
Meeting a Fanclub: A Lattice of Generic Shape Selectors1

Roland Backhouse
School of Computer Science, University

of Nottingham, UK
rcb@cs.nott.ac.uk

Richard Bird
Computer Laboratory, University of

Oxford, UK
Richard.Bird@comlab.ox.ac.uk

Paul Hoogendijk
Philips Corporate Technologies,

Eindhoven, The Netherlands
Paul.Hoogendijk@philips.com

Abstract
The “fan” of a datatypeF is a relation that holds between a value
x and an arbitraryF structure in which the only stored value is
x . Fans make precise the notion of the shape of a data structure.
We formulate two different representations of shape selectors and
exploit the properties of fans to prove that the two representations
are order isomorphic and that shape selectors are closed under set
intersection. For arbitrary datatypesF , G and H , we consider
six different ways of composing their fans in order to constructF
structures ofG structures ofH structures; each of the six im-
poses a different requirement on the shape of the substructures. We
catalogue the relation between different combinations of the con-
structions. We apply the result to a problem that arose in a generic
theory of dynamic programming concerning the shape properties
of a natural transformation fromG structures toFG structures.

Categories and Subject DescriptorsD,F [D.1,F.3]: D.1.1,F.3.3

General Terms Algorithms, Languages, Theory

Keywords datatype, collection type, relation algebra, allegory,
funtional programming, relational programming, dynamic pro-
gramming

1. Introduction
Consider the following problem about the shape properties of three
arbitrary datatypesF , G and H. Supposeθ is a natural trans-
formation takingG structures toFG structures with the property
that the result ofθ is an F structure ofG structures all of which
have the same shape. Consider the instanceθH (which transforms
a GH structure to anFGH structure). Show that ifθH is ap-
plied to a G structure ofH structures all of the same shape, the
result is anF structure ofGH structures all of which have the
same shape.

A problem like this arose in a recent study of dynamic program-
ming [6]. It is an example of a problem in (datatype-)generic pro-
gramming; the challenge is to develop formalisms in which such
problems can be readily stated and solved, and in a way that is
appropriate to the needs of the practising programmer. Such a for-
malism is furnished by the relational theory of datatypes [1, 3, 7, 9,
11]). The above problem acted as a catalyst for us to investigate, in
much greater depth than before, the properties of shape-preserving

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WGP’09, August 30, 2009, Edinburgh, Scotland, UK.
Copyright c© 2009 ACM 978-1-60558-9/09/08. . . $10.00

transformations; the results of the investigation are reported in this
paper.

In our relational theory, datatypes (also known as “collection”
types — types like lists and binary trees) are modelled by “relators”
with “membership”.

The notion of a relator plays the role in allegory theory —which
for our purposes is essentially the theory of binary relations on
sets— of the notion of a functor in category theory [7]. Just as func-
tors model the structural properties of datatypes in conventional
functional programming, relators model the structural properties of
datatypes in generic programming.

The formal notion of membership models the idea that datatypes
are mechanisms for storing data. The membership relation of a
datatype F , which we denote bymem.F , is a binary relation
between values andF structures which holds when the value is
stored in theF structure. For example, the relationmem.List
holds between a valuex and a list xs if x is a member ofxs
(according to the standard notion of list membership). Note that
relations (as opposed to functions) are essential to the theory for
the simple reason that membership is a relation.

Shape properties of datatypes are formulated using the notion
of a “fan” [10, 9] (called a “generator” in [2] where it was first
introduced). The fan of a datatypeF is a binary relation between
F structures and values; it holds when every member of theF
structure is equal to the given value. Another way of viewing the
fan, fan.F , of a datatypeF is as a non-deterministic program
that, given a so-calledseed, constructs an arbitraryF structure in
which the only stored value is the seed.

Membership and fans are both natural transformations. Specif-
ically, mem.F transforms anF structure to anId structure
(where Id denotes the identity relator); it is “natural” (“polymor-
phic” in the jargon of functional programming) in that it is not
dependent on the type of values stored in the structure. We write
this as mem.F : Id←↩ F . Conversely, fan.F transforms anId
structure to anF structure; that is,fan.F : F←↩ Id . The instance
(fan.F)G has as seed aG structure, which is transformed to an
FG structure by constructing an arbitraryF structure, and copy-
ing the seed into all the storage locations. In particular,(fan.F)G
constructs anFG structure in which all the storedG structures
have the same shape.

Given this basis, it is relatively straightforward to formulate
the problem we used to introduce this paper. It is about three
datatypesF , G and H , and the relationship between a natural
transformation of typeFG←↩G and the fans of the datatypes.

There are six different ways that the fans of the datatypesF ,
G and H can be composed to form a natural transformation of
type FGH←↩ Id . This is the “fanclub” in the title of the paper.
We explore the relationship between combinations (“meets”) of
all six. That is, we formulate and prove properties like: anFGH
structure with the property that all theG structures have the same
shape and all theH structures have the same shape also has the

property that allGH structures have the same shape. Section 3
introduces the fanclub and gives examples, whilst the main results
are recorded in section 5. Section 4 studies shape properties of
natural transformations in general (as opposed to the particular
properties of fans). We return to our introductory problem in section
4.2.

2. Preliminaries
This section summarises the formal basis for our work. For more
details see [7, 10, 9, 5]. In brief, we model relations as the arrows
of an allegory, and a datatype (likeList) as a relator (section 2.1)
with membership (section 2.5).

2.1 Allegories and Relators

An allegory [8] is a category with additional structure, the addi-
tional structure capturing the most essential characteristics of rela-
tions.

Being a category means that for every objectA there is an
identity arrow idA , and every pair of arrowsR : A←B and
S : B←C , with matching source and target, can be composed:
R◦S : A←C . Composition is associative and hasid as a unit.

The direction of the arrows is, of course, irrelevant to the de-
velopment of the theory. We use left-pointing arrows to suggest the
interpretation of arrowR of type A←B as a nondeterministic
program with outputs of typeA and inputs of typeB ; the expres-
sion (x, y)∈R is read as:x is an “output” of the relationR given
“input” y . In other words, arrows in an allegory are interpreted as
input-output relations, where the input is on the right of the arrow
and the output is on the left. This is in line with function application
where the order of writing is function applied to argument.

The additional axioms are as follows. First of all, arrows of the
same type are ordered by thepartial order ⊆ and composition
is monotonic with respect to this order. Secondly, for every pair
of arrows R,S : A←B , their intersection(meet) R∩S exists
and is defined by the customary universal property. Finally, for
each arrow R : A←B its converse R∪ : B←A exists. The
converse operator is defined by the requirements that it is its own
Galois adjoint, and is contravariant with respect to composition.
All three operators of an allegory are connected by themodular
law, also known as Dedekind’s law [14]: for allR , S and T (of
appropriate type),

R◦S ∩ T ⊆ R ◦ (S ∩ R∪◦T) .

(Note that composition has precedence over intersection. However,
we often parenthesise expressions more than strictly necessary in
order to assist the reader unfamiliar with the convention. We try
to space formulae in order to suggest to the eye the appropriate
parsing.) We also apply the law in its converse form:

S ◦R ∩ T ⊆ (S ∩ T ◦R∪) ◦ R .

Generally, every law in allegory theory has a symmetric “converse
form”; we often state just one form but use both.

The standard example of an allegory isRel , the allegory with
sets as objects and relations as arrows. With this allegory in mind,
we refer to the arrows of an allegory as “relations”.

A relator is a monotonic functor that commutes with converse.
We generally useF , G and H to denote relators. Application
of F to R is denoted byFR . The identity relator is denoted by
Id . For given objectA , KA denotes the constant relator — the
relator which maps objects toA and arrows toidA .

2.2 Universal Relations, Units and Division

The allegory Rel has more structure than we have captured so
far with our axioms. In full, Rel is a unitary, tabulated, locally

complete, division allegory. For full discussion of these concepts
see [8] or [7]. In this paper, very little of this structure is required
explicitly (although some of the structure does underlie some of the
properties we exploit). We detail just what we need.

We assume that, for each pair of objectsA and B , there is a
smallest and a largest relation of typeA←B , which we denote
by ⊥⊥A,B and>>A,B , respectively. We omit the subscripts when
the information they provide is not essential. The symbol “⊥⊥ ” is
pronounced “bottom” and the symbol “>> ” is pronounced “top”.
The interpretation of⊥⊥A,B is the empty relation between values
of type A and values of typeB ; it is the zero of composition. The
interpretation of>>A,B is the universal relation between values of
type A and values of typeB .

We also assume the existence of aunit object, denoted by
“ 1 ”. Formally, 1 is such that id1 is the largest relation of its
type — that is, id1 =>>1,1 — and, for every objectA there
is a total relation !A of type 1←A . An immediate conse-
quence of this definition is that!A is a function. That is, it is
“simple” (i.e. !A ◦ !A

∪ ⊆ id1) and —by definition— “total” (i.e.
!A
∪◦ !A ⊇ idA). In general, relationR of type A←B is said

to be simple if R◦R∪ ⊆ idA and total if R∪◦R ⊇ idB . (This
terminology also reflects the interpretation of relationR of type
A←B as a non-deterministic program mapping inputs of typeB
to outputs of typeA .) A second consequence is that!A =>>1,A .
(The simple proof is omitted.)

Finally, we assume the existence of the so-calleddivisionoper-
ator “ \ ”. Specifically, we have the following Galois-connection.
For all R : A←B , S : B←C and T : A←C ,

R◦S ⊆ T ≡ S ⊆ R\T .

Note thatR\T : B←C .

2.3 Domains

In addition to the source and target of a relation it is useful to know
their left and right “domains”. Theleft domainof a relation R is
that subsetR< of idA , where A is the target ofR , defined by
the Galois connection:

R ⊆ X ◦>>A,B ≡ R< ⊆ X for eachX such thatX ⊆ idA .
(1)

Theright domainof R : A←B , which we denote byR> , is the
left domain of R∪ . The complement of the right domainof R
is denoted byR>• ; it is the largestX such thatX ⊆ idB and
R◦X ⊆ ⊥⊥A,B .

The interpretation of the left domain of a relationR of type
A←B is the set of alla in A such that(a,b)∈R for some b
in B .

A relation R of type A←A , for someA , that is a subset of
idA is called acoreflexive(or monotype). An important property
is that composition of coreflexives is the same as intersection (that
is, for coreflexivesR and S , R◦S =R∩S) and so is commu-
tative. Also, composition with a coreflexive (on the left or right)
distributes through intersection. Domains are coreflexives.

We frequently use the property that

(R ◦ S<)< = (R◦S)< (2)

(for all R and S); the accompanying hint is “domains”. We
also use the fact that the domain operators are monotonic, but we
rarely state this explicitly in the hints. A closed formula forR< is
idA∩ (R◦R∪) .

Relations of type1←A are calledright conditions. There
is an important order-preserving isomorphism between coreflex-
ives and right conditions given by the function mapping core-
flexive X of type A←A to right condition !A ◦X , and the
right domain operator mapping right conditionC to C> . Specif-
ically, (!A ◦X)> =X and !A ◦C> = C . Symmetrically, there

is an order-preserving isomorphism between coreflexives and left
conditions (where a left condition is a relation of typeA←1).

Typically, the domain operators do not distribute through inter-
section. However, when applied to conditions, they do. That is, if
C and D are both left conditions of the same type,

(C∩D)< = C<∩D< .

Because of the isomorphism between coreflexives and (left or right)
conditions, it is always possible to interchange between the two.
Expressed in terms of left conditions, property (2) then becomes
trivial — it is the property that composition is associative. For
this and similar reasons, conditions are sometimes preferable to
coreflexives. However, in the relational theory of datatypes there
is a very cogent argument for using coreflexives; it is the fact that
relators commute with the domain operators. That is, for all relators
F and all R ,

(FR)< = F (R<) .

We usually use this rule silently: we writeFR< and exploit the
ambiguity in the operator precedence.

2.4 Natural Transformations

We define a collection of relationsθ indexed by objects to bea
natural transformation of typeF←↩G for relators F and G if,
for all types A , θA : FA←GA , and, for all R : A←B ,

FR ◦ θB ⊇ θA ◦ GR . (3)

(See [9, 5] for a detailed discussion of why containment rather than
equality of relations is the appropriate way to define a natural trans-
formation in an allegory.) The composition of natural transforma-
tion θ of type F←↩G and ϕ of type G←↩H is denoted by
θ ◦ ϕ . The subscripts on natural transformations will be omitted
when the information they provide is not essential. In the process,
operations like application of relators will be silently “lifted” to
natural transformations in the same way as we have overloaded the
composition operator above.

If θ is a natural transformation of typeF←↩G and H is a
relator, θH is a natural transformation of typeFH←↩GH and
Hθ is a natural transformation of typeHF←↩HG . Specifically,
(θH)A is (by definition)θHA and (Hθ)A is (again by definition)
H(θA) .

A natural transformation is said to beproper if the inclusion
in (3) can be strengthened to an equality. That is,θ is a proper
natural transformationof type F←G if, for all R : A←B ,

FR ◦ θB = θA ◦ GR .

Whilst, in general, equality doesnothold, it is the case that equality
does hold for all natural transformations when the relationR is
a total function. That is, ifθ is a natural transformation of type
F←↩G , it is the case that, for allfunctionsf of type A←B ,

Ff ◦ θB = θA ◦ Gf . (4)

(See [9, lemma 2.70].) Our only use of this property is whenf is
!B . Specifically, since!B is a function of type1←B ,

F !B ◦ θB = θ1 ◦ G!B . (5)

2.5 Membership and Fans

Informally, a natural transformation is a transformation of one
type of structure to another type of structure that rearranges the
stored information in some way but does no actual computations
on the stored information. Hoogendijk and De Moor have made this
precise [11]. Their argument, briefly summarised here, is based on
the thesis that a datatype (called a “collection type” in their paper)
is a relator with a membership relation.

SupposeF is an endorelator2. The interpretation ofFR is
a relation betweenF structures of the same shape such that cor-
responding values stored in the two structures are related byR .
SupposeA is an object and supposeX⊆ idA . So X is a core-
flexive; in effect,X selects a subset ofA , those values standing in
the relationX to themselves. By the same token,FX is the core-
flexive that selects allF structures in which all the stored values
are members of the subset selected byX. This informal reason-
ing is the basis of the definition of a membership relation for the
datatypeF.

The precise specification of membership forF is a collection
of relations mem.F (indexed by objects of the source allegory
of F) such that (mem.F)A : A←F.A and such thatFX is
the largest subsetY of idFA whose “members” are elements of
the setX . Formally, for all A , memA is required to satisfy the
property:

Y ⊆ FX ≡ ((mem.F)A ◦ Y)< ⊆ X (6)

for all X and Y such thatX⊆ idA and Y ⊆ idFA .
A property equivalent to (6) (in fact, the property used in [11]

to define membership) is the following: for allR of type A←B ,

FR ◦ (mem.F)B\idB = (mem.F)A\R . (7)

The family of relationsmem.F \ id is called thefan of relator
F and is denoted below byfan.F . The interpretation offan.F
is a relation that, given a seed valuex , non-deterministically
constructs anF structure in which the only stored value isx .
For example, given the input valuex , fan.List constructs a list
of x s of arbitrary length. (The name “fan” is chosen to suggest an
analogy with “fanning” a deck of cards, or the fans with multiple
blades used as cooling devices.)

A simple consequence of (7) is that, for all relationsR and
relatorsF ,

F⊥⊥ ◦ R ⊆ F⊥⊥ ◦ fan.F . (8)

This fact, which we exploit later, gives an opportunity to illustrate
our style of calculation. First note that we have omitted the type
information on R and on⊥⊥ . Formally, the property is that, for
all objectsA , B and C , and all relationsR of type FA←B ,

F⊥⊥C,A ◦ R ⊆ F⊥⊥C,B ◦ (fan.F)B . (9)

Sometimes the type information is necessary; here it is not. We
discuss this further later. The calculation itself then proceeds as
follows.

F⊥⊥ ◦ R ⊆ F⊥⊥ ◦ fan.F

= { (7) }

F⊥⊥ ◦ R ⊆ mem.F \⊥⊥

= { Galois connection defining division}

mem.F ◦ F⊥⊥ ◦ R ⊆ ⊥⊥

⇐ { mem.F : Id←↩ F ,

monotonicity of composition }

⊥⊥ ◦ mem.F ◦ R ⊆ ⊥⊥

= { ⊥⊥ is zero of composition }

true .

The style, we hope, is self-explanatory. (Note that we use “= ” for
boolean equality where others might use “≡ ” or even “⇔ ”.) In

2 Endorelators have equal source and target allegories. We consider only
endorelators in this paper. Hoogendijk [9] shows how to extend the theory
to non-endo relators.

this example, we have spelt out all steps in detail. Later we combine
simple steps into one step. Hopefully, the reader will be able to
supply the missing type information for themself.

A second consequence of (7), proved by Hoogendijk [9, 4.42],
is the following:

fan.F ◦ (fan.F)∪ ∩ F>> ⊆ F id . (10)

This property expresses the fact that any twoF structures that
are constructed from the same seed byfan.F (i.e. are related by
fan.F ◦ (fan.F)∪) and have the same shape (i.e. are related by
F>>) are equal (i.e. are related byF id , which is the equality
relation onF structures).

A third consequence of (7), again proved by Hoogendijk [9,
4.39], is that

F>>B,A ◦ (fan.F)B = >>FB,A .

It follows that (fan.F)1 =>>F 1,1 and, hence,

((fan.F)1)< = idF 1 . (11)

The interpretation of datatypeF1 is the type of F shapes. For
example,List1 is isomorphic with the set of natural numbers —
the “shape” of a list is its length. The interpretation of (11) is thus
that (fan.F)1 constructs all possibleF shapes. (This is one place
where the type information is essential! It is not the case that for
arbitrary A , ((fan.F)A)< = idFA .)

Membership and fans are both natural transformations. Specifi-
cally, mem.F is a natural transformation of typeId←↩ F (where
Id is the identity relator), andfan.F is a natural transformation of
type F←↩ Id . More importantly, they are both the largest natural
transformations of their type; moreovermem.F \mem.G is the
largest natural transformation of typeF←↩G [11]. Formally, if θ
is a natural transformation of typeF←↩G ,

mem.F ◦ θ ⊆ mem.G . (12)

In words, the members of theF structure constructed byθ are
members of the inputG structure. The interpretation of this re-
markable result is that a natural transformation of typeF←↩G
constructs anF structure from aG structure whereby the stored
values in theF structure are rearrangements of the values in the
G structure; omission and/or duplication may occur but no creation
of new values. This confirms formally the functional programmer’s
informal understanding of the notion of a polymorphic function.
(Note how concise and simple the formulation of the property is!)

2.6 Empty and Non-Empty Structures

A complication in some of our calculations is that we are obliged
to perform a case analysis on “empty” and “non-empty”F struc-
tures. (For example, an “empty” list is a list of length0 .) In-
formally, the coreflexiveF⊥⊥ is an “empty” F structure. For-
mally, (mem.F)> is the set of non-emptyF structures; con-
versely, F⊥⊥ is the set ofF structures that have no members,
as we show below.

LEMMA 13. F⊥⊥ = (mem.F)>• .

Proof By mutual inclusion. First,

F⊥⊥ ⊆ (mem.F)>•

= { definition of negated domain (>•) }

mem.F ◦ F⊥⊥ ⊆ ⊥⊥

⇐ { mem.F : Id←↩ F (and transitivity of⊆) }

⊥⊥ ◦ mem.F ⊆ ⊥⊥

= { ⊥⊥ is the zero of composition}

true .

Second,

F⊥⊥ ⊇ (mem.F)>•

= { (6) }

⊥⊥ ⊇ (mem.F ◦ (mem.F)>•)<

= { by definition of >• ,

mem.F ◦ (mem.F)>• = ⊥⊥ }

⊥⊥ ⊇ ⊥⊥<

= { domains }

true .

�
The contextual information that we are considering a non-empty

F structure is expressed by precomposing expressions with the
term (mem.F)> . The following lemma allows us to move the
contextual information around in the calculation.

LEMMA 14. If θ is a natural transformation of typeF←↩G
then, for all typesA and B and all S of type GA←GB ,

θ> ◦ S = θ> ◦ S ◦ θ> = S ◦ θ> ⇐ S⊆G>> .

Proof We prove just the second equality. The first is slightly easier
to prove because, unlike the second, no converses are involved.

θ> ◦ S ◦ θ> = S ◦ θ>

= { domains }

(S ◦ θ>)< ⊆ θ>

= { domains }

(S ◦ θ∪)< ⊆ θ>

⇐ { assumption:S⊆G>> , monotonicity }

(G>> ◦ θ∪)< ⊆ θ>

= { properties of∪ }

(θ ◦ G>>)> ⊆ θ>

⇐ { θ : F←↩G , monotonicity of > }

(F>> ◦ θ)> ⊆ θ>

= { domains }

true .

�

COROLLARY 15. If θ is a natural transformation of type
F←↩G then θ> is a proper natural transformation of type
G←G .

Proof Immediate from lemma 14 and the definition of a proper
natural transformation.
�

THEOREM 16. F⊥⊥ and (mem.F)> are both proper natural
transformations of typeF←F . (To be precise, byF⊥⊥ we mean
the mapping from objectA to F⊥⊥A,A .)

Proof That F⊥⊥ is a proper natural transformation of type
F←F is immediate from the fact that⊥⊥ is a proper natural
transformation of typeId←Id and the typing rules for natural
transformations.

That (mem.F)> is a proper natural transformation of type
F←F is an instance of corollary 15.
�

2.7 Fans Make Copies

Fans are natural transformations. Specifically,fan.F : F←↩ Id .
Recalling (4), this has the consequence that for all relationsR that
are both simple and total (i.e. functions),

fan.F ◦R = FR ◦ fan.F .

When a relationR is simple but not total, it is not the case that
an equality holds. For example, whenR is the empty relation,
the left domain of FR ◦ fan.F is F⊥⊥ ; but fan.F ◦R is the
empty relation. The equality does hold whenR is simple and we
restrict the left domain to(mem.F)> . Informally, fan.F is a non-
deterministic mapping of a value to anF structure in which all
stored values in theF structure are copies of the given value; since
simple relations are deterministic, it makes no difference whether
the relation R is applied to the given value before or after the
copying takes place. We prove this in theorem 18; first we need a
preliminary lemma.

LEMMA 17. For all R and S ,

S> ◦ S\R ⊆ S\R ◦ R∪ ◦ R .

Proof

S> ◦ S\R

⊆ { S> = id ∩ S∪ ◦ S , monotonicity }

S\R ∩ S∪ ◦ S ◦ S\R

⊆ { cancellation of factors, monotonicity}

S\R ∩ S∪ ◦ R

⊆ { modular law, monotonicity }

S\R ◦ R∪ ◦ R .

�

THEOREM 18. For all simpleR ,

(mem.F)> ◦ FR ◦ fan.F = (mem.F)> ◦ fan.F ◦ R .

Proof By mutual inclusion. First,

(mem.F)> ◦ FR ◦ fan.F

⊇ { fan.F : F←↩ Id ,

monotonicity of composition }

(mem.F)> ◦ fan.F ◦ R .

Second,

(mem.F)> ◦ FR ◦ fan.F

⊆ (mem.F)> ◦ fan.F ◦ R

= { (mem.F)> is a coreflexive }

(mem.F)> ◦ FR ◦ fan.F ⊆ fan.F ◦ R

= { FR ◦ fan.F = mem.F\R }

(mem.F)> ◦ mem.F\R ⊆ fan.F ◦ R

⇐ { lemma 17,S := mem.F }

mem.F\R ◦ R∪ ◦ R ⊆ mem.F\id ◦ R

⇐ { monotonicity and factors }

mem.F ◦ mem.F\R ◦ R∪ ⊆ id

⇐ { cancellation of factors }

R ◦ R∪ ⊆ id

= { definition }

simple.R .

�

3. The Fan Club
3.1 Definitions and Naming

Given datatypesF , G and H , there are six different ways of
composing their fans to form a natural transformation of type
FGH←↩ Id These are given below. Simultaneously, we name
them using a combination of the letters “f”, “g” and “h” to indicate
the order of composition.

fgh = (fan.F)GH ◦(fan.G)H ◦ fan.H

gfh = F (fan.G)H ◦(fan.F)H ◦ fan.H

fhg = (fan.F)GH ◦G(fan.H)◦ fan.G

hfg = FG(fan.H)◦(fan.F)G◦ fan.G

ghf = F (fan.G)H ◦F (fan.H)◦ fan.F

hgf = FG(fan.H)◦F (fan.G)◦ fan.F

We leave the reader to check the types. For example, considering
gfh , F (fan.G)H has typeFGH←↩ FH , (fan.F)H has type
FH←↩H and fan.H has typeH←↩ Id . Hence, gfh has type
FGH←↩ Id (using the rule that, ifη has typeF←↩G and τ has
type G←↩H , η ◦ τ hs typeF←↩H).

These are the members of our fanclub. In the remaining sec-
tions, we investigate the relation between them. We begin in sec-
tion 3.2 by observing how they may be partially ordered; this or-
dering then forms the basis for a discussion of some concrete ex-
amples. Next, in section 3.3, we give a diagrammatic summary of
the relationship between the semilattice formed by the members of
the club under set intersection. The precise relationships are stated
and proved in section 5. Following this, we return to our introduc-
tory problem in section 4.2; as we show, the problem is indeed a
straightforward corollary of the properties of the fanclub.

3.2 Inclusions and Examples

Natural transformations of the same type can be ordered by inclu-
sion everywhere. That is, transformationη is included everywhere
in transformationτ if, for all A , ηA⊆ τA . The members of the
fanclub are ordered in this way as shown below. Each arrow indi-
cates an inclusion everywhere (i.e. for all instances of the transfor-
mations). For example, the arrow fromgfh to ghf asserts that,
everywhere,gfh⊆ ghf .

hgf

�
�

�
�� I@

@
@

@
ghf hfg

gfh

6

fhg

6

I@
@

@
@ �

�
�

��

fgh

The inclusions follow from the naturality of fans and the mono-
tonicity of composition. Here, for example, is the proof of the in-
clusion gfh⊆ ghf .

gfh

= { definition }

F (fan.G)H ◦ (fan.F)H ◦ fan.H

⊆ { fan.F : F←↩ Id , hence

(fan.F)H ◦ fan.H ⊆ F (fan.H) ◦ fan.F }

F (fan.G)H ◦ F (fan.H) ◦ fan.F

= { definition }

ghf .

The crucial middle step of the above calculation can also be jus-
tified by appeal to a stronger property of fans which we exploit
later. In the above example, the component “hf ” in ghf is
F (fan.H) ◦ fan.F , which equals fan.FH , the largest natural
transformation of typeFH←↩ Id . The corresponding component
“ fh ” in gfh is also a natural transformation of typeFH←↩ Id ,
and thus included infan.FH . Monotonicity of relators and com-
position then completes the proof. The same argument can be ap-
plied to all six edges in the inclusion diagram because each edge
corresponds to switching around two of the letters in the names —
for example, “h ” and “ f ” are switched in the arrow fromgfh
to ghf — with the upper component being a fan of the composi-
tion of two relators and thus the largest natural transformation of
its type.

Formally, we have, for all relatorsF and G ,

fan.FG = F (fan.G) ◦ fan.F . (19)

The simple proof by mutual inclusion uses (7) and the naturality
properties ofmem.F .

The relation between the fans can be illustrated by considering
specific relatorsF , G and H . In the diagram below,F is
the doubling relator,∆ , defined by∆X =X×X ; the fan of ∆
relates the pair (x ,x) to x (for arbitrary x , irrespective of its
type). Also, the relatorG is List ; the fan of List relates a list (of
arbitrary length) to a valuex equivales every element of the list
equals x . Finally, the relatorH is the sum relator,∇ , defined
by ∇X =X+X ; the fan of∇ relates the pairs(l, x) and (r, x)
to x . (“ l ” and “ r ” are so-called “tags”, normally denoted byinl
and inr ; we usel and r here for brevity.)

([l,r] , [r,l,r])

�
�

�
�� I@

@
@

@
([l,l] , [r,r,r]) ([l,r,l] , [r,l,r])

I@
@

@
@ �

�
�

��

([l,l,l] , [r,r,r])

([l,l] , [l,l,l])

6

([l,r,l] , [l,r,l])

6

I@
@

@
@ �

�
�

��

([l,l,l] , [l,l,l])

6

Each node of the diagram is an example of a pair of lists of sums
related by a combination of fans to a given seed; the value of the
seed is irrelevant and has been omitted, allowing us to abbreviate
(l, x) to l and (r, x) to r . The central node has been added; the
reason for its addition is discussed shortly.

When studying the diagram, it is important to bear in mind that
the shape of a list is its length, and the shape of a value in a sum type
is its tag, “l ” or “ r ”. (All pairs have the same shape; in general,
the shape of theF structure is not relevant.)

The top and bottom nodes are the easiest to describe. The top
node is an arbitrary pair of lists of sums, the bottom node is a pair
of lists of the same length such that all the elements of all the lists
are equal.

The top-left node is a pair of lists, each of arbitrary length, such
that, for each list, its elements are equal. The bottom-left node has
the further restriction that all the elements in all the lists are equal.

The top-right node is a pair of lists of equal length. The bottom-
right node has the further restriction that the two lists are equal.

The central node has been added to the diagram. This node gives
an example of a structure related to the seed byghf ∩hfg . It is a
pair of lists of equal length such that, for each list, its elements are
all equal.

3.3 The Goal

Our goal is to detail how the members of the fanclub are related by
set intersection. The diagram below summarises the conclusions.
Specifically, the intersection of two members of the fanclub is given
by the highest node in the diagram that is “below” (i.e. included
in) both members. For example,gfh ∩ hfg equals fgh . In
words, an FGH structure such that all theH structures have
the same shape and all theG structures have the same shape has
the property that all theGH structures have the same shape.

hgf

�
�

�
�� I@

@
@

@
ghf hfg

I@
@

@
@ �

�
�

��

ghf ∩hfg

gfh

6

fhg

6

I@
@

@
@ �

�
�

��

fgh

6

Note that the diagram does not show the relationship between
members of the fanclub under set union. In this context, set union
is less interesting than set intersection because the former is just
about a disjunction of shape properties whereas the latter is about a
conjunction of shape properties.

Note also that the example of pairs of lists of sums presented
above demonstrates that the members of the fanclub are different.
Strictly, we should establish this formally (for example, by showing
that ([l,l] , [r,r,r]) cannot be generated byhfg). That exercise
we leave to the reader.

4. Shape Selectors
The six members of the fanclub listed in section 3.1 are all natural
transformations of typeFGH←↩ Id . Before investigating their
properties, we explore the properties of natural tranformations of
type F←↩ Id for arbitrary F . Among the properties we prove is
theorem 24, which asserts that such families of relations are closed
under intersection. It follows that all seven elements of the club
shown in the figure in section 3.3 are natural transformations of
type FGH←↩ Id .

4.1 Reduction to the Unit Type

Natural transformations of typeF←↩ Id are subsets offan.F .
Whilst fan.F can be viewed as a nondeterministic program that
constructsF structures of all possible shapes, a typical natural
transformation of typeF←↩ Id constructs only someF structures
but in a way that is independent of the type of the argument (i.e.
is so-called “natural”). In essence, natural transformations of type
F←↩ Id selectF shapes.

Natural transformations of typeK1←↩ F also selectF shapes.
If ϕ has typeK1←↩ F then, for each objectA , ϕA is a relation
between1 and FA ; that is, ϕA selects elements in some subset
of FA (specifically, the subset given byϕA>). But, naturality of
ϕ means that the selection is made independently ofA ; that is, ϕ
selects on the basis of the shape of the structure, not on the stored
values.

Formally, there is an order isomorphism between natural trans-
formations of typeF←↩ Id and natural transformations of type
K1←↩ F (theorem 29).

Natural transformations of typeF←↩ Id are completely char-
acterised by their behaviour at the unit type. This is the essence of
corollary 22 below. First, we show how to expressθA , for natural

transformationθ of type F←↩ Id , in terms of θ1 . (Note that the
type information is included in this calculation because that is what
the calculation is about!)

THEOREM 20. If θ has typeF←↩ Id then, for all A ,

θA = (F !A
∪ ◦ θ1 ◦ !A) ∩ (fan.F)A .

Proof By mutual inclusion.

(F !A
∪ ◦ θ1 ◦ !A) ∩ (fan.F)A

= { θ has typeF←↩ Id , !A is a function }

(F !A
∪ ◦ F !A ◦ θA) ∩ (fan.F)A

⊆ { modular law }

((F !A
∪ ◦ F !A) ∩ ((fan.F)A ◦ θ

∪

A)) ◦ θA

⊆ { F !A
∪ ◦ F !A ⊆ F>>A,A ,

θ⊆ fan.F (becausefan.F is the largest

natural transformation of its type)}

(F>>A,A ∩ ((fan.F)A ◦ (fan.F)
∪

A)) ◦ θA

⊆ { (10) }

θA

⊆ { !A is total; i.e. idA ⊆ !A
∪ ◦ !A ,

θ⊆ fan.F }

(F (!A
∪ ◦ !A) ◦ θA) ∩ (fan.F)A

= { distributivity }

(F !A
∪ ◦ F !A ◦ θA) ∩ (fan.F)A

= { θ has typeF←↩ Id , !A is a function }

(F !A
∪ ◦ θ1 ◦ !A) ∩ (fan.F)A .

�
Theorem 20 expressesθA , for arbitrary A , in terms of θ1 . In

turn, θ1 ◦ !A can be expressed in terms of the left domain ofθ1 .
Specifically, since!A = >>1,A and θ1 ◦>>1,A = θ1< ◦ >>F 1,A ,

θ1 ◦ !A = θ1< ◦ >>F 1,A . (21)

It follows that every natural transformation of typeF←↩ Id is
completely determined by its left domain at the unit type. More
specifically:

COROLLARY 22. If θ and ϕ both have typeF←↩ Id then,

(θ⊆ϕ) = (θ1⊆ϕ1) = (θ1<⊆ϕ1<) = (θ<⊆ϕ<) .

Proof Straightforward ping-pong proof using theorem 20, (21)
and the monotonicity of the left-domain operator.
�

COROLLARY 23. If θ has typeF←↩ Id then, for all A ,

θA< = (F !A
∪ ◦ θ1)< ◦ (fan.F)A< .

Proof

θA<

= { theorem 20 }

((F !A
∪ ◦ θ1 ◦ !A) ∩ (fan.F)A)<

= { for all R , S and T ,

((R◦S)∩T)< = (R∩ (T ◦S∪))< }

((F !A
∪ ◦ θ1) ∩ (fan.F)A ◦ !A

∪)<

= { F !A
∪ ◦ θ1 and (fan.F)A ◦ !A

∪

have source1 , distributivity }

(F !A
∪ ◦ θ1)< ∩ ((fan.F)A ◦ !A

∪)<

= { coreflexives, (!A
∪)< = idA }

(F !A
∪ ◦ θ1)< ◦ (fan.F)A< .

�

THEOREM 24. If θ and ϕ both have typeF←↩ Id then θ∩ϕ
is a natural transformation of typeF←↩ Id .

Proof For all R of type A←B , we have:

(θA ∩ϕA) ◦ R

= { theorem 20, properties of intersection}

((F !A
∪ ◦ θ1 ◦ !A) ∩ (F !A

∪ ◦ ϕ1 ◦ !A) ∩ (fan.F)A) ◦ R

⊆ { monotonicity of composition }

(F !A
∪ ◦ θ1 ◦ !A ◦ R)

∩ (F !A
∪ ◦ ϕ1 ◦ !A ◦ R)

∩ ((fan.F)A ◦ R)

⊆ { !A ◦R ⊆ !B , fan.F has typeF←↩ Id }

(F !A
∪ ◦ θ1 ◦ !B)

∩ (F !A
∪ ◦ ϕ1 ◦ !B)

∩ (FR ◦ (fan.F)B)

⊆ { modular law,

monotonicity of composition,!A ◦R ⊆ !B }

FR ◦ ((F !B
∪ ◦ θ1 ◦ !B) ∩ (F !B

∪ ◦ ϕ1 ◦ !B) ∩ (fan.F)B)

= { theorem 20, properties of intersection}

FR ◦ (θB ∩ϕB) .

�

DEFINITION 25 (Shape-selector Isomorphisms). Withθ rang-
ing over natural transformations of typeF←↩ Id , and ϕ ranging
over natural transformations of typeK1←↩ F , we define the map-
pings θ2ϕ and ϕ2θ by:

(θ2ϕ.θ)A = θ1
∪ ◦ F !A

and

(ϕ2θ.ϕ)A = (F !A
∪ ◦ ϕ1

∪ ◦ !A) ∩ (fan.F)A .

�

LEMMA 26. (a) If S is a relation of type1←F1 then S ◦ F !
is a natural transformation of typeK1←↩ F . (b) If S is a relation
of type F1←1 then ((F !)∪ ◦ S ◦ !) ∩ fan.F is a natural trans-
formation of typeF←↩ Id .

(To be completely correct, we should writeKS and not S ;
KS is the natural transformation of typeK1←↩KF 1 such that,
for all A , (KS)A =S .)

Proof (a) That S ◦ F ! has typeK1←↩ F is a straightforward
application of the typing rules for natural transformations since!
has typeK1←↩ Id . (b) For anyR of type A←B , we have:

((F !A
∪ ◦ S ◦ !A) ∩ (fan.F)A) ◦ R

⊆ { monotonicity }

F !A
∪ ◦ S ◦ !A ◦ R ∩ (fan.F)A ◦ R

⊆ { !A ◦ R ⊆ !B , fan.F has typeF←↩ Id }

F !A
∪ ◦ S ◦ !B ∩ FR ◦ (fan.F)B

⊆ { modular law }

FR ◦ (FR∪ ◦ F !A
∪ ◦ S ◦ !B ∩ (fan.F)B)

⊆ { !A ◦ R ⊆ !B }

FR ◦ (F !B
∪ ◦ S ◦ !B ∩ (fan.F)B) .

The lemma follows by definition.
�

LEMMA 27. If ϕ has typeK1←↩ F then, for all objectsA ,

ϕA = ϕ1 ◦ F !A .

Proof Instantiate (5) and use the fact thatid1 =!1 .
�

COROLLARY 28. If θ and ϕ both have typeK1←↩ F then,

(θ⊆ϕ) = (θ1⊆ϕ1) = (θ1>⊆ϕ1>) = (θ>⊆ϕ>) .

Proof Straightforward ping-pong proof using lemma 27.
�

THEOREM 29. The mappings defined in definition 25 form an or-
der isomorphism between natural transformations of typeF←↩ Id
and natural transformations of typeK1←↩ F .

Proof By lemma 26(a), θ2ϕ maps a natural transformation
of type F←↩ Id into a natural transformation of typeK1←↩ F .
Similarly, lemma 26(b) proves thatϕ2θ does the reverse.

We prove thatθ2ϕ is an order isomorphism as follows. Sup-
pose α and β are both natural transformations of typeF←↩ Id .
Then

θ2ϕ.α ⊆ θ2ϕ.β

= { definition 25, corollary 28 }

(α1
∪ ◦ F !1)> ⊆ (β1

∪ ◦ F !1)>

= { !1 = id1 , domains }

α1< ⊆ β1<

= { corollary 22 }

α ⊆ β .

A similar argument establishes thatϕ2θ is also an order isomor-
phism. Supposeα and β are both natural transformations of type
K1←↩ F . Then

ϕ2θ.α ⊆ ϕ2θ.β

= { definition 25, corollary 22 }

(F !1
∪ ◦ α1

∪ ◦ !1) ∩ (fan.F)1 ⊆ (F !1
∪ ◦ β1

∪ ◦ !1) ∩ (fan.F)1

= { (fan.F)1 = !F 1
∪ = >>F 1,1 , !1 = id1 }

α1
∪ ⊆ β1

∪

= { corollary 28 }

α ⊆ β .

�

4.2 The Transformation Problem

We now return to the problem stated in the introduction. It concerns
a natural transformationθ with a particular shape property. The
goal is to establish a shape property ofθH .

The first property we are given ofθ is that it has type
FG←↩G . We are also given thatθ returns F structures ofG
structures of the same shape. Shape properties of natural transfor-
mations are determined by instantiating them at the unit type,1 .
In this case,θ1 has typeFG1←G1 . The objectG1 represents
the set of all G shapes. (For example,1×1 is isomorphic to1
—all pairs have the same shape— ,1+1 is isomorphic toBool
—the shape of an element of a disjoint sum is given by its tag—
and List1 is isomorphic to the natural numbers —the shape of a
list is its length— .) The set ofF structures ofG structures of the
same shape is represented by((fan.F)G1)< . So we are given that

(θ1)< ⊆ ((fan.F)G1)< .

The goal is now to show that, ifθH is applied to aG structure of
H structures all of the same shape, it returns a result that is anF
structure ofGH structures all of the same shape. Specifically, we
show that

(θH ◦ (fan.G)H ◦ fan.H)< ⊆ ((fan.F)GH)< .

This we prove in corollary 31. First we prove a more general result.

LEMMA 30. If θ has typeFG←↩ Id then

θ ⊆ (fan.F)G ◦ fan.G ≡ (θ1)< ⊆ ((fan.F)G1)< .

Proof

θ ⊆ (fan.F)G ◦ fan.G

= { corollary 22 }

(θ1)< ⊆ (((fan.F)G ◦ fan.G)1)<

= { ((fan.G)1)< = idG1 , domains: (2) }

(θ1)< ⊆ ((fan.F)G1)< .

�

COROLLARY 31. If θ has typeFG←↩G and

(θ1)< ⊆ ((fan.F)G1)<

then

(θH ◦ (fan.G)H ◦ fan.H)< ⊆ ((fan.F)GH)< .

Proof First note that the premise(θ1)< ⊆ ((fan.F)G1)< equiv-
ales

((θ ◦ fan.G)1)< ⊆ (((fan.F)G)1)< (32)

because((fan.G)1)< = idG1 . Property (32) is the premise in
lemma 30. Thus:

(θH ◦ (fan.G)H ◦ fan.H)<

⊆ { lemma 30,θ := θ ◦ fan.G , (32),

monotonicity }

((fan.F)GH ◦ (fan.G)H ◦ fan.H)<

⊆ { domains: (2) }

((fan.F)GH)< .

�

5. Meeting the Fanclub
In this section, we relate the intersection (“meet”) of pairs of mem-
bers of the fanclub to the other members of the club. Note that, by
theorem 24, all “meets” of fans in the club are natural transforma-
tions of typeFGH←↩ Id ; this allows us to exploit corollary 22 as
the basic tool for establishing inclusions between the members.

THEOREM 33.

gfh ∩ hfg = fgh .

Proof First:

gfh ∩ hfg = fgh

= { theorem 24 and corollary 22}

(gfh1 ∩ hfg1)< = (fgh1)< .

Now we continue with the left side of the inclusion.

(gfh1 ∩ hfg1)<

= { gfh1 and hfg1 are left conditions,

distributivity }

(gfh1)< ◦ (hfg1)<

= { definition of gfh , ((fan.H)1)< = idH1 }

((fan.FG)H1)< ◦ (hfg1)<

= { definition of hfg , (fan.H)1 = !
∪

H1 }

((fan.FG)H1)< ◦ (FG!
∪

H1 ◦ ((fan.F)G)1 ◦ (fan.G)1)<

= { corollary 23,

θ,F ,A := (fan.F)G ◦ fan.G ,FG ,H1 }

(((fan.F)G ◦ fan.G)H1)<

= { ((fan.H)1)< = idH1 }

((fan.F)GH ◦ (fan.G)H ◦ fan.H)1<

= { definition }

(fgh1)< .

�

COROLLARY 34.

gfh ∩ hfg = fgh = gfh ∩ fhg .

Proof Immediate from theorem 33 and the inclusionsfgh⊆ gfh
and fgh⊆ fhg⊆hfg . (See section 3.2.)
�

At this point, it would be fortunate if we could give a proof simi-
lar to the proof of theorem 33 showing thatghf ∩ fhg = fgh .
However, we have not been able to find such a proof and have to
resort to a case analysis on empty and non-emptyF structures.

For non-empty structures, we do have the desired equality:

LEMMA 35.

((mem.F)GH)> ◦ (ghf ∩ fhg) = ((mem.F)GH)> ◦ fgh .

Proof Recalling that(mem.F)> is a proper natural transforma-
tion of type F←F (theorem 16), it follows that both the left and
right sides of the desired equation are natural transformations of
type FGH←↩ Id . So, as in theorem 33, it suffices to prove that

((mem.F)GH1)> ◦ ghf 1< ◦ fhg1<

= ((mem.F)GH1)> ◦ fgh1< .

Now,

ghf 1< ◦ fhg1<

= { ghf = F (fan.G)H ◦ fan.FH ,

fhg = (fan.F)GH ◦ fan.GH }

((F (fan.G)H)1 ◦ (fan.FH)1)<

◦ (((fan.F)GH)1 ◦ (fan.GH)1)<

= { domains: (2),

for all F , ((fan.F)1)< = idF 1

with F :=FH and F :=GH }

((F (fan.G)H)1)< ◦ (((fan.F)GH)1)< .

Also, for all A ,

(((mem.F)GA)> ◦ (F (fan.G)A)< ◦ (fan.F)GA)<

= { relators and domain operators commute,

domains: (2) }

(((mem.F)GA)> ◦ F ((fan.GA)<) ◦ (fan.F)GA)<

= { theorem 18 withR := ((fan.G)A)< ,

coreflexives are simple}

(((mem.F)GA)> ◦ (fan.F)GA ◦ ((fan.G)A)<)<

= { domains: (2) }

((mem.F)GA)> ◦ ((fan.F)GA ◦ (fan.G)A)< .

Thus,

((mem.F)GH1)> ◦ ghf 1< ◦ fhg1<

= { first calculation above }

(((mem.F)GH1)> ◦ (F (fan.G)H1)< ◦ (fan.F)GH1)<

= { second calculation withA :=H1 }

((mem.F)GH1)> ◦ ((fan.F)GH1 ◦ (fan.G)H1)<

= { definition of fgh ,

((fan.H)1)< = idH1 }

((mem.F)GH1)> ◦ fgh1< .

�
Now we consider emptyF structures.

LEMMA 36.

F⊥⊥ ◦ fhg = F⊥⊥ ◦ fgh .

Proof We have:

F⊥⊥ ◦ fhg

= { lemma 37 (below) , domains}

F⊥⊥ ◦ fhg ◦ (fan.H)>

⊆ { (fan.H)> = id ∩ (fan.H)∪ ◦ fan.H ,

monotonicity }

F⊥⊥ ◦ (fhg ∩ fhg ◦ (fan.H)∪ ◦ fan.H)

⊆ { coreflexiveF⊥⊥ distributes through

intersection, lemma 38 (below)}

F⊥⊥ ◦ (fhg ∩ gfh)

= { corollary 34 }

F⊥⊥ ◦ fgh .

The equality follows from the basic inclusionfgh⊆ fhg , mono-
tonicity and anti-symmetry.
�

LEMMA 37.

fhg> ⊆ (fan.H)>

Proof

fhg> ⊆ (fan.H)>

⇐ { definition of fhg , domains: (2) }

((fan.H)G ◦ fan.G)> ⊆ (fan.H)>

⇐ { domains: (2) }

((fan.H)G ◦ fan.G)> ⊆ (H(fan.G) ◦ fan.H)>

⇐ { monotonicity }

(fan.H)G ◦ fan.G ⊆ H(fan.G) ◦ fan.H

= { fan.H has typeH←↩ Id }

true .

�

LEMMA 38.

F⊥⊥ ◦ fhg ◦ (fan.H)∪ ◦ fan.H ⊆ F⊥⊥ ◦ gfh .

Proof

F⊥⊥ ◦ fhg ◦ (fan.H)∪ ◦ fan.H

⊆ { (8) with R := fhg ◦ (fan.H)∪ }

F⊥⊥ ◦ (fan.F)H ◦ fan.H

= { F distributes over composition,

⊥⊥ is zero of composition }

F⊥⊥ ◦ F (fan.G)H ◦ (fan.F)H ◦ fan.H

= { definition }

F⊥⊥ ◦ gfh .

�

THEOREM 39.

ghf ∩ fhg = fgh .

Proof We have:

ghf ∩ fhg = fgh

= { basic inclusions (see section 3.2)}

ghf ∩ fhg ⊆ fgh

= { F id = (mem.F)>∪F⊥⊥ , distributivity }

(mem.F)> ◦ (ghf ∩ fhg) ⊆ fgh

∧ F⊥⊥ ◦ (ghf ∩ fhg) ⊆ fgh

= { lemma 35 and lemma 36 }

true .

�

6. Conclusion
In this paper, we have used relation algebra to formulate and reason
about shape properties of datatypes. We have shown that shape
selectors are closed under set intersection, and we have analysed in
detail the properties of a collection of ”fans”. Particularly striking
is how simple and effective the basis is for our calculations. There
are just three components: relators, membership and (point-free)
relation algebra. The notion of a relator is very simple because
it involves just four simple algebraic properties (relators preserve
identities and distribute through composition —i.e. are functors—
and are monotonic and commute with converse). The notion of
membership is yet simpler. The point-free relation algebra is, of
course, very rich and so harder to master. Yet, as we have shown,
calculations within the algebra are compact and easy to check.
This is why we believe that it does provide a practical basis for
the practising programmer. Other publications that consider the
shape of datatypes (eg. [12, 13]) are based on representing relations
as pullbacks in a category. We look forward to seeing how such
formulations of shape properties are able to express the ideas in
this paper. In a companion paper [4], the authors consider the
shape-preservation properties of generic zips [10, 5]. Again, we
look forward to seeing whether or not other formulations of shape
properties are able to formulate and reason about zips as effectively
and at the same level of generality.

References
[1] R.C. Backhouse, P. de Bruin, P. Hoogendijk, G. Malcolm, T.S.

Voermans, and J. van der Woude. Polynomial relators. In
M. Nivat, C.S. Rattray, T. Rus, and G. Scollo, editors,Proceedings
of the 2nd Conference on Algebraic Methodology and Software
Technology, AMAST’91, pages 303–326. Springer-Verlag, Workshops
in Computing, 1992.

[2] R.C. Backhouse, H. Doornbos, and P. Hoogendijk. A class
of commuting relators. Available via World-Wide Web at
http://www.cs.nott.ac.uk/~rcb/MPC/papers, September
1992.

[3] R.C. Backhouse, T.S. Voermans, and J. van der Woude. A
relational theory of datatypes. Available via World-Wide Web
at http://www.cs.nott.ac.uk/~rcb/MPC/papers, December
1992.

[4] Roland Backhouse, Richard Bird, and Paul Hoogendijk. On shape-
preservation properties of zips. In preparation.

[5] Roland Backhouse and Paul Hoogendijk. Generic properties of
datatypes. In Roland Backhouse and Jeremy Gibbons, editors,
Generic Programming, volume 2793 ofLNCS Tutorial Series, pages
98–135. Springer, 2003.

[6] Richard S. Bird. Zippy tabulations of recursive functions. In Philippe
Audebaud and Christine Paulin-Mohring, editors,Mathematics of
Program Construction, 9th International Conference, MPC2008,
Marseille, France, volume LNCS 5133, pages 92–109. Springer,
2008.

[7] Richard S. Bird and Oege de Moor.Algebra of Programming.
Prentice-Hall International, 1997.

[8] P.J. Freyd and A.̌Sčedrov. Categories, Allegories. North-Holland,
1990.

[9] Paul Hoogendijk. A Generic Theory of Datatypes. PhD thesis,
Department of Mathematics and Computing Science, Eindhoven
University of Technology, 1997.

[10] Paul Hoogendijk and Roland Backhouse. When do datatypes com-
mute? In Eugenio Moggi and Giuseppe Rosolini, editors,Category
Theory and Computer Science, 7th International Conference, volume
1290 ofLNCS, pages 242–260. Springer-Verlag, September 1997.

[11] Paul Hoogendijk and Oege de Moor. Container types categorically.
Journal of Functional Programming, 10(2):191–225, 2000.

[12] C.B. Jay. A semantics for shape.Science of Computer Programming,
25(251–283), 1995.

[13] Neil Ghani Michael Abbott, Thorsten Altenkirch. Categories of
containers. InFoundations of Software Science and Computation
Structures, volume 2620 ofLNCS, pages 23–38. Springer, 2003.

[14] J. Riguet. Relations binaires, fermetures, correspondances de Galois.
Bulletin de la Socíet́e Math́ematique de France, 76:114–155, 1948.

