


III TilE FACTOR MATHRIX AND FACTOR GRAPH

ation - The Star-Height Problem

In this chapter and the next we present some new
results in the theory of factors of regular languages. The
term "factor", as we shall use it, was introduced by Conway
(131, and to him are due ail the fundamental results of
"factor theory". Although we would hope that our results
will be of value in their own right as a contribution to
factor theory, our interest in this theory was motivated by
an interest in the "star-height problem" of regular languages.

Any regular language may be denoted by an unbounded
number of different regular expressions. Thus (a+b)* and
(a*b)*a* are two expressions denoting the same language (con-
sisting of the set of all strings of a's and b's). Different
expressions denoting the same language may of course differ
rather trivially, but often they are remarkably "unalike",
For example (b+a(aa*b)*b)* and (b+ab)*+(a+b)*b(b+ba)*b both
denote the same language, (see example 1 of this chapter), but
are quite different in form from each other. It is therefore
natural to seek some canonical expression denoting a partic-
ular language - wherein the “canonicality" of an expression
signifies that it is the "simplest" of all expressions which
denote that Tlanguage. Little, if any, progress has been
made in finding a canonical form for regular languages, and
S0, as an intermediate step, efforts have been directed
towards finding a way of assigning to each regular language

some measure of the “complexity" of the language.

As a measure of the complexity of a language,
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Eggan's [18] definition of "star-height" would appcar to

pe very reasonable and is generally accepted (9, 10, 11,

12, 15, 28, 291. To define this, one first defines the
star-height of a regular expression to be the maximum depth
of embedded starred terms in the expression. In our earlier
example (b+a(aa*b)*b)* has star-height 3 and
(b+ab)*+(a+b)*b(b+ba)*b has star-height 1. The star-height

of a regular language 1is the minimum star-height of all

regular expressions which denote that language. The star-
height problem is then just the problem of finding the star-
height of any given regular language.

This problem was first posed in 1963 by Eggan, and
has been tackled by various authors [9; 18 114 12 155 28,
29]. But, in common with many mathematical problems which
are quite simply stated, its solution has not been forth-
coming and it would appear to be a very difficult problem.
In the next few paragraphs we have summarised those results
which we consider an essential part of the repertoire of
anyone who wishes to tackle this problem. We then continue
to discuss, quite briefly, other results on this problem
which have appeared, and indicate why these results led us

to feel that Conway's factor theory was pertinent to the

problem.

Tl Previous Work

A concept which is fundamental to any study of the
star-height problem, is Eggan's [1871 notion of the rank of
a transition graph. The rank is a measure of the loop com-

plexity of a graph, but it is also very closely related to
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the notion of star-height.

In order to define rank some additional terminology
is needed. A subgraph of a graph G is a graph G? determined
by a set Ye X of the nodes of G, having just those arcs
(x5 xj) of G between nodes X, and X5 both of which are

in Y. A subgrapH is strongly connected if there is a path

from x, to x, for every ordered pair (x,, X,) of its nodes.
A section of a graph G is a strongly connected subgraph
that is not a proper subgraph of any strongly connected sub-
graph of G.

The rank r(G) of a transition graph G is then

defined as follows:

(i) If G is not strongly connected then
a) if G has no strongly connected subgraph r{G)=0,
otherwise

b) r{G) is the maximum rank of all the sections

of G.
(1) If G is strongly connected r(G) = n+l if and
only if

a) it does not have rank i for any isn, and

b) it has a node x whose deletion from G results

in a subgraph of rank n.
The above recursive definition of rank is not par-

" ticularly enlightening; readers not familiar with the notion
should refer to McNaughton's paper (297, (from which the
above definitions were taken), foramore detailed discussion.

Now consider any recogniser (6,8,7) of the language

Q. If we use, for example, the escalator method to calcu-

late G* we obtain some regular expression a for Q. Re-
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ordering the nodes of G and reapplying the escalator
method to calculate G* will result in a different regular
expression B for Q which, moreover, will often have a
different star-height to that of a. Thus there will be
some optimal ordering of the nodes of G which, when using
the escalator method to calculate G*, will yield some
minimal star-height expression y for Q from the graph G.
The definition of the rank of the graph G is so contrived
that the star-height of y equals the rank of G. This is
expressed by Eggan's theorem [18] which is essentially the
following:

Eggan's Theorem

Consider the use of the escalator method to calculate G*
I from a given graph G. Then
(i) for a suitable ordering of the nodes of G the re-

sulting regular expressions for those entries

I [G*]ij for which G is an all-admissible recogniser
have star-height equal to the rank of G. For

l other entries (ones for which G is not an all-
admissible recogniser) the resulting regular ex-
pressions have star-height less than or equal to
the rank of G.

(i1) For all other orderings of the nodes the resulting

regular expressions for entries [G*]ij, for which

G is an all-admissible recogniser, have star-height
greater than or equal to the rank of G.

A converse to this result was also observed by

Eggan, namely that to every reqular expression there natur-
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ally corresponds a graph G having rank equal to the star-
height of the expression. Thus one obtains the following
corollary:

Corollary [18, 29] The star-height of a regular language
equals the smallest rank of all transition graphs which
recognise the language.

This corollary to Eggan's theorem immediately sug-
gests an approach ;o the problem of determining the star-
height of a regular language which is to find a method of
obtaining a graph of least rank which is a recogniser of
the language; it is this approach that almost all papers
on the star-height problem have adopted. (Note that in the
literature [29] the above corollary is usually referred to
as "Eggan's theorem" - for reasons which will emerge we
would 1ike to remove the emphasis from this corollary.)

The most significant contribution to the star-height
problem has been made in two papers by McNaughton [28,29].
In the first of the two, McMaughton studies languages whose
semi-group is a pure group. For this class of languages
McNaughton solved the star-height problem completely, al-
though his solution involved enumerating a possibly rather
large number of different graphs. However, for the subclass
of this class consisting of languages for which the finite-
state machine has a unique terminal state, he showed th%t
the star-height of the language equals the rank of the
finite-state machine. In spite of this result any connection

between the structure of the semigroup of the Tanguage and

its star-height would seem to be very illusory.
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4 In order to establish his mephod McMNaughton intro-
I duced the idea of a pathwise homomorphism between two graphs,
! and then proved a simple but fundamental theorem on the
' ranks of the graphs. As we shall need this result in the
next chapter we state the theorem below.
Definition A pafhwise homomorphism is defined as a mapping
v from the nodes and arcs of the transition graph G onto
the nodes and arcs of G”, such that y(x), for any node x
of G, 1is a node of G” and the following two conditions hold
between the arcs of G and G”:
(PH1): For each arc B of G Tlabelled b and leading from
node x; to node xz, either y(B) is a node of G” and y(x1)
= y(xz) = v(B) or there is an arc y(B) in G” labelled b
(PH2): If w 1is a word taking node xi to node x3 in G~
there are nodes x; and x, in G with y(x;) = xi and y(xz2)
= X5 such that w takes node x; to node x; in G.
McNaughton's theorem is the following:

McNaughton's Pathwise Homomorphism Theorem If there is a
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‘ and leading from y(x;) to y(x2).
|
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pathwise homomorphism y from G onto G” then the rank of G*

i

} is less than or equal to the rank of G.

| Following McNaughton's work a number of papers were

| written by Cohen [9,10,11] and by Cohen and Brzozowski [12].
. Some of these papers were concerned with extending

' McNaughton's work on pure group languages (to "reset-free"

[ and "permutation-free" languages and to languages with the

E "finite intersection property"), the basic idea being to

E apply a combination of McNaughton's pathwise homomorphism

theorem and the corollary to Eggan's theorem. Others pro-




‘ vided more empirical results on the star-height problem.

However, with the exception of Eggan's theorem and
McNaughton's pathwise homomorphism theorem, progress towards
solving the star-height problem has been rather slow and
fragmentary.

Our own first step in tackling the problem was as
follows: Eggan's work showed that one closure algorithm
(the escalator method) yielded regular expressions having
star-height characterised by the rank of the graph. Is it

possible that other closure algorithms yield regular ex-

|

|

|

’ pressions characterised by some other property of the graph
I and possibly even offer an improvement over the escalator

| method? 1In particular, do any of the elimination methods

| of Chapter II (e.g. Jordan elimination) offer such an

i improvement?

It is not long before one realises that this is not
so, and that the rank is indeed the appropriate character-
jstic of a graph when applying any "elimination method".
This statement is made precise in Appendix B where we give
a general formulation of an "elimination method" and use
this to prove the following theorem.

Theorem B4 If an elimination method is used to find G*
for a graph G, then G* will contain regular expressions
having star-height at least equal to the rank of G.

Wle have observed, however, that the elimination

methods are all based on regular tautologies having ana-

loques in linear algebra, but that not all regular tauto-

logies have such analogues. This suggested two problems:
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a) Can we invent new closure algorithms which do not
have analogues in linear algebra? and
h) does the rank of a graph represent the "best" one
can do using these new algorithms, or can we do
better than the rank (i.e. obtain regular expres-
sions for the entries [G*]ij of star-height less
than the rank of G)?
The main stumbling block to this approach is praoblem
a), since it would appear extremely difficult to solve this
problem in full generaiity. (Otherwise, no doubt, such
algorithms would already have been published.) We were
therefore obliged to seek a new closure algorithm which
could be applied to particular classes of graphs, e.g.
finite-state machines, each graph in the class being somehow
naturally defined by a given language. Yet once again, for
graphs such as the finite-state machine or semigroup machine,
such algorithms seem impossible to find; thus we were
forced to look for other "naturally defined" graphs to which
such an algorithm could be applied. Cohen and Brzozowski
[12] introduced the notion of a "subset automaton" but the
difficulty in studying this class of graphs is that even for
very simple regular lTanguages the size of the "subset auto-
maton" may be immense, thus precluding any empirical in-

vestigations.

152 The Relevance of Factor Theory

The class of graphs which we eventually decided to
study are called "factor graphs". The idea of studying

factor graphs came from reading McNaughton's paper [29] and
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the chapter in Conway's book 1137 on factor theory. Let us

use Conway's terminology and call G.H.K a subfactorization of

a language 0 if G.H.K = Q, and call H a factor of Q if there is
no H' > H such that G.H'.K < Q. (Thus H is in a sense maximal).
In his paper, McNaughton presented an extremely useful tech-
nique for establishing a lower bound on the star-height of

a given language. The technique involves spotting partic-

ular regular languages and showing that in any recogniser

of Q these langquages define nodes of the recogniser which

are connected by arcs having loop complexity at least equal

to the conjectured lower bound. Now, in general, subfactori-
zations of a language Q are mathematically unmanageable; but
Conway showed that factors are manageable and, moreover, exhibit
some remarkable properties. One such property particularly
relevant to our aims is that the factors are all the entries

in a matrix, denoted rﬁl and called the factor matrix, which

is the closure (C + L * of a constant + linear matrix.

max max)
Thus the factors naturally define a transition graph, which

is, moreover, a recogniser for Q.

The matrix C + L as it turns out, is not very

max max?
useful for our purposes, but it is a stepping stone to prov=
ing that there is a unique minimal constant + linear matrix

*

Gq, which we call the factor graph of Q, such that GQ

One of the main reasons for studying a problem like
the star-height problem is the possible side-benefits that
one can gain on the way. In trying to attack the problem

using factor theory, we have been particularly on the lookout
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for such benefits; but also we are expressing a belief

that a mathematical solution to the problem, which is not

an impracticable "enumerative" solution, does exist. Rather
disappointingly, the algorithm we shall present does not
always yield a minimal star-height expression for a given
reqgular language. Nevertheless we feel it is important as

a contribution to our understanding of factor theory and
because it offers a new approach to the problem, one which
may well be more successful than earlier approaches using
Eggan's theorem.

The presentation of the algorithm to determine GE
occupies both this chapter and the next. This chapter is
devoted to the fundamental properties of factors (due to
Conway [131) and to introducing the factor graph, Gq, of a
reqular language Q and providing an algorithm to calculate

G In the next chapter we introduce the notion of separ-

Q
ability of factors and exploit this notion to derive an
algorithm to calculate the closure GE of the factor graph.
We also prove that the algorithm yields regular expressions
for Q of star-height less than or equal to the rank of

Gq, and, as we demonstrate, in many cases strictly less than

the rank of G Finally we discuss how the results could

Q
be extended in a further attack on the star-height problem,

2, g-classes, r-classes and c-classes

We shall assume that the reader is familiar with the
basic results on finite-state machines, to be found in
Rabin and Scott [357, and the method of derivatives due to

Brzozowski [3].



The purpose of this section is merely to summarise
those results which we shall require later, and to define

the &, r and c-classes of a regular language Q.

| 2] Machine, Anti-machine and Semigroup

| Let Q < V* be any language. Qnaturally defines
three equivalence relations on V* - Qﬁ, Qr and QC - given
by:
xQEy < (¥zeV*, zxeQ <= zyeQ)

xQ.y <« (¥zeV*, xzeQ < yzeQ)
xQ.y = (Yu,veV*, uxveQ < uyveQ).

These are, of course, the usual left-invariant equivalence

relation, right-invariant equivalence relation and congruence
] relation introduced by Rabin and Scott [35].
The fundamental theorem linking these relations to
regular languages is the following:
! Theorem 2.1 A language Qc V* is reqular < the relation
DE is of finite index < the relation Qr is of finite index
< the relation Qc is of finite index.
Definition Let Q be a regular language. By theorem 2.1,

each of the relations an Q. and uc partitions V* into a

r
! finite number of equivalence classes. We shall call an
equivalence class modulo Q, an r-class of Q, an equivalence
class modulo Qr an QL-class of Q and an equivalence class
modulo Q. a c-class of Q.

Note the peculiar switch: an equivalence class

modulo QR is an r-class of Q. The reason for this will

become evident later.
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We shall also write 2(x) for the f-class containing
X, r(x) for the r-class containing x, and c(x) for the c-
class containing x.
Definition The machine of a reqular language ( is the
unique deterministic recogniser of Q having the least
number of nodes. |

The anti-machine of Q is the machine of 6, where
6 denotes the set of all words which are the reverse of
words in Q.

Nodes of the machine and anti-machine will usually
be called states.

The semigroup of Q 1is the quotient of the free semi-
group V* with respect to the congruence relation Qc'

The machine and the 2-classes af 0, and the aﬁti-
machine and the r-classes of Q are connected by the follow-

ing theorem.

Theorem 2.2 Let Q be a regular language. Let the states
of the machine for ( be {21, S Qn} and the states of
the anti-machine be {rl, iRl rm}. Suppose that E] and ™

are the start states of the respective machines and let xeV*.

Then we have:

(a) If x takes the start state 2, to state 2, of the
machine, then the %2-class containing x, £(x), is the
set of all words which also take state 24 to state Lse

(b) If X takes the start state ry to state rj of the anti-
machine, then the r-class containing x, r(x), is the
set of the reverse of all words which take state ry to

state r..
ate §
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Corresponding to the semigroup we can always con-

struct a semigroup machine, whose states correspond to

elements ¢y of the semigroup, and where, for all acsV,

there is an arc labelled a from state c; to cj if

c.+cla) = €y Let ¢ be the identity element of the
semigroup. We then have:

(c) If x takes the state q to state Cy of the semigroup
machine, then the c-class containing x, c(x), is the

set of all words which also take state cy to state Cy-

Corollary The 2, r and c-classes of Q are regular if Q
is regular.

Because of this theorem, we shall henceforth use the
symbols 21, 22, ... to denote states of a machine for a
regular language Q and also to denote the 2-classes of 0
to which they correspond. (And similarly of course with the

symbols F1s Tos wee and C1s Co» sEgusi)

{2.2) Derivatives, Anti-derivatives and Contexts

Let us consider the relation Qr' We note that any
word xeV* partitions V* into two sets, denoted D.Q and meQ,

where

D,Q {y|xyeQ}
D, Q {y|xy£Q} .

DxQ is called the derivative of Q with respect to x.

]

We then have:
Lemma 2.3 x Q, yle>DxQ = DyQ -
This is the basis of the method of derivatives for

calculating the machine of a language Q [3].



Similarly the relation Q!l leads one to define anti-

‘ derivatives: The anti-derivative of Q with respect to x,
i denoted d,Q is

| 4.0 = (ylxyel) = ty|§%eQ)

| Lemma 2.4 X le y <—¢-C!§Q 2 q;q

| Finally, the relation Qc partitions the set V¥*xy¥*

i into CxQ’ the context of x in Q, and '\:CXQ where
|

€,Q = {(u,v) | uxv e Q}

Lemma 2.5 X Qc y & CXQ = CyQ .

|
] The following observation, although rather elementary,
f is quite important in the sequel.

|

Theorem 2.6 (a) The word derivatives DXQ of a language Q
are unions of r-classes of Q, where DXQ_:;r(y) if and only if
| xy eqQ.

(b) The reverse of anti-derivatives of Q,
i.e. languages of the form ?jgﬁj are unions of f-classes of

Q, where q;ﬁgﬂ,(x) if and only if xyeQ.

of subsets of V*xV* of the form 2xr, where £ is an £-class

|
/
|
i ’ (c) The contexts C,Q of a language Qare unions
|
|
i of Q and r is an r-class of Q, where Cxcgz(u}xr(v) if and
5 only if uxveQ.

Proof Let Q be a language and let x e V*.
. Then yngQ¢>xyEQ¢—:’§{E d;(]
But by lemma 2.4, Q*jQ = d}-.Q for all y' such that y' Q, vy.
y sDxQ < y'e qu for all y' such that y' Q2 Y.

Fsi Bra B = z r(y) . and part (a) is proved.
yeD Q




|
|
|

85.

Part (b) is proved similariy.
Consider now Q. The pair (u,v)e CXD¢¢ uxv e
<« vs;DUXQ and uscl§; Q.
But then, by an identical argument to that above, this implies
that u'xv' eQ for all u'e2(u) and v' er(v) .
i.e. €0 2 2(u) xr(v).

Whence Q = b L(u) xr(v), and we have proved (c).
(u,v}erQ

fMote that although the displayed unions are over an
infinite set, the number of distinct terms is finite when
Q is regular, and so the unions themselves may be taken over

only a finite set of words.

3. The Fundamentals of Factor Theory ,

The following definitions are taken from Conway [13].

Definitiaons Let F, G, H, ... , K, Q denote arbitrary

Tanguages (not necessarily regular).

F.G...H...J.K is a subfactorization of 0 if and only if

Eobvoolzoadall 2 Q. {*)

F.G...H...J.X dominates it if it is also a subfactorization

of Q and F¢ F, Ge G, ... , K s K i
A term H is maximal if it cannot be increased without
violating the inequality (¥*).

A factorization of Q is a subfactorization in which every

term is maximal.

A factor of Q 1is any language which is a term in some
factorization of Q.

A left (right) factor is one which can be the Teftmost

(rightmost) term in a factorization of Q.
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Next we state two lemmas, due to Conway, which are
quite fundamental to future results. The proofs are quite
simple and can be found in Conway's book [13].

Lemma 3.1 Any subfactorization of Q is dominated by
some factorization in which all terms originally maximal
remain unchanged.-

Lemma 3.2 Any left factor is the left factor in some
2-term factorization. Any right factor is the right factor
in some 2-term factorization. Any factor is the central
term in some 3-term factorization. The condition that L.R
be a factorization of Q defines a (1-1) correspondence
between left and right factors of Q.

We shall now give a characterisation of the factors
of 0 which gives some insight into their properties. "Recall
(§2) that an 2-class of Q is a right-invariant eguivalence
class, an r-class is a left-invariant equivalence class and

a c-class is a congruence class of Q.

Theorem 3.3 The left factors of any language Q are
either ¢ (the empty set) or are sums of L-classes of Q.

The right factors of Q are either ¢ or are sums of r-classes
of Q and the factors are ¢ pF are sums of c-classes of Qs
Corollary (Conway) A language Q is regular if and only
if it has a finite number of factors. The factors are
regular for regular Q.

Proof Let L be a left factor in the two term factoriz-
ation L.R c Q of Q. If L # ¢, let xel and consider any
yet(x). Since L.R e Q, Rg qu = DyQ (by Lemma 2.3).
Therefore y.R ¢ Q, and so, since L is maximal, yelL. Hence

L 2 &(x)s and L = £ 2(x), i.e. L is a sum of f-classes
xel
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of Q. Similarly any non-empty right factor is a sum of
r-classes of Q.
If H is any factor of Q it is the central term in

a factorization LHR = Q (lemma 3.2). If H # ¢, let xeH.

Then the set C,Q = {(u,v)|uxveQ} 2 LxR = {(u,v)| uel,veR}.
But if yec(x), CyQ = qu 2 LxR, Thus, as above, yeH and
H o= = c(x).

xeH

The corollary follows from the corollary to Theorem
24s

The above characterisation of the factors of Q is
different to Conway's. The advantage will be seen later when
we consider the problem of calculating the factors of 0.

From now on, unless otherwise stated, we sha11.0n1y

consider the case when Q is regular.

4., The Factor Matrix

Following Conway, let us index the left and right
factors as L], L2, S 5 Lq and R1, RZ’ B b Rq wherein
corresponding factors (see lemma 3.2) are given the same
index. We now define Qij (1=1i,j=q) by the condition that
LiQinj is a subfactorization of Q 1in which Qij is maximal.
(It is important to note that Liqinj may not be a factor-
ization of Q). We note that, by lemmas 3.1 and 3.2, H is
a factor of Q if and only if it is some Qij' Thus the
factors of Q are organised into a qxq matrix which is

called the factor matrix of Q and is denoted [0].

Various properties of the factor matrix may be

observed, some of which are summarised below.



Theorem 4.1

I (1) H is a factor of Q<> H is some entry 013 in the

factor matrix [Q].
(i) Qij is maximal in the subfactorizations Li'QTj € Lj

' and Qij'Rj'E Ri' Thus Qij is a right factor of Lj
and a left factor of Ri‘

(i11) 3 unique indices s and t such that Q = By = R = Qst’

S
| Li = Qg

(iv) Ql = [qj*.

(v) If A]»Az i Am c Qij

and Ri Qit'
is a subfactorization of Qij’

then a indices k], Kos vov s such that

1

K-
A EQ‘ 5 A EQ s warw g EQ 3
1 1k1 2 k]k2 > m km_]J

Proof Although the proofs of all parts of this theorem
| can be found in Conway's book, the proof technique is so

fundamental that it is worth repeating.

The proof of (i) is contained in the preamble to the

| theorem.
! To prove (ii), we observe that the subfactorization
(Liqij)°Rj < Q is dominated by Lj'Rj < Q. Therefore
Li'Qij c Lj is a subfactorization of Lj in which Qij must

be maximal. Similarly Qij'Rj c R, is a subfactorization

of Ri in which Qij is maximal. The rest follows from lemmas
3.1 and 3.2.
The indices s and t in part (iii) are chosen by

the condition that Lt-R c 0 dominates the subfactorization

t

Q-e < Q, and Ls°Rs c  dominates the subfactorization
e+Q c Q. Then, by definition, Lt > Q3 but also
0 > Lt'Rt > Lt-e = Lt‘ Therefore Lt = Q. Similarly
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Rs = (). The index s (t) is then unique, because all the

left (right) factors are distinct. To prove that Qst = Q,
we note that qst is maximal in Ls-Qst-Rt c @ implies that
it is also maximal in the subfactorization LS-QSt [ Lt‘ But
Lt = 0, and Rs is maximal in LS-R5 c Q. Therefore Qst = RS
= Q. Now LS-Q < Q and Li'Ri c () are both factorizations
of Q; 50 LsoLi-Ri c 0 is a subfactorization of Q in which
Li and Ri are maximal. Therefore, by definition of Qsi’
Li = Qg5 Similarly, Ri = Qit'

Part (iv) can now be proved quite simply. e observe
(a) Qii e (Since L_i-Ri = L1.-e-R_I Q)= and
(b) Qyj 2 Q4 Qyy» for all k =1, 2, ... , q. This follows

v

because, by (ii), Lk 2 LiQip and R, 2 ij-Rj. Therefore

Ly (Q4pQpz) Ry
In matrix terms (a) and (b) are
(a)*  [Q] 2 €, (b)" Q] 2 [Q]-[Q].

_Therefore Q] E+[Q]+[Q], and so by R1, [Q] =2 [Q]*.
But [gl* 2 Jol. Ql*.

Q]. Therefore [Q] = [Q]
We shall prove (v) for the case m = 23 for m > 2 the

c L "R, ¢ Q. So, by definition, Qij 2 Q4 Oy,

lu

{]

result follows by simple induction. Suppose then that

A-B = ( < Q 1is a subfactorization of

ij Then (Liﬁ)-(BRj)
Q and so must be dominated by some factorization Lk-Rk c Q.
I.e. Lk 2 Li-A and Rk > B-Rj. But then, by (ii), A < Qik
. and B ¢ ij.
4,1 is an extremely interesting and powerful
theorem, from which most results on factors can be deduced
immediately. Particularly useful is 4.1 (iv), which we shall

often apply in its alternative form (a) Qii > e and (b)

%5 = F Qi Uy
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Part (iii) tells us that the s th column of |Ql
contains all the left factors and the tth row all the
right factors, and the intersection of this row and column
is the language Q itself. This and (iv), [Q] = [Q]*,
suggest very strongly that there is some recogniser of Q,
(G,{s},{t}), cons{sting of a graph G with start node s and
terminal node t, such that Li is the set of all words taking
node s to node i, and Rj is the set of all words taking
node j to node t. In fact there is often more than one
such G, but we shall show that there is a unique minimal
one.

Note, also, that (iii) does not imply that Q only
occurs once in its factor matrix. For instance,

Q = (11)* has factor matrix [Q] = [(11)*  (11)*]
(11)*1 (11)*

in which Q occurs twice. (We mention this because there is

a misprint in Conway's book [13,p 491, in which Conway says

“The theorem does prevent @ from occurring twice in its

matrix ...". This should, of course, read "does not prevent").
As we shall see, the combination of Theorems 3.3 and

4.1 (i1) 1is sufficient to enable one to calculate rﬁ].

Various "brute force" methods can be used, but the method

we give appears to be the most straightforward and easiest

to apply.

L The Factor Graph

Our objective in this section is to find a method
of determining the factor matrix of a reqgular language Q.

We shall prove that there is a unique minimal matrix GQ such
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that [Q] = Ga ,GQ is a constant + Tinear matrix and so
is called the factor graph of Q.

The proof technique we use may seem rather round-
about, and so it is worth while explaining the difficulty.
Consider any element A of a regular algebra r. We shall
call any X such fhat X* = A* a starth root of A*.

Our aim is to prove that there is a unique minimal starth
root of [Q]. 1In a free regular algebra it is quite easy to
prove that there is always a unique minimal starth root of
any element a* in the algebra (see Brzozowski [4]). The
proof, however, relies on length considerations and does not

apply to all regular algebras. Indeed it is not generally

true. Consider the matrix M = e e e
e
i e e
This matrix has starth roots Ay = @ e ¢] and
b ¢ e
e ¢ ¢
Ap = [0 o e , which are
e ¢ ¢ both minimal.
¢ e ¢

Thus there is no unique minimal starth root of M.

In order to prove that rﬁ} nevertheless does have a
unique minimal starth root we first prove that rﬁ] has a
starth root which is a constant + Tinear matrix, and then

that this matrix can be reduced to one which is minimal.

Lemma 5.1 3 unique maximal constant and Tinear matrices
*

Crax @Nd L., such that [Q 2 (€., + L .. )*.

Proof Define Cmax and Lmax to be the unique maximal

constant and linear matrices (respectively) such that
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@] 2 €y and [Q] 2 L .- Then [Q] 2 C_,,  + L., and, as
ol = Q1% [@)] 2 Gy * Lyasd™

We shall now prove that the inequality in the above
lemma can be changed to an equality.

Theorem 5.2 (Conway) Let Cmax and Lmax be the unique

maximal constant and linear matrices of lemma 5.1 such that

Q] 2 (Csy #hun %, Than Q] = I -

Proof Suppose x € Qij‘ If x = e then (a) =xe Ecmaxjij‘

since Emax is maximal. Otherwise (b) x = a; a, ...oay is

a word of length m = 1, in which each ap is a letter. But

then applying Theorem 4.1(v), = integers k], k2' cearls km-l

such that a] € Qikl’ a2 £ Qk1k2’ vomrw 5 am £ ka_]j' But

Ehen Ay = erax]ikl’ 8 & [Lmaxjklkz’ » 8p € [Lmax?km_]j
y i

I.e. x ¢ [Lmax‘Lmax]ij . But (a) and (b) imply

Q] < Cmax + Lmax.Ln*]ax . But, using lemma 5.1,

[ & B ¥ Tmal e 8 M6 0 b Lopo I® & [Q]. Hence the

theorem.
We have already mentioned that in a free regular

algebra Rp any event A* has a unique minimal starth root.

This is given by (A\E)\(A\E)z+*, where E 1is the unit element

of R \ denotes set difference and x2+* denotes

F’
x*+x3+x"+... . In the algebra MP(RF), of pxp matrices over
the free regular algebra Rp, the most we can say is that if

)2+* is a starth root then A* does have a unique

(ANE)N (ANE
minimal starth root which is given by the above expression.
More formally:

Theorem 5.3 Let A be an element of MP(RF) where Rp is

a free regular algebra. Let MP(RF} have unit element E.
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ij\cij] where \ denotes set difference.
If A% = {(AE)N(AVE)™ )% then (A\E)\(ME)™T

Let [B\CI1,. = [b
1]

* s
is the unique

minimal starth root of A¥*,

. Proof Let X = (H\E)\(A\E)2+*- By assumption X 1is a

starth root of A*. Suppose Y is also a starth root. We
must show that XeY.

Suppose W E Xij'

Clearly w e Y?J = [(Y\E)*]ij, because Y is a starth root

of A* and A*>X. Hence w € IZ(Y\E]|"']1.‘j for some n where,

by definition of X, n =z 1.

Now ¥ e A% = [A\EY*,
Hence Y\E c (A\E)*

we DINE)"1, 5 e CUAE)T) 1y

2+%

COANEIN(ANE) ™ "7 04 5

iJ

But W Bl A
1J

J
= n =1
I.e. X e ¥ and the theorem is proved.

Considering the matrix M mentioned at the beginning

of this section, we find that

¢ ¢
(M\E)\ (M\E)2F™ b ¢
¢ ¢

+ S B &

This is clearly not a starth root of M.

We note however that M has e-cycles which pass
through more than one node. This cannot be true of the
factor matrix as the next lemma states. This observation
together with theorems 5.2 and 5.3 enable us to proceed to

the proof of our main theorem.
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Lemma b.4 Cmax\E is acyclic.
Proof Suppose Cmax\E is cyclic. Then there must be two
distinct nodes i and j such that [C 1 = e = [C ]

max ij max-ji-
Now consider the matrix [Q]. It will help if the reader

refers to the figure below, which shows part of the matrix
[Q]. The nodes labelled s and t are the nodes mentioned

in Theorem 4.1.

We have indicated by labelled arrows that
Qei = Lyo Qg = By
Q j-

L. and th = R
Since [Q] 2 S Qij s> e and Q

sJ J
jp 28
This has also been indicated. We shall now prove that

!
] L. =L, and R, =R

i b i J
We have [Q] = [Q]*, (4.1(iv)), and [Q] 2 Cnax® DY
Theorem 5.2.

Therefore [Q]

[@1-10 2 [81+C,y -
] = Q

Hence Q 3
= Q

. [ .
si 2 Qs qax sJ

and 0 si

s i.e. Li = Lj'
Similarly, using [Q] 2 Cmax'rﬁT’ we get R, = Rj'

But then nodes i and j cannot be distinct and we have a

si 2 Qi naxdi;
Therefore Qsi = Q

contradiction. Therefore the initial assumption is incorrect

and cmax\h must be acyclic.



Corollary 5.5 Let [Q] be a qxq matrix. Then (Cmax\E}p =N

for all pzq.

Finally we come to the main theorem of this chapter.

Theorem 5.6 Let Q0 be a regular language, and let Cmax

and Lmax be as defined in Theorem 5.2. Then there is a

unique minimal matrix GQ such that Ga = [Q], given by

i +*
6 = ((Cpayx + Lpax)\EXN ((Cpay +Lmax)\E)2 . Moreover the

triple (Gq,{s},{t}) (where s and t are given by Theorem
4.1 (iii)) 1is a recogniser for Q.

G. is a constant + linear matrix and so its graph

Q
will be called the factor graph of Q.

Proof Using Theorem 5.3, we need only prove that

6f = [T where G = ((Cppy + Lya NEN((Cpay +Lmax)\E}2+*.

In turn this only requires proving that GE S (Cmax+ Lmax}\E,

since then Ga & (Ga)* 2 (Coay il 2 SfR = [Q], by Theorem 5.2.
Let pl : W e [(Cmax +Lmax)\E]ij
Then pe : w has length 0 or 1.
Suppose p3 W [Gajij.
Then pd w ¢ [Gglyj
and so p5 : woe LU .. +Lmax)\E)a+*1ij
Hence o indices = ky, k,, ... km+1= j and words
dy5 Ay, e o5 Ap 5.k mz2, w = ajag...a,
and Pl i a, € [(Cmax +Lmax]\E]khkh+1
and hence p2 : a, has length 0 or 1, for 217 hEYsmeasi

Now for some h we must have

p3 a, ¢ L[GE] .
h Qkpkpy

(otherwise we [Gajij Wi
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Hence for this h

p4 : a, t [G,)
A Ky
and so, for this h
pS & @, & L({G... #L.. JAEYF S '
h ma x max khkh+1
Let this a, be v. v has the same properties as w

and so can in turn be expressed as the product of two or more
words bibz...bn " where by the same argument one of the
bg’s = U, say, also has the same properties as w. In this
way we can express w as a product

L ViV Yy
of an unbounded number x of words Ygs where

Ed
NeN e
for some nodes n,, ... N But the product of two linear

Vi € [(Cmax +Lmax}\

matrices is either null or non-linear. Therefore at most
one V¢ has length one, and we conclude that (Cmax\E)p is
non-null for all p. But this contradicts corollary 5.5.
Hence the initial assumption that property p3 holds for w
must be false. Hence Ga 2 ICE
argument Ga = [Q]. Finally, applying Theorem 5.3, GQ is
the minimal starth root of [Q]. The last part of the theorem

s Lmax)\E, and by our earlier

follows immediately from Theorem 4.1 (iii), Q = Qst = teﬁjst'

6. AN EXAMPLE

The previous results embody an algorithm for calcul-
ating [Q], which we shall develop with the aid of an example.

Essentially our aim is to calculate C +L we could

ma x max ’
then use any one of the algorithms of chapter II to calculate
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Q] from Gy» using Q] = Gé and

_ 2.+
GQ = ((Cpax +Lmax)\E)\((Crnax *lpax)\E)
*

chapter will develop a rather better algorithm to determine GQ

k3

, although the next

Example 1: Let Q@ = (b+ta(aa*b)*b)*

6.1 Machine, Anti-machine and Semigroup

Theorem 3.3 suggests that we begin by calculating
the machine, anti-machine and semigroup of Q. This we have

done, using standard methods, in Figures 1(a), (b) and (c).

Fig. 1(a) Machine of Q.

Lo,
@6_?“_9%@9 i

a

Qf_h) a+b

Fig. 1(b) Anti-machine of Q.



98.

Fig. 1(c) Semigroup of Q.

In these figures we have labelled the nodes of the
machine £,, 2, and £,, but, as stated after the corollary
to theorem 2.2, we shall also use the symbols L1 Lo Ly O
denote the sets (b+a(aa*b)*b)* (=Q), Qa(aa*b)* and
Qa(aa*b)*aa*, respectively, these being the right-invariant
equivalence classes to which they correspond. Similarly r,
is used to label a node of the anti-machine, but also denotes

the set (ab)*, this being the set of the reverse of all words
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which take node r  to itself in the anti-machine (=(ba)*) .

b2 Calculating the Derivatives etc.

In tables 1(a) and (b) we have used Theorem 2.6 to

determine the derivatives and anti-derivatives of Q as sums

of r-classes and sums of f-classes of Q,

respectively. Thus

in the first column of each table we have listed the 2- and

r-classes, and the third column shows the corresponding

derivative or (reverse of) anti-derivative as a union of

r-classes or &-classes of Q,

as the case may be,

Representative

Node/ &l ehanst Derivative
L-class
2y e TR,
s a S
L, aa ry
Table 1(a) Machine.
Node/ Representative Reverse of
r-class element anti-derivative
Py e 2y
r, b 2‘1 + 'Q'Z
rs bb B: + By + By
ry a )

Table 1(b) Anti-machine.
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A very important point to note here is that, since
each -, r- or c-class consists of words which are equivalent
with respect to some relation, the properties which follow

from the equivalences canbe found by considering representative

elements of the equivalence classes only. In order to calcu-

late the derivatives of Q as sums of r-classes we have chasen
in column 2 of each table a representative element of each
equivalence class. The choice is quite arbitrary. Then we
have used Theorem 2.6 (a) directly to determine the derivative.
For instance the class 2, has representative a

and since are ¢ Q (e 1is the representative of r,),

and a-«a 4 Q (a i i’:n)S
but a*b £ Q {b " }"2),
and a-bb ¢ Q (bb W rz)’

the derivative corresponding to 2, is r, +r,. Thus it is
quite unnecessary in these calculations to calculate regular
expressions representing the various %-, r- and c-classes.

A similar table, illustrating part (c) of Theorem 2.6,
could be constructed for the c-classes of Q. The part of
this table for those c-classes containing e or a word con-
sisting of a single letter is shown in Table 1(¢). Once again
column 1 Tists the c-class and celumn 2 gives a representative
element of each c-class. The third column expresses the
corresponding context of Q, CxQ (where x 1is the represent-
ative), as a union of direct products of the form Ri xrj.

A simple way of calculating the appropriate entry is as fol-
lows. Suppose one is considering the c-class Cy having as

representative the element x. Consider each state s of
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the machine in turn. If under input x state &, goes to
state Rj , read off the entry in column 3 of the njth row
of Table 1(a). Suppose this is r, + r. + ... + r. . Then
J Ja Ih
add 2, x (rj Eouis +rj ) to the entry already in the third
1 h
column of C -
For example consider the class c, having represent-
ative a. Let us write 215+£j if input x takes state 21

to state gj of the machine. Then we have

a ; ;
2,~%, and &, has derivative r, +r,. Hence enter 2, x (r,+r,)

2,28, and 2 i Pge —— u —— &, X1y

L0, and 2, " Py — o —— by % Py

Thus the entry in column 3 for c, is

The reader should ignore column 4 of Table 1(c) for

the time being.




Node/ Representative Context Context
Congruence class element Form 1. Form 2.
%o e Ly x(ryt rptory) Lyx Ryt Lox Ry+ Lyx Ry
L, x(r,+ r,.) Lyx R,+ L,x R+ L, x R,
L ¥ Lyx mm (i = 1,2,3,4)
Cy a Ly % (ra+ ry) Lsx Ry+ Lyx R,
. F Bpi¥ X + L,x Ry+ L;x R,
o
= +olyxr, + Lex Ry (1= 1,2,3,4)
.nN U H- X h1H+ 1N+ u..wu _lux xm+ —;mx mH
+ Ly % P+ Yo+ ry) + Lyx Ry+ Lyx R,
F kg R AR Ty + L,x R+ L,x R+ L x R,

Table 1(c)
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6.3 The Left and Right Factors

We can now deduce the left factors and right factors

of Q@ from Table 1(a). If we consider any sum
Ly # 85 4 ... + L. of f-classes of Q, including the
1 2 Tk

empty sum ¢, and then determine those r-classes rj + ...+rj
1 m

common to the third column of all the i ,th, i,th, ... , 1kth

rows of Table 1(a), then

(B + 2+ oo + 2, )e(r. 4+ ... 41, )cQ
R 10ty iy
will be a subfactorization of (. By inspection of all such

subfactorizations we can deduce those which are also
factorizations of Q. Thus for our example we would get

the following subfactorizations:

(2,4 2,+ Ly)e 1y s (Za% L5)* Py (B3% Rg)e vy s By Ty

(2,4 2,)(rytry) > Lot(ry+ ry),
Eovfppedr,) 5
e (ry+ratrger, ),

Table 2 Subfactorizations of Q.

We have displayed these subfactorizations in such
a way as to make it evident that only those in the first
column are also factorizations of 0.

This information is summarised in Table 3, in which
we have also named the left and right factors L,, L,, L,,

R R

LR

L, and R, R

[ 2
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Left factors Right factors
by = b %, Rs = Ry Fy® Bp* By
L, 2, &, R, L
Ly Lyt 2% 2y Ry 3
Ly ¢ R, Vit Gt Bgd iy

Table 3 Left and right factors

In the table we have also indicated that the indices
s and t of Theorem 4.1(iii) are both equal to 1. This is
because, from the machine (Fig. 1(a)), Q = &,, and from the
anti-machine (Fig. 1(b)), Q = r + r,+ ry; but L, =&,
and R

{ = Py ryt .

6.4 Construction of Cmax + Lmax and GQ

The penultimate step in the construction of the
factor graph is to construct Cmax + Lmax‘ In our example

the graph of Cmax + Lmax will have four nodes (see Fig. 2).
In order to fill in the arc labels there are two approaches

we can adopt.

(1) In Table 1(c), column 4, we have expressed the
context C Q of each constant or linear term x (i.e.
x = e or xe V) in all possible ways in terms of
direct products of left and right factors of Q.
There is then an arc labelled x from node i to
node j of C ..+ Lmax if and only if there is an

entry L ij in Column 4 of Table 1(c) of the row

corresponding to X.
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{49 Alternatively, we can apply Theorem 4.1(ii), which

can be restated as, x ¢ Qij eﬁLix < Lj' To do this

we use the representation of L, as £, + &, + ... +2, ,

i iy i, Ty
given in Table 3. Cmax can be calculated immediately
using [Cmax]ij =g ¢>Li < Lj. To find Lmax

consider each element x € V in turn. Under input x

the state Ly of the machine goes to state L s Saye
m

Thus Lix = (zil+ 212+ i b iik)‘x c £h1+ £h2+...+£hk’

and [Lmaxjij 2 X for all those j such that

LJ > £h1+ zh2+ e ghk
Using either of these techniques, we get the graph
of Coax * Lmax shown in Fig. 2.
e+a+b
e e+a+b

Figy 2 Cmax+Lmax .
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Finally to get the factor graph we remove those arc
labels in Chax * Lmax which are in E or may be decomposed

into paths in ((C \E}2+*. The factor graph for

max " Lmax)
this example is shown in Fig. 3. In both Figs. 2 and 3 we
have indicated, in the usual way, that the graphs are

recognisers of Q with start node s =1 and terminal node

t=1.

\L e+3 e
. N—
OO —) &

a+b

Fig. 3 The factor graph of Q,

6.5 The matrix |Q]

From GQ we could now calculate [ET = Ga using one
of the standard methods of chapter 1I. However we can
get the same information about [Q| by determining each
entry Qij as a sum of c-classes of Q. To do this we
replace each entry in GQ by the c-class of which it is a
representative (see Fig. 1(c¢)). Thus GQ is represented by

+CI

b €y
c, ¢
[ c,
C, (0]

and then calculate GE in the algebra Mq(R(EQ) ) where

EQ is the semigroup of Q, and g(§Q) is the regular algebra
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generated by EQ (c.f. 182.3). For this example one

can verify that GE is represented by

Gyt lg g tly S i S ;
+C4+C6+C?
Cotce CotCptea S ¢
+CytCeHCy
Cg CotCatCy 5 ¢
tcq
S S S S
7
where S denotes the whole semigroup i.e. S = I Cy.
i=0

6.6 Some Remarks

There are various minor improvements one can make

to the above method of calculating Gq.

First of all, if it is only required to calculate
GQ, it is unnecessary to calculate the semigroup of the
language. However, the representation of the matrix [Q]
in terms of c-classes, as in the last section, is (as we

shall see) very useful and also much more informative
than calculating regular expressions denoting each of the
factors.

A second point concerns Tables 1(a) and (b). It
should be noted that the third column of Table 1(b) can

be deduced directly from the third column of Table 1(a)

(or vice-versa), and thus gives redundant information.
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This small amount of redundancy can, however, be quite
useful in checking hand calculations and so is probably
worth retaining,

Thirdly, we note that by length considerations,

GQ = Cmin + Lmin’ where
- 2+*
Cmfn - (Cmax\E)\(cmax\E)
_ 2%
and Loin = LipaxMllpax * Ctnd .

The above formulae suggest that one first calculates Cmax

and from it Cmin’ and then determines Lmax and from it

The sum of C and L is then the factor graph GQ’

min® min min

In fact one rarely needs calculate Cmax and Lmax explicitly

L

because one can remove arcs from these matrices by inspection
as they are being constructed. Note also that the second
method of calculating Chax and Lhax (86.4(ii)) is preferable
to the first, and hence the construction of Table 1{&) s
unnecessary = although it does add some insight into what
is happening.

Finally, a minor technical nuisance in the study
of factors is that ¢ may be a factor. In this example
Ly=¢ is a left factor, but ¢ is not a right factor. If 0
is a factor then the factor graph can have up to two "useless"
nodes, i.e. nodes such that there is no path from node s to
the node, (for example node 4 of Fig.3), or no path from
the node to node t. If we are interested in the graph GQ
as a recogniser for Q, we can always ignore these nodes and

consider the resulting all-admissible recogniser for Q. In
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all future calculations we will take the liberty of
disregarding this technical problem, and all the factor

graphs we display will be all-admissible factor graphs.

e An algorithm to calculate the factor graph

We are now in a position to summarise the steps
in an algorithm to determine the (all-admissible) factor
graph for a given regular language Q. We assume naturally
that Q is given either as a regular expression or by a system
of left (or right)-Tinear equations. Following the algorithm
we have worked through another example, which shows explicitly
the various steps of the algorithm.
Algorithm 1 To calculate the factor graph GQ of a given
regular language Q.
Step 1 Calculate the machine and anti-machine for the lan-
guage Q, (Use the method of derivatives [3]). Label the
states of the machine (anti-machine) £;, 2,, ... » &

(ris Y25 ovo 5 rap) and use these labels to denote the

corresponding f%-class (r-class).

Step 2 Construct two tables, the first 1isting the &-classes
of Q and the second the r-classes of Q. Each table has 3
columns., Construct first of all the first two columns of
these tables, the first column containing simply a list of
the Tabels 2, (rj) given to the f-classes (r-classes) of Q,
and the second column containing an arbitrary representative
element of the corresponding class. The third column of

each table is now constructed. In the first table this
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column represents the various derivatives of Q as unions

of r-classes of Q, and in the second table it represents

the reverse of the various anti-derivatives of § as unions

of f-classes of Q, Suppose the f-class L5 has representative

X; and the r-class ry has representative Yy Then ry appears

as a term in the Rith row of Table 1 if and only if xiyj e Q,
and similarly gi appears as a term in the rjth row of

Table 2 if and only if xiyj e Q.

Step 3 Deduce the corresponding left and right factors of

Q and label them Ly Lo mva o Lq, R, Ry wwn s Rq. Find

the unique indices s and t such that Q = Ly = RS.

To do this, one considers all subsets {21,..,,21 }
1
(excluding the empty subset) of the %-classes of Q and

finds for each subset those classes rj T rj common to
1 n

the 2. th, 2. th, ..., %. th entries in the third column of
11 12 ‘Ik
Table 1. One then has (&, + ... + 2. Jelr, + owee P ) = 0
'Il 'Ik ‘]1 Jn

is a subfactorization of Q in which (rj o ok ns ) is
1

maximal., By inspecting all such subfactorizations one may

deduce the left and right factors. L, = 2 +%, 4...+8L is
t t, L, £y

that left factor such that the %-class ﬁt < Lt if and only if
.i

it corresponds to a terminal node of the machine for Q.

Similarly R_ = p + r + ... %+ r is that right factor
S 5. s, sp
such that the r-class re & RS if and only if it corresponds

dJ
to a terminal node of the anti-machine for Q.
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Step 4 Calculate C . HWhence deduce

max
= b
Cmin (¢ nax\E)\(cmax E) °
o : ; i
[Cmax]ij > e if and only if Lj 2 Li’ and this can easily

be deduced from the representation of Li and Lj as unions

of 2-classes of Q.

Step 5 Calculate Lmax’ Whence deduce

b = Lo e

min max )\E}

max max

[Lmax]ij 2 a if and only if a e V and Li,a 2 Lj . This can

also be easily deduced from the representation of L and Lj
as unions of &-classes of Q and the knowledge that %, .a ¢ 2j
if and only if under input a the ﬁkth state of the machine for
Q goes to state ﬂj*

Finally B, = G =z + L_x 4

Q min min
We shall now illustrate the various steps in the

above algorithm by a second example,

Example 2 Q = [(x+y)*zx*(x+y)1*

Step 1

@ . é = - 7@

Xty
Ow

(A11-admissible) machine (Al11-admissible) anti-machine



L-class

Left
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Representative

ZX

Table 1.

Representative

Derivative
rl+ r3+ r‘i
rat r,
rgt ry

rit Pak nak o,

Reverse of
anti-derivative

Lo+ £k
B ¥ &,
L.+ Ryt R, '

Lo+ L+ L4 8,

Right factors

i@

X

ZX

XZX

Table 2.

factors
E’h Rl
£1+ .Q.H RS = Rz
L W Ry
Lk L 2 R,
Lyt Ryt 2,4 8, Rs

Pok Fad Bad 0y

rit rgt n,
rat i
rst T

Ty
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Step 4




(A11 admissible)

X+y+z




IV CALCULATING THE CLOSURE OF A FACTOR GRAPH

1. Introduction

We recall that our original objective in studying
Conway's factor matrix was to try to obtain a method of
finding the star-height of a given regular language, It
is not long, however, before one realises that this cannot
be obtained directly from the factor graph for the language
Q. Thus for the language Q = (b + a(aa*b)*b)* of Example 1
one obtains directly from the anti-machine for Q (see III
86, fig., 1(b)) the regular expression

Q = [(a + b)*bb + b + e] (ab)*
showing that Q has star-height one, However the factor
graph of Q (III §6,fig. 3) has rank two.

Yet a very enigmatic feature of factor graphs,
observed by examining just a few examples, is that very
often one can see ad hoc ways of determining regular
expressions for the languages which they recognise, which
have star-height less than the rank of the factor graph.

The purpose of this chapter is to develop a systematic way

of finding the closure Ga of the factor graph GQ, which does
have the property of often yielding expressions of star-height
less than the rank of the graph Gq.

The intuitive approach adopted to tackle this problem
is based on the recursive nature of the definition of a lan-
guage Q in terms of its factors (we use recursive here in
the computer scientists sense, not the mathematicians). We

observe that if there is a loop
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such as the one shown above in the factor graph for Q we

would get equations

Q'it = W‘th + o0 e

th &= V’Q_It + s a0

in the system of equations which define Q = Qst' In this

way Q is defined recursively in terms of its factors,

The question we ask is "when is a factor necessarily defined

in terms of Q?" A clue to answering this question is given

by Theorem 2.1 below, due to Conway, which states "factors

of factors are themselves factors". This means that the

relation "factor of" is a transitive relation, and so it can

be naturally reduced to an equivalence relation on the factors,

which we call "inseparable from". (Note that this is no

different to considering the relation "is connected to" on

nodes of a graph, and reducing it to "is strongly connected to",

which is an equivalence relation on the nodes.) Examining the

properties of factors further (section 3), we prove that the

factor matrix of a factor F is a submatrix of [Q], and,

moreover, is equal to rﬁ] if and only if F is inseparable

from Q.

Having made this observation an algorithm for



determining GE (sections 4 and 5) which exploits

separability of factors is then obvious. The remaining

sections are then concerned with discussing the applicability

of the algorithms to the star-height problem.

i Inseparahle Factors

Theorem 2.1 (Conway) Let Q be any language, and let F be
a factor of Q. Then any factor of F is also a factor of Q.
Corollary The relation "factor of" is a reflexive and
transitive relation on the factors of any language Q.
EEEEE If F is a factor of Q it is maximal in some
subfactorization LFR £ Q of Q. If H is a factor of F it

is also maximal in some subfactorization GHJ £ F . But then

| H is maximal in the subfactorization LGHJR & Q of Q and so
5 is a factor of Q. The corollary follows because Q is a
factor of Q, i.e. the relation is reflexive. (That "factor

of" is transitive is merely a restatement of the above theorem. )

I Definition 2.2 Let F and H be factors of any language Q.

‘ We say F is inseparable from H if and only if F is a factor

of H and H is a factor of F. Otherwise we say F and H are

separable,

Lemma 2.3 Inseparability is an equivalence relation on the

factors of Q.
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Factor Matrices of Factors

Let the matrix M have nodes N = {1,2,...,n} and

jet N'cN be any subset of this set. Then we shall call the
matrix M' derived from M by simply removing the rows and
columns corresponding to nodes i ¢ N' the submatrix of M

defined by N'. If N' # N we say M' is a proper submatrix

of M.

Consider, now, any factor F of Q. Then F is some
entry Qij of fﬁT (I114.1(i)), and each two term product
Qik'ij is, by III4.1(iv), a subfactorization of Qij (1.2
Qik'qkjiqij)° Moreover, by II14.,1(v), all the L.R
factorizations of F = Qij are included in the subfactorizations
Qik'qkquij' These observations are highly suggestive that
the factor matrix rFT of F is a submatrix of rﬁ], and, indeed,
we shall show in this section that this is the case.
Complications arise inevitably in the proof because factors
of Q@ do not necessarily appear uniquely in the factor matrix,
but often appear repeatedly (as in example 1)

To avoid confusion we shall henceforth always need
to use subscripts or superscripts to identify the factor
under consideration. Thus we shall use NQ to denote the set
of nodes of the factor graph Gq, sQ and tQ (where we previously
used just s and t) for the nodes mentioned in Theorem 1114,1
(iii), and so on.

The proof of the main theorem, that the factor matrix

[F] of a factor F = Qij of Q is a submatrix of [Q], follows
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fFrom four simple lemmas. The first lemma recognises that F

may occur more than once in [Q], and so identifies unique nodes
Sp and tp such that F = Q. 4 and which will play the same role

FCF

in [F] as 50 and tQ (see IIL4.1(iii)). Following

this we define a subset N of the nodes NQ of the matrix ﬁﬂ,
and in lemmas 3.3 and 3.4 show that ke NF=$Q5Fk-thFgQSFtF g E
is a factorization of F and that these include

all the L-R factorizations of F. The final step is to show
that if k and me NF’ ka is maximal in QSFk-ka-thFEF, Then
by the definition of [F| the submatrix of Q] defined by the
set of nodes Ng is the matrix [F]|.

Lemma 3.1 Let F = Qij be a factor of Q. Then - indices

s such that F = Q
F F sete

factors of F.

and t and QS g and Qt g are both
F=F

FF

Proof By III4,1(ii), Liqingj is a subfactorization in which

Qij is maximal. Let this be dominated by the factorization
L +Q. . < L,. (Note that ITI4,1(v) is being used implicitly
s sgd 3
here,) Then, by Lemma I113.1, Q. = Q_ ;, and
id Sgd
by III4,1(iii) the index s is uniquely defined. Now Tet tF

be that unique index defined by Q. 4 -Rt = Rs is a factor-

FF o F
ization which dominates the subfactorization Q. .+ R. c R_ »
Spd J 5F
Then also QsFtF = quj and hence QsFtF = Qij = F, To prove
the last part, we note that, by construction, Ls -Qs £ -Rt c Q
F FF F

is a factorization of Q. Thus, using TIT T )

Ly *Qg ¢ 0 g Q¢ _t _*R

s s ¢ s Q isa factorization,
FOSFSF SFYF “FYFCF
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and hence QSFSF and Qt-t must be maximal in QS § -Qs t -Qt .

FUF FSF SFYF “F°F

c Q and so are factors of Q =: iy
- SF"'F SFtF

pefinition 3.2 The subset N. of the set NQ of nodes of the
Detinit’e  =-2

factor matrix [Q] is defined by ke N+»Q,, is a factor of F

F

and Lk-th & Lt is a factorization of L_t i

F F F
Lemma 3.3 k € NFﬂﬂst-thF < QSFtF is a factorization of F.
Proof By definition k € NF implies Lk-thF & LtF is a
factorization, which implies, by III14,1(ii), that L +Q «Q

’ SE st ktF

< Lt is a subfactorization in which Qs.k is maximal.

F F
But by the definition of te in the proof of lemma 3.1,

L

t is a factorization, Therefore, Q must also
st

L. +Q c
sg Sptf F

be maximal in Qs k'th and so is a left factor of F.
F

= Q
F~ SFbf
At is a factor by assumption, so the lemma follows immediately.
F
Lemma 3.4 If LF-RF < F is a factorization of F, g a unique

F —

L' and thF = R,

F =2 implies LF £ 1 and
SFtF SEP

RF c th for some p. Moreover, as LF and RF are factors,

F
the last two inequalities must be equalities. Suppose

LP'thF

Now, by III4.1(i1), thF = 0

node k € NF such that Qst
F

In

Proof By I1I4.1(v), LF-R

tF is dominated by the factorization Lk-thF = LtF.

= RF, and Lk 2 Lp=;, by

F
= L , Hence Q =Q c F
st ktF

c L

ptr
I114.1(41), ka B g’Qst =] qup
dominates LF-RF < F; but, as the Tatter is a factorization,

_ F o —
Qst = L' and thF = R". Moreover, by definition 3.2, k € NF'
Finally, k is unique follows directly from Q =0 and
ktF ptF

Lk°thF c LtF is a factorization of LtF.

]
|
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Let k and m ¢ NF“ Then ka is maximal in

Q

Lemma 3.5
Ost'ka'thF = 8t
proof By definition, m e Ng ﬁ»Lm'thF < LtF is a factor-

jzation; hence, by ITI4.1(i1), Lk'ka'thF [ LtF is a sub-

factorization in which ka is maximal. But Lk-thF < LtF is

also a factorization of Lt , from which we conclude that ka
F

must be maximal in ka-thF < thF, Thus, by lemma 3.3, Q.

is maximal in Q +Q, 0 =] s
st km th sFtF

Theorem 3.6 F is a factor of Q< the factor matrix [F| of F

is a submatrix of the factor matrix [Q] of Q.

Proof Let F be a factor of Q. Then if we compare lemmas 3.3

to 3.5 with the definition of the factor matrix [F] of F at

the beginning of Section III 4, we see immediately that the

submatrix of [Q] defined by the set N is indeed [F].

Conversely if [F] is a submatrix of [Q], F is an entry in [Q]

and so is a factor of Q (see III4.1(1)).

Corollary 1 Let F and H be two factors of a regular Tanguage

Q. Then F is inseparable from H

+ they have the same factor matrix

<« they have the same factor graph.
Proof F is a factor of He rFIis a submatrix of [H|. H is a
factor of Fe [H| is a submatrix of [F]. Hence F is inseparable
from Hes [F|] = [H]. The rest follows from the uniqueness of

the factor graph,.

Corollary 2 Let F be a regular language, and let C;ax and

L;ax be the maximal constant and linear matrices such that

(C;ax + L;ax)* = [F]. Then F is a factor of Q if and only if
F F 5 . . A0 Q
Cmax + Lmax is a submatrix of Cmax Lmax"
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" £ " F ; F - T . i
Eﬁﬂﬂi If F is a factor of Q, Cmax b Lo S [F], which is
a submatrix of l |. Thus by maximality of Cgax + Lﬁax'

P + LF is a submatrix of it, < is obvious,
max ma x

Finally, we recall that inseparability cf factors

C

was defined as a symmetric closure of the relation "factor
of". The other "half" of this relation - the anti-symmetric
half - is a partial ordering on the classes of inseparable
factors, or equivalently, by Corollary 1 of the last theorem,
a partial ordering on the factor graphs of factors. This is

now defined.

Definition 3.7 Let F and H be two factors of a regular

%f language Q, and Tet GF and Gy be their factor graphs. Then
i@ we define the relation ¢ on the factor graphs of factors of Q
S by

i Ge 4 Gy iff [F] is a submatrix of [H].

E: Theorem 3.8 -% is a (reflexive) partial ordering on the

factor graphs of factors of Q.

The proof is obvious.

4, Example 1 again

The above theorem immediately suggests a new method
of calculating [Q] when Q has a factor H which is separable

from Q. For, using our knowledge that [H] is a submatrix of
[Q], we can write
[l = B Bz
C2a [A] (1)
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where €y, is a square matrix, The factor graph Gq'can be

decomposed into corresponding submatrices

GQ = Ay Ar2
(2)
Aan Azz
Using this notation the escalator method (II § 4.3 ) is
given by the formulae
Cyy = Ar1+A?1A12rﬁ]AzlAf1 (3)
Ciz = A?lﬁlzl ! (4)
Gar, = (WAL AR (5)

where [H] is usually given as [A] = (A2, + A2y Ay Ris Vs
However ﬂﬂ is the factor matrix of the language H, and so
Al = G (6)
where GH is the factor graph of H.
Formulae (3), (4), (5) and (6) form the basis of
an algorithm to compute f_]. We shall first use these
formulae to calculate the factor matrix of Example 1.

For ease of reference the all-admissible factor graph

of Q = Qq, is reproduced below.

=0

Fig. 1




factors of Q-

cont
factor of Q,

sF al'ld tF.

do
definition 3.2

that the repres
of c-classes of

we have already
Cot Cz
+ 3t Gy

c,t Cq

Cq

J

Qip -Qpj = Q5

(a+b)*, and so

The first step
ained in the proof of Theorem 3.6.
which are also equal to F,

checking whether any

minated by another subfactorization QSFK.thF

(Refer to 11186fig.1

Using this representation of

to compare finite subsets of the se
semigroup against on

This example has been
only one factor, Q44

the matrix, and this, f
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is to find the factor graphs of

We already have an algorithm to do this,

If F = Qij is

this involves locating other entries Qu j

and using lemma 3.1 to choose

Then the LR factorizations of F are found by
one subfactorization QSFP.thF c F is
c F; finally

is used to choose those k € NF. 1t is here

el

For this example

as a union

* =

h entry in GQ

entation of eac

Q

shown that GE may be

js particularly useful.

represented by

Co+ Cy+ Cpt Cy ¥ S 1
cyt Cgt €y |
|
Cot Capt Cyt 5
Cyt Cgt Cy ;
C,t Cyt Cg S
+ Cy

(c) for the meaning of C, s «-- s Cy)o
Ga to determine whether
=5 Qij

Qg+ Uy it is only necessary
t of elements in the

dominates

e another.
chosen for its simplicity.

=Q,, =0Q,,, appears more than once in

rom fig. 1, is obviously equal to

has the factor graph shown below.



3 a+b
Fig. 2
A1l other factors Qij can be easily shown to have

the same factor graph as Q = Q4+ For j=1 and for all i,

one need only check that Qi|'Q11 c Qix is not dominated by

any subfactorization Qik'qk1 c Qs This is clearly im-
possible since Q,, = Co* c,* Gyt €y 2 Q,, = C,* Cg 2 Qiq = Cg ¢
Thus Q = Q,, is a factor of Q11’ and so they are inseparable.
similarly Q. can be shown to be inseparable from Q. This
only leaves Q,,, but since Q,, > Q,, and

Q,, 2 Qs (c, < Qs Cq & Q55F Q,,)> Q,, is 2 factor of Q,,-
But Q,, is inseparable from Q, hence SO is Q,,. Now in

order to use formulae (3), (4), (5) and (6), we write

+a
G = b ¢ e = All l AIZ

b a A, l A,,

A%, is calculated by a standard elimination method and found

to be

(b+ab)* (b+ab)*(e+a)
* i
Ay F (b+ba)*b (b+ba)*
The factor H in (3) - (6) is Qi3> and its factor
matrix is determined from i R
M = C{atb)*]

We now have all the information necessary to apply the

i formulae (3) - (6), giving
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(h+ab]*[e+a}(a+b}*h(b+ba]‘b (b+ab) * (era) (a+h)*b(b+ba}* <b+ab)*tc+a)(a+h;j
+(b+ab) * 4 (btab) * (e+a)
(b+ba) * (a+b) *b (b+ba) *b (btba) * (a+b) *b (b+ba) * (b+ba) * (a+b) *
+(b+ba) *b +(btba)*
L}a+b)*b(b+ba]*b {a+b) *b (btba) * (atb) * i

The rggu1ar expressions appearing in r51 could be
made much simpler had we used the knowledge that

0,5 =05, = Qa2 = (atb)*. However this is irrelev;nt to our

aim which is simply te obtain regular expressions of smallest
star-height. Indeed for this example we have achieved this
aim, since all the expressions appearing in [Q] are of

star-height one. Moreover this is strictly less than the

rank of the factor graph. The final expression for Q is

Q=Q,, = (b+3b)*(8+a)(a+b)*h(b+ba)*b+(b+ah}*

which simplifies to

Q = {a+b)*b(b+ba)*b+(b+ab}* .

5. An Algorithm for calculating [Q]

We shall now formulate the algorithm for calculating
[q]. 1In general the algorithm is not quite as simple as in
the example above. In the above example all the fattor
graphs GH of factors of Q were totally ordered by the
relation < (there were only two!). Technical difficulties
apise in the algorithm because in general the relation -% is

a partial ordering on the faator'graphs associated with Q.
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plgorithm 2. To calculate |Q]
Q-

for a given regular language

§E§E_l Find the factor graphs Gy of all factors H of Q
(inc1uding GQ)' A method of doing this is given in the next
section. Associate with each factor graph GH a subset

Ny = {iys a0 oee s iy} of the nodes {1, 2, ... » q} of the
factor graph Gg, where the submatrix of [Q] defined by the
set N, is the factor matrix [H] of H. Note that for some
factors H there may be more than one submatrix of [Q] which
is equal to [H] (see e.g. the next example). For the pur=
poses of exposition, we shall assume these factor graphs to

be distinct.

Step 2 Calculate the upper semi-lattice defined by the
partial ordering 4\on the distinct factor graphs Gy of
factors H of Q. We shall call GH a minimal element of
this lattice if there is no other factor graph Gg such that

GF-< Gy- G is of course the only maximal element.

Step 3  Choose any path GZ-& Gy« GS«{GR4 6y from a
minimal element G, of the semi-lattice to the maximal
element Gq. This defines a sequence NZ e Nye ...cNg e Np cNQ
of the nodes of Gq. Reorder the nodes of GQ such that the
nodes in the set NQ\NR are numbered from 1 to 1NQ\NR], the
nodes of Np\Ng are numbered from 1NQ\NRI +1 to ]NQ\NSI etc.

Within any of sets NR\Ns the order is immaterial.

Step 4 For the minimal element GZ of the path calculate

5 = [Z] using a standard elimination method.




128.

suppose the current factor matrix that has been

5
step 5

ca]cuiated is Gﬁ = ﬁﬂ T GH = GQ, stop; otherwise let

G. be the next point in the chain. Spiit GF as shown below

F''H Nodes

in NF
Nodes in
Aur Ay | M

and correspondinaly define CFF’ CFH’ CHF and CHH

G - A A Nodes in
F FF l FH }N\N

by

Compute AEF using a standard elimination method.

{ : Compute all entries of G using

i ; CHH = [H] (which has already been calculated)
i =

: Cep = PMep + Afr ArnlMIAupAFr

|

: Cry = AgphenlM

| Cyp = [H1AueARF -

Step 6 Repeat Step 5.

The above algorithm requires that one calculate the

factor graphs of factors of Q. Once the factor graph of Q

has been calculated it is not necessary to repeat all the

steps of the algorithm given in section 7 of Chapter III to

Instead one

find the factor graph of any factor F of Q.

5 essentially uses the proof of lemma 3.1 to find nodes Sg and

T T T T
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and tF such that F = QS £ and then definition 3.2
F°F

and corollary 2 to theorem 3.6 enable one to deduce

F !F i v - Q q -

£ o ¥ directly from Cmax + Lmax . For ease of
reference the steps in this algorithm are given below.

A]gorithm 3 To calculate factor graphs GH of factors H

of Q.
Suppose H = Qy; is the (i,j)th entry of [Q].

Q Q
Step 1 Calculate Cmax + Lmax and deduce GQ'

step 2 Calculate (€O, + LY )% in the algebra ig(R(Sq))-

(R(gq) is the regular algebra generated by the semigroup

3

of [Q] as a union of c-classes of Q. Let this matrix be

denoted [C(Q)]-

In the following steps, in order to check that

of the language Q). In other words calculate each entry

ng E an, one checks that

C(Q)kg = Co #Cy, Feaot Cyy 2 CLpn ™ ©5.% %50 Faoet Gy
This involves comparing two finite sets for set inclusion.

Step 3 Consider H = Qij' and consider all nodes i' such
that Qij = Qi'j'

maximal. Now consider QS 3 and all nodes j' such that
H
QSHJ = QsHj.. Let ty be that node j' such that RtH is maximal.
Step 4 We now have H = QS - Compare all subfactorizations
H™H

Let Sy be that node i' such that Lg is
H

QSHk-thH < H and QSHm-thH c H for one dominating the other;

thus deduce the right factors Q4 of H.
H

Step 5 For all k such that th is a right factor of H,
H

let k' be that node such that th £ Qk't and Lk' is maximal.
H H
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Let Ny be the set of all such k'.

Hoo, B . SR . e
+ L is the submatrix of C . .+ Lmax defined

§£§E‘§ Cax max
py the set of nodes Ny. Calculate Gy using
Gy ~ ((Cﬁax ¥ Liax)\E)\((czax * Lﬂax)\s)2+*.

Needless to say in practical applications it is not
necessary to go to quite these lengths to calculate GH, and
various ad hoc techniques, such as were used in example 1,

can be acquired with practice.

6. Two More Examples

Consider Q = a(a+b)*b(a+b)*a,

We shall apply algorithm 2 to determine the factor

matrix |Qf.

Step 1 The factor graph and semigroup of Q are shown below. ;

& _
g

Fig. 3 Factor Graph of Q = Q,, .

Fig. 4 semigroup of Q.
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The matrix |C(Q)| which exhibits each entry of |af

as a union of c-classes of Q is easily found to be:

e+a+ab a+ab aba aba+ab 7
+aba +aba
S S aba b+ab+ba
Tl = +ba +bab+aba
S S e+a S
+ba+aba
S S a+ba S
+aba
L= o4

where S denotes the whole semigroup.

Applying algorithm 3 we can deduce the following

factor graphs for factors Qij of Q.

e ——
- ¥ o ) a
° o ° b ‘—/)

(a) Factor graph of Q,,

o e e N
+ (7 —
eQ==0==—0

(b) Factor Graph of Q,,

% . _
i a a
% e ™

(c) Factor graph of Q,,

o=02RE0==0

(e) Factor Graph of Q,.

(d) Factor Graph of Q,,

= ath (D

(g) Factor Graph of Q,,

(f) Factor Graph of Q,,

Fig. 5
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'w_z‘ The semi-lattice defined by the relation = is

shown graphicaﬂy below. Each node contains a representative
element of the class of inseparable factors to which the node
corresponds, together with the set of nodes which define the

suybmatrix of [Q] which equals the particular factor matrix.

Q'.I.J
{1,2,3,4)

Fig. 6 Semi-lattice 2
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The particular path from bottom to top of this semi-
Jattice, which we will use in the calculation of [Q], has
peen arrowed. The node numbering has already been chosen

to meet the requirements of step 3 of algorithm 1.

step 4 Clearly [Q,,] = [(a + b)*1. (from fig. 5(f)).

Step 5 Repeating step 5 of the algorithm we get successively

Q0,,] = [e+(a+b)*a (atb)* ] (from fig. 5(d))
i (a+b)*a [yl
Q5] = T a*+a*b(a+tb)*a*  a*b(a+b)*a a*b(a+b)*
(at+b)*a* Q..
(a+b)*a*

(from fig.5(a))

eta(a*+a*b(atb) *a*)
a*+a*b (at+b) *a*

(a+b) *a* 1023'

(a+b) *a*

(From Fig.3).

In each of these matrices we have only shown the new
entries in the matrix. The final expression for Q 1is
Q,; = aa*b(a+b)*a.
Remarks. This example is instructive for two reasons. First-
ly it illustrates that in general one has a choice of path
through the semilattice. Different paths will usually give
different regular expressions for the language Q, althliough in

this case all paths yield expressions of the same star height.

a(a*+a*b(ath)*a¥*) aa*h(a+b) *a aa*b (a+b)

N
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whether there are examples where two different paths through

the cemi-lattice yield different star-height expressions

1 do not know. In any case one can always determine the

star height that a particular path will give and choose one
which is optimal. Secondly, all regular expressions appearing
in [Q] are of star height one, yet the rank of the factor
graph i3 two! Indeed we shall show Jater that the algorithm

always yields regular expressions having star-height less

than or equal to the rank of the factor graph of Q.

Example 2 (continued)

Let us return to example 2 (see pages 111-114). The
Tanguage considered is Q = [(x+y]*zx*(x+y)]*, and its factor
graph 1is reproduced in fig. 8(b) below. As we are only
interested in deriving a reqular expression for the language
Q, which is the (2,2)th entry of the factor matrix, we shall
not calculate the whole factor matrix using algorithm 2 but
only Q,,. To do this we apply steps 1 to 3 of algorithm 2
as before, but then apply steps 4 and 5 in the reverse order.
This results in a system of equations for Q;, which can then
be solved to deduce a regular expression for the language
Q = Qy,-

The semigroup of Q 1is shown in Fig. 7, and in

table 1 we show the factor matrix as a union of congruence

classes of Q.



Sem{group of Q.

Fig, 7.




(IR RV Y

— I
e Z+ZX
FZYHZX ZXEXZX FRZEXZX M-xz Mtz
FXZXEXZY
e+Xx e+x e+x M-xz M+z
+zx+xzx  HZXHXZX +ZX+XZX
+y+ZYtAZY +Z+XZ
yx X e+X N-e-xz N
+XZXEXZY +XZX FXZHXZX
Zy+ZX z M-xz M+z
EXZXEXRZY  ZXEXIXN +XZHXZX
L XZX+XZY KZ X XZ+XZX N-e-x2z N
where

e + X + Yy + Xz + xzx + XZ¥ + Zx + zy + Zyy +t YY

=
]

N =e+ x +y+ xz+ xzx + xzy + Yy

Table 1. The Matrix c(Q

e now find that theve are three factor graphs

associated with the language Q. The first is the factor

graph of Q, which for convenience we have reproduced below,

and the second and third are factor graphs for the languages

{Q33’ Q3h' Uua} and {qu.$ er,.s Quss Q55}g respectively.
The ordering {\ on the factor graphs is total and

so there is no question of a choice of path through the semi-

lattice.




(a) Factor Graph of Q

(b) Factor Graph of 033, (c) Factor Graph of Qgq»

Q345 U3 Qq5> Q5q 204 Qg5

Fig. 8

e B AL T T
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Applying the last step of algorithm 2 requires us to

split Gq in the manner indicated below:

(cf. figs. 8(a) and (b)).

Q = [GE]11 is then calculated as
iy * A*+BsGE-C- *
] A11 + C B GH C-A ]11

where GH is the second factor graph, i.e.

i =
e e

L xX+y

A* s just e, and so we can write down an equation for Q,
11

it viz:
1 Q = L,e_|+;_e._|‘r_e._a'|_gia_i .l_y--l.l.i-l
4l A¥ A* B [Gﬁ] C *
b 11 11 14 3 gl 11
1 . . . e . e
i 5 I_..e_l e 1_(.1.'*_'1..! i) AR
i A* B [Gﬁ L A*

11 14 21 11

(1)

1]
m
+

o]
w
=

+
el
.

e o e o



[n the above equation we

A1l other terms in the

139.

have indicated how

product A*-B-Gﬁ-C-A*

each term arises.

are null. In

order to calculate Q,, and Q,, ve apply the same procedure
to Gy- (See figs. g(b) and {€) )= First we write
e e
Gy = 2 2 = , say.
z e
L Xty

Q,, and Q,, are then calculated using

Qyae = [GF-M-K*]uS

Qy, = L[GE-M-K¥Iyo
where GF is the minimal factor graph (fig. 8(c)):

e+z
GF = .
X+y
By inspection K* = | ix* x*
x*x  x*
o . , * = *

thus th g Quu z bl Q,,zx (2)

[G?]uu My s Kga
and Q,, Giy = & ° X*% s Q. 2zxx* . (3)

—_ e —

[Gflhu Mna ng




P4V,

Finally th is calculated directly from the factor graph

Gp (Fige. 8(c)). One easily obtains

Q = (xty+zxtzy)* . (4)

[
Using back-substitution, equations (1), (2), (3) and (4) are
solved to give

e+ (x+y+rzx+zy)*zx*y

]
1

+(x+y+zx+zy)*zx*x

]

e+ (x+y+zxtzy)*zx*(x+y) o

Note that once again we obtain an expression for Q
which has star-height strictly less than the rank of the

factor graph.

in Final Theorem

We have observed in the previous examples that the
algorithm for determining the closure GE yields expressions
for Q which are of star-height strictly less than the rank of
the factor graph Gq. The algorithm requires that one use an
elimination method to determine certain closures A;F and the
closure Gﬁ of a factor graph GH which is minimal with respect
to the ordering :%, We shall now prove that, provided the
order of elimination of nodes used in the determination of the
various matrices AEF and Gﬁ is optimal with respect to the
star-height of the resulting regular expressions, the algorithm
always yields expressions for Q of star-height Tess than or
equal to the rank of the factor graph GQ of Q. The proof

follows rather simply from the following theorem.




wﬂ_l_._l Let Q be a regular language with factor graph

GQ’ and let H be 2 factor of 0Q, with factor graph GH. Then
raﬂk(GH) < rank(GQ).

We shall in fact prove more than this, namely that
for any factor H of Q there is some graph Gﬁ such that

GHEG}'{ECmax + Llr-‘nax’ and GQ is pathwise homomorphic to Gy.

suppose that the graph G.Q has nodes Nq, that NHENQ
is the set of nodes of GH, and H = Qij where 1,3 eNH
(i.e. i= sy and Jj = tH). The next lemma is 2 necessary

preliminary to defining a mapping ¥: NQ+NH.

Lemma 7.2 Let pelNg. Then 3 a unique node mpeNH such

ghat (i) Q 'Qmpjsaij dominates Qip'qufqij and

(ii) if m' e Ny also has the property that

im
P

Qi Qg € Q5 dominates Qip'qu cQyj
then

(a) Qimpaqim' and (b) qm'mpae .

Proof Let {n1, “2"““1-} c NH be all those nodes in NH such

that Qink-Q c Qij dominates Qip'qu c Qij’ om TgBopeie e ¥s

nkJ .

(Obviously the set fis non-empty.)

Then (Q'in +Q.1.n +-°-+Qin ).(Qﬂ ann jﬂo-- nQn j} EQiJ
1 2 r 1 2 r

dominates Qip-qu EQij’ and is itself dominated by Q'imp'qmpj < Qi3
for some mpg NF' But mp clearly satisfies (1) and (ii) (a)-

Part (ii) {b), follows directly from Theorem 111 4.1(ii), since
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1mp are both left factors of H = Qij and Qimp =l Qim"e
by (ii) (a). Finally uniqueness of my follows from (ii) (b)

and the acyclicity of C:ax\E (Lemma III 5.4).

Now we may define a mapping Y:NQ > Ny by:y(p) = mp
where mp for any psNQ is the unique node of NH defined by
lemma 7.2 above,

We now extend y to be a pathwise homomorphism in a
rather trivial manner. MWe define the graph Gﬁ to have nodes
Ny » and an arc labelled a from node k to node m (k,meNH} if and
only if there is an arc a from some node pey'l(k) to some
node rey'l(m} in the graph GQ. Finally y is extended to be
a mapping from arcs of Gq into arcs of Gﬁ by : if a labels an
arc from node p to node r in Gu then y maps it into the arc

labelled a from y(p) to y(r) in Gﬁ,

By the construction of GL, vy is a pathwise homormorphism
and so we deduce from McMNaughton's pathwise homormorphism
theorem that:

Lemma 7.3 rank(@g) < ranMGQ).
Lemma 7.5 will state that GH c G}, from which Theorem

7.1 follows immediately. In order to prove this we prove the

following lemma.

Lemma 7.4 Let p and r be any two nodes of GQ and let y(p) = k

and y(r) =m. Then Q.. 2 Qpr’
Proof Consider the subfactorization Qip'qu < Qij which is

dominated by Qik.qkj = Qij (by the definition of y and lemma

7.2(i)).




Now ij > ij EY Qpr'qrj'
yence o m'eNy such that

QDT c kaa

and

In
fe)

qrj m'J

But er s lej i {Qi?‘ﬂ)im‘).qr'j < Q.lj

factors of H = Q5> by III4.1(ii),

Qm!mll 2 e .

But, also, Qiuu=Quuy £ Q45 dominates Q.*Quy € Q45 -
+,, by lemma 7.2 (ii) (b)s
Qm"m 2 e
Now, by (3) and (4),Qp 28 -+

Hence ka 2 ka‘-Qm;m =2 kal, by (5)

3 Wws BF (1)

pr
]
Lemma 7.5 GH & GH

Proof In order to prove this lemma, we first prove

: H H
(a) GH £ Cmax + Lmax’ and
(b) Gﬁ < Gﬁ* =

(a) Suppose a € L6 gme Then by construction of Gﬁ,

(1)

(2)

suppose this subfactorization is dominated by Qim"°om"j c qij

where m"ENH. Then Qim" = Qim' and as these are both left

(3)

(4)
(5)

3 nodes

p and r € NQ such that y(p)=k,y(r)=m (k,meNH), and a € [GQ]pr°




rhus, by lemma 7.4, a & Q. Hence a e el BT

H H
1
I.€» G]-I = Cmax * thaxe

(b) Now let us prove G < Gu*. Since Gy is a submatrix of
Q] = 6§ 2 word w e [GEl, - if and only if there is a sequence
of nodes k = pysPysecePy =M with each p,. ¢ NQ and such that

W= 3,8,00080, where a,. € [GQ]pr-lpr 5

But then a, € [GAJY( , and Y(po) = k, and Y(pn) = M.

Pproyg )Y (Pp)
1
l.e. W E [GH*]km . Thus Gﬁ [ Gh* .

Now from (a) and (b) and Theorems III 5.6 and 5.2, [H] =

H H
6f < 64* = (Cpax * Lpax)* = [A]. Hence Gf = GY* = [H] .

Finally, since Gy is the unique minimal starth root of rﬁ]
(Theorem III 546) 4 GH = Gﬁ and the lemma is proved.

We may now deduce Theorem 7.1 directly from lemmas
7.3 and 7.5 since Gy < Gy} trivially implies rank(GH) < rank(Gy),
which by lemma 7.3, s rank(GQ).
Corollary (to Theorem 7.1) MWith a suitable ordering of the

nodes of the factor graph Gq, algorithm 2 yields a regular
expression for the Tanguage Q which is of star-height less than
or equal to the rank of the factor graph GQ.

Proof The algorithm requires that one determine Gfj for a
factor graph Gy which is minimal with respect to the ordering
L. By the above corollary the rank of GH does not exceed the
rank of GQ and so with a suitable ordering of its nodes the

escalator method yields regular expressions for the entries of
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6 all of which have star height not exceeding the rank of

Gg Also required 15 that one determine Afg for a number of
graphs Aeg- Each such graph is 2 subgraph of a factor graph

Gp and hence also has rank not exceeding the rank of GQ.

Thus once again one can obtain regular expressions for the
entries in REF of star-height less than or equal to the rank

of Gpe Since these are the only two cases where starred
expressions are introduced by the algorithm the corollary holds.

As we have already demonstrated in examples 1, 2 and 3
the regular expressions obtained by the algorithm may well
have star height strictly less than the rank of Gq.

The proof of Theorem 7.1 is very useful in hand
calculations to search for factor graphs of factors of Q
which are separable from Q. The jdea is to endeavour to
eliminate nodes from the factor graph Gg by "coalescing' them
with other nodes of the factor graphe. To eliminate node p by
}E "coalescing" it with node k, one simply converts any arc a
from some node i to node p into an arc a from node 1 tO node K,
and any arc a from node p to some node j into an arc 2 from
node k to node J. suppose after eliminating a number of nodes
from Gq, this results in a graph G' having nodes N' = Nq.

The next step is to "prune off" arcs of G'; 1eee AN
effect construct G = (G‘\E)\(G‘\E}2+*. This graph G will then
be a factor graph only if G g(C§ax+Lgax), which can easily be
checked by inspection. Note, however, that G is not necessarily
a factor graph of Q (see example 7, section 8), although all

factor graphs can be obtained in this way.

T R T
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Thus the method is not fail-safe and ultimately resort must
pe made to Algorithm 3. Nevertheless it is undoubtedly a
useful aid to rough calculations.

Example 3 illustrates the process quite well. In
order to obtain the factor graph of 023 one eliminates node 1
by coalescing it with node 2, the graph for th is obtained
by coalescing node 3 with node 4, the graph for Q2l+ by

coalescing node 3 with node 4 and node 1 with node 2, and so

on.

8. Empirical Results

We would have 1iked, of course, to end this chapter
with a theorem to the effect that algorithm 2 always yields
a minimal star-height expression for the language Q. Indeed
for a long time we thought that this could well be true.

Just by taking a very large selection of regular languages
which have appeared in the literature, and laboriously
calculating factor graphs we achieved almost 100% success in
arriving at minimal star-height forms for these languages.

If algorithm 2 did always yield a minimal star-height
expression for any regular language Q, 2 necessary condition
would be that, for those languages Q all of whose factors are
inseparable from Q, the star-height of Q would equal the rank
of the factor graph of Q. In our empirical investigation we
eventually found an example which appeared in Mclhaughton's
paper [29] which refuted this condition, thus showing that

algorithm 2 does not always give the minimal star-height
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expression for a language Q. The example follows.
Examplq_i (Refutation of conjecture that algorithm 2
Examp =

always yields a minimal star-height expression.)

Consider Q = (b +aa ¥ ac + aaa + aac)¥. The machine

and anti-machine for this language are shown below.

b

Machine Anti-machine
Fig. 9

1f we use algorithm 1 we find that

D = +
RLQ Vs ¥
D « P o® P
ﬂzq 2 3
and D, Q = ;& T R
3 1 2 3

Thus the L.R factorizationsof Q are

L xR = (2 7 g ) xr
1 i 1 2 3 3
L = L2 X R1 = RS = (gl + 23) % (r1 + ra)
L3 P R3 = (22 + £3) bS (r'2 + ra)
L xR a g wp ¥ FW ) .
L L3 3 1 2 3



The factor graph of Q can now be determined:

Fig. 10

In order to determine whether Q has any factors
whose factor matrix is a submatrix of [Q| we calculate the
semigroup of Q. The semigroup machine 1is shown in the next

diagram in which nodes, or equivalently c-classes of Q, are

labelled by a representative element of the corresponding

c-class.




1

Fig.




| by.

Using the semigroup multiplication we can now

determine each entry in Gf = [4] a5 a union of c-classes

of Q. Thus we get:

- s
e+a+ad ac+aa ataa aa
rac+aca +aca
e+a+aa e+aa a+aa aa
+ac+aca +ac +aca
+b+ba+baa +b+baa +ba+baa +baa

el =
eta+aa a+aa e+a+aa a+aa
+ac+aca +ac +aca

! rctcatcaa tc+caa +ca+caa +caa

i

i? etataa e+a+taa e+a+aa e+atad

+ac+aca +ac +aca

! +b+bat+baa +b+baa +ba+baa +haa
+ctcatcaa +c+caa rcatcaa +caa

1
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Finally by inspection of the above matrix we can verify

that there are no indices i,j,p and k such that

and  Qpy e Qg o

Qp = ik
and hence all factors are inseparable from Q.
The rank of GQ is two whereas We already have an

gxpression for Q which has star-height one. Thus for this

example algorithm 2 fails to give a minimal star-height

expression.
We conclude this section with a brief discussion of

some of the "more interesting" examples studied by other

authors.
Example 5 This example appears as example £.5 in the paper

by Cohen and Brzozowski [121.
consider the language Q defined by the following

machine.

Fig. 12 Machine

Its anti-machine is given in the next diagram,

following which we show a sequence of factor graphs of the

language Q and some of its factors.




b+c

Fig. 13 Anti-machine

Fig. 14 Factor Graph
of Q = Qu¢

Matrix indicated by
dotted l1ines = A, say.




Fig. 15 Factor Graph of sz

Matrix indicated by
dotted lines = B, say.

(:::fi:::} atb+c Fig. 16 Factor Graph of le

y algorithm 2 to the above sequence of

e to calculate Q11 (which is

16) and the closures B* and A%,

1f we appl
factor graphs we would hav

trivially (atb+c)* - see fig.
where we have indicated the matrices A and B by dotted lines
(figs. 14 and 15). Both of these matrices have rank 1 and so

we deduce that Q has star-height 1.
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This example was introduced by Conen and Brzozowski

£0 j1lustrate the difficulties inherent in a method they
propose for finding the star-height of a regular language,
their method being an enumerative one ViZ. calculate all
subgraphs of a sequence of graphs of a specific type and
determine whether each such graph is 2 recogniser for Q. In
contrast using factor theory we are able to determine the
star-height of this language directly, without any enumeration
being involved.

Note also that neither the machine nor anti-machine
have rank one - astute readers may have criticised our earlier
examples on this point.

Example 6 (McNaughton [291,p314). The language

g = {x*(x + z) x*(y +z)}*
was proved by McNaughton to have star-height 2. His proof
technique is to consider subfactors of a language and show
that the complexity of their interconnectionsin any recogniser
of Q must be above some value. In this case let G be any
recogniser of Q, and consider those nodes N of G such that
a word w in the subfactor x*zyz takes node N to some node N'
in G. Let A be the set of all such nodes. Consider also the
set B of all nodes M of G such that a word v in the subfactor
zyzx* takes some node M' to node M in G. Then one easily
proves that the sets A and B are disjoint but are strongly
connected, and that they each define some strongly connected

component of G of rank at least one. This then allows one to
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has star-height at least two.

prove'that the language
_machine for this

Examination of the machine or anti

insight which would lead to the above

language yields no
termination of the language's star-height.
- fig. 17)

de However if we
study the factor graph (shown below

y+z

Fig. 17
we notice that we can eliminate nodes 1 and 4 to obtain the

which all factors are jnseparable.

following factor graph in
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x and B define two (almost) symmetrical halves of this

18), but are distinguished by the asymnetry

pxample 7 Let Q = (a + (a + b)c¥(c +d) )* .

This examp

Je was also proved by McNaughton [29,p3151

to have star-height two. The above expression is jdentical

to what one would obtain from the factor graph (fig. 19).

Fig. 19

A1l factors of Q are inseparable from Q. Note that

hwise homomorphic to the following

the factor graph is pat

graph, but which is not a factor graph for any language.

c+d
a+b

1+ Pt e

i P S T T



CONCLUSIONS

In his book [13,p123]1 Conway adyises readers to

avoid calculating the factor matrix of any language Q.
while disagreeing with this advice, for the simple reason

that one cannot expect to make any advances in the theory

of factors without doing such calculations, we should

nevertheless mention two drawbacks to any practical use of

factor theory.
The first is that calculations with factors

inevitably tend to be rather long. With practice the method

given in Chapter III to calculate the factor matrix Q| is

quite simple and straightforward, most of the effort in fact

going into calculating the machine and anti-machine for Q.

But, by hand, the work is tedious and rather prone to error,
as well as involving quite a Tlarge amount of computation.

Moreover, as soon as one begins calculating factor graphs of

factors, the effort involved really does become quite daunting.

(An obvious case for programming on a computer:) The second

and much more significant reason, is that the factor graph

may well have an extremely large number of nodes, even for

lanquages having quite simple finite-state machines. For

instance the language recognised by the finite-state machine

=26) nodes,

below has a factor graph having 64 (
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Indeed, for any n 2 3, the subset‘of (a+b)* consisting of

all words such that the number of a's minus the number of

b's is not congruent to 0 mod n has 2" nodes in its factor
graph (the above example 1is the case n = 6). Also if the
Janguage Q has a factor graph of a manageable size, the factor
graph of ~Q will often be quite unmanageable. However these
problems are not peculiar to factor theory, and would appear
to be a fact of life when handling regular languages.. [If
anything, they il1lustrate just how much we don't know about
regular Janguages:

In retrospect, the algorithm given in chapter IV

for calculating the closure GE of GQ is based on very simple
ideas. The essential ingredients of the algorithm are the
following:

(a) there is a transitive relation "is a factor of" on

the entries in Gﬁ 4
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the relation "is a factor of" can be reduced to an
equivalence relation "is inseparable from" on the
entries in Gﬁ ;

each equivalence class modulo “inseparabi1ity“

defines a graph GH such that Gﬁ is a submatrix of 65 ¥

By way of comparison, consider any graph G and

consider the following sequence of ideas.

(a)' there is @ transitive relation njs connected to" on
the nodes of the graph G-

(b)' the relation "is connected to" can be reduced to
the equivalence relation "is strongly connected to"
on nodes of G.

ey each equivalence class modulo "is strongly connected

to" defines a subgraph of the graph G (in fact a

section of G).

The process of deducing an algorithm to calculate GE
is thus a very familiar one, and one inevitably seeks to
extend it to other recognisers of Q. For example entries in
M*, where M is the machine of Q, are derivatives of Q and

derjvatives of derivatives are derivatives. Thus "is a

derivative of" is a transitive relation on the derivatives of
Q. Unfortunately in this case no additional benefit is gained
;E by considering a symmetric closure of "is 2 derivative of"
since if S and T are derivatives of Q, S is a derivative of T
and T is a derivative of § if and only if the two nodes to

which they correspond (cf Theorem III 2.2) are in the same
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section of the machine of Q. Similarly analysis of the
anti-machine or the semigroup machine yields no improvement
on the usual elimination methods for finding their closure.

One possibility remains. We have observed that
F' factors of a language Q are unions of c-classes of Q which
| are maximal in some subfactorization of Q. Instead of
considering maximal unions of c-classes we could consider
arbitrary unions of c-classes. Using similar techniques to
those given in Chapter 111, we could construct te-class graphs”
for Q. In a c-class graph, G, entries in G* are unions of
c-classes of Q and each node can be labelled (£11+...+2ik) x
(rjl+...+rjm) where the £i's are g-classes and the rj‘s
are r-classes of Q. The only requirement is that

(B Fowatbs Jo(Ts Fonskly )=Q
11 1k J1 ‘]ITI

is a gggfactorization of Q. Using some results of McNaughton
and Papert [31], it is very easy to prove that unions of
c-classes of unions of c-classes of Q are themselves unions

of c-classes of Q. We thus have the beginnings of an analysis
similar to the one given here for the factor graph. Moreover,
in studying c-class graphs one can benefit much more from
previous work on the star-height problem than we have been

able to. For the "pure-group events" studied by McNaughton [281
a c-class graph is clearly what he would call a "y-graph".

Cohen and Brzozowski (1271 also study "subset automata" which

are particular cases of c-class graphs.
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Very Ssevere practica] problems arise however, as
there is usually not just one, but many c-class graphs for
a particular language Q {one of which is the factor graph).
problems which we mentioned above in studying factor graphs
are thus accentuated tremendausly. Needless to say» we have
no empirica] results to date as to how successful this could
be, and there is still a lot to be done before the star-height
problem js solved.

An intermediate problem which is probably worth
tackling before embarking on an 1nvestigation of c-class
graphs is the following. Let F and H be two regular languagess
and suppose F is a union of c-classes of H and H is @ union
of c-classes of F. Is the star-height of F equal to the
star-height of H? An answer of no to this question would
make us very sceptical of pursuing this line of investigation,
but we would guess that the answer is more 1ikely to be yes.

It is jmportant to note that algorithm 2 cannot have
an analogue in linear algebra. Considering yet again example 13
from the factor graph of the language Q (fig. 1,p.123) we get

the following system of equations defining Q:

qQ = (e+a)P *+ €
p = bQ+ el
T = aT +bP

where P = Q21 and T = Qs1 gubstituting & = 1, a = -k

b = 1 in these equations and solving (in linear algebra) for

Q, we get
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However if we replace m* by (1—m}'1 and substitute the sane
values for e,a and b in

Q = (b+ab)*(e+a)(a+b)*b(b+ba)*b 4+ (b+ab)*
(1v 8 4 ) we get

Q = 6 =

1f the method did have an analogue in linear algebra, the
two values would agree, which they evidently do not.

The main conclusion to be drawn from the
work presented here is that one should not pe content with
the simple elimination methods of Chapter 11, and more effort
should be put into developing new closure algorithms. The
apprnach we would suggest for doing this would be the same
as that used here. That is, investigate one particu1ar class
of graphs, develop closure algorithms using properties
particu1ar to this class and finally seek to extend the
algorithms to have more general app1icability, Moreover, let
us not see any hypothetica1 sglutions to the star-height
problem which simply involve nepumeration” until all other
possible hypotheses have definitely been exhausted.

We have had 1ittle to say in this thesis about other
app1ications of Conway's factor theory. but we would anticipate
that it will become much more important as a theoretical tool .

in the study of regular languages. Conway introduces it as a

method of studyingd approximations to regular languages, and
goes on to yse it extensively in his study of the biregulators
(Note: piregulators are usually called "generalised sequentia

machines“.) Some connections petween factors and the semigrou

e ———ENETE
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of a language have been pointed out, and we feel that the
direction of future research on factors would be to

investigate such connections more fully. Note that it is
always possible to discover the semigroup multiplication
L%ax , and so in studying
the factor matrix one Joses no information about the semi-

. . ¢l
directly from the matriXx cmax +

group. Indeed much more information is contained in the
factor matrix. The semigroup is often too coarse a description
of a language, since it is invariant under relabelling of the
start and terminal nodes of the machine. However under such
relabelling the factor matrix changes quite substantially.
For these reasons we would expect factor theory to yield
more insight into those problems which have traditionally been
tackled by studying the semigroup of the language £301.

But these are just a few suggestions for further
work on regular languages. The study of regular languages
is a particularly attractive area for further research since
it offers quite a large number of unsolved or inadequately
solved problems. (See [34] for further discussion.) Moreover
problems in regular algebra are usually expected to be
solvable - but they are clearly very difficult and very

challenging.

P S Ut L4 Lt AL
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