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Abstract

In 1971, J.H. Conway introdu
ed the notion of the fa
tors of a language and

the fa
tor matrix of a regular language. Shortly afterwards, the author extended

Conway's fa
tor theory in several ways. The existen
e of a unique, minimal starth

root of the fa
tor matrix, dubbed the fa
tor graph of the language, was established.

It was also proved that the fa
tor matrix of a fa
tor of a language is a submatrix of

the fa
tor matrix of the language, and the fa
tor graph of a fa
tor of a language is

pathwise homomomorphi
 to the fa
tor graph of the language. The latter result was

used to derive an algorithm for 
omputing the fa
tor matrix of a language from its

fa
tor graph with the property that the resulting regular expressions have star-height

at most the 
y
le-rank of the fa
tor graph, and 
ould be stri
tly smaller.

Using the simple devi
e of naming the fa
tor operators, the 
urrent paper revisits

Conway's and our own work on fa
tor theory in a 
al
ulational style. We give expli
it


onstru
tions of the fa
tor matrix, the fa
tor graph, submatri
es of the fa
tor matrix

de�ned by subfa
tors and pathwise homomorphisms of fa
tor graphs.

We also extend fa
tor theory beyond this earlier work. We formulate the theory

more abstra
tly so that we 
an rigorously justify the use of the synta
ti
 monoid

of a language in 
al
ulations involving fa
tors. We also present Conway's theory

of approximations of regular languages but extended to this more general abstra
t


ontext. When spe
ialised to regular languages, we prove the existen
e of a unique

minimal approximating fun
tion (a least approximating fun
tion) and 
ompare this

with Conway's maximal 
onstant+linear approximating fun
tion.

The 
losure algorithm we present does not always 
onstru
t regular expressions of

minimal star-height. However, we spe
ulate in the 
on
lusions on how the theory of

approximations might be exploited to develop a novel, e�e
tive approa
h to solving

the star-height problem.
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1 Introduction

J.H. Conway [Con71℄ introdu
ed the notion of the fa
tors of a language and showed that

the fa
tor-of relation is re
exive and transitive. He also introdu
ed the notion of the

fa
tor matrix of a regular language. This is a matrix of whi
h every entry is a fa
tor of

the language and whi
h is re
exive and transitive.

More than forty years ago, soon after the publi
ation of Conway's work, I extended

Conway's fa
tor theory in several ways [Ba
75℄. I proved the existen
e of a unique,

minimal starth root of the fa
tor matrix whi
h I 
alled the fa
tor graph of the language.

I also proved that the fa
tor matrix of a fa
tor of a language is a submatrix of the

fa
tor matrix of the language, and the fa
tor graph of a fa
tor of a language is pathwise
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homomomorphi
 to the fa
tor graph of the language. The latter result was used to derive

an algorithm for 
omputing the fa
tor matrix of a language from its fa
tor graph with the

property that the resulting regular expressions have star-height at most the 
y
le-rank

of the fa
tor graph, and 
ould be stri
tly smaller.

Conway's formulation of fa
tor theory is wordy and, hen
e, often un
lear; our own

work at the time followed Conway's style and 
an be similarly 
riti
ised. Using the simple

devi
e of naming the fa
tor operators, the 
urrent paper revisits Conway's and our own

work on fa
tor theory in a 
al
ulational style. We give expli
it 
onstru
tions of the

fa
tor matrix, the fa
tor graph, submatri
es of the fa
tor matrix de�ned by subfa
tors

and pathwise homomorphisms of fa
tor graphs.

We also extend fa
tor theory beyond this earlier work. We formulate the theory more

abstra
tly so that we 
an rigorously justify the use of the synta
ti
 monoid of a language

in 
al
ulations involving fa
tors. We also present Conway's theory of approximations of

regular languages but extended to this more general abstra
t 
ontext and demonstrate

its relevan
e in pra
ti
al appli
ations. In this way, we hope that fa
tor theory will be

better understood and more widely re
ognised than is presently the 
ase.

1.1 A Simple Introductory Example

In order to give an overview of this paper, let us 
onsider a simple example. Mu
h of the

terminology in this se
tion is used in an impre
ise, informal way, with the 
onsequen
e

that some of the explanation may not be 
ompletely 
lear on a �rst reading. We make

the terminology pre
ise in later se
tions, following whi
h we invite the reader to review

this se
tion on
e more.

For our example, we 
onsider the language denoted by the regular expression

(a+b)∗ a (a+b)∗

over the alphabet {a,b} . (This example is an extension of one used in [Ba
16℄.) Let us

denote this language by E and the alphabet by T . Then, using equational properties

of regular languages (with whi
h we assume the reader is familiar), we have:

E = (a+b)∗ a (a+b)∗ = b∗ a (a+b)∗ = (a+b)∗ ab∗ .

The driving 
on
ern in this paper is the development of methods for determining the

\best" regular expression denoting a given language. In this 
ase, it 
ould be argued that

the leftmost expression is the \best" be
ause it 
onveys most 
learly that the language

is the set of words that have at least one a . (An alternative expression would be ¬(b∗)

but we ex
lude this be
ause we 
onsider only expressions formed from the symbols of

the alphabet, 
on
atenation, union and star.)
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The redu
ed, deterministi
 �nite-state automaton re
ognising E is shown in �g. 1(a).

For brevity, we follow Conway and 
all it thema
hine of E . Fig. 1(b) shows the re
exive,

transitive 
losure |the \star"| of �g. 1(a). In other words, the label annotating the

edge from node i to node j in �g. 1(b) denotes the set of words re
ognised by transitions

from node i to node j in �g. 1(a). The language E is a spe
ial 
ase: it is the set of

words re
ognised by transitions from the start state (indi
ated by an unlabelled arrow)

to the �nal state (indi
ated by a double 
ir
le).

(a) (Anti−)Machine 

a

b a,b

a,b,ε a,b,ε

(d) Cmax+ Lmax

a

b b
ε

(e) Factor Graph

c,ε c,ε

E

T*
T*

(c) Factor Matrix

b* T*

E

φ

a

a,b,ε

(b) Languages Recognised

T*

ε ε

(f) Maximal Approximating Function (g) Minimal Approximating Function

c c

Figure 1: Example: (a+b)∗ a (a+b)∗

For greater simpli
ity, the example language we have 
hosen is su
h that it is the

reverse of itself. (The reverse of a language is the set 
onsisting of the reverse of all

words in the language.) This means that the \anti-ma
hine" of E is identi
al to its

ma
hine, as indi
ated by the 
aption of �g. 1(a). The \anti-ma
hine" of a language is
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the ma
hine of the reverse of the language. Moreover, there are no inadmissible nodes

in the ma
hine (or anti-ma
hine) of E ; this means that there are no inadmissible entries

in the fa
tor matrix of E . (A node is inadmissible if it 
annot be rea
hed from the start

state or the �nal state 
annot be rea
hed from it.)

Constru
ting regular expressions denoting a language inevitably involves 
onstru
ting

a transition graph to whi
h a 
losure algorithm is applied. The ma
hine of a language

is a (deterministi
) transition graph. Figs. 1(d) and (e) are both transition graphs

whi
h re
ognise our example language. Transition graphs have edges that are labelled

by subsets of {ε}∪T , where ε denotes the empty word and T is the alphabet.

We do not give the word \graph" a formal meaning. For us, a graph is a way of

depi
ting a fun
tion that has domain a 
artesian produ
t N×N for some �nite set (of

so-
alled \nodes") N . Another way of depi
ting a graph is as a two-dimensional array,


ommonly 
alled a \matrix" in the mathemati
al literature. The graph shown in �g. 1(
)

depi
ts what Conway 
alls the fa
tor matrix of E ; it is depi
ted in the 
onventional

way as a two-dimensional array below:

[

T ∗ E

T ∗ T ∗

]

Typi
ally, we are only interested in a small number of entries in a matrix. The

advantage of a graph as a means of 
ommuni
ation is that we 
an identify so-
alled

\start" and \�nal" nodes whi
h determine the entries of interest. In ea
h of the �gures

in �g. 1, there is one start node, indi
ated by an unlabelled in
oming edge, and one �nal

node, indi
ated by a double 
ir
le. Graphs 
an however qui
kly be
ome very 
luttered,

in whi
h 
ase a matrix 
an be a better means of presentation. We swit
h between graphs

and matri
es, using whi
hever is most 
onvenient at the time.

In Conway's terminology, �gs. 1(d) and (e) depi
t \
onstant+linear matri
es". (That

is, the edge labels are either ε or elements of the alphabet.) They share several 
ommon

properties. Both depi
t transition graphs that re
ognise the language E ; both are also

\starth roots" of the fa
tor matrix of E . Fig. 1(d) is Conway's maximal 
onstant+linear

approximation of E , and �g. 1(e) is our minimal starth root of the fa
tor matrix, the

fa
tor graph of E . Presented as matrix equations, we have:

[

ε+a+b a

ε+a+b ε+a+b

]∗

=

[

b a

ε b

]∗

=

[

T ∗ E

T ∗ T ∗

]

.

Our interest in the fa
tor matrix is as a means of 
al
ulating a \best" regular expres-

sion denoting a parti
ular language, where \best" entails some measure of simpli
ity. As
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we have already mentioned, su
h 
al
ulations have two 
omponents: a transition graph

and the 
losure algorithm used to 
ompute the star (re
exive-transitive 
losure) of the

graph. It seems sensible, therefore, to begin with the simplest possible transition graph.

Comparing �gs. 1(d) and (e), it is 
lear that our fa
tor graph is simpler than Conway's

maximal 
onstant+linear approximation. Indeed, as we show later, the fa
tor graph of

a regular language E is the minimal starth root of the fa
tor matrix of E and, in this

sense, is the \best" starting point for 
omputing the fa
tor matrix of E .

The next 
onsideration is the 
losure algorithm to be used. Re
all that our example

language is denoted by the expressions (a+b)∗a(a+b)∗ , (a+b)∗ab∗
and b∗a(a+b)∗ .

All of these are quite 
ompa
t and are useful for 
ommuni
ating properties of the lan-

guage. (For example, the equality between the �rst and se
ond expressions 
an be used

to explain the fa
t that any word that has at least one a must have a �nal o

urren
e

of an a that is followed by a string of b s.) However, if a standard elimination al-

gorithm is used, the resulting regular expressions are typi
ally far from ideal. In this


ase, the ma
hine and anti-ma
hine (�g. 1(a)) do result in 
ompa
t regular expressions

|from the ma
hine, we get the expression b∗a(a+b)∗ and, from the anti-ma
hine, we

get (a+b)∗ab∗
| but applying a standard elimination algorithm to the fa
tor graph (�g.

1(e)), we get the expression b∗a(b+b∗a)∗ or (b+ab∗)∗ab∗
, depending on whether the

leftmost or rightmost node is eliminated �rst. In both 
ases, the star-height of the result-

ing expression is two, whi
h is undesirable. Of 
ourse, were we to apply an elimination

algorithm to Conway's maximal 
onstant+linear approximation (�g. 1(d)), we would get

yet more 
ompli
ated expressions, albeit of the same star-height.

The problem with standard elimination algorithms is that they fail to exploit all

the algebrai
 properties of regular languages. Su
h algorithms have 
ounterparts in

algorithms for inverting matri
es in linear algebra [BC75℄. Consequently, they do not

exploit the fa
t that \addition" of regular languages (the \+ " operator in the above

expressions) is idempotent |its meaning is, after all, set union| sin
e addition is not

idempotent in linear algebra (i.e. normal arithmeti
). Elimination algorithms result in

regular expressions that have star-height at least the so-
alled \
y
le rank" [Egg63℄ of

the graph to whi
h they are applied. The 
y
le rank of �g. 1(a) is one; the 
y
le rank

of both �gs. 1(d) and (e) is two. Perhaps by inventing a new 
losure algorithm that

properly exploits the algebrai
 properties of languages, we 
an do better than the 
y
le

rank?

When applying the algorithm to the ma
hine of a language, there is little prospe
t of

improving on an elimination algorithm pre
isely be
ause a ma
hine is deterministi
: the

ambiguity that idempoten
y a�ords is not present in the ma
hine. Only by 
onsidering

non-deterministi
 re
ognisers of a language is there hope of an improved algorithm. The

fa
tor graph of a language is a non-deterministi
 re
ogniser of the language (indeed,

in some 
ases a very pra
ti
al re
ogniser: it is at the heart of the Knuth-Morris-Pratt
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pattern-mat
hing algorithm [BL76, BL77℄) and, as we show later, there is an algorithm

to 
al
ulate its 
losure that 
onstru
ts regular expressions that have star-height at most

the 
y
le rank of the graph and sometimes smaller.

To get a �rst impression of the algorithm, examine the fa
tor matrix of our example

language, shown in �g. 1(
). The matrix has just two distin
t entries, the language itself

and T ∗
. These are the two \fa
tors" of our example language. The fa
tor matrix of

the fa
tor T ∗
is very simple: it is just the 1×1 matrix [T ∗] . Its fa
tor graph is equally

simple: it is [T ] (equivalently, [a+b] ). Moreover, this is a graph of 
y
le rank one, whi
h

is stri
tly less than the 
y
le rank of the fa
tor graph of our example language. Most

importantly, the fa
tor matrix of the fa
tor T ∗
is a submatrix of the fa
tor matrix of our

example language. In fa
t, it o

urs twi
e as a submatrix. (Although T ∗
o

urs three

times, the o�-diagonal entry is formally not a fa
tor matrix a

ording to our de�nition.)

The example illustrates several properties that hold in general of a regular language:

fa
tors of fa
tors are themselves fa
tors, the fa
tor matrix of a fa
tor is a submatrix of

the fa
tor matrix, and the fa
tor graph of a fa
tor has 
y
le rank at most the 
y
le rank

of the fa
tor graph. These properties are the basis of an algorithm to 
ompute the fa
tor

matrix of a language that returns regular expressions that have star-height at most the


y
le rank of the fa
tor graph of the language and, in many 
ases, stri
tly less than the


y
le rank.

Our algorithm involves some pre-pro
essing to determine stru
tural properties of the

fa
tors of a language. At �rst sight, it might seem that this entails 
onstru
ting the

fa
tor matrix and then performing a number of 
al
ulations before 
al
ulating the fa
tor

matrix on
e more. Moreover, the intermediate 
al
ulations would appear to involve


omparing regular expressions, whi
h is very mu
h a non-trivial task. The pre-pro
essing

is, however, relatively straightforward be
ause it 
an be done by exploiting the synta
ti


monoid of the language. The synta
ti
 monoid (aka semi-group) of a language is a

monoid generated by a 
ongruen
e relation on words [RS59℄; the monoid is �nite when

the language is regular. Fundamental to our algorithm is that stru
tural properties of

the fa
tor matrix 
an be determined by performing 
al
ulations in an abstra
t regular

algebra (thus not the algebra of regular languages) whose 
arrier set is the set of subsets

of the 
arrier set of the synta
ti
 monoid. Cru
ially, when the given language is regular,

the subsets are �nite. This abstra
t regular algebra is an example of what we 
all a

powerset algebra.

Our simple example has a simple synta
ti
 monoid. It has just two elements whi
h

we name 1 and a . The produ
t operatoris de�ned by 1◦1= 1 , 1◦a= a◦1= a (so 1 is the

unit of the monoid, as its name suggests) and a◦a= a . The element 1 
orresponds to

the 
ongruen
e 
lass 
omprising the words in b∗
and the element a 
orresponds to the


ongruen
e 
lass 
omprising the words in the example language E (i.e. (a+b)∗a(a+b)∗ ).

In the powerset algebra, it is easy to 
al
ulate that
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[

{1} {a}

{1} {1}

]∗

=

[

{1,a} {a}

{1,a} {1,a}

]

.

On the left of this equation is the fa
tor graph of E , represented within the powerset

algebra, and on the right is the fa
tor matrix of E , represented in the same way. From

this representation of ea
h element of the fa
tor matrix as a �nite set, it is easy to dedu
e

the stru
tural properties required by our algorithm.

Mu
h of the theory developed in this paper is an extension of Conway's theory of

\approximations" of a regular language. So let us 
on
lude this se
tion with several

examples of su
h \approximations".

Our �rst example is the sort of approximation envisaged by Conway. Suppose we

want to \approximate" our example language by the language b∗a . A maximal \ap-

proximation" is the language denoted by (b∗a)+ . This is a fun
tion of b∗a : it is the

transitive 
losure of b∗a . Conway de�nes (rather impre
isely as we shall see) the notion

of an \approximating fun
tion" and the \best approximation" of a language by a �nite

set of languages. He then shows how the fa
tor matrix is used to 
onstru
t the \best

approximation".

Figs. 1(f) and (g) depi
t \approximating fun
tions" de�ned by the \approximation"

b∗a . Informally, what is meant is this. First note that both graphs have the same

re
exive, transitive 
losure. The language we are interested in is the language de�ned by

the start and �nal nodes. From �g. 1(g), this is 
learly

1 c∗c . The \best approximation"

is obtained by instantiating c to b∗a ; the \best approximation" is thus (b∗a)∗b∗a

(whi
h 
an, of 
ourse, be simpli�ed to (a+b)∗a ). This language is \best" in the sense

that it is the maximal set of words that is the result of applying an \approximating

fun
tion" to b∗a and is a subset of (a+b)∗ a (a+b)∗ .

We dislike Conway's use of the word \best". We dislike it parti
ularly be
ause his

\best approximating fun
tion" |illustrated by �g. 1(f)| is 
learly not \best" sin
e

�g. 1(g) is simpler. Both graphs have the same re
exive, transitive 
losure, so both

yield the same approximations. Our 
on
ern is that regular expressions denoting the

approximations are inevitably more 
omplex when using Conway's \best" approximation

fun
tion. Fig. 1(f) is an example of what Conway 
alls the \fa
torial fun
tion"; our �g.

1(g) is minimal whereas Conway's �g. 1(f) is maximal among a 
lass of \approximating

fun
tions", whi
h we make pre
ise later.

We use the theory of approximations in two other ways. First, Conway's maximal


onstant+linear approximation of E (�g. 1(e)) and our fa
tor graph of E are instan
es

of approximating fun
tions: essentially we 
onsider the symbols of the alphabet as the

approximating events. The \best" (or, as we prefer to say, \maximal") \approximation"

1

We assume that all 
losure algorithms exploit the fa
t that the empty word, ε , is the unit of 
on
ate-

nation. In this 
ase, (c·ε)∗c is simpli�ed to c∗c .
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of E is then E itself. Se
ond, we use the theory of approximations to formally justify

the use of the synta
ti
 monoid in our 
al
ulations.

1.2 Overview

This paper is a mixture of three 
omponents. First, it presents results due to Conway

[Con71℄ on the fa
tor matrix and approximations of regular languages in a 
al
ulational

style. It does the same for extensions to Conway's theory �rst presented in the author's

PhD thesis. Finally, it extends Conway's theory of approximations, arguing the 
ase

for minimal approximating fun
tions as opposed to Conway's maximal approximating

fun
tions.

Unlike Conway, our exposition is not solely about regular languages: we begin with a

general 
ontext and then spe
ialise the 
ontext in stages to regular languages. In se
tion

2.2 we give an abstra
t de�nition of a \regular algebra" and, in se
tion 3, we introdu
e

the \fa
tor matrix" of an event in su
h an abstra
t algebra. For a gentler introdu
tion

see [Ba
16℄. Se
tion 4 presents properties of the fa
tor matrix of a fa
tor, �rst developed

in the author's PhD thesis [Ba
75℄ but not published elsewhere. The main theorem is

that the fa
tor matrix of a fa
tor of an event is a submatrix of the fa
tor matrix of the

event. This theorem is fundamental to later se
tions on improved 
losure algorithms.

Our axiomati
 approa
h allows us to generalise Conway's and our own theorems. For

example, whilst retaining Conway's terminology, our notion of a \matrix" is not the

traditional �nite-dimensional array of values. This allows us to generalise the theorem

�rst proved in [Ba
75℄ on fa
tor matri
es of fa
tors to situations where an event does not

have a �nite number of fa
tors.

Approximation theorems are presented in se
tion 5. The results in this se
tion are

essentially due to Conway. The novelty of this paper is that the results are formulated

in the general 
ontext of an abstra
t regular algebra rather than the spe
i�
 
ontext of

the algebra of regular languages. This more general formulation is vital to justifying

the use of the synta
ti
 monoid in analysing the stru
ture of the fa
tor matrix. Our


al
ulational presentation with expli
it formulation of underlying Galois 
onne
tions also


lari�es Conway's work. As we point out, Conway's presentation has major omissions

and some errors, making it diÆ
ult to understand.

Conway's approa
h to 
onstru
ting maximal approximations to a regular event is to


onstru
t approximating \fun
tions"; su
h \fun
tions" are sets of words, i.e. languages.

Ea
h word has a length, and this simple fa
t is exploited to show that there is a \best"

\
onstant+linear fun
tion" approximating the fa
tor matrix of a language. We argue that

Conway's use of the terminology \best" is inappropriate, parti
ularly with regard to our

goal of 
onstru
ting a regular expression denoting a given regular language. Properties of

a regular language that are ne
essary to our development are �rst introdu
ed in se
tion
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6: a regular language has a �nite number of fa
tors and the fa
tor matrix has a unique

starth root, whi
h we 
all the \fa
tor graph" of the language. The notion of fa
tor

graph was �rst introdu
ed by the author in [Ba
75℄. Constru
tion of the fa
tor graph

is the basis of the well-known Knuth-Morris-Pratt pattern-mat
hing algorithm and its

generalisation to sets of patterns [KMP77, Wei73, AC75℄, as shown in [BL76, BL77℄. See

also [Ba
16℄.

Se
tion 7 is the �rst of three se
tions that are entirely original work of the author; it

is about how to exploit the synta
ti
 monoid of a regular language in order to 
onstru
t

its fa
tor graph and to perform prepro
essing of its fa
tor matrix (without a
tually


onstru
ting the fa
tor matrix) in order to apply the 
losure algorithm that is presented

in se
tion 9. Se
tion 8 establishes the property that the fa
tor graph of a fa
tor of

a regular language is pathwise homomorphi
 to the fa
tor graph of the language; this

theorem predi
ts the possibility of deriving a 
losure algorithm that 
onstru
ts regular

expressions denoting the fa
tors of a regular language that have star-height at most, and

sometimes less than, the rank of the language's fa
tor graph. As we show by example in

se
tion 9, the algorithm often 
onstru
ts regular expressions of minimal star-height.

Unfortunately, as we show in se
tion 9.4, the algorithm does not solve the star-height

problem: it sometimes fails to 
al
ulate regular expressions of minimal star-height. In the


on
luding se
tion, we remark that our algorithm does determine regular expressions of

minimal star-height for so-
alled pure-group languages (languages for whi
h the synta
ti


monoid is a group).

Surprisingly little has been written on Conway's fa
tor theory sin
e the publi
ation of

his book in 1971. Apparently, it took more than 25 years before my notion of the \fa
tor

graph" was redis
overed: Lombardy and Sakarovit
h [LS02℄ 
all it the \�e
or
h�e". But

many of the results in my thesis remain unknown and unexplored to this day. Se
tion 10

points out the 
lose parallels between my work of forty years ago and that of Lombardy

and Sakarovit
h.

2 Regular Algebra

In this se
tion, we give a summary of the algebrai
 properties that we exploit later in

the paper.

We begin in se
tion 2.2 with an abstra
t de�nition of a regular algebra. The de�ni-

tion is equivalent to Conway's Standard Kleene algebra (S -algebra) [Con71, p.27℄, but

emphasises the notion of fa
torisation. We don't give a formal proof of the equivalen
e,

whi
h follows from well-known properties of Galois 
onne
tions. We assume that the

reader is familiar with the theory of Galois 
onne
tions. For those unfamiliar with the

theory, a de�nition and referen
e to relevant literature is given in se
tion 2.1.
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Languages over a given (�nite) alphabet form a regular algebra a

ording to our

de�nition. However, an abstra
t de�nition that en
ompasses other appli
ations is vital,

in parti
ular to justify the use of matri
es and the synta
ti
 monoid. In se
tions 2.3 and

2.4 , we formulate the 
onstru
tion of matrix algebras and powerset algebras from given

regular algebras. The 
ombination of matri
es and powersets is formulated in se
tion

2.5.

Be
ause we use a variety of regular algebras, often simultaneously, we have to make a

diÆ
ult 
hoi
e with regard to notation: do we overload operator symbols (like \

∗
", the

so-
alled Kleene star operator) or do we invent a di�erent notation for ea
h individual

algebra? The 
hoi
e is 
ompounded by the fa
t that 
ertain 
hoi
es of notation also 
lash

with notation traditionally asso
iated with other well-known operations. For example,

we use the symbol \× " for Cartesian produ
t (as in S×T where S and T are sets); so

we avoid its use for the produ
t operator in a regular algebra, in parti
ular for matrix

multipli
ation. Su
h notational 
hoi
es are dis
ussed in se
tion 2.6. Finally se
tion

2.7 re
alls some properties of regular algebras that follow from the properties of Galois


onne
tions in 
ombination with �xed-point 
al
ulus.

Various running examples are also introdu
ed in this se
tion.

2.1 Galois Connections

Galois 
onne
tions feature heavily in this paper. A Galois 
onne
tion 
omprises two

partially ordered sets (A,� ) and (B ,⊑ ) and two fun
tions f and g of types A←B

and B←A , respe
tively, with the property that, for all a in A and all b in B ,

f.b�a ≡ b⊑g.a .

There is extensive literature on Galois 
onne
tions and we assume the reader is familiar

with the 
on
ept. In parti
ular, we assume that the reader is familiar with the theorem

dubbed \the unity of opposites" by the author [Ba
02℄.

Note that we use an in�x dot to denote fun
tion appli
ation.

2.2 Definition, Factorisation and Suprema

Definition 1 (Regular Algebra) Suppose A is a set. Suppose that (A, · , 1 ) is a

monoid and (A,� ) is a partially ordered set that is moreover a 
omplete latti
e; also,

suppose that A admits fa
torisation : that is, there are operators \ and / su
h that,

for all X , Y and Z in A ,

(2) X·Y�Z ≡ Y�X\Z
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and

(3) X·Y�Z ≡ X�Z/Y .

We 
all su
h a stru
ture a regular algebra. Elements of the 
arrier set of a regular

algebra are 
alled events.

✷

Another name for a regular algebra, a

ording to Wikipedia, is a unital quantale.

(In the literature on quantale theory, a fa
tor is 
alled a residual.) The operators / and

\ are pronoun
ed \over" and \under", respe
tively.

The simplest non-trivial example of a regular algebra has event set the booleans, as

detailed below. We use this as the basis of one of several running examples. See examples

15, 66, 80, 85, 87 and 90.

Example 4 (Running Example: Booleans) Let Bool denote {false,true} . Then

(Bool ,∧ , true ) is a monoid and (Bool ,⇒ ) is a 
omplete latti
e (with disjun
tion as

supremum operator). Also, Bool admits fa
torisation with \only-if" as the \under" and

\if" as the \over" operator sin
e

X∧Y⇒Z ≡ Y ⇒ (X⇒Z) and X∧Y⇒Z ≡ X ⇒ (Z⇐Y) .

(On the right side of these equations, read the non-parenthesised \⇒ " term as an order-

ing; the parenthesised o

urren
e of \⇒ " in the �rst equation is the under operator.)

✷

So far as possible, we formulate theorems in the 
ontext of an arbitrary regular

algebra (rather than just in the 
ontext of the algebra of languages as did Conway). In

su
h 
ases, we impli
itly assume that the 
arrier set of the algebra is A , and we use the

notation of de�nition 1 to denote the ordering relation on A , the unit of the monoid,

and the produ
t and fa
tor operators. That (A,� ) is a 
omplete latti
e means that

every fun
tion with range A has a supremum. The supremum of fun
tion f of type

A←B will be denote by Σf . It has the de�ning property

(5) 〈∀a : a∈A : Σf�a ≡ 〈∀b : b∈B : f.b�a〉〉 .

It is 
onvenient to also use the quanti�er notation 〈Σj :: f.j〉 , where the range of dummy

j is (impli
itly) the domain of f , parti
ularly in the 
ase that we don't want to name

the fun
tion f .

When f has type A←2 (where 2 is a two-element set) we use the in�x operator \+ "

to denote the supremum. That is, using subs
ripting to denote fun
tion appli
ation (as is
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onventionally done in su
h 
ases), we write f0+f1 for the supremum of f . Instantiating

(5) with f0 :=x and f1 :=y , we get

(6) 〈∀a : a∈A : x+y�a ≡ x�a ∧ y�a〉 .

In the parti
ular 
ase that f has type A←∅ (that is, its domain is the empty set)

we denote its supremum by 0 . Instantiating (5) on
e again, the innermost universal

quanti�
ation is va
uously true, so we get

(7) 〈∀a : a∈A : 0�a〉 .

That is, the supremum of a fun
tion of type A←∅ is the least element of A . Moreover,

0 is the (left and right) zero of produ
t (i.e. 0·Y= 0=X·0 for all X and Y ), as is easily

veri�ed. For example, we have: for all Y and Z ,

0·Y= 0

= { antisymmetry of � ; (7) with a :=0·Y }

0·Y� 0

= { (3) }

0�0/Y

= { (7) with a :=0/Y }

true .

The use of the symbols \ 0 ", \ 1 ", \+ " and \ · " suggests a strong 
onne
tion with

properties of the well-known arithmeti
 operators. The regular and arithmeti
 operators

do share many properties but it is important to re
ognise that the algebras di�er in

important respe
ts. Indeed, a brief summary of the 
urrent paper might be that it

fo
uses on those properties of the regular operators that distinguish them from the

arithmeti
 operators.

That (A,� ) is a 
omplete latti
e also means that every fun
tion with range A has an

in�mum. This is a property that be
omes important when we spe
ialise the dis
ussion to

powerset algebras. (See se
tion 2.4.) Choosing to denote binary suprema by the operator

symbol \+ " might suggest that we use \× " (or some other symbol normally asso
iated

with multipli
ation) for binary in�ma. We don't do so in order to avoid 
onfusion with

the produ
t operator in a regular algebra, and also the use of \× " to denote 
artesian

produ
t.

Our de�nition of a regular algebra does not in
lude the so-
alled \Kleene star" op-

erator as a primitive. This is not without pre
edent: Conway studies several di�erent

\Kleene" algebras [Con71, 
hapter 4, pp34{40℄ all of whi
h are derivatives of what he
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alls a standard Kleene algebra or S-algebra [Con71, p27℄. An S-algebra has just two

primitive operators, produ
t and supremum, and, whilst la
king our emphasis on admit-

ting fa
torisation via expli
it naming of the fa
tor operators, is identi
al to our \regular

algebra". (Conway postulates 
ertain distributivity properties that are equivalent to

admitting fa
torisation.)

In a regular algebra, the \Kleene star" operator 
an be de�ned in several ways.

For us, the most 
onvenient de�nition of X∗
is the least �xed-point of the fun
tion

mapping Y to 1 + X + Y·Y . (Note that we use the same pre
eden
e 
onventions as in

ordinary arithmeti
.) By de�nition, X∗
is thus re
exive (i.e. 1�X∗

) and transitive (i.e.

X∗ ·X∗ � X∗
). The fun
tion mapping X to X∗

is also a 
losure operator: in general, a

fun
tion f of type B←B , where (B,≤) is a partially ordered set, is a 
losure operator

if, for all X and Y in B ,

X≤ f.Y ≡ f.X≤ f.Y .

For the star operator, we have:

X�Y∗ ≡ X∗�Y∗ .

These three properties justify the name re
exive, transitive 
losure of X . Similarly,

the transitive 
losure of X , denoted as usual by X+
, is de�ned to be the least �xed-

point of the fun
tion mapping Y to X + Y·Y . As the name suggests X+
is transitive

and the fun
tion mapping X to X+
is a 
losure operator. Other properties of these

two operators are well-known and will be assumed without further ado throughout the

paper. (For example, we exploit the fa
t that X∗
is the least �xed point of the fun
tion

mapping Y to 1 + X·Y and, also, the least �xed point of the fun
tion mapping Y to

1 + Y·X . Note that many dis
ussions of \Kleene" algebra postulate these properties as

axioms. It is, however, a relatively straight-forward exer
ise to derive the properties

from the de�nitions we have given as instan
es of general properties of �xed points and

Galois 
onne
tions.)

2.3 Event Matrices

Example 4 de�nes a primitive regular algebra. There are several ways to 
onstru
t more


omplex regular algebras from simpler ones [Ba
06℄. Fundamental to our de�nition of

a regular algebra is that (square) \matri
es" over a regular algebra also form a regular

algebra. (This property was also stressed by Conway in his axiomatisations of \Kleene"

algebras.) Be
ause we do not want to restri
t our dis
ussion to languages, we use a more

general de�nition of \matrix" than the standard �nite-dimensional array of values.
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Definition 8 (Event Matrix) Suppose I and J are sets (possibly in�nite) and sup-

pose R is a regular algebra with event set A as in de�nition 1. An event matrix of

dimension I×J and type R is a fun
tion with domain I×J and range A .

If event matri
es f and g have the same type, and f has dimension I×J and g has

dimension J×K , for some I , J and K , their produ
t is the fun
tion f⊗g of dimension

I×K de�ned by

(f⊗g)(i,k) = 〈Σj :: f(i,j)·g(j,k)〉 .

Event matri
es with the same dimension and same type are ordered pointwise: if f and

h both have dimension I×J and have the same type,

f _�h ≡ 〈∀ i,j :: f(i,j)�h(i,j)〉 .

A square event matrix of dimension I is an event matrix of dimension I×I for some

(possibly in�nite) set I .

✷

Sin
e all our matri
es are event matri
es, we drop the adje
tive \event" from now on.

Theorem 9 The square matri
es with domain I×I , for some I , and range a regular

algebra themselves form a regular algebra. Produ
t is matrix produ
t (de�nition 8) and

the unit is the identity matrix, whi
h we denote by I . (That is, I(i,i)= 1 and I(i,j)= 0

when i 6= j .) The ordering on matri
es is the pointwise ordering de�ned above, and the

supremum of a matrix-valued fun
tion is the pointwise supremum of matrix elements.

See [Ba
06, theorem 4.20℄ for spe
i�
 formulae de�ning the \over" and \under" operators.

Proof The proof is straightforward. See [Ba
06, theorem 4.20℄. Conway [Con71, p.40℄

states that it is trivial. (Stri
tly, he only makes this 
laim for �nite-dimensional matri
es;

however, the �niteness assumption is only relevant for non-standard Kleene algebras.)

✷

An example of \matrix" algebras is a�orded by binary relations. The booleans form a

regular algebra with 
onjun
tion as the produ
t operator and impli
ation as the ordering.

(See example 4.) \(Square) matri
es" of booleans are (homogeneous) binary relations and

the produ
t operator is relational 
omposition. Su
h \matri
es" have �nite dimension

exa
tly when the set on whi
h the relations are de�ned is �nite. See [DBvdW97℄ for

extensive appli
ations of fa
tor theory in relation algebra.

In many simple examples of regular algebras, su
h as the regular algebra of booleans,

the star operator is so simple that it is rarely 
onsidered. However, as in this example,

more 
omplex regular algebras are often 
onstru
ted from simpler ones and then the star

operator does be
ome signi�
ant. For the regular algebra of booleans, the star operator

is su
h that X∗= true for all X but \star" of a (homogeneous, binary) relation is the

re
exive, transitive 
losure of the relation.
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2.4 Power Set Algebras

Another way of 
onstru
ting a regular algebra begins with a monoid and then \extends"

the monoid to a regular algebra with 
arrier set the set of subsets of the monoid (the

\power set" of the monoid). The appropriate de�nition is as follows:

Definition 10 (Power-set Monoid) Suppose (M, · , 1 ) is a monoid. Let 2M denote

the set of all subsets of M The produ
t operator is extended to 2M by

X·Y = {x·y | x∈X∧y∈Y} .

It is easily veri�ed that ( 2M , · , {1} ) is a monoid, whi
h we 
all a powerset monoid.

✷

Theorem 11 Suppose (M, · , 1 ) is a monoid. Then 2M is the 
arrier set of a regular

algebra with produ
t as given by de�nition 10 and the subset relation as the ordering

relation.

Proof As already remarked, ( 2M , · , {1} ) is a monoid; moreover ( 2M ,⊆ ) is a 
omplete

latti
e. In order to show that the algebra admits fa
torisation, we begin by introdu
ing

the notion of the derivative of an event

2

with respe
t to an element of the underlying

monoid. Spe
i�
ally, suppose w∈M . Then the derivative ∂w , a fun
tion of type

2M← 2M , is de�ned by, for all events N ,

x∈∂wN ≡ w·x∈N .

That is, for all events N and P and all monoid elements w ,

{w}·P ⊆ N ≡ P ⊆ ∂wN .

Then, for all events N , P , and Q ,

N·P ⊆ Q ≡ P ⊆ 〈∩w : w∈N : ∂wQ〉 .

Denoting the event 〈∩w :w∈N :∂wQ〉 by N\Q we thus have

N·P ⊆ Q ≡ P ⊆ N\Q .

That is, the fun
tion (N· ) has an upper adjoint. Similarly, the fun
tion ( ·P ) also has

an upper adjoint, whi
h we denote by the post�x operator ( /M ). That is,

N·P ⊆ Q ≡ N ⊆ Q/P .

2

Re
all that an event is an element of the 
arrier set of a regular algebra. So in this 
ase an event is a

subset of M .
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(The spe
i�
 formula for Q/P involves \anti"-derivatives. We dis
uss anti-derivatives

in more detail later in the 
ontext of language theory.) Thus we have shown that the

powerset algebra admits fa
torisation.

✷

We exploit theorem 11 to 
onstru
t several regular algebras. We refer to the regu-

lar algebra that is 
onstru
ted from a given monoid M as the powerset algebra with

underlying monoid M .

Example 12 The ar
hetypi
al example of a powerset regular algebra is the algebra of

languages over a �nite alphabet: Let T be a �nite set. The set T is 
alled the alphabet

and elements of T are 
alled letters. A word of length n is a sequen
e of symbols of

length n . The empty word is the word of length 0 ; we denote it by the symbol ε . The

set of all words is denoted by T ∗
. The set T ∗

is the 
arrier set of the free monoid over

alphabet T . The produ
t operation of the free monoid is 
on
atenation of words, whi
h

is typi
ally denoted by juxtaposition; 
on
atenation is asso
iative ( (uv)w=u(vw) ) and

ε is both its left and right unit ( εu=u=uε ). In this 
ontext, \events" are 
alled

languages, a language being a subset of T ∗
.

✷

Reasoning about words in a language often involves exploiting properties of the length

of a word. In parti
ular, the length of the 
on
atenation uv of words u and v is the

sum of the lengths of u and v , and indu
tion on the lengths of words is a valid proof

te
hnique. That the monoid is \free" means that we 
an exploit 
an
ellation: if u ,

v and w are words, the statements u=v , uw= vw and wu=wv are all equivalent.

These are simple and well-known properties. Our 
al
ulations are less expli
it about

their usage. See, for example, the 
al
ulations in Appendix A where we prove properties

of matri
es having entries that are sets of words whose length is zero or one.

Our use of the word \derivative" in the proof of theorem 11 is an a
knowledgement

to Brzozowski [Brz64℄ who introdu
ed the notion in the 
ontext of languages (example

12). Brzozowski enumerated a number of algebrai
 properties of derivatives of languages

that are very useful for pra
ti
al 
al
ulation. Some remain valid in any powerset regular

algebra. In parti
ular, we have the following lemmas:

Lemma 13 For an arbitrary 
olle
tion N of subsets of the 
arrier set of a monoid,

∂w 〈∪i ::N.i〉 = 〈∪i::∂w(N.i)〉 .

In parti
ular, ∂w∅= ∅ and ∂w(P∪Q)=∂wP∪∂wQ .

Proof We have, for all x ,
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x∈∂w 〈∪i ::N.i〉

= { de�nition of derivative }

w·x∈ 〈∪i ::N.i〉

= { de�nition of set union }

〈∃i :: w·x∈N.i〉

= { de�nition of derivative }

〈∃i ::x∈∂w(N.i)〉

= { de�nition of set union }

x∈ 〈∪i ::∂w(N.i)〉 .

The lemma follows by de�nition of set membership.

✷

Lemma 14 For an arbitrary subset N of the 
arrier set of a monoid,

∂w(¬N) = ¬(∂wN) .

Proof We have, for all x ,

x ∈ ¬(∂wN)

= { de�nition of set 
omplement and derivative }

¬(w·x∈N)

= { de�nition of set membership,

distributivity of negation over existential quanti�
ation }

〈∀y : y∈N : ¬(w·x=y)〉

= { trading }

〈∀y : w·x=y : ¬(y∈N)〉

= { one-point rule, de�nition of set 
omplement }

w·x ∈ ¬N

= { de�nition of derivative }

x∈∂w(¬N) .

The lemma follows by de�nition of set membership.

✷
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It is an immediate 
orollary of lemmas 13 and 14 that

∂w 〈∩i ::N.i〉 = 〈∩i ::∂w(N.i)〉

(sin
e set interse
tion is the 
onjugate of set union). Indeed, as Brzozowksi's points out

[Brz64, appendix I℄, the operation of taking derivatives distributes through an arbitrary

Boolean fun
tion of events | where by \Boolean fun
tion" is meant any 
omposition of

supremum, in�mum and 
omplements.

Using the equation N\Q= 〈∩w :w∈N :∂wQ〉 , the above lemmas enable the pra
ti
al


al
ulation of fa
tors, espe
ially in the 
ase that the 
arrier set of the monoid M is

�nite. Example 16 provides a good illustration, and forms our se
ond running example.

(See also examples 16, 67, 81, 88, 169.)

Example 15 (Running Example: Booleans) The simplest possible powerset al-

gebra is 
onstru
ted by taking the underlying monoid to be the \trivial" monoid with

exa
tly one element. That is, let M equal {1} and de�ne the produ
t 1·1 to be 1 .

Then 2M has two elements, the empty set, ∅ , and {1} . Let N be an element of 2M .

(So N is ∅ or {1} .) Then ∅\N=N/∅= {1} . Also, ∂1N=N . Hen
e, {1}\N=N/{1}=N .

Via the mapping ∅7→false and {1} 7→true , the above powerset algebra is isomorphi


to the regular algebra of Booleans introdu
ed in example 4. That is, the regular algebra

of Booleans is the simplest possible example of a powerset regular algebra: it is the

powerset regular algebra with underlying monoid the \trivial" monoid.

✷

Example 16 (Running Example: Modulo Addition) Let m be a stri
tly positive

natural number. As is of 
ourse very well known, the numbers 0 ..m−1 form an Abelian

group, 
ommonly denoted by ZZm , and thus a monoid, under addition modulo m .

The group (monoid) ZZm is generated by {n} where n is any number that is 
oprime

with m . For example, {2} is a generator set for ZZ3 but not for ZZ6 . Of 
ourse, {1} is

always a generator set

3

. See example 140 for further dis
ussion of the generator set.

Let us denote addition modulo m by the symbol ⊕ and subtra
tion modulo m by

the symbol ⊖ (both written as in�x operators). Extend addition to sets by de�ning

I⊕J = 〈∪ i,j : i∈I∧ j∈J : {i⊕j}〉

for all subsets I and J of {0 ..m−1} . This is the basis of the de�nition of the powerset

regular algebra with underlying monoid ZZm . The 
arrier set is 2{0 .. m−1}
, the set of

subsets of {0 ..m−1} . The operator ⊕ , as just de�ned, is the produ
t operator. And

sets are ordered by set in
lusion. Details of the fa
tor operators are as follows.

3

Here \ 1 " denotes the number 1 and not the unit of the monoid. Overloading of notation 
an

sometimes be 
onfusing!
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If I is a subset of {0 ..m−1} and j is an element of {0 ..m−1} , the derivative of I

with respe
t to j , denoted by ∂jI is de�ned by

∂jI = 〈∪i : i∈I : {i⊖j}〉

and if J is a subset of {0 ..m−1} , the fa
tor I
J
is de�ned by

I

J
= 〈∩j : j∈J :∂jI〉 .

Note 
arefully: the right side is an interse
tion of derivatives, not a union. We have


hosen the notation

I
J
here be
ause addition is symmetri
 and so the right fa
tor J\I

and the left fa
tor I/J are equal. (Of 
ourse, subtra
tion is not symmetri
.)

As a 
on
rete example, suppose m= 6 . Consider the powerset regular algebra of

numbers modulo 6 under addition. Then, taking advantage of lemma 14, we have

{1,2,3,4,5}=¬{0} , so

∂1{1,2,3,4,5} = ∂1(¬{0}) = ¬∂1{0} = ¬{0⊖1} = ¬{5} .

Similarly, ∂2{1,2,3,4,5}=¬{0⊖2}= {0,1,2,3,5} , et
.

Also,

{1,2,3,4,5}

{1,2}
= ¬{0⊖1}∩¬{0⊖2} = ¬({0⊖1}∪ {0⊖2}) = ¬{5,4} = {0,1,2,3} .

In general,

{1,2,3,4,5}

J
= ¬ 〈∪j : j∈J : {0⊖j}〉 .

Now, for arbitrary subset K of {0,1,2,3,4,5} , we have:

K = ¬ 〈∪j : j∈J : {0⊖j}〉

= { set 
omplement }

¬K = 〈∪j : j∈J : {0⊖j}〉

= { de�nition of set membership }

〈∪i : i∈¬K : {i}〉 = 〈∪j : j∈J : {0⊖j}〉

⇐ { 0⊖i= j ≡ i= 0⊖j }

J = 〈∪i : i∈¬K : {0⊖i}〉 .

Thus,

K =
¬{0}

〈∪i : i∈¬K : {0⊖i}〉
.
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It follows that every subset of {0,1,2,3,4,5} is a fa
tor of {1,2,3,4,5} and so {1,2,3,4,5}

has 26 fa
tors.

In general, for arbitrary m , the same argument shows that the set {1 ..m−1} in the

powerset regular algebra of numbers under addition modulo m has 2m fa
tors.

✷

We 
on
lude this se
tion with our third running example: an example of a regular

language, whi
h was Conway's sole interest.

Example 17 (Running Example: The Language (aa)∗ ) Let alphabet T 
om-

prise the single symbol a and 
onsider the language (aa)∗ (the set of all words whose

length is divisible by 2 ). This language has just two distin
t derivatives: we have that,

for all words w in (aa)∗ , ∂w(aa)
∗=(aa)∗ (for example, ∂aa(aa)

∗=(aa)∗ ) and, for all

words w in a(aa)∗ , ∂w(aa)
∗=a (aa)∗ (for example, ∂a(aa)

∗=a (aa)∗ ). Thus, using

the formula N\Q= 〈∩w :w∈N :∂wQ〉 for arbitrary languages N and Q , it is easy to

verify that there are just four possibilities for N \ (aa)∗ , as N ranges over arbitrary

languages: these are ∅ if N 
ontains both a word in (aa)∗ and a word in a(aa)∗ ,

(aa)∗ if N is a subset of (aa)∗ , a(aa)∗ if N is a subset of a(aa)∗ , and a∗
if N is

the empty set.

✷

2.5 Set-Valued Matrices

We 
an, of 
ourse, 
ombine the 
onstru
tion of square matri
es (se
tion 2.3) with the


onstru
tion of power-set algebras (se
tion 2.4): if (A, · , 1 ) is a monoid, we 
an 
onsider

square matri
es (of dimension I×I for some I ) over the powerset algebra with underlying

monoid (A, · , 1 ). (That is, fun
tions with domain I×I and event set 2A . ) This is the


arrier set of a regular algebra whi
h, for brevity, we denote by MI(A) .

We use this 
onstru
tion extensively with two parti
ular instan
es. The �rst is the

standard example of a \Kleene Algebra" introdu
ed in example 12: the languages (sets

of \words") over alphabet T . The se
ond is where the monoid is the so-
alled \synta
ti


monoid" of a language. (Those not already familiar with the synta
ti
 monoid are

re
ommended to look ahead to se
tion 7.)

Powerset algebras are, of 
ourse, 
omplemented : there is a \
omplement" or \nega-

tion" operator \¬ " su
h that, for all S , S∩¬S = ∅ and S∪¬S = ¬∅ . Powerset-

matri
es are also 
omplemented whereby the negation operator is lifted pointwise. That

is, (¬f)(i,j) is de�ned to be ¬(f(i,j)) . In this 
ase, we overload the operator and write

¬f(i,j) ; this allows us to silently exploit the ambiguity in the notation.

We spe
ialise the dis
ussion to languages and their synta
ti
 monoid from se
tion

6 onwards. However, part of the 
urrent investigation has been to explore how far the
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theory of fa
tor matri
es 
an be developed for events in the more general 
ontext of

(matri
es over) an arbitrary powerset algebra. This is indeed the 
ase for all the theory

that pre
edes se
tion 6.

2.6 Notational Considerations

In this paper we 
onsider several di�erent instan
es of a regular algebra, often at the

same time, and this leads to notational issues about how to denote the many di�erent

produ
t and supremum operators. Inevitably, we are for
ed to overload operator symbols

and rely on the reader being able to identify whi
h operator is meant. It is important

that the reader takes 
are to do so in order to determine how the operator is de�ned.

We 
ommonly use R and S for arbitrary regular algebras. When we do, we use A

and B for their 
arrier sets. When only one su
h algebra is involved, we use the notation

of de�nition 1 to denote the produ
t and fa
torisation operators, and the ordering relation

on the 
arrier set. We also use Σ , as in (5), for the general supremum operator, and

+ , as in (6) for the binary supremum. When two su
h algebras are involved in the

dis
ussion, we subs
ript the operator symbols to distinguish them | but we do not add

subs
ripts to the fa
torisation operators.

When we spe
ialise the dis
ussion to powerset algebras, we use the 
onventional no-

tation for set union and the subset relation, as in se
tion 2.4. When we spe
ialise the

dis
ussion to matri
es, we use ⊗ for the produ
t operator, as in de�nition 8. (It is

important to have a spe
ial symbol for matrix multipli
ation be
ause of its spe
ial de�-

nition.) We add dots above other operator symbols to indi
ate the pointwise extension

of the operator in the underlying regular algebra of elements. So, for example, when we


onsider an algebra of matri
es with elements from a powerset algebra, we use

_⊆ for the

ordering relation and

_∪ for the supremum operator.

We use the notation f•g for the 
omposition of fun
tions f and g , and we use U◦V

for the 
omposition of relations U and V . The notation U
∪

is used for the 
onverse of

relation U . When we wish to view a fun
tion as a relation, we use relational notation:

so, for example, we might write f
∪
◦U ◦g (where f and g are fun
tions and U is a

relation, all of appropriate type). This is the relation de�ned by

x (f
∪
◦U ◦g) y ≡ f.x U g.y

for all x and y (of appropriate type).

2.7 Advanced Properties

In this se
tion we anti
ipate the use of the synta
ti
 monoid of a language in 
al
ulations

on the fa
tor matrix/graph of a language. The most signi�
ant appli
ations begin in

se
tion 7.2 but we also exploit the 
on
epts introdu
ed here in earlier se
tions.
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In general terms, the theorems in this se
tion relate 
al
ulations in di�erent regular

algebras R and S . The spe
i�
 appli
ation we have in mind is where R is the regular

algebra of languages and S is the powerset algebra 
onstu
ted from synta
ti
 monoid of

a regular language: typi
ally, a regular language is an in�nite set whereas the synta
ti


monoid is �nite (and, hen
e, so is its powerset). In su
h 
ases, the obje
tive is to translate


al
ulations in the algebra R into 
al
ulations in the algebra S and then \invert" the

results of the 
al
ulations ba
k into R .

Definition 18 (Monoid Homomorphism) Suppose R = (AR , ·R , 1R) and S = (AS , ·S , 1S)

are monoids. Suppose ζ is a fun
tion with domain AR and range AS . Then, ζ is said

to be a monoid homomorphism from R to S if ζ preserves units:

ζ.1R = 1S

and preserves produ
t: for all x and y in AR ,

ζ.(x ·R y) = ζ.x ·S ζ.y .

The homomorphism is said to be surje
tive (or onto) if ζ ◦ζ∪ = IdAS
.

✷

Definition 19 (Regular Homomorphism) Let R and be regular algebras. Suppose

ζ is a fun
tion with domain AR and range AS . Then, ζ is a regular homomorphism

from R to S if ζ is a monoid homomorphism (from (AR , ·R , 1R ) to (AS , ·S , 1S )) and

it is the lower adjoint in a Galois 
onne
tion of the orderings �R and �S .

✷

Among several signi�
ant 
onsequen
es of the unity-of-opposites theorem of Galois


onne
tions is the property that the image set of a lower adjoint is a 
omplete latti
e

if the domain of the adjoint is 
omplete. The following theorem is a straightforward

appli
ation of this property.

Theorem 20 Suppose R = (A, · , Σ , ≤ , 0 , 1) is a regular algebra, and S = (B , �)

is a partially ordered set. Suppose B is 
losed under a binary produ
t operator \⊗ ".

Suppose m is a fun
tion with domain A and range B that is 
ompositional, i.e. for all

x and y in A

m.(x·y) = m.x⊗m.y ,

and is the lower adjoint in a Galois 
onne
tion between the orderings. Let m♯
denote

its upper adjoint and let m.A be the image of A under m . Then m.R = (m.A , ⊗ ,
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⊕ , � , m.0 , m.1 ) is a regular algebra, where the supremum operator in S is given by,

for all fun
tions f with range B ,

⊕f = m.Σ(m♯
• f) .

Moreover, m is a regular homomorphism from R to m.R .

✷

Lemma 21 Suppose R is the powerset algebra with underlying monoid (R ,×R , 1R ).

Suppose S is a regular algebra with monoid stru
ture ( S ,×S , 1S ) and suppose ζ is a

monoid homomomorphism from (R ,×R , 1R ) to (S ,×S , 1S ). De�ne the extension ζ♭

from 2R to S by

ζ♭.X = 〈Σx : x∈X : ζ.x〉

for all X in 2R . Then ζ♭ is a regular homomorphism from R to S with upper adjoint

ζ♯ de�ned by

ζ♯.U = 〈∪x : ζ.x�U : {x}〉

for all U in S .

Proof We have to show that the extension ζ♭ is a monoid homomorphism and that it

is a lower adjoint in a Galois 
onne
tion between the two orderings. That ζ♭ is a monoid

homomorphism follows straightforwardly from the fa
t that produ
t in the algebra S is

universally distributive

4

.

ζ♭.(X ×R Y)

= { de�nition of ζ♭ }

〈Σz : z ∈ X ×R Y : ζ.z〉

= { de�nition of X ×R Y }

〈Σx,y : x∈X∧y∈Y : ζ.(x ×R y)〉

= { ζ is a monoid homomorphism }

〈Σx,y : x∈X∧y∈Y : ζ.x ×S ζ.y〉

= { produ
t in S is universally distributive }

〈Σx :x∈X : ζ.x〉 ×S 〈Σy :y∈Y :ζ.y〉

= { de�nition }

ζ♭.X ×S ζ♭.Y .

4

Universal distributivity is a 
onsequen
e of admitting fa
torisation.
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The 
onstru
tion of its upper adjoint ζ♯ pro
eeds as follows.

ζ♭.X � U

= { de�nition of ζ♭ , de�nition of supremum }

〈∀x : x∈X : ζ.x�U〉

= { set 
omprehension }

X ⊆ {x | ζ.x�U}

= { by de�nition, ζ♯.U = {x | ζ.x�U} }

X ⊆ ζ♯.U .

✷

Theorem 20 was stated and proved in [Ba
06, theorem 6.2℄. Lemma 21 was also

stated there [Ba
06, theorem 6.3℄ but the 
onstru
tion of the upper adjoint was omitted.

We have in
luded its 
onstru
tion here be
ause we need the details later.

Re
all that our obje
tive is to translate 
al
ulations in an algebra R into 
al
ulations

in an algebra S and then \invert" the results of the 
al
ulations ba
k into R . This is

fa
ilitated when there is a regular homomorphism from R into S but sometimes this

is not enough. Suppose that ζ♭ is su
h a regular homomorphism and ζ♯ is its upper

adjoint. Then, in general ζ♯ and ζ♭ are not inverse fun
tions: it is the 
ase that, for

all Y , Y � ζ♯.(ζ♭.Y) but the 
onverse in
lusion is not generally valid. The sets Y su
h

that Y = ζ♯.(ζ♭.Y) are 
alled 
losed elements of the Galois 
onne
tion and enjoy spe
ial

properties. For our purposes, lemma 22 is one that we exploit.

Lemma 22 Suppose R and S are regular algebras and ζ♭ is a regular homomorphism

from R to S . Suppose ζ♯ is its upper adjoint. Suppose Z in R has the property that

ζ♯.(ζ♭.Z) = Z .

(In words, Z is a 
losed element of the Galois 
onne
tion.) Then, for all X in R ,

(23) X\Z = ζ♯.(ζ♭.X \ ζ♭.Z) = ζ♯.(ζ♭.(X\Z)) ,

(24) Z/X = ζ♯.(ζ♭.Z / ζ♭.X) = ζ♯.(ζ♭.(Z/X)) and

(25) X\Z/Y = ζ♯.(ζ♭.X \ ζ♭.Z / ζ♭.Y) = ζ♯.(ζ♭.(X\Z/Y)) .

NB: The symbols \ \ " and \ / " are overloaded: on the left of the three equations it is

the fa
torisation operator in R and on the right of ea
h equation it is the fa
torisation

operator in S . We also overload symbols denoting the produ
t and partial ordering

relations in the proof below.

In words, if Z is a 
losed element of the Galois 
onne
tion, then all right fa
tors, all

left fa
tors, and all fa
tors of Z are 
losed elements of the Galois 
onne
tion.
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Proof We present the proof of (25). The proofs of (23) and (24) are similar but slightly

less 
ompli
ated. (They involve one less variable.)

Suppose W , X , Y and Z are all elements of R and ζ♯.(ζ♭.Z) = Z . Then

W � ζ♯.(ζ♭.X \ ζ♭.Z / ζ♭.Y)

= { ζ♯ is upper adjoint of ζ♭ }

ζ♭.W � ζ♭.X \ ζ♭.Z / ζ♭.Y

= { fa
tors }

ζ♭.X · ζ♭.W · ζ♭.Y � ζ♭.Z

= { ζ♭ is a monoid homomorphism }

ζ♭.(X·W·Y) � ζ♭.Z

= { ζ♯ is upper adjoint of ζ♭ }

X·W·Y � ζ♯.(ζ♭.Z)

= { assumption: ζ♯.(ζ♭.Z) = Z }

X·W·Y�Z

= { fa
tors }

W�X\Z/Y .

It follows by indire
t equality that ζ♯.(ζ♭.X \ ζ♭.Z / ζ♭.Y) = X\Z/Y . The se
ond equality

in (25) follows immediately from the �rst equality by applying the unity-of-opposites

theorem (spe
i�
ally ζ♯ •ζ♭ •ζ♯ = ζ♯ ).

✷

The fun
tions ζ , ζ♭ and ζ♯ are extended pointwise to matri
es simply by repla
ing

fun
tion appli
ation by fun
tion 
omposition. For example, if G is a matrix of dimension

I×J and i and j are elements of I and J , (ζ♯ •G)(i,j) = ζ♯.(G(i,j)) . A basi
 property

of the Galois 
onne
tion (ζ♭ , ζ♯) is that ( ζ♭• ) is the lower adjoint and ( ζ♯• ) is the upper

adjoint in a Galois 
onne
tion of pointwise-ordered matri
es. As a 
onsequen
e, we have:

Theorem 26 Suppose R and S are regular algebras and ζ♭ is a regular homomor-

phism from R to S . Suppose ζ♯ is its upper adjoint. Suppose G and H are matri
es

of events in the algebra R (of the same dimension). Then, assuming that G and H

have appropriate dimensions in ea
h 
ase,

ζ♭ • (G+H) = (ζ♭ •G) + (ζ♭ •H) ,

ζ♭ • (G⊗H) = (ζ♭ •G) ⊗ (ζ♭ •H) , and
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ζ♭ •G∗ = (ζ♭ •G)∗ .

Furthermore, if every event in G∗
is 
losed,

G∗ = ζ♯ • (ζ♭ •G)∗ .

(For 
onvenien
e, we make no distin
tion between the (matrix) produ
t, supremum and

star operators of R and S in the above statements. We also make no su
h distin
tion

between the operators in the proof.)

Proof The �rst equation is an immediate 
onsequen
e of the fa
t that lower adjoints

preserve suprema, and supremum of matri
es is de�ned pointwise.

The se
ond equation is proved as follows:

(ζ♭ • (G⊗H))(i,j)

= { fun
tion 
omposition }

ζ♭.((G⊗H)(i,j))

= { de�nition of matrix produ
t (in R ) }

ζ♭. 〈Σk ::G(i,k)·H(k,j)〉

= { ζ♭ is a lower adjoint, so distributes over supremum }
〈

Σk :: ζ♭.(G(i,k)·H(k,j))
〉

= { ζ♭ is a monoid homomorphism }
〈

Σk :: ζ♭.G(i,k) · ζ♭.H(k,j)
〉

= { de�nition of matrix produ
t (in S ) }

((ζ♭ •G)⊗(ζ♭ •H))(i,j) .

The third equation is proved using the well-known \fusion" theorem of �xed-point 
al-


ulus. (See e.g. [Ba
06, theorem 3.6℄.)

ζ♭ •G∗ = (ζ♭ •G)∗

⇐ { ζ♭ is a lower adjoint, G∗
is the least �xed point of the fun
tion

mapping matrix f to I+G+ f⊗f ;

fusion: [Ba
06, theorem 3.6℄. }
〈

∀f :: ζ♭ • (IR+G+ f⊗f) = IS + (ζ♭ •G) + ((ζ♭ • f)⊗(ζ♭ • f))
〉

⇐ { ζ♭ is a lower adjoint and so preserves suprema }

ζ♭ • IR = IS ∧
〈

∀f :: ζ♭ • (f⊗f) = (ζ♭ • f)⊗(ζ♭ • f)
〉
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= { ζ♭ is a monoid homomorphism, so ζ♭.1R = 1S ,

ζ♭ is a lower adjoint, so ζ♭.0R = 0S

hen
e ζ♭ • IR = IS }
〈

∀f :: ζ♭ • (f⊗f) = (ζ♭ • f)⊗(ζ♭ • f)
〉

= { se
ond equation above with G,H := f ,f }

true .

The �nal equation is now straightforward:

G∗

= { assumption: every element of G∗
is 
losed }

ζ♯ •ζ♭ •G∗

= { above }

ζ♯ • (ζ♭ •G)∗ .

✷

As remarked earlier, the statement of theorem 26 makes no notational distin
tion

between the operators in the two algebras. However, the importan
e of the theorem is

that there is a distin
tion. For example, the statement

G∗ = ζ♯ • (ζ♭ •G)∗

expresses how to turn a 
al
ulation of the star of a matrix in the algebra R into the star of

matrix in the algebra S . A pra
ti
al appli
ation of this is the 
omputation of the fa
tor

matrix of a regular language by �rst 
imputing the fa
tor matrix in the powerset algebra

of the synta
ti
 monoid of the language. The former (typi
ally) involves 
omputations

with in�nite sets of words whereas the latter involves �nite sets. See se
tion 7.2.

2.8 Relations and Selectors

Suppose R is a regular algebra. As we remarked after theorem 9, homogeneous binary

relations on a set form a regular algebra. For 
al
ulational purposes, it is useful to


onsider relations as spe
ial 
ases of events in a matrix algebra. Formally, given a regular

algebra R , we de�ne the fun
tion Sel mapping relations to event matri
es. In the

de�nition, 1 denotes the unit of R and 0 its zero event (the least element of the


omplete latti
e).
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Definition 27 Suppose M and N are two sets and suppose R is a relation of type

M←N . Then we de�ne the event matrix Sel.R with dimension M×N by, for all i∈M

and j∈N ,

(28) (i Sel.R j = 1 ⇐ i R j) ∧ (i Sel.R j = 0 ⇐ ¬(i R j)) .

We 
all Sel.R the sele
tor 
orresponding to relation R .

We overload the 
onverse operator on relations, denoted here by the symbol

∪
written

as a post�x to its argument, to denote the 
onverse sele
tor (Sel.R)∪ ; if R has type

M←N , this has dimension N×M and is de�ned by

(29) (Sel.R)∪ = Sel.(R∪)

where (R∪
) denotes the 
onverse of relation R. The 
onventional terminology for (Sel.R)∪

is the transpose of matrix Sel.R .

✷

We often apply the fun
tion Sel to fun
tions, the fun
tion f of type M←N being

regarded as a spe
ial kind of relation su
h that i f j ≡ i= f.j . In this 
ase, the de�nition

of Sel be
omes

(i Sel.f j = 1 ⇐ i= f.j) ∧ (i Sel.f j = 0 ⇐ i 6= f.j) .

It is 
lear that Sel and Rel map identities to identities.

The use of Sel enables 
al
ulations to be so-
alled \point-free". That is, we 
an


al
ulate with matri
es without spe
i�
 mention of the matrix elements. To this end, it

is useful to formulate properties of relations in terms of Sel . The properties of parti
ular

interest are listed below. Suppose R is a relation of type M←N . Let IN denote the

identity matrix of dimension N×N and IM the identity matrix of dimension M×M .

Then

(30) R is fun
tional ≡ Sel.R⊗ (Sel.R)∪ _� IM ,

(31) R is inje
tive ≡ (Sel.R)∪⊗Sel.R _� IN ,

(32) R is surje
tive ≡ IM _� Sel.R⊗ (Sel.R)∪ ,

(33) R is total ≡ IN _� (Sel.R)∪⊗Sel.R .

As an example of how these properties are established, let us prove (32). In order to do

so, we need the pointwise de�nition of surje
tive: for relation R of type M←N ,

(34) R is surje
tive ≡ 〈∀i : i∈M : 〈∃k : k∈N : i R k〉〉 .

Now we show that the right sides of (32) and (34) are equivalent:
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IM _� Sel.R⊗ (Sel.R)∪

= { de�nition of pointwise ordering }

〈∀ i,j : i∈M∧ j∈M : i IM j � i (Sel.R⊗ (Sel.R)∪) j〉

= { i IM i = 1 , otherwise i IM j = 0 ; 0�x for all x }

〈∀i : i∈M : 1 � i (Sel.R⊗ (Sel.R)∪) i〉

= { de�nition of matrix multipli
ation }

〈∀i : i∈M : 1 � 〈Σk : k∈N : (i Sel.R k) · (k (Sel.R)∪ i)〉〉

= { by de�nition of Sel.R and (Sel.R)∪ and properties of multipli
ation,

(i Sel.R k) · (k (Sel.R)∪ i) = 1 ⇐ i Sel.R k = 1

and (i Sel.R k) · (k (Sel.R)∪ i) = 0 ⇐ i Sel.R k = 0 ,

addition is idempotent and 0 6=1 }

〈∀i : i∈M : 0 6= 〈Σk : k∈N : i Sel.R k〉〉

= { by de�nition of Sel.R , i Sel.R k = 1 or i Sel.R k = 0 ,

〈Σk :k∈N :0〉 = 0 }

〈∀i : i∈M : 〈∃k : k∈N : i Sel.R k = 1〉〉

= { de�nition of Sel.R and (34) }

R is surje
tive .

(Note that we have used in�x notation for appli
ation of a matrix to a pair. For example,

we write i Sel.R k and not (Sel.R)(i,k) . This �ts with the 
onvention of using in�x

notation for relations, as in i R k . It is often helpful to use in�x notation in this way

and, where this is the 
ase, this is what we do.)

Typi
ally, we use the pointwise de�nition of surje
tivity to establish that a relation is

surje
tive and then use the point-free de�nition to derive 
onsequen
es of the property.

We do the same for inje
tivity. Its pointwise de�nition is:

(35) R is inje
tive ≡ 〈∀ i,j : i∈N∧ j∈N : k R i ∧ k R j ⇒ i= j〉 .

We leave the reader to verify that (35) and (31) are equivalent. Fun
tionality and totality

are typi
ally by de�nition so that we do not need the pointwise de�nitions.

A relation of type M←N that is fun
tional and surje
tive is 
ommonly referred to

as a fun
tion from N onto M . It is easy to see from the point-free formulae that

inje
tivity of relation R is equivalent to fun
tionality of R∪
; similarly totality of R is

equivalent to surje
tivity of R∪
. A relation R of type M←N that is fun
tional, inje
tive,
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total and surje
tive is a bije
tion between M and N . A synonym for bije
tion is (1{1)


orresponden
e (pronoun
ed one-to-one 
orresponden
e).

Our use of the terminology \sele
tor" alludes to one way that sele
tors are used. As

an example, suppose G is a matrix of dimension M×N and suppose n is an element

of N . De�ne the fun
tion n of type N←1 , where 1 denotes a set having exa
tly one

(anonymous) element, to be the 
onstant fun
tion that always evaluates to n . Then,

G⊗Sel.n is a matrix of dimension M×1 ; in the 
onventional terminology, it is the \
ol-

umn" of matrix G indexed by n . Similarly, if m is an element of M , (Sel.m)∪⊗G

is the \row" of matrix G indexed by m . Thus (Sel.m)∪⊗G⊗Sel.n is a matrix of di-

mension 1×1 (i.e. a matrix with a single entry); ignoring the formal distin
tion between

matri
es of dimension 1×1 and matrix entries, it is the entry of G indexed by the pair

(m,n) . Rather than just sele
ting individual rows or 
olumns of a matrix, we use Sel

to sele
t submatri
es; the algebrai
 properties of Sel are exploited to 
ombine 
on
ision

with pre
ision in our 
al
ulations. See [BC75, BvdEvG94℄ for further examples of su
h

point-free 
al
ulations.

Another way that sele
tors are used is to 
onstru
t so-
alled \pathwise homomor-

phisms" of graphs. Suppose that G is a matrix of dimension M×M for some M , and

suppose f is a fun
tion of type N←M . Then the matrix

Sel.f⊗G⊗ (Sel.f)∪


an be roughly des
ribed as a matrix formed by 
oales
ing rows and 
olumns of G that

are mapped to the same value by the fun
tion f .

Fig. 2 illustrates both uses of sele
tors. At the top is a square matrix, depi
ted as a

graph, that we will denote by G . The index set of G is {0,1,2} . Now suppose f is the

fun
tion of type {0,1,2}←{X,Y} de�ned by f.X= 1 and f.Y= 2 . Then

(Sel.f)∪⊗G⊗Sel.f

is the square matrix indexed by {X,Y} de�ned by sele
ting the rows and 
olumns of G

indexed by {1,2} . Pi
turing the matrix as a graph, it is the graph on the bottom-left of

�g. 2. Now suppose h is the fun
tion of type {X,Y}←{0,1,2} de�ned by h.0=X , h.1=X

and h.2=Y . Then the matrix

Sel.h⊗G⊗ (Sel.h)∪

is the matrix 
onstru
ted from G by 
oales
ing the nodes 0 and 1 ; the 
oales
ed node

is renamed X and the node 2 is renamed Y . The result is depi
ted at the bottom-right

of �g. 2.

As an example of point-free 
al
ulations using sele
tors, and for later use, we have

the following lemma. See [BC75, BvdEvG94℄ for similar examples of su
h point-free


al
ulations.
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Figure 2: Use of Sel applied to fun
tions

Lemma 36 Suppose G is an event matrix of dimension M×M and f is a total

fun
tion of type N←M . Then

Sel.f⊗G∗⊗ (Sel.f)∪ _� (Sel.f⊗G⊗ (Sel.f)∪)∗ .

Proof

(Sel.f⊗G⊗ (Sel.f)∪)∗

= { de�nition of the star operator }

IN + Sel.f⊗G⊗ (Sel.f)∪⊗ (Sel.f⊗G⊗ (Sel.f)∪)∗

= { leapfrog rule }

IN + Sel.f⊗G⊗ ((Sel.f)∪⊗Sel.f⊗G)∗⊗ (Sel.f)∪

_� { f is total; so, by (33), (Sel.f)∪⊗Sel.f _� IM ;

monotoni
ity of matrix produ
t, star and supremum }

IN + Sel.f⊗G⊗ (IM⊗G)∗⊗ (Sel.f)∪

= { IM is the identity of matrix multipli
ation }

IN + Sel.f⊗G⊗G∗⊗ (Sel.f)∪

_� { f is fun
tional; so, by (30), IN _� Sel.f⊗ (Sel.f)∪ }

Sel.f⊗ (Sel.f)∪ + Sel.f⊗G⊗G∗⊗ (Sel.f)∪

= { distributivity, de�nition of the star operator }

Sel.f⊗G∗⊗ (Sel.f)∪ .
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✷

It is important to note that the de�nition of Sel depends 
riti
ally on the type of the

relation to whi
h it is applied. For example, if A and B are two unequal sets su
h that

A⊇B , we 
an de�ne the inje
tion ιA,B of type A←B by ιA,B.b=b , for all b in B . The

sele
tor Sel.ιA,B then has dimension A×B ; it is thus di�erent from Sel.idB where idB

is the identity fun
tion of type B←B de�ned by idB.b=b . This di�eren
e is, of 
ourse,


ru
ial to our purpose of sele
ting submatri
es of a given matrix.

Lemma 37 The fun
tion Sel is a monoid homomorphism. That is, Sel maps the

identity relation (of a given type) to the identity event matrix (of the same type) and

maps a 
omposition of relations into a produ
t of event matri
es. Moreover, Sel is

monotoni
 and 
ommutes with 
onverse.

Proof Clearly Sel maps the identity event matrix to the identity relation. Moreover,

for all i and j of appropriate type, Sel.R⊗Sel.S

i Sel.(R ◦S) j

= { de�nition of Sel : (28) }

if i (R ◦S) j→ 1✷¬(i (R ◦S) j)→0 fi

= { de�nition of 
omposition of relations }

if 〈∃k :: i R k ∧ k S j〉 → 1

✷ ¬ 〈∃k :: i R k ∧ k S j〉 →0

fi

= { de�nition of Sel : (28) }

if 〈∃k :: i Sel.R k= 1 ∧ k Sel.S j=1〉 → 1

✷ ¬ 〈∃k :: i Sel.R k= 1 ∧ k Sel.S j= 1〉 → 0

fi

= { i Sel.R k 6= 1 ≡ i Sel.R k= 0 ,

k Sel.S j 6= 1 ≡ k Sel.S j= 0 ,

predi
ate 
al
ulus }

if 〈∃k :: i Sel.R k= 1 ∧ k Sel.S j=1〉 → 1

✷ 〈∀k :: i Sel.R k= 0 ∨ k Sel.S j=0〉 → 0

fi

= { 1 is unit of produ
t, 0 is zero of produ
t and unit of addition,
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addition is idempotent,

de�nition of produ
t of transition graphs }

i Sel.R⊗Sel.S j .

Next,

Sel.R _�Sel.S

= { de�nition of pointwise ordering }

〈∀ i,j :: i Sel.R j � i Sel.S j〉

= { 
ase analysis on values of Sel (either 0 or 1 );

0�x for all x }

〈∀ i,j :: i Sel.R j= 1 ⇒ i Sel.S j= 1〉

= { de�nition of Sel }

〈∀ i,j :: i R j ⇒ i S j〉

= { de�nition of ordering of relations }

R⊆S .

Finally,

i (Sel.R)∪ j

= { de�nition of transpose }

j Sel.R i

= { de�nition of Sel.R : (28) }

if j R i→1✷¬(j R i)→0 fi

= { de�nition of 
onverse }

if i R∪ j→ 1✷¬(i R∪ j)→0 fi

= { de�nition of Sel.R : (28) }

i Sel.(R∪) j .

✷

3 The Factor Matrix

In this se
tion, we introdu
e Conway's fa
tor matrix and summarise a number of funda-

mental properties (due to Conway). Our presentation di�ers from Conway's in several
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ways. First, we have generalised Conway's theorems to arbitrary regular events (as

opposed to regular languages) and give examples to illustrate the relevan
e of the gen-

eralisation. Se
ond, our presentation is expli
itly 
al
ulational. Third, Conway showed

that there is a (1{1) 
orresponden
e between the so-
alled \left" and \right" \fa
tors"

of a given regular event; we observe the stronger property of an isomorphism between

the posets of left and right fa
tors. The de�nitions of fa
tors, left and right fa
tors of an

event E are given in se
tion 3.2.

In summary, for a given event E , Conway's fa
tor matrix is a matrix indexed by the

left fa
tors (or equally the right fa
tors) of E , this index set being �nite in the 
ase that

E is a regular language (as opposed to A whi
h may be in�nite). Moreover, E itself

and all left and right fa
tors of E are elements of the matrix.

Before introdu
ing the fa
tor matrix formally in se
tion 3.4, we present the isomor-

phism between the posets of left and right fa
tors in se
tion 3.3.

We begin in se
tion 3.1 by listing a number of elementary properties of fa
torisation.

All are easily veri�ed. Typi
ally the properties are instan
es of general properties of

Galois 
onne
tions. (Re
all that we assume a good knowledge of the theory of Galois


onne
tions. See [Ba
02℄ for the properties and terminology we assume.)

Throughout this se
tion we omit the 
al
ulations that substantiate the 
laimed prop-

erties. This is be
ause they have been given in detail elsewhere: see [Ba
16℄.

3.1 Elementary Properties

Let X , Y and Z denote events in a regular algebra R as de�ned in de�nition 1.

Be
ause (A,� ) is a 
omplete latti
e, all fun
tions with range A have a supremum and

an in�mum. Denoting the supremum of f by Σf and the in�mum of f by Πf , we have

that produ
t preserves suprema and the fa
tor operators preserve in�ma. That is, for

all fun
tions f with range A ,

(38) X · (Σf) = 〈Σx :: X · f.x〉

and

(39) X\(Πf) = 〈Πx :: X\ f.x〉 ∧ (Πf)/X = 〈Πx :: f.x /X〉 .

In parti
ular, (X\ ) and ( /X ) are both monotoni
:

(40) X\Y�X\Z ∧ Y/X�Z/X ⇐ Y�Z .

If we 
ombine the Galois 
onne
tions in (2) and (3), we get: for all events X , Y and Z ,

Z/Y�X ≡ Y�X\Z .
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Note the swit
h in the ordering | rewritten in this way in order to more easily identify

the Galois 
onne
tion. It follows that, for all events Z and fun
tions f with range A ,

(41) Z/(Σf) = 〈Πx :: Z/f.x〉 ∧ (Σf)\Z = 〈Πx :: f.x\Z〉 .

In parti
ular, Z/ and \Z are so-
alled \anti-monotoni
" fun
tions:

(42) X\Z�Y\Z ∧ Z/X�Z/Y ⇐ X�Y .

(The pre�x \anti" signi�es the reversal of the ordering. More long-windedly but te
hni-


ally pre
ise, Z/ and \Z are monotoni
 fun
tions from (A,� ) to (A,� ).)

We frequently use 
an
ellation :

(43) X ·X\Y � Y ∧ X/Y ·Y � X ∧ Y�X\(X·Y) ∧ X� (X·Y)/Y


ommutativity :

(44) (X·Y)\Z = Y\(X\Z) ∧ (X/Z)/Y = X/(Y·Z) ,

and asso
iativity :

(45) (X\Y)/Z = X\(Y/Z) .

Property (45) allows us to drop parentheses and write

X\Y/Z

without ambiguity. We do this frequently, using (45) without expli
it mention (in the

same way that we write X·Y·Z and exploit the asso
iativity of 
on
atenation without

expli
it mention).

Two less well-known 
an
ellation properties are useful:

(46) X� (Y/X)\Y ∧ X�Y/(X\Y) .

By exploiting the fa
t that (A, · , 1 ) is a monoid (in parti
ular 1 is a unit of produ
t),

the 
an
ellation laws all be
ome equalities in the 
ase that the variables are identi
al:

(47) X\(X·X) = X ·X\X = X = X/X ·X = (X·X)/X , and

(48) (X/X)\X = X = X/(X\X) .
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3.2 Left and Right Factors

In this se
tion, we introdu
e the notion of a fa
tor, a left fa
tor and a right fa
tor of an

event. Theorem 50 is used extensively, although sometimes without expli
it mention.

Definition 49 Let E denote a �xed event of a regular algebra. A fa
tor of E is any

event that 
an be expressed in the form X\E/Y for some X and Y . (That parentheses

have been omitted here is permitted by virtue of (45).) An event is a left fa
tor of E

if it 
an be expressed in the form E/Y for some Y and a right fa
tor of E if it 
an be

expressed in the form X\E for some X .

✷

Theorem 50 The relations fa
tor-of, left-fa
tor-of and right-fa
tor-of are re
exive and

transitive. (Re
exivity means that every event is a fa
tor of, a left fa
tor of, and a right

fa
tor of itself. Transitivity of the fa
tor-of relation means that a fa
tor of a fa
tor of an

event is a fa
tor of the event. Similarly for left-fa
tor-of and right-fa
tor-of.)

Proof The proof is a simple, introdu
tory exer
ise in the use of the laws given above.

For example, the transitivity of the left-fa
tor-of and right-fa
tor-of relations follow from

the 
ommutativity property (44) and their re
exivity from (48). The re
exivity of the

fa
tor-of relation is a 
ombination of the two equations in (48). Spe
i�
ally,

(51) X = (X/X)\X/(X\X)

for all events X . (Note how (45) is used here.) We leave the veri�
ation of fa
tor-of

relation to the reader.

✷

Conway [Con71℄ states theorem 50 but his proof-style is quite di�erent. The basi


properties used are the same but the important di�eren
e is that our existen
e proofs

are expli
itly (rather than impli
itly) 
onstru
tive. For example, (51) establishes that an

event is a fa
tor of itself by expli
itly exhibiting X/X and X\X as examples of events Y

and Z su
h that X = Y\X/Z . This di�eren
e in proof-style is, in my view, a signi�
ant


ontribution of the 
urrent paper.

3.3 Unity of Opposites

Throughout this and subsequent se
tions, the event E is a �xed, sometimes impli
it,

parameter of several de�nitions and theorems. From now on, we use lower-
ase identi�ers

( i , j , k et
.) to denote left fa
tors of E . We 
ontinue to use upper-
ase letters at the

end of the alphabet for arbitrary events.
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De�ne the fun
tions ⊳ and ⊲ by

X⊳ = E/X ,(52)

X⊲ = X\E .(53)

By de�nition, the range of ⊳ is the set of left fa
tors of E and the range of ⊲ is the

set of right fa
tors of E . It is an easy 
al
ulation to derive the Galois 
onne
tion: for

all X and Y ,

(54) X�Y⊳ ≡ Y�X⊲ .

Note that be
ause of the reversal of the ordering, both operators ⊳ and ⊲ are anti-

monotoni
. That is,

(55) X⊳�Y⊳ ∧ X⊲�Y⊲ ⇐ X�Y .

Applying the unity-of-opposites theorem [Ba
02℄ to the Galois 
onne
tion (54), we dedu
e

a (1{1) 
orresponden
e between the left and right fa
tors of E :

X⊳⊲⊳ = X⊳ ,(56)

X⊲⊳⊲ = X⊲ .(57)

and an isomorphism between the subset ordering on left fa
tors and the superset ordering

on right fa
tors of E :

X⊳�Y⊳ ≡ X⊳⊲ � Y⊳⊲ ,(58)

X⊲�Y⊲ ≡ X⊲⊳ � Y⊲⊳ .(59)

Additional properties are

E⊳⊲ = E = E⊲⊳ ,(60)

X⊳ \Y⊳ = X⊳⊲ / Y⊳⊲ ,(61)

X⊲ /Y⊲ = X⊲⊳ \ Y⊲⊳ ,(62)

X\Y⊲ = (Y·X)⊲ ,(63)

X⊳ /Y = (Y·X)⊳ .(64)

The rightmost equality in (60) is established as follows. The proof of the leftmost

equality is similar.
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E⊲⊳ = E

= { antisymmetry }

E⊲⊳ ⊆ E ∧ E⊲⊳ ⊇ E

= { X⊆Y⊳ ≡ Y⊆X⊲ with X,Y := E ,E⊲ ,

re
exivity of ≥ }

E⊲⊳ ⊆ E

= { de�nition }

E/(E\E)⊆E

⇐ { E/ is an anti-monotoni
 fun
tion, E/1=E }

E\E⊇ 1

= { fa
tors, unit }

true .

To establish (61) and (62), and for later use, it is 
onvenient to observe that (45),

appropriately instantiated, gives the identity

(65) X\(Z⊳) = (X⊲)/Z .

The 
al
ulation of (61) is now easy:

X⊳ \Y⊳

= { (56) }

X⊳ \ Y⊳⊲⊳

= { (65) }

X⊳⊲ / Y⊳⊲ .

Property (62) is 
al
ulated in the same way. We leave the reader the task of verifying

(63) and (64).

Most properties in this se
tion formulate as equations theorems that Conway ex-

pressed in words. So, for example, property (60) establishes the theorem that any event

is both a left fa
tor and a right fa
tor of itself. Properties (56) and (57) establish a

(1{1) 
orresponden
e between the left and right fa
tors of E . However, Conway does

not appear to have been aware of the Galois 
onne
tion (54); the (1{1) 
orresponden
e

is a 
ornerstone of his a

ount but he does not observe the poset isomorphism expressed

by (58) and (59).
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Properties (61) and (62) will be dis
ussed in the next se
tion when we introdu
e the

fa
tor matrix.

Example 66 (Running Example: Booleans) Re
all (example 4) that Bool= {false,true}

is a regular algebra and the over and under operators are, respe
tively, \if" and \only-if".

Property (60) is thus

((E⇐E)⇒E) = E = (E⇐(E⇒E)) .

The reader 
an easily 
he
k that this is a valid identity for both 
ases of E= false and

E= true . The reader is invited to also 
he
k the validity of all the properties (61) thru

(64) for all booleans E , X and Y . (Re
all that produ
t is 
onjun
tion so that, for

example, (64) is the property

((E⇐X) ⇐ Y) = (E ⇐ Y∧X)

for all booleans E , X and Y .)

✷

Example 67 (Running Example: Modulo Addition) Let m be a stri
tly positive

natural number and 
onsider the powerset regular algebra with underlying monoid ZZm ,

the Abelian group of numbers modulo m under addition. (See example 16.) As we have

seen, the set ¬{0} has 2m fa
tors. Re
all that, be
ause of the symmetry of addition, we

use the notation

I
J
for fa
torisation. In order to verify properties (60) thru (64) for an

arbitrary subset E of {0 ..m−1} , it is ne
essary to 
onsider three distin
t 
ases: E= ∅ ,

E= {0 ..m−1} and ∅ ⊂ E ⊂ {0 ..m−1} . We leave the �rst two 
ases to the reader. In

the third 
ase,

E
E
= {0} and

E
{0}

=E . This establishes the validity of (60) in this 
ase.

Be
ause of the symmetry of addition, X⊳=X⊲ for all X . Moreover, be
ause the monoid

is in fa
t a group, X⊲⊳=X . So properties (61) and (62) predi
t that

X⊳
Y⊳

= Y
X
. We leave

the reader to 
he
k these identities from the de�nitions. (Expanding the de�nition of

the ⊳ operator, the properties look like familiar properties of division and subtra
tion

in arithmeti
; be
ause of the very spe
ial nature of the example, this is what one would

expe
t.)

✷

3.4 Definition and Properties of the Factor Matrix

In this se
tion, we de�ne the fa
tor matrix of an event and state a number of properties.

The notion of the fa
tor matrix and the properties listed in this se
tion are due to

Conway [Con71, 
hapter 6℄. Our presentation di�ers 
onsiderably in that we 
ontinue to

give expli
it 
onstru
tions witnessing existential properties. See [Ba
16℄ for the relevant


al
ulations.
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Definition 68 (Factor Matrix) Let L.E denote the set of left fa
tors of E . The

fa
tor matrix of E is de�ned to be the binary operator \ restri
ted to L.E×L.E . Thus,

the fa
tor matrix has dimension L.E×L.E and entries in the matrix take the form i\j

where i and j are left fa
tors of E . It is denoted by |E| .

Formally, |E| = (Sel.(ιA ,L.E))∪ ⊗ under ⊗ Sel.(ιA ,L.E) , where under is the matrix de-

�ned by X under Y=X\Y , for all events X and Y , and ιA ,L.E is the fun
tion that

inje
ts left fa
tors of E into the 
arrier set , A , of the algebra R . (Pre-multiplying by

(Sel.(ιA ,L.E))∪ and post-multiplying by Sel.(ιA , L.E) sele
ts the left fa
tors of E .)

✷

An equivalent de�nition of the fa
tor matrix of E is the binary operator / restri
ted

to T .E×T .E , where T .E denotes the set of right fa
tors of E . Properties (61) and (62)

en
ode the equivalen
e.

Suppose that F is a fa
tor, i is a left fa
tor, and R is a right fa
tor of E . We now


onstru
t left fa
tors i0 , i1 , i2 , i3 , i4 , i5 su
h that

F = i0\i1 ,(69)

i = i2\i3 ,(70)

R = i4\i5 .(71)

Moreover, i2 is independent of i and i5 is independent of R and

(72) E = i2\i5 .

Suppose F is a fa
tor of E . In parti
ular, suppose that F=U\E/V . We 
onstru
t X

and Y su
h that F = X⊳ \Y⊳ as follows.

X⊳ \Y⊳ = U\E/V

= { X\Y⊳ = X⊲ /Y with X,Y := X⊳ , Y , U\E=U⊲ }

X⊳⊲ /Y = U⊲ /V

⇐ { Postulate Y=V }

X⊳⊲ = U⊲

⇐ { U⊲⊳⊲ = U⊲ }

X=U⊲ .

Thus U\E/V = U⊲⊳\V⊳ .

Now 
onsider the left fa
tor V⊳ . This is written in the form X⊳ \Y⊳ as follows.

V⊳
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= { de�nition }

E/V

= { (60) }

E⊳⊲ /V

= { X\Y⊳ = X⊲ /Y with X,Y := E⊳ , V }

E⊳ \V⊳ .

Thus V⊳ = E⊳ \V⊳ . Finally, 
onsider the right fa
tor U⊲ . We write this in the form

X⊳ \Y⊳ as follows:

U⊲

= { de�nition }

U\E

= { (60) }

U\E⊲⊳

= { (65) with X,Z := U,E⊲ }

U⊲ /E⊲

= { (57) }

U⊲⊳⊲ /E⊲

= { (65) with X,Z := U⊲⊳ , E⊲ }

U⊲⊳ \E⊲⊳ .

Thus, U⊲ = (U⊲)⊳ \ (E⊲)⊳ .

The terms i2 and i5 in (70) and (71) are thus E⊳ and E . The veri�
ation of (72) is

then:

E⊳ \E

= { de�nition }

E⊳⊲

= { (60) }

E .

By these expli
it 
onstru
tions, we have established Conway's theorem 4 [Con71, p.48℄.

Let us do some renaming in order to make it easier to 
ompare our formulation of the



45

theorem with Conway's. As always, E denotes a �xed \event" (thus not ne
essarily a

regular language). Consider the \matrix" de�ned by the binary operator \ indexed by

left fa
tors of E . So, ea
h \entry" in the matrix has the form i\j for some left fa
tors i

and j of E . Conway uses the notation Eij for su
h an entry. Then ea
h entry is a fa
tor

of E sin
e j is a left fa
tor of E equivales j = j⊲⊳ = E/ j⊲ and, hen
e, i\j = i \E/ j⊲ .

Moreover, we have shown that ea
h fa
tor of E is an entry in the matrix, spe
i�
ally:

(73) U\E/V = U⊲⊳ \V⊳ .

In addition, let l denote the left fa
tor E⊳ and r denote E (whi
h is a left fa
tor of E

sin
e E=E⊲⊳ ). Then

(74) E = r = l⊲ = l\r .

In words, E is the left fa
tor r , the right fa
tor 
orresponding to l , and the (l, r) th

entry in the matrix. Also, for all left fa
tors i of E

(75) i = l\i

and

(76) i⊲ = i\r .

In words, the left fa
tor i is the (l, i) th entry in the matrix and its 
orresponding right

fa
tor i⊲ is the (i, r) th entry in the matrix.

We 
on
lude by showing that |in Conway's words| any subfa
torisation of E is

dominated by a fa
torisation of E. In parti
ular, we show that:

(77) A·B⊆E ≡ A⊆B⊳ ∧ B ⊆ B⊳⊲ .

More generally, we show that, for all X and Y and all U and V ,

(78) X·Y ⊆ U⊳ \V⊳ ≡ 〈∃W :: X ⊆ U⊳ \W⊳ ∧ Y ⊆ W⊳\V⊳〉 .

The proof of (77) is:

A·B⊆E

= { fa
tors, B⊳=E/B ; 
an
ellation }

A⊆B⊳ ∧ B⊳ ·B ⊆ E

= { fa
tors, B⊳⊲ = B⊳ \E }

A⊆B⊳ ∧ B ⊆ B⊳⊲ .
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When
e, we prove (78). First, we determine a spe
i�
 instan
e for the existentially

quanti�ed variable W :

X·Y ⊆ U⊳ \V⊳

= { fa
tors, de�nition of V⊳ }

U⊳ ·X ·Y ·V ⊆ E

= { (77) with A,B := U⊳ ·X , Y·V }

U⊳ ·X ⊆ (Y·V)⊳ ∧ Y·V ⊆ (Y·V)⊳⊲

= { fa
tors }

X ⊆ U⊳ \ (Y·V)⊳ ∧ Y ⊆ (Y·V)⊳⊲ /V

= { (65) }

X ⊆ U⊳ \ (Y·V)⊳ ∧ Y ⊆ (Y·V)⊳ \V⊳ .

Then, we have:

X·Y ⊆ U⊳ \V⊳

⇒ { above, W :=Y·V }

〈∃W :: X ⊆ U⊳ \W⊳ ∧ Y ⊆ W⊳\V⊳〉

⇒ { monotoni
ity of 
omposition }

〈∃W :: X·Y⊆ (U⊳ \W⊳) · (W⊳\V⊳)〉

⇒ { 
an
ellation }

X·Y ⊆ U⊳ \V⊳ .

Let |E| denote the fa
tor matrix of E . From (78) it follows that

|E|⊗|E| _� |E|

and, sin
e obviously 1� i\i for all i ,

I _� |E|

(where I denotes the identity matrix). Hen
e

(79) |E| = |E|
∗

.

This 
ompletes our formulation of Conway's theorems [Con71℄. A \matrix" has been

exhibited 
ontaining all fa
tors and only the fa
tors of E , indexed by left fa
tors of E ,
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that is re
exive and transitive and hen
e equal to its own star. The import of (75) and

(76) is that the E⊳ \row" of the matrix (the set of entries all having E⊳ as �rst index)


ontains all (and only) the left fa
tors of E , and the E \
olumn" of the matrix (the

set of entries all having E as se
ond index) all (and only) the right fa
tors of E . In

addition, from (72) we see that E is the matrix entry at the interse
tion of this row and


olumn.

Example 80 (Running Example: Booleans) For a simple example of the fa
tor

matrix, let us return to the regular algebra of Booleans, introdu
ed in example 4 and


ontinued in example 66. The event true has just itself as left fa
tor; the event false

has two left fa
tors: false and true . The \fa
tor matrix" of true thus has dimension

{true}×{true} and just one \entry": true⇒ true , whi
h evaluates to true . The \fa
tor

matrix" of false has dimension Bool×Bool . Displayed in the 
onventional way, it is the

matrix

[

false⇒ false false⇒ true

true⇒ false true⇒ true

]

whi
h, of 
ourse, evaluates to

[

true true

false true

]

The left fa
tors l and r in Conway's theorem are, in this 
ase, true and false , respe
-

tively. We invite the reader to verify all the other properties listed above for this simple

example.

✷

Example 81 (Running Example: Modulo Addition) Let m be a stri
tly positive

natural number and 
onsider the powerset regular algebra with underlying monoid ZZm ,

the Abelian group of numbers modulo m under addition. (See examples 16 and 67.)

As we have seen, the set ¬{0} has 2m fa
tors. Be
ause of the symmetry of addition,

the sets of fa
tors, left fa
tors and right fa
tors are all identi
al. (In other words, every

fa
tor is both a left fa
tor and a right fa
tor.) The left fa
tor l in Conway's theorem

is {0} and ¬{0} is the left fa
tor r . Trivially (sin
e 0 is the unit of the group), for all

fa
tors i , i= i
{0}
.

✷

Example 82 (Running Example: The Language (aa)∗ ) Let us return to the lan-

guage (aa)∗ over the alphabet {a} . We saw in example 17 that this language has four

right fa
tors, namely ∅ , (aa)∗ , a(aa)∗ and a∗
. The 
orresponding left fa
tors are
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(aa)∗ / ∅ , (aa)∗ / (aa)∗ , (aa)∗ /a (aa)∗ and (aa)∗ /a∗
. These simplify to a∗

, (aa)∗ ,

a(aa)∗ and ∅ , respe
tively. (In general, anti-derivatives would be used to 
al
ulate

the left fa
tors but in this 
ase the left-right symmetry of all words in T ∗
makes the


al
ulations mu
h easier.)

The fa
tor matrix of (aa)∗ is shown in three ways below. First, as the \under"

fun
tion indexed by its left fa
tors:











∅\∅ ∅ \ (aa)∗ ∅\a (aa)∗ ∅ \a∗

(aa)∗ \ ∅ (aa)∗ \ (aa)∗ (aa)∗ \a (aa)∗ (aa)∗ \a∗

a (aa)∗\∅ a (aa)∗ \ (aa)∗ a (aa)∗\a (aa)∗ a (aa)∗ \a∗

a∗ \ ∅ a∗ \ (aa)∗ a∗ \a (aa)∗ a∗ \a∗











Se
ond, as the \over" fun
tion indexed by right fa
tors:











a∗ /a∗ a∗ / (aa)∗ a∗ /a (aa)∗ a∗ / ∅

(aa)∗ /a∗ (aa)∗ / (aa)∗ (aa)∗ /a (aa)∗ (aa)∗ / ∅

a (aa)∗ /a∗ a (aa)∗ / (aa)∗ a (aa)∗/a (aa)∗ a (aa)∗/∅

∅ /a∗ ∅ / (aa)∗ ∅/a (aa)∗ ∅/∅











Finally, after elimination of the fa
tor operators:











a∗ a∗ a∗ a∗

∅ (aa)∗ a (aa)∗ a∗

∅ a(aa)∗ (aa)∗ a∗

∅ ∅ ∅ a∗











The left fa
tors l and r in equation (72) are both (aa)∗ so that the entry l\r is

(aa)∗ \ (aa)∗ .

✷

We have 
riti
ised Conway for an over-relian
e on words. Example 82 is in
luded

partly to provide eviden
e for this 
riti
ism. Conway assumes that left and right fa
tors

are indexed by natural numbers in a way that re
e
ts the one-to-one 
orresponden
e.

He uses Li , Ri and Eij to denote the i th left fa
tor, 
orresponding i th right fa
tor

and (i, j) th element in the fa
tor matrix (where i and j are natural numbers). Then

he states one of the main theorems on the fa
tor matrix as follows [Con71, p.48℄:

Ea
h Eij is a fa
tor and ea
h fa
tor is one of the Eij . There exist unique

indi
es l , r su
h that E=Lr=Rl=Elr and Li=Eli and Ri=Eir for ea
h i .

Hen
e the fa
tors naturally form a square matrix among the entries of whi
h

is E .
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The issue here is with the meaning of the words \one" and \unique". Note that

in example 82, the 
entral 2×2 matrix 
ontains two o

urren
es of (aa)∗ and two

o

urren
es of a (aa)∗ , the 
entral two rows are identi
al but for an inter
hange of these

two languages, and the same is true of the 
entral two 
olumns. These two rows and


olumns 
ontain all the left fa
tors and right fa
tors of the language exa
tly on
e, and

no other fa
tors. Now Conway's \indi
es" are numbers, not left or right fa
tors. That

means that there appear to be two 
hoi
es for the \unique" indi
es l , r ! Even worse,

the fa
tor matrix of (am)∗ , for arbitrary, stri
tly positive, natural number m , o�ers a


hoi
e of m \unique" (numeri
al) indi
es l and r .

The earlier use of the word \one" is an ambiguous use of English: it 
ould mean that

ea
h fa
tor o

urs exa
tly on
e in the matrix, but it 
ould also mean that ea
h fa
tor

o

urs at least on
e in the matrix. Conway 
ompounds the 
onfusion by stating on page

49:

The theorem does prevent E from o

urring twi
e in its fa
tor matrix.

There is a missing \not" in this senten
e: it should read \The theorem does not prevent

E from o

urring twi
e in its fa
tor matrix."!

In my view, Conway's statement of the theorem is extremely 
onfusing and easily open

to misinterpretation. The \uniqueness" 
laimed by Conway depends on the parti
ular

indexing 
hosen for the left and right fa
tors: our presentation makes it 
lear that the

\unique" entry is the entry (aa)∗ \ (aa)∗ , and not the entry a (aa)∗\a (aa)∗ even though

the two entries are equal. By eliminating a spurious, irrelevant and entirely arbitrary

numeri
al indexing fun
tion, the exposition is made 
learer and more pre
ise.

Before leaving this se
tion, let us brie
y mention that there is a 
onne
tion between

example 81 and example 82. The 
onne
tion is that the synta
ti
 monoid of the language

(aa)∗ is ZZ2 . Note, however, that the synta
ti
 monoid of (am)∗ is not ZZm when m is

greater than 2 .

4 The Factor Matrix of a Factor

This se
tion is the �rst where we present results in the author's PhD thesis [Ba
75℄ that

have not previously been published elsewhere.

Suppose F is a fa
tor of E . Equivalently, suppose F is an entry in the fa
tor matrix

of E . We show that the fa
tor matrix of F is a \submatrix" of the fa
tor matrix of E .

Re
all, however, that we have de�ned a \matrix" to be a binary fun
tion. In parti
ular,

the fa
tor matrix of E is a fun
tion from pairs of left fa
tors of E to fa
tors of E , and the

fa
tor matrix of F is a fun
tion from pairs of left fa
tors of F to fa
tors of F . Thus, the
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domain of the fa
tor matrix of F is quite di�erent from the domain of the fa
tor matrix

of E if F 6=E . We must, therefore, say pre
isely what the meaning of \submatrix" is.

We prefer to say that the fa
tor matrix of F is \represented by a submatrix" of the

fa
tor matrix of E in the following sense.

Definition 83 Suppose G ′
is a fun
tion of type A←B×B and G is a fun
tion of

type A←C×C . We say that G ′
is represented by a submatrix of G if there is a set

C ′
su
h that C⊇C ′

and a bije
tion h of type C ′
←B su
h that G ′ = G • h×h .

(Here and elsewhere f×g denotes the fun
tion from pairs to pairs de�ned by, for all

x and y of appropriate type, (f×g).(x, y)=(f.x , g.y) .)

✷

We apply de�nition 83 ex
lusively in the spe
ial 
ase that f and g are square event

matri
es |indeed, fa
tor matri
es| but prefer a more general formulation of the de�-

nition.

Informally, the subset C ′
of C identi�es a \submatrix" of G (spe
i�
ally, the entries

indexed by elements of C ′
) and the bije
tion h translates indi
es of the matrix G ′

into

indi
es of G . For 
al
ulational purposes (see, for example, the proof of lemma ), it is

useful to express de�nition 83 in terms of the sele
tors introdu
ed in de�nition 27.

Lemma 84 Suppose G ′
is a fun
tion of type A←B×B and G is a fun
tion of type

A←C×C , where A is the event set of a regular algebra R . Then G ′
is represented

by a submatrix of G if there is an inje
tive fun
tion k of type C←B su
h that

G ′ = (Sel.k)∪⊗G⊗Sel.k .

Proof Straightforward expansion of the de�nitions. Given inje
tive fun
tion k of type

C←B , we let C ′
be the image set of k ; 
onversely, given bije
tion h of type C ′

←B ,

we let k equal ιC,C ′◦h , where ιC,C ′
is the fun
tion of type C←C ′

that inje
ts elements

of C ′
into C (i.e. ιC,C ′ .x=x for all x ). Then, for all y and z of type B ,

y ((Sel.k)∪⊗G⊗Sel.k) z

= { de�nition of k , distributivity properties of Sel }

y ((Sel.h)∪⊗ (Sel.ιC,C ′)∪⊗G⊗Sel.ιC,C ′ ⊗Sel.h) z

= { de�nition of matrix multipli
ation, Sel and 
onverse }

〈Σu,v,w,x :: (y (Sel.h)∪ u)·(u (Sel.ιC,C ′)∪ v)·(v G w)·(w Sel.ιC,C ′ x)·(x Sel.h z)〉

= { de�nition of Sel , 
onverse and ιC,C ′

1 is the unit and 0 is the zero of multipli
ation }
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〈Σu,v,w,x : u= v ∧ w=x : (y (Sel.h)∪ u)·(v G w)·(x Sel.h z)〉

= { one-point rule }

〈Σu,x :: (y (Sel.h)∪ u)·(u G x)·(x Sel.h z)〉

= { de�nition of Sel and 
onverse,

1 is the unit and 0 is the zero of multipli
ation }

〈Σu,x : u=h.y ∧ x=h.z : u G x〉

= { one-point rule }

h.y G h.z

= { assumption: G ′ = G • h×h }

y G ′ z .

The lemma follows by extensionality (equality of fun
tions).

✷

De�nition 83 sets the s
ene for this se
tion. We assume that F is a fa
tor of E .

Then, supposing that L.E denotes the set of left fa
tors of E and L.F the set of left

fa
tors of F , we 
al
ulate a subset M of L.E and a bije
tion β of type M←L.F su
h

that |F| = (Sel.β)∪⊗ |E|⊗Sel.β . The 
al
ulation is 
ompli
ated by the fa
t that fa
tors

may o

ur repeatedly in a fa
tor matrix. This gives us an additional task. Given F we

must �rst lo
ate an o

urren
e of F in the fa
tor matrix of E with parti
ular properties.

This task is a

omplished in subse
tion 4.1; subse
tion 4.2 then 
al
ulates the subset M

and the bije
tion β , leading to the representation theorem, theorem 98.

Example 85 (Running Example: Booleans) As always, we return to our running

example. In example 80 it was observed that the fa
tor matrix of true has exa
tly one

entry and the fa
tor matrix of false has four entries, of whi
h three are true . Given one

of the true entries, we need to identify a parti
ular submatrix (with just one entry) that

is the fa
tor matrix of true .

✷

4.1 Identifying A Suitable Matrix Entry

Throughout this subse
tion, we suppose that i and j are left fa
tors of E su
h that

F= i\j . (In words, i\j is one of the possibly multiple o

urren
es of F in the fa
tor ma-

trix of E .) Let s= j/(i\j) and t=((s⊲ / j⊲) \ s⊲)⊳ . We prove that F= s\t . Importantly,

we prove that s and t have a number of vital properties.
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Lemma 86 Suppose i and j are left fa
tors of E . Let s= j/(i\j) and t=((s⊲ / j⊲) \ s⊲)⊳ .

Then s and t are left fa
tors of E and

i\j= s\t ∧ s = t/(s\t) ∧ t⊲ = (s⊲ / t⊲) \ s⊲ .

Proof It is 
lear that t is a left fa
tor of E sin
e it is in the range of ⊳ . It is also the


ase that s is a left fa
tor of E be
ause it is a left fa
tor of the left fa
tor j and left

fa
tors of left fa
tors are left fa
tors (theorem 50).

We prove the following fa
ts in order:

(a) i\j= s\j

(b) t⊲ = (s⊲ / j⊲) \ s⊲

(c) s\j= s\t

(d) t⊲ = (s⊲ / t⊲) \ s⊲

(e) s = t/(s\t)

The �rst 
onjun
t of the lemma 
learly follows from (a) and (
) by transitivity of equality.

The se
ond 
onjun
t is (e) and the third 
onjun
t is (d).

(a) By mutual in
lusion: �rst,

i\j� s\j

= { fa
tors }

s · i\j � j

= { fa
tors }

s� j/(i\j)

= { de�nition of s , re
exivity of � }

true .

Se
ond,

s\j� i\j

⇐ { anti-monotoni
ity of \ }

s� i

= { de�nition of s , lemma 46 with X,Y := i,j }

true .
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(b)

t⊲

= { de�nition of t }

((s⊲ / j⊲) \ s⊲)⊳⊲

= { (63) }

(s · s⊲ / j⊲)⊲⊳⊲

= { unity of opposites }

(s · s⊲ / j⊲)⊲

= { (63) }

(s⊲ / j⊲) \ s⊲ .

(
) The proof is entirely symmetri
 to the proof of (a) with left fa
tors being repla
ed by

right fa
tors. For 
ompleteness, we give it anyway. First we translate the proof obligation

from left fa
tors to right fa
tors.

s\j = s\t

= { j , s and t are all left fa
tors; (61) }

s⊲ / j⊲ = s⊲ / t⊲ .

Now we pro
eed by mutual in
lusion. First,

s⊲ / j⊲ � s⊲ / t⊲

= { fa
tors: (3) }

s⊲ / j⊲ · t⊲ � s⊲

= { fa
tors: (3) }

t⊲ � (s⊲ / j⊲) \ s⊲

= { (b) }

true .

Se
ond,

s⊲ / t⊲ � s⊲ / j⊲

⇐ { anti-monotoni
ity of / }

t⊲� j⊲
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= { (b) and lemma 46 with X,Y := s⊲ , j⊲ }

true .

(d)

t⊲

= { (b) }

(s⊲ / j⊲) \ s⊲

= { s and j are left fa
tors of E , (61) }

(s\j) \ s⊲

= { (
) }

(s\t) \ s⊲

= { s and t are left fa
tors of E , (61) }

(s⊲ / t⊲) \ s⊲ .

(e) By mutual in
lusion. First,

s � t/(s\t)

= { lemma 46 with X,Y := s,t }

true .

Se
ond,

t/(s\t)� s

= { de�nition of s and (a) and (
) }

t/(s\t)� j/(s\t)

⇐ { monotoni
ity of /(s\t) }

t� j

= { (58), t and j are left fa
tors of E }

t⊲� j⊲

= { (b) and lemma 46 with X,Y := s⊲ , j⊲ }

true .

✷
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Example 87 (Running Example: Booleans) We return on
e more to our running

example (examples 4, 66, 80).

First, suppose E= false , F= true , i= false and j= true . That is we begin with the en-

try false⇒true in the fa
tor matrix of false and we wish to determine a submatrix that is

the fa
tor matrix of this entry. Then lemma 86 identi�es s as true⇐(false⇒true) , whi
h

evaluates to true , and t as ((s⊲⇐ j⊲)⇒ s⊲)⊳ . For this instan
e of E , false⊲= false⊳= true

and true⊲= true⊳= false . Thus t has the value false and the submatrix of the fa
tor

matrix of false that is the fa
tor matrix of true is the single entry false⇒false .

Now, suppose E= false , F= true , i= true and j= true . That is, E and F are un-


hanged but we begin with the entry true⇒true in the fa
tor matrix of false . Then

lemma 86 identi�es both s and t as true . (Details left to the reader.) Thus the sub-

matrix of the fa
tor matrix of false that is identi�ed as the fa
tor matrix of true is the

single entry true⇒true .

In general, fa
tors may appear repeatedly in a fa
tor matrix and the submatrix that

is identi�ed as the fa
tor matrix of a fa
tor will depend on the entry in the matrix with

whi
h the 
al
ulation begins.

✷

Example 88 (Running Example: Modulo Addition) Let m be a stri
tly positive

natural number and 
onsider the powerset regular algebra with underlying monoid ZZm ,

the Abelian group of numbers modulo m under addition. (See examples 16, 67 and 81.)

The fa
tor matrix of ¬{0} has 2m×2m entries (sin
e ¬{0} has 2m left fa
tors). Fa
tors

and fa
tor matri
es of fa
tors appear repeatedly in the fa
tor matrix of ¬{0} .

Clearly, as m in
reases the size of the fa
tor matrix qui
kly be
omes very large. But

we 
an illustrate the general stru
ture by taking the 
ase when m is 3 .

As explained in example 67, all subsets of {0,1,2} are left fa
tors, right fa
tors and

fa
tors of ¬{0} (in the powerset regular algebra with underlying monoid ZZ3 ). The fa
tor

matrix of ¬{0} before simpli�
ation is thus displayed below in the 
onventional fashion

as a two-dimensional array of values. (Note the pattern in the entries in ea
h row and

ea
h 
olumn.)
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

































































¬∅

¬∅

¬{0}

¬∅

¬{1}

¬∅

¬{2}

¬∅

{0}

¬∅

{1}

¬∅

{2}

¬∅

∅

¬∅

¬∅

¬{0}

¬{0}

¬{0}

¬{1}

¬{0}

¬{2}

¬{0}

{0}

¬{0}

{1}

¬{0}

{2}

¬{0}

∅

¬{0}

¬∅

¬{1}

¬{0}

¬{1}

¬{1}

¬{1}

¬{2}

¬{1}

{0}

¬{1}

{1}

¬{1}

{2}

¬{1}

∅

¬{1}

¬∅

¬{2}

¬{0}

¬{2}

¬{1}

¬{2}

¬{2}

¬{2}

{0}

¬{2}

{1}

¬{2}

{2}

¬{2}

∅

¬{2}

¬∅

{0}

¬{0}

{0}

¬{1}

{0}

¬{2}

{0}

{0}

{0}

{1}

{0}

{2}

{0}

∅

{0}

¬∅

{1}

¬{0}

{1}

¬{1}

{1}

¬{2}

{1}

{0}

{1}

{1}

{1}

{2}

{1}

∅

{1}

¬∅

{2}

¬{0}

{2}

¬{1}

{2}

¬{2}

{2}

{0}

{2}

{1}

{2}

{2}

{2}

∅

{2}

¬∅

∅

¬{0}

∅

¬{1}

∅

¬{2}

∅

{0}

∅

{1}

∅

{2}

∅

∅

∅



































































After elimination of all operators, we get the following matrix:





























{0,1,2} ∅ ∅ ∅ ∅ ∅ ∅ ∅

{0,1,2} {0} {1} {2} ∅ ∅ ∅ ∅

{0,1,2} {2} {0} {1} ∅ ∅ ∅ ∅

{0,1,2} {1} {2} {0} ∅ ∅ ∅ ∅

{0,1,2} {1,2} {0,2} {0,1} {0} {1} {2} ∅

{0,1,2} {0,1} {1,2} {0,2} {2} {0} {1} ∅

{0,1,2} {0,2} {0,1} {1,2} {1} {2} {0} ∅

{0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2}





























The empty set, ∅ , and its 
omplement, ¬∅ , (i.e. {0 ..m−1} in the general 
ase and

{0,1,2} in this spe
i�
 
ase) are entirely analogous to false and true in example 87: the

fa
tor matrix of ∅ has 2×2 entries, the entry ¬∅ o

urs three times and the fourth

entry is ∅ itself. The fa
tor matrix of ¬∅ has exa
tly one entry (whi
h is ¬∅ itself).

In the fa
tor matrix of other subsets of ¬∅ , there is always a row and a 
olumn

indexed by ∅ and a row and a 
olumn indexed by ¬∅ (be
ause both ∅ and ¬∅ are

(left and right) fa
tors of any proper subset of ¬∅ ). In the row indexed by ∅ all entries

are ¬∅ (i.e.

i
∅
=¬∅ for all left fa
tors i , and in the 
olumn indexed by ∅ all entries are

∅ ex
ept for the row indexed by ∅ (i.e.

∅

i
= ∅ for all non-empty left fa
tors i ); in the


olumn indexed by ¬∅ all entries are ¬∅ (i.e.

¬∅
i
=¬∅ for all left fa
tors i ) and in the

row indexed by ¬∅ all entries are ∅ ex
ept for the 
olumn indexed by ¬∅ (i.e.

i
¬∅

= ∅
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if left fa
tor i is a proper subset of ¬∅ ). This is apparent in the above matri
es: see

the border formed by �rst and last rows and �rst and last 
olumns.

In general, in any regular algebra, the maximal element of the latti
e is a left (and

right) fa
tor of all events, and the least element of the latti
e is a left (and right) fa
tor of

all events ex
ept for the maximal element of the latti
e. When displaying a fa
tor matrix

as a two-dimensional array,. the two 
orresponding rows and 
olumns are not of interest

and so we usually omit them. (We see later that, for languages, these 
orrespond to so-


alled \inadmissible" nodes in the fa
tor graph of the language. That is, they 
orrespond

to nodes that 
an be ignored when using the fa
tor graph as a re
ogniser of the language.)

Ignoring the border of the above array and looking at only the 
entral 6×6 array,

we see that there are four subarrays, ea
h of size 3×3 and in ea
h of whi
h the entries

are sets of the same size. Two subarrays are identi
al: the subarrays with entries that

are singleton sets. Together with the border formed by entries indexed by ∅ and ¬∅ ,

these represent the fa
tor matrix of {0} . That is, the fa
tor matrix of {0} displayed as

a two-dimensional array is as shown below.















{0,1,2} ∅ ∅ ∅ ∅

{0,1,2} {0} {1} {2} ∅

{0,1,2} {1} {0} {2} ∅

{0,1,2} {2} {1} {0} ∅

{0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2}















Formally, there are two distin
t representations of the fa
tor matrix of {0} as a

submatrix of the fa
tor matrix of ¬{0} (in this parti
ular 
ase).

✷

This subse
tion was begun by an impli
it existential quanti�
ation over the dummies

i and j . At this point, we 
lose the s
ope of the quanti�
ation. Subsequent se
tions

re-use dummies i and j for other purposes.

4.2 Constructing the Representation

Now that we have identi�ed a parti
ular entry s\t in the fa
tor matrix (see lemma 86),

we identify the submatrix of the fa
tor matrix of E that represents the fa
tor matrix of

s\t . The subset M of the left fa
tors of E de�ned below is what we need.

Definition 89 De�ne the subset M of the left fa
tors of E by

k∈M ≡ k = t/(k\t) ∧ k\t = (s\k)\(s\t) .

✷
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Example 90 (Running Example: Booleans) Suppose, as in the �rst part of exam-

ple 87, that E= false , F= true , i= true and j= true . We re
all that lemma 86 identi�es

both s and t as true . Then de�nition 89 de�nes the subset M of the left fa
tors of E

by

k∈M ≡ (k = (true⇐(k⇒true))) ∧ ((k⇒true) = ((true⇒k)⇒(true⇒true))) .

The se
ond equation is a tautology, and the �rst equation simpli�es to k= true . That

is, M= {true} as expe
ted.

The reader may wish to 
he
k that when s and t are both false , M is 
al
ulated

to be {false} . (See example 87.)

✷

The next step is to show that the submatrix de�ned by the set M represents the

fa
tor matrix of F . This is expressed formally in theorem 98. Informally, our goal is to

show that the submatrix of events k\m , where k and m are both elements of M , is

the fa
tor matrix of s\t . First we establish that s\t is itself an entry in this submatrix.

Lemma 91

s∈M ∧ t∈M .

Proof We have:

s= t/(s\t)

= { lemma 86(e) }

true .

Also,

(s\s)\(s\t)

= { s = t/(s\t) }

(s\t/(s\t))\(s\t)

= { lemma 48 with E := s\t }

s\t .

(Note the impli
it use of the asso
iativity of the \ and / operators.) This establishes

that s∈M . Now, for t∈M we have:

t= t/(t\t)

= { lemma 48 with X := t }

true ,
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and

(s\t)\(s\t)

= { (61), s and t are left fa
tors of E }

(s⊲ / t⊲) \ s⊲ / t⊲

= { by lemma 86(d): t⊲ = (s⊲ / t⊲) \ s⊲ }

t⊲/ t⊲

= { (61), s and t are left fa
tors of E }

t\t .

✷

Now we observe that the entries s\k in the submatrix are left fa
tors of s\t and the

entries k\t are the 
orresponding right fa
tors.

Lemma 92

s\k = (s\t)/(k\t) ∧ k\t = (s\k)\(s\t) ⇐ k∈M .

In words, s\k and k\t are 
orresponding left and right fa
tors of s\t if k∈M .

Proof Immediate from the de�nition of M and s\(t/(k\t))=(s\t)/(k\t) .

✷

Next we show that there is no dupli
ation in the entries s\k , where k ranges over

elements of M .

Lemma 93

k=k ′
⇐ k∈M ∧ k ′∈M ∧ s\k= s\k ′ .

(In words, the entries in the row indexed by s in the submatrix of the fa
tor matrix of

E de�ned by M are unique.)

Proof Assume k∈M∧k ′∈M . Then

k=k ′

⇐ { de�nition of M , k∈M∧k ′∈M }

t/(k\t) = t/(k ′\t)

⇐ { Leibniz }

k\t = k ′\t
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= { de�nition of M , k∈M∧k ′∈M }

(s\k)\(s\t) = (s\k ′)\(s\t)

⇐ { Leibniz }

s\k = s\k ′ .

✷

The next step is to establish the 
onverse of lemma 92. That is, we show that every

left fa
tor of s\t is equal to s\k for some k in M . We exploit the unity of opposites

to 
onstru
t k .

Lemma 94 Suppose L is a left fa
tor of s\t with 
orresponding right fa
tor R . That

is, suppose

R = L\(s\t) ∧ L=(s\t)/R .

Let k= t/R . Then

L = s\k ∧ R = k\t ∧ k∈M .

In parti
ular,

R = (t/R)\t .

Proof We establish the three 
onjun
ts in order. The �rst 
onjun
t is trivial:

s\k

= { de�nition of k }

s\(t/R)

= { asso
iativity }

(s\t)/R

= { de�nition of L }

L .

The se
ond 
onjun
t is proved by mutual in
lusion. First,

k\t�R

= { k= t/R , lemma 46 with X,Y :=R,t }

true .

To prove the 
onverse in
lusion, we exploit the �rst 
onjun
t (i.e. L = s\k ).
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k\t�R

= { R = L\(s\t)= (s\k)\(s\t) , fa
tors }

s · s\k ·k\t � t

= { 
an
ellation }

true .

The third 
onjun
t now follows:

k∈M

= { de�nition of M }

k = t/(k\t) ∧ k\t = (s\k)\(s\t)

= { k= t/R , R=k\t , L= s\k }

t/R = t/R ∧ R = L\(s\t)

= { assumption }

true .

The �nal property is an obvious expansion of the equations for R and k .

✷

We have now 
al
ulated a bije
tion between the left fa
tors of F and the elements of

M :

Theorem 95 Suppose F is a fa
tor of E . Suppose, in parti
ular, that F= i\j where

i and j are left fa
tors of E. Let s= j/(i\j) and t=((s⊲ / j⊲) \ s⊲)⊳ . Let M be the

subset of left fa
tors of E de�ned in de�nition 89. Then there is a bije
tion β from the

set of left fa
tors of F to M su
h that, for all left fa
tors L of F ,

L = s\β.L .

Spe
i�
ally,

(96) β.L= t/(L\F) .

Proof This is a 
ombination of lemmas 93 and 94. Lemma 94 states that if L is a left

fa
tor of F then there is a k in M su
h that L= s\k and lemma 93 asserts that su
h

a k is unique.

✷

The �nal step is to show that an event is a fa
tor of s\t equivales it equals k\m for

some k and some m . Here we exploit Conway's theorem that every fa
tor of an event
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Z has the form X\Y where X and Y are left fa
tors of Z . Sin
e we have established

that the left fa
tors of s\t are events of the form s\k for some k in M , this amounts

to the following lemma.

Lemma 97 Suppose k∈M and m∈M . Then

k\m = (s\k)\(s\m) .

Proof

(s\k)\(s\m)

= { k∈M . So k = t/(k\t) ;

m∈M . So m = t/(m\t) }

(s\t/(k\t))\(s\t/(m\t))

= { by lemma 92, s\t/(k\t) and k\t are


orresponding left and right fa
tors of s\t ;

similarly for s\t/(m\t) and m\t

X⊳ \Y⊳ = (X⊳)⊲ / (Y⊳)⊲ with E := s\t }

k\t/(m\t)

= { m∈M . So m = t/(m\t) }

k\m .

(Note that the rule X\(Y/Z)= (X\Y)/Z has been used impli
itly at ea
h step.)

✷

We summarise the foregoing lemmas in the following theorem.

Theorem 98 The fa
tor matrix of a fa
tor F of E is represented by a submatrix of

the fa
tor matrix of E .

Spe
i�
ally, the fa
tor matrix of F is 
onstru
ted from the fa
tor matrix of E as

follows. First, identify a pair of left fa
tors i and j of E su
h that F= i\j . Then let

s= j/(i\j) and t=((s⊲ / j⊲) \ s⊲)⊳ . Note that, by lemma 86, F= s\t . De�ne the subset

M of the left fa
tors of E as in de�nition 89. Then the matrix k\m where k and m

are elements of M represents the fa
tor matrix of F .

Moreover, letting the fun
tion β from left fa
tors of F to left fa
tors of E be de�ned

by

β.i ′= t/(i ′\F)
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for all left fa
tors i ′ of F . Then β is an inje
tive fun
tion with domain L.F and image

set M , and

(99) |F| = (Sel.β)∪⊗ |E|⊗Sel.β .

Proof Let L.F denote the set of left fa
tors of F . Then, by de�nition, the fa
tor

matrix of F , denoted |F| is a fun
tion with domain L.F×L.F . The value of |F| at the

pair (i ′, j ′) , where i ′ and j ′ are left fa
tors of F , is i ′\j ′ . But

i ′\j ′

= { theorem 95 }

(s\β.i ′)\(s\β.j ′)

= { by theorem 95, β.i ′∈M and β.j ′∈M ; lemma 97 }

β.i ′\β.j ′ .

Equation (99) follows from the de�nition of Sel and matrix multipli
ation. From the

type of β , we 
on
lude that the fa
tor matrix of F is represented by

〈i,j : i∈M∧ j∈M : i\j〉

whi
h, by de�nition 89, is a submatrix of |E| .

✷

4.3 A Surjective Mapping

In preparation for se
tion 8, we establish rather more than theorem 98: we exhibit a

surje
tive fun
tion from the left fa
tors of E to the left fa
tors of F . This fun
tion is

used in se
tion 8 to prove that the fa
tor graph of a fa
tor F of E has 
y
le rank at

most the 
y
le rank of the fa
tor graph of E .

We 
ontinue to assume that s and t are the left fa
tors of E de�ned in lemma 86

su
h that F= s\t .

Let i be a left fa
tor of E De�ne the fun
tions γ of type L.F←L.E and α of type

L.E←L.E by

(100) γ.i = F/(i\t) .

and

(101) α.i = t/(γ.i\F) .
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Note that γ has type L.F←L.E |in parti
ular, γ.i is a left fa
tor of F| and α has

type L.E←L.E |in parti
ular, α.i is a left fa
tor of E| . Note also that

(102) α = β◦γ

where β is the fun
tion of type L.E←L.F and image set M identi�ed in 
orollary 95.

Be
ause β is inje
tive, it follows that

(103) γ = β∪ ◦α .

The relations γ and β∪
have the same type. However, they are 
learly not equal sin
e

γ is total whereas β∪
is not. Nevertheless:

Lemma 104 The fun
tion γ inverts the fun
tion β . That is,

γ◦β = idL.F .

Hen
e,

γ◦α = γ ∧ α◦α = α ∧ α◦β = β .

Proof Suppose L is a left fa
tor of F . Then

(γ◦β).L

= { de�nition of γ : (100) and β : (96) }

F/((t/(L\F))\t)

= { lemma 94, with R :=L\F }

F/(L\F)

= { L is a left fa
tor of F ,

unity of opposites: (56) with E :=F }

L .

Hen
e,

γ◦α

= { de�nition of α : (101) }

γ◦β◦γ

= { above, idL.F is unit of 
omposition }

γ .
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The proof of the �nal two equations is similar.

✷

Informally, our goal is to show that the matrix indexed by the events α.i (where i

ranges over left fa
tors of E ) and the matrix indexed by the events γ.i are both \equal"

to the fa
tor matrix of F . The following lemma is signi�
ant be
ause it asserts that

the range of α is a subset of M whi
h, we re
all from 
orollary 95, represents the left

fa
tors of F .

Lemma 105 For all i su
h that i is a left fa
tor of E ,

γ.i = s\α.i ∧ γ.i\F = α.i\t ∧ α.i∈M .

Proof Immediate from the de�nitions of α and γ , and lemma 94 with L instantiated

to γ.i and R instantiated to γ.i\F . (The variable k in the lemma is α.i .)

✷

Summarising lemma 104 and our previous observation that γ maps left fa
tors of E

to left fa
tors of F , we have:

Theorem 106 The fun
tion γ is a surje
tive fun
tion from the set of left fa
tors of

E onto the set of left fa
tors of F . That is,

〈∀i : i is a left fa
tor of E : γ.i is a left fa
tor of F〉 .

Moreover,

〈∀L : L is a left fa
tor of F : 〈∃i : i is a left fa
tor of E : L=γ.i〉〉 .

Spe
i�
ally,

〈∀L : L is a left fa
tor of F : L=γ.(β.L)〉

where

β.L = t/(L\F) .

✷

Some additional lemmas give further insight into the fun
tions γ and α . We observe

some spe
i�
 values of α and γ (primarily to gain reassuran
e about the 
orre
tness of

their de�nitions).

Lemma 107

γ.s= s\s ∧ α.s= s ∧ γ.t= s\t ∧ α.t= t .
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Proof First,

γ.s

= { de�nition of γ : (100) }

s\t/(s\t)

= { by lemma 86(e), s = t/(s\t) }

s\s .

Se
ond,

α.s

= { de�nition of α : (101) }

t/((s\s)\(s\t))

= { s · s\s = s }

t/(s\t)

= { by lemma 86(e), s = t/(s\t) }

s .

Third,

γ.t

= { de�nition of γ : (100) }

s\t/(t\t)

= { lemma 48 }

s\t .

Finally,

α.t

= { de�nition of α : (101) }

t/((s\t)\(s\t))

= { by lemma 91, t∈M ;

so, by de�nition of M (de�nition 89) , (s\t)\(s\t)= t\t }

t/(t\t)

= { lemma 48 }

t .
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✷

The next step is to observe that the matri
es indexed by events in the ranges of α

and γ are identi
al. It is 
onvenient to observe an in
lusion at the same time.

Lemma 108 For all left fa
tors i and j of E ,

i\j � γ.i\γ.j = α.i\α.j .

Proof For the in
lusion, we have:

i\j � γ.i\γ.j

= { de�nition of γ : (100) }

i\j � (F/(i\t))\F/(j\t)

= { fa
tors }

F/(i\t) · i\j · j\t � F

= { 
an
ellation }

true .

Now for the equality:

α.i\α.j

= { de�nition of α : (101) }

(t/(γ.i\F))\t/(γ.j\F)

= { γ.i\F is a right fa
tor of F , lemma 94 }

γ.i \F / (γ.j\F)

= { γ.j is a left fa
tor of F ,

unity of opposites: (56) with E :=F }

γ.i\γ.j .

✷

Lemma 108 is a statement about the fa
tor matrix of E expressed in terms of in-

dividual elements. It is ne
essary to state it this way as a �rst step be
ause its proof

unavoidably exploits spe
i�
 properties of the elements. However, for subsequent 
al
u-

lations it is unne
essary to reason in this way, and a point-free formulation is preferable.

Spe
i�
ally, we have:
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Lemma 109

(110) |E| _� (Sel.γ)∪⊗ |F|⊗Sel.γ = (Sel.α)∪⊗ |E|⊗Sel.α

Hen
e,

(111) Sel.γ⊗ |E|⊗ (Sel.γ)∪ _� |F|

and

(112) Sel.α⊗ |E|⊗ (Sel.α)∪ _� |E|

Proof The proof of (110) is straightforward: expand the de�nitions of its 
omponents

(the pointwise ordering, |E| , |F| et
.), taking 
are to note from theorem 106 that γ is a

surje
tive fun
tion from L.E onto L.F , and then apply lemma 108. The proof of (111)

is as follows.

Sel.γ⊗ |E|⊗ (Sel.γ)∪

_� { (110) and monotoni
ity of matrix produ
t }

Sel.γ⊗ (Sel.γ)∪⊗ |F|⊗Sel.γ⊗ (Sel.γ)∪

= { by theorem 106, γ is a surje
tive fun
tion onto L.F ,

so, by (32) and (30), Sel.γ⊗ (Sel.γ)∪ = IL.F }

IL.F⊗ |F|⊗ IL.F

= { IL.F is the identity of multipli
ation

on matri
es indexed by L.F }

|F| .

Finally, we prove (112).

Sel.α⊗ |E|⊗ (Sel.α)∪

_� { (110) and monotoni
ity of matrix produ
t }

Sel.α⊗ (Sel.α)∪⊗ |E|⊗Sel.α⊗ (Sel.α)∪

_� { α is a fun
tion of type L.E←L.E ,

so Sel.α⊗ (Sel.α)∪ _� IL.E }

IL.E⊗ |E|⊗ IL.E

= { IL.E is the identity of multipli
ation

on matri
es indexed by L.E }

|E| .
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Take 
are to note the di�eren
e in the se
ond step of these 
al
ulations. In the �rst of

the two, the �rst equality step 
ould have been repla
ed by an inequality, using only the

fa
t that γ is a fun
tion (and thus not that it is surje
tive). We have established the

stronger equality in order to better illustrate this form of point-free 
al
ulation.

✷

Rather than give an expli
it formula for α.i , Conway's proof te
hnique is to observe

that s\i · i\t is a \subfa
torisation" of s\t and then make the 
laim that there is some

\fa
torisation" L·R that \dominates" this subfa
torisation. The following lemma shows

that our de�nition of α gives su
h a fa
torisation.

Lemma 113 For all i su
h that i is a left fa
tor of E ,

s\i � s\α.i ∧ i\t � α.i\t

Proof For the �rst 
onjun
t, we have:

s\i � s\α.i

= { lemma 105, F= s\t }

s\i � s\t/(i\t)

⇐ { monotoni
ity }

i � t/(i\t)

= { lemma 46 with X,Y := i,t }

true .

For the se
ond 
onjun
t, we have:

i\t � α.i\t

= { lemma 105 }

i\t � (F/(i\t))\F

= { lemma 46 with X,Y := F , i\t }

true .

✷

Theorem 98 shows how the fa
tor matrix of F is represented by a submatrix of the

fa
tor matrix of E using the bije
tion β between a subset of L.E and the set L.F . An

informal summary of the following theorem is that γ maps |E| to |F| by 
oales
ing left

fa
tors of E .
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Theorem 114

|F| = Sel.γ⊗ |E|⊗ (Sel.γ)∪ .

Proof The proof is by mutual in
lusion. By (111), it suÆ
es to prove

|F| _� Sel.γ⊗ |E|⊗ (Sel.γ)∪ .

We have:

|F|

= { (99) }

(Sel.β)∪⊗ |E|⊗Sel.β

= { lemma 104, so Sel.(γ◦β)= IL.F }

Sel.(γ◦β)⊗ (Sel.β)∪⊗ |E|⊗Sel.β⊗ (Sel.(γ◦β))∪

= { distributivity of Sel over fun
tion 
omposition,

and transpose over Sel and matrix multipli
ation }

Sel.γ⊗Sel.β⊗ (Sel.β)∪⊗ |E|⊗Sel.β⊗ (Sel.β)∪⊗ (Sel.γ)∪

_� { β is an inje
tion with image set M ,

so Sel.β⊗ (Sel.β)∪ _� IM ;

monotoni
ity of matrix multipli
ation }

Sel.γ⊗ |E|⊗ (Sel.γ)∪ .

The equality follows from the anti-symmetry of the pointwise ordering relation.

✷

4.4 Diagonal Factors

***Under 
onstru
tion****

When 
onstru
ting the fa
tor graphs of fa
tors of an event E , it suÆ
es to 
onsider

the fa
tors on the diagonal of the fa
tor matrix of E . This se
tion justi�es this 
laim

and gives a 
ondition under whi
h a \diagonal" fa
tor is inseparable from E . First, the

formal de�nition of \diagonal fa
tor":

Definition 115 A fa
tor F of an event E is 
alled a diagonal fa
tor of E if F equals

i\i for some left fa
tor i of E .

✷
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Lemma 116 Suppose i is a left fa
tor of E . Let s and t be left fa
tors of E de�ned

by s= i/(i\i) and t=((s⊲ / i⊲) \ s⊲)⊳ . (That is, we instantiate lemma 86 with i,j := i,i .)

Then s= i and t= i .

Proof The equation s= i/(i\i) is an instan
e of the general property (48). In order to

establish that t= i , we need the fa
t that i is a left fa
tor of E :

((s⊲ / i⊲) \ s⊲)⊳

= { s= i }

((i⊲ / i⊲) \ i⊲)⊳

= { (48) }

(i⊲)⊳

= { i is a left fa
tor of (so equals X⊳ for some X ),

unity of opposites }

i .

✷

In words, the fa
tor matrix of a diagonal fa
tor of E is a diagonal submatrix of the

fa
tor matrix of E . (It is a submatrix su
h that, under a suitable reordering of rows and


olumns, it sits on the diagonal when the fa
tor matrix is displayed in the 
onventional

way as a two-dimensional array.)

5 Approximation Theorems

An important property of the fa
tor matrix is that it fa
ilitates \approximation" of one

event by a set of other events.

Conway formulated a theorem [Con71, 
hapter 6, theorem 8℄ on the use of what

he 
alled the \fa
torial fun
tion" to determine the \best approximation" to the fa
tor

matrix of an event E by a given set of events. Below, we generalise his theorem to an

arbitrary regular algebra (rather than just the algebra of languages)

When spe
ialised to the algebra of languages, we argue that his use of the word \best"

is unfortunate: for the purpose of minimising star-height, his notion of \best" is 
ertainly

not the best, and for other appli
ations the 
laim is also questionable. We therefore

formulate Conway's theorem as determining a \maximal 
onstant+linear approximating

fun
tion"; this is also the terminology we use in the general 
ase.

For regular languages, we also show in se
tion 6 how to determine a \minimal 
on-

stant+linear approximating fun
tion". Both Conway's maximal and our minimal ap-

proximating fun
tions are parameterised by a fun
tion on an alphabet T . When the
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event E is a regular language over alphabet T , we obtain the \fa
tor graph" of E by

spe
ialising the fun
tion to the identity fun
tion on T : the fa
tor graph of E is the

unique minimal starth root of the fa
tor matrix of E .

5.1 Conway’s Notion of Approximation

First, let us explain Conway's notion of approximation.

Let T be an alphabet and let R be the algebra of languages over the alphabet T.

Let S be a regular algebra with 
arrier S . Suppose E is an event in S .

Suppose we are given a set of events in S and we want to \approximate" E by the

set. We begin by en
oding the set of events by a fun
tion ζ from T into S , where T is

an alphabet whose size is the size of the set: the set of events is, in fa
t, the image set

of ζ . Next, ζ is extended to a fun
tion from T ∗
into S by de�ning

(117) ζ.ε = 1

and, for all a in T and all u in T ∗
,

(118) ζ.(au) = ζ.a ·ζ.u .

The fun
tion ζ♭ from R to S is de�ned by

(119) ζ♭.X = 〈Σx : x∈X : ζ.x〉

for all languages X over the alphabet T . Then, by a fun
tion approximating the event

E is meant a set of words X su
h that ζ♭.X � E ; the approximation of E is ζ♭.X .

(The strange terminology is Conway's: the approximation is obtained by applying

the fun
tion ζ♭ to the approximating \fun
tion" (a set of words), rather than the other

way around. But Conway does not expli
itly mention the extension of ζ to words or

the subsequent extension of ζ to the fun
tion ζ♭ even though it is a vital element of

his analysis. More importantly, Conway makes no mention of the algebrai
 properties of

the fun
tion ζ♭ that enable the evaluation of ζ♭.X to be 
arried out.)

Conway 
alls a set of words X a \best approximation" to E if it is a maximal solution

of the equation

X:: ζ♭.X � E .

For reasons dis
ussed further below, we refrain from using the word \best", preferring

instead the terminology \maximal approximating fun
tion".

(Conway also brie
y dis
usses the dual problem of, given a set of words X over some

alphabet T , determine maximal solutions of the equation

ζ:: ζ♭.X � E .
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See [Con71, 
hapter 6, theorem 9℄. We don't dis
uss the dual problem any further here.)

The existen
e of a maximal approximation is guaranteed by observing that ζ♭ is the

lower adjoint in a Galois 
onne
tion. Spe
i�ally, de�ne the fun
tion ζ♯ from S to R

by

(120) ζ♯.U = {x | ζ.x�U} .

Then we have the following lemma and theorem:

Lemma 121 The fun
tion ζ is a monoid homomorphism. That is, ζ.ε = 1 and

ζ.(uv) = ζ.u ·ζ.v , for all u and v in T ∗
.

Proof The �rst equation is by de�nition. The se
ond equation is an easy indu
tion on

the length of u .

✷

Theorem 122 The fun
tion ζ♭ is a regular homomorphism from the algebra of lan-

guages over T to S . Moreover, ζ♯ is the upper adjoint of ζ♭ .

Proof The theorem is an instan
e of lemma 21. Instantiate R in the lemma to the set

of words over alphabet T . Then the algebra R is the algebra of languages over T . The

lemma is appli
able on a

ount of lemma 121.

✷

Note: for all languages X over alphabet T and all events E ,

X ⊆ ζ♯.E ≡ 〈∀x : x∈X : ζ.x�E〉 .

Conway des
ribes this equation in words (roughly) as follows. Suppose we are given a

set of events ζ.a indexed by a in some set T and we want to �nd the most general

expression for E in terms of these events. De�ning the \best" approximation to E in

terms of ζ as the set of all words x in T ∗
su
h that ζ.x�E , the above equation states

that the \best" approximating fun
tion is the fun
tion that maps ζ to ζ♯.E .

We have used inverted 
ommas here be
ause Conway's notion of \best" approximating

fun
tion is not the \best" for our purposes. More appropriate terminology is \maximal"

approximating fun
tion, as illustrated by the following simple example.

Example 123 Suppose E is an event in regular algebra S su
h that E=E∗
. Suppose

we want to approximate E by E . Then we take T to be a singleton set, say {a} , and

de�ne ζ by ζ.a=E . The extension of ζ to T ∗
is given by ζ.ε = 1 and, for all u in

T ∗
, ζ.(au) = E . (Note that E=E∗

implies that E=E·E .) Instantiating the de�nition,

of ζ♯ , we �nd that ζ♯.E = T ∗
. Thus Conway's \best" approximating fun
tion maps ζ

to T ∗
. An alternative approximating fun
tion is the fun
tion that maps ζ to T . The
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former is maximal, the latter is minimal. When we interpret the languages by applying

the fun
tion ζ , both give the same approximation and so 
ould be des
ribed as equally

good. But the latter fun
tion 
an be argued to be more useful be
ause it is easier to

interpret.

✷

We 
on
lude this subse
tion with a pre
ise de�nition of our terminology.

Definition 124 Given an event E in a regular algebra S , an alphabet T and a

fun
tion ζ of type S←T ∗
, the language ζ♯.E is 
alled the maximal approximating

fun
tion for E , and ζ♭.(ζ♯.E) is 
alled the maximal approximation of E by ζ .

Similarly, the matrix ζ♯ • |E| is 
alled the maximal approximating fun
tion for the

fa
tor matrix of E , and ζ♭ • ζ♯ • |E| is 
alled the maximal approximation of the fa
tor

matrix of E by ζ .

✷

5.2 Maximal Constant+Linear Matrix

The matrix ζ♯ • |E| is the maximal approximating fun
tion for the fa
tor matrix of E by

the fun
tion ζ . In this se
tion, we formulate and prove Conway's theorem that ζ♯ • |E| is

the re
exive, transitive 
losure of the maximal 
onstant+linear approximating fun
tion

for the fa
tor matrix of E by the fun
tion ζ . See theorem 132. First, we need to de�ne

what the terminology means and to establish some lemmas.

Definition 125 Let I be a set and let R be a regular algebra with 
arrier set A and

unit 1 . De�ne the fun
tion Mat from A to MI(A) by

i Mat.U j = U

for all U in A and all elements i , j of I . In words, Mat 
onstru
ts a matrix from an

element of A all of whose entries are identi
al to that element.

✷

The following lemma underpins some of our 
al
ulations.

Lemma 126 For all U in A ,

(Mat.U)+ = Mat.(U+) .

Hen
e,

(Mat.U)∗ = Mat.1 _∪ Mat.(U+) .
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Proof Mat is the lower adjoint in a Galois 
onne
tion: its upper adjoint is the inter-

se
tion operator of shape I×I . The lemma is then an easy 
onsequen
e of the fusion

theorem using the de�nition of U+
as the least �xed point of the fun
tion mapping X

to U _∪ X⊗X .

✷

Conway 
alls a matrix of languages that is at most Mat.{ε} a 
onstant matrix and a

matrix of languages that is at most Mat.T a linear matrix. He 
alls a matrix of languages

that is at most Mat.{ε} _∪Mat.T a 
onstant+linear matrix. Although we sometimes use

Conway's terminology (in order to make the link with his work) we prefer to use the

terminology transition graph instead of \
onstant+linear matrix". A \transition graph"

that is square and has �nite dimension 
an be depi
ted in the 
onventional way as a set

of nodes 
onne
ted by edges that are labelled by a subset of {ε}∪T .

When reasoning about 
onstant and/or linear matri
es, we frequently give as hint

\length 
onsiderations". Constant matri
es are matri
es ea
h of whose entries is either

the empty set or the singleton set 
ontaining the empty word, whi
h has length 0 .

The set of 
onstant matri
es is 
losed under matrix produ
t and under re
exive and/or

transitive 
losure. The linear matri
es are matri
es ea
h of whose entries is a (possibly

empty) set of words ea
h of length 1 . The set of linear matri
es is thus 
losed under

produ
t with a 
onstant matrix but the produ
t of two or more linear matri
es is not

linear. It is these properties that we assume when referring to \length 
onsiderations".

The following lemma is fundamental to Conway's a

ount but he does not expli
itly

state or prove it. The proof, whi
h involves well-known te
hniques, is given in appendix

A.

Lemma 127 Let A be an arbitrary matrix of languages over the alphabet T . Suppose

A=A∗
. Let C = A _∩Mat.{ε} and L = A _∩Mat.T . Then

C = C∗ ,

L = L⊗C = C⊗L ,

(C _∪L)∗ = C _∪ L+ = C⊗L∗ = L∗⊗C , and

L⊗ (C _∪L)∗ = L+ .

✷

Let us now turn to the properties of the matrix ζ♭ •ζ♯ • |E| , whi
h we re
all is the

maximal approximation of |E| by the fun
tion ζ . In order to be able to apply lemma

127, we begin by observing that both it and ζ♯ • |E| are their own re
exive, transitive


losures:
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Lemma 128

ζ♯ • |E| = (ζ♯ • |E|)∗ , and

ζ♭ •ζ♯ • |E| = (ζ♭ •ζ♯ • |E|)∗ .

Proof Suppose I is the set of left fa
tors of E . We use IS to denote the identity

matrix indexed by I in the algebra S .

ζ♯ • |E| = (ζ♯ • |E|)∗

= { de�nition of

∗
, monotoni
ity of ( ζ♯• ) }

ζ♯ • |E| _⊇ (ζ♯ • |E|)∗

= { ζ♯ has lower adjoint ζ♭ }

|E| _� ζ♭ • (ζ♯ • |E|)∗

= { ζ♭ is a regular homomorphism (theorem 122),

theorem 26 }

|E| _� (ζ♭ • ζ♯ • |E|)∗

⇐ { IS _� ζ♭ •ζ♯ , monotoni
ity and transitivity }

|E| _� |E|
∗

= { |E| = |E|
∗

}

true .

The se
ond equation is an appli
ation of theorem 26 with G := ζ♯ • |E| (as in the middle

step above).

✷

Now we introdu
e the maximal 
onstant and linear approximations to |E| by the

fun
tion ζ .

Definition 129 (Maximal Constant and Linear Approximations) We de�ne the


onstant matrix Cmax(E,ζ) by

Cmax(E,ζ) = (ζ♯ • |E|) _∩Mat.{ε}

and the linear matrix Lmax(E,ζ) by

Lmax(E,ζ) = (ζ♯ • |E|) _∩Mat.T .

The matri
es Cmax(E,ζ) and Lmax(E,ζ) are, respe
tively, the maximal 
onstant ap-

proximating fun
tion and the maximal linear approximating fun
tion for the fa
tor

matrix of E .
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Themaximal 
onstant approximation of the fa
tor matrix of E by ζ is ζ♭ •Cmax(E,ζ)

and themaximal linear approximation of the fa
tor matrix of E by ζ is ζ♭ •Lmax(E,ζ) .

✷

Lemma 130

Cmax(E,ζ) = (Cmax(E,ζ))
∗ ,

Lmax(E,ζ) = Lmax(E,ζ)⊗Cmax(E,ζ) = Cmax(E,ζ)⊗Lmax(E,ζ) ,

(Cmax(E,ζ) _∪ Lmax(E,ζ))
∗ = Cmax(E,ζ)⊗ (Lmax(E,ζ))

∗ ,

(Cmax(E,ζ) _∪ Lmax(E,ζ))
∗ = (Lmax(E,ζ))

∗⊗Cmax(E,ζ) ,

(Cmax(E,ζ) _∪ Lmax(E,ζ))
∗ = Cmax(E,ζ) _∪ (Lmax(E,ζ))

+
, and

Lmax(E,ζ)⊗ (Cmax(E,ζ) _∪Lmax(E,ζ))
∗ = (Lmax(E,ζ))

+ .

Proof Immediate appli
ation of lemmas 128 and 127. (Instantiate lemma 127 with

A,C,L :=(ζ♯ • |E|),Cmax(E,ζ),Lmax(E,ζ) .)

✷

We note that the matrix Cmax(E,ζ) is (almost) independent of the fun
tion ζ :

Lemma 131 For all left fa
tors i and j of E ,

i Cmax(E,ζ) j = if i� j→ {ε}✷¬(i� j)→ ∅ fi .

Hen
e, for all approximating fun
tions ζ and ξ with the same domain,

Cmax(E,ζ) = Cmax(E,ξ) .

Proof

ε ∈ i (ζ♯ • |E|) j

= { i |E| j= i\j }

ε ∈ ζ♯.(i\j)

= { de�nition of ζ♯ : (120) }

ζ.ε � i\j

= { de�nition of extension of ζ to T ∗ }

1 � i\j

= { fa
tors and unit }

i� j .
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The lemma follows by de�nition of Cmax(E,ζ) and Mat.{ε} : all entries in Cmax(E,ζ) are

either {ε} or ∅ .

✷

The quali�
ation in lemma 131 that ζ and ξ must have the same domain arises,

of 
ourse, be
ause the empty word has a type that depends on the alphabet T (the

notation \ ε " for the empty word is overloaded). Thus, the fun
tion Cmax retains some

dependen
y on its se
ond argument. Ignoring this dependen
y, Cmax depends only

on E . We are tempted to abbreviate the notation to re
e
t this fa
t, but resist the

temptation. See se
tion 5.3 for further dis
ussion.

Theorem 132 (Generalised Approximation Theorem) Suppose ζ is a fun
tion

from alphabet T into S (as in se
tion 5.1). Then for any event E in S ,

ζ♯ • |E| = Cmax(E,ζ) _∪ (Lmax(E,ζ))
+ = (Cmax(E,ζ) _∪ Lmax(E,ζ))

∗ .

Proof We use indu
tion on the length of words. The indu
tion hypothesis is that, for

all words u of length at most n , and for all left fa
tors i and j of E ,

u ∈ i (ζ♯ • |E|) j ≡ u ∈ i (Cmax(E,ζ) _∪ ((Lmax(E,ζ))
+)) j .

Applying lemma 130, this is the same as

u ∈ i (ζ♯ • |E|) j ≡ u ∈ i (Cmax(E,ζ) _∪Lmax(E,ζ))
∗ j .

It is 
onvenient to swit
h between the two formulations of the indu
tive hypothesis.

For the basis of the indu
tion we have, for all left fa
tors i and j of E ,

ε ∈ i (ζ♯ • |E|) j

= { de�nition of Mat.{ε} and Cmax(E,ζ) }

ε ∈ i Cmax(E,ζ) j

= { words in (ζ♯ ◦ |E|) _∩Mat.T have length at least 1 ,

de�nitions of Cmax(E,ζ) and Lmax(E,ζ) }

ε ∈ i (Cmax(E,ζ) _∪ (Lmax(E,ζ))
+) j .

Now assume the indu
tion hypothesis and suppose v is a word in T ∗
of length n+1.

Then v=au for some symbol a in T and word u in T ∗
of length n . So

v ∈ i (ζ♯ • |E|) j

= { v=au , set membership }

{au} ⊆ i (ζ♯ • |E|) j
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= { de�nition of extension of ζ♯ to matri
es,

i |E| j = i\j }

{au} ⊆ ζ♯.(i\j)

= { ζ♯ is an upper adjoint with lower adjoint ζ♭ }

ζ♭.{au} � i\j

= { theorem 122 }

ζ♭.{a} ×S ζ♭.{u} � i\j

= { (78) }
〈

∃k :: ζ♭.{a} � i\k ∧ ζ♭.{u} � k\j
〉

= { Galois 
onne
tion }
〈

∃k :: {a} ⊆ ζ♯.(i\k) ∧ {u} ⊆ ζ♯.(k\j)
〉

= { set membership, defn. of extension of ζ♯ to matri
es,

k |E| j = k\j }
〈

∃k :: a ∈ i (ζ♯ • |E|) k ∧ u ∈ k (ζ♯ • |E|) j
〉

= { a has length 1 , so

a ∈ i (ζ♯ • |E|) k ≡ a∈ i ((ζ♯ • |E|) _∩Mat.T) k

de�nition of Lmax(E,ζ) and indu
tive hypothesis }

〈∃k :: a∈ i Lmax(E,ζ) k ∧ u ∈ k (Cmax(E,ζ) _∪Lmax(E,ζ))
∗ j〉

= { de�nition of matrix produ
t,

lemma 127 with A,C,L := ζ♯•|E| , Cmax(E,ζ) , Lmax(E,ζ)

(whi
h is appli
able by lemma 128) }

au ∈ i (Lmax(E,ζ))
+ j

= { au has length at least 1 , elements of Cmax(E,ζ) have length 0 }

au ∈ i (Cmax(E,ζ) _∪ (Lmax(E,ζ))
+) j .

The theorem now follows from the de�nition of equality of matri
es of languages.

✷
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5.3 The Factorial Function

We 
on
lude this se
tion with an explanation of Conway's fa
torial fun
tion (again gen-

eralised to an arbitrary regular algebra). We begin with the formal statement of the

theorem.

Theorem 133 (Factorial Function) Suppose S is a regular algebra and T is an

alphabet. Suppose ζ is a fun
tion from alphabet T into S (as in se
tion 5.1). Then for

any event E in S ,

ζ♭ •ζ♯ • |E| = Cmax.E⊗ (ζ♭ •Lmax(E,ζ))
∗ = Cmax.E⊗ (ζ♭ • (Lmax(E,ζ))

∗)

where the matrix Cmax.E is de�ned by

i Cmax.E j = if i� j→ 1✷¬(i� j)→0 fi .

Moreover,

i (ζ♭ •Lmax(E,ζ)) j = 〈Σa : a∈T ∧ ζ.a� i\j : ζ.a〉 .

The fun
tion that maps ζ to Lmax(E,ζ) is 
alled the fa
torial fun
tion of E .

Proof We apply theorem 26 with G instantiated to Cmax(E,ζ) _∪ Lmax(E,ζ) . First,

we note that all elements of this matrix are 
losed sin
e

ζ♯ •ζ♭ • (Cmax(E,ζ) _∪ Lmax(E,ζ))
∗

= { theorem 132 }

ζ♯ •ζ♭ •ζ♯ • |E|

= { unity of opposites }

ζ♯ • |E|

= { theorem 132 }

(Cmax(E,ζ) _∪ Lmax(E,ζ))
∗ .

Next, we note that ζ♭ •Cmax(E,ζ) is independent of ζ . For all left fa
tors i and j ,

i (ζ♭ •Cmax(E,ζ)) j

= { de�nition of fun
tion 
omposition }

ζ♭ . (i Cmax(E,ζ) j)

= { lemma 131 }

ζ♭ . (if i� j→ {ε}✷¬(i� j)→∅ fi)
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= { de�nition of ζ♭ }

if i� j→ 1✷¬(i� j)→ 0 fi

= { de�nition of Cmax.E }

i (Cmax.E) j .

So

ζ♭ •ζ♯ • |E|

= { theorem 132 }

ζ♭ • (Cmax(E,ζ) _∪ Lmax(E,ζ))
∗

= { star de
omposition }

ζ♭ • (Cmax(E,ζ))
∗⊗ (Lmax(E,ζ)⊗ (Cmax(E,ζ))

∗)∗

= { by lemma 130, (Cmax(E,ζ))
∗=Cmax(E,ζ)

and Lmax(E,ζ)⊗Cmax(E,ζ)=Lmax(E,ζ) }

ζ♭ • Cmax(E,ζ)⊗ (Lmax(E,ζ))
∗

= { theorem 26 (applied twi
e) }

(ζ♭ •Cmax(E,ζ))⊗ (ζ♭ •Lmax(E,ζ))
∗

= { by above, ζ♭ •Cmax(E,ζ) = Cmax.E }

Cmax.E⊗ (ζ♭ •Lmax(E,ζ))
∗

= { theorem 26 }

Cmax.E⊗ (ζ♭ • (Lmax(E,ζ))
∗) .

The �nal equation is a straightforward expansion of the de�nitions of ζ♭ and Lmax(E,ζ) .

✷

Let us interpret this theorem in words.

Re
all that ζ is a fun
tion that represents a �nite set of approximating events: the

set 
orresponding to ζ is the image set of ζ , i.e. {a:a∈T : ζ.a} . The entry in the matrix

ζ♯ • |E| indexed by left fa
tors i and j of E is the maximal set of words w su
h that

ζ♭.w � i\j . The entry in the matrix ζ♭ •ζ♯ • |E| that is indexed by left fa
tors i and j of

E is the maximal approximation to the fa
tor i\j by the fun
tion ζ . In parti
ular, the

entry indexed by the left fa
tors l and r (where (l, r) is the de�ning o

urren
e of E

in its fa
tor matrix: see se
tion 3.4) is the maximal approximation to E by the fun
tion

ζ .
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The matrix Cmax.E is independent of ζ : it is a matrix of 1 s and 0 s where the entry

is 1 i� the 
orresponding fa
tor of E is at least 1 . This justi�es omitting the parameter

ζ . (It also gives a se
ond reason for 
alling it the maximal \
onstant" approximation to

the fa
tor matrix of E . However, Conway's uses the word \
onstant" be
ause the matrix

entries are the \
onstants" 1 and 0 and not for this reason.)

Ea
h entry in the matrix ζ♭ •Lmax(E,ζ) is a sum of linear approximations to the

fa
tors of E : the term ζ.a , where a∈T , is a summand of the (i, j) th entry if the

approximating event represented by a , i.e. ζ.a , is at most the fa
tor i\j .

The theorem gives a re
ipe for determining the maximal approximation to E by the

events represented by ζ in three steps: First determine the matrix Cmax.E . Next de-

termine ζ♭ •Lmax(E,ζ) . That is, for ea
h fa
tor F of E , determine the maximal linear

approximation to F by ζ ; enter the result in the matrix ζ♭ •Lmax(E,ζ) in positions 
or-

responding to o

urren
es of F in the fa
tor matrix of E . Finally, 
ompute the (l, r) th

entry of Cmax.E⊗ (ζ♭ •Lmax(E,ζ))
∗
. This is the maximal approximation to E by the set

of events represented by the fun
tion ζ . Sin
e (ζ♭ •Lmax(E,ζ))
∗
and ζ♭ • (Lmax(E,ζ))

∗
are

equal the order in whi
h the two operators (
omposition and star) are applied is irrele-

vant to the result. Note, however, that if the latter formula is used, it will be ne
essary

to exploit theorem 26 in order to evalute the approximations: the entries of (Lmax(E,ζ))
∗

will typi
ally be evaluated as regular expressions and the theorem is needed to 
onvert

the expressions to approximations.

Our exposition is substantially longer than Conway's be
ause he omits any mention

whatsoever of the algebrai
 properties that are fundamental to the proof of theorem 133

and its exploitation when 
al
ulating approximations. The properties are a 
onsequen
e

of the fa
t that ζ♭ is the lower adjoint in a Galois 
onne
tion between the subset ordering

on languages and the partial ordering in the algebra of the event E , but he does not even

de�ne ζ♭ , let alone show that it distributes through supremum, matrix multipli
ation

and the star operator.

6 Least Approximating Functions and the Factor Graph

Rather than exploit Conway's maximal 
onstant+linear approximating fun
tions, we

introdu
e in this se
tion the least 
onstant+linear approximating fun
tion. Whereas,

the Generalised Approximation Theorem is valid for an event E in an arbitrary regular

algebra, least approximating fun
tions do not ne
essarily exist and, so, we are for
ed

to restri
t the 
lass of events that we 
onsider to the regular languages. Even then

it is not obvious that su
h fun
tions exist. It depends on the fa
t that the maximal


onstant approximation fun
tion en
odes the subset ordering on left fa
tors and this

subset ordering has a unique minimal \starth root", i.e. a unique minimal re
exive,
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transitive redu
tion.

The next se
tion de�nes the notion of a \starth root" and gives examples of where

minimal starth roots do not exist. Se
tion 6.2 then introdu
es the notion of \de�nite-

ness", whi
h is the key to establishing the existen
e of minimal approximating fun
tion.

Note that we have been 
areful to use the term \
onstant approximating fun
tion".

It is important to note that our minimal fun
tion and Conway's maximal fun
tion yield

the same approximation when the fun
tions are applied to their arguments.

6.1 Starth Root

Definition 134 (Starth Root) Suppose U is an event of a regular algebra. A starth

root of U is any event V that satis�es V∗=U∗
; it is minimal if no smaller event has

this property. It is least if it is at most all starth roots. Formally, V is a minimal

starth root of U if

V∗=U∗ ∧ 〈∀W : W�V ∧ W∗=U∗ : W=V〉

and V is the least starth root of U if

V∗=U∗ ∧ 〈∀W : W∗=U∗ : V �W〉 .

✷

Note the use of the inde�nite arti
le (\a") for minimal starth roots, and the de�nite

arti
le (\the") for least starth roots. It is easily shown that a least starth root is unique,

whi
h justi�es the use of \the". Moreover, it is 
lear that the least starth root of U is

a minimal starth root.

By de�nition, every event is a starth root of itself. So starth roots exist for every

event of a regular algebra. In a free regular algebra, it is the 
ase that every event has

a unique, minimal starth root [Brz67℄ but in general this is not always the 
ase. Even

when minimal starth roots exist, uniqueness is not guaranteed. For example, a minimal

starth root of a relation is 
alled a transitive redu
tion of the relation but there may

be several di�erent transitive redu
tions of a given relation. A spe
i�
 example is the

relation {(1, 2),(2, 3),(3, 1)} on {1,2,3} . It is a minimal starth root of itself but so also

is {(2, 1),(3, 2),(1, 3)} . (Confusingly, the literature sometimes refers to the transitive

redu
tion of a relation/graph even though in a 
ase like this one an arbitrary 
hoi
e

must be made.) See example 139 for further explanation. Unique minimal starth roots

(i.e. unique transitive redu
tions) are guaranteed to exist for well-founded relations on a

�nite set (equivalently, relations that 
an be represented by a �nite, a
y
li
 graph).
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The fa
t that, nevertheless, the fa
tor matrix of a regular language has a unique

minimal starth root was �rst proved in [Ba
75℄ and later, using an improved argument,

in [BL77℄. For reasons that will be explained shortly, the name fa
tor graph was given

to this matrix.

(Note: Conway [Con71, p55℄ in
ludes minimality in his de�nition of a starth root but

restri
ts the dis
ussion to regular languages. We prefer to separate out the minimality

requirement.)

Theorem 137 below is the basi
 starting point for the 
onstru
tion of starth roots.

E�e
tively, the theorem is the basis for Brzozowski's [Brz67℄ proof of the existen
e of

minimal starth roots of regular languages but we state it more abstra
tly here be
ause

minimal starth roots do not ne
essarily exist in matrix algebras. Example 140, immedi-

ately following theorem 137, illustrates the theorem using the example of the transitive

redu
tion of a relation.

First, we need a 
ouple of (well-known) lemmas. Re
all that we use \∪ " and \∩ "

to denote the supremum and in�mum operators in a powerset algebra, and the symbols

\

_∪ " and \

_∩ " to denote their pointwise extension to matri
es. In this se
tion, we use

the symbol \¬ " to denote the 
omplement of a set. It too 
an be extended pointwise

to matri
es, and the extended operators enjoy all the properties of the set operators.

So, although we don't use the dotted notation \

_∪ ", \

_∩ ", et
., all the lemmas in this

se
tion are valid for matri
es based on a powerset regular algebra, in parti
ular matri
es

of languages.

Lemma 135 Let X be an event in a powerset regular algebra with unit 1 . Then

X∗ = (X∩¬1)∗ .

Proof

X∗ = (X∩¬1)∗

⇐ { X ⊇ X∩¬1 , monotoni
ity of star }

X∗ ⊆ (X∩¬1)∗

= { ∗
is a 
losure operator }

X ⊆ (X∩¬1)∗

⇐ { 1∪Y⊆Y∗
with Y := X∩¬1 }

X ⊆ 1∪ (X∩¬1)

= { absorption rule }

X ⊆ 1∪X
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= { set 
al
ulus }

true .

✷

Lemma 136 Let X and Y be events in a powerset regular algebra with unit 1 . Then

X∗⊆Y∗ ≡ (X∩¬1)+ ⊆ (Y ∩¬1)+ ,

X∗=Y∗ ≡ (X∩¬1)+ = (Y ∩¬1)+ .

Proof First,

(X∩¬1)+ ⊆ (Y ∩¬1)+

= { +
is a 
losure operator }

X∩¬1 ⊆ (Y ∩¬1)+

= { set 
al
ulus }

X ⊆ (Y∩¬1)+ ∪ 1

= { for all Z , Z+∪1 = Z∗
with Z := Y ∩¬1 ,

lemma 135 with X :=Y }

X ⊆ Y∗

= { ∗
is a 
losure operator }

X∗⊆Y∗ .

The se
ond property follows immediately from the anti-symmetry of set union.

✷

Theorem 137 (Least Starth Root) Let A be an event in a powerset regular algebra

with unit 1 . Suppose B = A∩¬1 and suppose A∗=(B∩¬(B ·B+))∗ . Suppose X is an

event su
h that A∗=X∗
. Then

B∩¬(B ·B+) ⊆ X .

That is, if A∩¬1∩¬((A∩¬1) · (A∩¬1)+) is a starth root of A , it is the least starth

root of A .

Proof For brevity, let C = B∩¬(B ·B+) and Y = X∩¬1 . By applying lemma 135

and in
luding the two assumptions, we have

A∗=B∗=C∗=X∗=Y∗ .

Next we note that
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C

= { de�nition of C and B }

A∩¬1∩¬(B ·B+)

= { idempoten
y and symmetry of interse
tion }

(A∩¬1∩¬(B ·B+)) ∩ ¬1

= { de�nition of C and B }

C ∩ ¬1 .

It follows that we 
an apply lemma 136 with X,Y :=A,C and X,Y :=C,X to dedu
e that

B+=C+=Y+ .

We 
an now pro
eed with the 
al
ulation.

B∩¬(B ·B+) ⊆ X

= { B∩¬(B ·B+) = C = C∩C+ = C∩Y+ }

B∩¬(B ·B+)∩Y+ ⊆ X

= { set 
al
ulus }

B∩Y+ ⊆ X ∪ B ·B+

⇐ { B∩Y+ ⊆ Y+ }

Y+ ⊆ X ∪ B ·B+

⇐ { Y+ = Y ∪ Y ·Y+ }

Y⊆X ∧ Y ·Y+ ⊆ B ·B+

= { Y = X∩¬1 }

Y ·Y+ ⊆ B ·B+

= { X ·X+ = X+ ·X+
for all X

(well-known property, simple proof left to reader) }

Y+ ·Y+ ⊆ B+ ·B+

= { B+=Y+
: see above }

true .

✷

Theorem 137 postulates a 
andidate for a least starth root. In some 
ases, the 
an-

didate is indeed a least starth root, as illustrated by example 138 below, but this is not
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always the 
ase, as illustrated by examples 139 and 140. Fortunately, the 
andidate is

indeed a starth root in the 
ase relevant to the 
urrent dis
ussion: when A is Conway's

maximal approximation fun
tion. See the subse
tions below.

Note that both examples 138 and 139 rely on the fa
t that Bool is the 
arrier set

of a powerset algebra, and the homogenous binary relations on a set are the 
arrier set

of a matrix algebra over Bool . See the dis
ussion following theorem 9. In the 
ase of

example 138, the \matri
es" have in�nite dimension.

Example 138 Consider the at-most relation on integers. This is normally denoted by

the symbol \≤ " but it is more 
onvenient here to use the symbol atmost . The at-most

relation is, of 
ourse, re
exive and transitive. That is, atmost= atmost∗ . Instantiating

the variable A in theorem 137 with atmost , the relation B is the less-than relation.

This normally denoted by the symbol \< " but let us write less instead. The reader

may easily verify that the relation less∩¬(less ◦ less+) is the prede
essor relation, pred ,

given by, for all integers i and j ,

i pred j ≡ i+1= j .

The theorem states that, if the prede
essor relation is a starth root of the at-most relation,

then it is the least starth root of that relation. And, indeed, pred∗= atmost . So, we


on
lude that

〈∀R : R∗= atmost : pred⊆R〉 .

✷

Example 139 Suppose we 
onsider the universal relation on the set {1,2,3} . Fig. 3(a)

depi
ts the relation as a graph. Figs. 3(b) and (
) depi
t starth roots of the relation;

they are both minimal but are distin
t.

Denoting the universal relation by ⊤⊤ on {1,2,3} and the identity relation on {1,2,3}

by I , the relation ⊤⊤∩¬I∩¬((⊤⊤∩¬I) ◦ (⊤⊤∩¬I)+) is the empty relation and the

re
exive-transitive 
losure of the empty relation is the identity relation. Thus, it is

not a starth root of the universal relation.

(The reader may also wish to explore the 
ases of {1} and {1,2} . In both 
ases, the

universal relation on the set does have a least starth root. What this is is predi
ted by

the theorem in the �rst 
ase but not in the se
ond.)

On the other hand, it 
an be shown that if R is a homogeneous binary relation on

a �nite set and the graph of the relation is a
y
li
, then R = R∩¬I and R∩¬(R ◦R+)

is the unique, minimal starth root of R . Although we do not go into the details in this

paper, an a
y
li
 relation on a �nite set is an example of what we 
all a \de�nite" event
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1

2 3

1

2 3

1

2 3

(a) Universal relation

(b) Minimal starth root (c) Minimal starth root 

Figure 3: Distin
t minimal starth roots of the universal relation

in a regular algebra. (See de�nition 141.)

✷

Example 140 (Running Example: Modulo Addition) The fa
tor matrix of {0}

in the powerset regular algebra with underlying monoid ZZ3 was shown in example 88.

It does not have a unique minimal starth root. This is be
ause both 1 and 2 are

generators of the group. Taking 1 as the generator, one starth root is shown in the


onventional way as a two-dimensional array below:















{1} ∅ ∅ ∅ ∅

{0} ∅ {1} ∅ ∅

{0} ∅ ∅ {1} ∅

{0} {1} ∅ ∅ ∅

∅ {0} {0} {0} ∅















Taking 2 as the generator, we get a di�erent starth root:















{2} ∅ ∅ ∅ ∅

{0} ∅ ∅ {2} ∅

{0} {2} ∅ ∅ ∅

{0} ∅ {2} ∅ ∅

∅ {0} {0} {0} ∅















We 
ould, of 
ourse, have made the example yet simpler sin
e the fa
tor matrix of

¬∅ (i.e. {0,1,2} ) also does not have a unique starth root: the fa
tor matrix has exa
tly
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one entry whi
h is ¬∅ itself, and this has two minimal starth roots, namely the matrix

with single entry {1} and the matrix with single entry {2} . Exploiting this fa
t gives two

more minimal starth roots of the fa
tor matrix of {0} : inter
hange the top-left entries in

the matri
es above.

00

φ

0 0

φ

−φ −φ

0 0

0

0 0

2 2

2

1 1

1

0 0

0

1 2

{0} {0}

{2) {2} {1}{1}

Figure 4: Another example of distin
t minimal starth roots

Fig. 4 displays the two starth roots above as labelled graphs. (It is mu
h easier for

human beings to 
he
k that the re
exive-transitive 
losure of ea
h of the graphs displayed

in �g. 4 is the fa
tor matrix than it is to 
he
k that the re
exive-transitive 
losure of the

two-dimensional array is the fa
tor matrix.)

✷

6.2 Definiteness

Formally, our 
al
ulations rely on the fa
t that 
ertain (matrix) equations have unique

solutions. We 
ould formulate the relevant properties in terms of Salomaa's \empty word

property" [Sal66℄, but we prefer the algebrai
 formulation of \de�niteness" introdu
ed

in [BC75℄. In order to fa
ilitate later dis
ussion, we distinguish between \left-" and

\right-"de�nite.

Definition 141 (Left- and Right-Definite) Let A be an event in a regular algebra.

Then A is said to be left-de�nite if, for all events X ,

X�A·X ≡ X� 0

and A is said to be right-de�nite if, for all events X ,

X�X·A ≡ X� 0 .
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Finally, A is said to be de�nite if it is both left- and right-de�nite.

✷

Note that any of the o

urren
es of \� " in de�nition 141 
an be repla
ed by equality.

(Of 
ourse, X� 0 and X= 0 are equivalent. Repla
ing, eg, X�A·X by X=A·X is an

easy 
al
ulation: the hint is multiply both sides by A∗
.)

The importan
e of the 
on
ept of de�niteness is what we have 
alled the unique

extension property (UEP) of regular algebra.

Theorem 142 (UEP of regular algebra) Suppose A is a left-de�nite event in a

regular algebra. Then, for all events X and B ,

X = (A·X)+B ≡ X = A∗ ·B .

Dually, if A is a right-de�nite event in a regular algebra. Then, for all events X and B ,

X = (X·A)+B ≡ X = B ·A∗ .

✷

Theorem 142 was postulated as an axiom of regular algebra in [BC75℄. Here, a proof

is needed be
ause the star operator is not a primitive but de�ned in terms of least �xed

points. A proof 
an be found in [DBvdW97, se
tion 7℄. Note that [DBvdW97℄ uses the

terminology \well-founded" rather than \right de�nite" in order to �t with the standard

terminology of the prin
iple appli
ation 
onsidered in the paper.

At this point, I would like to be able to 
laim that a suitably 
hosen submatrix of

ζ♯ • |E| is both left- and right-de�nite, irrespe
tive of the regular algebra of events. But I

have failed to �nd a proof. (I have not yet looked for 
ounter-examples.) Su
h a theorem


an, however, be formulated if E is a regular language. See theorem 147. As usual, we

need some preliminary lemmas.

Lemma 143 If A is left-de�nite and B�A , then B is left-de�nite. Dually, if A is

right-de�nite and B�A , then B is right-de�nite.

Proof Suppose A is left-de�nite and B�A . Then, for all X ,

X�B·X

⇒ { B�A , monotoni
ity }

X�A·X

= { A is left-de�nite }

X� 0

⇒ { 0�B·X }

X�B·X .
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✷

This is the point at whi
h we must spe
ialise the dis
ussion to regular languages.

Corollary 145 states that, for matri
es of languages, de�niteness is dependent only on

the \
onstant" part of the matrix (i.e. that part of the matrix that is a subset of Mat.{ε} ).

Lemma 144 Suppose A is a square matrix of languages of dimension I×I , and X

is a ve
tor of languages su
h that X _⊆A⊗X and X 6=0 . Then there is a ve
tor Y su
h

that

Y 6=0 ∧ Y _⊆ Mat.{ε} ∧ Y _⊆ (A _∩Mat.{ε})⊗Y .

Proof Consider 〈∪i :: X.i〉 . This set is non-empty sin
e X 6=0 . Suppose u is a

shortest word in the set. De�ne ve
tor Y so that, for all y and i ,

y∈Y.i ≡ y= ε ∧ u∈X.i .

Clearly Y 6=0 ∧ Y _⊆ Mat.{ε} . Moreover,

Y _⊆ (A _∩Mat.{ε})⊗Y

= { de�nition of Y , de�nition of

_⊆ and one-point rule }

〈∀i : u∈X.i : ε∈ ((A _∩Mat.{ε})⊗Y).i〉

But,

ε ∈ ((A _∩Mat.{ε})⊗Y).i

= { 〈∀x,y :: ε=xy ≡ ε=x∧ ε=y〉

de�nition of matrix produ
t and

_∩ }

〈∃j : ε∈ iAj : ε∈Y.j〉

= { ε∈Y.j ≡ u∈X.j }

〈∃j : ε∈ iAj : u∈X.j〉

⇐ { u is a shortest word in 〈∪i :: X.i〉 }

〈∃j :: u ∈ (iAj) ·X.j〉

⇐ { X _⊆A⊗X }

u∈X.i .

Combining the two 
al
ulations, we 
on
lude that Y _⊆ (A _∩Mat.{ε})⊗Y .

✷
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Corollary 145 If A is a square matrix of languages then

A is left-de�nite ≡ A _∩Mat.{ε} is left-de�nite

and

A is right-de�nite ≡ A _∩Mat.{ε} is right-de�nite.

Proof We prove the �rst equivalen
e. The proof of the se
ond is symmetri
.

By applying lemma 143, we have that if A is left-de�nite then A _∩Mat.{ε} is left-

de�nite. But the 
ontrapositive of this statement is an immediate 
orollary of lemma

144: if A is not left-de�nite then A _∩Mat.{ε} is not left -de�nite.

✷

6.3 Definiteness of the Maximal Approximation Function

In this se
tion, we establish the de�niteness of maximal approximation fun
tions. See


orollary 148.

A possibly 
onfusing 
ompli
ation is that the alphabets of the given regular language

E and the \set" of approximations ζ are typi
ally di�erent. This means that E and any

approximating \fun
tion" are elements of di�erent algebras, whi
h formally have di�erent

units. Conventional a

ounts would silently overload notation so that the di�eren
e is

hidden. We also overload notation in the same way but observe the overloading at the

appropriate point in the dis
ussion.

Lemma 146 Suppose E is a regular language. Let I denote the identity matrix of

dimension L.E×L.E (where, as usual, L.E is the set of left fa
tors of E ). Then the

matrix Cmax.E _∩¬I is de�nite.

Proof We prove that Cmax.E _∩¬I is left-de�nite. The proof that it is also right-de�nite

is symmetri
.

Suppose Cmax.E _∩¬I is not left-de�nite. Applying lemma 144 (and noting that

Cmax.E = Cmax.E _∩Mat.{ε} ), there is a ve
tor Y su
h that

Y 6=0 ∧ Y _⊆ Mat.{ε} ∧ Y _⊆ (Cmax.E _∩¬I)⊗Y .

From the �rst two 
onjun
ts, we infer that there is at least one left fa
tor i0 , say, of E

su
h that ε∈Y.i0 . Now we exploit the third 
onjun
t. We have, for all left fa
tors i ,

ε∈Y.i

⇒ { Y _⊆ (Cmax.E _∩¬I)⊗Y ,
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de�nition of Mat.{ε} _∩¬I , i |E| j= i\j }

〈∃j : i 6= j : ε ∈ i\j ∧ ε∈Y.j〉

= { ε ∈ i\j ≡ i⊆ j }

〈∃j : i 6= j : i⊆ j ∧ ε∈Y.j〉 .

It follows that we 
an 
onstru
t a sequen
e of left fa
tors ik , beginning with i0 , su
h

that ik⊆ ik+1 and ik 6= ik+1 . If E is regular, it has only a �nite number of left fa
-

tors and so the sequen
e must eventually repeat itself. That is, there is a subsequen
e

im, . . . ,im+p of left fa
tors su
h that 0<p , im+k 6= im+k+1 whenever 0≤k<p , and

im⊆ im+1⊆ . . . ⊆ im+p⊆ im . It follows by anti-symmetry and transitivity of the subset

relation that all events of the sequen
e are equal, whi
h 
ontradi
ts 
onse
utive events

being di�erent.

✷

Theorem 147 Suppose E is a regular language. Suppose ζ of type S←T is a

fun
tion en
oding a set of events in regular algebra S . (Note that the alphabet T

is typi
ally di�erent from the alphabet of E .) Let I denote the identity matrix of

dimension L.E×L.E in the matrix algebra with underlying algebra S . Then the matrix

Cmax(E,ζ) _∩¬I is de�nite.

Proof We �rst prove that if Cmax(E,ζ) _∩¬I is not left-de�nite then Cmax.E _∩¬I is not

left-de�nite. (NB: the notation \ I " is overloaded here. See below.)

Suppose X is a ve
tor su
h that

X _⊆ (Cmax(E,ζ) _∩¬I)⊗X ∧ X 6=0 .

Note that the dimension of ζ♯ • |E| means that X is ne
essarily indexed by left fa
tors of

E . However, the alphabet of E is typi
ally di�erent from the alphabet of events in X .

Applying lemma 144 (noting that Cmax(E,ζ) _⊆Mat.{ε} ), there is a ve
tor Y su
h that

Y 6=0 ∧ Y _⊆ Mat.{ε} ∧ Y _⊆ (Cmax(E,ζ) _∩¬I)⊗Y .

We now want to exhibit a ve
tor Z su
h that

Z 6=0 ∧ Z _⊆ Mat.{ε} ∧ Z _⊆ (Cmax.E _∩¬I)⊗Z .

Formally, we are pre
luded from using Y dire
tly sin
e the entries in Cmax(E,ζ) and

the entries in Cmax.E are languages over di�erent alphabets

5

. However, the empty word

5

A simple tri
k like taking the union of the alphabets doesn't work be
ause the fa
tor matrix of a

language depends on the alphabet.
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is polymorphi
 |the o

urren
es of \ ε " in the spe
i�
ation of Z has a di�erent type to

the o

urren
e of \ ε " in the spe
i�
ation of Y| , and so too is the empty set |the two

o

urren
es of \ 0 " above have di�erent type| . That is, we 
an take Z to be identi
al

to Y ex
ept for an appropriate 
hange of type of the empty word (and the empty set).

Then, 
learly, Z 6=0 ∧ Z _⊆ Mat.{ε} . Moreover, applying lemma 131, we have, for all left

fa
tors i and j of E ,

ε ∈ i (ζ♯ • |E|) j ≡ ε ∈ i\j .

(Here the two o

urren
es of \ ε " are of di�erent type.) It follows that Cmax(E,ζ) and

Cmax.E are identi
al matri
es ex
ept for an appropriate 
hange of type of the empty

word. The same is thus true of Cmax(E,ζ) _∩¬I and Cmax.E _∩¬I . That is,

Z _⊆ (Cmax.E _∩¬I)⊗Z .

We have thus shown that Cmax.E is not left-de�nite. As before, a symmetri
 argument

shows that if (Cmax(E,ζ) _∩¬I ) is not right-de�nite, Cmax.E _∩¬I is not right-de�nite.

Taking the 
ontrapositive of both statements together with theorem 146, we obtain

the theorem.

✷

Corollary 148 If E is a regular language, then the matri
es Cmax(E,ζ) _∩¬I , Lmax(E,ζ)

and (Cmax(E,ζ) _∪ Lmax(E,ζ))∩¬I are all de�nite.

Proof Theorem 147 states that Cmax(E,ζ) _∩¬I is de�nite, By 
orollary 145, Lmax(E,ζ)

is de�nite be
ause Lmax(E,ζ) _∩Mat.{ε} is 0 (the zero of produ
t). Similarly, (Cmax(E,ζ) _∪ Lmax(E,ζ))∩

is de�nite be
ause its interse
tion with Mat.{ε} equals Cmax(E,ζ) _∩¬I .

✷

6.4 Reducing Maximal to Least

Re
all that Cmax(E,ζ) denotes (ζ♯ • |E|) _∩Mat.{ε} and Lmax(E,ζ) denotes (ζ♯ • |E|) _∩Mat.T .

We de�ne Cmin(E,ζ) and Lmin(E,ζ) as follows.

Definition 149 (Least Constant and Linear Approximating Functions) Suppose

E is a regular language. Let

B = (Cmax(E,ζ) _∪ Lmax(E,ζ))∩¬I ,

D = Cmax(E,ζ) _∩¬I ,

Cmin(E,ζ) = D _∩¬(D⊗D+) and
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Lmin(E,ζ) = Lmax(E,ζ) _∩ ¬(D⊗Lmax(E,ζ)) _∩ ¬(Lmax(E,ζ)⊗D) .

The fun
tion that maps ζ to Cmin(E,ζ) is 
alled the minimal 
onstant approximating

fun
tion for E by ζ , and the fun
tion that maps ζ to Lmin(E,ζ) is 
alled the minimal

linear approximating fun
tion for E by ζ .

✷

Our goal in this se
tion is to prove that Cmin(E,ζ) _∪ Lmin(E,ζ) is the least starth

root of ζ♯ • |E| . We exploit theorem 137. Spe
i�
ally, Cmin(E,ζ) _∪ Lmin(E,ζ) is the least

starth root of ζ♯ • |E| if it is a starth root of ζ♯ • |E| and

(150) Cmin(E,ζ) _∪Lmin(E,ζ) = B _∩ ¬(B⊗B+) .

(See de�nition 149 for the de�nition of B .) First, lemma 151 proves (150). Then

theorem 154 shows that it is a starth root.

Note that B is de�nite. (Compare the de�nition of B with 
orollary 148.) This is


ru
ial to our 
al
ulations.

Lemma 151 Let B , D , Cmin(E,ζ) and Lmin(E,ζ) be as in de�nition 149. Then

B = D _∪ Lmax(E,ζ) ,

Cmin(E,ζ) = D _∩¬(B⊗B+) ,

Lmin(E,ζ) = Lmax(E,ζ) _∩ ¬(B⊗B+) , and

Cmin(E,ζ) _∪Lmin(E,ζ) = B _∩ ¬(B⊗B+) .

Proof For brevity, we omit the parameters of Cmax , Cmin , Lmin and Lmax . For

example, throughout the following 
al
ulation, Cmax denotes Cmax(E,ζ) . We also let B

and D be the matri
es de�ned in de�nition 149.

The 
al
ulations below exploit \length 
onsiderations": entries in Cmax and Cmin

are words of length 0 and entries in Lmax and Lmin are words of length 1 . Formally,

if L is a linear matrix (in parti
ular, Lmax or Lmin ),

L = L _∩Mat.T

and if C is a 
onstant matrix (in parti
ular, Cmax or Cmin ),

C = C _∩Mat.{ε} .

We exploit these properties by 
ombining them with properties of Mat.T and Mat.{ε} .

Examples are:

0 = Mat.T _∩Mat.{ε} = Mat.T _∩ Mat.T ⊗Mat.T
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(where 0 denotes the zero matrix) and, for linear matrix L and arbitrary matrix X .

(152) L _∩¬X = L _∩¬(X _∩Mat.T)

and, for 
onstant matrix C

(153) C _∩¬X = C _∩¬(X _∩Mat.{ε}) .

Equations (152) and (153) are instan
es of the general property (extended pointwise to

matri
es) that, for all x , y and z su
h that y⊆x ,

y∩¬z = y∩¬(z∩x) .

This is proved by the following simple 
al
ulation.

y∩¬(z∩x)

= { distributivity of negation over interse
tion

and assumption: y⊆x }

y∩x∩ (¬z ∪ ¬x)

= { distributivity of interse
tion over union }

y ∩ ((x∩¬z) ∪ (x∩¬x))

= { for all x , x∩¬x = ∅ }

y∩x∩¬z

= { assumption: y _⊆x }

y∩¬z .

Now we 
an pro
eed to establish the lemma. For the �rst equation, we have:

B

= { de�nition }

(Cmax _∪ Lmax) _∩¬I

= { distributivity }

(Cmax _∩¬I) _∪ (Lmax _∩¬I)

= { de�nition of D : de�nition 149 }

D _∪ (Lmax _∩¬I)

= { (152) with X := I , I _∩Mat.T = 0 }

D _∪ Lmax .
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We now give a relatively detailed proof of the se
ond equation so that the reader 
an see

how length 
onsiderations are used. First, we have:

Cmin = D _∩¬(B⊗B+)

= { de�nition of Cmin and B = D _∪ Lmax (see above) }

D _∩ ¬(D⊗D+) = D _∩¬(B⊗B+)

= { D is a 
onstant matrix, (153) }

D _∩ ¬(D⊗D+) = D _∩¬(B⊗B+
_∩ Mat.{ε})

⇐ { Leibniz }

D⊗D+ = B⊗B+
_∩ Mat.{ε} .

We now prove the above equation.

B⊗B+
_∩ Mat.{ε}

= { B = D _∪ Lmax (see above) }

(D _∪ Lmax)⊗ (D _∪ Lmax)
+
_∩ Mat.{ε}

= { distributivity of matrix produ
t over union,

length 
onsiderations: spe
i�
ally Lmax _∩Mat.{ε} = 0 }

D⊗ (D _∪ Lmax)
+

_∩ Mat.{ε}

= { de�nition of transitive 
losure }

(D⊗ (D _∪ Lmax)⊗ (D _∪ Lmax)
∗) _∩ Mat.{ε}

= { distributivity of matrix produ
t over union,

length 
onsiderations: spe
i�
ally Lmax _∩Mat.{ε} = 0 }

(D⊗D⊗ (D _∪ Lmax)
∗) _∩ Mat.{ε}

= { star de
omposition }

(D⊗D⊗D∗⊗ (Lmax⊗D∗)∗) _∩ Mat.{ε}

= { for all X , X∗ = I _∪ X⊗X∗
with X := Lmax⊗D∗

,

distributivity of matrix produ
t over union

and length 
onsiderations }

(D⊗D⊗D∗) _∩ Mat.{ε}

= { de�nition of transitive 
losure, D is a 
onstant matrix }

D⊗D+ .
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This 
ompletes the proof of the se
ond equation in the lemma. The proof of the penul-

timate equation is similar. We omit the details:

Lmax _∩ ¬((D _∪ Lmax)⊗ (D _∪ Lmax)
+)

= { Lmax is a linear matrix, D is a 
onstant matrix;

length 
onsiderations }

Lmax _∩ ¬(D+⊗Lmax _∪ Lmax⊗D+)

= { by lemma 135 and lemma 130, D∗=(Cmax)
∗=Cmax }

Lmax _∩ ¬(D⊗Cmax⊗Lmax _∪ Lmax⊗Cmax⊗D)

= { lemma 130 }

Lmax _∩ ¬(D⊗Lmax _∪ Lmax⊗D)

= { de�nition of Lmin : de�nition 149 }

Lmin .

The �nal equation is a straightforward 
ombination of the �rst three equations together

with distributivity of union over interse
tion.

✷

Lemma 154 Let Cmin(E,ζ) and Lmin(E,ζ) be as in de�nition 149. Then

ζ♯ • |E| = (Cmin(E,ζ) _∪ Lmin(E,ζ))
∗ ,

Cmax(E,ζ) = (Cmin(E,ζ))
∗

and

Lmax(E,ζ) = Cmax(E,ζ)⊗Lmin(E,ζ)⊗Cmax(E,ζ) .

Proof As in the proof of lemma 151, we write Cmin , Cmax , Lmin and Lmax (thus

omitting the parameters).

We �rst note that Cmin _∪ Lmin
_⊆ B . (See lemma 151.) Sin
e B is both left- and

right-de�nite (
orollary 148), it follows from lemma 143 that Cmin _∪ Lmin is both left-

and right-de�nite. Now

ζ♯ • |E| = (Cmin _∪ Lmin)
∗

= { Conway's approximation theorem: theorem 132 }

(Cmax _∪ Lmax)
∗ = (Cmin _∪ Lmin)

∗

= { lemma 135 with X :=Cmax _∪ Lmax ,

(Cmax _∪ Lmax) _∩ ¬I = B }
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B∗ = (Cmin _∪ Lmin)
∗

= { Cmin _∪ Lmin is right-de�nite,

UEP of regular algebra: theorem 142 }

B∗ = I _∪ B∗⊗ (Cmin _∪ Lmin)

⇐ { B∗ = I _∪B+
, Leibniz }

B+ = B∗⊗ (Cmin _∪ Lmin)

= { B is left-de�nite: UEP of regular algebra: theorem 142 }

B+ = (Cmin _∪ Lmin) _∪ B⊗B+

= { lemma 151 }

B+ = (B _∩ ¬(B⊗B+)) _∪ B⊗B+

= { absorption rule of set 
al
ulus }

B+ = B _∪ B⊗B+

= { �xed-point de�nition of transitive 
losure }

true .

The remaining two equations follow from the �rst equation by applying theorem 132:

Cmax

= { de�nition }

(ζ♯ • |E|) _∩ Mat.{ε}

= { ζ♯ • |E| = (Cmin _∪ Lmin)
∗ }

(Cmin _∪ Lmin)
∗
_∩ Mat.{ε}

= { algebra of regular expressions }

((Cmin)
∗

_∪ Lmin⊗ (Cmin _∪ Lmin)
∗) _∩ Mat.{ε}

= { length 
onsiderations (details omitted) }

(Cmin)
∗
_∩Mat.{ε}

= { Cmin
_⊆Mat.{ε} }

(Cmin)
∗ .

Finally,

Lmax



100

= { de�nition }

(ζ♯ • |E|) _∩ Mat.{T }

= { as above }

(Cmin _∪ Lmin)
∗
_∩ Mat.{T }

= { star de
omposition }

(Cmin)
∗⊗ (Lmin⊗ (Cmin)

∗)∗ _∩ Mat.{T }

= { length 
onsiderations (details omitted) }

(Cmin)
∗⊗Lmin⊗ (Cmin)

∗

= { Cmax=(Cmin)
∗
(just proved) }

Cmax⊗Lmin⊗Cmax .

✷

Note the use of both right-de�niteness and left-de�niteness in this proof. These

two notions 
oin
ide for �nite matri
es. For in�nite matri
es, they are di�erent. (For

example, the less-than relation on natural numbers is well-founded |\left-de�nite"|

but the greater-than relation is not |less-than is not \right-de�nite". This is why we

have been for
ed to limit the theorems in this se
tion to regular languages.

Theorem 151 establishes equation (150) as required. So we 
on
lude:

Theorem 155 (Least Factorial Function) Suppose Cmin(E,ζ) and Lmin(E,ζ) are

as de�ned in de�nition 149. Then Cmin(E,ζ) _∪ Lmin(E,ζ) is the least starth root of

ζ♯ • |E| . (That is, it is a minimal starth root and is unique.)

✷

Example 156 (Conway’s Example) To enable dire
t 
omparison with Conway's

\best" approximation, this example revisits the example he used [Con71, p49{p53℄. Figs.

5(a) and (b) show the ma
hine and anti-ma
hine of the language E denoted by the regular

expression (a+b)∗b(ba)∗ + (ba)∗ . (The ma
hine and anti-ma
hine are reprodu
ed from

[Con71, p49℄. The regular expression is not the same as that given by Conway: we have

used the anti-ma
hine to 
onstru
t a simpler expression.)

Start and �nal nodes have been indi
ated in the usual way for ea
h graph.

Figs. 5(
) and (d) show, respe
tively, the fa
tor graph of this language and the max-

imal 
onstant+linear approximation to the fa
tor matrix of the language, but omitting

an inadmissible node. Both are explained in detail in se
tion 6.5. For the moment,

however, note that the fa
tor graph (�g. 5(
)) is the re
exive-transitive redu
tion of �g.

5(d), and both are starth roots of the fa
tor matrix of the language.
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Figure 5: Conway's Example of Approximation

Fig. 5(e) shows the graph 
orresponding to Cmin(E,ζ) _∪Lmin(E,ζ) where the alphabet

of the approximating fun
tion ζ is {c,d,e} and the fun
tion ζ is de�ned to be ζ.c= {aa} ,

ζ.d= {b} and ζ.e= {ba} . Using this graph, it is easy to 
onstru
t the regular expression

(e + (c+e)∗d)∗ as the \best" approximating fun
tion to the event E by ζ . The maximal

approximation to E by the languages {aa} , {b} and {ba} is thus (ba + (aa+ba)∗b)∗ .

Conway's \best" approximating fun
tion [Con71, �g. 6.3℄ is mu
h more 
ompli
ated

than �g. 5(e): the latter is the re
exive-transitive redu
tion of the graph 
onstru
ted by

Conway. Be
ause the approximating events in this example are �nite languages (indeed,

singleton sets), it is easy to 
onstru
t �g. 5(e) from �g. 5(
). (Note that the leftmost

node is inadmissible.) Spe
i�
ally, the empty-word edges are the same in both �gures,
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and there is an edge in �g. 5(e) labelled x (where x is one of c , d and e ) from node

i to j in �g. 5(e) if and only if there is a path from node i to j in the linear subgraph

of �g. 5(
) that spells ζ.x and there is no other su
h path of smaller edge length. (The

\linear subgraph" is obtained by omitting the empty-word edges.)

✷

6.5 The Factor Graph

We now introdu
e the \fa
tor graph" of a regular language, a 
on
ept that was �rst

introdu
ed by the author in [Ba
75℄ and subsequently, in [BL77℄, shown to form the basis

of the Knuth-Morris-Pratt pattern-mat
hing algorithm [KMP77℄ and Aho and Corasi
k's

generalisation [AC75℄ of the KMP algorithm to a set of patterns. (For an example of the

relationship between the KMP algorithm and the fa
tor graph, see se
tion 9.1.)

Example 156 gave a foretaste of a fa
tor graph; the fa
tor graph of a regular language

E is the minimal \starth root" of the fa
tor matrix of E . The proof of existen
e of the

fa
tor graph, for arbitrary regular language E , is an elementary instan
e of theorem 154:

see theorem 158. An e�e
tive way of 
onstru
ting the fa
tor graph is more 
ompli
ated.

The full details are given in se
tion 6.7. Analysing the stru
ture of the fa
tor matrix of

a given language in order to identify the fa
tor graphs of fa
tors of the language is yet

more 
ompli
ated sin
e it involves 
onstru
ting the \synta
ti
 monoid" of the language.

See se
tion 7.

The following lemma is essentially due to Conway; in both [Ba
75℄ and [Ba
16℄, it

is attributed to Conway sin
e it is a straightforward 
onsequen
e of his approximation

theorem. It is, however, never expli
itly stated by Conway.

Lemma 157 Suppose E is a language over the alphabet T . Then

|E| = Cmax.E _∪ (Lmax.E)
+ = (Cmax.E _∪ Lmax.E)

∗

where Cmax.E denotes |E| _∩Mat.{ε} and Lmax.E denotes |E| _∩Mat.T .

(Note that our use of Cmax.E here is 
onsistent with its de�nition in theorem 133.

In that theorem, E is assumed to be an event in a regular algebra S ; we have now

spe
ialised the algebra to the algebra of languages over the alphabet T .)

Proof Instantiate the Generalised Approximation Theorem (theorem 132) with ζ

de�ned to be the \lifted identity" fun
tion on T . That is, suppose ζ.a= {a} for all a

in T . Then it is easily veri�ed that both ζ♭ and ζ♯ (as de�ned by (119) and (120)) are

equal to the identity fun
tion on languages. The theorem follows immediately.

✷



103

Re
alling de�nition 124, the matrix ( |E| _∩Mat.{ε} ) is the maximal 
onstant approx-

imating \fun
tion" for |E| and the matrix |E| _∩Mat.T is the maximal linear approxi-

mating \fun
tion" for |E| . Perhaps 
onfusingly |be
ause the fun
tion ζ is the (lifted)

identity fun
tion| these are also the maximal 
onstant and linear approximations to

|E| . The fa
tor graph of a regular language E is the pointwise union of the minimal


onstant and linear approximations :

Theorem 158 (The Factor Graph) Suppose E is a regular language over the al-

phabet T . Let

Cmax.E = |E| _∩ Mat.{ε} ,

D = |E| _∩ Mat.{ε} _∩ ¬I and

Cmin.E = D _∩¬(D⊗D+) .

Also, let

Lmax.E = |E| _∩Mat.T and

Lmin.E = Lmax.E _∩ ¬(D⊗Lmax.E) _∩ ¬(Lmax.E⊗D) .

Then

Cmax.E = (Cmin.E)
∗ ,

Lmax.E = Cmax.E⊗Lmin.E⊗Cmax.E , and

|E| = Cmin.E _∪ (Lmin.E)
+ = (Cmin.E _∪ Lmin.E)

∗ .

Moreover, Cmin.E _∪ Lmin.E is the least starth root of the fa
tor matrix of E .

Proof Combine lemma 157, theorem 154 and 155 with ζ de�ned as in lemma 157 to

be the \lifted identity" fun
tion on T . The theorem follows immediately.

✷

The matrix Cmin.E _∪ Lmin.E is a 
onstant+linear matrix, i.e. a transition graph,

and so it is appropriate to 
all it the fa
tor graph of the regular language E .

6.6 Equivalence Relations on Languages

In order to 
al
ulate the fa
tor graph of a regular language, it suÆ
es to 
al
ulate the

ma
hine and anti-ma
hine of the language. This is explained in se
tion 6.7. In this

se
tion, we re
all well-known properties that underlie the 
onstru
tion of �nite-state

ma
hines and are 
ru
ial to 
onstru
ting fa
tor graphs, as we show in se
tion 6.7. It is


onvenient to also summarise properties of the so-
alled \synta
ti
 monoid" of a language.
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These properties are exploited in se
tion 7 as an e�e
tive means to determine the fa
tor

graphs and fa
tor matri
es of fa
tors of a regular language.

Suppose E is a language over the alphabet T . Then E de�nes three equivalen
e

relations on T ∗
|El , Er and Ec| given by, for all x and y in T ∗

:

xEly ≡ 〈∀z : z∈T ∗ : zx∈E ≡ zy∈E〉

xEry ≡ 〈∀z : z∈T ∗ : xz∈E ≡ yz∈E〉

xEcy ≡ 〈∀u,v : u∈T ∗ ∧ v∈T ∗ : uxv∈E ≡ uyv∈E〉

These are the so-
alled left-invariant equivalen
e relation, right-invariant equiva-

len
e relation and 
ongruen
e relation introdu
ed by Rabin and S
ott [RS59℄. Being

equivalen
e relations, ea
h partitions T ∗
into equivalen
e 
lasses. We 
all an equivalen
e


lass modulo El an r -
lass of E , an equivalen
e 
lass modulo Er an l -
lass of E , and

an equivalen
e 
lass modulo Ec a c -
lass of E . We use Er(x) to denote the l -
lass that

in
ludes word x . Similarly for El(x) and Ec(x) . (To avoid 
onfusion in explanatory

prose, we use a di�erent font for the relations El , Er and Ec and the fun
tions El , Er

and Ec . In the 
ontext of formal statements, whi
h is intended should be 
lear.)

Note the swit
h: an equivalen
e 
lass modulo El is an r -
lass. The reason for the

swit
h is the following theorem [Ba
75℄:

Theorem 159 Ea
h left fa
tor of E is a union of l -
lasses of E , ea
h right fa
tor

of E is a union of r -
lasses of E , and ea
h fa
tor of E is a union of c -
lasses of E .

Spe
i�
ally, if F is a left fa
tor of E ,

F = 〈∪y :y∈F :Er(y)〉 .

If F is a right fa
tor of E ,

F = 〈∪y :y∈F :El(y)〉 .

Finally, if F is a fa
tor of E ,

F = 〈∪y :y∈F :Ec(y)〉 .

Proof We show that ea
h left fa
tor of E is a union of l -
lasses of E as follows. First,

for all Z , Z⊆ T ∗
,

x∈E/Z

= { de�nition of / }

{x}·Z⊆E

= { de�nition of 
on
atenation }

〈∀z : z∈Z : xz∈E〉 .
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Hen
e,

E/Z

= { de�nition }

〈∪x : x∈E/Z : {x}〉

= { xErx , idempoten
y of set union }

〈∪x : x∈E/Z : 〈∪y : xEry : {x}〉〉

= { above and nesting }

〈∪x,y : 〈∀z : z∈Z : xz∈E〉 ∧ xEry : {x}〉

= { de�nition of Er and

substitution of equals for equals }

〈∪x,y : 〈∀z : z∈Z : yz∈E〉 ∧ xEry : {x}〉

= { above }

〈∪x,y : y∈E/Z ∧ xEry : {x}〉

= { nesting and de�nition of Er(y) }

〈∪y : y∈E/Z : Er(y)〉 .

The remaining two properties are proved similarly.

✷

(The above 
al
ulational proof of theorem 159 was in
luded in [Ba
16℄ . It is in
luded

again here for 
ompleteness.)

Earlier we showed that a right fa
tor of E is an interse
tion of derivatives of E

(spe
i�
ally, L\E= 〈∩w :w∈L :∂wE〉 ). Similarly, a left fa
tor of E is the reverse of an

interse
tion of anti-derivatives of E . (The reverse of E is the set of words obtained by

reversing words in E and an anti-derivative of E is a derivative of the reverse of E .)

This is the 
hara
terisation given by Conway. The above 
hara
terisation, introdu
ed

in [Ba
75℄, is mu
h more useful when 
al
ulating the fa
tors of a language be
ause su
h


al
ulations use only representatives of the three types of equivalen
e 
lass rather than

the full 
lass. We see how this works below. The formal theory justifying the use of

representatives is given in se
tion 7.2.

The basi
 theorem of regular languages, attributed to J.R.Myhill by Rabin and S
ott

[RS59℄, is that the following statements are all equivalent:

� E is regular (i.e. 
an be denoted by a regular expression).

� The relation El has �nite index.
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� The relation Er has �nite index.

� The relation Ec has �nite index.

It follows that E is regular if and only if it has a �nite number of fa
tors. Thus

the fa
tor \matrix" exists for all languages E but it is only for regular languages that

the use of the word \matrix" 
omplies with standard 
onventions: entries are indexed

by pairs of left fa
tors but, pre
isely when E is a regular language, the left fa
tors 
an

themselves by indexed by numbers from 1 to n , for some (�nite) number n .

As is well-known, the relation Er de�nes the (\redu
ed, deterministi
 �nite-state")

ma
hine of E and the relation El de�nes the anti-ma
hine of E . The equivalen
e


lasses of Er are 
alled the states of the ma
hine. That is, ea
h state of the ma
hine is an

l -
lass of E . (Re
all the swit
h: equivalen
e 
lasses of Er are l -
lasses and equivalen
e


lasses of El are r -
lasses.) Its transition fun
tion δ maps a state and a symbol of the

alphabet to a state; it is de�ned by δ(Er(x),a)=Er(xa) , for all words x and all symbols

a . (It is easy to verify that this is a valid de�nition, i.e. the 
hoi
e of representative

element x of the l -
lass Er(x) is irrelevant | formally, Er(xa)=Er(ya)⇐xEry .) The

start state is Er(ε) and Er(x) is a �nal state if x∈E . Similarly, the equivalen
e 
lasses

of El are the states of the anti-ma
hine of E ; its transition fun
tion

←−
δ is de�ned by

←−
δ (El(x),a)=El(ax) . As suggested by the notation \

←−
δ ", the anti-ma
hine of E is the

ma
hine of the reverse of E . We use these fa
ts without further explanation below.

As already mentioned, the relation Ec is a 
ongruen
e relation on words. That is,

for all words u , v , w and x , uv Ec wx if u Ec w and v Ec x . This has the important


orollary that the set of equivalen
e 
lasses de�ned by Ec is the 
arrier set of a monoid,


alled the synta
ti
 monoid of the language E . Spe
i�
ally, let SM.E denote the set

of equivalen
e 
lasses of the relation Ec ; let Ec denote the fun
tion that maps word u

to the equivalen
e 
lass 
ontaining u , and let 1 denote Ec(ε) . Then

Theorem 160 ( SM.E ,◦, 1 ) is a monoid where produ
t is de�ned by Ec(u)◦Ec(v)=Ec(uv) .

It is �nitely generated by {a :a∈T :Ec(a)} and the fun
tion Ec is a monoid homomor-

phism from T ∗
onto SM.E .

✷

Theorem 160 is well-known; we omit the proof, whi
h is straightforward.

We use the symbol \

◦
" to denote the produ
t in SM.E be
ause elements of the

synta
ti
 monoid 
an be identi�ed with relations on l -
lasses (or equivalently, relations

on r -
lasses) and, indeed, this is how the synta
ti
 monoid is 
onstru
ted. The details

are somewhat hidden in the �rst part of the proof of Myhill's theorem [RS59, Theorem

1, p.117℄, so let us make them expli
it. The fundamental properties are summarised in

the following de�nition and lemma.
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Definition 161 Given language E over alphabet T , we de�ne, for ea
h word u in

T ∗
, the relation Ctx.u on l -
lasses of E by,

〈∀x,y : x∈ T ∗ ∧ y∈ T ∗ : Er(x) Ctx.u Er(y) ≡ Er(xu)=Er(y)〉 .

✷

Of 
ourse, it is ne
essary to establish that de�nition 161 is sound: that is, the prop-

erty Er(xu)=Er(y) is independent of the representative element x 
hosen from the


lass Er(x) . That this is so is an immediate 
onsequen
e of the right invarian
e of Er ,

spe
i�
ally, for all words u ,

Er(xu) = Er(x
′u) ⇐ Er(x) = Er(x

′)

whi
h we prove as follows. Suppose Er(x) = Er(x
′) . Then, for all words y ,

y∈Er(x
′u)

= { de�nition of Er }

〈∀z : z∈ T ∗ : x ′uz∈E ≡ yz∈E〉

= { assumption: Er(x) = Er(x
′) ,

thus x ′uz∈E ≡ xuz∈E ,

Leibniz }

〈∀z : z∈ T ∗ : xuz∈E ≡ yz∈E〉

= { de�nition of Er }

y∈Er(xu) .

It follows that Er(xu) = Er(x
′u) by set 
omprehension.

Lemma 162

〈∀u,v : u∈T ∗ ∧ v∈ T ∗ : Ctx.u=Ctx.v ≡ u Ec v〉 .

Proof

Ctx.u=Ctx.v

= { de�nition 161 }

〈∀x,y :: Er(xu)=Er(y) ≡ Er(xv)=Er(y)〉

= { de�nition of Er }
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〈∀x,y :: 〈∀z :: xuz∈E≡yz∈E〉 ≡ 〈∀z :: xvz∈E ≡ yz∈E〉〉

⇒ { y :=xv }

〈∀x :: 〈∀z :: xuz∈E≡xvz∈E〉 ≡ 〈∀z :: xvz∈E ≡ xvz∈E〉〉

= { re
exivity of equivales, unit of equivales }

〈∀x :: 〈∀z :: xuz∈E≡xvz∈E〉〉

= { nesting and de�nition of Ec }

u Ec v

= { de�nition of Ec and Er }

〈∀x :: Er(xu)=Er(xv)〉

⇒ { Leibniz }

〈∀x,y :: Er(xu)=Er(y) ≡ Er(xv)=Er(y)〉

= { de�nition 161 }

Ctx.u=Ctx.v .

The lemma follows by mutual impli
ation.

✷

Lemma 163

〈∀u,v : u∈T ∗ ∧ v∈ T ∗ : Ctx.u ◦Ctx.v = Ctx.uv〉 .

(The symbol \

◦
" here denotes 
omposition of relations.)

Proof Suppose x∈ T ∗
and z∈T ∗

. Then

Er(x) Ctx.u ◦Ctx.v Er(z)

= { de�niition of 
omposition of relations }

〈∃y : y∈T ∗ : Er(x) Ctx.u Er(y) ∧ Er(y) Ctx.u Er(z)〉

= { de�nition of Ctx : de�nition 161 }

〈∃y : y∈T ∗ : Er(xu)=Er(y) ∧ Er(yv)=Er(z)〉

= { Er(xu)=Er(y) ∧ Er(yv)=Er(z)

= { de�nition of Er }

〈∀w :: xuw∈E ≡ yw∈E〉

∧ 〈∀w ′ :: yvw ′∈E ≡ zw ′∈E〉
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⇒ { w :=vw ′
, Leibniz }

〈∀w ′ :: xuvw ′∈E ≡ zw ′∈E〉

= { de�nition of Er }

Er(xuv)=Er(z) }

〈∃y : y∈T ∗ : Er(xu)=Er(y) ∧ Er(xuv)=Er(z)〉

= { y :=xu and distributivity of 
onjun
tion over disjun
tion }

Er(xuv)=Er(z)

= { de�nition of Ctx : de�nition 161 }

Er(x) Ctx.uv Er(z) .

✷

Lemmas 162 and 163 embody the standard algorithm for 
onstru
ting the synta
ti


monoid. Re
all that the equivalen
e 
lasses of Er are the states of the ma
hine of E .

Beginning with the relation Ctx.ε , whi
h is the identity relation on states of the ma
hine,

we 
onstru
t the relations Ctx.u for words u in lexi
ographi
 order, 
he
king at ea
h

step that Ctx.u is not equal to Ctx.v for a pre
eeding word v . Now, by lemma 163, for

u∈T ∗
and a∈T ,

Ctx.ua = Ctx.u ◦Ctx.a

(where \

◦
" denotes the 
omposition of relations) and

Er(x) Ctx.a Er(y) ≡ δ(Er(x),a)=Er(y) .

Thus, knowing Ctx.u we 
an 
al
ulate Ctx.ua from the transition relation δ de�ned by

the ma
hine of E . Appendix C gives some examples to illustrate how this is done.

One way of phrasing lemma 162 is that there is an inje
tive fun
tion from the equiva-

len
e 
lasses of Ec to relations on the states of the ma
hine of E . The produ
t operator

of SM.E , introdu
ed in theorem 160, is su
h that, for words u and v ,

Ec(u) ◦Ec(v) = Ec(uv) .

and

Ctx.u ◦Ctx.v = Ctx.uv .

Formally, the two di�erent o

urren
es of the symbol \

◦
" have di�erent meanings (be-


ause their types are di�erent) but essentially they are the same. On the other hand, it

is NOT the 
ase (in general) that Ec(u) ·Ec(v) = Ec(uv) , where the symbol \ · " denotes
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on
atenation of languages. (It is the 
ase that Ec(u) ·Ec(v) ⊆ Ec(uv) but the in
lusion

may be proper.) It is for this reason that we have 
hosen to use the symbol \

◦
" to

denote the produ
t operator in the synta
ti
 monoid.

Note that, although it is 
onvenient to introdu
e the synta
ti
 monoid here, it is

not relevant to the 
onstru
tion of fa
tor graphs. Its 
onstru
tion is relevant to the

identi�
ation of fa
tor matri
es/graphs of fa
tors of a language. See se
tion 7.

6.7 Constructing the Factor Graph

Suppose E is a regular language. The 
onstru
tion of the fa
tor graph involves 
al
u-

lating all the left fa
tors of E whilst simultaneously 
al
ulating Cmin and Lmin . The

de�nition of Cmin and Lmin in terms of Cmax and Lmax is exploited in this pro
ess

but 
al
ulating the full details of the latter matri
es is avoided as far as possible. In this

se
tion, we show how this is done.

We illustrate the 
onstru
tion using the language ((a+b)∗ ca∗ (a+b))∗ with alphabet

{a,b,c} .

Fig. 6 shows the ma
hine and anti-ma
hine for our example language.

l4 l1

l2 l3

a

b

a c
c

b

c

a,b

a,b

r1 r2

r3r4

a,b

c

a

a,b

c

a,b

Figure 6: Ma
hine and Anti-Ma
hine of ((a+b)∗ ca∗ (a+b))∗

The ma
hine and anti-ma
hine as shown are \all-admissible". This means that in

ea
h a node has been omitted from whi
h there is no path to the �nal state. Su
h nodes

are said to be inadmissible.

We re
all that ea
h left fa
tor of E is a union of l -
lasses of E and ea
h right fa
tor is

a union of r -
lasses of E . Moreover, the l -
lasses of E are in one-to-one 
orresponden
e

with the nodes of the ma
hine of E (the redu
ed, deterministi
 �nite automaton that

re
ognises E ) and the r -
lasses of E are in one-to-one 
orresponden
e with the nodes of
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the anti-ma
hine of E (the redu
ed, deterministi
 �nite automaton that re
ognises the

reverse of E ). Spe
i�
ally, for a given state of the ma
hine, the 
orresponding l -
lass is

the set of all words re
ognised by that state (i.e. the set of all words spelt out by a path

from the start state to the state); for a given state of the anti-ma
hine, the 
orresponding

r -
lass is the reverse of the set of all words re
ognised by that state.

The table below names ea
h l -
lass and ea
h r -
lass for our example language.

The names are those used in �g. 6 with the addition of the names l5 and r5 of the

inadmissible states of ma
hine and anti-ma
hine, respe
tively. Next to ea
h name of an

l -
lass or r -
lass is an element of the 
lass. We 
all these representatives of the 
lass.

For example, ca is a representative of 
lass l4 be
ause the word ca spells out a path

from the start state l1 to the state l4 . Similarly, ca is a representative of r3 be
ause

its reverse ac spells out a path from the start state r1 to the state r3 .

l-
lass representative r-
lass representative

l1 ε r1 ε

l2 c r2 a

l3 a r3 ca

l4 ca r4 aca

l5 cc r5 c

After 
onstru
ting the ma
hine and anti-ma
hine and 
hoosing representatives of the

l - and r -
lasses in this way, the next step is to 
al
ulate l⊲ and r⊳ for ea
h of the


lasses. Ea
h entry l⊲ is a right fa
tor and thus a union of r -
lasses, and ea
h entry r⊳

is a left fa
tor and thus a union of l -
lasses. The table below shows the result of the


al
ulation for our example language.

l-
lass l l⊲ r-
lass r r⊳

l1 r1∪ r3∪ r4 r1 l1∪ l4

l2 r2∪ r4 r2 l2∪ l4

l3 r3∪ r4 r3 l1∪ l3∪ l4

l4 r1∪ r2∪ r3∪ r4 r4 l1∪ l2∪ l3∪ l4

l5 ∅ r5 ∅

Cal
ulating the entries is made easy by the use of representatives. Spe
i�
ally, sup-

pose u is the representative of l and v is the representative of r . Then r⊆ l⊲ ex-

a
tly when uv∈E (whi
h is easily 
he
ked using the ma
hine of E ). In our example,

l3⊲= r3∪ r4 be
ause aca and aaca are elements of E but no other 
on
atenation of a
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(the 
hosen representative of l3 ) and a representative of an r -
lass is in E . The same

pro
ess is used to 
al
ulate r⊳ for ea
h r -
lass r .

The next step is to determine all the left fa
tors and all the right fa
tors. Simultane-

ously, we 
al
ulate the matrix Cmin exploiting the 
orresponden
e between Cmin and

the transitive redu
tion of the subset ordering on left fa
tors. This is the most laborious

pro
ess sin
e, for ea
h r -
lass r , the set r⊳ is a left fa
tor but there will typi
ally be

more left fa
tors. It is ne
essary to 
onsider all subsets of the set of l -
lasses to deter-

mine whether or not it is a left fa
tor. Suppose L is a union of l -
lasses. Then L is a

left fa
tor of E equivales L = L⊲⊳ . Fortunately this property is straightforward to 
he
k

using the information that has already been 
omputed. We have

L⊲ = 〈∪l : l⊆L : l〉 ⊲ = 〈∩l : l⊆L : l⊲〉

and, for any R that is a union of r -
lasses,

R⊳ = 〈∪r : r⊆R : r〉 ⊳ = 〈∩r : r⊆R : r⊳〉 .

(In these equations, the dummies l and r range over l - and r -
lasses, respe
tively.)

For example,we 
an 
ompute from the table above that

(l2∪ l4)⊲ = l2⊲∩ l4⊲ = (r2∪ r4)∩ (r1∪ r2∪ r3∪ r4) = r2∪ r4

and

(r2∪ r4)⊳ = r2⊳∩ r4⊳ = (l2∪ l4)∩ (l1∪ l2∪ l3∪ l4) = l2∪ l4 .

In this way, we have 
he
ked that l2∪ l4 is indeed a left fa
tor. However, we have that

(l1∪ l3)⊲ = l1⊲∩ l3⊲ = (r1∪ r2∪ r3)∩ (r3∪ r4) = r3

and

r3⊳ = l1∪ l3∪ l4 .

So (l1∪ l3)⊲⊳ 6= l1∪ l3 and, hen
e, l1∪ l3 is not a left fa
tor.

Computing the poset of left fa
tors and simultaneously Cmin involves a sear
h of the

set of subsets of the l -
lasses in de
reasing order of size. In our example, the sizes of

the subsets range from 5 to 0 . So 25 subsets must be examined. The subsets that are

determined to be left fa
tors are a

umulated in a set that we 
all Γ below.

Beginning with T ∗
(the union of all l -
lasses) |whi
h is always a left fa
tor| as

the only element of Γ , ea
h subset L is 
he
ked for the property L = L⊲⊳ ; if it does,

then the (L, L ′) th entry in Cmin is set to ε for all L ′
in Γ that satisfy L⊆L ′

and there
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is no L ′′
di�erent from L ′

in Γ su
h that L⊆L ′′⊆L ′
. On 
ompletion, all other entries

in Cmin are set to ∅ .

The table below shows for our example language ea
h left fa
tor as a union of l -


lasses and ea
h right fa
tor as a union of r -
lasses. Fig. 7 shows the re
exive-transitive

redu
tion of the subset relation on left fa
tors. The 
orresponding entries in the matrix

Cmin are ε where there is an edge and ∅ where there is no edge.

Left fa
tor Right fa
tor

L0 T ∗ R0 ∅

L1 l1∪ l2∪ l3∪ l4 R1 r4

L2 l1∪ l3∪ l4 R2 r3∪ r4

L3 l2∪ l4 R3 r2∪ r4

L4 l1∪ l4 R4 r1∪ r3∪ r4

L5 l4 R5 r1∪ r2∪ r3∪ r4

L6 ∅ R6 T ∗

3

6 5

4 2

01

Figure 7: Poset of left fa
tors, Inverted poset of right fa
tors

It is interesting to observe how the 
onstru
tion of Cmin provides a non-trivial exam-

ple of the unity of opposites (se
tion 3.3). Not only is there the one-to-one 
orresponden
e

between left and right fa
tors observed by Conway but there is also an isomorphism be-

tween the poset of left fa
tors and the poset of right fa
tors. Fig. 7 also shows the

re
exive-transitive redu
tion of the superset ordering on right fa
tors. Moreover, in�ma

and suprema of left and right fa
tors 
orrespond in the way predi
ted by the unity-of-

opposites theorem. For example, the supremum of L2 and L3 is L5 ; 
orrespondingly,

the in�mum of R2 and R3 is R5 .

The next step is to 
onstru
t the matri
es Lmax and Lmin . Suppose L and L ′
are

left fa
tors; let the fa
tor 
orresponding to L ′
be R ′

. Then the symbol a is an entry in

the (L, L ′) th position in Lmax if L·a·R ′⊆E . The representatives of the l - and r -
lasses
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an be used to 
he
k this property. We have to 
he
k for ea
h representative u of an

l -
lass in L and ea
h representative v of an r -
lass in R ′
whether or not uav∈E . The

symbol a is an entry in the (L, L ′) th position in Lmin if L and R ′
are maximal in

L·a·R ′⊆E . (That is, if left fa
tor L ′′
is su
h that L ′′·a·R ′⊆E then L ′′⊆L ′

, and if right

fa
tor R ′′
is su
h that L·a·R ′′⊆E then R ′′⊆R ′

.)

The pro
ess of 
onstru
ting the fa
tor graph is 
ompleted by identifying the start and

�nal states: the left fa
tors l and r in (74). The left fa
tor r is the easiest to identify:

formally,

r = 〈∪x :x∈E :Er(x)〉 .

Sin
e a word x is an element of E if x maps the start state of the ma
hine of E to a

�nal state, this means that r is the left fa
tor that is represented by the set of l -
lasses


orresponding to the �nal states of the ma
hine. In our example, E= l1∪ l4=L4 , so

this is the value of r . The left fa
tor l is de�ned to be E/E . That is, exploiting the

equation for r ,

l = 〈∪x : Er(x)·E⊆E : Er(x)〉 .

The ma
hine for E 
an be used to determine l -
lasses that 
omprise the left fa
tor l .

For ea
h representative x of an l -
lass, determine for ea
h representative y of an l -
lass

in r whether or not xy is an element of E . If this is indeed the 
ase for all su
h y , the

l -
lass represented by x is a 
omponent of the left fa
tor l . In our example, it is easily

veri�ed that the l -
lasses l1 and l4 are the only ones that satisfy this 
riterion. Thus,

E/E= l1∪ l4=L4 . (In general, E=E∗
equivales l= r . This property is appli
able to

our example, obviating the need to 
al
ulate r separately.)

In summary, the fa
tor graph of our example language is shown in �g. 8.

a,b,c a,b,c

ε

ε

ε

ε

εa

b c

a,b

01

2

3

4

56
ε

ε

Figure 8: Fa
tor Graph
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Before leaving this example, let us note that the fa
tor graph has two inadmissible

nodes: the nodes labelled 0 and 6 in �g. 8 The node labelled 0 is inadmissible be-


ause there are no paths from it to the �nal node of the graph, and the node labelled

6 is inadmissible be
ause there are no paths to it from the start node of the graph.

\Inadmissible" means that they make no 
ontribution when using the fa
tor graph as a

(nondeterministi
) re
ogniser of the language.

That ∅ and T ∗
are both left and right fa
tors (and, indeed, also fa
tors) is a general

phenomenon. They 
an be disregarded in all 
al
ulations involving some event E . (For

example, when 
al
ulating approximations to E they make no 
ontribution.) As a result,

we usually omit the 
orresponding entries in the fa
tor matrix and the 
orresponding

nodes in the fa
tor graph of an event E .

7 Exploiting the Syntactic Monoid

In se
tion 6.3, we were for
ed to spe
ialise the dis
ussion to regular languages (rather

than events in an arbitrary regular algebra). Only by doing so were we able to establish

the existen
e of a unique starth root of the fa
tor matrix. Cal
ulations with languages

are, however, diÆ
ult. For example, identifying a submatrix of a fa
tor matrix using the

theorems in se
tion 4 is \de
idable" (in the te
hni
al sense of the word) but de
idedly

non-trivial if standard te
hniques are used. The 
al
ulations be
ome straight-forward

by translating them into 
al
ulations on the \synta
ti
 monoid" of the given language.

This se
tion makes that pro
ess pre
ise.

The main subse
tion is se
tion 7.1 where we relate 
al
ulations on fa
tors of a lan-

guage to 
al
ulations on the synta
ti
 monoid of the language. Se
tion 7.2 gives several

examples.

7.1 Factors of Sets of c -Classes

We 
an, of 
ourse, view the equivalen
e 
lasses of Ec as \approximations" of the event

E in the sense of se
tion 5. Spe
i�
ally, sin
e the synta
ti
 monoid is generated by the

equivalen
e 
lasses Ec(a) where a ranges over elements of the alphabet T , the fun
tion

Ec restri
ted to domain T is a suitable approximating fun
tion. The \approximation"

of E that we obtain by instantiating the theorems in se
tion 5 should then be equal to

E (as a 
orollary of the fa
t that E is a union of c -
lasses of E ). That is, 
ontrary to

the normal meaning of the English word \approximation" |whi
h suggests something

that is less good| , the \approximation" is exa
t. This is what we do in this se
tion.

Referring ba
k to se
tion 5.1, we make the following instantiations: The alphabet

that indexes approximations is T , the alphabet of E . The algebra R is the algebra

of languages over alphabet T . The algebra S is the powerset algebra with 
arrier
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set 2SM.E
and underlying monoid (SM.E ,◦, 1 ). (See theorem 160.) The event that we

\approximate" is not E but the set of c -
lasses that form E , as de�ned shortly.

The fun
tion ζc is de�ned by, for all a in T ,

(164) ζc.a = {Ec(a)} .

(We have added the subs
ript c to emphasise that this is a parti
ular instan
e of the

fun
tion ζ in se
tion 5.1.)

Note that the extension of ζc to words, as de�ned by equations (117) and (118),

satis�es, for all w in T ∗
,

(165) ζc.w = {Ec(w)} .

The easy proof is by indu
tion on the length of words:

ζc.ε

= { de�nition of the extension of ζc to words }

1S

= { de�nition of powerset algebra S }

{1}

= { Ec is a 
ongruen
e relation, ε is the unit of T ∗ }

{Ec(ε)}

and

ζc.(au)

= { de�nition of the extension of ζc to words }

ζc.a ◦ ζc.u

= { de�nition of ζc and indu
tion hypothesis }

{Ec(a)} ◦ {Ec(u)}

= { distributivity of produ
t over set union in

the powerset algebra of the synta
ti
 monoid }

{Ec(a) ◦Ec(u)}

= { Ec is a 
ongruen
e relation }

{Ec(au)} .
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Instantiating ζ as above in the de�nitions (119) and (120), we get, for all languages

U ,

(166) ζ
♭

c.U = 〈∪u : u∈U : {Ec(u)}〉

and, for all sets of c -
lasses C ,

(167) ζ
♯

c.C = {u | Ec(u)∈C} .

Thus ζ
♭

c.U is a set of c -
lasses whilst ζ
♯

c.C is the union of all elements in the c -
lasses

in the set C .

For later referen
e, let us re
ord the fa
t that ζ
♭

c distributes through 
on
atenation

of languages:

Lemma 168 For all languages X and Y ,

ζ
♭

c.(X·Y) = ζ
♭

c.X ◦ ζ
♭

c.Y .

Proof We have, for all words u and v ,

ζc.uv

= { (165) }

{Ec(uv)}

= { Ec is a 
ongruen
e relation: }

{Ec(u)◦Ec(v)}

= { de�nition of produ
t in the powerset algebra }

{Ec(u)}◦{Ec(v)}

= { (165) }

ζc.u ◦ζc.v

The lemma follows from theorem 122 with ζ instantiated to ζc
✷

Example 169 (Running Example: Modulo Addition) Fig. 9 is the redu
ed �nite-

state automaton of a regular language. In words, the language E re
ognised is the set of

strings of a s and b s su
h that the di�eren
e between the number of a s and the number

of b s is not divisible by 6 . Note that we use English rather than regular expressions

to des
ribe the language E be
ause this is a 
lassi
 example of how 
omplex regular

expressions 
an be
ome. Were we to provide a regular expression denoting the language,

it would be unlikely to be enlightening to the reader!
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a a

a

aa

a

b b

b

bb

b

0

1

2

3

4

5

Figure 9: Automaton re
ognising indivisibility

The synta
ti
 monoid of this language is a group: the group ZZ6 of addition of

numbers in the set {0,1,2,3,4,5} modulo 6 �rst introdu
ed in example 16.

Given a subset N of {0,1,2,3,4,5} , an automaton that re
ognises the set of words

su
h that the di�eren
e between the number of a s and b s modulo 6 in ea
h word is an

element of N is obtained simply by 
hanging the set of �nal states to be those labelled

by an element of N . (The resulting automaton may not be minimal but that is of no


onsequen
e.) For instan
e, if the given set N is the empty set, the set of �nal states

would also be 
hosen to be the empty set. The synta
ti
 monoid is either ZZ6 , ZZ3 , ZZ2

or ZZ1 . For instan
e, if N is {0,1,4,5} , the synta
ti
 monoid is ZZ6 and if N is {0,2,4}

the synta
ti
 monoid is ZZ2 .

The fun
tion ζ
♭

c maps an arbitrary language into a subset of {0,1,2,3,4,5} : the number

i is an element of ζ
♭

c.X if there is a word in X su
h that the di�eren
e between the

number of a s and b s in the word is equal to i modulo 6 . Conversely, the fun
tion ζ
♯

c

maps a subset N of {0,1,2,3,4,5} into a set of words: the set of all words su
h that the

di�eren
e between the number of a s and the number of b s modulo 6 in the word is an

element of N .

In example 16, we explained how to 
ompute fa
tors in this group. Using theorem 172

below, we 
an easily 
al
ulate fa
tors of the language E as well as fa
tors of fa
tors of E .

For instan
e, if X is the set of words su
h that the di�eren
e between the number of a s

and the number of b s modulo 6 in the word is 1 or 2 , the fa
tor X\E is ζ
♯

c.
{1,2,3,4,5}

{1,2}
,

whi
h equals ζ
♯

c.{0,1,2,3} . (Refer ba
k to example 16 for the 
al
ulation of

{1,2,3,4,5}

{1,2}
.)

That is, X\E is the set of words su
h that the di�eren
e between the number of a s and

the number of b s modulo 6 in the word is 0 , 1 , 2 or 3 .

This example 
an, of 
ourse, be generalised by repla
ing \ 6 " by an arbitrary number
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m . As mentioned earlier, ea
h left fa
tor of ¬{0} 
orresponds to a subset of {0 ..m−1} .

There are of 
ourse

(

m
n

)

subsets of {0 ..m−1} of size n . Subsets are divided into groups.

For example, when m= 6 , the subsets {0,2,4} and {1,3,5} form one group, and {0,1,4} ,

{1,2,5} , {2,3,0} , {3,4,1} , {4,5,2} and {5,0,3} form another group. (We leave the reader

the exer
ise of formulating pre
isely how many elements there are in ea
h group given

one element of the group.) The number of times that the fa
tor matrix of {0} o

urs as

a submatrix of ¬{0} is the number of groups of size m , viz.

〈Σk : 0≤n<m : ⌊
(

m
n

)

/m⌋〉 .

For example, when m= 6 , the the fa
tor matrix of {0} o

urs as a submatrix of ¬{0} a

total of

0+1+2+3+2+1+0

times (i.e. 9 times). Similar 
al
ulations enable the entire stru
ture of the fa
tor matrix

of a language de�ned by a subset N of {0 ..m−1} to be predi
ted. However, only for

the very simplest 
ase (m= 1 , m= 2 or m= 3 ), is it feasible to display the matrix in

the 
onventional way; in other 
ases, it is just too big for human 
onsumption!

✷

The fa
t that ζc returns singleton sets means that ζ
♭

c is the left inverse of ζ
♯

c :

Lemma 170 For all sets of c -
lasses C ,

ζ
♭

c.(ζ
♯

c.C) = C

Proof

ζ
♭

c.(ζ
♯

c.C)

= { de�nitions (167) and (166) }

〈∪u : u∈ {u |Ec(u)∈C} : {Ec(u)}〉

= { set 
omprehension }

〈∪u :Ec(u)∈C : {Ec(u)}〉

= { C is a set of c -
lasses, de�nition of c -
lass }

C .

✷

Conversely, when restri
ted to fa
tors of E , ζ
♯

c is the inverse of ζ
♭

c :
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Lemma 171 The fa
tors of E are 
losed elements of the Galois 
onne
tion with

adjoints ζ
♭

c and ζ
♯

c . That is, for all fa
tors F of E ,

ζ
♯

c.(ζ
♭

c.F) = F

Proof Let F be a fa
tor of E . Then

ζ
♯

c.(ζ
♭

c.F)

= { de�nitions: (166) and (167) }

〈∪v :Ec(v)∈ 〈∪u :u∈F : {Ec(u)}〉 : {v}〉

= { asso
iativity and symmetry of set union }

〈∪u : u∈F : 〈∪v : Ec(u)=Ec(v) : {v}〉〉

= { Ec is an equivalen
e relation,

so Ec(u)=Ec(v)≡ v∈Ec(u) }

〈∪u : u∈F : 〈∪v : v∈Ec(u) : {v}〉〉

= { set 
omprehension }

〈∪u : u∈F : Ec(u)〉

= { F is a fa
tor of E ,

so is a union of c -
lasses of E (theorem 159) }

F .

✷

The 
ombination of lemmas 170 and 171 is that ζ
♭

c and ζ
♯

c are inverse fun
tions when

restri
ted to fa
tors of E and sets of c -
lasses of E .

As a 
orollary, we get:

Theorem 172 Let T be an alphabet of symbols and let R denote the powerset

regular algebra with underlying monoid T ∗
. Let E be a language over the alphabet

T with synta
ti
 monoid SM.E and let S.E denote the powerset regular algebra with

underlying monoid SM.E . Let ζc be the fun
tion that maps symbol a in T to {Ec(a)}

as in (164). Then

(173) |E| = ζ
♯

c
• ((ζ

♭

c
• Cmin.E) _∪ (ζ

♭

c
• Lmin.E))

∗ .

Proof

|E|
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= { theorem 158 }

(Cmin.E _∪ Lmin.E)
∗

= { lemma 171 and theorem 26 }

ζ
♯

c
• (ζ

♭

c
• (Cmin.E _∪ Lmin.E))

∗

= { distributivity }

ζ
♯

c
• ((ζ

♭

c
• Cmin.E) _∪ (ζ

♭

c
• Lmin.E))

∗ .

✷

Theorem 172 expresses formally how the synta
ti
 monoid is used to 
al
ulate the

fa
tor matrix of a language E given the minimal 
onstant approximation Cmin.E and

the minimal linear approximation Lmin.E .

To understand the signi�
an
e of the theorem it is vital to observe that the subterm

(ζ
♭

c
• Cmin.E) _∪ (ζ

♭

c
• Lmin.E)

is a matrix in the powerset algebra with underlying monoid SM.E . Thus the 
al
ulation

of the re
exive, transitive 
losure of the matrix

(ζ
♭

c
• Cmin.E) _∪ (ζ

♭

c
• Lmin.E)

involves the use of an algorithm that 
omputes produ
ts and unions of �nite sets of

c -
lasses. In parti
ular, at the level of elements, the star operator maps a �nite set to a

�nite set | unlike for languages where the operator typi
ally maps �nite sets to in�nite

sets. The leftmost term ζ
♯

c then maps the sets of c -
lasses into languages. The �rst of

several examples is example 199 below. See, in parti
ular, �g. 12.

Closure algorithms that 
an be used are well-known and are do
umented in [BC75℄.

But it is not ne
essary to use a 
losure algorithm at all sin
e the elements of the matrix

((ζ
♭

c
• Cmin.E) _∪ (ζ

♭

c
• Lmin.E))

∗

are the fa
tors of ζ
♭

c.E , and these 
an be 
al
ulated dire
tly in the algebra S . Formally,

this is expressed by theorem 193 below.

Lemma 174 For all fa
tors F of E and all sets of c -
lasses C of E ,

C⊆ζ
♭

c.F ≡ ζ
♯

c.C⊆F .

(Note the reversal of

♭
and

♯
. This says that ζ

♭

c is the upper adjoint and ζ
♯

c is the

lower adjoint in a Galois 
onne
tion of the two posets.)

Proof We have:
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C ⊆ ζ
♭

c.F

⇒ { monotoni
ity }

ζ
♯

c.C ⊆ ζ
♯

c.(ζ
♭

c.F)

= { lemma 171 }

ζ
♯

c.C ⊆ F

⇒ { monotoni
ity }

ζ
♭

c.(ζ
♯

c.C) ⊆ ζ
♭

c.F

= { lemma 170 }

C ⊆ ζ
♭

c.F .

The lemma follows by mutual impli
ation.

✷

Lemma 175 For all fa
tors F and G of E ,

F⊆G ≡ ζ
♭

c.F⊆ζ
♭

c.G .

Proof Straight-forward 
ombination of lemmas 171 and 174.

✷

Lemmas 170, 171, 174 and 175 express in pre
ise, 
al
ulational rules the fa
t that the

latti
e of fa
tors of E is represented by a sublatti
e of the set of sets of c -
lasses of E .

In parti
ular, if E is a regular language and it is required to determine whether or not

F⊆G , for given fa
tors F and G , it suÆ
es to 
ompare the �nite sets ζ
♭

c.F and ζ
♭

c.G .

Sin
e we also know that ζ
♭

c is a regular homomorphism (instantiate theorem 122 with

ζ :=ζc ), the 
omputation of fa
tors of fa
tors is redu
ed to 
omputations with �nite sets

using lemma 22. Spe
i�
ally, by instantiating lemma 22 with ζ :=ζc we get:

Lemma 176 For all fa
tors F of E and all languages X and Y ,

(177) X\F/Y = ζ
♯

c.(ζ
♭

c.X\ζ
♭

c.F / ζ
♭

c.Y)

where ζ
♭

c and ζ
♯

c are as de�ned in (166) and (167).

✷

On the right side of (177), ζ
♭

c.X , ζ
♭

c.F and ζ
♭

c.Y are �nite sets of c -
lasses (assuming

E is a regular language) and the under and over operators are evaluated in the algebra

S.E (i.e. the powerset algebra with underlying monoid the synta
ti
 monoid of E ). Their


omputation thus involves a straight-forward 
omparison of �nite sets.
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Below we establish additional properties that reverse the roles of ζ
♭

c and ζ
♯

c . In

this way, we establish the pre
ise relationship between 
al
ulations with fa
tors and


al
ulations with sets of c -
lasses.

We begin with a negative result: unlike the fun
tion ζ
♭

c (lemma 168), the fun
tion

ζ
♯

c does not distribute through produ
t. We establish this fa
t by means of an example.

Example 178 (Running Example: The Language (aa)∗ ) Consider the language

(aa)∗ over the alphabet {a} . Its fa
tor matrix (in
luding inadmissible entries) was given

in example 82. In �g. 10(b), we show its synta
ti
 monoid. This has two elements, whi
h

we have named \ 1 " and \a ".

{1} {a}

{a}

{1}

a

a
1

a

a
a

{1,a}
{1,a}{1,a}

{1,a}{1,a}

{1,a}
{1,a}

(a) (Anti−)Machine (b) Syntactic Monoid

(c) Factor Matrix

Figure 10: Aspe
ts of the Language (aa)∗

Fig. 10(
) shows the matrix |ζ♭

c.(aa)
∗| , i.e. the fa
tor matrix

6

where ea
h entry is

expressed as a set of c -
lasses. Now, in the synta
ti
 monoid, a◦a= 1 . So, in the

regular algebra S , {a}◦{a}= {1} . Also, ζ
♯

c.{1} = (aa)∗ and ζ
♯

c.{a} = (aa)∗a . If ζ
♯

c were

to distribute over produ
t, we would have

ζ
♯

c.{a} ·ζ
♯

c.{a} = ζ
♯

c.({a}◦{a}) = ζ
♯

c.{1} = (aa)∗ .

However, this is not the 
ase. We have:

ζ
♯

c.{a} ·ζ
♯

c.{a} = (aa)∗a(aa)∗a

6

For 
onsisten
y with example 82 we deviate from our usual pra
ti
e and in
lude edges that are inad-

missible with respe
t to the language (aa)∗ : these are the edges to or from the top and bottom nodes.
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and

ζ
♯

c.{1}=(aa)∗ .

The two right sides are 
learly not equal. So we 
on
lude that, in general, ζ
♯

c does not

distribute over produ
t.

✷

In spite of the above negative result, we 
an establish an in
lusion.

Lemma 179 For all events C and D in the algebra S (i.e. sets of c -
lasses),

ζ
♯

c.C · ζ
♯

c.D ⊆ ζ
♯

c.(C ◦D) .

Proof We have, for all events C and D in the algebra S and all words u in T ∗
,

ζ
♯

c.C · ζ
♯

c.D ⊆ ζ
♯

c.(C ◦D)

= { Galois 
onne
tion of ζ
♭

c and ζ
♯

c }

ζ
♭

c.(ζ
♯

c.C · ζ
♯

c.D) ⊆ C ◦D

= { distributity: lemma 168 }

ζ
♭

c.(ζ
♯

c.C) ◦ ζ
♭

c.(ζ
♯

c.D) ⊆ C ◦D

= { lemma 170 }

true .

✷

As a 
onsequen
e of lemma 179, ζ
♯

c does distribute through fa
torisation.

Lemma 180 For all events B , C and D in the algebra S (i.e. sets of c -
lasses),

(181) ζ
♯

c.(B\C) = ζ
♯

c.B\ζ
♯

c.C ,

(182) ζ
♯

c.(C/D) = ζ
♯

c.C/ζ
♯

c.D , and

(183) ζ
♯

c.(B\C/D) = ζ
♯

c.B\ζ
♯

c.C/ζ
♯

c.D .

Proof We show the proof of (181). The other two properties are proved similarly.

First,

ζ
♯

c.(B\C) ⊇ ζ
♯

c.B\ζ
♯

c.C

= { ζ
♯

c is upper adjoint, ζ
♭

c is lower adjoint, fa
tors }

C ⊇ B ◦ ζ
♭

c.(ζ
♯

c.B\ζ
♯

c.C)
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= { lemma 170 }

C ⊇ ζ
♭

c.(ζ
♯

c.B) ◦ ζ
♭

c.(ζ
♯

c.B\ζ
♯

c.C)

= { ζ
♭

c is a monoid homomorphism (theorem 122) }

C ⊇ ζ
♭

c.(ζ
♯

c.B · ζ
♯

c.B\ζ
♯

c.C)

⇐ { fa
tors, monotoni
ity of ζ
♭

c }

C ⊇ ζ
♭

c.(ζ
♯

c.C)

= { ζ
♭

c is lower adjoint with upper adjoint ζ
♯

c }

true .

Se
ond,

ζ
♯

c.(B\C) ⊆ ζ
♯

c.B\ζ
♯

c.C

= { fa
tors }

ζ
♯

c.B · ζ
♯

c.(B\C) ⊆ ζ
♯

c.C

⇐ { lemma 179 with C,D := B ,B\C }

ζ
♯

c.(B ◦ B\C)⊆ζ
♯

c.C

⇐ { monotoni
ity of ζ
♯

c , fa
tors }

true .

The lemma follows by the anti-symmetry of set equality.

✷

As we have just seen, the fun
tion ζ
♯

c does not distribute through produ
t but does

distribute through fa
torisation (lemma 180). Likewise, the fun
tion ζ
♭

c distributes

through produ
t (lemma 168) but |in general| it does not distribute through fa
tori-

sation. However, if we examine 
losely the properties of ζ
♯

c that allowed us to prove

lemmas 179 and 180 (for example, it is the upper adjoint in a Galois 
onne
tion with

lower adjoint ζ
♭

c ) we see that the fun
tion ζ
♭

c enjoys the same properties when its domain

is restri
ted to the fa
tors of E : see lemmas 174 and 171. Thus we have:

Lemma 184 For all fa
tors F , G and H of E ,

(185) ζ
♭

c.(F\G) = ζ
♭

c.F \ζ
♭

c.G ,

(186) ζ
♭

c.(G/H) = ζ
♭

c.G/ζ
♭

c.H , and

(187) ζ
♭

c.(F\G/H) = ζ
♭

c.F \ζ
♭

c.G/ζ
♭

c.H .
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Proof Repeat the proof of lemma 180 with ζ
♯

c repla
ed by ζ
♭

c (and vi
e-versa), 
hanging

hints as indi
ated above.

✷

Lemma 188 For all left fa
tors i and j of E ,

ζ
♭

c.i = ζ
♭

c.E / ζ
♭

c.i⊲

and

ζ
♭

c.(i\j) = ζ
♭

c.i \ ζ
♭

c.E / ζ
♭

c.j⊲ .

Thus ζ
♭

c.i is a left fa
tor of ζ
♭

c.E , and ζ
♭

c.(i\j) is a fa
tor of ζ
♭

c.E .

Proof For all sets of c -
lasses C and left fa
tors i of E ,

C⊆ ζ
♭

c.i

= { i = i⊲⊳ = E/ i⊲ }

C⊆ ζ
♭

c.(E/ i⊲)

= { lemma 174, fa
tors }

ζ
♯

c.C · i⊲ ⊆ E

= { i⊲ is a fa
tor, lemma 171 (with F := i⊲ ) }

ζ
♯

c.C ·ζ
♯

c.(ζ
♭

c.i⊲) ⊆ E

= { lemma (179) }

ζ
♯

c.(C · ζ
♭

c.i⊲) ⊆ E

= { lemma 174, fa
tors }

C ⊆ ζ
♭

c.E / ζ
♭

c.i⊲ .

Thus, the �rst equality follows by indire
t equality. The se
ond equality follows imme-

diately from (185) and the above equality (with i := j ).

✷

Lemma 188 establishes that ζ
♭

c maps left fa
tors of E to left fa
tors of ζ
♭

c.E . When

restri
ted to left fa
tors, fun
tion ζ
♭

c has inverse ζ
♯

c (lemmas 171 and 170). In order to

show that it is an isomorphism it remains to show that ζ
♭

c (restri
ted to left fa
tors of

E ) is onto the set of left fa
tors of ζ
♭

c.E and, vi
e-versa, ζ
♯

c (restri
ted to left fa
tors of

ζ
♭

c.E ) is onto the set of left fa
tors of E . This is shown in lemma 192.
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Lemma 189 For all c -
lasses B and D ,

(190) ζ
♭

c.E /D = ζ
♭

c.(E/ζ
♯

c.D) , and

(191) B\ζ
♭

c.E /D = ζ
♭

c.(ζ
♯

c.B\E/ζ
♯

c.D) .

Proof First,

ζ
♭

c.E /D

= { lemma 170 }

ζ
♭

c.(ζ
♯

c.(ζ
♭

c.E /D))

= { (181) }

ζ
♭

c.((ζ
♯

c.(ζ
♭

c.E))/(ζ
♯

c.D))

= { E is a fa
tor of itself, lemma 171 }

ζ
♭

c.(E/(ζ
♯

c.D)) .

The se
ond part is proved similarly, using (183) instead of (181).

✷

Lemma 192 A set of c -
lasses C is a left fa
tor of ζ
♭

c.E equivales C=ζ
♭

c.i for some

left fa
tor i of E . A set of c -
lasses C is a right fa
tor of ζ
♭

c.E equivales C=ζ
♭

c.i

for some right fa
tor i of E . The set of c -
lasses C is a fa
tor of ζ
♭

c.E equivales

C = ζ
♭

c.i \ζ
♭

c.j for some left fa
tors i and j of E .

Proof We prove the �rst part by mutual impli
ation. (Dummy D ranges over sets of

c -
lasses of E and dummy i ranges over left fa
tors of E .)

C is a left fa
tor of ζ
♭

c.E

= { de�nition }
〈

∃D :: C = ζ
♭

c.E /D
〉

= { (190) }
〈

∃D :: C=ζ
♭

c.(E/(ζ
♯

c.D))
〉

⇒ { (E/(ζ
♯

c.D) ) is a left fa
tor of E , i :=E/(ζ
♯

c.D) }
〈

∃i :: C=ζ
♭

c.i
〉

= { lemma 188 }
〈

∃i :: C = ζ
♭

c.E / ζ
♭

c.i⊲
〉

⇒ { de�nition of left fa
tor }

C is a left fa
tor of ζ
♭

c.E .
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The se
ond part is proved similarly. For the third part, we 
al
ulate as follows. (Dummies

B and D range over sets of c -
lasses of E and dummies i and j range over left fa
tors

of E .)

C is a fa
tor of ζ
♭

c.E

= { de�nition }
〈

∃B,D :: C = B\ ζ
♭

c.E /D
〉

= { (191) }
〈

∃B,D :: C = ζ
♭

c.(ζ
♯

c.B\E/ζ
♯

c.D)
〉

⇒ { ( ζ
♯

c.B\E/ζ
♯

c.D ) is a fa
tor of E , (69) }
〈

∃ i,j :: C = ζ
♭

c.(i\j)
〉

= { lemma 184 }
〈

∃ i,j :: C = ζ
♭

c.i \ζ
♭

c.j
〉

⇒ { ζ
♭

c.i and ζ
♭

c.j are left fa
tors of ζ
♭

c.E

(�rst part of this lemma);

fa
tors of fa
tors are fa
tors }

C is a fa
tor of ζ
♭

c.E .

✷

The 
on
lusion is that the fa
tor matrix of E is represented by the fa
tor matrix of

ζ
♭

c.E as expressed formally by:

Theorem 193

(194) |E| = ζ
♯

c
• |ζ

♭

c.E| • ζ
♭

c×ζ
♭

c .

Conversely,

(195) |ζ
♭

c.E| = ζ
♭

c
• |E| • ζ

♯

c×ζ
♯

c .

Finally,

(196) ζ
♭

c
• |E| = |ζ

♭

c.E| • ζ
♭

c×ζ
♭

c

and

(197) ζ
♯

c
• |ζ

♭

c.E| = |E| • ζ
♯

c×ζ
♯

c .
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Proof Re
all that |E| is, by de�nition, the under operator ( \ ) in the algebra of

languages restri
ted to the left fa
tors of E . Similarly, |ζ
♭

c.E| is the under operator in

the algebra S.E (the powerset algebra with underlying monoid the synta
ti
 monoid of

E ) restri
ted to the left fa
tors of ζ
♭

c.E . Equation (194) is thus the statement that for all

left fa
tors i and j of E , ζ
♭

c.i and ζ
♭

c.j are left fa
tors of ζ
♭

c.E and ζ
♯

c.(ζ
♭

c.i \ζ
♭

c.j)= i\j .

(The leftmost under operator is in the algebra S.E and the rightmost under operator

is in the algebra of languages.) It is thus a 
ombination of lemmas 188, 180 and 171.

Similarly, equation (195) is a 
ombination of lemmas 180, 188 and 170. Equations (196)

and (197) state, respe
tively, that the fa
tor matrix of ζ
♭

c.E is obtained by applying

the fun
tion ζ
♭

c to the entries of the fa
tor matrix of E , and the fa
tor matrix of E is

obtained by applying the fun
tion ζ
♯

c to the entries of the fa
tor matrix of ζ
♭

c.E .

✷

Corollary 198

|ζ♭

c.E| = ((ζ
♭

c
• Cmin.E) _∪ (ζ

♭

c
• Lmin.E))

∗
• ζ

♯

c×ζ
♯

c .

Proof The theorem is a simple 
ombination of (195) and (173):

|ζ♭

c.E|

= { (195) }

ζ
♭

c
• |E| • ζ

♯

c×ζ
♯

c

= { (173) }

ζ
♭

c
• ζ

♯

c
• ((ζ

♭

c
• Cmin.E) _∪ (ζ

♭

c
• Lmin.E))

∗ • ζ
♯

c×ζ
♯

c

= { (170) }

((ζ
♭

c
• Cmin.E) _∪ (ζ

♭

c
• Lmin.E))

∗ • ζ
♯

c×ζ
♯

c .

✷

Theorems 172 and 198 form the basis of how we use the synta
ti
 monoid to ex-

plore the stru
ture of the fa
tor matrix |E| , for a given event E , before any attempt

to 
al
ulating regular expressions denoting ea
h of its entries. . The matri
es Cmin.E

and Lmin.E are �rst 
omputed, and then (by applying the fun
tion ζ
♭

c to ea
h entry)


onverted to matri
es of c -
lasses. The 
losure of this matrix is then 
al
ulated in the

algebra S . That is, we 
ompute

((ζ
♭

c
• Cmin.E) _∪ (ζ

♭

c
• Lmin.E))

∗

in the algebra |�nite| algebra S . (The di�eren
e between this and the right side of

the equation in 
orollary 198 is just the indexing of matrix elements: in the former 
ase,
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elements are indexed by left fa
tors of ζ
♭

c.E and in the latter 
ase by left fa
tors of E .)

Fa
tors of fa
tors of ζ
♭

c.E 
an then be 
omputed and their fa
tor matri
es identi�ed. The

(1{1) 
orresponden
e between fa
tors of E and fa
tors of ζ
♭

c.E (lemmas (170) and (171))

means that the results 
an then be used to 
ompute the fa
tor graphs of the fa
tors of

E .

7.2 Use of the Syntactic Monoid

This se
tion illustrates the theorems and lemmas in se
tion 7.1 by means of examples.

Example 199 Consider the language E re
ognised by the ma
hine shown in �g. 11(a).

Its anti-ma
hine and synta
ti
 monoid are shown in �gs. 11(b) and (
), respe
tively.

(Inadmissible nodes are omitted in all three of these �gures. See below.) The nodes of

ea
h graph are labelled by representative elements: those of the ma
hine are labelled

by a representative element of the l -
lass to whi
h the node 
orresponds; those of the

anti-ma
hine are labelled by a representative element of the r -
lass to whi
h the node


orresponds ; and those of the synta
ti
 monoid are labelled by a representative element

of the synta
ti
 monoid to whi
h the node 
orresponds. (The representative of an r -


lass is the reverse of a word from the start state to the 
orresponding node in the

anti-ma
hine. In this 
ase, the simpli
ity of the anti-ma
hine means that it is a poor

illustration: in �g. 11, the nodes are labelled ε , a and b . These are the shortest words

from the start state to the 
orresponding node but all are the reverse of themselves. A

better illustration would be to take, for example, ab as the representative of the r -
lass


ontaining b. This is the reverse of the word ba from the start state to the node labelled

b in �g. 11. But this node is inadmissible. For the other two states, all representative

elements are their own reverse.)

The ma
hine and anti-ma
hine ea
h have one inadmissible node: a node from whi
h

there are no paths to the �nal state. In the ma
hine, the representative element of

the inadmissible node is bab and in the anti-ma
hine it is b . Correspondingly, there

is one inadmissible element of the synta
ti
 monoid: a c -
lass that is an element of

inadmissible fa
tors only. Our pra
ti
e is to always omit inadmissible elements from the

�gures sin
e it is always safe to do so.

In the following table, we 
ompute the value of l⊲ and r⊳ for ea
h l -
lass l and

ea
h r -
lass r .

l-
lass l l⊲ r-
lass r r⊳

El(ε) Er(ε)∪Er(a) Er(ε) El(ε)∪El(ba)

El(b) Er(a) Er(a) El(ε)∪El(b)

El(ba) Er(ε)
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a
a

a
ab ab

b

b

a

a

a

a

ε a
a

a
b

b

b

(c) Semigroup (Syntactic Monoid)

ε

ba

b

(b) Anti−machine

b a

(a) Machine

bε b ba
a

a

a

Figure 11: Ma
hine, Anti-Ma
hine and Synta
ti
 Monoid

From this table, we dedu
e that E has �ve left fa
tors, whi
h we divide into two

sets: the empty set ∅ and {a,b}∗ form one set, the inadmissible left fa
tors, and El(ε) ,

El(ε)∪El(b) , and El(ε)∪El(ba) form the se
ond set, the admissible left fa
tors. (The

language {a,b}∗ is, of 
ourse, the union of all l -
lasses.)

The 
orresponding right fa
tors of the inadmissible fa
tors are, respe
tively, {a,b}∗

and ∅ . The 
orresponding right fa
tors of the admissible left fa
tors are, respe
tively,

Er(ε)∪Er(a) , Er(a) and Er(ε) .

Conway's best 
onstant+linear approximation to the fa
tor matrix 
an now be easily

dedu
ed and then redu
ed to the fa
tor graph. This is shown in �g. 12(a); given start

and �nal nodes (indi
ated in the usual way), this is a non-deterministi
 re
ogniser of the

language E . (Nodes are labelled by representatives of the l -
lasses.)

Displayed as a two-dimensional array, and omitting inadmissible rows and 
olumns,

the matrix

(ζ
♭

c
• Cmin.E) _∪ (ζ

♭

c
• Lmin.E)

in theorem 172 is thus:
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{ε,a,ba,aba}

{ε,aba}

{ε,a,b,ab}

{ε,b}

a
ε ε

a
ε,b b

ε

a

ε,ba

{ε ,a}

{a,ba}

{a,ab}

(b) Factor Matrix(a) Factor Graph

Figure 12: Fa
tor Graph and its Closure in the Algebra S







{a} {ε} {ε}

∅ {b} {a}

∅ {a} ∅







Note that we 
hoose a shortest word in the 
orresponding equivalen
e 
lass to name

elements of the synta
ti
 monoid.

The 
losure of this matrix |the matrix |ζ
♭

c.E|| is 
al
ulated by 
hasing paths in

the fa
tor graph. The result is shown in �g. 12(b). Hopefully the reader 
an see how

easily this is done: ea
h entry is a set of c -
lasses, and the representative element u of

a c -
lass is an element of the (i, j) th entry if there is a path spelling u from i to j

in the fa
tor graph. More 
onventionally, displayed as a two-dimensional array, it is the

following:







{ε,a} {ε,a,b,ab} {ε,a,ba,aba}

∅ {ε,b} {a,ba}

∅ {a,ab} {ε,aba}







Note that E is represented by {ε,a,ba,aba} . That is,

E = Ec(ε)∪Ec(a)∪Ec(ba)∪Ec(aba) .

The left fa
tor l in Conway's theorem is El(ε) (whi
h equals Ec(ε)∪Ec(a) ) and the left

fa
tor r is El(ε)∪El(ba) ; E is the entry indexed by the pair (l, r) (whi
h, in this 
ase,

equals r ).

We 
an use a standard elimination algorithm to 
ompute entries in the fa
tor matrix

from the fa
tor graph as regular expressions. Eliminating the nodes of �g. 12 from

bottom to top and left to right, the regular expressions obtained for the left fa
tors and
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their 
orresponding right fa
tors are shown in the table below (in the reverse order of

their 
al
ulation).

left fa
tor right fa
tor

a∗ a∗ · ((b+a·a)∗ ·a + ε + a · (b+a·a)∗ ·a)

a∗ · (b+a·a)∗ (b+a·a)∗ ·a

a∗ · ((b+a·a)∗ ·a + ε + a · (b+a·a)∗ ·a) ε + a · (b+a·a)∗ ·a

The language E re
ognised by �g. 11(a) is the last entry in the list of left fa
tors and

the �rst entry in the list of right fa
tors. (The expressions have been simpli�ed using

the fa
t that ε is the unit of produ
t, that ∅∗= ε and that ∅ is the zero of produ
t. We

assume that these properties are always exploited. No other simpli�
ations have been

made.)

As is often the 
ase with the use of elimination algorithms, the regular expressions

in the above table are quite 
omplex. By exploiting our insights into fa
tors of fa
tors

together with the synta
ti
 monoid, simpler expressions 
an be obtained | in a non-ad

ho
 way. Let us explain how this is done.

The fa
t that the fa
tor graph is not strongly 
onne
ted immediately suggests how

to de
ompose it into simpler fa
tor graphs of fa
tors. Spe
i�
ally, the fa
tor graph (�g.

12(a)) is a 
ombination of two fa
tor graphs: the fa
tor graphs of a∗
and (b+a·a)∗ .

See �g. 13. (Note that, as is our usual pra
ti
e, inadmissible fa
tors ∅ and T ∗
have

been omitted from both graphs. If the alphabet T is {a} , the fa
tor graph of a∗
has no

inadmissible nodes; however, in this 
ase, the alphabet is {a,b} .)

a

a

a
b

Figure 13: Fa
tor Graphs of Fa
tors

Our algorithm 
al
ulates the 
losure of ea
h of these fa
tor graphs and then seeks
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to �ll in remaining entries in the fa
tor matrix using the synta
ti
 monoid. This is the

motivation for 
al
ulating the fa
tor matrix in the algebra S shown in �g. 12(b).

Now, as indi
ated in �g. 12(b), the entry of interest is {ε,a,ba,aba} . But

{ε,a,ba,aba} = {ε,aba}∪ {a,ba}

and both {ε,aba} and {a,ba} are entries in the fa
tor matrix of (b+a·a)∗ . Reg-

ular expressions denoting these entries are 
al
ulated to be ε + a · (b+a·a)∗ ·a and

(b+a·a)∗ ·a , respe
tively. Thus a regular expression denoting our language E is

(200) ε + a · (b+a·a)∗ ·a + (b+a·a)∗ ·a .

This is simpler than the expression obtained by applying a standard elimination algo-

rithm: the expression

(201) a∗ · ((b+a·a)∗ ·a + ε + a · (b+a·a)∗ ·a)

in the table above. We leave it to the reader to 
he
k that both expressions denote the

same language.

Remark This example is example 2 in [LS02℄. One reason for in
luding the example in

detail here is that the fa
torisations given in [LS02, example 2℄ obs
ure a basi
 property

of the fa
tor matrix, namely that every event is both a left and right fa
tor of itself. This

means that the language re
ognised by the fa
tor graph should always appear both in

the list of left fa
tors and in the list of right fa
tors. In [LS02, example 2℄, the language

re
ognised does appear twi
e but this is far from 
lear: the list of left fa
tors in
ludes

the expression

(ε + b∗ ·a) · (a ·b∗ ·a)∗

and the list of right fa
tors in
ludes the expression

ε + a∗ · (a·a+b)∗ ·a .

In fa
t, these expressions are equal |in the sense that they denote the same language|

but this is 
ertainly not obvious

7

. They are also equal to the expressions on the right

sides of (200) and (201). Whi
h expression is the \best" is not important. What is

important, however, is that the two o

urren
es of the language re
ognised are denoted

by identi
al expressions.

7

In an earlier draft (January 2017), I 
laimed that there were \obvious errors" in [LS02, example 2℄,

but without giving further explanation. The \obvious error" I was referring to is that the expressions are

not identi
al. I should, however, have taken more 
are to 
he
k whether or not the expressions denote the

same language (whi
h they do); instead, I jumped to the 
on
lusion that one or both was in
orre
t, for

whi
h I apologise.



135

Another reason for in
luding it here is to observe that the fa
tor graph has a unique

start state and a unique �nal state; in [LS02, example 2℄, the graph displayed is Lmax.E

but all three nodes are identi�ed as start states and two nodes are identi�ed as �nal

states. This more fundamental di�eren
e is dis
ussed further in se
tion 10.

End of Remark

✷

Example 202 Lombardy and Sakarovit
h dis
uss a 
losely related example [LS08, ex-

ample 5.7℄. Sin
e the 
al
ulations are very similar to those in example 199, we summarise

the 
al
ulations brie
y here, leaving the details to the reader.

Consider the language E denoted by the regular expression

a∗ · (a·a+b)∗ ·a∗ .

The ma
hine, synta
ti
 monoid and fa
tor graph are shown in �g. 14. (The language

is its own reverse so the anti-ma
hine and ma
hine are identi
al. Take 
are, however,

when 
hoosing representatives of the r -
lasses. The synta
ti
 monoid has an additional

element to those shown in the �gure, with representative bab . Sin
e it is not an element

of the c -
lasses of any admissible fa
tor, it has been omitted.)

As in example 199, the languages denoted by a∗
and (a·a+b)∗ are fa
tors; their

fa
tor graphs are shown in �g. 13. The fa
tor matrix, as represented by sets of c -
lasses

(that is, the matrix |ζ
♭

c.E| ) is the following :










{ε,a} {ε,a,b,ab} {ε,a,ba,aba} {ε,a,b,ab,ba,aba}

∅ {ε,b} {a,ba} {ε,a,b}

∅ {a,ab} {ε,aba} {ε,a,aba}

∅ ∅ ∅ {ε,a}











(The nodes of the fa
tor graph have been taken in order from bottom to top and

from left to right.) As indi
ated in the 
onventional way by the start and �nal nodes in

the fa
tor graph, the language E is represented by {ε,a,b,ab,ba,aba} . Now,

{ε,a,b,ab,ba,aba} = {ε,b}∪ {a,ab}∪ {a,ba}∪ {ε,aba} .

The right side is the set union of the middle four terms in the fa
tor matrix: the four

admissible fa
tors of (a·a+b)∗ . Exploiting this fa
t, it suÆ
es to 
al
ulate regular

expressions denoting the entries in the fa
tor matrix of (a·a+b)∗ and add them together

to get a regular expression for the language E . This is a slight improvement on the

expression 
al
ulated using a standard elimination algorithm.

(Intriguingly, we have

{ε,a,b,ab,ba,aba} = {ε,a}◦{ε,b}◦{ε,a}
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Figure 14: Ma
hine, Synta
ti
 Monoid and Fa
tor Graph

and

ζ
♯

c.{ε,a,b,ab,ba,aba} = ζ
♯

c.{ε,a} ·ζ
♯

c.{ε,b} ·ζ
♯

c.{ε,a} .

So, in this 
ase, the fun
tion ζ
♯

c does distribute through produ
t. The right side gives the

regular expression a∗ · (a·a+b)∗ ·a∗
for the language E . However, as shown in example

178, the fun
tion ζ
♯

c does not distribute through produ
t in general. Theorems that

predi
t when the distributivity law does hold might prove very useful in determining

more 
ompa
t regular expressions.)

✷
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8 The Rank of a Subfactor Graph

We showed in se
tion 4 that the fa
tor matrix of a fa
tor is represented by a submatrix

of the fa
tor matrix. We now turn our attention to the fa
tor graph of a fa
tor of E .

It is not the 
ase that the fa
tor graph of a fa
tor of E is a subgraph of the fa
tor

graph of E We prove, however, that the so-
alled 
y
le rank of the fa
tor graph of a

fa
tor of E is at most the 
y
le rank of the fa
tor graph of E . This then enables us in

se
tion 9 to derive a 
losure algorithm that 
al
ulates the fa
tor matrix of E from its

fa
tor graph in su
h a way that the star-height of all the resulting regular expressions does

not ex
eed the 
y
le rank of the fa
tor graph and, in some 
ases, may be stri
tly smaller.

The basis of our proof is the 
onstru
tion of a so-
alled pathwise homomorphism of the

fa
tor graph of E .

8.1 Cycle Rank and Pathwise Homomorphism

The notions of 
y
le rank and pathwise homomorphism were introdu
ed by Eggan

[Egg63℄ and M
Naughton [M
N67℄, respe
tively. In this subse
tion we re
all the def-

initions and M
Naughton's theorem.

A subgraph of a graph G is a graph determined by a subset of the nodes of G ;

the edges of the subgraph are those edges of G that are both to and from a node in

the given subset. A subgraph is proper of G if it is not equal to G . A graph G is

strongly 
onne
ted if there is a path of edge-length at least 1 from x to y for every

pair of nodes x and y in G . A se
tion of a graph is a strongly 
onne
ted subgraph of

G that is not a proper subgraph of any strongly 
onne
ted subgraph of G .

Definition 203 (Rank of a Graph) Suppose G is a graph. The (
y
le) rank of G

is a natural number de�ned as follows.

(i) If G is not strongly 
onne
ted, then

(a) If G has no strongly 
onne
ted subgraph then the rank of G is 0 .

(b) Otherwise, the rank of G is the maximum rank of all the se
tions of G .

(ii) If G is strongly 
onne
ted, then the rank of G is n+1 where n satis�es

(a) G does not have rank m for any m that is at most n .

(b) G has a node x whose deletion from G results in a graph of rank n .

✷
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Theorem 204 (Eggan’s Theorem) Consider the use of the es
alator method

8

to


al
ulate G∗
for a given transition graph G . Then

(a) for a suitable ordering of the nodes of G , the resulting regular expressions for all

entries i G∗ j have star-height at most the rank of G .

(b) If the graph G is all-admissible for nodes i and j (that is, for every node k in G ,

there is a path from i to k and a path from k to j ) then, for a suitable ordering

of the nodes, the resulting entry i G∗ j has star-height equal to the rank of G .

Proof (Outline) The de�nition of rank determines an order of elimination of the

nodes of G . This is the ordering referred to in the theorem. The proof |whi
h is

straightforward| pro
eeds by indu
tion on the rank.

✷

Note that the de�nition of rank makes no referen
e to the edge labels; it is purely

about the 
onne
tivity of a graph. That is, it is a fun
tion on the relation on nodes

de�ned by the edges of the graph. Spe
i�
ally, a transition graph G de�nes a binary

relation Rel.G on nodes by i Rel.G j ≡ i G j 6= ∅ for all nodes i and j and it is this

relation on whi
h the rank is de�ned. Eggan's theorem does, however, assume that the

graph is a transition graph: that is, edges are labelled by subsets of T∪{ε} , where T is

an alphabet of symbols. In fa
t, Eggan assumes that edge labels are subsets of T . The

theorem is una�e
ted by allowing the empty word to be in
luded

9

; a

ordingly, we relax

the assumption (as does M
Naughton [M
N67℄).

We emphasise the use of the es
alator method be
ause it is an instan
e of what

we 
all an elimination method. Elimination methods for 
al
ulating G∗
all have dire
t


ounterparts of methods used in linear algebra (for example, so-
alled Gauss-Seidel elim-

ination) to invert a (real) matrix [BC75℄. Their validity depends on algebrai
 properties


ommon to both real numbers and languages. That means they do not exploit properties

of languages like the idempoten
y of set union that are not enjoyed by real numbers.

In appendix B, we formulate the essential 
hara
teristi
s of an elimination method and

show that, using any elimination method to 
ompute G∗
, the rank of the graph re
e
ts

the best that one 
an do in respe
t of the star-height of the resulting expressions. How-

ever, as we show, there is an algorithm to 
ompute the 
losure of the fa
tor graph that

yields regular expressions that have star-height at most the rank of the fa
tor graph and

may have star-height less than its rank.

8

Eggan's paper [Egg63℄ in
ludes the des
ription of an algorithm to 
ompute G
∗
; this algorithm has

be
ome known as the \es
alator method".

9

Stri
tly, this statement is in
orre
t if the algorithm exploits the property that ε∗ = ε . The opportunity

to exploit this property is rare and 
ertainly does not o

ur when the transition graph is de�nite, whi
h

is the 
ase for fa
tor graphs.
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In this se
tion we prove that the rank of the fa
tor graph of a fa
tor of E is at most

the rank of the fa
tor graph of E . We appeal to a basi
 theorem due to M
Naughton

[M
N69℄, namely that the rank of graph G ′
is at most the rank of graph G if there is

a so-
alled \pathwise homomorphism" from G to G ′
.

For our purposes a slightly simpler de�nition of pathwise homomorphism suÆ
es:

Definition 205 (Pathwise Homomorphism: McNaughton) Suppose G and G ′

are graphs. A pathwise homomorphism of G onto G ′
is a fun
tion f from the nodes

of G to the nodes of G ′
su
h that the following two 
onditions hold:

(a) If there is an edge in G from u to v then there is an edge in G ′
from f.u to f.v .

(b) If there is a path from node x to node y in G ′
, there is a path from u to v in G

for some nodes u and v su
h that f.u=x and f.v=y .

✷

De�nition 205 is simpler than M
Naughton's in that M
Naughton requires the domain

of f to be the nodes and the edges of G ′
. When applied to an edge of G ′

, M
Naughton

allows f to be either an edge of G or a node of G , and weakens requirement (b)

a

ordingly; de�nition 205 disallows the se
ond possibility. .

Theorem 206 (McNaughton’s Pathwise Homomorphism Theorem) Suppose G

and G ′
are graphs. Then the rank of G is at least the rank of G ′

if there is a pathwise

homomorphism of G onto G ′
.

Proof It is easy to 
he
k that a pathwise homomorphism a

ording to our de�nition

is a pathwise homomorphism a

ording to M
Naughton's de�nition. So the theorem

follows from [M
N67, theorem 3℄.

✷

We also need the following simple theorem [M
N69, theorem 2.4℄.

Theorem 207 The rank of graph G is at most the rank of transition graph G ′
if G

and G ′
have the same set of nodes and the set of edges of G is a subset of the set of

edges of G ′
.

Proof Straightforward from the de�nition of rank.

✷

From a 
al
ulational viewpoint, it is desirable to exploit the algebra of regular lan-

guages to the full: spe
i�
ally, the fa
t that matri
es of regular events form a regular

algebra. To this end, we reformulate a 
al
ulational form of de�nition 205. Spe
i�
ally,

the de�nition of pathwise homomorphism that we use is as follows.
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Definition 208 (Pathwise Homomorphism: Calculational) Suppose G and G ′

are graphs with node sets N and N ′
, respe
tively. A pathwise homomorphism of G

onto G ′
is a fun
tion f from N to N ′

su
h that the following 
onditions hold:

(a) IN ′ = f ◦ f∪ ∧ IN ⊆ f∪ ◦ f ,

(b) G _⊆ (Sel.f)∪⊗G ′⊗Sel.f , and

(c) (G ′)∗ _⊆ Sel.f⊗G∗⊗ (Sel.f)∪ .

If a pathwise homomorphism exists from G onto G ′
, we say that G ′

is pathwise

homomorphi
 to G .

✷

Our de�nition of pathwise homomorphism appears to be stri
ter than M
Naughton's

sin
e the inequality IN ′ ⊆ f ◦ f∪ implied by property 208(a) states formally that f is

surje
tive. However, as remarked by M
Naughton, be
ause there is a path from every

node to itself in a graph |the empty path| 
ondition 208(
) implies that a pathwise

homomorphism f is ne
essarily surje
tive. The remaining inequalities in 208(a) are


al
ulational formulations of the property that f is fun
tional and total. Condition

208(a) is the same as M
Naughton's 
ondition 205(b) and 
ondition 208(
) is the same

as 205(b).

8.2 The Pathwise Homomorphism

Suppose F is a fa
tor of E . We show that the fa
tor graph of F has rank at most the

rank of the fa
tor graph of E . Spe
i�
ally, we 
onstru
t a graph G ′
that is pathwise

homomorphi
 to the fa
tor graph of E and then show that the fa
tor graph of F is a

subgraph of G ′
.

Throughout this se
tion, we use FG.F to denote the fa
tor graph of F . Similarly for

FG.E . We assume that F= s\t where

(209) s = t/(s\t) ∧ t⊲ = (s⊲ / t⊲) \ s⊲ .

(See lemma 86.) Re
all that the nodes of the fa
tor graph of a language are the left

fa
tors of that language.

We de�ne the fun
tion γ from left fa
tors of E to left fa
tors of F by γ.i = F/(i\t) .

(See (100).) Re
all theorem 106 whi
h states that γ is a total, surje
tive fun
tion

mapping the left fa
tors of E onto the left fa
tors of F . The graph G ′
is de�ned by:

(210) G ′ = Sel.γ⊗FG.E⊗ (Sel.γ)∪ .
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Informally, the nodes of G ′
are the left fa
tors of F ; there is an edge labelled x from

i ′ to j ′ in G ′
if, for some left fa
tors i and j of E , there is an edge labelled x from i

to j in the fa
tor graph of E and

i ′=γ.i ∧ j ′=γ.j .

Formally, for all left fa
tors i ′ and j ′ of F ,

(211) i ′ G ′ j ′ = 〈∪ i,j : i ′=γ.i ∧ j ′=γ.j : i FG.E j〉

where the dummies i and j range over left fa
tors of E .

The graph G ′
a
ts as an intermediary between the fa
tor graph of E and the fa
tor

graph of F . We begin by relating G ′
to the maximal 
onstant+linear approximation,

Cmax.F _∪ Lmax.F , to the fa
tor matrix of the event F . Spe
i�
ally:

Lemma 212

G ′
_⊆ Cmax.F _∪ Lmax.F .

Proof

G ′
_⊆ Cmax.F _∪ Lmax.F

= { de�nition: (210) }

Sel.γ⊗FG.E⊗ (Sel.γ)∪ _⊆ Cmax.F _∪ Lmax.F

⇐ { γ is a surje
tive fun
tion onto the set of left fa
tors of F ;

so, by (32) and (30), Sel.γ⊗ (Sel.γ)∪ = IL.F

monotoni
ity of matrix produ
t }

FG.E _⊆ (Sel.γ)∪⊗ (Cmax.F _∪ Lmax.F)⊗Sel.γ .

Continuing with the right side of the above inequality, we have:

(Sel.γ)∪⊗ (Cmax.F _∪ Lmax.F)⊗Sel.γ

= { de�nition of Cmax.F _∪ Lmax.F (see theorem 158)

lemma 114 }

(Sel.γ)∪⊗ (Sel.γ⊗ |E|⊗ (Sel.γ)∪ _∩ Mat.(T∪{ε}))⊗Sel.γ

= { Sel.γ is a 
onstant matrix, length 
onsiderations }

((Sel.γ)∪⊗Sel.γ⊗ |E|⊗ (Sel.γ)∪⊗Sel.γ) _∩Mat.(T∪{ε})

_⊇ { γ is a total fun
tion with domain the set of left fa
tors of E ;
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so, by (33), (Sel.γ)∪⊗Sel.γ _⊇ IL.E

monotoni
ity of matrix produ
t and interse
tion }

|E| _∩Mat.(T∪{ε})

_⊇ { by de�nition (see theorem 158), FG.E _⊆ |E| _∩Mat.(T∪{ε}) }

FG.E .

Combining the two 
al
ulations, the proof is 
omplete.

✷

Lemma 212 exploits the surje
tivity of γ to bound G ′
from above. Now we exploit

its totality to bound it from below. We have:

Lemma 213

(FG.F)∗ = Sel.γ⊗ (FG.E)∗⊗ (Sel.γ)∪ _⊆ (G ′)∗ .

Proof

(G ′)∗

= { de�nition: (210) }

(Sel.γ⊗FG.E⊗ (Sel.γ)∪)∗

_⊇ { γ is a total fun
tion of type L.F←L.E , lemma 36 }

Sel.γ⊗ (FG.E)∗⊗ (Sel.γ)∪

= { FG.E is the fa
tor graph of E ,

so (FG.E)∗ is the fa
tor matrix of E }

Sel.γ⊗ |E|⊗ (Sel.γ)∪

= { theorem 114 }

|F|

= { FG.F is a starth root of |F| }

(FG.F)∗ .

✷

Corollary 214

(FG.F)∗ = (G ′)∗ = |F| .

It follows that FG.F _⊆G ′
and the rank of G ′

is at least the rank of FG.F .
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Proof From lemmas 213 and 212 (and monotoni
ity of the star operator), we have

(FG.F)∗ _⊆ (G ′)∗ _⊆ (Cmax.F _∪ Lmax.F)
∗ .

But FG.F and Cmax.F _∪ Lmax.F are both starth roots of |F| . (See theorem 158 .) So all

of (FG.F)∗ , (G ′)∗ and (Cmax.F _∪ Lmax.F)
∗
are equal to |F| . It follows that FG.F _⊆G ′

be
ause FG.F is the least starth root of |F| (theorem 158). That the rank of FG.F is

at most the rank of G ′
is a simple appli
ation of theorem 207.

✷

Lemma 215 G ′
is pathwise homomorphi
 to FG.E . Hen
e, the rank of FG.E is at

least the rank of G ′
.

Proof Referring to the de�nition of pathwise homomorphism (de�nition 208), we

instantiate G to FG.E and the fun
tion f to γ ; G ′
is as in (210). The fun
tion γ is,

indeed, a total, surje
tive fun
tion from the left fa
tors of E (the node set of FG.E ) to

the left fa
tors of F (the node set of G ′
), as proved in theorem 106. This is part (a) of

the de�nition. Part (b) is established as follows:

(Sel.γ)∪⊗G ′⊗Sel.γ

= { (210) }

(Sel.γ)∪⊗Sel.γ⊗FG.E⊗ (Sel.γ)∪⊗Sel.γ

_⊇ { γ is total, i.e. (Sel.γ)∪⊗Sel.γ _⊇ IL.E }

FG.E .

Part (
) is established as follows.

(G ′)∗

= { 
orollary 214 }

(FG.F)∗

= { lemma 213 }

Sel.γ⊗ (FG.E)∗⊗ (Sel.γ)∪ .

(That is, we have established an equality rather than just an in
lusion.) This 
ompletes

the veri�
ation of all three parts of the de�nition of pathwise homomorphism.

Applying M
Naughton's theorem (theorem 206) we 
on
lude that the rank of FG.E

is at least the rank of G ′
.

✷



144

Theorem 216 The rank of the fa
tor graph of an event is at least the rank of the

fa
tor graph of any fa
tor of the event.

Proof Suppose E is an event and F is a fa
tor of E . Let G ′
be as de�ned in (210),

let FG.F be the fa
tor graph of F and let FG.E be the fa
tor graph of E . By lemma

215, the rank of FG.E is at least the rank of G ′
and, by 
orollary 214, the rank of G ′

is at least the rank of FG.F . The theorem follows by transitivity of the at-least relation.

✷

9 Closure Algorithm

In this se
tion we present a 
losure algorithm for determining the fa
tor matrix of a

regular event that 
onstru
ts a regular expression for the event with star-height at most

the rank of the fa
tor graph of the event. We provide examples that demonstrate that

the star-height may be stri
tly less than the rank of the fa
tor graph. We also provide

an example that shows that the algorithm does not always yield a regular expression of

minimal star-height.

Aside The starting point for our 
losure algorithm is the fa
tor graph of the given

language. This is a better starting point than Conway's best 
onstant+linear approxi-

mation to the fa
tor matrix be
ause, in general, the 
y
le rank of the fa
tor graph may

be stri
tly smaller than the 
y
le rank of the best 
onstant+linear approximation. This

is demonstrated by �g. 15 whi
h depi
ts both the best 
onstant+linear approximation

to the fa
tor matrix of a∗a (assuming alphabet {a} ) and the fa
tor graph of a∗a .

a a

a a

εε,a

Figure 15: Best 
onstant+linear approximation (left) and fa
tor graph (right) of a∗a .

The best 
onstant+linear approximation has 
y
le rank 2 whereas the fa
tor graph

has 
y
le rank 1 . End of Aside

Suppose G is a graph with at least two nodes. Suppose we split the nodes of G into

two distin
t subsets M and N , say. This splits G into four subgraphs of dimension

M×M , M×N , N×M and N×N . Let these be denote by a , b , c and d , respe
tively.

Suppose we split G∗
in the same way into four subgraphs of dimension M×M , M×N ,
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N×M and N×N and denote them by A , B , C and D . That is, suppose

[

a b

c d

]∗

=

[

A B

C D

]

Then

B = A ·b ·d∗

C = d∗ ·c ·A

D = d∗ + d∗ · c ·A ·b ·d∗

An elimination method would use the formula

A = (a + b ·d∗ · c)∗

to 
omplete the set of equations. It is the use of this formula that gives rise to nested

star terms in the resulting regular expressions

10

. If we 
an use an alternative means of


al
ulating A then we may be able to do better.

This is indeed the 
ase when G is the fa
tor graph of an event E and A is the

fa
tor matrix of a subfa
tor F of E . In that 
ase, let G ′
be the fa
tor graph of F .

Then A=(G ′)∗ . And, of 
ourse, this pro
ess 
an be applied re
ursively both to the


al
ulation of (G ′)∗ and to the 
al
ulation of d∗
.

9.1 An Example

Let us show how this is done. Fig. 16 is the fa
tor graph of T ∗abaab where T = {a,b} ,

omitting inadmissible nodes. It is the re
ogniser that underlies the Knuth-Morris Pratt

algorithm [KMP77℄ when used to sear
h for o

urren
es of the pattern abaab in a text

11

.

The \ba
kbone" of the re
ogniser is formed by the edges labelled in order from left to

right by the su

essive symbols of the pattern. The edges labelled by the empty word a
t

as \failure" transitions: when a symbol in the text fails to mat
h a symbol in the pattern,

the empty-word transitions are followed until a mat
hing transition be
omes possible

[BL77, Ba
16℄. Even though some edges are labelled by the empty word, the re
ogniser

is still \deterministi
" in the sense that at no stage is there a 
hoi
e of transition and

nor is there ambiguity in when a word has been re
ognised.

10

We assume that when d is a 1×1 matrix with entry ∅ , the fa
t that ∅∗ is the unit of produ
t is

exploited so that b ·d∗ · c is simpli�ed to b·c .
11

For more details of Aho and Corasi
k's algorithm, see [BL76, BL77℄. Essentially, given a �nite set of

words W over alphabet T , their algorithm 
omputes the fa
tor graph of T∗·W . But there is a slight


ompli
ation: there is a left-to-right bias in the Aho-Corasi
k algorithm. So, to make the 
orresponden
e

pre
ise, it is ne
essary to append a distinguishing terminal symbol to ea
h word in W.
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a b a a

b

ε
ε

1 2 3 4 5

ε

ε

Figure 16: Fa
tor Graph of T ∗abaa (omitting inadmissible node).

The 
y
le rank of �g. 16 is 2 . That is, if we use an elimination te
hnique to 
ompute

its 
losure, the regular expression we obtain for T ∗abaa would have star-height at least

2 . It would be a mu
h more 
omplex expression, making it diÆ
ult to re
ognise that it

denotes the same language! The nodes in �g. 16 have been numbered in the order that

we intend to eliminate them. We now show how we 
an re
over the expression T ∗abaab

from the graph by exploiting theorem 98.

Obviously, T ∗
is a fa
tor of T ∗abaa . Also obvious in �g. 16 is that T ∗

is the set

of words that spell (sequen
es of) transitions from node 1 to itself. That is, the fa
tor

matrix of T ∗
is the submatrix of the fa
tor matrix of T ∗abaa identi�ed by the single

node 1 . In other words, the fa
tor matrix of T ∗
is the (1, 1) th entry in the fa
tor matrix

of T ∗abaa . Its fa
tor graph is shown in �g. 17.

1

a,b

Figure 17: Fa
tor Graph of T ∗
.

The remaining left fa
tors of T ∗abaa are T ∗a , T ∗ab , T ∗aba , and T ∗abaa ; their

fa
tor graphs are the subgraphs of �g. 16 de�ned by the subsets {1,2} , {1,2,3} {1,2,3,4} ,

{1,2,3,4,5} , respe
tively, of the nodes of the graph.

Below we show the submatri
es of the fa
tor matrix of T ∗abaa obtained by 
om-

puting the fa
tor matri
es of T ∗
, T ∗a , T ∗ab , T ∗aba , and T ∗abaa in turn, as detailed

above. From the se
ond stage onwards, the matrix A is the fa
tor matrix that has just

been 
omputed. One simpli�
ation has been made in the entries: the fa
t that the empty

word (or, stri
tly, the set 
ontaining the empty word) is the unit of multipli
ation has

been exploited. For example, the entry T ∗a in the se
ond matrix is a simpli�
ation of

εT ∗a .
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[

T ∗

]

[

T ∗ T ∗a

T ∗ ε+ T ∗a

]







T ∗ T ∗a T ∗ab

T ∗ ε+T ∗a (ε+T ∗a)b

T ∗ T ∗a ε+T ∗ab

















T ∗ T ∗a T ∗ab T ∗aba

T ∗ ε+T ∗a (ε+T ∗a)b (ε+ T ∗a)ba

T ∗ T ∗a ε+T ∗ab (ε+ T ∗ab)a

T ∗ T ∗a (ε+T ∗a)b ε + (ε+T ∗a)ba

























T ∗ T ∗a T ∗ab T ∗aba T ∗abaa

T ∗ ε+T ∗a (ε+T ∗a)b (ε+ T ∗a)ba (ε+ T ∗a)baa

T ∗ T ∗a ε+T ∗ab (ε+ T ∗ab)a (ε+ T ∗ab)aa

T ∗ T ∗a (ε+T ∗a)b ε + (ε+T ∗a)ba (ε + (ε+ T ∗a)ba)a

T ∗ ε+T ∗a (ε+T ∗a)b ε + (ε+T ∗a)ba ε + ((ε+T ∗a)baa)















Of 
ourse, it is only the �rst row that we are interested in. All the other entries are

in
luded so that the reader 
an see that none has star-height greater than 1 . If the

word abaa is lengthened, the star-height of the resulting regular expressions will not

in
rease and all the entries in the �rst row will be what one would wish them to be.

Indeed, for any word w , all fa
tors of T ∗w have star-height 1 and our algorithm will


ompute appropriate regular expressions. However, the 
y
le-rank of the fa
tor graph of

T ∗w in
reases with the length of the word w and 
an have unlimited value.

9.2 The Algorithm

In this subse
tion, we formulate an algorithm for 
al
ulating the fa
tor matrix |E| for a

given regular language E as the re
exive, transitive 
losure of the fa
tor graph of E . The

algorithm is guaranteed to yield a regular expression denoting E that has star-height at

most the 
y
le rank of the fa
tor graph of E and, as our examples illustrate, may have

smaller star-height.

Using the fa
t that the left fa
tors of E are in one-to-one 
orresponden
e with the

nodes of its fa
tor graph, we deliberately 
onfuse the two. So, if i is a left fa
tor of E ,

we sometimes refer to \node i " of the fa
tor graph of E .



148

Assume that G is the fa
tor graph of event E . (The inadmissible nodes 
an, of


ourse, be ignored if so desired.) Re
all that the set of \nodes" of G is the set L.E of

left fa
tors of E . Re
all from se
tion 7.1 that S.E denotes the powerset algebra with


arrier set 2SM.E
and underlying monoid (SM.E , ◦ , 1 ), where SM.E is the synta
ti


monoid of E .

Step 0 Constru
t the synta
ti
 monoid SM.E of E . Constru
t the fa
tor graph G of

E . Constru
t ζ
♭

c.G (the representation of ea
h entry of G as a set of c -
lasses

of E ). Cal
ulate (ζ
♭

c.G)∗ in the algebra ML.E(S) . Use (ζ
♭

c.G)∗ to 
onstru
t the

\Hasse diagram" of the fa
tors of E : the re
exive-transitive redu
tion of the set

of entries in (ζ
♭

c.G)∗ ordered by the subset relation.

Step 1 For ea
h pair of nodes i and j of G (i.e pair of left fa
tors of E ), use lemma

86 and de�nition 89 to 
onstru
t the set of nodes N.(i, j) that forms a submatrix

of |E| that is the fa
tor matrix of i\j .

The event i\j is the (i, j) th entry in the fa
tor matrix of E . Sin
e fa
tors typi
ally

o

ur repeatedly in the fa
tor matrix, several di�erent submatri
es of the fa
tor

matrix may be identi�ed in this way for the same event. This is intentional.

For the purposes of exe
uting this step, (ζ
♭

c.G)∗ (
al
ulated in step 0) should be

used.

Step 2 The purpose of this step is to 
hoose a subset of the set of pairs (i, j) that

represents all the distin
t submatri
es of the the fa
tor matrix of E that are fa
tor

matri
es of the fa
tors of E . The step also 
onstru
ts a partial ordering of the


hosen subset.

Consider the set of sets of nodes 〈∪ i,j :: {N.(i, j)}〉 . This is partially ordered by the

subset relation. The greatest element of the set is the set of all nodes of G (sin
e

G is the fa
tor graph of E , whi
h equals l\r : see (72)).

De�ne the preorder � on pairs of nodes (i, j) by

(i, j)� (k, l) ≡ N.(i, j)⊆N.(k, l) .

Note that

(i, j)� (k, l) ∧ (k, l)� (i, j) ≡ N.(i, j)=N.(k, l) .

That is, two pairs of nodes are equivalent under the preorder if they have the \same"

fa
tor matrix. In this 
ase, we say that the fa
tors i\j and k\l are inseparable.

For ea
h set of nodes M in the set 〈∪ i,j :: {N.(i, j)}〉 , 
hoose one pair (i, j) su
h that

M=N.(i, j) ∧ i∈M ∧ j∈M . (The se
ond and third 
onjun
ts are required be
ause
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of the 
ompli
ation of repeated entries in the fa
tor matrix. It is nevertheless always

possible to 
hoose at least one su
h pair. Otherwise, the 
hoi
e is arbitrary.)

Let P denote the fun
tion that is de�ned in this way. That is, P is 
hosen so that

M=N.(P.M) . Let Im.P denote the image set of P . That is,

Im.P = 〈∪ i,j :: {P.(N.(i, j))}〉 .

By this 
onstru
tion, the set Im.P is partially ordered (as opposed to pre-ordered)

by the � relation.

Step 3 Constru
t the fa
tor graphs of i\j for ea
h pair (i, j) in Im.P . The fa
tor graphs

should be 
onstru
ted in topologi
al order a

ording to the relation � . That is,

fa
tor graphs are 
onstru
ted for ea
h of the sets N.(i, j) in order of in
reasing

size.

Step 4 Constru
t the fa
tor matrix of i\j for ea
h pair (i, j) in Im.P in the following

way.

We use the variable Done to re
ord the set of pairs (i, j) for whi
h a regular

expression denoting i\j has already been 
omputed. Initially Done :=∅ . We also

use the variable A to re
ord the fa
tor matrix that has been 
omputed thus far.

Initially A is the matrix of dimension ∅×∅ .

Now the following step is exe
uted in (topologi
al) order for ea
h pair (i, j) in

Im.P .

Suppose p=(i, j) . Let M ′ :=N.p and let G ′
be the fa
tor graph of i\j . Let

M := N.p∩Done . Note that M ′
is the set of nodes of G ′

and M is a proper

subset of M ′
. Thus the graph G ′

is split into four subgraphs of dimension

M×M , M×(M ′−M) , (M ′−M)×M and (M ′−M)×(M ′−M) . Let these be de-

note by a , b , c and d , respe
tively. Suppose we split (G ′)∗ in the same

way into four subgraphs of dimension M×M , M×(M ′−M) , (M ′−M)×M and

(M ′−M)×(M ′−M) . The submatrix of (G ′)∗ of dimension M×M has already

been 
omputed; it is the matrix A . Suppose we denote the remaining three sub-

matri
es by B , C and D . That is, suppose

[

d c

b a

]∗

=

[

D C

B A

]

Using (ζ
♭

c.G)∗ and the Hasse diagram of the fa
tors of E , some of the entries in

B , C and D 
an be expressed as the set union of entries in the matrix A . If so,
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enter these expressions in the appropriate pla
e. For the remaining entries in B ,

C and D , use the formulae

B = A⊗b⊗d∗

C = d∗⊗c⊗A

D = d∗
_∪ d∗⊗c⊗A⊗b⊗d∗


ombined with a standard elimination method to 
al
ulate remaining elements of

d∗
. Although not relevant to the star-height of the resulting regular expressions, it

is 
onvenient and pra
ti
al to exploit the fa
t that ε is the unit of produ
t at the

same time. The �nal step in this iterative pro
edure is to exe
ute the assignment

Done :=M ′
and to assign to A the value of the fa
tor matrix that has just been


omputed.

The �nal value of A is the required fa
tor matrix. The loop invariant is that A

is the fa
tor matrix of i\j .

The fa
tor graph of an event E might not be strongly 
onne
ted, in whi
h 
ase the

a
y
li
 stru
ture of the se
tions of the graph should be exploited. We 
onje
ture that

ea
h se
tion of the fa
tor graph of E is the fa
tor graph of a fa
tor of E but we have,

as yet, no proof.

9.3 Detailed Example

Consider the event denoted by the regular expression a (a+b)∗ b (a+b)∗ a . We also use

the numeral 3 to denote this event. (So 3 does not denote a number in just the same

way that the symbol + in a regular expression does not denote addition of numbers.)

Step 0 is to 
onstru
t the fa
tor graph and semigroup of the event 3 and then to


onstru
t the sets of nodes that form the fa
tor graphs of fa
tors of 3 . The synta
ti


monoid of the event is depi
ted in �g. 18.

Ea
h node of �g. 18 is labelled by an element of the c -
lass that the node represents.

The produ
t of two c -
lasses is determined by 
hasing paths. For example, the produ
t

of the c -
lass of ab and the c -
lass of ba is the c -
lass of aba be
ause the path that

begins at the node labelled ab and spells ba ends at the node labelled aba .

In anti
ipation of step 3, whi
h requires the 
al
ulation of the fa
tor graphs as well

as the node sets, Fig. 19 shows the fa
tor graphs of all the fa
tors of the event 3 . In the

�gures, the nodes are labelled by the numerals 1 , 2 , 3 and 4 . As in se
tion 9.2, we


onfuse the terms \node" and \left fa
tor" so that these four numerals also denote the

left fa
tors of the event 3 .
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a

b

a

a

a

b a

b
b

a

ε

a ab aba

b ba bab

b

b

a

Figure 18: Synta
ti
 Monoid of a (a+b)∗ b (a+b)∗ a .

The topmost graph is the fa
tor graph of the event 3 itself. The 
onventional method

of indi
ating that it is a re
ogniser has also been indi
ated: the event 3 is the set of

words that spell a path from the node 1 (the \start" node indi
ated by an unlabelled

arrow) to the node 3 (the \�nish" node indi
ated by a double 
ir
le). The set of words

that spell a path from node i to node j is i\j , whi
h is the (i, j) th element of the fa
tor

matrix of the event 3 . This �ts with Conway's theorem on the fa
tor matrix: for the

event 3 , the left fa
tor l is the event 1 and the left fa
tor r is the event 3 . (See (72)

and (75).) Moreover, 1= 1\1 , 2= 1\2 , 3= 1\3 and 4=1\4 .

Step 1 is a
hieved by 
onstru
ting the table in �g. 20: it gives the relation between

ea
h graph and the fa
tors of whi
h the graph is the fa
tor graph. For example, the

fourth graph from the top has nodes 2 and 4 and is the fa
tor graph of the event 2\4 ,

as shown in the fourth row of the table. Note that all the fa
tors in the right 
olumn

of the last two rows are equal. As forewarned, they nevertheless de�ne two distin
t sets

of nodes. See below for how the synta
ti
 monoid is used to 
al
ulate the 
olle
tion of

fa
tor graphs.

The fa
tor matrix of the event 3 , where ea
h entry is represented by the 
orrespond-

ing event in the powerset algebra of the synta
ti
 monoid, is displayed in �g. 21. (This is

what we 
alled (ζ
♭

c.G)∗ in the algorithm.) Ea
h element of the synta
ti
 monoid is de-

noted by a word of shortest length in the 
orresponding c -
lass ; the symbol S denotes

the set of all elements of the synta
ti
 monoid.

It is easy to 
al
ulate the set of c -
lasses that 
omprise ea
h fa
tor using representa-

tive elements of the c -, l - and r -
lasses; on
e 
onstru
ted su
h a representation enables
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ε ε ε

a b a
1243

ε ε

a b
a243

ε ε
a

b a
124

ε
a a

b
24

3
ε

a
b4

ε

a
b 2 1

a+b 4 a+b2

Figure 19: Fa
tor graphs of the fa
tors of a (a+b)∗ b (a+b)∗ a .

straight-forward 
al
ulation of fa
tor graphs of fa
tors. In this 
ase, the Hasse diagram

of the fa
tors does not help to simplify regular expressions so we do not display it. (The

fa
t that S o

urs repeatedly is the only fa
t that is exploited.)

Fig. 22 depi
ts the subset ordering on subsets of the nodes that de�ne fa
tor graphs.

Step 2 requires us to 
hoose one pair (i, j) for ea
h of these fa
tor graphs: the transition

graph formed from the fa
tor graph by designating node i as start node and node j as

�nish node is a re
ogniser of i\j . Labels of the form i\j have been added to ea
h node.

Step 3 (the 
onstru
tion of the fa
tor graphs) has already been 
ompleted so the

�nal step is to 
al
ulate regular expressions denoting the entries in the fa
tor matrix.

Applying the algorithm as pres
ribed, we get the following sequen
e of matri
es.

First, we 
ompute the fa
tor matri
es of 4\4 and 2\2 (whi
h happen to be equal).
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Nodes, i.e. set of left fa
tors of 3 Fa
tor graph of these fa
tors of 3

{1,2,3,4} {1\3}

{2,3,4} {2\3}

{1,2,4} {1\4}

{2,4} {2\4}

{3,4} {4\3 , 3\3}

{1,2} {1\2 , 1\1}

{4} {4\4 , 3\4}

{2} {2\2 , 3\2 , 4\2 , 2\1 , 3\1 , 4\1}

Figure 20: Nodes and Fa
tor Graphs











{ε,a,ab,aba} {a,ab,aba} {aba} {ab,aba}

S S {ba,aba} {b,ab,ba,aba,bab}

S S {ε,a,ba,aba} S

S S {a,ba,aba} S











Figure 21: Fa
tor Matrix Expressed As Sets Of c -Classes

The 
omputed expression is also entered wherever 4\4 (or equally 2\2 ) o

urs in fa
tor

matrix. (It is the entry \S " in the matrix of sets of c -
lasses above.) We obtain the

following, where a question mark indi
ates an entry that has not yet been 
omputed.











? ? ? ?

(a+b)∗ (a+b)∗ ? ?

(a+b)∗ (a+b)∗ ? (a+b)∗

(a+b)∗ (a+b)∗ ? (a+b)∗











Se
ond, we 
ompute missing entries in the fa
tor matri
es of 2\4 , 4\3 (and 3\3 ) and

1\2 (and 1\1 ):










ε+a(a+b)∗ a(a+b)∗ ? ?

(a+b)∗ (a+b)∗ ? (a+b)∗ b (a+b)∗

(a+b)∗ (a+b)∗ ε+ (a+b)∗a (a+b)∗

(a+b)∗ (a+b)∗ (a+b)∗ a (a+b)∗











Third, we do the same for the fa
tor matri
es of 2\3 and 1\4 :










ε+a(a+b)∗ a(a+b)∗ ? a(a+b)∗ b(a+b)∗

(a+b)∗ (a+b)∗ (a+b)∗b(a+b)∗a (a+b)∗b(a+b)∗

(a+b)∗ (a+b)∗ ε+ (a+b)∗a (a+b)∗

(a+b)∗ (a+b)∗ (a+b)∗ a (a+b)∗










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1\3
{1,2,3,4}

2\3

4\4

2\4

2\2
{2}

4\3

1\4

1\2
{1,2}

{1,2,3}

(2,4}{3,4}

{2,3,4}

{4}

Figure 22: Ordering of (Sub)Fa
tor Graphs

Finally, we 
omplete the one remaining entry in the fa
tor matrix of 1\3 :










ε+a(a+b)∗ a(a+b)∗ a(a+b)∗b(a+b)∗a a(a+b)∗ b(a+b)∗

(a+b)∗ (a+b)∗ (a+b)∗b(a+b)∗a (a+b)∗b(a+b)∗

(a+b)∗ (a+b)∗ ε+ (a+b)∗a (a+b)∗

(a+b)∗ (a+b)∗ (a+b)∗ a (a+b)∗











In this way we have 
al
ulated the regular expressiona(a+b)∗b(a+b)∗a denoting the

event 1\3 .

9.4 Counterexample

Our algorithm does not always yield a regular expression of minimal star-height. A

ne
essary 
ondition for it to do so is that, for all regular languages E all of whose

admissible

12

fa
tors are inseparable from E , the star-height of E is equal to the rank

12

Re
all that T∗
and ∅ are typi
ally fa
tors of E . A fa
tor is admissible if it equals U\E/V for some

events U and V both of whi
h are di�erent from ∅ . The empty set, ∅ , is thus inadmissible ex
ept for

when it equals E ; on the other hand, T∗
may or may not be admissible.
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of the fa
tor graph of E . This se
tion presents an example for whi
h this is not the


ase. The example was dis
overed by testing our algorithm on all languages that others

had investigated as part of their own resear
h on the problem; the example below was

introdu
ed by M
Naughton [M
N69℄.

The language denoted by the regular expression (b+aa+ac+aaa+aac)∗ has star-

height one. Its ma
hine and anti-ma
hine are shown in �g. 23.

b b

a a

a

b,c a
c

b

a

c

a,c

Figure 23: Ma
hine and Anti-Ma
hine

Its fa
tor graph (omitting inadmissible nodes), shown in �g. 24 has 
y
le-rank 2 and

all admissible fa
tors are inseparable. (The nodes have been labelled in order to ease


omparison with its fa
tor matrix.)

a

a

b

c

ε

ε

ε

ε

1 2

3 4

Figure 24: Fa
tor Graph

This 
an be veri�ed by 
omparing entries in the fa
tor matrix. For this purpose, we

use the synta
ti
 monoid of the language shown in �g. 25.

The fa
tor matrix is shown in �g. 26 (omitting inadmissible fa
tors, as usual). The

shortest word in ea
h c -
lass is 
hosen as the representative element of the c -
lass.
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b

a

a

b,c a
c

b

a

a

b,c a
c

a

c

a

b

a

a

b,c a
c

b

b

b

c a

Figure 25: Synta
ti
 Monoid

From this matrix, it is possible to determine that all admissible fa
tors are inseparable.









































{ ε,a,aa,ac,aca} {aa,ac} {a,aa,aca} {aa}

{ ε,a,aa,ac,aca,

b,ba,baa}

{ ε,aa,ac,

b,baa}

{a,aa,aca,

ba,baa}

{aa,

baa}

{ ε,a,aa,ab,ac,aca,

c,ca,caa}

{a,aa,ab,ac,

c,caa}

{ ε,a,aa,aca,

ca,caa}

{a,aa,

caa}

{ ε,a,aa,ab,ac,aca,

b,ba,baa,

c,ca,caa}

{ ε,a,aa,ab,ac,

b,baa,

c,caa}

{ ε,a,aa,aca,

ba,baa,

ca,caa}

{ ε,a,aa,

baa,

caa}









































Figure 26: The Fa
tor Matrix

Sin
e all (admissible) fa
tors are inseparable, our 
losure algorithm redu
es to a stan-

dard elimination te
hnique; the star-height of the expression 
omputed by the algorithm

is thus at least the 
y
le-rank of the graph (whatever the order of elimination of nodes),

whi
h is greater than the star-height of the language. The 
on
lusion is that our algo-
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rithm is not guaranteed to 
ompute a regular expression of minimal star-height.

10 The “Universal Automaton”

Conway's \best" 
onstant+linear approximation to a regular language E , denoted above

by Cmax.E _∪ Lmax.E , has been studied by Lombardy and Sakarovit
h [LS08℄. It is

fundamental to what they 
all the \universal automaton". There are many overlaps

between their work and that in my thesis. In parti
ular, they give the name \�e
or
h�e" to

what I 
alled the \fa
tor graph". This se
tion dis
usses in some detail the overlap and the

di�eren
es between Conway's 
ontribution, my own 
ontribution and the 
ontribution

of Lombardy and Sakarovit
h.

Before doing so, it is ne
essary to brie
y 
larify the 
ontribution made by Conway.

In addition, it is ne
essary to make a number of detailed 
omments on the terminology

used by Lombardy and Sakarovit
h. (The di�eren
es in terminology 
ompli
ate the


omparison we wish to make.)

Although I have always attributed the introdu
tion of Cmax.E _∪ Lmax.E to Conway,

he did not introdu
e it expli
itly. Conway's 
on
ern was with the general notion of the

\best 
onstant+linear" approximation to the event E by a set of events |the image

set of a fun
tion ζ| whi
h we denote above by Cmax(E,ζ) _∪Lmax(E,ζ) . The spe
i�



ase that ζ is the (lifted) identity fun
tion |that is, the set of approximations is the

alphabet of E| is a very obvious instan
e. No doubt, Conway did not 
onsider it worth

mentioning for the simple reason that the \best approximation" to E is then |also very

obviously| E itself. It is be
ause it is a very obvious instan
e that I 
hose to attribute

it to Conway in my thesis without providing further explanation.

10.1 LS-style “Automaton”

The \universal automaton" [LS08℄ is essentially Lmax.E together with adaptations of

the start and �nal states of the automaton that in
orporate Cmax.E . As Lombardy and

Sakarovit
h explain, the \universal automaton" is the topi
 of other publi
ations that

make no mention of Conway's fa
tor theory and, indeed, its \unversality" (whi
h we

dis
uss shortly) is 
ertainly not mentioned by Conway. Nevertheless, to anyone familiar

with both Conway's theory and the publi
ations 
ited by Lombardy and Sakarovit
h,

the 
onne
tion is obvious. The pre
ise details are, however, tri
ky to explain be
ause

Lombardy and Sakarovit
h have a very 
urious de�nition of an \automaton" (in 
ommon

with the papers that they 
ite).

In my thesis and in this paper, I have used the terminology \transition graph", in a
-


ordan
e with the terminology used by M
Naughton [M
N67, M
N69℄ and many others;

a \transition graph" is exa
tly what Conway 
alls a \
onstant+linear matrix". Together
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with a set of start states and a set of �nal states, a transition graph de�nes a re
ogniser

of a language. The entries in the matrix (the edges of the graph) are its \transitions".

Importantly, a transition graph allows empty-word transitions: the empty-word transi-

tions form the \
onstant" part of the graph. This is of great pra
ti
al importan
e: in

the Knuth-Morris-Pratt pattern-mat
hing algorithm [KMP77℄ (and Aho and Corasi
k's

generalisation [AC75℄), the empty-word transitions are the failure transitions. Lombardy

and Sakarovit
h [LS08℄ use the terminology \automaton" but, 
ontrary to the 
onven-

tion that I am used to, give it a very 
urious de�nition (whi
h, as we shall see, they

do not adhere to). A

ording to them, an automaton 
omprises a linear matrix, a set

of start states and a set of �nal states. (Formally, [LS08, p.2℄ states that a transition

of an automaton is an element of Q×A×Q where Q is the set of states and A is the

alphabet.) Below, I 
all this an LS-style automaton.

Given a transition graph C _∪ L , where C is its 
onstant part and L is its linear

part, and appropriately de�ned sele
tors S and F for the start and �nal states (
onstant

matri
es of dimension N×11 where N is the set of nodes and 11 is a set with exa
tly

one element), the language re
ognised is

S∪⊗ (C _∪ L)∗⊗F .

(Stri
tly, the above is a matrix of dimension 11×11 and the language re
ognised is its

unique entry.) Using the star-de
omposition rules, this is equal to

(S∪⊗C∗)⊗ (L⊗C∗)∗⊗F

and to

S∪⊗ (C∗⊗L)∗⊗ (C∗⊗F) .

In this way, the 
ombination of a transition graph, a set of start states and a set of

�nal states 
an be transformed into an LS-style automaton: either the set of start states

is augmented so that its sele
tor be
omes S∪⊗C∗
and the transition graph C _∪ L is

repla
ed by L⊗C∗
(whi
h is a linear matrix), or the set of �nal states is augmented so

that its sele
tor be
omes C∗⊗F and the transition graph C _∪ L is repla
ed by C∗⊗L

(whi
h is a linear matrix).

Now re
all that the re
exive-transitive 
losure of the transition graph Cmax.E _∪ Lmax.E

is the fa
tor matrix of E and E is the (l, r) th entry in the fa
tor matrix. Re
all also

that

Lmax.E = (Cmax.E)
∗⊗Lmax.E = Lmax.E⊗ (Cmax.E)

∗ .

So, we have that

E = l∪⊗ (Cmax.E _∪ Lmax.E)
∗⊗ r
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where l is the sele
tor matrix 
orresponding to the unique start state l and r is the

sele
tor matrix 
orresponding to the unique �nal state r and, also,

E = S∪⊗ (Lmax.E)
∗⊗F

where

S = ((Cmax.E)∪)
∗⊗ l

and

F = (Cmax.E)
∗⊗ r .

In this way, the 
ombination of the transition graph Cmax.E _∪ Lmax.E , start state l and

�nal state r 
orrespond to an LS-style automaton 
omprising the linear matrix Lmax.E ,

set of start states given by ((Cmax.E)∪)
∗⊗ l and set of �nal states given by (Cmax.E)

∗⊗ r .

The latter is what Lombardy and Sakarovit
h 
all the \universal automaton".

For an example, the reader is invited to 
ompare the \universal automaton" in [LS02,

�g. 2℄, whi
h has three start states, two �nal states, and eight edge labels of whi
h none

is the empty-word, with the fa
tor graph of �g. 12, whi
h has one start state, one �nal

state and six edge labels of whi
h two are the empty-word.

(Note that Lombardy and Sakarovit
h 
hoose to augment both the set of start states

and the set of �nal states, rather than one or the other. This is valid in this 
ase but

not in general. One reason for doing so is in order not to introdu
e a bias between left

and right. There may be other reasons too.)

This then is the basis for our assertion that Lombardy and Sakarovit
h's \universal

automaton" of a regular language E is essentially Conway's \best linear approximation"

Lmax.E together with adaptations of the start and �nal states of the automaton that

in
orporate Conway's \best 
onstant approximation" Cmax.E .

The \unversality" of the \universal automaton" is the property that there is a \mor-

phism" from any LS-style automaton that re
ognises any subset of E to Lmax.E . (A

pathwise homomorphism is a \morphism" but not ne
essarily the other way around.

Lombardy and Sakarovit
h [LS02, De�nition 3℄ 
all a pathwise homomorphism |as de-

�ned here rather than M
Naughton's de�nition| a \
onformal" morphism.)

Conway makes no mention of the \universality" problem. In my view, the pra
ti-


ality of the problem is seriously undermined by the 
urious de�nition of an LS-style

automaton. As mentioned several times above, the fa
tor graph of T ∗ · {w} , for a given

\pattern" w , de�nes a re
ogniser that is the basis of the Knuth-Morris-Pattern pattern-

mat
hing algorithm, but that re
ogniser is not an LS-style automaton. So the de�nition

ex
ludes the possibly best-known example of the pra
ti
al 
ontribution of automata the-

ory. I suspe
t that it 
an be shown that Cmax.E _∪ Lmax.E is \universal" relative to a
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de�nition of \automaton" that allows arbitrary transition graphs but leave that exer
ise

to the reader.

Lombardy and Sakarovit
h [LS08℄ do give some 
redit to Conway but (in my view)

do not do so to the extent that is properly merited. In se
tion 2.1 of their paper, for

example, they introdu
e \subfa
torisation", \fa
torisation", \left fa
tor", \right fa
tor",

et
., exa
tly in the way that Conway does but with no referen
e to Conway's book.

Several fa
ts about fa
tors due to Conway are stated but using un
onventional terminol-

ogy (for example, \left quotient" rather than Brzozowski's [Brz64℄ \derivative"). Later,

in se
tion 3.1, they introdu
e the fa
tor matrix but do not 
redit it to Conway; also,

their proposition 3.2 is an instan
e of a theorem stated by Conway [Con71, theorem 7,

p.31℄ (sin
e Cmax.E _∪ Lmax.E is an instan
e of Cmax(E,ζ) _∪Lmax(E,ζ) ). However, apart

from a brief referen
e to Conway in the introdu
tion (whi
h does attribute the \univer-

sal automaton" to Conway), there appears to be no further mention of Conway until

se
tion 6 when the approximation problem is introdu
ed. But there is no mention of

the fa
t that the \universal automaton" is obtained by spe
ialising Conway's theory of

approximations.

It has to be said, of 
ourse, that Conway gives no referen
es whatsoever! The prefa
e

of [Con71℄ serves as an a
knowledgement and 
laims that his work dates from 1966. But

insuÆ
ient information is given for anyone wishing to tra
e its sour
e.

10.2 Factor Graph = “Écorché”

Lombardy and Sakarovit
h [LS08℄ 
laim that the \�e
or
h�e" is due to Lombardy and 
ite

his 2001 PhD thesis (whi
h I have not read). It is obvious that it is identi
al to the fa
tor

graph that I introdu
ed in my 1975 PhD thesis and presented in 1977 at a 
onferen
e

on Automata, Languages and Programming [Ba
75, BL76, BL77℄. Some remarks are,

however, in order.

First, Lombardy and Sakarovit
h [LS08, De�nition 3.11℄ des
ribe the \�e
or
h�e" as an

(LS-style) \automaton". Yet they allow empty-word transitions: the set of transitions

is given as a set DL∪HL
, where L denotes the language (whi
h Conway and I denote

by E ), DL

orresponds to our Cmin.E and HL


orresponds to our Lmin.E . (They


all empty-word transitions \spontaneous transitions".) Thus an \�e
or
h�e" is not an

\automaton" a

ording to their own de�nition but is, indeed, a transition graph (as

it must be) a

ording to our de�nition. Se
ond, just as for the fa
tor graph, [LS08,

De�nition 3.11℄ de�nes an \�e
or
h�e" as having a unique start and a unique �nal state.

Yet the example that follows depi
ts the \�e
or
h�e" as having multiple start states: the

rightmost �gure of [LS08, Figure 7℄ has two start states. To add to the 
onfusion, the

leftmost �gure has a unique �nal state, and not two. Yet subsequent examples of the

\�e
or
h�e" depi
t both multiple start and multiple �nal states. See, for example, [LS08,
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Figure 11(
)℄ and [LS08, Figure 15℄.

Lombardy and Sakarovit
h's only use of the fa
tor graph appears to be as a more

informative way of depi
ting the \universal automaton", in the same way that a Hasse

diagram is used to depi
t a partial ordering on a �nite set. They do not study its

properties in the way that I did in my thesis; nor do they appear to re
ognise its relevan
e

to the star-height problem. For pure-group events, whi
h they also study in [LS02℄, the


y
le ranks of Cmin.E _∪ Lmin.E and Cmax.E _∪ Lmax.E are equal. So, when the sole

goal is to minimise star-height it makes no di�eren
e whi
h is used. Relative to other

measures of the 
omplexity of the regular expressions obtained, the use of the former is

far superior, but they 
hoose to use the latter. I suspe
t that, in 
ombination with their


urious de�nition of an \automaton", this is why their �gures do not 
omply with their

de�nition.

10.3 “Complex” and “complicated to compute”

Lombardy and Sakarovit
h introdu
e their paper by des
ribing the universal automaton

as follows.

It is large, it is 
omplex, it is 
ompli
ated to 
ompute.

I would dispute this, in parti
ular the 
laim that it is 
ompli
ated to 
ompute. As

pointed out above, the very pra
ti
al pattern mat
hing algorithms developed by Knuth,

Morris and Pratt [KMP77℄ and Aho and Corasi
k [AC75℄ boil down to 
omputing the

fa
tor graph of a simple regular language. These algorithms are ingenious but not 
om-

pli
ated.

In the general 
ase, the use of representative elements of l - and r - 
lasses of the

given language E in the pro
ess of 
al
ulating Cmax.E , Lmax.E and the fa
tor graph

of E makes the 
al
ulations very straightforward. Although Lombardy and Sakarovit
h

begin with Conway's 
hara
terisation of fa
tors as interse
tions of derivatives [LS08,

Proposition 2.1℄, they do appear to have re
ognised that fa
tors are unions of c -
lasses

[LS08, Proposition 3.5(iii) and Example 3.7℄ and that left fa
tors are unions of l -
lasses

[LS08, se
tion 4.1, paragraph pre
eding theorem 4.1℄. They do not, however, provide

any examples of how these fa
ts are exploited: [LS08, se
tion 4℄, entitled \Constru
tion

of the universal automaton", is devoid of examples.

The reality is that the hardest part of 
onstru
ting the fa
tor graph is the 
onstru
tion

of the ma
hine and anti-ma
hine. These are, indeed, non-trivial tasks (for example, the


onstru
tion of the ma
hine and anti-ma
hine involve identifying \similar" derivatives

of regular expressions [Brz64, De�nition 5.2℄) but they are tasks that are frequently

asked of students of automata theory and, on
e 
ompleted, the remaining tasks are

straight-forward manipulations of �nite sets. The beauty of the KMP algorithm (and
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Aho and Corasi
k's generalisation) is that it avoids the diÆ
ult task of 
onstru
ting the

appropriate ma
hine. It may therefore be the 
ase that 
onstru
ting the fa
tor graph of

other quite di�erent 
lasses of languages is similarly easy and of pra
ti
al importan
e.

Identifying the fa
tor graphs and fa
tor matri
es of the fa
tors of a language exploits

the synta
ti
 monoid of the language and thus adds an extra layer of 
omplexity to the


al
ulations (both in theory and in pra
ti
e, be
ause the number of c -
lasses may be an

exponential fun
tion of the number of l - or r -
lasses, and this bound is often attained).

Even so, although the 
al
ulations may be long and tedious, they are straightforward.

10.4 Pure-group Events

My work in 1972 and 1973 was strongly motivated by M
Naughton's algorithm [M
N67℄

for determining the star-height of a pure-group event (a language whose synta
ti
 monoid

is a group). Very roughly, his algorithm involves sear
hing a spa
e of transition graphs,

so-
alled µ -graphs, de�ned by sets of c -
lasses of the given language. The \universal

automaton" is a parti
ular example of a µ -graph. My 
onje
ture was that it would

be suÆ
ient to 
onsider just one graph rather than engage in a massive 
ombinatorial

sear
h of all µ -graphs. The step from Cmax.E _∪ Lmax.E to the fa
tor graph was an

obvious �rst step in exploring this 
onje
ture, and the se
ond step was to develop a

novel 
losure algorithm that fully exploits the algebrai
 properties of languages. This

strategy was supported by examining the example with whi
h M
Naughton ended his

paper: the example of modulo addition (in parti
ular addition modulo 6 ) that I have

used as a running example here. My 
onje
ture was that the fa
tor graph would suÆ
e

in all 
ases, and not just for pure-group events. But that 
onje
ture proved to be false

(see se
tion 9.4)! My disappointment was su
h that I did not return to the pure-group

events.

Lombardy and Sakarovit
h [LS02, LS08℄ do show that it suÆ
es to 
onsider just the

\universal automaton", but their algorithm still involves a 
ombinatorial sear
h. On

the basis of my, as yet limited, understanding of their paper, I strongly believe that the

algorithm presented above is guaranteed to 
onstru
t regular expressions of minimal star-

height for all pure-group events but I have not attempted to �nd a proof. The algorithm

is, however, likely to be of no pra
ti
al value sin
e regular expressions denoting pure-

group events are typi
ally very 
ompli
ated and, therefore, have little value.

11 Conclusion

This paper has been about revisiting the results �rst formulated by the author more

than forty years ago [Ba
75℄, exploiting an improved understanding of the underlying

theory. In the pro
ess, I have taken the opportunity to expand on and extend the theory.
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However, the primary 
ontribution is to present the theory in a 
al
ulational style, taking

full advantage of the experien
e I have gained in developing regular algebra in appli
ation

areas quite di�erent from regular languages.

I began this exer
ise after being asked to 
ontribute to a fests
hrift dedi
ated to

Jos�e Nuno Oliveira [Ba
16℄. Jos�e is a devotee of algebra and, in parti
ular, of Galois


onne
tions. So, to me, an obvious sour
e of material was my thesis: although I had

not been aware of the notion of a Galois 
onne
tion when 
ondu
ting the resear
h for

my PhD thesis (in 1972 and 1973), I began to re
ognise its relevan
e soon after the

publi
ation of Cousot and Cousot's [CC77, CC79℄ work on stati
 analysis. The relevan
e

be
ame fully 
lear to me in the late 1980s when I began resear
h on a relational theory of

datatypes. (The algebra of relations is a spe
ial 
ase of a regular algebra.) This led, for

example, to the development of a 
al
ulational theory of well-foundedness [DBvdW97℄.

But by then I was too o

upied with other developments to spare the time to revisit my

thesis in detail.

As already mentioned, mu
h of the 
ontent of this paper is a re-presentation of the

results published

13

forty years ago in my thesis. The proof-style is substantially di�erent

but 
on
epts and most theorems are un
hanged.

Adopting a di�erent proof-style has the advantage of o�ering a semi-independent


he
k on the vera
ity of the 
laimed results. I am pleased to say that I have not found

any errors in the thesis. (I had hoped that I might �nd an error in the example presented

in se
tion 9.4 demonstrating that I had been unable to solve the star-height problem.

However, that was not to be!)

A major novel 
ontribution of this paper is the exposition of Conway's theory of

approximations in se
tion 5. I felt it ne
essary to in
lude be
ause Conway's work appears

to be little understood but might o�er new insights on the star-height problem I also

wanted to use it as another example of Galois 
onne
tions | one that does not appear

to have been re
ognised even now, so long after the publi
ation of Conway's book.

Some of the examples have 
hanged | I have added additional examples but also

omitted some examples | but, more importantly, modern te
hnology

14

has enabled me

13

The meaning of the word \published" has 
hanged in the last forty years. Forty years ago, a PhD

thesis was regarded as a refereed publi
ation: theses were readily available via 
opyright libraries su
h as

the S
ien
e Museum Library in London (whi
h I used often); publi
ations in a journal 
ould take several

years to appear and it was vital to keep abreast of other theses in order to verify the originality of one's

own work. Nowadays, given the vastly greater number of 
onferen
es and journals (and the greater speed

of publi
ation), a thesis is unlikely to be regarded as a \publi
ation".

14

Forty years ago, a hand-written manus
ript was turned into a type-s
ript using a golfball type-writer.

Mathemati
al symbols and ordinary text were entered using di�erent \golf-balls". This was extremely

time-
onsuming and error-prone. In 
ontrast, this do
ument was prepared almost entirely on-s
reen using

Math∫pad [BVW97℄, a system that enables WYSIWYG-like editing of mathemati
al do
uments whi
h are

then exported into L

A

T

E

X.



164

to expand in mu
h more detail on the examples I present. For instan
e, the running

example of modulo addition �rst introdu
ed in example 16 is a substantial ampli�
ation

of the presentation in my thesis.

The 
losure algorithm presented in se
tion 9 has been improved: e�e
tively, the

algorithm proposed in my thesis involved sear
hing for an optimal total ordering of the

sets in the set 〈∪ i,j :: {N.(i, j)}〉 ; instead, the algorithm presented here pro
esses these

sets in topologi
al order, making more use of the synta
ti
 monoid to optimise the regular

expressions that are obtained. The primary 
on
lusion of se
tion 9 is una�e
ted: Eggan's

notion of 
y
le-rank is an inappropriate measure on the fa
tor graph of a language sin
e,

using the algorithm, it is possible to 
onstru
t regular expressions denoting the given

language that may have star-height stri
tly less than the 
y
le-rank of the graph. The


hange does not, however, a�e
t the 
on
lusion that the algorithm may not 
onstru
t a

regular expression of minimal star height.

As mentioned in the introdu
tion, surprisingly little has been written on Conway's

fa
tor theory sin
e the publi
ation of his book in 1971, and it appears to have taken

more than 25 years before my notion of the \fa
tor graph" was redis
overed. I �nd this

surprising be
ause, for me, the property that the fa
tor matrix is its own star immediately

suggested investigating whether or not it has a minimal starth root. Indeed, the pra
ti
al

lesson I had learnt from investigating the relation between 
losure algorithms in regular

algebra and algorithms for inverting matri
es in linear algebra [BC75℄ was that, given

a matrix A , one should try to avoid 
al
ulating A∗
at all 
osts: it is mu
h more

informative to 
al
ulate its starth root! (For example, a Hasse diagram of a partial

ordering is mu
h more useful than a graph depi
ting the partial ordering.) This is how

I 
on
luded my presentation at the ICALP meeting in 1977 and it remains the most

important 
on
lusion to this day.
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Appendix A. Properties of Constant and Linear Ma-

trices

Here we prove lemma 127. Re
all that A=A∗
, C = A _∩Mat.{ε} and L = A _∩Mat.T .

First,

C = C∗

= { for all X , X _⊆X∗ }

C _⊇ C∗

⇐ { de�nition of

∗ }

C _⊇ I _∪ C⊗C

= { C _⊇ I

= { de�nition of C }

A _⊇ I ∧ Mat.{ε} _⊇ I

= { A=A∗
_⊇ I ; de�nition of Mat }

true . }

C _⊇ C⊗C

= { de�nition of C , de�nition of

_∩ }

A _⊇ C⊗C ∧ Mat.{ε} _⊇ C⊗C

= { Mat.{ε} _⊇ C⊗C

⇐ { Mat.{ε} _⊇ C , monotoni
ity and transitivity }

Mat.{ε} _⊇ Mat.{ε}⊗Mat.{ε}

= { de�nition of Mat.{ε} }

true . }

A _⊇ C⊗C

⇐ { A=A∗
. So A _⊇A⊗A , monotoni
ity of produ
t }

A _⊇ C

= { de�nition of L and C }

true .

The proof that L = L⊗C is very similar to the latter part of the above proof:

L = L⊗C
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= { A=A∗
_⊇ I , so I _⊆C , monotoni
ity of produ
t }

L _⊇ L⊗C

= { L = A _∩Mat.T , Mat.T _⊇ Mat.T ⊗C }

A _⊇ L⊗C ∧ Mat.T _⊇ L⊗C

= { Mat.T _⊇ L⊗C

⇐ { Mat.{T } _⊇ L , Mat.{ε} _⊇ C ,

monotoni
ity and transitivity }

Mat.{T } _⊇ Mat.{T }⊗Mat.{ε}

= { de�nitions of Mat.{T } and Mat.{ε} }

true .

Mat.T _⊇ Mat.T ⊗C _⊇ L⊗C }

A _⊇ L⊗C

⇐ { A=A∗
. So A _⊇A⊗A , monotoni
ity of produ
t }

A _⊇ L ∧ A _⊇ C

= { de�nition of L and C }

true .

A symmetri
 
al
ulation shows that L = C⊗L . Now,

(C _∪L)∗

= { star de
omposition }

C∗⊗ (L⊗C∗)∗

= { C = C∗
, L = L⊗C }

C⊗L∗

= { L∗ = I _∪ L⊗L∗
, distributivity, }

C _∪ C⊗L⊗L∗

= { L = C⊗L }

C _∪ L⊗L∗ .

This establishes that (C _∪L)∗ = C⊗L∗ = C _∪ L+
. That (C _∪L)∗ = L∗⊗C follows by

using the symmetri
 form of star de
omposition in the �rst step. Finally,

L⊗ (C _∪L)∗
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= { (C _∪L)∗ = C _∪ L+
, distributivity }

L⊗C _∪ L⊗L+

= { L = L⊗C , L+ = L _∪ L⊗L+ }

L+ .

Now we prove lemma 151.

Appendix B

Here we demonstrate that the algorithms for �nding G∗
that are loosely 
alled \elimi-

nation methods" invariably result in regular expressions having star-height at least the

rank of G . We begin by abstra
ting the salient features of an elimination method and

then show that any elimination method de�nes an \order of elimination of edges". We

then investigate in detail the e�e
t of eliminating edges of the graph, and �nally show

how we 
an build an \analysis" of the edges. (The assumption in this se
tion is that

graphs are �nite and a \matrix" is a square �nite-dimensional array.)

Before doing so, we need some de�nitions and a fundamental theorem from M
-

Naughton [M
N69℄. A subgraph of a graph G is de�ned by a subset of the nodes of G :

the set of edges of the subgraph is the set of all edges that are to and from a node in the

given subset. A se
tion of a graph is a maximal 
onne
ted 
omponent of the graph. An

analysis of a graph G is a partial ordering of pairs (N ′,G ′) , where G ′
is a strongly


onne
ted 
omponent of G and N ′
is a node of G ′

, having the following properties:

1. For ea
h se
tion H of G there is a node N of H su
h that (N,H) is maximal in

the partial ordering.

2. For no subgraph H are there two nodes N and N ′
su
h that (N,H) and (N ′, H)

o

ur in the partial ordering.

3. If (N,H) o

urs and K is a se
tion of that subgraph that has all the nodes of H

ex
ept N , then, for some N ′
, (N ′, K) is an immediate inferior of (N,H) in the

ordering.

4. All of the immediate inferiors of (N,H) are of the kind mentioned in 3.

An analysis of a graph is always a forest of as many trees as the graph has se
tions.

The height of the analysis is the length of the maximal length 
hain in the partial

ordering.

Theorem 217 (McNaughton [McN69]) The rank of a graph is the minimumheight

of all analyses of the graph.
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✷

Our aim is to show how an \elimination"method de�nes an analysis of the graph su
h

that the height of the analysis is at most the maximum star-height of regular expressions


omputed by the method. First we state more pre
isely what we mean by an elimination

method.

Definition 218 An elementary matrix is a matrix whose non-null elements all lie in

the same row, or the same 
olumn. An elementary graph is a graph whose edges are all

from or all to a single node.

✷

Clearly, elementary matri
es represent elementary graphs.

We note that it is \elementary" to �nd the 
losure of a row or 
olumn matrix using

the identity (H⊗K)∗ = I _∪ H⊗ (K⊗H)∗×K . (Hint: an n×n row or 
olumn matrix 
an

always be de
omposed into H⊗K where H and K have dimensions n×1 and 1×n ,

respe
tively. Then K⊗H is a 1×1 matrix | i.e. a single entry.) Hen
e the terminology.

Definition 219 An elementary elimination step is a step in an algorithm that

involves solely the 
omputation of the 
losure of an elementary matrix.

✷

We 
an abstra
t three essential features of the methods dis
ussed in [BC75℄.

1. The star-de
omposition rules

(220) (C _∪D)∗ = (C∗⊗D)∗⊗C∗

and

(221) (C _∪D)∗ = C∗⊗ (D⊗C∗)∗

are applied ex
lusively to derive an expression for A∗
as a produ
t

(222) J∗1 ⊗ J∗2 ⊗ . . . ⊗ J∗m

of elementary matri
es.

If at some stage in the derivation of the produ
t form the matrix B is split into matri
es

C and D su
h that B=C _∪D , and one of the two star-de
omposition rules is used, then

C and D are 
hosen so that

2. C is null wherever D is non-null and, vi
e-versa, D is null wherever C is non-null,

and
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3. if (220) is used, C∗⊗D is null wherever C is non-null and vi
e-versa, and if (221) is

used D⊗C∗
is null wherever C is non-null and vi
e-versa.

Some terminology is useful here. We refer to 
al
ulating the 
losure C∗
of C as

eliminating C . Evaluating the produ
t C∗⊗D (or D⊗C∗
, as the 
ase may be) is


alled forward substitution of C in D , and �nding the produ
t (C∗⊗D)∗⊗C∗
(or

C∗⊗ (D⊗C∗)∗ ) is 
alled ba
k substitution of D in C . An elimination method 
onsists

of expressing the 
omputation of A∗
as a sequen
e of forward and ba
k substitutions and

elementary elimination steps, in whi
h subsequen
es of these steps may be interpreted


olle
tively as eliminating C for some matrix C .

The de�nition of an elimination method has a number of impli
ations whi
h we now


onsider. Firstly, an elimination method always de�nes an ordering on the edges of G

that we 
all the order of elimination of the edges. Spe
i�
ally, if at some stage (220)

(or (221)) is used we say that the edges of C are eliminated before the edges of D . By

virtue of 2 and 3 this ordering is well-de�ned and total, ex
ept that the edges of ea
h

elementary matrix J are in
ommensurate | these are eliminated simultaneously.

Se
ondly, 
onditions 2 and 3 imply that we 
an always evaluate the non-null elements

of J1 , J2 , . . . , Jm by su

essive transformations of G . Spe
i�
ally, we 
an set M(0)
to

G , then perform in-situ modi�
ations of the elements of M to transform it to a matrix

M(f)
whi
h 
ontains the non-null elements of the matri
es J∗1 , J∗2 , . . . , J∗m (other than

the empty-word entries on the diagonal) in their appropriate positions. If, for instan
e,

at some stage in the derivation of (222) the formula (220) is used, the appropriate a
tion

would be to evaluate C∗⊗D (possibly using additional storage) and store the non-null

elements of this matrix in the appropriate positions of M . The remaining elements of

M are left un
hanged. On
e M(f)
has been 
al
ulated, G∗


an be 
al
ulated using

(222). (This may not be the most eÆ
ient way of evaluating G∗
by the parti
ular

elimination method but our 
on
ern here is solely with the star-height of the resulting

regular expressions.)

From the order of elimination of the edges of G we 
an 
onstru
t an analysis of G .

We begin with the edges eliminated �rst and pro
eed in order to the edges eliminated

last. Suppose at some stage we have 
onsidered the edges of the subgraph G1 and

have 
onstru
ted an analysis of G1 . Suppose the 
onstituent trees of this analysis have

roots given by the set R1 . Suppose that J is the set of edges to be eliminated in the

next elementary elimination step, and all edges in J are in row/
olumn i ; suppose

G2=G1∪J . If the edge (i, i) is not in J then do not alter the analysis . Otherwise,


onsider the largest subset R of R1 su
h that ea
h node r in R is strongly 
onne
ted

to node i in the graph G2 . If R is non-empty, add a new root labelled i to the forest

and 
onne
t it by bran
hes to ea
h element of R . If R is empty and the (i, i) th element

of M is not the empty set before elimination, add a new root labelled i to the forest
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(but do not 
onne
t it to any other roots); if the (i, i) th element of M is the empty set

before elimination do not alter the analysis. Finally, in all 
ases reset G1 to G2 .

Now we need to related the height of the analysis to the star-height of expressions in

G∗
.

To investigate what a
tually happens when we perform an elimination step, let us

suppose that at some stage

M =







M11 M12 M13

M21 M22 M23

M31 M32 M33







where M11 , M22 and M33 are square matri
es. We make no assumptions about the

size of the various submatri
es.

Suppose that the next step is to eliminate some subset of these 9 submatri
es. A

number of remarks are in order.

Remark 1. If the submatrix Mij is an element of the subset to be eliminated, the result

of all previous eliminations will have been forward-substituted into Mij .

(To see this 
onsider the 
ontext-free grammar

E ::= EfEb ; E ::= e

where f represents forward substitutions, b represents ba
k substitutions, and e

represents elementary eliminations. An elimination algorithm for �nding G∗
may

be regarded as 
onstru
ting a left-to-right, bottum-up parse of a senten
e of this

grammar. If an E has just been re
ognised an f must follow, possibly pre
eded

by b s, before a new E may be re
ognised. The remark may now be proved by

indu
tion on the length of the derivation of the 
urrent state of the parse.)

Remark 2. No submatrix Mij for i 6= j may be eliminated before either Mii or Mjj is

eliminated without violating 
ondition 3.

(Suppose otherwise. By remark 1, the result of elimination Mij must be forward-

substituted into Mii and Mjj before they are eliminated. But this will result in a

modi�
ation of Mij itself, thus violating 
ondition 3 | either it is pre-multiplied

b Mii or post-multiplied by Mjj depending on whi
h of (220) or (221) is used at

the time.)

Remark 3. If Mii and Mij have been eliminated, Mji may not be eliminated after

Mjj .
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(If Mii and Mij have been eliminated then, by remark 1, the results must be

forward-substituted into Mji before this is eliminated. This involves pre- or post-

multiplying Mji by M∗
ii ·Mij . However, post-multipli
ation 
hanges Mii , violat-

ing 
ondition 3. Pre-multipli
ation 
hanges Mjj and thus also violates 
ondition 3

unless Mjj has not already been eliminated. Hen
e the remark.

Remark 4. Mik and Mji , where k 6= i and j 6= i , may not both be eliminated using a

single appli
ation of (220) or (221) without violating 
ondition 3 sin
e this would

in general a�e
t Mjk .

Remark 5. The star-height of elements of M is in
reased if and only if an elementary

elimination step is exe
uted in whi
h the edge (k, k) is eliminated for some k .

This is obvious be
ause substitutions only involve multipli
ation of submatri
es of

M.

A 
onsequen
e of the above remarks is that, without loss of generality, we may assume

that some subset of the matri
es M11 , M12 , M13 , M21 , M31 is to be eliminated (i.e.

some subset of the �rst row or the �rst 
olumn of M ).

Let us suppose, the next step is to eliminate M11 and M12 . (The 
ase of eliminating

M11 and M21 
an be 
onsidered similarly.) That is, suppose the step is to exe
ute the

assignment

M :=







M∗
11 M∗

11⊗M12 M13

M21 M22 M23

M31 M32 M33







In view of remark 5, we would like to see what e�e
t this has on M22 and M33 . Suppose,

therefore, that at some later stage we wish to eliminate the edges of M22 . By remark 3,

we must already have eliminated M21 or must do it simultaneously with the elimination

of M22 . Hen
e, by remark 1, M∗
11 and M∗

11⊗M12 must already have been forward-

substituted into M21 and M22 . In order not to violate 
ondition 3, this 
an only be

done by post-multiplying by M∗
11 and M∗

11⊗M12 . Thus after the forward substitution

M ⊇







M∗
11 M∗

11⊗M12 M13

M21⊗M∗
11 M22 _∪ M21⊗M∗

11⊗M12 M23

M31 M32 M33







(Containment rather than equality is used here be
ause the elements of M may also have

been 
hanged between the elimination of M11 and M12 and their forward substitution

into M21 and M22 .) Note that the same result will be obtained if we 
onsider M21 and

M22 eliminated separately or simultaneously.
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Thus we see that the star-height of expressions obtained by eliminating submatri
es of

M22 will now depend on the star-height of elements in M11 provided M21⊗M∗
11⊗M12

is non-null. In 
ontrast, if we eliminate submatri
es of M33 before eliminating M31 or

M13 , the star-height of the resulting regular expressions will not depend on the star-

height of elements of M11 sin
e forward substitution of M21 and M11 does not a�e
t

M33 .

We restate this in the form of a lemma on the elements of the matrix M .

Lemma 223 At some stage in the elimination pro
esss, let M= [mij] and let the

set of edges that have 
urrently been eliminated be G1 . Suppose edge (r, r) is the last

diagonal edge to have been eliminated in an elementary elimination step, and the next

step in the elimination pro
ess involves the elimination of the edge (i, i) . Suppose after

this step the set of eliminated edges is G2 . Then the entry mii has the form

u + v mrr w

(after possibly exploiting the symmetry of addition of regular expressions) for some

expression u and some non-empty expressions v and w , if node i is strongly 
onne
ted

to node r in G2 .

Proof The lemma follows from the previous dis
ussion by 
onsidering r as a node of

M11 and i as a node of M22 . The 
onditions on r imply that the (i, i) th entry of

M21⊗M∗
11⊗M12 is a sum of regular expressions, one of whi
h is v mrr w .

✷

Lemma 224 The star-height of mii after elimination of (i, i) is 0 if i is not a node

in the analysis and otherwise isa at least the height of the tree with root i .

Proof This follows easily from lemma 223 by indu
tion on the height of the tree.

If the height is 0 or 1 , the lemma is obvious. Otherwise, re
alling the 
onstru
tion

of the analysis, ea
h node r in the subset R satis�es the properties in lemma 223.

Hen
e after elimination of (i, i) , the (i, i) th entry of M is an expression of the form

(u + v mrr w)∗ . (It has this form for ea
h r in R after, of 
ourse, rearranging terms in

the summation. For example, if R has two elements r and s , the entry would have the

form (u + v mrr w + x mss y)
∗
for some u , v , w , x and y .) By indu
tion, for ea
h

r in R , mrr has star-height at least the height of the tree with root r . Hen
e mii has

star-height at least 1 greater than this. Hen
e the lemma.

✷

We 
ould strengthen the lemma to an equality, as did Eggan [Egg63℄ for the es
alator

method, but this is not relevant here.

Combining theorem 217 and lemma 224, we have our theorem:
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Theorem 225 If an elimination method is used to �nd G∗
for a graph G , then G∗

will 
ontain regular expressions having star-height at least the rank of G .

✷
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Appendix C

This se
tion gives pra
ti
al advi
e on how to 
al
ulate the synta
ti
 monoid of a language

given a ma
hine for the language. The advi
e is parti
ularly relevant for hand 
al
ulations

when the size of the synta
ti
 monoid is not too large.

Fig. 27(a) is the ma
hine for the language (aa+b)∗ . The start and �nal states are

not marked be
ause the information is irrelevant to the 
onstru
tion of the synta
ti


monoid.) There is also one inadmissible state whi
h has also been omitted from the

diagram.

The 
onstru
tion of the synta
ti
 monoid involves 
onstru
ting graphs that depi
t

Ctx.u for words u in in
reasing lexi
ographi
 order. Formally, Ctx.u is a total relation

on the states of the ma
hine. However, it is safe to ignore the inadmissible state of the

ma
hine; Ctx.u is then a partial relation on the admissible states of the ma
hine.

The relation Ctx.ε is the identity relation, shown in �g. 27(b). The other relations

that form the admissible elements of the synta
ti
 monoid are shown in �gs. 27(
) thru

(g). Comparison of these �gures with transitions in the ma
hine should enable the reader

to see how they are 
onstru
ted. For example, the graph of Ctx.a is the subgraph of the

ma
hine de�ned by the a -transitions, and similarly for Ctx.b . The graph of Ctx.ab has

only one edge be
ause there is only one path in the ma
hine that spells the word ab .

Missing are inadmissible elements of the synta
ti
 monoid: words u su
h that Ctx.u

restri
ted to admissible states of the ma
hine is the empty relation. Examples are bab

and abab .

The graphs in �g. 27 form a 
omplete set be
ause no new graphs are generated by

words greater in the lexi
ographi
 order. Fig. 28 shows the 
omplete synta
ti
 monoid,

ex
ept for the one inadmissible element. The nodes are labelled by a representative

element of the c -
lass. The graph depi
ts post-multipli
ation: in order to 
ompute the

value of u◦v , start from the node labelled u and follow the path spelled by v . (If there

is no su
h path, the value of u◦v is the inadmissible element of the synta
ti
 monoid.)

Of 
ourse, the same pro
ess 
an be applied starting with the anti-ma
hine. In that


ase, the graph obtained depi
ts pre-multipli
ation in the synta
ti
 monoid.
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(b) Ctx. ε

(d) Ctx.b(c) Ctx.a

(e) Ctx.ab (f) Ctx.ba

(g) Ctx.aba

a

a

b

(a) Machine

Figure 27: Ma
hine and Individual Elements of the Synta
ti
 Monoid

Appendix D

Example 226 This example is based on [LS08, example 5.7℄. Consider the language

re
ognised by the nondeterministi
 �nite-state ma
hine shown in �g. 29. Lombardy and

Sakarovit
h have given the name Z3 to this automaton.

Note that �g. 29 omits one inadmissible node: there is no b -edge from the node

labelled 0 . Throughout the following dis
ussion, inadmissible values (nodes, 
lasses,

et
.) are omitted everywhere.

Our interest in this example is in 
al
ulating a regular expression of minimal star-

height denoting the language re
ognised by this ma
hine. The transition graph in �g.

29 has 
y
le rank two, so our obje
tive is to 
onstru
t a regular expression of star-height
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b

b

a

a

aba
a

aa

a
a

b

b

ba

b abε

Figure 28: The Synta
ti
 Monoid

one.

Lombardy and Sakarovit
h [LS02, LS08℄ use this example as one of a series that

demonstrates how big fa
tor graphs 
an grow. Its size pre
ludes us from giving all the

details of the appli
ation of our 
losure algorithm. Our presentation may therefore seem

somewhat ad ho
, but this is not the 
ase.

Fig. 30 is the (deterministi
) ma
hine. Its anti-ma
hine is identi
al. Note that there

are a -transitions from every state but no b -transition from the state labelled baba.

The table below names admissible l - and r -
lasses and sele
ts a representative of ea
h.

Omitted from the graph is the inadmissible l -
lass of whi
h a representative element is

babab .

l-
lass representative r-
lass representative

l1 ε r1 ε

l2 b r2 b

l3 ba r3 ab

l4 baa r4 aab

l5 bab r5 bab

l6 baab r6 baab

l7 baba r7 abab

The following table shows 
orresponding left and right fa
tors. Ea
h is represented

by a subset of l - or r -
lasses. The symbol \¬ " denotes 
omplement with respe
t to the

admissible 
lasses. For example, ¬{baba,bab} is {ε,b,ba,baa,baab} and, in the left-

fa
tor 
olumn, ¬∅ denotes the set of all admissible l -
lasses, and, in the right-fa
tor


olumn, ¬∅ denotes the set of all admissible r -
lasses. (The primary reason for using

this notational tri
k is to emphasise symmetries rather than for greater brevity.)

There are 18 entries in the table. Together with the two inadmissible left/right
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a

aa

b

b

0

2

1

Figure 29: Nondeterministi
 Finite-State Ma
hine

fa
tors there are thus 20 left/right fa
tors. The fa
tor graph thus has a total of 20

nodes but, as usual, we 
hoose not to depi
t the inadmissible nodes.
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a

b

b

a

a

a

b

b

b

a

a

a

b

b

baa

ba

baab

bab

babaε

Figure 30: Ma
hine

Left fa
tor Right Fa
tor

{ε} ¬∅

{ε,b} ¬{abab}

{ε,ba} ¬{bab}

{ε,baa} ¬{baab}

{ε,b,ba} ¬{abab,bab}

{ε,b,ba} ¬{abab,baab}

{ε,b,ba} ¬{bab,baab}

{ε,b,ba,bab} {ε,b,aab,baab}

{ε,b,baa,baab} {ε,b,ab,bab}

{ε,ba,baa,baba} {ε,ab,aab,abab}

¬{bab,baba} {ε,b,ab}

¬{baab,baba} {ε,b,aab}

¬{bab,baab} {ε,ab,aab}

¬{baba} {ε,b}

¬{bab} {ε,ba}

¬{baab} {ε,baa}

¬∅ {ε}

The synta
ti
 monoid is shown in �g. 30. The nodes are labelled by a representative

element of the 
orresponding c -
lass.

Ea
h l -
lass is a union of c -
lasses. The table below shows the relationship. For

example, the �rst entry summarises the property

El(ε) = Ec(ε)∪Ec(a)∪Ec(aa) .
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a

a
a

a
a

a

a

a
a

a

a
a

a
a

a

a

a

a

b

b

b

b

b

b

b

b

b

b

b

a

aa

b

baa

ba

bab

baab

baaba

baabaa

b

b ab

aab

aba

abaa

aaba

aabaa

abab

aabaab

ababa

b

ε

b

b

b

b

baba

babaa

a

a
a

Figure 31: Synta
ti
 Monoid

This fa
t is not exploited in our algorithm for 
onstru
ting the fa
tor graph but is useful

for 
he
king 
al
ulations | parti
ularly, as in this 
ase, the 
al
ulations are rather long

and tedious.

l-
lass c-
lasses

ε ε,a,aa

b b,ab,aab

ba ba,aba,aaba

baa baa,abaa,aabaa

bab bab,abab,aabab

baab baab,abaab,aabaab

baba baba,ababa,aababa
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The fa
tor graph |in
luding inadmissible nodes| of the event re
ognised by the

ma
hine in �g. 30 is shown in [LS08, �g. 11℄. (Lombardy and Sakarovit
h label every

admissible node

15

as both a start and a �nal node. One inadmissible node is labelled

as a �nal node only, and the other inadmissible node is labelled as a start node only.

As explained in se
tion 10.2, a unique start and a unique �nal state identify the fa
tor

graph as a (non-deterministi
) re
ogniser of the event \Z3 ": the start state is the state

they name \012" and the �nal state is the state they name \0,1,2".)

The fa
tor graph (ex
luding inadmissible nodes) has 8 se
tions. Five of these have

three nodes and three have one node. Fig. 32 depi
ts these se
tions: the graph with one

node o

urs three times, the rightmost of the graphs with three nodes o

urs on
e, and

the remaining two o

ur twi
e.

b b

b

aa

a a

aa a a

a

a

Figure 32: Se
tions of the Fa
tor Graph

Every se
tion of the fa
tor graph is a fa
tor graph of a fa
tor. Taking the topmost

node as both start and �nal node in ea
h of the graphs in �g. 32, and expressing the

fa
tor in terms of c -
lasses, the fa
tors are the events represented by the sets of c -
lasses

{ε,b} , {ε} , {ε,abaa,aaba,ababa} and {ε,a,aa} .

The re
exive-transitive 
losure (\star") of ea
h of these graphs is easily 
omputed

in the powerset algebra with underlying monoid the synta
ti
 monoid shown in �g. 31.

These are shown in �gs. 33, 34, 35 and 36. (The graphs in �g. 32 have been taken in

order from left to right and top to bottom.) One entry in �g. 35 has been highlighted in

15

A
tually, almost every admissible node To be 
onsistent, the nodes named \02" and \12" in their

diagram should be both start and �nal nodes. As a re
ogniser, this mistake has no e�e
t: their labelling

is a gross overkill. See se
tion 10.1 for the justi�
ation of this remark.
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{ε,{ε,

{ε,b}

aaba} abaa}

{a,aabaa}

{aa,aba}

{aa,aab}

{a,ab}
{a,ba}

{aa,baa}

Figure 33: Star of Top-Left Se
tion

{ε}

{ε}{ε}

{a}

{a}

{aa}

{aa} {a}{aa}

Figure 34: Star of Top-Middle Se
tion

the usual way by identifying parti
ular start and �nal nodes.

***To be 
ompleted***

✷
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ε{ ,aaba,abaa,ababa}

,b,aaba,baabaε{ }ε{ ,b,abaa,babaa}

{a,ab,ba,bab}

{aa,aab,baa,baab}

{a,ab,aabaa,aabaab}

{a,ba,aabaa,baabaa}

{aa,aba,baa,baba} {aa,aba,aab,abab}

Figure 35: Star of Top-Right Se
tion

{ε, a,aa}

Figure 36: Star of Bottom-Middle Se
tion


