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Abstract

The “fan” of a datatypeF’ is a relation that holds between a value
2 and an arbitraryF" structure in which the only stored value is

x . Fans make precise the notion of the shape of a data structure
We formulate two different representations of shape selectors and

exploit the properties of fans to prove that the two representation
are order isomorphic and that shape selectors are closed under s
intersection. For arbitrary datatypds, G and H , we consider

six different ways of composing their fans in order to constract
structures of G structures of H structures; each of the six im-

S

poses a different requirement on the shape of the substructures. Wé'rlla

catalogue the relation between different combinations of the con-

structions. We apply the result to a problem that arose in a generic

theory of dynamic programming concerning the shape properties
of a natural transformation fronds structures toF'G structures.

Categories and Subject DescriptordD,F [D.1,F.3: D.1.1,F.3.3
General Terms Algorithms, Languages, Theory

Keywords datatype, collection type, relation algebra, allegory,
funtional programming, relational programming, dynamic pro-
gramming

1. Introduction

Consider the following problem about the shape properties of three
arbitrary datatypes’, G and H. Supposed is a natural trans-
formation takingG structures toF'G structures with the property
that the result off is an F' structure of G structures all of which
have the same shape. Consider the instahiée(which transforms
a GH structure to anFGH structure). Show that i H is ap-
plied to a G structure of H structures all of the same shape, the
result is an F' structure of GH structures all of which have the
same shape.

A problem like this arose in a recent study of dynamic program-
ming [6]. It is an example of a problem in (datatype-)generic pro-
gramming; the challenge is to develop formalisms in which such
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transformations; the results of the investigation are reported in this
paper.

In our relational theory, datatypes (also known as “collection”
types — types like lists and binary trees) are modelled by “relators”

with “membership”.
The notion of a relator plays the role in allegory theory —which

Jpr our purposes is essentially the theory of binary relations on

sets— of the notion of a functor in category theory [7]. Just as func-
tors model the structural properties of datatypes in conventional
functional programming, relators model the structural properties of
tatypes in generic programming.

The formal notion of membership models the idea that datatypes
are mechanisms for storing data. The membership relation of a
datatype F', which we denote bymem.F', is a binary relation
between values and” structures which holds when the value is
stored in the F' structure. For example, the relatiomem.List
holds between a value and a listzs if x is a member ofzs
(according to the standard notion of list membership). Note that
relations (as opposed to functions) are essential to the theory for
the simple reason that membership is a relation.

Shape properties of datatypes are formulated using the notion
of a “fan” [10, 9] (called a “generator” in [2] where it was first
introduced). The fan of a datatyp® is a binary relation between
F structures and values; it holds when every member of khe
structure is equal to the given value. Another way of viewing the
fan, fan.F', of a datatypeF' is as a non-deterministic program
that, given a so-callegeed constructs an arbitrary’ structure in
which the only stored value is the seed.

Membership and fans are both natural transformations. Specif-
ically, mem.F transforms anF structure to anld structure
(where Id denotes the identity relator); it is “natural” (“polymor-
phic” in the jargon of functional programming) in that it is not
dependent on the type of values stored in the structure. We write
this as mem.F : Id<— F'. Conversely,fan.F' transforms anld
structure to anF' structure; thatisfan.F' : F < Id . The instance
(fan.F)G has as seed & structure, which is transformed to an
F@G structure by constructing an arbitrady structure, and copy-

problems can be readily stated and solved, and in a way that ising the seed into all the storage locations. In particuléan. F') G
appropriate to the needs of the practising programmer. Such a for-constructs anF'G; structure in which all the stored: structures

malism is furnished by the relational theory of datatypes [1, 3, 7, 9,

11]). The above problem acted as a catalyst for us to investigate, in

have the same shape.
Given this basis, it is relatively straightforward to formulate

much greater depth than before, the properties of shape-preservinghe problem we used to introduce this paper. It is about three
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datatypesF', G and H , and the relationship between a natural
transformation of typeF'G «+— G and the fans of the datatypes.
There are six different ways that the fans of the datatypes
G and H can be composed to form a natural transformation of
pe FGH < Id. This is the “fanclub” in the title of the paper.
We explore the relationship between combinations (“meets”) of
all six. That is, we formulate and prove properties like: A6 H
structure with the property that all th@ structures have the same
shape and all thel/ structures have the same shape also has the



property that all GH structures have the same shape. Section 3 complete, division allegory. For full discussion of these concepts
introduces the fanclub and gives examples, whilst the main resultssee [8] or [7]. In this paper, very little of this structure is required
are recorded in section 5. Section 4 studies shape properties ofexplicitly (although some of the structure does underlie some of the
natural transformations in general (as opposed to the particular properties we exploit). We detail just what we need.
properties of fans). We return to our introductory problem in section We assume that, for each pair of objectsand B, there is a
4.2. smallest and a largest relation of typé<— B, which we denote

by L4, and T 4,5, respectively. We omit the subscripts when
2. Preliminaries the informatign they Provide is not esserlti_al. The symb(blu‘" |s

pronounced “bottom” and the symbolTT " is pronounced “top”.
This section summarises the formal basis for our work. For more The interpretation ofLL 4 5 is the empty relation between values
details see [7, 10, 9, 5]. In brief, we model relations as the arrows of type A and values of typeB ; it is the zero of composition. The
of an allegory, and a datatype (likeist ) as a relator (section 2.1) interpretation of TT 4 5 is the universal relation between values of
with membership (section 2.5). type A and values of typeB .

We also assume the existence ofumit object, denoted by

2.1 Allegories and Relators
An allegory [8] is a category with additional structure, the addi-

tional structure capturing the most essential characteristics of rela-

tions.
Being a category means that for every objett there is an
identity arrow id4 , and every pair of arrowsR : A< B and

“1". Formally, 1 is such thatid; is the largest relation of its
type — that is,idi=TI'1,1 — and, for every objectA there
is a total relation!s of type 1— A. An immediate conse-
quence of this definition is thats is afunction That is, it is
“simple” (i.e. 'ao!4"” Cid1) and —by definition— “total” (i.e.
14”014 Dida ). In general, relationR of type A« B is said

S : B~ (C, with matching source and target, can be composed: to besimpleif RoR” Cida andtotal if R“oR D idp . (This

RoS : A« C.Composition is associative and hak as a unit. terminology also reflects the interpretation of relatidh of type
The direction of the arrows is, of course, irrelevant to the de- A« B as a non-deterministic program mapping inputs of type

velopment of the theory. We use left-pointing arrows to suggest the to outputs of typeA .) A second consequence is thiat= Tl 4 .

interpretation of arrowR of type A+« B as a nondeterministic
program with outputs of typed and inputs of typeB ; the expres-
sion (z,y)€R isread asz is an “output” of the relationR given
“input” y . In other words, arrows in an allegory are interpreted as
input-output relations, where the input is on the right of the arrow
and the output is on the left. This is in line with function application
where the order of writing is function applied to argument.

The additional axioms are as follows. First of all, arrows of the
same type are ordered by tpartial order C and composition
is monotonic with respect to this order. Secondly, for every pair
of arrows R,S : A« B, theirintersection(mee}] RNS exists
and is defined by the customary universal property. Finally, for
each arrow R : A« B its converse R” : B+ A exists. The
converse operator is defined by the requirements that it is its own
Galois adjoint, and is contravariant with respect to composition.
All three operators of an allegory are connected by rii@ular
law, also known as Dedekind’s law [14]: for alk , S and T' (of
appropriate type),

RoSNT C Ro(SN R“T).

(Note that composition has precedence over intersection. However
we often parenthesise expressions more than strictly necessary in, p

order to assist the reader unfamiliar with the convention. We try

to space formulae in order to suggest to the eye the appropriate.

parsing.) We also apply the law in its converse form:
SeRNT C (SNToR”)°R .

Generally, every law in allegory theory has a symmetric “converse
form”; we often state just one form but use both.

The standard example of an allegoryRel , the allegory with
sets as objects and relations as arrows. With this allegory in mind,
we refer to the arrows of an allegory as “relations”.

A relator is a monotonic functor that commutes with converse.
We generally useF', G and H to denote relators. Application
of F to R is denoted byF' R . The identity relator is denoted by
Id . For given objectA, K4 denotes the constant relator — the
relator which maps objects td and arrows toid 4 .

2.2 Universal Relations, Units and Division

The allegory Rel has more structure than we have captured so
far with our axioms. In full, Rel is a unitary, tabulated, locally

'A<« B isthe set of alla in A such that

(The simple proof is omitted.)

Finally, we assume the existence of the so-cadleisionoper-
ator “\ ”. Specifically, we have the following Galois-connection.
Foral R: A«—B, S:B«C andT : A<—C,

RoSCT S CR\T .

Note that R\T : B—C'.

2.3 Domains

In addition to the source and target of a relation it is useful to know
their left and right “domains”. Théeft domainof a relation R is
that subsetR< of id4 , where A is the target of R, defined by
the Galois connection:

RC XoTla,B R< C X foreachX suchthatX Cida .
1)
Theright domainof R : A« B, which we denote byR> , is the
left domain of R“. The complement of the right domaiof R
is denoted byR>e ; it is the largestX such thatX C idg and
ReX Cllap.
The interpretation of the left domain of a relatiaR of type
(a,b) € R for someb

A relation R of type A« A, for some A, that is a subset of

id4 is called acoreflexive(or monotypg& An important property

is that composition of coreflexives is the same as intersection (that
is, for coreflexiveskR and S, RoS=RNS) and so is commu-
tative. Also, composition with a coreflexive (on the left or right)
distributes through intersection. Domains are coreflexives.

We frequently use the property that

(RoS<)< = (ReS)< @)

(for all R and S); the accompanying hint is “domains”. We
also use the fact that the domain operators are monotonic, but we
rarely state this explicitly in the hints. A closed formula f&< is
idaN(Ro RU) .

Relations of typel« A are calledright conditions There
is an important order-preserving isomorphism between coreflex-
ives and right conditions given by the function mapping core-
flexive X of type A<— A to right condition ! 40X , and the
right domain operator mapping right conditiafl to C> . Specif-
ically, (lacX)>=X and !40C> = C. Symmetrically, there



is an order-preserving isomorphism between coreflexives and left  SupposeF' is an endorelatdr The interpretation of 'R is
conditions (where a left condition is a relation of type—1). a relation betweenF' structures of the same shape such that cor-
Typically, the domain operators do not distribute through inter- responding values stored in the two structures are related® by
section. However, when applied to conditions, they do. That is, if SupposeA is an object and suppos& Cid4 . So X is a core-
C and D are both left conditions of the same type, flexive; in effect, X selects a subset ofl , those values standing in
o the relation X to themselves. By the same tokeR X is the core-
(€ND)< = C<nDs . flexive that selects allF’ structures in which all the stored values
Because of the isomorphism between coreflexives and (left or right) are members of the subset selected Xy This informal reason-
conditions, it is always possible to interchange between the two. ing is the basis of the definition of a membership relation for the
Expressed in terms of left conditions, property (2) then becomes datatype F.
trivial — it is the property that composition is associative. For The precise specification of membership fBr is a collection
this and similar reasons, conditions are sometimes preferable toof relations mem.F (indexed by objects of the source allegory
coreflexives. However, in the relational theory of datatypes there of F') such that(mem.F)4 : A— F.A and such thatF'X is
is a very cogent argument for using coreflexives; it is the fact that the largest subseY” of idr4 whose “members” are elements of
relators commute with the domain operators. That s, for all relators the set X . Formally, for all A, mem 4 is required to satisfy the
F andall R, property:

- (FR)< = F(R<) . . YCFX = ((memF)aoY)< C X (6)
We usually use this rule silently: we writé’ R< and exploit the forall X and Y suchthatX Cida and Y Cidpa .

ambiguity in the operator precedence. A property equivalent to (6) (in fact, the property used in [11]
2.4 Natural Transformations to define membership) is the following: for alt of type A— B,

We define a collection of relationg indexed by objects to ba FRo(mem.F)g\idg = (mem.F)a\R . @)
natural transformation of typef"— G- for relators /* and ¢ if, The family of relationsmem.F'\id is called thefan of relator

foralltypes A, 04 : FA—GA,and,forallR: A—B, F and is denoted below byan.F . The interpretation offan.F
FRoOg O 6040GR . 3) is a relation that, given a seed value, non-deterministically

constructs anF' structure in which the only stored value is.
For example, given the input value, fan.List constructs a list
of x s of arbitrary length. (The name “fan” is chosen to suggest an
analogy with “fanning” a deck of cards, or the fans with multiple
blades used as cooling devices.)

A simple consequence of (7) is that, for all relatiofis and

(See[9, 5] for a detailed discussion of why containment rather than
equality of relations is the appropriate way to define a natural trans-
formation in an allegory.) The composition of natural transforma-
tion 0 of type F«— G and ¢ of type G+« H is denoted by

0 o ¢ . The subscripts on natural transformations will be omitted
when the information they provide is not essential. In the process,

operations like application of relators will be silently “lifted” to relators 7,

natural transformations in the same way as we have overloaded the Fl o R C FU ofanF . (8)

composition operator above. This fact, which we exploit later, gives an opportunity to illustrate
If 6 is a natural transformation of typé'<— G and H is a our style of calculation. First note that we have omitted the type

relator, 6H is a natural transformation of typé&'H «— GH and information on R and on L . Formally, the property is that, for

HO is a natural transformation of typ& F' < HG . Specifically, all objects A, B and C', and all relationsRk of type FA«+ B,
(0H) 4 is (by definition) 0z 4 and (HO) 4 is (again by definition)

H(6). FllcaoR C Fllg,po (fan.F)p . 9)
A natural transformation is said to gEoper if the inclusion Sometimes the type information is necessary; here it is not. We
in (3) can be strengthened to an equality. Thatdsis a proper discuss this further later. The calculation itself then proceeds as
natural transformatiorof type F— G if, forall R: A— B, follows.
FRoblg = 04GR . Fll o R C FI1L o fan.F
Whilst, in general, equality doe®thold, it is the case that equality - { @ }
does hold for all natural transformations when the relati®nis
a total function. That is, if¢ is a natural transformation of type Fl oR C mem.F\ 1L
F — @, itis the case that, for afinctions f of type A B, — { Galois connection defining division}
Ffolp = 0a°Gf . (4)

mem.F' o F1l o R C 1L
(See [9, lemma 2.70].) Our only use of this property is wheris
!5 . Specifically, sincelz is a function of typel «— B,

Flpofs = 6;0Glg . (5) monotonicity of composition }

1l omem.FFo R C 1L

= { mem.F : ld—F,

2.5 Membership and Fans = { 1L is zero of composition }

Informally, a natural transformation is a transformation of one true .

type of structure to another type of structure that rearranges theThe style, we hope, is self-explanatory. (Note that we use for
stored information in some way but does no actual computations poolean equality where others might use* or even “< ) In

on the stored information. Hoogendijk and De Moor have made this

precise [11]. Their argument, briefly summarised here, is based on2 gpgorelators have equal source and target allegories. We consider only
the thesis that a datatype (called a “collection type” in their paper) endorelators in this paper. Hoogendijk [9] shows how to extend the theory
is a relator with a membership relation. to non-endo relators.




this example, we have spelt out all steps in detail. Later we combine
simple steps into one step. Hopefully, the reader will be able to
supply the missing type information for themself.

A second consequence of (7), proved by Hoogendijk [9, 4.42],
is the following:

fan.F o (fan.F)” N FTT C Fid . (10)

This property expresses the fact that any t&b structures that
are constructed from the same seedfby.F' (i.e. are related by
fan.F o (fan.F)") and have the same shape (i.e. are related by
FT) are equal (i.e. are related b¥'id , which is the equality
relation on F' structures).

A third consequence of (7), again proved by Hoogendijk [9,
4.39], is that

FTI'B,Ao(fan.F)B = TrFB,A .
It follows that (fan.F); =TT p1,1 and, hence,
((fan.F)1)< = idr1 . (11)

The interpretation of datatypé'l is the type of I shapes. For
example, Listl is isomorphic with the set of natural numbers —
the “shape” of a list is its length. The interpretation of (11) is thus
that (fan.F'); constructs all possiblé” shapes. (This is one place
where the type information is essential! It is not the case that for
arbitrary A, ((fan.F)a)< = idpa .)

Membership and fans are both natural transformations. Specifi-
cally, mem.F' is a natural transformation of typkl «<— F' (where
Id is the identity relator), andan.F' is a natural transformation of
type F < Id . More importantly, they are both the largest natural
transformations of their type; moreovenem.F' \ mem.G is the
largest natural transformation of typ < G [11]. Formally, if
is a natural transformation of typ&' — G ,

mem.F o § C mem.G . (12)

In words, the members of thé" structure constructed by are
members of the inpulG structure. The interpretation of this re-
markable result is that a natural transformation of type— G
constructs anF’ structure from aG structure whereby the stored
values in the F' structure are rearrangements of the values in the
G structure; omission and/or duplication may occur but no creation
of new values. This confirms formally the functional programmer’s
informal understanding of the notion of a polymorphic function.
(Note how concise and simple the formulation of the property is!)

2.6 Empty and Non-Empty Structures

A complication in some of our calculations is that we are obliged
to perform a case analysis on “empty” and “non-empfy” struc-
tures. (For example, an “empty” list is a list of length.) In-
formally, the coreflexive F' Ll is an “empty” F' structure. For-
mally, (mem.F)> is the set of non-emptyF’ structures; con-
versely, F' 1l is the set of F' structures that have no members,
as we show below.

LEMMA 13. F1l = (mem.F)> .
Proof By mutual inclusion. First,
F1 C (mem.F)>

{
mem.F o F1l. C 1L

{
1l o mem.FF C 1L

{

definition of negated domain+$) }

mem.F : Id«— F (and transitivity of C) }

1l is the zero of composition }

true .
Second,

F1 DO (mem.F)>
6 }

mem.F o (mem.F)>)<

= {

1D
{ by definition of >,

mem.F' o (mem.F)>» =11 }

D«

domains }

true .

O

The contextual information that we are considering a non-empty
F structure is expressed by precomposing expressions with the
term (mem.F)>. The following lemma allows us to move the
contextual information around in the calculation.

LEMMA 14. If @ is a natural transformation of typé' «— G
then, for all typesA and B and all S of type GA—GB,

0>08 = 0>08500> = Sof> « SCGIT .

Proof We prove just the second equality. The first is slightly easier
to prove because, unlike the second, no converses are involved.

0>0So0f> = Sob>
{

(S0 6>)< C 6>
{

(S0 0%)< C 6>
{

(GTT = 97)< C 6>
{

(0oGTT)>
{

(FTT o 0)>
{

true .

domains }

domains }

assumption:S C G'TT , monotonicity }

properties of"
6>

}

-

: F— G, monotonicity of >
0>

domains }

}

0
<

O

COROLLARY 15. If @ is a natural transformation of type
F— G then 6> is a proper natural transformation of type
G—G.

Proof Immediate from lemma 14 and the definition of a proper
natural transformation.
O

THEOREM16. F1l and (mem.F)> are both proper natural
transformations of typeF'<F . (To be precise, byF' LI we mean
the mapping from objectd to F Ll 4,4 .)

Proof That F1L is a proper natural transformation of type
F+—F is immediate from the fact thatll is a proper natural

transformation of typeld<—Id and the typing rules for natural
transformations.



That (mem.F)> is a proper natural transformation of type
F+—F is an instance of corollary 15.
O

2.7 Fans Make Copies

Fans are natural transformations. Specificaliyn.F' : F—Id.
Recalling (4), this has the consequence that for all relatiBnthat
are both simple and total (i.e. functions),

fan.FFoR = FRofan.F .

When a relationR is simple but not total, it is not the case that
an equality holds. For example, wheR is the empty relation,
the left domain of FRofan.F is F1L; but fan.F'o R is the
empty relation. The equality does hold whéh is simple and we
restrict the left domain tdmem.F")> . Informally, fan.F' isanon-
deterministic mapping of a value to af' structure in which all
stored values in thé” structure are copies of the given value; since
simple relations are deterministic, it makes no difference whether
the relation R is applied to the given value before or after the
copying takes place. We prove this in theorem 18; first we need a
preliminary lemma.

LEMMA 17. ForallR and S,
S>>0 S\R C S\RoR"oR.

Proof
S> o S\R
- { S> = id N S” .S, monotonicity }
S\R N S0 8o S\R
C { cancellation of factors, monotonicity}
S\R N S“oR
- { modular law, monotonicity }
S\RoR”oR .
O

THEOREM18. For all simpleR,
(mem.F)> o FR o fan.F

(mem.F)> o fan.F o R .

Proof By mutual inclusion. First,
(mem.F)> o FR o fan.F

D { fan.F' : F«—Id,
monotonicity of composition }
(mem.F)> o fan.F o R .
Second,
(mem.F)> o FR o fan.F
C (mem.F)> o fan.F o R
= { (mem.F)> is a coreflexive }
(mem.F)> o FR o fan.F' C fan.F o R
= { FR o fan.FF = mem.F\R }
(mem.F)> o mem.F\R C fan.F o R
= { lemma17,S := mem.F }
mem.F\R o R” e R C mem.F\id o R
= { monotonicity and factors }

mem.F' o mem.F\R o R° C id

= { cancellation of factors }
RoR” C id

= { definition }
simple.R .

O

3. The Fan Club
3.1 Definitions and Naming

Given datatypesF', G and H , there are six different ways of
composing their fans to form a natural transformation of type
FGH «—Id These are given below. Simultaneously, we name
them using a combination of the letters “f, “g” and “h” to indicate
the order of composition.

fgh = (fan.F)GHo(fan.G)H ofan.H
gfh = F(fan.G)Ho(fan.F)H ofan.H
fhg = (fan.F)GHoG(fan.H)ofan.G
hfg = FG(fan.H)o(fan.F)Gofan.G
ghf = F(fan.G)HoF(fan.H)ofan.F
hgf = FG(fan.H)oF(fan.G)ofan.F’

We leave the reader to check the types. For example, considering
gfh, F(fan.G)H hastypeFGH «— FH , (fan.F)H has type
FH«— H and fan.H has type H < Id . Hence, gfh has type
FGH «—Id (using the rule that, ity has typeF «— G and T has

type G—H, not hstype F— H).

These are the members of our fanclub. In the remaining sec-
tions, we investigate the relation between them. We begin in sec-
tion 3.2 by observing how they may be partially ordered; this or-
dering then forms the basis for a discussion of some concrete ex-
amples. Next, in section 3.3, we give a diagrammatic summary of
the relationship between the semilattice formed by the members of
the club under set intersection. The precise relationships are stated
and proved in section 5. Following this, we return to our introduc-
tory problem in section 4.2; as we show, the problem is indeed a
straightforward corollary of the properties of the fanclub.

3.2

Natural transformations of the same type can be ordered by inclu-
sion everywhere. That is, transformatignis included everywhere

in transformationr if, for all A, na C74 . The members of the
fanclub are ordered in this way as shown below. Each arrow indi-
cates an inclusion everywhere (i.e. for all instances of the transfor-
mations). For example, the arrow frogfh to ghf asserts that,
everywhere,gfh C ghf .

Inclusions and Examples



hgf
/ \ ([L,r] 5 [rlyr])

ghf hfg
(i, [rr.rl) ({Lr,d], [rolor])

gfh fhyg

\ / (el frorsr])
([, , [L,41) ([t 0], [Lr,d])
fgh

The inclusions follow from the naturality of fans and the mono-
tonicity of composition. Here, for example, is the proof of the in- (L5 , [L,L)
clusion gfh Cghf .

gfh

{ definition }
F(fan.G)H o (fan.F)H o fan.H
{ fan.F' : F'<—Id , hence
(fan.F)H o fan.H C F(fan.H)ofan.F" }

N

Each node of the diagram is an example of a pair of lists of sums

F(fan.G)H o F(fan.H) o fan.F related by a combination of fans to a given seed; the value of the
o seed is irrelevant and has been omitted, allowing us to abbreviate
= { definition } (I,x) to I and (r,z) to r. The central node has been added; the
ghf . reason for its addition is discussed shortly.

) ) ) ) When studying the diagram, it is important to bear in mind that
The crucial middle step of the above calculation can also be jus- the shape of a list is its length, and the shape of a value in a sum type
tified by appeal to a stronger property of fans which we exploit s jts tag, “/” or “ r . (All pairs have the same shape; in general,

later. In the above example, the componert/™ in ghf is the shape of the? structure is not relevant.)

F(fan.H) o fan.F', which equalsfan.F'H , the largest natural The top and bottom nodes are the easiest to describe. The top
transformation of typeF’H «— Id . The corresponding component  node is an arbitrary pair of lists of sums, the bottom node is a pair
“ fhin gfh is also a natural transformation of typeH «Id, of lists of the same length such that all the elements of all the lists

and thus included irfan. 'l . Monotonicity of relators and com-  are equal.

position then completes the proof. The same argument can be ap-  The top-left node is a pair of lists, each of arbitrary length, such
plied to all six edges in the inclusion diagram because each edgethat, for each list, its elements are equal. The bottom-left node has
corresponds to switching around two of the letters in the names — the further restriction that all the elements in all the lists are equal.
for example, *h " and “ f " are switched in the arrow frony fh The top-right node is a pair of lists of equal length. The bottom-
to ghf — with the upper component being a fan of the composi- right node has the further restriction that the two lists are equal.

tion of two relators and thus the largest natural transformation of ~ The central node has been added to the diagram. This node gives

its type. an example of a structure related to the seegthy Nhfg . Itis a
Formally, we have, for all relatorg” and &, pair of lists of equal length such that, for each list, its elements are
fan.FG = F(fan.G) o fan.F . (19) all equal.

The simple proof by mutual inclusion uses (7) and the naturality
properties ofmem.F'.

The relation between the fans can be illustrated by considering
specific relatorsF', G and H . In the diagram below,F' is 3.3 The Goal
the doubling relator,A , defined by AX = X x X ; the fan of A Our goal is to detail how the members of the fanclub are related by
relates the pair £,z ) to = (for arbitrary «, irrespective of its set intersection. The diagram below summarises the conclusions.
type). Also, the relatoiGG is List ; the fan of List relates a list (of Specifically, the intersection of two members of the fanclub is given
arbitrary length) to a valuer equivales every element of the list by the highest node in the diagram that is “below” (i.e. included

equals z . Finally, the relator H is the sum relator,V , defined in) both members. For examplggfh N hfg equals fgh. In
by VX =X+X ; the fan of V relates the pairg/, z) and (r, z) words, an FGH structure such that all thed structures have
to . (“1"and"“r" are so-called “tags”, normally denoted byl the same shape and all th& structures have the same shape has

and inr ; we usel and r here for brevity.) the property that all theZH structures have the same shape.



N

ghf

N

ghfnhfg

hfg

gfh

fhg

fgh

Note that the diagram does not show the relationship between
members of the fanclub under set union. In this context, set union

transformationd of type F' < 1Id, in terms of 6; . (Note that the
type information is included in this calculation because that is what
the calculation is about!)

THEOREM 20.
04

If & hastypeF «—Id then, forall A,
(F!AU o @ o !A) N (fan.F)A .

Proof By mutual inclusion.
(F!AU o0 o !A) N (fan.F)A

is less interesting than set intersection because the former is just

about a disjunction of shape properties whereas the latter is about a

conjunction of shape properties.
Note also that the example of pairs of lists of sums presented

above demonstrates that the members of the fanclub are different.

Strictly, we should establish this formally (for example, by showing
that ([I,/] , [r,r,r] ) cannot be generated by fg ). That exercise
we leave to the reader.

4. Shape Selectors

The six members of the fanclub listed in section 3.1 are all natural
transformations of typeF'GH < Id . Before investigating their
properties, we explore the properties of natural tranformations of
type F «—Id for arbitrary F'. Among the properties we prove is
theorem 24, which asserts that such families of relations are closed
under intersection. It follows that all seven elements of the club
shown in the figure in section 3.3 are natural transformations of
type FGH «—1d.

4.1 Reduction to the Unit Type

Natural transformations of type”«—Id are subsets offan.F .
Whilst fan.F can be viewed as a nondeterministic program that
constructs F' structures of all possible shapes, a typical natural
transformation of typeF' < Id constructs only somé" structures
but in a way that is independent of the type of the argument (i.e.
is so-called “natural”). In essence, natural transformations of type
F —Id select F' shapes.

Natural transformations of typ&’; «<— F' also selectF’ shapes.
If ¢ hastypeK; <« F' then, for each objecl , ¢4 is arelation
betweenl and F'A ;thatis, p4 Selects elements in some subset
of FA (specifically, the subset given by 4> ). But, naturality of
 means that the selection is made independentlyiothat is,

= { 0 hastypeF —Id, !4 isafunction }
(F'a” o Flaofa) N (fan.F)a
C { modular law }
(F14 o F14) 0 ((fan.F)a o 04)) © 0
- { Fl "o Fly C FTlaa ,
0 Cfan.F (becausefan.F' is the largest
natural transformation of its type)}
(FTTaa 0 ((fan.F)a o (fan.F)y)) o 04
C {  @o}
0a
C { 4 istotal;ie.idga C 140 lx

6Cfan.F '}
(F('a”ola) o 0a) N (fan.F)a
{ distributivity  }
(F'a”0 Flao04) N (fan.F)a
{
(F'4” 0 61 014) N (fan.F)4 .

0 hastypeF —Id, !4 isafunction }

O

Theorem 20 expresséek, |, for arbitrary A , in terms of 0; . In
turn, 6; o !4 can be expressed in terms of the left domairdef
Specifically, sincela = TT1,4 and 610 TT1,4 = 61<o 1,4,

01< o TTr1,a . (21)

It follows that every natural transformation of typg <« Id is
completely determined by its left domain at the unit type. More
specifically:

Orol4

COROLLARY 22. If 6 and ¢ both have typeF —Id then,

(0Cp) = (1 Cp1) = (1<Cp1<) = (0<Cp<) .

Proof Straightforward ping-pong proof using theorem 20, (21)
and the monotonicity of the left-domain operator.
O

COROLLARY 23. If 6 hastypeF «Id then, forall A,

9A< = (F!AU o 91)< o (fan.F)A< .

Proof

selects on the basis of the shape of the structure, not on the stored

values.

Formally, there is an order isomorphism between natural trans-
formations of type F' < 1Id and natural transformations of type
K, — F (theorem 29).

Natural transformations of typd” < Id are completely char-
acterised by their behaviour at the unit type. This is the essence of
corollary 22 below. First, we show how to expre$s , for natural

0a<
= { theorem 20 }
((F!'4” 0 61 0 14) N (fan.F) )<

{ forall R, S and T,

((RoS)NT)< = (RN (T-S"))<

}



((F'4” 0 61) N (fan.F)4 o 14")<
{ Fla”06; and (fan.F)a o 14°
have sourcel , distributivity }
(F14° 0 61)< N ((fan.F)4 o 147)<
{ coreflexives, (14”)<=ida }
(F'4° 0 61)< o (fan.F)a< .

O

THEOREM24. If 8 and ¢ both have typeF < Id then 6Ny
is a natural transformation of typ€ < Id .

Proof Forall R of type A—B, we have:
(0anea)e R
= {
((F1la®061014) N (Fla”0p10la) N (fan.F)a)o R
{ monotonicity of composition }
(Fla“o0610!a0R)
(Fla”oprolaoR)
((fan.F)a o R)
{ lacR Clp, fan.F hastypeF «—Id }
(F'4% 061 0!5)
(Fla” e p10lp)
(FR o (fan.F)B)

{ modular law,

theorem 20, properties of intersection

N

N

N

monotonicity of compositionlacR C ! }

FRo ((F!BU 000 'B) N (F!BU o 10 'B) N (fan.F)B)

= {
FR o (eBﬁ(pB) .

theorem 20, properties of intersection

O

DEFINITION 25 (Shape-selector Isomorphisms).  Withrang-
ing over natural transformations of typE < Id , and ¢ ranging
over natural transformations of typ&; «— F', we define the map-
pings 62 and p26 by:

(020.0)a = 61" o Fla
and
(p20.0)a = (F!a” 0o 017 o l4) N (fan.F)4 .
O
LEMMA 26. (a) If S is arelation of typel — F'1 then S o F'!

is a natural transformation of typ&’; <— F'. (b) If S is a relation
of type F1+1 then ((F!)” o So!) N fan.F is a natural trans-
formation of type F < 1d .

(To be completely correct, we should writ&s and not S ;
K is the natural transformation of typ&; < Kr1 such that,
forall A, (Ks)a=S )

Proof (a) That S o F! has type K; < F is a straightforward
application of the typing rules for natural transformations sithce
has typeK; < Id . (b) For any R of type A+ B, we have:

((F!AU oS o 'A) n (fan.F)A) o R

C { monotonicity }
Fly208Soly0oR N (fanF)s o R
- { laoR Clp, fan.F hastypeF «—Id }
Fl4¥ o Solg N FRo (fan.F)p
C { modular law }
FRo (FR” o Fl4” o S olg N (fan.F)p)
C { laoRClp }
FRo (Flg" o Solg N (fan.F)gp) .

The lemma follows by definition.
O

LEMMA 27. If ¢ hastypeK; < F then, for all objectsA ,

YA = Lp1OF!A .

Proof Instantiate (5) and use the fact thidt =!; .

COROLLARY 28. If 8 and ¢ both have typeK; < F' then,
(0Cp) = (01 Cp1) = (01> Cp1>) = (0>Cp>) .

Proof Straightforward ping-pong proof using lemma 27.
O

THEOREM29. The mappings defined in definition 25 form an or-
der isomorphism between natural transformations of type- Id
and natural transformations of typ&; < F'.

Proof By lemma 26(a),02¢ maps a natural transformation
of type F—Id into a natural transformation of typ&; «— F'.
Similarly, lemma 26(b) proves that26 does the reverse.

We prove thatf2¢ is an order isomorphism as follows. Sup-
pose « and 8 are both natural transformations of tygé«Id .
Then

02p.cc C 02p.0
{ definition 25, corollary 28 }
(ozlu o F!1)> - (,Blu o F!1)>

= { !y =id; , domains }
a1< C i<
= { corollary 22}

a C 8.

A similar argument establishes that2é is also an order isomor-
phism. Supposex and 3 are both natural transformations of type
K;— F .Then

p20.a C p20.8
= {

(F1iY o a1” o 1) N (fan.F)1 C (F11° o B1” o 1) N (fan.F);
= { (fan.F)y =" =TTp11 , h=idi }

alu C BIU
{

definition 25, corollary 22 }

corollary 28 }
a C 3.



4.2 The Transformation Problem

5. Meeting the Fanclub

We now return to the problem stated in the introduction. It concerns In this section, we relate the intersection (“meet”) of pairs of mem-

a natural transformatior® with a particular shape property. The
goal is to establish a shape propertyif .

The first property we are given of) is that it has type
FG«— G .We are also given thaf returns F' structures ofG

structures of the same shape. Shape properties of natural transfor-

mations are determined by instantiating them at the unit tylpe,

In this case,d; has type FG1+«+ G1. The objectG1 represents
the set of all G shapes. (For exampld,x1 is isomorphic to1
—all pairs have the same shape—1+1 is isomorphic toBool
—the shape of an element of a disjoint sum is given by its tag—
and Listl is isomorphic to the natural numbers —the shape of a
listis its length— .) The set o structures ofG structures of the
same shape is represented(bian. F')¢1)< . So we are given that

(1)< ((fan.F)g1)< .

The goal is now to show that, # H is applied to aG structure of

H structures all of the same shape, it returns a result that i8'an
structure of GH structures all of the same shape. Specifically, we
show that

(6H o (fan.G)H o fan.H)<

c

C ((fan.F)GH)< .
This we prove in corollary 31. First we prove a more general result.
If 6 hastypeFG «Id then

0 C (fan.F)G o fan.G (01)< C ((fan.F)g1)< .

LEmmMA 30.

Proof
0 C (fan.F)G o fan.G
= { corollary 22 }
(1)< C (((fan.F)G o fan.G)1)<
= { ((fan.G)1)< = idg1 , domains: (2) }
(1)< C ((fan.F)g1)< .
]

COROLLARY 31. If § hastypeFG«— G and

(1)< C ((fan.F)ca)<
then
(0H o (fan.G)H o fan.H)<

C ((fan.F)GH)< .

Proof First note that the premis@:)< C ((fan.F)g1)< equiv-
ales
((@ofan.G)1)< C (((fan.F)G)1)< (32)

because ((fan.G)1)< = idg1 . Property (32) is the premise in
lemma 30. Thus:

(0H o (fan.G)H o fan.H)<

- { lemma 30,0 := 0 o fan.G , (32),
monotonicity }
((fan.F)GH o (fan.G)H o fan.H)<
C { domains: (2) }

((fan.F)GH)< .

bers of the fanclub to the other members of the club. Note that, by
theorem 24, all “meets” of fans in the club are natural transforma-
tions of type FGH < Id ; this allows us to exploit corollary 22 as
the basic tool for establishing inclusions between the members.

THEOREM 33.
gfhNhfg = fgh .
Proof First:
gfhNhfg = fgh

= { theorem 24 and corollary 22}
(gfha N hfg)< = (fghi)=< .
Now we continue with the left side of the inclusion.
(9fha N hfgi)=<
{ gfhi1 and hfg: are left conditions,
distributivity  }
(9fha)< o (hfgr)<
= { definition of gfh, ((fan.H)1)< = idg1  }
((fan.FG)m1)< o (hfg1)<
- {  definition of hfg, (fan.H)1 = Ly}
((fan.FG) 1)< o (FGlpy o ((fan.F)G)1 o (fan.G)1)<
= {

corollary 23,

0,F,A := (fan.F)Gofan.G,FG,H1 '}
(((fan.F)G o fan.G) m1)<

= { ((fan.H)1)< = idu1 }

((fan.F)GH o (fan.G)H o fan.H);<
{ definition }

(fghi)< .

O
COROLLARY 34.
gfh N hfg fgh gfh N0 fhy .

Proof Immediate from theorem 33 and the inclusiofigh C g fh
and fghC fhg Chfg . (See section 3.2.)
d

At this point, it would be fortunate if we could give a proof simi-
lar to the proof of theorem 33 showing that f N fhg = fgh.
However, we have not been able to find such a proof and have to
resort to a case analysis on empty and non-eniptgtructures.

For non-empty structures, we do have the desired equality:

LEMMA 35.
((mem.F)am)> o (ghfN fhyg) ((mem.F)qm)> o fgh .

Proof Recalling that(mem.F)> is a proper natural transforma-
tion of type F«—F (theorem 16), it follows that both the left and
right sides of the desired equation are natural transformations of
type FGH «1d . So, as in theorem 33, it suffices to prove that

((mem.F)GH1)> oghfi<o fhgi<
((mem.F)GH1)> o fgh1< .



Now, = { corollary 34 }
ghfi< o fhgi< F1l o fgh .
{ ghf = F(fan.G)H o fan.FH, The equality follows from the basic inclusiofigh C fhg , mono-
fhg = (fan.F)GH o fan.GH } tonicity and anti-symmetry.

(]
((F(fan.G)H)1 o (fan.FH)1)<
e FVCH anGH LEMMA 37.
o o <
(((fan.F)GH): o (fan.GH)1) fhe~ C (fan.H)>
= { domains: (2),
. Proof
forall F, ((fan.F)1)< = idp:
) fhg> C (fan.H)>
with F:=FH and F:=GH } o _
(F(fan.G) H)y)< ((fan. F)GH)1) < = { definition of fhg, domains: (2) }
. 1 o . 1 .
Also.for all A ((fan.H)G o fan.G)> C (fan.H)>
((mem.F)ga)> o (F(fan.G)a)< o (fan.F)ga)< < { domains: (2) }
= { relators and domain operators commute, ((fan. H)G = fan.G)>. g (H (fan.G) o fan.H)>
domains: (2) } = { monotonicity }
(mem.F)aa)> o F((fan.Ga)<) o (fan.F)aa)< (fan.H)G o fan.G C H(fan.G) o fan.H
= { theorem 18 withR := ((fan.G) 4)< , - { fan.H hastypeH —Id -}
coreflexives are simple } true -
O
(((mem.F)ga)> o (fan.F)ga o ((fan.G)a)<)<
= { domains: (2) } LEMMA 38.
((mem.F)ga)> o ((fan.F)ga o (fan.G)a)< . F1l o fhg o (fan.H)" o fan.H C F1lL o gfh .
Thus, Proof
((mem.F)am1)> o ghfi< o fhgi< F1l o fhg o (fan.H)" o fan.H
= { first calculation above } - { (8)with R := fhg o (fan.H)” }
(((mem.F)gm1)> o (F(fan.G)m)< o (fan.F)gm1)< F1l o (fan.F)H o fan.H
= { second calculation wittd:= H1 } = { F distributes over composition,
((mem.F)gm1)> o ((fan.F)gu1 o (fan.G)m1)< 1L is zero of composition }
= { definition of fgh , F1l o F(fan.G)H o (fan.F)H o fan.H
((fan.H)1)< = idmg1 } = { definition }
((mem.F)gm1)> o fghi< . Fll o gfh .
U O
Now we consider emptyl” structures.
LEMMA 36 THEOREM 39.
Fll o fhg = F1lL o fgh . ghf N fhg = fgh .
Proof We have: Proof We have:
F1L o fhyg ghf 0 fhg = fgh
= { lemma 37 (below) , domains} = { basic inclusions (see section 3.2)
F1l o fhgo (fan.H)> ghf N fhg C fgh
C { (fan.H)> = id N (fan.H)" ofan.H , = { Fid = (mem.F)>UF 1L , distributivity }
monotonicity } (mem.F)> o (ghf N fhg) C fgh
F1l o (fhg N fhgo (fan.H)" o fan.H) A F1lL o (ghf N fhg) C fgh
C { coreflexive F LI distributes through = { lemma 35 and lemma 36 }
intersection, lemma 38 (below)} true .

F1l o (fhg N gfh) O



6. Conclusion [12] C.B. Jay. A semantics for shap@cience of Computer Programming

In this paper, we have used relation algebra to formulate and reason 25(251-283), 1995.

about Shape properties of datatypesl We have shown that Shapdl3] Neil (_Bhani Michael Abbott, Thorsten Alte_nkirch. Categories Of
selectors are closed under set intersection, and we have analysed in ~ containers. IFoundations of Software Science and Computation
detail the properties of a collection of "fans”. Particularly striking Structuresvolume 2620 oLNCS pages 23-38. Springer, 2003.

is how simple and effective the basis is for our calculations. There [14] J. Riguet. Relations binaires, fermetures, correspondances de Galois.
are just three components: relators, membership and (point-free) ~ Bulletin de la Sod@te Mattematique de Franc&’6:114-155, 1948,
relation algebra. The notion of a relator is very simple because

it involves just four simple algebraic properties (relators preserve

identities and distribute through composition —i.e. are functors—

and are monotonic and commute with converse). The notion of

membership is yet simpler. The point-free relation algebra is, of

course, very rich and so harder to master. Yet, as we have shown,

calculations within the algebra are compact and easy to check.

This is why we believe that it does provide a practical basis for

the practising programmer. Other publications that consider the

shape of datatypes (eg. [12, 13]) are based on representing relations

as pullbacks in a category. We look forward to seeing how such

formulations of shape properties are able to express the ideas in

this paper. In a companion paper [4], the authors consider the

shape-preservation properties of generic zips [10, 5]. Again, we

look forward to seeing whether or not other formulations of shape

properties are able to formulate and reason about zips as effectively

and at the same level of generality.
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