SA , which equals {a,ba} , is q + r×q and the relative
frequency of SB , which equals {bb} , is r2 . Let us check that this is what is predicted by theorem 50.

We calculate that A⊃⊂A equals {ε} , B ⊃⊂B equals {ε,b} and both A⊃⊂B and B ⊃⊂A equal the
empty set. The hp values are now easily calculated. Applying theorem 50, we get

hp.SA

hp.SB
=

(1+r)×q−0
1×r2−0

which simplifies to
(1+r)×q

r2
. Exploiting the fact that q+r =1 and hp.SA +hp.SB = 1 , it follows that

hp.SA equals 1−r2 and hp.SB equals r2 . 2

The next example is of a game with an infinite number of players.

Example 54. Suppose T ={a,b,c} and W ={a}{b}∗{c} . (So each word in W is of the form abkc for
some k , 0≤k . Note that W is not finite but it is reduced.) It is easy to verify that abkc⊃⊂ abkc={ε}
and, when j 6=k , abjc⊃⊂abkc = ∅ . Thus:

N{abkc} = Sabkc

N ∪S = {ε} ∪ N{a,b,c}
S = 〈∪k : 0≤k :Sabkc〉

It is immediate from these equations that S =N{a}{b}∗{c} . However, it is difficult to “solve” them in the
sense of determining a regular expression defining N . Indeed, it is not even clear that there is a unique
solution for N ; see section 4.4.

Suppose now that p.a= q , p.b= r and p.c= s , where q+r+s=1 . Then, exploiting the above equation
for S , we obtain:

hp.N × q× rk× s = hp.Sabkc

hp.N + hp.N × q× r∗× s = 1 + hp.N × (q+r+s)

(where we write r∗ for 1
1−r ). It follows that hp.N = 1−r

q×s and hp.Sabkc =(1−r)×rk . So the expected
length of a game is 1−r

q×s (which equals 1
q + 1

s ) and the probability that the recognised pattern is abkc is
(1−r)×rk . 2

4.3. Expected Lengths of Complete Plays
In this subsection we show how the above analysis can be repeated for calculating expected values.

Specifically, lemmas 20 and 45 are used to simplify the result of applying the function ep to both sides of
(43). This yields a system of equations that can be solved to obtain ep.N and ep.SA , for each A in W .
Formally, the analogue to theorem 47 is that

hp.N ×#A + ep.N

= 〈ΣB : B∈W : ep.SB × (B : A) + hp.SB × (B ::A)〉

where

B ::A =
〈
ΣE,F ,G : B =EF ∧ A=FG ∧ 1≤#F : (hp.F )−1×#G

〉
and

hp.N = ep.S = 〈ΣA : A∈W : ep.SA〉 .

The interpretation of ep.SA is the expected length of complete plays that end in the word A .
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4.4. Uniqueness
In the case that a Penney-Ante game has just two players, theorem 50 together with the equation

hp.SA +hp.SB = 1 enables one to calculate both hp.SA and hp.SB . In other words, it is possible to
determine the probability that each of the players wins. This raises the question whether or not the system
of equations

N ∪S = {ε} ∪ NT(55)
S = 〈∪A : A∈W : SA〉(56)

N{A} = 〈∪B : B∈W : SB(B⊃⊂A)〉(57)

(the combination of definition 5(b) and (43)) viewed as equations in the unknowns N , S and SA (for each
A∈W ), has a unique solution independently of the size of W .

The answer is no. A simple example demonstrates that there may be more than one solution. Suppose
T ={a}=W . Then, since a⊃⊂a = {ε} , we get just two equations (equation (56) is trivial):

N ∪S = {ε} ∪ N{a}
N{a} = S

As is easily checked, one solution to these equations is N ={ε} and S ={a} . (This is the desired solution.)
A second solution is N ={a}∗ and S ={a}+ .

Note that, although these two equations do not have a unique solution, we can use them to determine
hp.N and hp.S . Specifically, since inevitably hp.a=1 , we get the equations:

hp.N +hp.S = 1+hp.N

hp.N = hp.S

Unsurprisingly, the expected length of a complete play is 1 . (Apply theorem 24.) Note, however, that
hp.{a}∗ is undefined. (Recall that {a}∗ is a solution for N .)

It was a surprise to us that the equations in languages do not have a unique solution since Guibas and
Odlyzko [GO81] prove that the derived equations in generating functions do have unique solutions. Their
argument is based on the fact that, when {A,B} is reduced, ε∈A⊃⊂B ≡ A=B for all words A and B .

In this section, we show that the system of equations (55), (56) and (57) have both a least solution
and a greatest solution! This raises a doubt about their use in calculating probabilities. A step towards
resolving the doubt is to show that the least solution is the unique solution when we add the requirement
that N∩S =∅ (cf. clause (a) in definition 5 of a first-past-the-post game).

Lemmas 58, 60 and 61 below do not assume that N∩S =∅ ; theorem (64) does make the assumption.

Lemma 58. Suppose N , S and SA ( A∈W ) solve the system of equations (55), (56) and (57). Then

〈∀A : A∈W : SA ⊆ T ∗{A}〉 ∧ S ⊆ T ∗W .

Proof

SA solves (57)

⇒ { equality of sets }

SA(A⊃⊂A) ⊆ N{A}

⇒ { {ε} ⊆ A⊃⊂A , N ⊆T ∗ , monotonicity of concatenation }

SA{ε} ⊆ T ∗{A}

= { {ε} is the unit of concatenation }

SA ⊆ T ∗{A} .

The inclusion S ⊆ T ∗W follows immediately from equation (56). 2
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Corollary 59. When W is non-empty and ε 6∈W , the system of equations (55), (56) and (57) has
greatest solutions

N = T ∗

S = T ∗W

SA = T ∗{A}

Proof It is easy to check that the given solutions do indeed satisfy (55) and (56). To check that (57) is
satisfied we calculate as follows:

〈∪B : B∈W : T ∗{B}(B⊃⊂A)〉

= { range splitting; ε 6∈W so {ε} ⊆ A⊃⊂A }

T ∗{A} ∪ 〈∪B,C : B∈W ∧ ε 6=C ∧ C ∈B⊃⊂A : T ∗{BC}〉

= { B∈W ∧ C ∈B⊃⊂A ⇒ BC∈T ∗{A} , T ∗ =T ∗T ∗ , set calculus }

T ∗ {A} .

That N =T ∗ is the largest solution for N is obvious. That S =T ∗W and SA =T ∗{A} are the largest
solutions for S and SA (for each A∈W ) is immediate from lemma 58. 2

Corollary 59 is disturbing because it is the equations (55), (56) and (57) that underlie the construction
of the generating functions for the languages N =¬(T ∗W T ∗) and S = T ∗W ∩ ¬(T ∗ W T+) . In [GKP89,
eqns. (8.67) and (8.68)], for example, the equations are instantiated for the language W ={THTTH} and
then used to derive generating functions. The question is: why don’t the generating functions so constructed
correspond to the solutions N =T ∗ and S =T ∗{THTTH} instead? The answer to this question is that the
construction of the generating functions assumes distributivity properties that only hold for unambiguous
expressions, in particular, the generating function of the language U∪V is the sum of the generating function
of U and the generating function of V only if U∩V =∅ . If we add to the equations (55), (56) and (57)
the requirement that N∩S =∅ , the equations do have a unique solution. This is proved in theorem 64.

Lemma 60. Suppose W is reduced. Suppose N , S and SA ( A∈W ) solve the system of equations
(55), (56) and (57). Then the statements ε∈S , {ε}=S , {ε}=W and ∅=N are all equivalent.

Proof

ε∈S

⇒ { lemma 58 }

ε∈T ∗W

= { T ∗W =W ∪T+W , ¬(ε∈T+W ) }

ε∈W

= { W is reduced, ε is a subword of all words }

{ε}=W

⇒ { N and S satisfy (57), ε⊃⊂ε=∅ }

∅=N

⇒ { N and S satisfy (55) }

ε∈S .

By mutual implication, it follows that the statements in the above calculation are all equivalent. 2
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Lemma 61. Suppose W is reduced and non-empty. Suppose N , S and SA ( A∈W ) solve the system
of equations (55), (56) and (57). Then

PF .T ∗W ⊆ S ∧ pre+.(PF .T ∗W ) ⊆ N .

Proof It is useful to separate the cases that ε∈W and ¬(ε∈W ) . If W is reduced ε∈W ≡{ε}=W
(because ε is a subword of every word). But then, by lemma 60, the unique solution to (55), (56) and (57)
is S={ε} and N=∅ and the theorem holds. From here on, we assume that ¬(ε∈W ) .

Suppose N , S and SA ( A∈W ) satisfy (55), (56) and (57). The induction hypothesis is that for natural
number n ,

pre+.(PF .T ∗W ) ∩ T≤ n ⊆ N ∩T≤ n(62)

and

PF .T ∗W ∩ T≤ n ⊆ S ∩T≤ n .(63)

In the base case, T≤ 0 ={ε} . The property (63) is trivially true because T ∗W∩{ε} is the empty set by
assumption. The property (62) is equivalent to ε∈N , which we prove as follows.

ε∈N

⇐ { N and S satisfy (55) }

¬(ε∈S)

= { lemma 60 }

¬({ε}=W )

= { assumption }

true .

This establishes the base case of (62) and (63).
For the induction step, assume the induction hypothesis and suppose X has length n and a∈T . First,

Xa ∈ pre+.(PF .T ∗W )

⇒ { lemma 30 }

X ∈ pre+.(PF .T ∗W ) ∧ Xa∈¬(PF .T ∗W )

⇒ { induction hypothesis: (62) applied to X }

X ∈N ∧ Xa∈¬S

= { cancellation property of concatenation of words }

Xa∈NT ∧ Xa∈¬S

⇒ { N and S satisfy (55) }

Xa∈N .

This establishes the induction step for (62). Now

Xa ∈ PF .T ∗W

= { definition of pre }

X ∈ pre.(PF .T ∗W ) ∧ Xa ∈ PF .T ∗W

⇒ { PF .T ∗W ⊆ T ∗W }
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X ∈ pre.(PF .T ∗W ) ∧ 〈∃A,C : A∈W : Xa=CA〉

⇒ { assumption: ¬(ε∈W ) . So 〈∀A : A∈W : 1≤#A〉 }

X ∈ pre.(PF .T ∗W ) ∧ 〈∃A,C : A∈W ∧ C ∈pre+.(PF .T ∗W ) : Xa=CA〉

⇒ { (35) }

X ∈ ¬(T ∗WT ∗) ∧ 〈∃A,C : A∈W ∧ C ∈pre+.(PF .T ∗W ) : Xa=CA〉

= { induction hypothesis: (62), applied to C }

X ∈ ¬(T ∗WT ∗) ∧ 〈∃A : A∈W : Xa∈N{A}〉

= { (57) }

X ∈ ¬(T ∗WT ∗) ∧ 〈∃A,B : A∈W ∧B∈W : Xa∈SB(B⊃⊂A)〉

⇒ { W is reduced. So ε∈B⊃⊂A ≡ B =A }

〈∃A :A∈W :Xa∈SA〉

= { (56) }

Xa∈S .

This establishes the induction step for (63). 2

Theorem 64. Suppose W is reduced and non-empty. Suppose N , S and SA ( A∈W ) solve the system
of equations (55), (56) and (57) together with the equation

N∩S = ∅ .(65)

Then N = pre+.(PF .T ∗W ) , S =PF .T ∗W and (for each A∈W ) SA =T ∗{A}∩S . That is, this is the
unique solution to the combined system of equations. Also (by lemma 61) it is the least solution of the
system of equations (55), (56) and (57).

Proof It is useful to separate the cases that ε∈W and ¬(ε∈W ) . When ε∈W , we have already shown
that the unique solution to (55), (56) and (57) is S={ε} and N=∅ . Noting that (65) is also satisfied, it is
also the the unique solution to the combination of (55), (56) and (57) with (65). From here on, we assume
that ¬(ε∈W ) .

Suppose N , S and SA ( A∈W ) satisfy the given system of equations. We first prove by induction on
the length of words that, for all words X ,

(X∈S ≡ X ∈PF .T ∗W ) ∧ (X∈N ≡ X ∈ pre+.(PF .T ∗W )) .

The induction hypothesis is thus for natural number n ,

S ∩T≤ n = PF .T ∗W ∩ T≤ n .(66)

and

N ∩T≤ n = pre+.(PF .T ∗W ) ∩ T≤ n .(67)

Lemma 61 establishes that, in each case, the lefthand side contains the righthand side so that only the
inclusion of the lefthand side in the righthand side has to be proved. Nevertheless the stronger induction
hypothesis is useful.

In the base case, T≤ 0 ={ε} . We have:

ε ∈ pre+.(PF .T ∗W )

= { (36) }
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ε∈¬(T ∗WT ∗)

= { ε has length 0 }

¬(ε∈W )

= { assumption }

true .

Also,

ε∈PF .T ∗W

= { definition of PF }

ε ∈ T ∗W ∩ ¬(T ∗WT+)

⇒ { set calculus }

ε∈T ∗W

= { T ∗W = W ∪T+W

assumption: ¬(ε∈W ) ,

ε has length 0 , words in T+W have length at least 1 }

false

and

ε∈S

= { lemma 60 }

ε∈W

= { assumption }

false .

Consequently,

ε∈N

= { ¬(ε∈S) }

ε∈N∪S

= { S and N satisfy (55) }

true .

These four equations establish the base case of (66) and (67).
For the induction step, assume the induction hypothesis and suppose X has length n and a∈T . We

have to prove that

Xa∈S ≡ PF .T ∗W(68)

and

Xa∈N ≡ Xa ∈ pre+.(PF .T ∗W ) .(69)

In order to prove (69), we appeal to lemma 61: the lemma establishes that Xa∈N if Xa ∈ pre+.(PF .T ∗W ) .
For the opposite implication, we exploit lemma 36 to replace pre+.(PF .T ∗W ) by ¬(T ∗WT ∗) . Specifically,
we prove that

Xa∈N ⇒ (Xa∈T ∗WT ∗⇒ false) .

As a preliminary, we observe that:
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Xa∈N

⇒ { N and S satisfy (55), Xa 6= ε }

Xa∈NT

= { cancellation property of concatenation of words }

X ∈N

= { induction hypothesis: (67), applied to X }

X ∈pre+.(PF .T ∗W )

= { pre∗ ◦pre+ = pre∗ }

〈∀C : C ∈pre∗.{X} : C ∈pre+.(PF .T ∗W )〉

= { induction hypothesis: (67), applied to C }

〈∀C : C ∈pre∗.{X} : C∈N〉 .

So, if we assume Xa∈N , we may also assume every property in the above calculation. (That is we may
also assume Xa∈NT , X ∈N , X ∈pre+.(PF .T ∗W ) , etc.) So, let us assume all these properties. Then

Xa∈T ∗WT ∗

= { definition of T ∗ }

Xa∈T ∗W ∨ Xa∈T ∗WT+

= { T+ =T ∗T , cancellation property of concatenation of words }

Xa∈T ∗W ∨ X ∈T ∗WT ∗

= { (36) }

Xa∈T ∗W ∨ X ∈ ¬(pre+.(PF .T ∗W ))

= { assumption }

Xa∈T ∗W

= { definition of T ∗W }

〈∃A,C : A∈W : Xa=CA〉 .

We continue the calculation with just the term Xa=CA and the additional assumption A∈W .

Xa=CA

= { A∈W so, by assumption, 1≤#A }

Xa=CA ∧ C ∈pre∗.{X}

= { assumption: specifically, C∈N }

Xa=CA ∧ CA∈N{A}

⇒ { (57) }

〈∃B : B∈W : Xa∈SB(B⊃⊂A)〉

= { by assumption ( Xa∈N ) and (65), Xa∈¬S }

〈∃B,D,E : B∈W ∧ D∈SB ∧ E ∈B⊃⊂A ∧ E 6= ε : Xa=DE〉

⇒ { weakening, definition of pre }
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〈∃B,D : B∈W ∧ D∈SB : D∈pre∗.{X}〉

⇒ { assumption: specifically, 〈∀C : C ∈pre∗.{X} : C∈N〉 }

〈∃B,D : B∈W ∧ D∈SB : D∈N〉

⇒ { SB ⊆S , (65) }

false .

This concludes the proof of (69). Now we must prove (68). Again we appeal to lemma 61: the lemma
establishes that Xa∈S ⇐ Xa∈PF .T ∗W and we have to prove the opposite implication. We have,

Xa∈S

⇒ { set calculus }

Xa∈N∪S

= { S and N satisfy (55) ε 6=Xa }

Xa∈NT

= { cancellation property of concatenation of words }

X ∈N

= { induction hypothesis: (66) }

X ∈ pre+.(PF .T ∗W )

= { (36) }

X ∈¬(T ∗WT ∗)

= { cancellation property of concatenation of words }

Xa∈¬(T ∗WT+)

= { (35) }

Xa ∈ pre∗.(PF .T ∗W ) .

But also,

Xa∈S

⇒ { (65) }

¬(Xa∈N)

= { (69), which was proved above }

¬(Xa ∈ pre+.(PF .T ∗W )) .

Combining these two calculations, we have;

Xa∈S

⇒ { two calculations above }

Xa ∈ pre∗.(PF .T ∗W ) ∧ ¬(Xa ∈ pre+.(PF .T ∗W ))

= { for all sets of words V , pre∗.V = V ∪ pre+.V }

Xa∈PF .T ∗W .

This concludes the proof of (68) and the proof of the theorem. 2

Theorem 64 does not guarantee that the system of equations in theorem 47 has a unique solution. Indeed,
we have unable to prove that this is the case, and we must leave this as an open problem.
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5. Generalisation

Suppose X is a play of the game S , where S = PF .(T ∗W ) . We saw in theorem 17 that X\S is
a first-past-the-post game. This suggests that it should be straightforward to generalise theorem 38 to
equations characterising X\S , thus enabling the calculation of the probability of winning and the expected
length of the remainder of the game. This we do below in theorem 71.

In section 5.2, we show how the equations are used to derive probabilistic generating functions. This
enables us to correct errors in [GO81, theorem 2.1].

5.1. Equations
Lemma 70. Suppose S = PF .(T ∗W ) and N = pre+.S . Then

X\S = ∅ ≡ X ∈T ∗WT+ .

Proof The converse of the lemma is

X\S 6= ∅ ≡ ¬(X ∈T ∗WT+) .

But ¬(X ∈T ∗WT+) equivales X ∈N∪S by lemma 36 (and N∪S = pre∗.(PF .T ∗W ) ). That is, we have
to prove that

X\S 6= ∅ ≡ X ∈ N∪S .

This is straightforward:

X\S 6=∅

= { lemma 1 }

{X}T ∗ ∩S 6=∅

= { definition of pre∗ }

X ∈ pre∗.S

= { definition of N and S }

X ∈ N∪S .

2

Theorem 71. Let X be a word and W be a non-empty set of words over the alphabet T . Suppose X
is a play of the game (possibly not complete). Then

{ε} ∪ (X\N)T = X\N ∪ X\S .(72)

Also, for all words A in W ,

(X\N){A} ∪ X⊃⊂A = 〈∪B : B∈W : (X\SB)(B⊃⊂A)〉 .(73)

Finally,

X\S = 〈∪B : B∈W : X\SB〉 .(74)

Proof The property (72) was proved in theorem 17.
To prove (73), suppose A∈W . Then
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S is a first-past-the-post game

⇒ { (43) }

N{A} = 〈∪B : B∈W : SB(B⊃⊂A)〉

⇒ { Leibniz }

X\(N{A}) = X\ 〈∪B : B∈W : SB(B⊃⊂A)〉

= { distributivity of ( X\ ) over set union }

X\(N{A}) = 〈∪B : B∈W : X\(SB(B⊃⊂A))〉 .

We now simplify the subexpressions involving ( X\ ). First we show that

X\(N{A}) = (X\N){A} ∪ X⊃⊂A .(75)

We have, for all words B ,

B ∈X\(N{A})

= { lemma 4, B ∈D\{A} ≡ DB =A }

B ∈ (X\N){A}

∨ 〈∃C,D : X =CD ∧ DB =A ∧ 1≤#D : C∈N〉

Now,

〈∃C,D : X =CD ∧ DB =A ∧ 1≤#D : C∈N〉

= { trading and range disjunction, definition of N }

〈∃C : 〈∃D : X =CD ∧ 1≤#D : DB =A〉 : C ∈pre+.S〉

= { 〈∃D : X =CD : 1≤#D〉

= { definition of pre+ }

C ∈ pre+.{X}

⇒ { {X} ⊆ pre∗.S , since X is a play of the game }

C ∈ pre+.(pre∗.S)

⇒ { pre+ ◦pre∗ = pre+ }

C ∈pre+.S ,

Leibniz

}

〈∃C : 〈∃D : X =CD ∧ 1≤#D : DB =A〉 : true〉

= { trading and range disjunction }

〈∃C,D : X =CD ∧ DB =A ∧ 1≤#D : true〉

= { definition of X⊃⊂A : (37) }

B ∈ X⊃⊂A .

We have thus proved (75). Now we have to show that

X\(SB(B⊃⊂A)) = (X\SB)(B⊃⊂A) .

We have:
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X\(SB(B⊃⊂A)) = (X\SB)(B⊃⊂A)

⇐ { lemma 4 }

〈∪C,D : C∈SB ∧ X =CD ∧ 1≤#D : D\(B⊃⊂A)〉 = ∅

⇐ { SB ⊆S⊆T ∗W }

¬(X ∈ T ∗WT+)

= { lemma 70 }

X\S 6= ∅

= { corollary 2, definition of “play” }

X is a play of the game S .

Equation (74) is immediate from (42) and the distributivity of X\ over set union. 2

Lemma 76. For all languages U and V and all words X , if UV is unambiguous then (X\U)V is
unambiguous. Also, if U∪V is unambiguous then (X\U)∪ (X\V ) is unambiguous.

Proof

(X\U)V is unambiguous

= { definition }

〈∀A,B,C,D : A∈X\U ∧ B ∈X\U ∧ C∈V ∧ D∈V ∧ AC =BD : A=B〉

= { cancellation property of concatenation of words }

〈∀A,B,C,D : A∈X\U ∧ B ∈X\U ∧ C∈V ∧ D∈V ∧ XAC =XBD : XA=XB〉

⇐ { A,B :=XA,XB , {X}X\U ⊆ U }

〈∀A,B,C,D : A∈U ∧ B∈U ∧ C∈V ∧ D∈V ∧ AC =BD : A=B〉

= { definition }

UV is unambiguous.

That (X\U)∪ (X\V ) is unambiguous if U∪V is unambiguous is proved similarly. 2

Corollary 77. Suppose p is a probability distribution on the elements of T and suppose the function
hp is defined on subsets of T ∗ as in definition 18. Suppose W is a reduced subset of T ∗ . Then, for all A
in W and all X in ¬(T ∗WT ∗) (i.e. all plays of the game),

hp.(X\N)+ (X : A) = 〈ΣB : B∈W : hp.(X\SB)× (B : A)〉

and

1 = 〈ΣB : B∈W : hp.(X\SB)〉 .

Proof As in the proof of theorem 47, the corollary is a combination of theorem 71, lemma 76 and lemmas
20 and lemma 45. 2

The following property was observed by [Col82].

Example 78. Suppose S =PF .T ∗{A} and X is a play of S . Then the expected length of the game
X\S is (A : A)− (X : A) .

Proof We instantiate corollary 77 with W equal to {A} :
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ep.(X\S)

= { theorem 17 and theorem 24 }

hp.(X\N)

= { corollary 77 }

hp.(X\SA)× (A : A) − (X : A)

= { corollary 26, S =SA }

(A : A)− (X : A) .

2

5.2. Generating Functions
We now turn to the construction of the generating functions and the error in [GO81, theorem 2.1]. For

any set of words V , define the generating function F.V by

F.V =
〈
ΣA :A∈V : z−(#A)

〉
.(79)

(The coefficient of z−n in F.V is the number of words of length n in V .)
We note that, for all sets of words U and V such that U∩V =∅

F.(U∪V ) = F.U +F.V .

Also, for arbitrary set of words U and V such that UV is unambiguous,

F.(UV ) = F.U ×F.V .

For brevity, let us write NX for F.(X\N) and SX for F.(X\S) . Then, distributing the function F over
both sides of (72), we obtain:

1+NX×|T |×z−1 = NX+SX .(80)

Also, abbreviating F.(X\SB) to SX,B , by applying F to equation (73) and applying the above distribu-
tivity properties, we get

NX×z−(#A) +F.(X⊃⊂A) = 〈ΣB : B∈W : SX,B ×F.(B⊃⊂A)〉 .(81)

(Distributivity is allowed on the left side because the length of all words in X⊃⊂A is less than the length
of all words in (X\N){A} ; on the righthand side it is allowed because of lemmas 76 and 45.)

Finally, by applying F to equation (74), we get

SX = 〈ΣB : B∈W : SX,B〉 .(82)

(Distribution of F over the set union is allowed so long as W is reduced.)
In order to allow direct comparison with [GO81, (2.2) on p.191], let us now relate Guibas and Odlyzko’s

notation to ours. They use the notation “ f(n) ” for the “number of strings of length n over our alphabet
which start with X and do not contain any of A , B , . . . , T ”. (Here “ A , B , . . . , T ” is the set of words
W ; the symbol “ T ” should not be confused with our use of T for the alphabet.) The notation F (z) is
the corresponding generating function 〈Σn : 0≤n : f(n)×z−n〉 . Since the set of strings underlying F is
{X}T ∗ ∩¬(T ∗WT ∗) , we have

F (z) = NX×z−(#X) .

(In more detail, ¬(T ∗WT ∗) equals N by lemma 35 and so {X}T ∗ ∩¬(T ∗WT ∗) equals {X}(X\N) by
lemma 1. The term z−(#X) is F.{X} and NX is F.(X\N) .)
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Guibas and Odlyzko also use the notation “ fH(n) ” to denote “the number of strings of length n which
start with X , end with H , and do not contain any of A , B , . . . , T except for that single occurrence of
H at the end of the string”. The corresponding generating function is denoted by “ FH(z) ”. Thus the set
of strings underlying FH is {X}(X\SH) and FH(z) equals SX,H×z−(#X) .

The final item of notation used by Guibas and Odlyzko is “ XY z ”. The equivalence with our formulation
is given by the equation:

XY z × z = z#Y ×F.(X⊃⊂Y ) .

The example used by Guibas and Odlyzko is when X is hthtth and Y is httht . Then X ⊃⊂ Y equals
{t,ttht} and F.(X ⊃⊂ Y ) equals z−1+z−4 . Guibas and Odlyzko define XY z in this case to be z3+z0 ,
which agrees with the above equation.

Using Guibas and Odlyzko’s notation and the above equalities, the equation (80) becomes

1 + F (z)× z#X ×|T |× z−1 = F (z)× z#X +
〈
ΣB : B∈W : FA(z)× z#X

〉
.

This is equivalent to the first equation in the set of simultaneous equations [GO81, (2.2) on p.191].
On the other hand, the equation (81) becomes, for each A in W ,

F (z) − 〈ΣB : B∈W : FB(z)× z×BAz〉 = −(z1−#X ×XAz) .

This equation differs from the second set of simultaneous equations [GO81, (2.2) on p.191] in the righthand
side: both the sign of the term and the exponent of z are incorrect. (The latter is undoubtedly a typo-
graphical error: their exponent is “ 1−|H| ” and in this context “ H ” has no meaning; the omission of the
minus sign may also be a typographical error but, so far as we are aware, the error has never been corrected
in any subsequent publication.)

A very simple example demonstrates the error. Suppose T ={a}=W and X =A=a . Note that
a⊃⊂a={ε} . So, instantiating (80), (81) and (82), we get

1+Na×z−1 = Na +Sa ,

Na×z−1 +1 = Sa,a and

Sa = Sa,a .

These equations are easily solved to get Na =0 and Sa =Sa,a =1 . This is as expected since a\{a}={ε}
and PF .({a}∗{a})={a} . On the other hand, the equations predicted by [GO81, Theorem 2.1] are

1 + F (z) = F (z)× z + Fa(z)× z ,

F (z) − Fa(z)× z = 1 .

These equations have solution F (z)= 2
z and Fa(z)= 2−z

z2 , which is clearly incorrect.
When the equations are specialised to the case that X = ε , the error disappears (the term F.(X⊃⊂A)

in (81) simplifies to 0 ). Guibas and Odlyzko never use their theorem 2.1 except in this case so the error is
isolated; subsequent publications that refer to their paper also exploit only the special case, where there is
no error. But Guibas and Odlyzko do not give an independent proof of the special case: they only provide
a proof of theorem 2.1.

6. Implementation

This section is about our practical experience with calculating probabilities and expected values when
playing the Penney-Ante game, in particular when the number of players and/or the set W is finite but
large. We compare two methods. The first is to calculate A ⊃⊂ B for each pair of words A and B in
W and then solve the system of equations given by theorem 47 (or, more generally, corollary 77 when
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a play X is also given) together with equation (42). The second is to construct a deterministic finite-
state machine that recognises the language PF .T ∗W and then exploit the fact that such a machine is an
unambiguous expression of the language in order to construct and then solve a similar system of equations in
the probabilities hp.SA . (Equations in the expected lengths ep.SA , for each A in W , can also be computed
from a deterministic finite-state machine as we illustrated in example 22. In general, the equations can be
formulated in the same way that we formulated such equations from theorem 47 in section 4.3.)

With one exception, all publications that we are aware of that discuss the calculation of the probabilities
and expected values do so by first constructing a finite-state machine. The exception is the paper by
Noonan and Zeilberger [NZ99] which describes a Maple package to solve for the generating functions; these
are then instantiated in order to construct probabilities and expected values. Publications that exploit the
finite-state machine typically do not give details of how it is constructed; in almost all cases (for example,
[Col82, Nic07]), it appears to be done in an entirely ad hoc fashion. In one publication [CWT05], the
standard textbook algorithm to construct a finite-state machine from a given (arbitrary) regular expression
is used.

A much simpler, and more effective, way to construct the finite-state machines is to exploit Aho and
Corasick’s [AC75] generalisation of the well-known Knuth-Morris-Pratt algorithm [KMP74]. Aho and Cora-
sick show how to construct a finite-state machine that recognises the language T ∗W T ∗ for a given alphabet
T and finite set of words W . The construction has three stages: construct a tree recognising W , construct
the Knuth-Morris-Pratt “failure function” for the tree and finally convert this to a deterministic finite-state
machine. Fig. 2 illustrates this construction for the alphabet {a,b} and set of words {aaa,abb,baa} .

The construction shown in fig. 2 differs from the one described by Aho and Corasick [AC75] in that the
failure function has not been constructed for the final nodes (fig. 2(b)) and, in the deterministic finite-state
machine (fig. 2(c)), there are transitions from each final state to itself for each symbol of the alphabet
(rather than the transitions that would be constructed by their algorithm). Although Aho and Corasick do
state in the Concluding Remarks of their paper that their algorithm constructs recognisers of languages of
the form T ∗W T ∗ , their remarks are incorrect without this modification to their algorithm — which they
do not make explicit.

The construction is linear in the sum of the lengths of the words in W. As is well-known, it is a trivial
task to convert a deterministic finite-state machine recognising a language L to one recognising ¬L : just
switch final to non-final states and vice-versa. So Aho and Corasick’s algorithm describes directly how to
construct a deterministic finite-state machine that recognises the set ¬(T ∗W T ∗) , the set of incomplete plays
of the game defined by W . A simple modification of the algorithm —specifically, eliminate transitions from
final states of the recogniser for T ∗W T ∗ — also yields a recogniser of PF .T ∗W . Note that the recogniser
so obtained is not reduced (in the standard textbook sense of “reduced”); importantly, it has the property
that there is a one-to-one correspondence between the words in W and the final states.

Having constructed the deterministic finite-state machine for PF .T ∗W , a standard textbook method
is used to construct a (linear) system of equations in the languages Lq , for each state q , consisting of
the set of words recognised by q . Using lemma 20 and the fact that the righthand side of each equation is
unambiguous, a (linear) system of equations is constructed in the unknowns hp.Lq . Solving these equations,
using standard methods, enables one to determine hp.SA for each word A in W : just exploit the one-to-one
correspondence between the words in W and the final states.

In passing, it may be worth noting that the construction of the failure function is equivalent to the
construction of a so-called “factor graph” [BL77] of the language PF .T ∗W ; a “factor graph” [Bac75] is
the transitive reduction of the “factor matrix”, a beautiful but little-known concept introduced by Conway
[Con71] in his book on regular algebra. Given the relative coincidence of the publication of Penney’s paper
and the publication of Conway’s book, it may be that Conway’s understanding of factor theory helped him
to construct the formula for calculating the probability of winning in a 2-person Penney-Ante game (see
theorem 50 and corollary 51).

The solution of the equations given by theorem 47 and Aho and Corasick’s construction of a deterministic
finite-state recogniser of PF .T ∗W give two methods of calculating the probability of winning for each choice
of a word in W as well as the expected length of a game. More generally, corollary 77 enables the calculations
to be made at an arbitrary intermediate point in the game. Similarly, the finite-state machine can also be

40



a a a

b

b
b

a a

(a) Tree of Words

a a a

b

b
b

a a

(b) Failure Function

,a b

,a b

,a b

b

a a a

b
b

b

b

a

b a

a

(c) Deterministic Finite-State Machine

Figure 2: Construction of a Recogniser of {a,b}∗{aaa,abb,baa}{a,b}∗ .

used at an arbitrary intermediate point in the game: for given play X , calculate the probabilities of reaching
each of the final states from the current state (the state reached from the start state given input X ).

Both methods have been implemented by Ngoc Do [ND12]. The relative independence of the two methods
gives a useful practical way of testing the theory: the calculations should always give the same answer! Ngoc
Do confirmed that this is indeed the case for randomly generated test data. The maximum number of words
and maximum word length in her testing were 25 and 20 , respectively.

The two methods have different space and time complexities. When using the deterministic finite-state
machine, the dominant factor is the number of terms in the equations that must be solved, which equals
the number of transitions in the finite-state machine. When using the equations given by corollary 77, the
number of equations is approximately the number of words in the set W , and the number of terms in the
equations is typically much smaller. (The number of terms in the two sets of equations is only equal when
W ={ε} .) The dominant factor is, however, the calculation of A⊃⊂B for pairs of words A and B . We
suspect that Aho and Corasick’s algorithm can also be used to improve the efficiency of this calculation for
large words and/or large sets of words but have not investigated it in detail.

Ngoc Do [ND12] has experimented with sets of up to 300 words each of length up to 100 . For such
very large input values, she was unable to compute the probabilities of winning but she was able to compute
the size of the equations that must be solved. For small input values, Ngoc Do’s results show little overall
difference between the two methods but for larger input values, the size of the deterministic finite-state
machine soon becomes extremely large.

Of course, these experiments do not reflect a practical application. In the case of such an application,
we recommend repeating the experiments to determine which method is better.

7. Discussion and Conclusion

The Penney-Ante game has attracted a lot of interest as an example of so-called “paradoxes” in prob-
ability theory and also as a (textbook) example of the use of generating functions. This paper has a very
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different focus to earlier publications: our focus is on formalising and reasoning about the event space that
underlies plays of the game rather than the probabilities or expected lengths. We have shown how our
equational characterisation of plays of the game underlies the equational characterisation of appropriate
generating functions, probabilities of winning and expected lengths of games.

Probability theory is a well-established and well-understood area of mathematics but it is also notorious
for the misinterpretations and mistakes that are frequently made. Because of the theory’s central importance
in many applications, great care is needed to properly formalise the event space under consideration. An
informal description of the event space is easily misunderstood and, in many cases, several different event
spaces can be confused.

In the analysis of Penney-Ante games, there are two event spaces: a single throw of a die and a sequence
of throws of a die comprising a complete play of the game. However, several of the publications on the game
seem to have other event spaces in mind without being explicit about what they are. For example, Guibas
and Odlyzko [GO81, p.195] state:

The probability that none of A , . . . , T occurs in the first n throws and that the following |H|
throws will produce H =h1, . . . ,h|H| is just s(n)Pr(H) . . . .

In this statement, three different event spaces can be identified: the event space consisting of words in
which none of A , . . . , T occurs, the event space consisting of words of length |H| , and the concatenation
of the latter two event spaces. The last of these is not the event space consisting of complete plays of the
game since a word in A , . . . , T may be recognised when a proper prefix of H has been thrown. Formally,
using our notation, their arguments appear to ascribe meaning to hp.SB ×hp.(B ⊃⊂ A) as a probability,
whereas, for B 6=A , the frequency that a word in SB(B ⊃⊂ A) ever occurs is 0 — the game would be
terminated before such an event occurs. If it can indeed be interpreted as a probability, the event space
should be made clear. Similarly, in [GKP89] equations are formulated for hp.N and hp.SA (for each A )
—albeit using a different notation— and it is claimed that hp.SA is the probability that the event A occurs.
However, this claim does not appear to be properly justified, as evidenced by the fact that no claim is made
about the meaning of hp.N . Here we have made clear that hp is a probability distribution on the event
space PF .T ∗W . In the derivation of theorem 50, the function hp is also applied to languages not in this
event space, in which case it is typically not a probability distribution: hp.N , for example, is the expected
length of a complete play of the game.

The confusion of different event spaces also explains some of the so-called “paradoxes” of Penney-Ante
games. For example, for given words A and B over alphabet T , the event spaces PF .T ∗{A} , PF .T ∗{B}
and PF .T ∗{A,B} are different and not related by a simple distributivity property of the function PF . So
it is not surprising that the expected length of an event in PF .T ∗{A} is unrelated to the expected length of
an event in PF .T ∗{A,B}∩T ∗{A} . The “paradoxical” situation that “patterns with no self-overlaps occur
sooner than overlapping patterns do” is no longer a paradox if the event spaces are made explicit — see
example 49.

We make no use whatsoever of generating functions. Generating functions enable one to derive numerical
properties related to word length; our derivations show that word length is irrelevant to deriving Conway’s
formula (and also Solov’ev’s formula). Even in the case of calculating the expected length of a complete play
of a game, where word length is part of the definition, theorem 24 is all that is needed. Generating functions
offer a very powerful tool for reasoning about a sequence of numbers. Their role in our analysis has been
taken by the event space itself: the set of complete plays of the game. The algebra of languages is not as rich
as the algebra of generating functions (for example, multiplication of generating functions is commutative
but concatenation of languages is not) but greater understanding can be achieved by exploiting the algebra
to explore the relations between different event spaces. On the other hand, we have been unable to calculate
a formula for the standard deviation of the length of complete games (or for other higher-order cumulants).
The conclusion would appear to be that the versatility of generating functions is best demonstrated by their
use in determining higher-order cumulants.

Some challenges remain:
We have established in theorem 64 that the set of complete plays of a Penney-Ante game can be uniquely

characterised by a system of (non-linear) equations combined with an unambiguity requirement but have
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been unable to translate this theorem to a proof that the equations in probabilities (theorem 47) also have a
unique solution. We suspect that the problem can be overcome by a deeper analysis of the relation between
path-finding in a graph and solving linear equations (in real arithmetic). Essentially, the problem is to show
that the matrix defined by the colon operator —see (46)— is non-singular. It should be possible to do so by
showing that the matrix defined by the match operator —see (37)— is also “non-singular” using techniques
similar to those used by Tarjan [Tar81, lemma 2].

We have observed how Aho and Corasick’s algorithm can be used to calculate the probability of winning
(and also expected values, although not in detail) but we have not shown how it might also be used to
compute the matrix of match values. We strongly suspect that this is possible but further investigation is
required.

Finally, we have only just begun an exploration of first-past-the-post games since much of the paper is
about one particular subclass of such games. It would be interesting to extend the exploration to other
subclasses, for example to the class of “hidden” patterns mentioned in example 27.
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