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A comparison is presented in regular algebra of the Gaussian and Gauss-Jordon elimination 
techniques for solving sparse systems of simultaneous equations. Specifically, the elimination 
form and product form of the star A* of a matrix A are defined and it is then shown that the 
product form is never more sparse than the elimination form. This result generalises an 
earlier one due to Brayton, Gustavson and Willoughby in which it is shown that the product 
form of the inverse A-'  of a matrix A is never more sparse than the elimination form of the 
inverse. Our result applies both in linear algebra and, more generally, to path-finding 
problems. 
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1. INTRODUCTION 

In the last two decades there has been considerable interest in methods for 
the solution of sparse simultaneous linear equations. In particular, the 
well-known Gaussian and Gauss-Jordan elimination methods for solving 
the matrix equation A x = b  have been studied extensively by numerical 
analysts (Duff, [I]). Recently it has been observed that many path-finding 

31 1 



algorithms arc in fact variants of such elimination techniques (Carre, 121; 
Backhouse and Carre, [3]). Examplcs are Floyd's shortest path algorithm 
(Floyd, [4]) and Warshall's transitive closure algorithm (Warshall, [5]), 
both of which arc variants of Gauss-Jordan elimination. Most recently, 
interest in sparse matrix techniques has been aroused in a wide cross- 
section of computer scientists since the rcalisation that "new" algorithms 
developed to solve global data flow analysis problems can be regarded as 
applications of Gaussian elimination (Tarjan, [6]), or the equally well- 
known Gauss-Seidel iterative technique (Tarjan, [7]). 

The rramework for this unification is thc algebra of regular languages. 
In Backhouse and Carre L3] the Gauss-Jordan and Gaussian elimination 
techniques were re-expressed  sing the *, + and . operators of regular 
algebra rather than the traditional inverse and + and . operators of linear 
algebra. The advantage of so doing is the grcate~. generality of regular 
algebra: by reinterpreting a* as (1 -a ) - '  one immediately recovers the 
algorithms described in texts of numerical analysis, but also by 
interpreting the *, + and . operations in other ways it is possible to solve 
a wide variety of path-finding problems. A concrete example is finding 
shortest paths through a graph. Here by interpreting u - t b  as the 
rniniinum of a and h, a .  b as the sum of (1 and h: and m" as zero, Gauss- 
Jordan elimination reduces to Floyd's shortest path algorithm. Note, 
however, that the numerical analysts' formulation of Gauss-Jordan 
elimination cannot be applied because thcre is no meaningful 
interpretation of u '. 

In this paper wc employ regular algebra to give a novel presentation of 
Brayton et d ' s  comparison of Gaussian and Gauss-Jordan elimination 
(Brayton, Gustavson and Willoughby, 181). Our comparison adds insight 
to their result as well as being relevant to many path-finding problems. 

The paper contains five sections. Section 2 reviews the properties of a 
regular algebra we require and Section 3 summarises the two algorithms. 
The fclrmal comparison is presented in Section 4 whilst Section 5 discusses 
the meaning and implications of the comparison. 

2. REGULAR ALGEBRA 

A regular algebra consists of a set S which is closed under two binary 
operations + and . and one unary operation *. The following properties 
will be used without mention in the sequel. 

A2 ( P . Q ) . R = P .  (Q. R )  A5 ( P + Q ) . R = ( P . R ) + ( Q .  R) 

A 3  P + Q = Q + P  A6 P + P = P  
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where P, Q, R E S. 
The set S contains a null element 4 such that 

1 and a unit element e such that 

/ Finally, the star or closure operator obeys: 

1 and 

( A1 1 (P+ Q)* = (P*Q)*P*. 

It is useful for us to introduce an additional unary operator, namely 

PC =PP*. 

1 P' is called the weak closure of P. From AlO, we have 

Note that addition is assumed to be idempotent (property A6). Thus we 
may define a partial ordering 5 on the set S by 

P = < Q o P + Q = Q  

Moreover, by A7, 

q 5 I P  for a l l P ~ S ,  

and by A10 and A12, 

Given any regular algebra R we can form a new regular algebra M,(R) 
consisting of all n x n matrices whose elements belong to R. In the algebra 
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M,(R) the operators + and . and the order relation 5 are defined as 
follows: Let A = [aij]  and B = [bij] be any n x n matrices with elements in 
R: then 

and 

A 5 B if and only if aij 5 bij for all i, j. 

The unit matrix E=[e i j ]  is defined as that n x n matrix with eij=e if i = j  
and eij=q5 if i#j. The null matrix, denoted cD, is that matrix all of whose 
elements are 4 .  The ith row and jth column of a matrix A will be denoted 
by a,  and aoj, respectively. 

3. THE ALGORITHMS 

In linear algebra the elimination and product forms of the inverse are 
economical representations of the inverse A-'  of a matrix A, constructed 
by Gaussian elimination and Gauss-Jordan elimination respectively. 
Analogously, in regular algebra Gaussian elimination is used to construct 
the elimination form of n star (abbreviated E F S )  and Gauss-Jordan 
elimination is used to construct the product form of the star (abbreviated 
P F S ) ,  both 'of which represent A* for a given matrix A. 

Certain elementary matrices, which differ from the null matrix in only 
one column or one row, are the primary tool in both algorithms. An 
elementary column matrix is any matrix of the form 

and an elementary row matrix is any matrix of the form 
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It is easy to compute the stars of such matrices. Specifically, 

and 

To justify the algorithms for obtaining the PFS and EFS, and to allow 
us to compare these forms, we shall in each case first give a concise 
derivation of it, originally presented in Backhouse and Carre [3]. Our 
notation here follows closely that in Carrt [9], where the "path algebra" 
used is an example of a regular algebra. 

Gauss-Jordan elimination 

To obtain the PFS of an n x n matrix A, let A(O)=A and let A'k), Q(k) and 
R(k', ( k  = 1,2,. . ., n )  be the sequences of matrices defined as follows. We 
express A'k-" in the partitioned form 

where the diagonal submatrices Alk;", Ark,-'' and AT;') are square, of 
order k -  1, 1 and n -  k respectively. (Note that in A''', the first row and 
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column of this partition do not exist.) Using the same partitioning, 

and 

= Q(k)* R(k), ( k  = 1,2, . . ., n). (3) 

Here Q(k) is an elementary column matrix, whose star is easily calculated. 
Now since 

A'k - 1) = Q(k) + @k), (4) 

it follows from A l l  that A(k- I)* = (Q(k)* R(~))*Q(~)*,  hence 

=A(k)* Q(k)*, (k = 1,2,. . ., n), ( 5  

and consequently 

Also, it is easily proved, by induction on k, that the first k columns of 
are null (Backhouse and Carre, [3]). Hence A(")* = E, and (6) gives 

which is called the product form of the star ( P F S )  of A. 
The fact that the first k columns of A(k) are null suggests a simple and 

compact method of forming and storing the Q(k'-factors: we set M(O)=A 
initially, and then repeatedly modify this matrix, obtaining at each stage 

k 
M(k) = C Q(j) + Q(k)* R(k), ( k  = 1,2,. . ., n). 

j= 1 
(8 

On termination, the columns of M(") define all the Q(k)-factors, as 
indicated in Figure 1. With the same partitioning as in (1) and (2) ,  it 
follows from (8) that 



ELIMINATION 

FIGURE 1 Product Form of the Star 

~ ( k -  I)* ~ ( k -  1) 
2 2  2 3  

Thus, the matrix M(") can be computed by the following simple 
algorithms : 

for k : = l  to n-1 do 

for i: = 1 to n do 

When the PFS has been obtained in this way, it is possible to compute 
the least solution of a set of equations y =Ay +b, viz 

by the following algorithm : 

for i: = 1 to n do yi: = bi; 

for k: = 1 to n do 

for i: = 1 to n do 

Yi: = Yi + mik m,*, Y k ;  
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Equation (7) expresses A* as a product of elementary column matrices, 
but as is shown in Backhouse and Carre [3], A* can also be obtained as a 
product of elementary row matrices. It is also demonstrated there that for 
triangular matrices it is particularly easy to obtain a PFS: specifically in 
the sequel we will use the fact that for a strictly upper triangular matrix 
u ,  

U*=UTU;...U:-l (10) 

Gauss elimination 

To obtain the EFS of A we proceed as in the Jordan method, except that 
we replace the matrices Q(k) and R(k) of (2) by 

Since (4) still holds, (6) holds also. Furthermore, it is easily proved by 
induction on k that in each matrix A'k', all entries on and below the 
principal diagonal, in the first k columns, are null. Thus A'"' is strictly 
upper triangular, and if we denote this matrix by U, Eq. (6) gives 

or, in terms of the elementary row matrices Ui of ( l l ) ,  

which is called the elimination form of the star (EFS) of A. 
Construction of the matrix M("), by repeated use of (8), again 

conveniently gives the factors of the EFS, this time in the form shown in 
Figure 2. It is easily verified that with Q ( k )  and R(k) defined by (12), 
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FIGURE 2 Elim ination Form of the Star 

Thus M(") can be computed by the following algorithm: 

for k: = 1 to n do 

for i :  = k to n do 

for j : = k + l  to n do 

mi; = mij + mik m,*, mkj; 

When the EFS has been obtained in this way, the least solution y =A*b 
, of a system y = Ay + b can be obtained using 

The algorithm is as follows: 

for i:=1 ton  do yi:=b,; 

forward-substitution: 

for k: = 1 to n do 

for i :  = 1 to n do 

Yi: = Y i  + mik m,Y, Yk; 
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back-substitution: 

for k: = n - 1 downto 1 do 

f o r j : = k + l  t o n  do 

4. THE COMPARISON 

In practice the matrix A is often very large, but sparse. To make 
elimination methods feasible in such circumstances, it is important to 
exploit sparsity, by storing and manipulating only non-null matrix 
elements at each stage of the computation. The effectiveness of this 
technique depends on the extent to which sparsity is "preserved" in 
constructing the EFS or PFS, and therefore we are interested in the 
relative sparsity of these two forms of the star. 

In numerical linear algebra, it is well-known that the elimination form of 
the inverse ( E F I t w h i c h  corresponds to our EFS-has no more non-null 
entries, and often considerably less, than the product form of the inverse 
( P F I t w h i c h  corresponds to our PFS. This was rigorously established by 
Brayton et al., [S], using an algebraic relationship between the EFI and 
PFI. 

Our purpose in this section is to present a relationship between the EFS 
and PFS, analogous to that which exists between the EFI and PFI;  this 
algebraic relationship enables us immediately to compare the sparsities of 
the two forms of the star. 

To distinguish between the M'k)-matrices produced in the Gauss and 
Gauss-Jordan methods, we shall henceforth denote these by MG(k' and 
MJ'k' respectively; similar notations will be used for the Q(k) and R(k) 
matrices. 

Figure 3 summarises the argument which follows. Essentially, we regard 
MG'k) as composed of two matrices L (a lower triangular matrix) and U (a 
strictly upper triangular matrix). The matrix U is further decomposed into 
those rows from row k to row n (inclusive) and the remainder. Now, we 
argue that the corresponding shaded portions of Figures 3(a) and (b) are 
equal and the unshaded portion of Figure 3(b) is the weak closure of the 
unshaded portion of Figure 3(a). Consequently, we can conclude that the 
upper triangle of the PFS is the weak closure of the upper triangle of the 
EFS. 

LEMMA 1 The first k rows of M ~ ' ~ )  are identical to the corresponding 
rows of MG(n), for k = 1 ,  2, .  . ., n - 1.  

Proof By (14), the first k rows of MG(k' are identical to the 
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FIGURE 3 Relationship between M"~' and M~'*' 

corresponding rows of MG(k+ '), for k = 1, 2,. . ., n - 1, from which the 
lemma follows. 

LEMMA 2 The last n -  k+  1 rows of MJ(k) are identical to the 
corresponding rows of MG(k), for k = 1, 2,. . ., n. 

Proof Since MG(0)=MJ(O) =A, and (by comparison of (2) and (12)) 
QG(') = QJ(') and R'(') = RJ('), the matrices MG(') and MJ(') defined by (8) 
are identical. Now let us suppose that the lemma holds for k- 1, where k 
>O. Then in the block forms (9) and (14) of MJ(k) and M'(~), each block in 
the second and third row of M ~ ( ~ )  is identical to  the corresponding block 
of MG(k', which proves the lemma. 

LEMMA 3 The kth row of MJ(k) is identical to the kth row of MG'"), for 
k = l , 2  ,..., n. 

Proof This follows immediately from Lemma 1 and Lemma 2. 

Now let us express MG(") as the sum of two matrices, 

where L is lower triangular and U is strictly upper triangular. We shall 
use a notation similar to (11) to describe the elementary matrices 
associated with the rows of L: 

Li = eOi I,,, ( i  = 1,2,. . ., n). (16) 

LEMMA 4 The matrix M ~ ( ~ ) ,  obtained from MJ(k) by nullifying its last 
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n -  k TOWS,  satisfies the equation 

Proof From Lemma 3 it follows that 

Since Ui Uj = (D if i 2 j, it follows that 

and since UT=E+Ui, for i=1,2 ,..., n, 

Consequently Eq. (17) holds for k =  1. Now let us suppose that (17) 
holds for k - 1, where k - 1 2 0. From (9). 

It follows that the first k -  1 rows of f iJ (k )  are given by 

e i o f i  J ( k )  = e ,  M J ( k -  u:, for 1 f i < k ,  

and by Lemma 3 again, the kth row of @IJ'k) can be written as 

Combining these two equations, 

and substituting from (17) we obtain 
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Now if i < k, Li U, = Q, and therefore Li U,* = L,, so that 

In the same way, if i 5 k then U, Ui = Q, and therefore U, UT =U,, so that 

as required. 

Proof Since M ~ ( " ) = M ~ ( ~ ' ,  it follows from Lemma 4 that 

It follows from (10) that 

as required. 
Thus, the elements which lie on and below the diagonal of the PFS are 

identical to  the corresponding elements of the EFS; whereas the elements 
which lie above the diagonal of the PFS are the elements of U+ (and U*), 
where U is the upper triangular matrix obtained at the end of the forward 
course of Gaussian elimination. 
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Since U 5 Ui ,  we have 

MG(n) 5 M J ( n )  
> 

hence the EFS has at least as many null elements as the PFS. 

5. DISCUSSION 

Brayton et al.'s [8] comparison of Gaussian and Gauss-Jordan 
elimination is probably well-known to numerical analysts, so what 
contribution is made by our comparison? Well, firstly, it clarifies their 
comparison. Gaussian elimination is often claimed to be superior to 
Gauss-Jordan elimination because "U-'  has more nonzeros than U" 
(Tewarson, [lo] p. 101). But the latter statement is paradoxical. How can 
U p '  have more nonzeros than U when (U-')-I =U?  No such paradox 
occurs when comparing U +  to U since (U+)' = U i .  The statement U i  
2 U  is an unequivocal description of the relative sparsity of U +  and U. - 

Secondly, the comparison of U +  and U is a very meaningful one. If we 
interpret U as a graph having n nodes with an arc connecting node i to 
node j whenever u i j #  4 then U +  is the graph describing paths (i.e. 
sequences of arcs) through U. That is, there is an arc from i to j in U' if 
and only if there is a path from i to j in U. In many applications the 
nature of the problem enables one to predict that U' will always be full 
whilst U may be very sparse. For example, if one were using Gauss- 
Jordan elimination to find shortest distances between given towns in 
Britain it is inevitable that U i  will be full (because one can always drive 
from any one town to any other). 

Finally, our comparison is more general than Brayton et al.'s. It is 
important to observe that our comparison makes no use of properties 
which are not valid in real arithmetic. By replacing P* by (1 -P) - '  
everywhere in Sections 3 and 4 the reader will obtain a valid comparison 
of Gaussian and Gauss-Jordan elimination applied to the computation of 
(1-A)-' .  However, our comparison is equally valid in other algebras in 
which no inverse operator can be defined. Practical applications such as 
global data flow analysis have already been referenced in the introduction. 

The result presented here should be viewed alongside CarrC's 
comparison [9] of three iterative techniques (Jacobi, Gauss-Seidel and 
Yen's double-sweep method). The advantage of Gaussian over Gauss- 
Jordan elimination is very similar to the advantage of the double-sweep 
method over the Gauss-Seidel method. That is, Gaussian elimination 
avoids the explicit determination of U* by using the rows of U in reverse 
order in the subsequent solution process rather than in forward order as 
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in Gauss-Jordan elimination. Likewise, the double-sweep method 
processes the rows of the upper triangle of A in reverse order rather than 
forward order as in the Gauss-Seidel method. Both CarrSs comparison 
and our present one attest to the usefulness of regular algebra in 
describing and comparing such algorithms. 
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