FACTOR THEORY, FATILURE FUNCTIONS AND BI-TREES

L 4

‘Roland C. Backhouse and Rudiger K. Lutz,
Heriot=Watt University, Edinburgh, Scotland.

Abstract

The factors and factor matrix of a‘' regular language are defined
and their properties stated. It is then shown that the factor matrix
of a language Q has a unique starth root = called the factor
graph of Q - which is a recogniser of Q. An algorithm to calculate
the factor graph is presented. The Knuth, Morris and Pratt pattern
matching algorithm, its extensions and Weiner's substring identifier
aigorithm are outlined and are all shown to be equivalent to finding

the factor graph of some regular language.

Key words and phrases: regular language, factor, factor matrix)pattern

matching, string-matching.

Authors' address: Department of Computer Science,
Herip;LWatt University,
79 Grassmarket,
Edinburgh, EH1 2HJ,
SCOTLAND.

B L. K@]o No. 1, , Gl @16

W

1. Introduction

In order to be of any value a theory must do three things:
it must correlate a body of known facts, it must explain these facts
and (most importantly) it must predict a number of related facts not
already observed by the practitioners of the subject. Automata theory
has certainly proved its value in correlating and explaining a large
variety of techniques in language recognition and related areas. Yet
it has rarely been used to predict results ok practical value to
computer programmers which have not already been obtained by other
means. One exception is the remarkable result due to Knuth, Morris
and Pratt [7] that pattern—matching (i.e. finding all occurrences of

a given string as a consecutive substring of a given text) can be

performed in linear time.

In this paper we do not predict any significant new algorithms,
nor, indeed, do we explain any known a}gorithms. -Cur contribution is
merely to correlate the Knuth, Marris, Pratt [7] pattern-matching
algo;ithm.and Weiner's [11] substring identifier algorithm with a little-
known area of automata theory initially developed by Conway [6] - the
study of factors of é\regular language. The correlation is, however,
quite startling and we therefore feel that it offers a significant
challenge to automata theorists to explain the correlation and to exploit

it by developing new algorithms for the solution of practical problems.

In section 2 we define the factors of a language and state a
number of properties of factors due to Conway [6]. We then prove that
the factors of a regular language Q define a (non-deterministic) recogniser
of Q which we call the factor graph of Q. Sectioﬁs 3 and 4 then show

that the failure function method of solving the pattern matching problem

N—

is equivalent to finding the factor graph of a regular language.

Section 5 shows that, after a minor modification, Weiner's algorithm [11]

is also equivalent to finding the factor graph of a regular language.

We shall assume familiarity of the reader with the terminology
of graph theory and language theory [2]. There is a well-known
correspondence between labelled p—node graphs and pxp matrices, and
hence we use the terms graph and matrix synonomously. e is used to
denote the empty word and V is used to denoie a finite alphabet.
Following Conway [6] we call a matrix all of whose non-null entries

are e a constant matrix and a matrix all of whose entries are subsets

{al,az,...,ak} of V a linear matrix. A constant + linear matrix is,

as the terminology suggests, one which is the union of a constant
and a linear matrix. A recogniser (G,S,T) consists of a constant +
linear matrix G and two subsets S and T of the nodes of G which are

designated as start and terminal nodes, respectively. The language

recognised by (G,S,T) is ggé G*st . A recogniser is all-admissible

teT

if for all nodes x of the graph there is a path in the graph from
some start node s to x and a path from x to some terminal node t.
Finally if X is a finite set 2% denotes the set of all subsets of X

and IXI denotes the size of X,

2. Factory Theory

The concept of a factor of a language was first introduced
by Conway [6 1. Conway also introduced the concep£ of the factor matrix
of a regular language. In this section we introduce the concept of a
factor graph and present an algorithm for computing the factor graph of
a given regular language. Firstly, however, we need to summarize a few
well-known properties of regular lang;ages as well as the fundamental.
properties of factors due to Conway.

2.1 1-, c— and r— classes

This section defines the Z-, c- and r- classes of a language -Q
and relates them to the derivatives and anti-derivatives of Q. The
reader familiar with the work of Rabin and Scott [10] should have no

difficulty understanding our definitions.
*
Let Q < V be any language. Q naturally defines three equivalence

%
relations on V - QZ’ Qr and Qc - given by:

*
xQZy <=> (¥zeV , zxeQ <=> zyeQ)

*
Xer <=> (¥zeV , xzeQ <=> yzeQ)

*
xQy <=> (¥u, veV , uxveQ <=> uyveQ).

These are, of course, the usual left-invariant equivalence relation,
right-invariant equivalence relation and congruence relation introduced

by Rabin and Scott [10].

The fundamental theorem linking these relations to regular

languages is the following:

Theorem 2.1

A language Q < V* is regular <=> thg relation QZ is of finite index <=>

the relation Qr is of finite index <=> the relation Qc is of finite index.

Definition

Let Q be a regular language. By theorem 2.1, each of the relations QZ’
Qr and Qc partitions V* into a finite number of equivalence classes. We
shall call an equivalence class modulo QZ an r-class of Q, an equivalence

class modulo Qr an l-class of Q and an equivalence class modulo QC a c-class

of Q;

Note the peculiar switch: an equivalence class modulo QZ is an

r-class of Q. The reason for this will become evident later.

We shall also write Z(x) for the l-class containing x, r(x) for
the r-class containing x, and c(x) for the c-class containing x.
Definition

The machine of a regular language Q is the unique deterministic recogniser

of Q having the least number of nodes. The anti-machine of Q is the machine

<

of 5 , where Q denotes the set of all words which are the reverse of words
in Q. Nodes of the machine and anti-machine will usually be called states.
The semi-group of Q is the quotient of the free semi-group V* with respect

to the congruence relation QC.

The machine and the l-classes of Q, and the anti-machine and the

r-classes of Q are connected by the following theorem.

Theorem 2.2

Let Q be a regular language. Let the states of the machine for Q be

{1y ven s Zm} and the states of the anti-machine be {rj, ... , ram}' Suppose

that 7, and r; are the start states of the respective machines and let xeV*,

Then we have:

(a) I1f x takes the start state 7; to state Zi of the machine, then the
l-class containing x, L(x), is the set of all words which also

take state ; to state Zi.

(-' . .
(b) If x takes the start state r; to state rj of the anti-machine,
then the r-class containing x, r(x), is the set of the reverse

of all words which take state r; to state rj.

Corresponding to the semigroup we can always construct a semigroup

machine, whoSe states correspond to elements c, of the semigroup, and where,
for all aeV, there is an arc labelled a from state c; to cj if ci.c(a) = cC..

J
Let c; be the identity element of the semigroup. We then have:

(c) If x takes the state c; to state €, of the semigroup machine, then
the c-class containing x, c(x), is the set of all words which also

take state c; to state e,
Corollary
The 7, r and c—classes of Q are regular if Q is regular.

Because of this theorem, we shall henceforth use the symbols
1y, 15, ... to denote states of a machine for a regular language Q and
also to denote the l-classes of Q to which they correspond. (And similarly

of course with the symbols rj, ry, ... and ¢y, Coy ...).

*
Let us consider the relation Qr' We note that any word xeV

*
partitions V into two sets, denoted DxQ and.mDXQ, where

D_Q {y|xyeQq}

v D_Q {y|xy¢Q} .

D_Q is called the derivative of Q with respect to x.

w

We then have:
Lemma 2.3
X Qr y <=> DXQ = DyQ

This is the basis of the method of derivatives for calculating

the machine of a language Q [41.

Similarly the relation QZ leads one to define anti-derivatives:

The anti-derivative of Q with respect to x, denoted QXQ is

/ 0,Q = {y|xyeQ} = {y|¥xeQ} . _
Lemma 2.4
xQy <= ﬂ;Q = CI;Q .

: : . * %,
Finally, the relation Qc partitions the set V xV into CxQ’

the context of x in Q, and'vCXQ where

c.Q = {({u,v) | uxv € Q} .

X
Lemma 2.5
xQ, ¥y <> €Q = €Q

The following observation, although rather elementary, is quite

important in the sequel.
Theorem 2.6

(a) The word derivatives DXQ of a language Q are unions of r-classes

of Q, where DXQE;(y) if and only if xyeQ.

(b) The reverse of anti-derivatives of Q, i.e. languagés of the form

3

G;Q, are unions of l-classes of Q, where ﬁ;QaZ(x) if and only

if xyeqQ.

(c) The contexts CxQ of a language Q are unions of subsets of
* % :
V XV of the form Ixr, where 7 is an l-class of Q and r is an

r—-class of Q, where CXQEZ(u)xr(v) if and only if uxv € Q.

Proof
‘ *
Let Q be a language and let x Vi
Then yeDQ<=>xyeQ<=>Xe é;;Q .
But by lemma 2.4, G§Q & Q§1Q for all y! such that leZy'

y e DXQ <=> yl ¢ DxQ for all yl such that y! QZ y.

i.e, DxQ = z r(y), and part (a) is proved.
YeDXQ

Part (b) is proved similarly.

Consider now CxQ' The pair (u,v) ¢ CxQ <=> uxv € Q <=>

<
a 0
Vv € DuxQ and u € ;;—Q

But then, by an identical argument to that above, this implies that ulxy!l e Q

for all ul €7(u) and v! ¢ riv),

i.e, CXQ_3 l(u) x r(v).
Whence CQ = z L(u) x r(v), and we have proved (c).
(u,V)ech

Note that although the displayed unions are over an infinite set,
the number of distinct terms is finite when Q is regular, and so the unions

themselves may be taken over only a finite set of words.

20872 The Fundamentals of Factor Theory

The following definitions are taken from Conway [6 7.
Definitions

Let F, G, H, ... , K, Q denote arbitrary languages (not necessarily

regular). F.G...H...J.K is a subfactorization of Q if and only if

F.G...H...J.K € Q. (*)
F.G...H...J.K dominates it if it is also a subfactorization of Q and
F E_f; G S_E, e g IS E.E . A term H is maximal if it cannot be increased

without violating the inequality (*). A factorization of Q is a sub-

factorization in which every term is maximal. A factor of Q is any
language which is a term in some factorization of Q. A left (right) factor

is one which can be the leftmost (rightmost) term in a factorization of Q.

Next we state two lemmas, due to Conway, which are quite
fundamental to future results. The proofs are quite simple and can be

found in Conway's book [6 7.
Lemma 2.7

Any subfactorization of Q is dominated by some factorization in

which all terms originally maximal remain unchanged.

Lemma 2.8

Any left factor is the left factor in some 2-term factorization.
Any right factor is the right factor in some 2-term factorization. Any
factor is the central term in some 3-term factorization. The condition
that L.R be a factorization of Q defines a (1-1) correspondence between

left and right factors of Q.

We shall now give a characterisation of the factors of Q which
gives some insight into their properties. Recall (2.1) that an Z-class
of Q is a right—invariant equivalence class, an r-class is a left-invariant

equivalence class and a c-class is a congruence class of Q.
Theorem 2.9

The left factors of any language Q are either ¢ (the empty set)
or are unions of l-classes of Q. The right factors of Q are either ¢ or

are unions of r-classes of Q and the factors are ¢ or are unions of c-classes

of Q.

Corollary (Conway)

A language Q is regular if and only if it has a finite number

of Zactors. The factors are regular for regular Q.
Proof

Let L be a left-factor in the two term factorization L.R c Q
of Q. If L # ¢, let xeL and'consider any y € L(x). Since L.R €,
R c DxQ = DyQ (by Lemma 2.3). Therefore y.R < Q, and so, since L is
maximal, yeL. Hence L o 7(x), and L = XEL 1(x), i.e. L is a union of
l-classes of Q. Similarly any non—-empty right factor is a union of

r-classes of Q.

If H is any factor of Q it is the central term in a factorization
LHR < Q (lemma 2.8). If H# ¢, let xeH. Then the set CXQ=={(u,v)|uxveQ}
> LxR = {(u,v)l uel,veR}. But if yec(x), CyQ = CxQ > LxR. Thus, as

above, yeH and H = XEH c(x).

The corollary follows from the corollary to Theorem 2.2.

The above characterization of the factors of Q is different to
Conway's. The advantage will be seen later when we consider the problem

of calculating the factors of Q.

From now on, unless otherwise stated, we shall only consider the

case where Q is regular.

233 The Factor Matrix

Following Conway, let us index the left and right factors as
L1, Loy eee Lq and Ry, Ry, ... Rq wherein corresponding factors (see
lemma 2.8) are given the same index. We now define Qij (1 <1i,j £ q) by

the condition that LiQinj is a subfactorization of Q in which Qij is maximal.

10.

(It is important to note that LiQinj may not be a factorization of Q).
We note that, by lemmas 2.7 and 2.8, H is a factor of Q if and only if
it is some Qij' Thus the factors of Q are organised into a q X q matrix

which is called the factor matrix of Q and is denoted i?ﬂ.

Various properties of the factor matrix may be observed [6],

some of which are summarised below.

Theorem 2.10

(i) H is a factor of Q <=> H is some entry Qij in the factor matrix
] .

(ii) Q.. is maximal in the subfactorizations L..Q.. < L. and Q...R. < R..
1] 1 13 — J 13 J— 1

Thus Qij is a right factor of Lj and a left factor of R..
i

(iii) 3 unique indices s and t such that Q = Lt = RS = Qst’ Li = Qsi
and Ri = Qit'
. *
(iv) [l = [q]".
(v) If Aj.Ay ... Am E-Qij is a subfactorisation of Qij’ then 3 indices

i B

-1 Such that Ay c Qg » A2 € Qk1k2"“ s A S Q s

m—

The reader is referred to [3] or [6] for the proof of theorem

2.10 which is quite straightforward.

Theorem 2.10 is an extremely interesting and powerful theorem,
from which most results on factors can be deduced immediately. Particularly
useful is 2.10 (iv), which we shall often apply in its alternative form

(a) Qll 2% and (b) Qij= iQik'QkJ.

Part (iii) tells us that the s th column of [Eﬂ contains all the
left factors and the t th row all the right factors, and the intersection
. . . . *
of this row and column is the language Q itself. This and (iv), [6T = lfﬂ 5

suggest very strongly that there is some recogniser of Q,(G,{s},{t}),

consisting of a graph G with start node s and terminal node t, such that
Li is the set of all words taking node s to node i, and Rj is the set of
all words taking node j to node t. In fact there is often more than one

such G, but we shall show that there is a unique minimal one.

2.4 The Factor Graph

In this section we shall prove that there is a unique minimal

matrix G, such that fa] = G%X. G, is a constant + linear matrix and

Q Q Q
so is called the factor graph of Q.

The proof is not straightforward and so it is worth while
explaining the difficulty. Consider any element A of a regular algebra.
R. We shall call any X such that X* = A* a starth root of A*. Our aim
is to prove that there is a unique minimal starth root of Rﬂ. If o is
a regular language it is quite easy to prove that there is always a unique
minimal starth root of a* (see Brzozowski [5]). The proof, however?
relies on length considerations and does not apply to all regular algebras.

Indeed it is not generally true. Consider the matrix

This matrix has starth roots

A, = 0 e ¢ and A, =) [0 e
¢ ¢ e e ¢ ¢
e ¢ ¢ ¢ e ¢

which are both minimal. Thus there is no unique minimal starth root of M.

12.

In order to prove that fa] nevertheless does have a unique
minimal starth root we first prove that |Q| has a starth root which
is a constant + linear matrix, and then that this matrix can be reduced

to one which is minimal.
Theorem 2.11 (Conway)

3 unique maximal constant and linear matrices C and L
— max max

*
= +
such that] | (Cmax Lmax) .

Proof

C and L are defined to be the unique maximal constant
max max
d linear matrices (respectivel such that I | 516 and > L %
o (resp y) Bt 2 max el 2 max

Once again we refer the reader to [3] or [6] for the remainder of the

proof.
Theorem 2.12

Let A be an element of MP(RL). Let M%(RL) have unit element E.
Let [B\C].. = [b. \c..] where \ denotes set difference.
1] 1] 1]
2+% 24+% . PR
1f A* = {(A\E)\ (A\E) }* then (A\E)\ (A\E) is the unique minimal starth

%
root of A*, where X2+ = X2 ,X*,
Proof

2+%
Let X = (A\E)\ (A\E) . By assumption X is a starth root of A%,

Suppose Y is also a starth root. We must show that X c Y.

Suppose w E Xij'

Clearly w € Y?j = [(Y\E)*]ij, because Y is a starth root of A* and A* > X.

Hence w € [(Y\E)n].. for some n where, by definition of X, n = 1.
1]

Now Y c A* = (AAE)*. Hence Y\E g_(ARE)+ .

n +.n
w e [(Y\E)]ij < [(AE))]ij 4

24+%
it [(A\E)\ (A\E)]ij

>
I}

But W €

=> n = 1

S e Rl e A
e

I.e. X c Y and the theorem is proved.

Considering the matrix M mentioned at the beginning of this

section, we find that

L
GAEN ME)T . |y 4 ‘
(e

This is clearly not a starth root of M,

We note however that M has e-cycles which pass through more
than one node. This cannot be true of the factor matrix as the next
lemma states. This observation together with theorems 2.11 and 2.12 enable

us to proceed to the proof of our main theorem.
Lemma 2,13

C \E 1is acyclic.
ax

m
Proof

Suppose Cmax>E is cyclic. Then there must be two distinct nodes
i and j such that [C__],, = e = LC J... Now consider the matrix [qQ].

max~ij max~ji

We have ﬁﬂ = [Eﬂ*, (2.10 (iv)), and f61 E-Cmax’ by Theorem 2.11.
Therefore Rﬂ = ﬁﬂ'[ﬁ1_3 Rﬂ.cmax'
Ll Qsi = sj.[cmax]ji % Qsj
g Qsj E-Qsi'[cmax]ij E Qsi :

14.

Therefore Qsi = QSj i.e. Li = Lj (by 2.10 (iii)).

Similarly, using [?5]_3 cmax.(a]’ we get Ri = Rj.

But then nodes i and j cannot be distinct and we have a contradiction.

Therefore the initial assumption is incorrect and Cmax>E must be acyclic.

Corollary 2.14

Let |61 be a gxq matrix. Then (Cmax\E)P = N for all p2q.
Finally we come to the main theorem of this section.

Theorem 2.15

Let Q be a regular language, and let C and L be as defined
max max

in Theorem 2.11., Then there is a unique minimal matrix G, such that

Q

o 2+%
Gx = [61, given by G + Lmax)\E)\ ((Cmax + Lmax)\E) . Moreover

Q Q
the triple (GQ,{S},{t}) (where s and t are given by Theorem 2.10 (iii))

- ((Cmax

is a recogniser for Q.

G, is a constant + linear matrix and so its graph will be called

Q
the factor graph of Q. -

Proof

Using Theorem 2.12, we need only prove that Ga = [61 where

24% . .
GQ . & Lmax)\E)\((Cmax : § Lmax)\E) . In turn this only requires
g % $ E. si . % = (Qk)% *

proving that GQ 3_(Cmax Lmax)\ » Since then GQ (GQ) 2_(Cmax + Lmax)
= [q], by Theorem 2.11.
Let pl : we [(C + L NE].. .

max max ij
Then P2 : w has length O or 1.
Suppose p3 : w ¢ [GS]ij .
Then ph: wi [GQ]ij

24k

and so PS5 : W E [((Cmax + Lmax)\E)]ij .

Hence 3 indices i = ky, ky, ... , km+1 = j and words

a1, @2, «+0 5 @& S.t. m22, w= a182...a

m
and pl : a, € [(C + L O\E]
h max max khkh+1
and hence P2 : ah has length O or 1, for all h=1l,...,m .
Now for some h we must have
p3 : ¢ [Gx]
ah Q khkh+1
therwise w e [GX]..).
(o " 013 i
Hence for this h
p4 : -6
%h Qg kg
and so, for this h
2+%
9 W\E
part o e [((Cmax Y Lmax’\‘)]khkh+1 *

Let this ay be V. v has the same properties as w and so can

in turn be expressed as the product of two or more words blbz---bn’ where

by the same argument one of the bg's = u, say, also has the same properties

as w. In this way we can express w as a product.

W= Y1Y2..lY,

of an unbounded number x of words yf, where

v. € [(C + L NE]
f max max nfnf+1

for some nodes n;, ... , n_ But the product of two linear matrices is

x+1°

either null or non-linear. Therefore at most one Ve has length one, and
we conclude that (Cmax\E)p is non-null for all p. But this contradicts
corollary 2.15. Hence the initial assumption that property p3 holds for w

must be false. Hence G* o (C + L)\E, and by our earlier argument
Q— "m max

ax

Ga = ﬁﬂ. Finally, applying Theorem 2.12, GQ is the minimal starth root

15.

16.

of ra] . The last part of the theorem follows immediately from Theorem

2.10 (iii), Q = QSt = [Gs]st .

2.5 An Algorithm to calculate the factor graph

The previous results embody an algorithm to calculate the

factor graph of Q, which we shall develop with the aid of an example.
Step 1

Calculate the machine and anti-machine for the language Q.
Label the states of the machine (anti-machine) 77, Zp, «.. Zm

LY BBy ias o ram) and use these labels to denote the corresponding

l-class (r-class).
Step 2

Construct two tables, the first listing the Z-classes of Q
and the second the r—-classes of Q. Each table has 3 columns. Construct
first of all the first two columns of these tables, the first colummn
containing simply a list of the labels Zi (rj) given to the l-classes
(r-classes) of Q, and the second column containing an arbitrgry
representative element of the corresponding class. The third column of
each table is now constructed. In the first table this column represents
the various derivatives of Q as unions of r-classes of Q, and in the
second table it represents the reverse of the various anti-derivatives of
Q as unions of Z-classes of Q. Suppose the l-class Zi has representative
X, and the r-class rj has representative yj. Then rj appears as a term
in the Zith row of Table 1 if and only if xiyj € Q, and similarly Zi appears

as a term in the rjth row of Table 2 if and only if Xiyj e Q.

17.

Example 1
Let Q = (b + a(aa*b)#*b)*

The machine and anti-machine of Q, constructed in step 1, are shown below.

L\
™~
N
'_/‘
Y
~
w

Fig. 1 (a) Machine of Q.

a+b

a+b

Fig. 1 (b) Anti-machine of Q.

18.

The tables constructed in step 2 are shown below.

Node/ Representative : 5

l-class element WX R
4 e r] + ry + 13
123 a ‘ r, + r3
l3 aa - =3

Table 1(a) Machine

Node/ Representative --Reverse of

r-class element anti-derivative
r; e _ 1
Ty b 1, + 1,
r3 bb 11 + ly + 13
ry a ¢

Table 1(b) Anti-machine

The correctness of step 2 is based on theorem 2.6.

For instance the class 7, has representative a

and since a.e ¢ Q (e is the representative of ry),
and a.a ¢ Q (a " ry),
but a.b e Q (b " r2),
and a.bb € Q (bb " r3),

the derivative corresponding to 1, is r,+ rgz.

Step 3

Deduce the corresponding left and right factors of Q and
label them Lj, Lo, ... , Lq, Ri, Ryy ove Rq' Find the unique indices

s and t such that Q = Lt = Rs'
To do this, one considers all subsets {Zi ""’Zi } (including
1 k
the empty subset) of the I-classes of G aud finds for each subset those

classes r., ,... ¥, common to the Z, ‘th, Z. th, ..., L. th entries in
J1 I g 12 by
the third column of Table 1. One theu has (Z. + ... + L.).(r.
1 lk J1
c Q is a subfactorization of Q in which (rj + ... + r.) is maximal. By
= 1 N
inspecting all such subfactorizations one may deduce the left and right

<+

factors. L_=1_ + 1_ +...+ 1_ 1is that left factor such that the
t ty toy t,
l-class Zt E-Lt if and only if it corresponds to a terminal node of the
i
machine for Q. Similarly RS ol A r82 + .. + T, is that right factor
1
P
such that the r-class kL S-Rs if and only if it corresponds to a terminal

J
node of the anti-machine for Q.

20.

Applying step 3 to our example we would get the following

subfactorizations:

(ZI+Z2+Z3).I3 ’ (12+Z3).r3 3 (Zl+Z3).r3, 13.r3,
(Zl+12).(r2+r3) s Zz.(r2+r3),
Zl .(r1+r2+r3) 0

¢ . (rytrptrgtry).

We have displayed these subfactorizations in such a way as
to make it evident that only those in the first column are also

factorizations of Q.

This information is summarised in Table 2, in which we have

also named the left and right factors L;,L,,L3,L, and Ri5Ry,R3,Ry.

Left Factors Right Factors
Lt = Ll Zl RS = Rl ﬁ1+r2+r3
Ly 11+l . Ry 1rp+r3
Ly Zl+Zz+Z3 Ry r3
Lq ¢ Ru r1+r2+r3+r4

Table 3 Left and Right Factors

In the table we have also indicated that the indices s and t
of Theorem 4.1(iii) are both equal to 1. This is because, from the machine
(Fig. 1(a)), Q = 7;, and from the anti-machine (Fig. 1(b)), Q = rj+rp+rs;

but Ll = Zl and Rl = rytrotrg.

Step 4

Calculate C . Whence deduce
max

C

2+%
min (Cmax\ E)\ (Cmax\ E) .

20

C _1..> e if and only if L., > L,, and this can easily be deduced
max ij — F="1

from the representation of Li and Lj as unions of l-classes of Q.
Step 5
Calculate L . Whence deduce
max

2+%
L. =1 \N(Cc +1.L N,
min max max max

J.. o a if and only if a € V and L..a ¢ L.. This can also be
max ij — i =]
easily deduced from the representation of Li and Lj as unions of Z-classes

of Q and the knowledge that Zk.a < Zj if and only if under input a the Zkth

state of the machine for Q goes to state Zj.

i = s SR lupe
Finally GQ len el o

Steps 4 and 5, applied to our example, are summarised in

figs. 2-5, below.

22.

o

23.

— (T (o

a+b

Fig. 5 The Factor Graph GQ

The construction of C and C_. should be clear. For instance
max min
there is an arc from node 1 to nodes 2 and 3 in Cmax since
Ly =1y ¢ Lp = l3+lp c'Lg =1y + I, + 13. There is no arc from 1 to 3
in Cmin’ since there are arcs from 1 to 2 and from 2 to 3. The construction
of Lmax is slightly more complicated. As an example, there is an arc
labelled b from node 2 to nmodes 2 and 1 since Lp.b = (Z; + 1,).b

= 11.b + I5.b = 1) + 1; (from the machine in fig. 1(a)), and 7; < L, < L;.

&

24,

2.6 Remarks on the Algorithm

Conway [6j advises his readers against calculating the factor
matrix of a regular language. Whilst disagreeing with this advice
- the following sections would not have been written had we not done
so — it is necessary to observe that the above algorithm has exponential
time complexity (in the size of a regular expression denoting Q).
Calculating the machine or anti-machine may have exponential time-
complexity and so also may the comparisons Bf subfactorizations in
step 3. Indeed the number of nodes in the factor graph of Q max»be
exponential in the size of a regular expression denoting Q. For
example, if Q is the set of all words such that the number of a's

minus the number of b's is not congruent to O modulo n, where n > 3,

the machine of Q has n nodes but its factor graph has 2% nodes [3].

It is difficult for us to compare the above algorithm with
Conway's method of calculating the factor matrix for the simple reason
that we have never completely understood Conway's method! Our method
is quite straightforward to use (on small expressions) and one particularly
important merit is its systematic use of representatives of the Z- and
r—-classes. There is some redundancy in the algorithm - the third
column of table 1(b) can be deduced from the third column of table 1(a),
or vice-versa - but this redundancy is probably worth retaining as a

check on hand calculations.

The above remarks militate strongly against the possibility of
applying factor theory in any practical language recognition problems.
Nevertheless the next three sections demonstrate one area where the factor
graph has found a practical application. The algorithms used bear no

resemblance to the algorithm of section 2.5, thus suggesting that more

25.

efficient (specifically and generally applicable) algorithms can be
designed. In summary, therefore, the algorithm of section 2.5,
is proposed as a stop—gap measure to enable us to become more familiar

with the properties of factor graphs.

A minor technical nuisance in the calculation of factor graphs
is that ¢ may be a factor and the factor graph can have up to two
"useless" nodes, i.e. mnodes such there is no path from node s to
the node, or no path from the node to t. we shall call the factor

graph obtained by eliminating these useless nodes the all-admissible

factor graph of Q and, in future, all factor graphs we display will

be all-admissible factor graphs.

26.

3. Failure Functions

The problem of relevance to the next three sections is the
string-matching problem. That is, given a (long) symbol string
X = X] X2eee X s the "text", and another (short)‘string Y=y Ype.. Y
the "pattern", over the same alphabet V, find all occurrences of the

pattern as a consecutive substring in the text.

Two methods for solving this problem are available, both of which
have time—complexity which is linear in the combined length of the pattern
and text strings. In the next two sections we shall relate the first
method, the use of failure functions [7], to factor theory and in section

5 we relate the second method, Weiner's bi-trees [1l] te factor theory.

Definition
Given a string Z = z) zp...z_, the function £ *: {l...r} > Uk e
definad by: !
*(1 ="":"' an ¢ =
£,%(1) = {j])=i and SYRRLY zi—j+1"'zi}'

The failure function fZ: {1...r} = {0...r-1} 1is defined by:

fz(i) = max'{jljefz*(i) and j#i} .
Where no confusion is likely #o arise .we shall omit the subscript

*
Z from fZ and fZ .

27.

Example 2
The functions f and f* defined for Z = aabbaab are given in table 2.

i 1 2 3 4 5 6 7

z. a a b b a a b

£x(i) | {o,1} | {0,1,2} | {0,3} | {0,4} | {0,1,5} | {0,1,2,6} | {0,3,7}

£(1i) 0 1 0 0 1 2 3
TABLE 2

The importance of the failure function to the string-matching
problem lies in the fact that it may be computed in time 0(x)[7 J. To
solve the string-matching problem concatenate Y, a new symbol $ and X in
that order, and compute the failure function for Z = Y$X. The values
of i for which £(i) = n mark the positions where Y matches a substring

of X, or more precisely:

f.(+l+i) = n <=> z7...2 = 2. _...Z :
Z() . 1 n 1+2 n+l+1

— Dl SRS A T RERE

We shall not describe the computation of the failure function in
any detail. In outline the failure function is calculated for the successive
strings 21,2123, 2129%35...5212223+++2. In calculating f(i), the -
failure function for 2122...2; is used to '"recognise" (non-deterministically)
the string 212p...2;. The construction of a recogniser from the failure function

is as follows.

Construction 1

Given a string Z over alphabet V and the failure function f for Z this
algorithm constructs a transition diagram G(Z). (Later we show that G(Z)

is the all-admissible factor graph of V*Z.)

28.

1. G(Z) has r+l nodes labelled 0,1,...,r.

2. For each aeV, a#z;, add an arc labelled a from node O to itself.
3. For each i, 1<i<r add an arc labelled z; from node i-1 to node 1i.
4, For each i, 1<i<r, add an arc labelled e (the empty word) from

node i to f£(i).

5 Node O is the start state and node r is the final state.

Example 2 (again)

The transition diagram constructed as above for the string

aabbaab is shown in fig. 6.

If we append to Z an (r+l) th symbol z we can "recognise"

r+l
f(r+l1) by finding the largest value i such that there is a path from node

O to node i which spells out z1z3...z We then have f(r+l) = 1i.

r+l’
Theorem 3.4 states that G(Z) is the all-admissible factor graph

of V*zlzz..‘zr. First, however, we present a number of lemmas.

In all the following lemmas the string Z = z122...2_, over the

alphabet V, is understood.

Lemma 3.1

fx(1) {j[zl...zi g V*zl...zj}

Clearly {jlzl...zi € V*zl...zj} = {j|V*z1...zi E_V*Zl---zj} .

Now Zle..2; € V*zl...zj => i>j and Z)eeez, = wzl...zj for some w e V¥,

.>.
I.e. zZ. . 1.--2. Zl...z.. A].SO 1_| and z. . 1...2. = Z]...Z,
=> U"Z. . ceeZ. U:z ceeZ, D U"Z ceeeZ.oe HEIICe

3 * = 3 =
{JlV*Zl.-oZiEV zlo-'zj} {lei-j"'l...zi Zl...zj} .

29.

qeeqqeey\ 40 HAVYD ¥0ILOVAd 9 °*OId

30.

The notation f* is intended to suggest the following lemma:
Lemma 3.2
L) = AU EA(ECL)),

Clearly i e f*(i). Now suppose j # i.

j e f*]' => j(]' and Z] SN R Z e eeeZ,
()) J 1 Jll 1

< > .< i LN . d . . e o0 3

|~f(l) and Z] Z zZ 1 z

and zj...z o2,

£(1) F-f(i)+17" 0%
(by the definition of f£(i))

<=> j<f (i) and zl...zj = zf(i)—j+1"'zf(i) 3

<=> j g £*(£(i)).

Let Q = V*zl...zr .

Lemma 3.3

5 Q has r+Z left factors, namely L0=V*, Ly=V#*2z,, LoV rzsz i L
= * P y | = .

Lr v lez...zr and Lr+1 ¢

Proof

¢ is maximal in ¢.V* < Q (assuming r>1) and so is a left factor of Q.
V* is also clearly a left factor. Finally V*zl...zi is maximal in the
. : "
subfactorization V ZleeeZo0Z0
Thus Q has at least r+2 left factors.

ceeZ € Q and so is also a left factor.

-t L.R ¢ Q be a factorization of Q. R # ¢ since V*.zlzz...zr.g Q.

Let w be a wut«l of shortest length in R. There are two cases t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>