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Abstract

Ttre factors and factor uatrix of a'regular language are defined

and their properties stated. It is then shown that the factor matrix

of a laaguage Q has a unique starth root - called the factor

gralh of Q - which is a'recogniser of Q. An algoritlrm to calculate

natching algorithm, its extensioas and Weinerts substring identifier
aigorithm are outlined and are all shown to be equivalent to finding:
the factor graph of some regular language.
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1. Introduetion

In order to be of any value a theory must do three things:
it must cqrretate a body of known facts, it must ,explain these facts
and (most ioportantly) it must predict a number of related facts not
already observed by the practitioners of the subject. Automata theory
has certainly proved its value in correlating and explaining a large
variety of techniques in language reeognition and related areas. Yet

it has rarely been used to predict results oi pr""tical v41ue to
computer prograrmers which have not already_ been obtained by other
ueans. One exception is the remarkable result due to Ihuth, Morrie

bnd Pratt [7] that patternltuttching (i.e. finding all occurrenies of
a given string as a consecutive substring of a given text) can be

performed in linear time.

In this paper we elo not predict any signif,"i.cant new algorithms,
nor, indeed, do we expl-ain any known algorithms...-our contribution is
merely to correlate the Knuth, Mcrrisr Pratt [7],pattern-matching
algorithm and Weinerts [11] substring identifier algorithn with a little-

s tudy of factors
quite startling

known area of automat\theory initially developed by conway t6l - the
,-)(a regular language. The correlation is , howev€r r

we therefore feel that it offers a significant
challenge to automata theorists to expl-ain the correl-ation and to exploit
it by developing new algorithms for the solution of practical problems.

In section 2 we define the factors of a Language and state a

number of properties of factors due to ionway [6J. we then prove that
the factors of a regul-ar Language Q define a (non-deterministic) recogniser
of Q which we call the factor graph of Q. sections 3 and 4 then show

that the failure function method of solving the pattern matching, problem

of
and
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is equivalent to finding the factor graph of a regular language.

Section 5 shows that, after a minor modification, W_einerts algorithrn [1L]

is also equivalent to finding the factor graph of a regular language.

We shaLl assuoe familiarity of the reader with the terminology

of graph theory and language theory 123. Ttrere is a well-known

correspondence between labelled p-node graphs and pxp matrices, and

hence we use the terms graph and matrix s)rnonomously. e is used to
denote the empty word and V is used to denote a finite alphabet.

Following conway [6] we eal1 a matrix all of whose non-nult entries
areea@matrixandamatrixa]-1ofwhoseentriesaresubsets
tatratr...r4_1 of V a linear matrix. A eonstant + linear matrix is.tl

as the terminotogy suggests, one vhich is the union of a constant

and a Linear matrix. A recogniser (GrSrT) consists of a constant +

Linear matrix G and two subsets s and T of the nodes of G which are

designated as start and terninal nodes, respectively. The language

recognised by (GrS,T) is H a*". . A recogniser is all-admissible
teT
graph there is a path in the graph from

d a path f rom x to some terminal node t.
set 2X denotes the set of all subsets of X

of x.

if for all nodes

some start node

Finally if X is
and lX I denotes

x of the
--)

s to x-a,n
\\

a finite
the size
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2. Factgry Theory

The concept of a f actor of a Language r,rras f irs t
by Conway [ 6 ]. Conway also introduced the concept of

introduced

the factor matrix

of a regular l-anguage. In this section we introduce the concept of a

factor graph and present an algorithm for eomputing the factor graph of
a given regutar language '
well-known properties of

properties of factors due

Let

relations on

Firs tly, UoQ".re r r r^re need to suruma rLze a f ers
a-__,

regular languages as we 11 as the f undamental .

to Conway.

2.L L- c- and f- elasses

Ttris section defines the L-, c- and r- classes of a language.Q

and relates them to the derivatives and anti-derivatives of Q. The

reader familiar with the work of Rabin and Scott [10 ] shoul-d have no

difficulty unders tanding our definitions .

ac
*v

*V be _any language. Q natural-ly defines three equivalence

- QL, Q, and Q" - Eivea bY:

*
xQLy (=) (YzeV t

*xQry (=) (Vz eV ,

xQey (=) (Yu, vev*,

zxeQ (=) zYeQ)

xzEQ (=) yzrQ)

uxveQ (=) uyveQ).

These are, of course, the usual Left-invariant equivatence relation,
right-invariant equivalence relation and congruence relation introduced

by Rabin and Scott tfOl,

The fundamental theorem linking these relations to regular

languages is the folLowing:
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Theorem 2.,L

A language a

the re lation

Def ini tion

Let a be

{Lt, . . .

that L1

V* is regular

is of finite
C

o'r

(=) the relation eL is\. -\_/inds>r-(=) the rela tion
of f ini te index .(=)

a _ is of f inite index.'c

a e-class

Let Q be a regular language. By theorem 2.1, each of the rel_ations Q,
Q, and Q" Partitions V* into a finite number of equival-ence classes. We

shaLl- call an equival-ence class modulo Q7 an r-class of Q, an equival-ence

cLass modulo Q, an Z-eLass of Q and an equivalence class modulo Q.

of Q.

Note the peculiar switch: an equival-ence class modul"o Q7 is an

r-class of Q. The reason for this wilL become evident later.

I{e shal1 also write L(x) for the Z-class eontaining x, r(x) for
the r-class containing x, and c(x) for the c:-cJ"ass containing x.

Definition

The machine of a regular language Q is the unique deterministic recogniser

of Q having the l-east number of nodes. The anti-machine of Q is the machine
+<-of Q , where Q denotes the set of all- words which are the reverse of words

in Q. Nodes of the machine and anti-machine wil-l- usually be called states.
The semi-group of Q is the quotient of the free semi-group V* with respect

to the congruence relation Qc

The maehine and the Z-classes of Q, and the anti-nachine and the

r-elasses of Q are connected by the following theorem.

Theorem 2.2

a regular

.Lland-m
and r 1 are

language. Let the s tates of the machine f or

the s tates of the anti-machine be {r t , . . . ,

the s tar t s tates of the respect ive maehines

abe
r ].am

and le t

Suppo s e

xev*.
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Then we have:

(a) If x takes the start state L1 to state L. of the machine, then the1

Z-cl-ass containing x, L(x), is the set of all words which also

take. stat:e L1 to state L..
+(b) If i takes the start state rl to state r. of the anti-machine,

then the r-cLass containing x, r(x), is the set of the reverse

of a1l- words which take state rl. to state r..

Corresponding to the semigroup we can always construct a semigroup

maehine, whos-e states correspond. to elements c. of the semigroup, and where,

for aL1- aeV, there is an arc labell-ed a from state c. to c. if c..c(a) = .j.
Let c1 be the identity element of the semigroup. !,Ie then have:

(c) If x takes the state cI to state c, of the semigroup machine, then

the c-class containing x, c(x), is the set of all words which also

take state c1 to state ca.

Corol-1a#

Tt'e L, r and c-classes of Q are regular if Q is regular.

Because of this theorem, we shall henceforth use the symbols

Ll, Lz, to denote states of a machine for a regul-ar language Q and

aLso to denote the Z-classes of Q to which they correspond. (And similarly
of course with the symbols t\t tzr ... and c1, c2, ...).

Let us eonsider the relation Qr. We note that any word xeV

partition" V* ioto two sets, denoted D*Q and +D*Q, where

D--Q = {ylxyeQ}
)( 

t -r I r

, D--Q = {y lxydQ} .
x. -r I r

derivative of a wi th respect to x.D O is called thex'
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We then have:

* Lemrna 2 .3

* Q. y .=, D*Q = ,rQ

This is the basis of the method of derivatives for calculating
the machine of a 1-anguage Q t 41.

Similarly the reLation Q, Leads one to define anti-derivatives:
The anti-derivative of Q with respect to i, denoted O*Q is

o*Q={yl*r'tl=tvlfr.q}
Lemna 2.4

x Qz Y <=> o<{ = a;a

Finally, the rel-ation Q" partitions the set v**V* into C*Qr

the context of x in Q, andn,C*Q where

C--Q = {(urv) I ** e a} .x'
Lemma 2.5

x Qc y .=t C*Q = arQ

_ The following observation, although rather elementary, is quite
important in the sequel.

Theorem 2.6

(a) The word derivatives D*Q of a language Q are unions of r-classes

of Q, -whepe O*Qrr(V) if 'and onLy if .xyeQ.

(b) The reverse of anti-derivatives of Q, i.e. languages of the form
l

B, are unions of L-c"!.asses of Q, where -E;O-zZ(x) if and only

if xyeQ.
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(c)

Proof

a1.e. DO =x'

The contexts
**V x[ of the

r-class of Q,

c*Q of a language a are unions of subsets of
form Lxr, where L is an L-class of a and r is
where c*Q3z (u) x r (v) if and only if uxv e Q .

r (y) , and par r (a) i s proved .

an

Let Q be a language and let x , V*.

Then y e D*Q .=, xy . Q .=, i . dra .

But bv Lenwa 2.4, oiA = oirq for all yl such that ytqry.
j. y e D*Q <=> yI e ,*Q for all yI such rhat yt ef y.

l
yeD*Q

Part (b) is proved similarly.

Consider now C*Q. The pair (urv) , C*Q <=> uxv E Q <=>
v e D..--Q and t e o<-- e.UX- 11.V -'

But then, by an identical- argr*gng to that above, this implies that
for all ul el(u) and vI e ,(v).

ul>rvl e a

i. e.

I^lhence

COx'
COx'

Let F, G,

regular). F.G...H.

= L(u) x r(v).

Ht . . o ,

.J.K is
K, a deno te arbi trary languages (not necessarily

a if and only if

x L(u) x r (v) ' and we have proved (c)(urv) eC__Qx

Note that although the displayed unions are over an infinite set,
the number of distinct terms is finite when Q is regular, and so the unions
themselves may be taken over only a finite set of words.

2.2

The following definitions are taken from conway t 6 l.
Def ini tions

a subfactorization of
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F.G.. oH...J.K c Q. (*)

F.G...H...J.K dominates it if it is also a subfactorization of Q and

Fc Fr Gc G,...' KcK. A termHismaximal if it cannotbe increased

without violating the inequal-ity 1rt1. A factorization of Q is a sub-

factorization in which every term is maximal. A factor of Q is any

language which is a term in some factorization of Q. A left (right) factor
is one which can be the leftmost (rightmost) term in a factorization of Q.

Next we state two lemmas, due to Conway, whieh are quite

fundamental to future results. The proofs are quite simpLe and can be

found in Conwayrs book t 6 l.

Lerma 2.7

Any subfactorization of Q is dominated by some factorization in
which al-l terms originally maximal remain unchanged.

Lemra 2.8

Any left factor is the left factor in some 2-term factorization.
Any right factor is the right factor in some 2-term faetotLzation. Any

factor is the central term in some 3-term factorization. The condition

that L.R be a factorization of Q defines a (1-1) correspondence between

left and right factors of Q.

We shall now give a characterisation of the factors of Q which

gives some insight into their properties. RecaLl- (2.1) that an Z-class

of Q is a right-invariant equivalence class, an r-class is a left-invariant
equivalence cLass and a c-elass is a congruence cl-ass of Q.

Theorem 2.9

The l-eft factors of any l-anguage Q are either 0 (the empty set)

or are unions of Z-classes of Q. The right factors of Q are either $ or

are unions of r-cl-asses of Q and the facEors are { or are unions of c-classes

of Q.
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Corollary (Conway)

A language Q is regular if and only if it has a finite numper

of factors. The factors are regular for regul-ar Q.

Proof

Let L be a left-fac.tor in the two term factorLzation L.R. Q

of Q. If L * 0, Let xel, and consider any y e L(x). Since L.R c Q,

X c E*Q = DrQ (bv Lernma 2.3). Therefore y.R c Q, and so, since L is
maximal, yel,. Henee L = L(x), and L = *El Z(*), i.e. L is a union of
Z-cl-asses of Q. similarly any non-empty right factor is a union of
r-classes of q.

If II is any factor of Q it is the central term in a factorization
LHR c Q (lenma 2.8). rf II t 0, ler xeH. Then rhe ser c*Q=t(u,v)luxveQ]
) LxR = {(urv)l uel,veR}. But if yec(x), arQ = C*Q 3 LxR. Thus, as

above, yeH and II = *8, " 
(*) .

The corollary follows from the coroll_ary to Theorem 2.2.

The above characterization of the factors of Q is different to

Conwayts. The advantage wi1l be seen later when we consider the problem

of calculating the factors of Q.

From now on, unless otherwise stated, we sha1l only consider the

case where Q is regulgr.

2.3 The Factor Matrix

Following Conway, Let us index the l-eft and right factors as

o L1t L2t r Ln and R1, R2, ... , Rq wh.erein corresponding factors (see

lemma 2.8) are given the same index. We now define Q.. (1 < irj s q) by 
.

the condition that tiQij*j is a subfactorization of Q in whicf, Qij is maximal.
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(rt is important to note that L.Qrj*j ,", not be a factorization of q).
[Ie note that, by lemmsg 2.7 ar.d 2.8, H is a factor of Q if and only if
it is some Q,,. Thus the factors of Q are organised into a q x q matrix'1J

which is cal-l-ed the factor marrix of Q and is denoted i-[l .

Various properties of the factor matrix may be observed [ 6 ],
some of which are summarised below.

Theorem 2.10

(i) H is a factor of q <=> H is some entry Q.. in the factor matrix

If,O

(ii) aoj is maximal in the subfacrorizarions ri.Qij S L. and Qij.*j SRi.
Thus Q. . is a right' factor of L, and a left factor of R..

(iii) I unigue indices s and t such rharQ=La=R" =Q"t, Li=Q"i
and R. = Qia.

(iv) t0l = fd] 
o.

(v) If Ai.A2 ... AE . Qij is a subfacrorisarion of Q.., rhen ;f irrai"""
kt, kz, ... , k _L such that A1 . Qikt, Az. Qkrkr,:.. , Arn:ak _1j.
The reader is referred to [ 3 ] or [ 6 ] for the proof of theorem

2.1O which is quite straightforward.

Theorefr 2.10 is an extremely interesting and powerful theorem,

from which most results on factors can be deduced imnediatel-y. Particularly
useful Ls 2.10 (iv), which we shall often apply in its alternative form

(r) Qii 3 e and (b) Qij = i ato.ao:.

Part (iii) tells us thaL the s th column of tOI conrains all the
' left factors and the t th row alL the right factors, and the intersection

of this row and column is the language Q itself. This and (iv), lI] = Ell,
suggest very strongLy that there is some recogniser of Qr(Gr{s}r{t}),
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consisting of a graph G with start node s and terminaL node t, such that
LJ is the set of all- words taking node s to node i, and R, is the set of1-J
all words taking node j to node t. In fact there is often more than one

such G, but we shalL show that there is a unique minimal one.

II

2.4 The Fac to-r Graph

In this section we shaIl prove that there is a unique minimal

matrix GO such that lal = G6. GO is a constang + linear matrix and

so is called the factor graph of Q.

The proof is not straightforward and so it is worth whil-e

explaining the difficulty. Consider any element A of a regular algebra

R. we shal1 call any x such that x* = A* , starth root of A*. our aim

is to prove that there is a unique minimal starth root of l-O'l . rf a is
a regular language it is quite easy to prove that there is always a unique

minimal starth root of src (see Brzozowski t 5 l). The proof, however,

rel-ies on 1-ength considerations and does not apply to aI-1 reguLar algebras.
Indeed it is not generally true. Consider the matrix

This matrix has s tar th roo ts

A1 and L2

M= 

[

illIrl
whieh are both minimal . Thus there is no unique minimat s tarth roo t of M.
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In order to prove that fd nevertheless does have a unique

minimal starth root we first prove that I0l has a starth root which

is a constant + linear matrix, and then that this matrix can be reduced

to one which is minimal.

Theorem 2.11 (Conway)

1J unique.maximal constant and linear matrices C- --- and Lmax max

such that fQl = (ar.* * L*"*)*.

Proof

C and L are defined to be the unique maximal- constantmax max

and linear matrices (respectively) such that [Ql : Cr"* .rd [8.| : Lrr*.
Once again we refer the reader to [ 3 ] or [ 6 ] for the remainder of the

proof.

Theorem 2.L2

Let A be an el-ement of Mn(Rt). Let Mr(ru) have unit element E.

let [B\C].. = tb..\c..1 where \ denotes set difference.1JIJI-J
rf A* = {(A\E)\(A\r)2*o}* rhen (A\E)\(A\r)'** is the unique minimal starth

root of 4*, where X2+* = x2.x*.

Proof

Let x = (A\E)\ (A\r)'**. By assumption x is a starth root of A*.

Suppose Y is al-so a starth root. We must show that X c Y.

Suppose w e X...

C]_early, " Ytj = [($f)*]ij, because Y is a starth root of A* and 6rt i, X.

Ilence w e [(ilE)n].,. for some n where, by definition of X, n > 1.
1J

Now Y . A* = (A\E)*. Ilence flE ' (A\E)+
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we have ffl
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a
aa'

But

I.e.

\,

we

WE t (Y\ E)nlrj :
*ij = t(A\E)\

n=1

t((A\E)+)tlij

(at E)z*ol i j
=)

=)

Xc

w e tI\E1,, c y. . .lJlJ

Y and the theorem is proved.

Cons ider ing the ma tr ix
sectionr we find that

M mentioned at the beginnirrg of this

(IA E)\ (IA E)'*o

This is clearly not a s tar th

We note however that M has e_cycles which pass
than one node- This cannot be true of the factor matrix as
,errna states. this observation together with theorems 2.11
us to proceed to the .proof of our main tfoeorem.

Leuma 2. 13

Itl
root of M.

through more

the next

and 2.L2 enable

Proof

i and

Therefore

Hence

and

J

C_-_-\r is acyclic.max

Suppose C_-__\ n is eyclic.max
such that tC_ _].. E e =max u

must be two distinct nodesThen there

tc ]. . .max J r-

O.J.s1 _ a ..f csJ max

'Icmax

max'

0.-sJ

Qri

-t
l-

Jaa

J1
-t
Jor-UQri0.J'sJ
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Therefore Q"i = Q"j i.e. Li = L. (by 2.1O (iii)).

Sinilarly, using [0.| : 9*"*' lEl , we s.t li = R..

But then nodes i and j cannot be distinct and we have a contradiction.
Therefore the initial- assumption is incorrect ,od Cr.*\ E must be aeyclic.

CoroLlary 2.L4

Let lal be a qxq matrix. Then (C*r*\n)P = N for all- p>q.

Finally we come to the main theorem of this section.

Theorem 2.15

Let Q be a regular l"anguage, and l.a C*.* "od Lor.* be as defined

in Theorem z.LL. Then there is a unique minimaL matrix GO such that
ct = A, given by cQ = ((cmax + Lmax)\E)\ ((a*"* * ,rr*)\ E)2**. Moreover

the triple (GO,{s},{t}) (where s and t are given by Theorem 2.10 (iii))
is a recogniser for Q.

GO is a constant + linear matrix and so its graph wiLl be called
the factor graph of Q.

Proof

Using Theorem 2.L2, we need onl-y prove that Gfi = [q-[ where

aQ = ((ar.* + r.,*)\E)\((cnax * Lr"*)\r)'**. rn rurn rhis only requires
proving that cA 3 (C..* + r. ax)\E, since then cfi - (ct)* . (Cra* * Lr.*)*

p1

p2

p4

p5

= lQ I , by Theorem z,LL,

Let

Then

Then

and so

Suppose p3

r^7 e t(c + L )\91.. .' max max ]-J

w has length O or 1.

w + trfilrj ,

w + trQl,j

w E t((c*"* + r*r*)\r)'*olrj .
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Hence I indices i = kI , kz, ... , k**I = and wordsJ

4L, dZ, .

and

and hence

pl :

p2:

Now for some

a-eh

%

h

%+

).

t(c +L )\sl..max max- kh*h*l

p3:

(otherwise r^r e ttfil,j

Hence f or this h

has length 0 or 1, f or all h=1, . o . rrn

we must have

r.ar\,or*,

p4: %+trQlr.nklr*r

and sor for this h

in turn

by the

as w.

Let this % be V. v has

be expressed as the product

same argument one of the b_'sg

In this way we can expres s

the same proper ties as w and so can

of two or more words b tb Z. . . brr, where

= u, say, also has the same properties

rr as a produe t .

p5 , ,h e t((c*r* + L***)\u)'*ol\run*,

of an unbounded nunber

= YtYz. . oYx

of r^rords y f, where

l, e [ (a*.* * rr"*)\rroroa*,

for some nodes n1r ... , nx+l. But the product of two linear matrices is
either null or non-I-inear. Therefore at uost one yf has Length one, and

we coneLude that (a*.*\n)P is non-nuLI for al-L p. But this contradicts
coroL1-ary 2.L5. Hence the initial assumption that property p3 holds for W

must be false. Hence 9{ = (Crr* + Lrr*)\E, and by our earlier argument

qt = l-al . Finally, applying Theorem 2.L2, GO is the minimal- starth root
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of l-al . The last part of the theorem follows irmediateLy from Theorem

2.10 (iii), Q = Q"r = t"6r".

2.5 An Al-gorithm to calcuLate the factor graph

The previous results embody an algorithm to calculate the

factor graph of Q, which we shall develop with the aid of an exampl-e.

Step L

CaLcuLate the machine and anti-machine for the language Q.

Label- the states of the machine (anti-machine) Lt, Lz, , L*

(r1; 12, ... , t"r) and use these labels to denote the corresponding

Z-class (r-class)

Step 2

Construct two tabLes, the first l-isting the Z-cl-asses of Q

and the second the r-classes of Q. Each tabl"e has 3 columns. Construct

first of all- the first two columns of these tables, the first column

containing simply a list of the labels Z- (r.) given to the Z-classesr-J
(r-classes) of Q, and- the second col-umn containing an arbitrary
representative element of the corresponding cIass. The third column of
each tabl-e is nora constructed. In the first table this colunn represents

the various derivatives of Q as unions of r-ctasses of Q, and in the

second table it represents the reverse of the various anti-derivatives of

Q as unions of Z-classes of Q. Suppose the Z-class Z. has representative

x. and the r-class r. has representative y.. Then r. appears as a termiJJ]
in the Z.th row of Table 1 if and onLy if xiy5 e Q, and similarLy L. appears

as a term in the r.th row of Table 2 if and only if x.y. e Q.
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ExSmple 1

Let a = (b + a(aa*b)*6;*

The machine and anti-machine of Q, constructed in step 1, are shown beIow.

Fig. 1 (a) I'fachine of Q.

a+b

CL
tt
CL

{\
L3

\)L lLzL
b b

),

Fig. 1 (b ) Anti-machine of Q.
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The tables constructed in step 2 are shown below.

Table 1(a) Machine

Node/ Representative -.Reverse of
r-class element anti-derivative

rleLt

12 b L1+L,

13 bb t+Lz+Ls

rha0

Tabte 1(b) Anti-machine

Node/
L-class

Representative
etement Derivative

LL

L2

L3

e

a

11 + t2 + 13

'

r2+13

aa r3
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The correctness of step 2 is based on theorem 2.6.
For instance the class L2 lnas representative a

and since a.e 4 q '(e is the representative of r1)r
and a.a + a (a 

- 

tr

but a,b E a (b _ n

and a.bb e a (bb 

- 

tr

r4) r

12) r

r 3) r

the derivat.ive correspondir,g to L2 is tz+ re.

Step 3

Deduce the corresponding left and right factors of Q and

I-abel them L1, L2, ... , Lq, R1, R2, ... , Rq. Find the unique indices
s and t such that Q = Lt = R".

To do this, one considers all- subsets tlif ...rlik (including
the empty subset) of the Z-classes of Q -aud finds for each subset those

classes rjr.r... =j' cormon to the ,rr rn, ,rr rn, ..., ,rn aO entries in
the third colr:mri of Table L. Ooc ghg11 h4s (Li- + ... * L: ).(r. * ... + r. )t tk' JI Jn'
S Q is a subfactorization of Q in which (rj, * ... + rjrr) tr maximal. By

inspecting all such subfactorizations one may deduce the Left and right
factors. Lt = Lrr* Lr, +...+ ran t" that left faetor such that the

L-cLass L. c L* if and only if it corresponds to a terminal node of thet. - t1
machine for Q. Sinilarly R. = t", * tr, + .,. * r"- is that right factor

Psueh that the r-class rs. g R, if and only if it corresponds to a terminal
J

node of the anti-rnachine for Q.
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Applying step 3 to our example we woul-d get the fol_1_owing

. subfactorizations:

(LfLr+lr}.s. , (Lz+Li.r3 , (LfLs).rs, L3.r3t
(LgLZ). (r2+r3) , Lz. (r2+r3) r

21, . (r1+rr+r3) ,

Q . (r1+r2+r3+r4)

We have displayed these subfa0torizations in such a way as

to make it evident that only those in the first column are also

factorizations of Q.

Itris information is strmarised in Tabl-e 2, Ln which we have

also named the Left and right factors L12L2rL3rL4 and R1rR2rR31R4.

Left Factors Riglrt Faetors

-. -'R = RI fi L+r Z;r 3s

L2 LfL2
L3 LfLz+Lt

L + Lr Lrt
R2 t1+tg

R3 13

L4 0 Rq rt+r2+r3+r4

Table 3 Left and Right Factors

Ia the table we have aLso indicated that the indices s and t
of Theoren 4.1(iii) are both equal to 1. This is because, from the machine

(Fig. 1(a)), Q = L1t an'd from the anti-machine (Fig. t(b)), Q = rl+r2+r3;
but Lt = Lt and R1 = t1+r2+a3.

Step 4

CalculateC . I,ilhencededucemax

c : (c -_\E)\(c \E)2+*, .m1 n, max max
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tC- ---1, , r e if and onlymax I-J

from the representation, of

Step 5

L: , and this can eas i 1y be deduced
r_

aas unions of L-classes of Q.

J

L. and L,1 _J

Calcul-ate Lr"*. tr{hence deduce

Lrio = 'rr*\ 
((crr* * 

'r"*)\E)2*o'
[t----]r: ) a if and onl-y if a e V and L,.a c L,. this can also bertrax 1J - l_. - J
easily deduced from the representation of L. and L. as unions of Z-classes1J
of Q and the knowledge that LO.a c L. if and only if under input a the Znth

state of the machine for Q goes to state L..

Steps 4 and 5, applied to our exampLe, are surmarised in
figs. 2-5, betow.

-C" maxFig. 2
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Fie. 3

Fig. 4

C.m1n

Lmax
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e+a e

3'(z )- 'll- I\)

4

a+b

Fig. 5 Ihe Eacror Graph Gq

Ttre construction of Cr"* ,od Crio should be c1ear. For instance

there is an arc from node 1 to nodes 2 and 3 ir Cr"* since

Lt-Lt9Lz=LfZzSL3 = L1 +Lr+L3. There isno arcfroml to 3

io C , , since tbere are arcg from L to 2 and from 2 to 3. The constructioam1n-

of L_ -__ is slightly more eomplicated. As an example, there is an arcilrFx

labelled b from node 2 to nodes 2 and I since Lz.b = (h + L2).b

= LL.b + Lz.b = Lt + Lt (fron the nachine in fig. 1(a)), and 4 llz S tt.
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2.6 Remarks on the @

Conway [6] advises his readers against caLculating the factor
matrix of a regular language. Iitrilst disagreeing with this advice

- the following sections would not have been written had we not done

so - it is necessary to observe that the above algorithm has exponential

time complexity (in the size of a reguLar expression denoting Q).

Calculating the machine or anti-machine may have exponential time-
complexity and so also may the comparisons of subfactorizations in
step 3. Indeed the nr:mber of nodes in the factor graph of Q may_ be

exponential- in the size of a regular expression denoting Q. For

example, if Q is the set of alL words such that the number of ars

minus the nr.rmber of bf s is not congruent to 0 modul-o n, where n 2 3,

the machine of Q has n nodes but its faetor graph has 2n nodes [3].

It is. difficul-t for us to compare the above algorithm with
Conwayts method of calcuLating the factor matrix for the simpLe reason

that we have never completely understood Conwayrs uethod! Our method

is quite straightforward to use (on small expressions) and one particularLy
impogtant merit is its systematic use of rep-resentatives of the L- and,

r-classes. There is some redundancy in the algorithm - the third
colunn of tabLe 1(b) can be deduced from the third columr of table 1(a),
or vice-versa - but this redundancy is probably worth retaining as a
check on hand calculations.

The above remarks militate strongly against the possibility of
appl-y-ing factor theory in any practical Language recognition probtems.

Nevertheless the next three sections demonstrate one area where the factor
graph has found a practical application. The algorithns used bear no

resemblance to the a1-gorithm of section 2.5, thus suggesting that more
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effieient (specificaLly and generaLly applicable) aLgorirhms can be

designed. In sunnnary, therefore, the algorithm of sectiort 2.5,
is proposed as a stop-gap measure to enable us to become more familiar
with the properties of factor graphs

A minor technical nuisance in the calcul-ation of facEor graphs

is that 0 ,ay be a factor and the factor graph can have up to two

"uselesstr nodes, i.e. nodes sueh there is no path from node s to
the node, or no path from the node to t. We sha1l call the factor
graph obtained by el-iminating these useless nodes the all-adnissible
factor graph of Q and, in future, aL1 factor graphs we display will
be al-I-adnissible .factor graphs.
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3. Failure Functions

The problem of relevance to the next three sections is the

string:matching problem, That is, given a (1ong) synbol string
X = xl x2... xrr the tttexttr, and another (short) string y = Yl y2... y, t
the ttpatterntt, over the same alphabet V, find all occurrences of the

pattern as a corlseeutive substring in the text.

Two methods for solving this problem are available, both of which

have time-complexity which is linear in the combined length of the pattern

and text strings. In the next two sections rre shall relate the first
method, the use of failure functions [ 7 ], to factor theory and in section

5 we relate the second nethod, lJeinerts bi-trees [11] to-factor theory.

Definition

Given a string Z = z! z2o..zrt the function fr*: tf...r] + zt0"'t) i"
defirred by:

fz*(i) = {jijsi anil zr...rj = ,i-j*l...ri}.

The failure function fr: {1.. "r} + {O'..r-1} t: defined by:

tzG) = max tj lj.fz*(i) anrl jti] .

Where no confusioa is likely t, *ri"" -we shall omit the subscript

Z from f, artd fr*.
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Exarorple 2

The functions f and f* defined for z = aabbaab are given in table 2.

z.1
f * (i)
f(i)

CL

{or1}
o

a

{on L r2}

1

b

{Or:}
o

b

{o,4}
o

a

{Or1r5}

1

a

{orLrzr6}
2

b

{or 3rl}
3

TABLE 2

The importance of the f ailure f unction to
problem lies in the fact thaL it may be eomputed

solve the string-matchiog problem eoncatenate Y,

that order, and compute the feilure function f or

of i for whieh f (i) = n mark the positions where

of X, or more precisely:

Given a string Z over

algorithm constructs a

is the all-admissible

the s tring-matchir,g

in time O(r)tl l, To

a rlertr symbol $ and X in
Z = Y$X. The values

Y matches a subs trirrg

f ,(n+l+i ) = (=) z!. ",zTr. 'L*2' ' 'z,.+t+i
(=) Y1'..Yn = *i.-r*I...*i

![e sha11 not describe the computation of the fai]-ure function in
any detail. In outline the failure funetion is calcuLated for the successive

strings z1tz1z2, Z7z2z3t. . . ;zyz2z3o o ozat In calculating f(i), the c

faiLure function for z1z2...ri-L is used to rrrecognise" (non-deterministical-1-y)

the string zlzz...z.. The construction of a recogniser from the failure function
is as follows.

Construction L

n

alphabet v and the failure function f for Z this
transition diagram G(Z) . (Later we show rhat G(Z)

factor graph of VxZ.)
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1. G(Z) has r+1 nodes 1abe11ed Or1r...rr.
2. For each aeY, a{21, add an arc labelled a from node o to itself.
3. For €ach i, lsi<r add an arc label1-ed z, from node i-l to node i.
4. For each i, l<iSr, add an arc labeLled e (the empty word) from

node i ro f(i).
5. Node O is the start state and node r is the finaL state.

Example 2 (again)

The transition diagram constructed as above for the string
aabbaab is shown in fig. 6.

If we append to Z an (r+L) th synbol- ,r+I_ ,e can t'recognise"

f(r+l) by finding the largest value i such that there is a path from node

O to node i which spells out zyz2,..zr+L. We then have f(r+l) = i.

Theorem 3.4 states that G(z) is the all-admissible factor graph

of V*zr zg..iz-. First, howeter, we present a number of lenrmas.L'r

In aLl the following Lenrmas the string Z = zlzz...zr, over the

al-phabet V, is understood.

Lenrma 3.1-

Proof

f*(i) = {jlzL.,.z. E Y*zI ..,rJ}
{jlYxzI .. .ri: YxzI ...rj} .

Clearly {jlrr...zL e V*21 ...2.} = tjlvxzr...z. S V*rr...rj} .

Now z1...zL e V*21 ...2. => i>j and z1 ...2L= wz1...c2. for some w e V*.

r.e. "L-1*t...2. = zt...zi. Also i>j ,od "i-j*L,.,zi = zt...zi
=> Y,lcZ . . .2. = V*Zr .. .2. > Y)cZt .. .2.. HenCe1-J+t 1 ' J-
{j f v,tz1 ...2L S v*rr ...r:} = {j lri-j*r ...2. = Zt.,.r j} .
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The notation f* is intended to suggest the fol_lowing len*a:

Lemra 3.2

f*(i) = ti) u f*(f (i)).
Proof

Clearly i e f*(i). Now suppose j * i.
j e f:t(i) <=> jci and z1 ...2. = ,i-5*L ...2.

<=> j<f (i) and z.1. . ., i = 'ri- j+L. . .zL

and 21" 'zf(i) = 'i-r(i)*t " '2.
(by the definirion of f(i))

(=) j<f (i) ar.d 21...2. = ,r(i)_j*,. o r \G) .

<=> j e f*(f(i)).

Let Q = V*zl...zt

Lemua 3.3

I Q has r+2 left factors, namely Lo=V*, L1=V*21, L2=V*21,o2t...t _.

Lr=V*21 z2...2, and L.*1 = 0 .

Proof

g is maximal in 0.v* s Q (assuning r>r) and so is a left factor of Q.
v* is also elearly a t.rt r."lo.. Finally v*2I...2. is maximal in the
subfactorization v*rt. ..z,.rL*!..,rr LQ and so is also a left factor.
Thus Q has at least r+2 left factors.

Let L.RSQbe a factorization of Q. R# O since V*.z1z2oo.rr. Q.
Let w be a wv;r,-i .rf shortest length in R. There are tqro cases to consider.

Case 1

and v*. Y*zl . . .zt dominates L.R : Q. .'. L = v*.
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Case 2

length(w) < r. Let length(w) = r-i, where l-<i<r. Ttren

w = z. .....2 and L c Y*zlv-2. o.zq.r-+I r 1

Suppose L# 0. Letv e Rand u e L. u=r121...2, for some

ul e V*. 61s6 length(v) > r-i (by the choice of i). .Hence u.v € Q

implies 21...2..v e Q. I.e. 21...2. e L by maximality of L. But then

zL...ri.R S Q, hence V*rI...2..R c y*.Q = 9. I.e. Y*rL...ri. 
"

(by maximality of f.). Ttrus L - V*zI ,..ri:

!tre note that 0 is a factor of Q and therefore the faetor graph

of Q has one "useless'r node. In the proof of theorm 3.4 we shall, as

anticipated earlier, ignore this useless node and its associated entries
in the factor graph and factor natrix. Theorem 3.4 and its proof will
therefore refer al-ways to the all-admissibl-e factor graph.

Theorem 3.4

The transitina diagram GdZ) of construction 1 is the (aL1-adnissible)

f actor graPh of Q = Y:t2.

Proof

By lemma 3.3 the factor graph of Q has r+t nodes. Let Cr"_ "od
Lr.* b" the maximal constant and linear matrices such that [Ql = (Cr"**t. 

"*)*.
since y*zl...rL-!.'i.,L*!,..,, ! Q and v*'I..,'t(i) > v*zt...z- (]-eqa

3.1) we have C_.**Lr"* = G(Z). Let Crio "od Lrinb. the constant and Linear

parts of G(Z). I'Ie must prove that (.) ar"* = C#o, (b) Lnax c (C .o+Lr1rr)*,

(") crio S (crr*\E)\ (cmax\r)t** and (d) Lri' S ,r"*\ ((cr"-*Lr"*)\u12+* .

" (a) and (b) establish that lOl = G(Z)* ; (c) and (d) establ-ish the ninimality
of G(Z).
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Let L. = V*zI...ri, l<i<r and Lo = V*.

_ (a) is iumediate from lenrma 3.1 and the identiay C*ir, = E + Crir.C*irr.
(For, . e Qij .=r rj 3 L. (Theorem 2.1_O) <=> j e f*(i) (lema 3.2),
e e [C-r-],. (=> j = f(i).)m1n u

To prove (b), suppose a r Qij, where a e v. Then 21...2..a,23*1...2,
cL:.a.R, cQ (Theorem2.1O) => i Ij-1, a= z. and z1z1...2 =,--i'-'-l- -*-'Lv, e' 

J . - -oj_L-"i_j*2...2..
Thus j-l e f*(i), whence tafiirli,j_l = e (by (a)), rod [Lrir]j_l,j = ".i. a e tCrr-.L-r-lr r. I.e. L_-_- c (C *L io)*.m1n m1n r3 max - . min -min,

To prove (c), suppose " . [Crirr].. and e e [(arJn)2**]ij.
Thenj =f(i). Butalso I ksuch rhar [a*.*\E]ik=eand, [ar"*\EJo. =e.
r.e. i#k#i, ke f*(i) andj e f*(k). Bur rheni>k>j andkef*(i)
contradicting the maximality of f(i) = j.

(d) is proved similarly. Suppose z5 , [ (Cr.**r*"*)\ tri]ir:
- Then I indices k, m such that e e [cr"*\trj-rrn , ,l e [T..*Jn and

ee[C-^-]El_,..'. k< j-I-and j <m. I.e. kcn-I. Butalsomax mJ

z1.,.rk rlizm+l..."r 5 \..rj.Rr . Q (Theorem 2.LO) => k > m-1. This is
a contradiction, so (d) is proved.
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4. Generalised Failure Functions

An obvious generalisation of the string-matehing problem is the

following: Given a text X and p patterns Y1rY2r....rYp find all gccurrences

of each pattern in the text. One method of solving this problem would be

to apply the method outlined in the last section to each of the strings
Y11Y2r... rY, in turn. The time required would then be proportional to p.m

+ nl + t2 + .., * rrr where m is the length of the text and n. is the length

o.f the pattern Y. . This is clearly unacceptabl-e and we are thus lead to

consider generalising the faiLure function to sets of strings or. alternatively
(in fact, equivalently) finding the factor graph of V*I{ where W is a set

of strings.

I,Ie begin by generalising the failure function to a set of strings.

Definition

Let tI = twl = all...a1EI , wZ = aZl...a2rlir..., ,k = 4,f ...%on,
be a set of words over the alphabet V. The function ffi: V* + 2V* is defined

by.: g*(b1b2...b ) = {y = c.rc2...", I E > Or, = br_r*l...b,- w m' r'
and I w. ellwithv="it..."ir)

Thus f*(u) is the set of aLl- prefixes of words in W which are also
w

suffices of u.

The function fr3 V* + V* is defined by

f 
"(u) 

= ,-r*

wtrerev e f*(u), vrax#uandlength(rr"-) > Length(v) for allv#u,max w--- max - max

v e fft(u). (Clearly fr(u) is weLl-defined.)



34.

If W = {Z = 2722....r} is a set containing exactly one
*word then j > 1 ar.d 2122...2. e fr(u)

<=> u = zlzz...z. for some i, l<j<i<r1

and i.tt("),r.
In this waf ffr generalises the previous definition of ff .

Again we shall choose to omit the subscript !I when there is
no danger of confusion.

Lemmas 4.1 and 4.2 axe anaLogous to lenrmas 3.1 and 3.2 and

can be proved using the same techniques.

Let P(W) be the set of all words v (including the empty word)

which prefix a word in W.

u Lerrr-a 4.1

ffi(u) = {vlv E P(I^I) and u e V*r,}

= {vf v e P(W) and V*u c V*v} .

Leuuna 4.2

rfi(u) = {-uinP(w) u ffi(f"(u)) '
Given a set of strings W there is a r:nique rooted labelled tree

T, associated with W having the following properties.

1. Each node o has at ,ost [vl sons, the branch from n to each of its
sons being labelled with a unique letter a e V.

2. Eor each word w. e W there is a node n of the tree such that the

path from ttre root to n 8PeL1s out w..

3. If n is a Leaf of the tree, the path from the root to n spelIs out

some w. e w,
].
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Fig.7(a) shows the tree .associated with ttr = {abcrbcrbda}.
The construction of T, from w is elementary [ 1 ] and we shall not
discuss it further.

I{e shall call any tree with the properties L., Z. and 3. a
V-tree,

rf T is a v-tree we can identify T with the function

T:NxV+Nu{NIt}
where N is the set of nodes of T, no is the root of T and, for each
neNand'aeV,

It is useful to exrend the domain of T ro (Nu{NIL}) x V*
by defining

T(NILru) = NIL for aIl u e V*
T(nre) = n forallneN
T(nrua) = T(T(nru)ra) for aLL neNrueV*, a e V.

T also defines a (1-1) frmction wr: N + V* where, for each
neN,

wr(n) = u<=> T(noru)=n.
As was the case with a single string Z, given a set of strings

I'I we can use the failure fr:nction for w to construct a recogniser of v*hl.
The main components of this recogniser are the v-tree associated with w
and a set of e-arcs from nodes of the v-tree to nodes of the v-tree.
construction 2 below defines a slightly augmented foru of this recogniser.

I nl where nl is the a-sorl of n,T(nra) = { if itexists
t NrL orher:r,trise
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rlc . 7 (a)
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FIG . 7 (b ) Faetor Graph of 1tt (abc,$r u, bc$eubda$ g ) .
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Construction 2

Let W = {w1rw2r...rwn} be a set of strings over the alphabet

V. Let $1r$2r...$O Ue new symbots not in V. Let I = Vu{$rr$zr...r$1}.
The following algorithm constructs a transition diagram G(I{) which we

sha1l show is the faetor graph of I*(w1$1uw2$2u...uwn$n).

Step L

Construct the V-tree T associated with t'I. . (The arcs of T are directed
from father to son).

Step 2

For each u e V* such that wr(n) = u for some node n of T, calculate

f(u) tl l. Add an arc Labelled e from n to nl where wr(nl) = f(u).

I Step 3

Add a new node m to the trarisitiqrr diagr.'arr. Add an.a.rc 1abeL1ed

_- $i from the node n, such that wr(n) * ,i, to the new node m.

Step 4

Ad<l an arc labelled e from the new node rn to the root no of T. For

each a e I such that no does not have aa a-son add an arc labelled a

from no to itself.

FLg.7 (b) shows the transition ,iiagram so constructed for
[af = tabcrbcrbda].

Ttreorem 4.3

Ttre transition diagram G(W) constructed as above is the

(a1l--admissible) faetor graph of I*(wr$tuw2$2u. . .Uwn$U).

Ihe proof of theorem 4.3 proceeds along much the same Lines as

the proof of theoren 3.4 and so we shaLl not present it in its entirety.
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The generalisation of le'r,ma 3.3 is the only non-straightforward aspect.,.

of the proof - the appropriate lerma and its proof are as follows.

Lema 4.4

Let Qt = I*wir l<i<r, and let Q = Qt$t u Qz$z u ... u Qk$k. Then L

is a l-eft faetor of q <=> L is a left factor of at Least one Q, or L=Q.

Proof

(=. Q is a Left factor of Q. Q1 is a1s6 a l-eft factor of Q since

Qi is maximal in the subfactorization Q1$1 . Q. If L is a left factor
of Qi then L is maximal in some factorization L.R : \ "f q.. But

then L is al-so maximal in the factoxlzation L.R$i : Q. I.e. L is a

left factor of Q. (Note: this Last result is a particular case of the

important observation due to Conway [ 6 ] that factors of factors of Q

are factors of Q, left factors of left factors of Q are left factors

of Q and right factors c'f right factors of Q are right factors of Q).

=). [. = 0 is a left f;ctor of Q and also of .r"i'Q., ].<i<k (lema 3.3).
Let L I 0 Ue a left factor of Q and suppose R is the corresponding

right factor,

Suppose, firstly, that e e R. Then L.e c Q, i.e. L . Q.

Let Lrr l<i<k, be defined by L..$i = L nr*$i. Clearly L = L1$1uL2$2v...rh$f..

Suppose w # e and w e R. Then w - v$j for some j, l<j<k. Choose any i
suchthattif 0. ThenL.$r"$j=Q. Ilencew=v$.eQ. I.e. Rc Qutel.

But Q. (Qu{e}) is a strbfactorization of Q which dominates L.R. Thus L = Q.

Nowsuppose e {n. R# gsince Irt.Q:Qdominates L.0c Q.

Let R. = R nt*$i. Ttren R = R1uR2u...u\ and L.R. SQi is a subfaetorizatioa

of Qi in which R. is maximal. I,e. R. is a right factor of Q. and

l, : ti where L. is the left factor of Qi corresponding to R.. Therefore'

L c lnk L.. Bur (r={} tr).(R1u...u\) c Q. rherefore , = ,0* ,i
by themaximality of L. Now define two subsets P1 and P2of {lr...rk} by
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Pl tilt. = r*)
Pz = tilr..#I*)

We have two cases to consider: (1) P2 = 0, Q) Pz * 0.

(1) In this case L = I* which is a left factor of Qi 'for'all i, and we

have no more to prove

I(2) Pz + O. Let j e P2. By l-enma 3.3' L. = t*tj for some u. e V'.
Let u e P2 be defined by

length(w_) = lnax length(w, )m I ePz - J

LetveLand i ePz. ThenveLrnL, andhencev=o.ril. = $w.-for
some o,BeI*. Length(rj) = Leng'th(Vr) ty definitibn. Ttrerefore :

w, is a suffix of w, and, consequently "j 3 Lm ; L =r=!*lj = qn.

j ePz

" I.e. L is a left factor of tf.

CorolLary

The left factors of Q are {0,Q} u {rtur(n) | n is a node of

As mentioned earlier, the remainder of the proof of theorem

4.3 is a straightforsard application of the techniques used in the proof

of theoren 3.4.



4l .

5. Bi-trees

The failure funetion method of solving the string-matching
problem is quite easy to understand. tJeinerrs bi-tree method [8 ]
is quite difficult to understand - that is, we found it so. The

fol-Lowing observations may help the reader to understand Weinerrs, [8 ]
and McCreightts [ 8 J algorithms for constructing prefix trees. Firstl-y
a number of definitions are in order.

Definitions

Let Z = zlzzo..z, e V*, I,Ie shal1 asslme (without loss. o.f

generality) that the symbol z, does'not oecur el-sewhere La Z, i.e.
z: * z- for all i # r. The string u e V* identifies position i of Zj.r
if Z = yuv, l-ength(y) = i-l and Z cannot be written as yluvl unl-ess

yf=y. The shortest string which identifies position i of Z is ealled
the position ideatif ier of pnsiql?.r.r i of Z and is denoted p.(i).

Ler S = {nr(i) I f=i. j.e4gt!(z)}. The v-rree p of S is called
the prefix-tree of Z, trileiner [ 8 ] has shown that a second tree can be

associated with Z. I{e shal1 call- this tree the auxiliary prefix tree of
Z atd denote it tV a. Some properties of A are sumarised in the fol-Lowing

theorem.

Theorem 5.1

(i) A is a V-tree having the sane nodes as P.

(ii) For all nodes n and nI of A and all a e V, A(nra) = nt .=, *r(ol)
' = au aad wr(n) = u for some u e V*-

Ttre following Lema is imediate from the definition of the

f ailure function and theorem 5.1 (ii) ,
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Lernma 5.2

wr(n)-uandA(nra)=pl
<=> f, (wr(al)) = u .

Io other words the auxiliary prefix-tree is a form of ,rinversert

failure function.

Example 3

An exanple should suffice to illustiate the rel-ationship between
the bi-tree and factor graphs. Figs. g(a) and (b) show the prefix tree
and auxiliary prefix tree for the string bbabbt-. This string has prefix
identifiers {bba, ba, a, bbl-, bl-rF}. The faeror graph of
{a,b,F,$r,$2,$g,$+,$s,$o }*.{bba$r,ba$z,ag3,bbl-,gu,uF$s,F$5,} is sholrn ia
fig. 9. Fig' 9(a) shows the linear part and fig. 9(b) shows the constant
part of the factor graph.



43,

 
0,\./
hd
Ft
o
Ht
]-r ox
rt
Ft
oo
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6. Conclus ions

The previous sections show an r:nequivacable correlation between

the factor graph and various Pattern-matching algorithms. As yet

we have been unable to provide a'satisfactory expl-anation for the

correlation. Conway [5] introduced the concept of a factor as an

extremely elegant technique for finding aPproximations to regular

languages and for estabLishing whether an oPerator is reguLarity

perserving. Conwayrs work appears not to be weLl-knohrnr so if we

have brought it to the atLention_of other automata theorests we will
have achieved a lot.

At the time of writing (October, L976) we have spent only a

short time exploring the potential- of a factor graph. Prel-iminary

results on pattern-matching with donr t cares [9] are both positive

and negative. The size of .the factor graph of a language of the form

V*w1Vw2V...V*k caa exptode *xponentially with the size of the regular

e:rpression, yet it caa ahaays be treondensedtt to a graph of linear size

and this graph yields the correct value of the failure function (unlike

the method uced in the abseoce of donrt cares [9]). I{e therefore hope

to be able to repcrt on this work in the near future.
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