Datatype-Generic Termination Proofs

Roland Backhouse and Henk Doornbos

rcb@cs.nott.ac.uk
School of Computer Science and Information Technology, University of Nottingham,
Nottingham NG8 1BB, England,
henk.doornbos@questance.com
Questance, Agricolastraat 32, 9711 TS Groningen, The Netherlands

Abstract. Datatype-generic programs are programs that are parame-
terised by a datatype. We review the allegorical foundations of a method-
ology of designing datatype-generic programs. The notion of F-reductivity,
where F' parametrises a datatype, is reviewed and a number of its proper-
ties are presented. The properties are used to give concise, effective proofs
of termination of a number of datatype-generic programming schemas.
The paper concludes with a concise proof of the well-foundedness of a
datatype-generic occurs-in relation.

Keywords: datatype, generic programming, relation algebra, allegory,
programming methodology

1 Introduction

The central issue of computing science is the development of practical program-
ming methodologies. Characteristic of a programming methodology is that it
involves a discipline designed to maximise confidence in the reliability of the
end product. The discipline constrains the construction methods to those that
are demonstrably simple and easy to use, whilst still allowing sufficient flexibility
that the creative process of program construction is not impeded. For example,
an insight that played an important role in the development of a methodology
for sequential programs is that it is possible to restrict attention —without loss
of generality— to just the class of while programs. It is neither necessary nor
desirable to consider arbitrary goto programs.

The systematic use of induction on the structure of datatypes is another such
discipline; defining and exploiting application-specific datatypes is sound prac-
tice, as is well known. This has led to the development of a new programming con-
cept, called (datatype-)generic programming [23,16, 17,24, 15]. Datatype-generic
programs are programs that are parameterised by a data structure. For example,
the compression of data can be much more effective if the specific structure of
the data is known in advance — the compression of, eg, computer programs can
exploit their specific syntactic structure to achieve a higher compression ratio
[17].

Nowadays, there is a vast amount of literature on the post hoc verification of
programs. That is not our concern. Our concern is with identifying concepts and

methods that assist the practising programmer in the construction of programs.
The focus in this paper is on the concepts fundamental to guaranteeing the
termination of programs. The idea of making data structure a parameter of ter-
mination properties —the development of a datatype-generic theory of program
termination— is the major new insight that we explore in depth.

Of course, program termination can always be guaranteed by limiting the syn-
tactic expressivity of a programming language. Programs limited to for loops are
guaranteed to terminate, as are programs limited to list comprehension on finite
lists or to so-called “folds” (“catamorphisms”) on inductively defined datatypes.
But such constraints are —rightly— rejected by the practising programmer.
Also —in theory— program termination can always be guaranteed by exhibit-
ing a function from the program state to a natural number (a so-called “bound
function”) and demonstrating that the value of the function is always strictly
decreased in the course of the computation. But this elevates (induction over)
the datatype of natural numbers to a canonical position that it does not occupy
in the work of the practising programmer.

For the practising programmer, induction does play a central role in pro-
gram construction, but it is certainly not limited to the natural numbers, and
the form in which it is used is often only implicit in the program structure. Thus,
at the core of any algorithm is induction over some structure, but this may be
concealed by a variety of programming mechanisms such as additional param-
eters, some form of preprocessing or by transformations from one structure to
another. In this paper, we develop a calculus of “F-reductivity” which embodies
a datatype-generic discipline of program construction, emphasising in particular
sound guarantees of program termination. The word “reductivity” refers to the
basic process of making progress in a computation by reduction; the parameter
“F” reflects the structure, or datatype, to which reduction is applied.

The notion of F-reductivity was introduced by the authors in [10,8,11]. The
starting point in [11] was the notion of an initial F-algebra, which is the basis
for the use of “folds” on a datatype. Our goal was to explore generalisations
of initiality that better reflect the less restricted style of programming practice.
To this end, we identified and compared three different datatype-generic prop-
erties of a relation — “F-reductive”’, “F-well-founded” and “F-inductive”. We
presented the theorem that these three notions coincide when the relation in
question is a (functional) bijection. (The property of being a bijection is what
we wanted to abandon.) The conclusion of the comparison was that the prop-
erty most relevant to the practising programmer is F-reductivity. We showed,
for example, that F-well-foundedness guarantees that a recursive specification
has a unique solution, but that this does not guarantee that an operational in-
terpretation of the specification will terminate. The current paper focuses on the
calculus of F-reductivity, which was briefly mentioned at the end of this earlier
paper.

The main contributions of the current paper begin in section 5. Earlier sec-
tions review relation algebra (section 2), allegory theory and relators (section 3;
“relators” are essentially datatypes) and the definition of reductivity. Much of

the material in these sections has been published elsewhere, but its reproduction
here helps to make the paper relatively self-contained. Section 4.2 also contains
a short discussion of the generic notion of “membership” of a datatype, the char-
acteristic feature of a so-called “collection type” [20,19], so that we can give a
concrete interpretation of F-reductivity for such datatypes.

The discussion of the calculus of F-reductivity in section 5 begins with what
can be described as the “core” theorem, specifically that the converse of every
initial F-algebra is F-reductive. Indeed, every recursive computation has at its
“core” the converse of an initial F-algebra, but that may not be immediately
obvious because of the additional supporting computations. The remaining the-
orems in this section can be loosely described as ways of transforming reductive
relations to reductive relations, possibly involving a change of the type of the
reductivity (that is, a change in the parameter “F”). For example, theorem 5
captures the condition under which preprocessing of input values preserves ter-
mination properties, whilst theorem 9 does the same for when the structure of the
data is modified by a polymorphic computation (formally, a natural transforma-
tion between datatypes). The theorems, all of which are very general and generic
in the datatype, are prefaced by familiar concrete examples which demonstrate
their application.

Section 6 reformulates the definitions of “F-well-founded” and “F-inductive”
introduced in [11], in a typed, as opposed to untyped, framework. Two new
theorems are stated and proved, sharpening and reinforcing the argument in
[11] for the focus on reductivity. The problem of parsing context-free grammars
provides a non-trivial, concrete example.

The paper is concluded by establishing the well-foundedness of the occurs-
in relation in a dataype-generic unification algorithm [22]. Comparison of the
—much shorter— proof presented here with that in [6] demonstrates our thesis
that the commonplace reliance on induction on numbers can be inappropriate
and ineffective. The practising programmer needs to be conversant with a much
broader, datatype-generic class of programming principles.

2 Relation algebra

2.1 Basic Definitions

Although much recent work on datatype-generic programming has been con-
ducted within the paradigm of functional programming, there are far-reaching
arguments for adopting a relational framework. Two directly relevant to the cur-
rent paper are: specifications are typically nondeterministic (i.e. relations, not
functions) and termination arguments are almost always conducted within the
framework of well-founded relations. So, for us, a program is an input-output
relation. The convention we use when defining relations is that the input is on
the right and the output on the left (as in functional programming). Formally,
a (binary) relation is a triple consisting of a pair of types I and J, say, and a
subset of the cartesian product IxJ. We say R has type I+—J (read “I from J”),

the left-pointing arrow indicating that we view I as the set of possible outputs
and J as the set of possible inputs. I is called the target and J the source of
the relation R. We use a raised infix dot to denote relational composition. Thus
R - S denotes the composition of relations R and S. The converse of relation R is
denoted by R". Relations of the same type are ordered by set inclusion denoted
in the conventional way by the infix C operator. The relations of a given type
I+—J form a complete lattice under this ordering. The smallest relation of type
I+J is the empty relation, denoted here by Ll ;. 7, and the largest relation of
type I+J is the universal relation, which we denote by TT;_;. (We use this
notation for the empty and universal relations because the conventional nota-
tion T for the universal relation is easily confused with T, a sans serif letter T,
particularly in hand-written documents.)

For each set I, there is an identity relation which we denote by id;. Thus id;
has type I<1I. Relations of type I+I contained in id; will be called coreflezives
under I (or just coreflexives if the type is evident). By convention, we use R, S,
T to denote arbitrary relations and A, B and C' to denote coreflexives. Clearly,
the coreflexives under I are in one-to-one correspondence with the subsets of I;
we exploit this correspondence by identifying subsets of I with the coreflexives
under 1.

Functions are total, single-valued relations. Formally, relation R of type I < J
is total iff idy C R”- R; also, R is single-valued if R-R" C id; where I is the
target of R. We use an infix dot to denote function application. Thus f.x denotes
application of function f to argument x. Dual to the notion of single-valued is
the notion of injectivity. A relation R with source J is injective if R”- R C id}.
Which of the properties R- R” C id; or R”- R C id; one calls “single-valued” and
which “injective” is a matter of interpretation. The choice here fits in with the
convention that input is on the right and output on the left. More importantly,
it fits with the convention of writing f.z (with the function to the left of its
argument) rather than say 2/ . A sensible consequence is that type arrows point
from right to left.

We use several infix operators throughout the paper. Our precedence conven-
tion is that subscripting, superscripting and all unary operators have the highest
priority; next in priority is function application, followed by “arithmetic-like”
operators (eg. cartesian product “x”) and then composition. The subset and
equality relations and the logical operators have lowest precedence, in the usual
way.

2.2 Domains and Division Operators

The left domain of a relation R is, informally, the set of output values that
are related by R to at least one input value. Formally, the left domain R< of a
relation R of type I+J is a coreflexive under [satisfying the property that

(1) (VA A-R=R=R<CA)

Given a coreflexive A under I, the relation A- R can be viewed as the relation
R restricted to outputs in the set A. Thus, in words, the left domain of R is the

least coreflexive A that maintains R when R is restricted to outputs in the set
A. The right domain R> is defined symmetrically by reversing the composition
R- A. The left/right domain should not be confused with the target/source of
the relation.

In general, for relations R of type I+—J and T of type I+ K there is a relation
R\T of type J—K satisfying the property that, for all relations S of type J—K,

R-SCT = SCR\T .

The operator \ is called a division operator (because of the similarity of the above
rule to the rule of division in ordinary arithmetic). The relation R\T is called a
residual or a factor of the relation T'. Interpreting relations as specifications, the
above defines R\T to be the “weakest” specification of a program S such that
executing R after S satisfies specification 7. With this interpretation, R\T has
been called a weakest prespecification [18].

The weakest liberal precondition operator will be denoted here by the symbol
“\”. Formally, if R is a relation of type I+J and A is a coreflexive under I
then R\ A is a coreflexive under J characterised by the property that, for all
coreflexives B under J,

(2) (R-B)<CA = BCR\A .

Again, we use a division-like notation, rather than “wlp”, to emphasise the sim-
ilarity with division in normal arithmetic. (The corresponding “multiplication”
operator is the function that maps R and B to (R- B)<.) Informally, R\ A is the
set of inputs that are related by R to outputs in A only.

Two immediate consequences of (2) that we use frequently are:

(3) (R-RyA)<C A,
and
(4) RM(S%4) = (S-R)\A .

Property (3) is obtained by instantiating B to R\ A in (2); property (4) is a sim-
ple application of indirect equality combined with the properties of the domain
operators. See [4] for details.

3 Allegories and Relators

We assume that the reader is familiar with the most basic notions of category
theory, namely objects, arrows, functors, natural transformations and (initial)
algebras We use F'un to denote the category with sets as objects and functions
between sets as arrows. We use Rel to denote the category with sets as objects
and binary relations as arrows. We also assume familiarity with the relevance
of these concepts to functional programming: functors correspond to type con-
structors and natural transformations correspond to polymorphic functions.

The categorical notion of functor is too weak to describe type constructors
in the context of a relational theory of datatypes. The notion of an “allegory”
[14] extends the notion of a category in order to better capture the essential
properties of relations, and the notion of a “relator” [1,3,4] extends the notion
of a functor in order to better capture the relational properties of datatype
constructors.

Formally, an allegory is a category such that, for each pair of objects A and
B, the class of arrows of type A« B forms an ordered set. In addition there
is a converse operation on arrows and a meet (intersection) operation on pairs
of arrows of the same type. These are the minimum requirements. For practical
purposes, more is needed. A locally-complete, tabulated, unitary, division allegory
is an allegory such that, for each pair of objects A and B, the partial ordering
on the set of arrows of type A« B is complete (“locally-complete”), the division
operators introduced in section 2.2 are well-defined (“division allegory”), the
allegory has a unit (which is a relational extension of the categorical notion of a
unit — “unitary”) and, finally, the allegory is “tabulated”. “Tabulated” captures
the fact that relations are subsets of the cartesian product of a pair of sets [7].
(Tabularity is vital because it provides the link between categorical properties
and their extensions to relations.)

A suitable extension to the notion of functor is the notion of a “relator” [1]. A
relator is a functor whose source and target are both allegories, and is monotonic
with respect to the subset ordering on relations of the same type, and commutes
with converse. Thus, a relator F is a function to the objects of an allegory C from
the objects of an allegory D together with a mapping to the arrows (relations)
of C from the arrows of D satisfying the following properties:

D

(5) F.R has type F.I <% F.J whenever R has type I < J.

(6) F.R-F.S=VF(R-S) foreach R and S of composable type,
(7) Fida =idpa for each object A,

(8 FFRCFS <« RCS foreach R and S of the same type,
(9) (F.R)” =F.(R”) foreach R.

For example, List is a unary relator, and product and sum are binary relators.
List is an example of an inductively defined datatype; in [2] it was observed that
all inductively defined datatypes are relators. If R is a relation of type I« J,
List.R relates a list of Is to a list of Js whenever the two lists have the same
length and corresponding elements are related by R. The relation RxS (called
the product of R and S) relates two pairs if the first components are related by
R and the second components are related by S; it has type I xJ «— K x L if R has
type I < K and S has type J < L. Similarly, the relation R+S (called the sum
of R and S) has type I+J«— K+L if R has type I« K and S has type J« L.
It relates two tagged values if they have the same tag and either their common
tag indicates that the output value is in I and the input value is in K and the

output and input values are related by R, or their common tag indicates that
the output value is in J and the input value is in L and the output and input
values are related by S.

A common device, used to construct relators, is so-called sectioning of a
binary relator. For example, if I is a type, the section (I4) denotes the relator
that maps type J to I+J, and relation R (of type J <« K) to the relation id;+R
of type I+J « I+K. Similarly, (Ix) and (xJ) denote sections of the product
relator.

Of course, relators of compatible types can be composed, in just the same
way that functors are composed. If F' and G are relators, FoG denotes their
composition.

A design requirement, that dictates the above definition of a relator, is that a
relator should extend the notion of a functor but in such a way that it coincides
with the latter notion when restricted to functions.

Recall that a function is a relation that is both total and single-valued. It is
easy to verify that total relations are closed under composition, as are single-
valued relations. Hence, functions are closed under composition too. In other
words, the functions form a sub-category. For an allegory A, we denote the
sub-category of functions by Map(.A). In particular, Map(Rel) is the category
Fun. Now, the desired property of relators is that relator F' of type A« B is
a functor of type Map(A)«— Map(B). It is easily shown that our definition of
relator guarantees this property.

(Bird and De Moor [7] omit (9) and define a relator to be a monotonic
functor. However, their proof of their theorem 5.1, which purports to justify the
omission, is incorrect; it is an open question whether (9) can indeed be omitted.)

Polymorphic functions play a major role in functional programming. An in-
sight that has helped to increase the understanding of the relevance of category
theory to functional programming is that polymorphic functions, like the flatten
function on lists, are natural transformations [32, 33]. However, caution is needed
when extending the categorical notion of natural transformation to allegories. In
the latter context, the term lax natural transformation is sometimes used. The
collection of lax natural transformations to relator F' from relator G is denoted
by F«— G and defined by

(10) a: F—G = (FR-aj2ar-G.R foreach R of type I —J)

A relationship between naturality in the allegorical sense and in the categorical
sense is the following [19]. Recall that relators respect functions, i.e. relators are
functors on the sub-category Map. Then, in the case that all elements of the
collection « are functions,

a: F—G@ imA = a:F+<G inMap(A)

where by “in X” we mean that all quantifications in the definition of the type of
natural transformation range over the objects and arrows of X. This means that
the notion of “lax” natural transformation is the more appropriate allegorical
extension of the categorical notion of natural transformation rather than being

a natural transformation in the underlying category. Thus we shall not use the
qualifier “lax”. For us, a natural transformation is as defined by (10).

4 A Programming Paradigm

4.1 Hylo programs

As discussed in the introduction, a programming methodology is characterised
by a discipline that maximises confidence in the end product by constraining the
construction methods. The methods should be simple and easy to use, whilst not
forming an impediment to program construction.

The programs in the class on which our discipline is based are called hy-
lomorphisms. The fact that many recursively defined functional programs are
hylomorphisms was identified by Fokkinga, Meijer and Paterson [29], the name
having been coined by Meijer [30]. Unlike [29], however, the current paper is not
restricted to functional programs.

Definition 1 (Hylos). Let F be a relator and let R and S be relations of
type I« F.I and F.J < J, respectively. An equation in X (of type I« J) of the
form X = R-F.X - S is said to be a hylo equation or hylo program.

O

The hylo recursion scheme offers substantial freedom in designing programs
because the solution strategy is a parameter of the scheme. The solution strategy
is encapsulated in the relator, F'. For instance relator (I+) encapsulates repeti-
tion — it maps relation X to id;+X, which expresses a choice (“+”) between ter-
minating the repetition (“id;”) and repeating X . Similarly, (I+)eSquare (where
Square.X = X x X) encapsulates a divide and conquer strategy (choose between
terminating and dividing the problem into two subproblems), and Fo(Ix) en-
capsulates primitive recursion (structural induction, the form of which is given
by the relator F', on the input value, of which a copy is retained (“Ix”)). A
first step in the design of hylo programs is thus the choice of the relator [10].
Extending hylo programs to allow relations as components is also a significant
advance on the functional paradigm. Relations on strings, like the prefix, suffix,
subsequence and segment relations are easy to express as hylo equations, as can
quite complex problems like context-free language recognition.

Crucial to developing a discipline of hylo programming is that the meaning
of a hylo equation is well-understood, both as a specification of a relation, and
operationally as a program that can be executed. The operational meaning de-
mands an understanding of how hylo equations are executed, including when
they are guaranteed to terminate. This is discussed in section 4.2. The specifica-
tional meaning can be understood in several ways. One is to extrapolate from the
now well-understood notion of a catamorphism on an initial F-algebra. This is
captured by theorem 1, below. The definition of a “relational initial F-algebra”
is needed first.

Definition 2. Assume that F is an endorelator. Then (I ,in) is a relational
initial F-algebra iff in has type I+ F.I (and thus is an F-algebra), and there is
a mapping (-) defined on all F-algebras such that

(11) (R) has type I+ J if R has type J«— F.J ,
(12) (in) =id; , and
(13) (R) - (S)° = (uX = R-F.X -8

Le., (R) - (S)" is the smallest solution of the equationin X, R - F.X - S¥ C X.
O

Definition 2 makes use of the “banana brackets”, (_)), introduced by Malcolm
[25,26] to denote a functional/relational catamorphism. In categorical terms,
catamorphisms are the unique arrows from the initial object in the category
of F-algebras; in programming terms, catamorphisms are programs defined by
structural induction on a datatype. The definition extends the categorical notion
of an initial F-algebra to allegories in a way that is made precise by the hylo
theorem below. Recall that Map(A) denotes the sub-category of functions in
the allegory A. For clarity, we distinguish between the endorelator F' and the
corresponding endofunctor, F’, defined on Map(A).

Theorem 1 (Hylo Theorem [5]'). Suppose F is an endorelator on a locally-
complete, tabular allegory A. Let I denote the endofunctor obtained by restrict-
ing F to the objects and arrows of Map(.A). Then, (I,in) is an initial F’-algebra
iff it is a relational initial F-algebra. O

Note that the hylo theorem states an equivalence between two definitions.
Considering first the implication (loosely speaking, an initial F-algebra is a rela-
tional initial F-algebra), property (13) is the property that is most often under-
stood as the “hylo theorem”. Property (11) is a necessary prerequisite; essentially
it states that catamorphisms are well-defined on relations given that they are
well-defined on functions. Property (12) is the key to proving Lambek’s lemma
that an initial F-algebra is an isomorphism between its source and its target.
A consequence of the opposite implication (a relational initial F-algebra is an
initial F-algebra) is that catamorphisms on functions are the unique solutions
of their defining equations.

4.2 Reductivity

A discipline of programming should always provide the programmer with easy-to
-use techniques for guaranteeing termination of programs. For datatype-generic
programs this is provided by the theory of so-called “reductivity” [10,11] . The

! The theorem proved in [5] is actually about final algebras, rather than initial alge-
bras. This is the harder theorem to prove because, in an allegory, the duality between
least and greatest fixed points breaks down, reasoning about greatest being generally
harder than reasoning about least fixed points. The proofs given in [5] can all be
dualised.

major innovatory aspect of this concept is that it is parameterised by a rela-
tor, making it possible to explore how properties of termination are induced by
properties of datatypes and (natural) transformations between datatypes.

A hylo program, X = R- F.X - S, is executed by first unfolding the equation
and then computing the argument for the recursive call by executing S. This
procedure is repeated until a base case is reached and no further unfoldings are
necessary. Then the output is computed by executing R as often as the equation
was unfolded. Assuming R and S are both guaranteed to terminate, termination
of the recursion is thus dependent only on S, and not on R. Furthermore, if S
is nondeterministic, a demonic semantics demands termination irrespective of
which output from the unfoldings of S is chosen. This is the familiar execution
scheme applied by the implementations of imperative, logical and functional
languages. Because of this execution scheme, the computed input-output relation
is the least solution of the hylo program.

Suppose that execution begins in a state described by the coreflexive A, and
suppose B describes the “safe set” of the hylo program: the maximal set of states
from which execution is guaranteed to terminate. Then, execution of S must
guarantee that recursive calls begin from a state in B. That is, (S-A)< C F.B,
or, equally, ACS\F.B. Since B is the maximal set of such states, A, and
since the semantics defines the input-output relation to be the least solution
of the hylo equation, the safe set of program X = R-F.X - S is the coreflexive
(uA 2 S\ F.A). Termination is guaranteed if this is the identity relation on the
domain of S. Hence, the definition of reductivity:

Definition 3 (F-reductivity). Relation S of type F.I < I is said to be F-
reductive if and only if (uA :: S\F.A) =id;. O

Alternative characterisations of F-reductivity are sometimes more conve-
nient. The following theorem gives three different ways to express F-reductivity.
The first is the one already given; it is the most compact, and the most suited to
abstract reasoning about the notion. The second form, 2(b), is closest to the way
proof by induction is normally presented. The third alternative, 2(c), is formally
weaker than the other two; hence, it is often useful to prove that a given relation
is F-reductive.

Theorem 2 (Characterisations). The following are equivalent characteri-
sations of the F-reductivity of relation S of type F.I « I.

(a) (uA :: S\F.AY = ids

(b) (VA:: S\FACA = id;CA)

(c) (VA::S\FA=A = S>CA)

(In each case, the dummy A ranges over coreflexives under I.)

Proof The proof is by cyclic implication. That (a) implies (b) is an immediate
consequence of the Knaster-Tarski fixed-point theorem. That (b) implies (c) is
also easy: by reflexivity of C and the fact that S>Cid; The more difficult step

is that from (c) to (a); we show the (formally) stronger: clause (c) implies that
every fixed point of the function (A4 :: S\ F.A) is id;.

Assume A is a coreflexive under I such that S\ F.A = A. Also, assume (c).
Then

idr=A

= { ACidy, assumption: S\F.A=A4 }
id; C S\F.A

= { factors: (2) }
S<CFA

= { S:SOS> }
(S0S>)< C F.A

= { factors: (2) }
S> C S\F.A

= { assumption: S\F.A=A4 }
S>C A

= { (© }
S\VFA=A

= { assumption: S\F.A=A }
true .

O

Let us now check that the notion of F-reductivity is compatible with more
familiar accounts of program termination.

A programmer proves termination by using well-founded relations: they prove
that the argument of every recursive call is “smaller” than the original argument.
For program X = R-F.X - S this means that all values stored in an output F-
structure of S have to be smaller than the corresponding input of S. More
formally, with z{mem)y standing for “z is a member of F-structure y” (or, = is
a value stored in F-structure y”), we need for all z and z

My = x{mem)y A y(S)z = x<2) ;

for some well-founded ordering <. That is, a relation S is F-reductive if and
only if there is a well-founded relation < such that whenever an F-structure is
related by S to some y, it is the case that every value stored in the F-structure
is related to y by <.

To make this statement precise we need to formalise the concept of “values
stored in an F-structure”. Hoogendijk and De Moor [20,19] have shown that
this is possible for so-called “container types”. For the relators from this class,
one can define a membership relation, say mem. For example, for the list relator

this relation holds between a point of the universe and a list precisely when the
point is in the list. For product, the relation holds between x and (x,y) and also
between y and (z,y).

A precise characterisation of the membership relation of a relator is the
following :

Definition 4 (Membership). Relation mem of type I« F.I is a member-
ship relation of relator F iff F.A = mem\ A, for all coreflexives A under I. O

Using this definition of membership we get a precise relationship between
reductivity and well-foundedness. Indeed, for coalgebra S of type F.I I and
coreflexive A under I, we have:

S\ F.A

= { definition 4 }
Sy (mem\ A)

= { factors (2) }
(mem-S)}A .

Now, well-foundedness of relation R of type I+1I is the condition that the least
prefix point of the function (A :: R\ A) is id; [9], whereas reductivity of .S of type
F.I — I is the condition that the least prefix point of the function (A :: S\ F.A)
is id;. So, for coalgebra S :: F.I < I, the statement that S is F-reductive is
equivalent to the statement that mem - .S is well-founded. Formally,

S is F-reductive = mem- S is well-founded .
Conversely,
R is well-founded = mem\R is F-reductive .

Summarising, we have:

Theorem 3. Suppose mem is the membership relation for relator F'. Then
the functions (S::mem-S) and (R::mem\R) form a Galois connection between
the F-reductive relations, S, and the well-founded relations, R. O

Bird and De Moor [7, chapter 6] avoid the introduction of the notion of reduc-
tivity by always requiring that mem- S is well-founded whenever F-reductivity
of S is required. The main advantage of defining termination in terms of re-
ductivity instead of well-foundedness and membership is that it is possible to
formulate theorems relating reductivity of one type to reductivity of another
type. The rules presented in section 5 are of this nature.

5 A calculus of reductive relations

In the previous section we argued that the notion of F-reductivity captures
precisely the termination of hylo programs. In this section we give a number of

rules that allow us to prove that a relation is reductive. These rules form the
basis of a calculus of reductive relations. In each case, we motivate the rule by
showing how it is used to verify the termination of a known program or class of
programs. However, the major design criterion for the calculus is not program
verification but that it is useful for the construction of terminating programs.

5.1 Basic F-reductive relations

In this section it is shown that, for any relator F', there exist F-reductive rela-
tions. We begin with the most commonly used theorem.

Theorem 4. The converse of an initial F-algebra is F-reductive.

Proof Let in of type I+ F.I be an initial F-algebra and A an arbitrary
coreflexive under I. Using theorem 2, it suffices to show that

id/CA <« in"\FACA .

We start with the antecedent and derive the consequent:

in“y\F.ACA
= { for function f and coreflexive B, f\B = f"-B- f,
in” is a function and F.A is coreflexive }
in-FA-in"CA
= { (13), fixed-point calculus }
(in) - (in)- C A
= { identity rule: (12), id; = id;” =idy-id; }
idf CA .

O
An immediate corollary of theorem 4 is that the cata program

X & X=R-FX-in"

is terminating. Also, by theorem 14 which we prove later, the solution of the
equation is unique for all relations R, and not just the maps in the allegory.

Our next theorem is motivated by a desire to show that selection sort is a
terminating program. The program is:

(14) slsrt = in-idg+idyxslsrt-in" - select

Relation select holds between two lists if both are the empty list, or both are
non-empty and the output list has the property that it can be obtained from the
input list by swapping the first element and the minimum of the list. Relation
in here is an initial (I+7x)-algebra. The program is interpreted as follows: it
relates the empty list to the empty list. A non-empty list is sorted by swapping

the first element and the minimum of the input list (select), then the list is taken
apart into the head and the tail (in“), the tail is sorted recursively (idxslsrt),
finally the head, i.e. the minimum of the input, is added to the result of the
recursive call (in).

The termination proof of selection sort depends on the observation that select
is a relation between lists of equal length. The largest relation between lists of
equal length is List. TT: this relation holds between lists of equal length such that
the elements of the input and output list are related by the total relation, which
means that the only thing we can say about the input and output is that they
are of equal length. In fact, the relation List. TT can be used to formalise the
notion “equal length”: relation R is a relation between lists of equal length iff R
is contained in List.TT.

The desired theorem is generic in inductively defined types like List. Suppose
@ is a binary relator. Suppose also that there are mappings 7' from objects to
objects and in from objects to arrows such that, for each I, iny is an initial (I®)-
algebra of type T.I < I &T.I. Then the function mapping R of type I+J to
the (J&) catamorphism (in; - R@®idr ;) extends the mapping T to a mapping
on objects and arrows having the properties of a relator. The relator T is often
called a tree relator [6,7].

Theorem 5. Let @ be a binary relator, in; an initial (I@)-algebra, and T the
tree relator corresponding to @ and iny. Then in;”-T.TT ;. is (I®)-reductive.

Proof For brevity we omit the subscripts on in and TT (except where the
information is relevant), and we let B denote (A :: (in”-T.TT)\ (id;®A)). Then

in”-T.TT is (I®)-reductive

= { in”-T.TT has type I T.I « T.I, definition 3 }
idry € B
<= { in“ is (I®)-reductive. }

in“\ (id;®B) C B
= { by the rolling rule (see eg [27]) and definition of B,
in“\ (idi®B) = (uA = in\(id; & (T.TTVA))) }
(A = in?\(id; @ (T.TTYA))) C (A (in”-T.TT)\ (id;®A))
<= { for all A, in"\(id; @ (T.TT % 4)) C (in”-T.TT)\ (id;DA)
(for proof, see below) monotonicity of i}

true .

The proof is completed by establishing the inclusion contained in the last hint.
This we do as follows.

(in"- T.TT)\ (id /@ A)

= { T = (in- TT@idrs)
and TTjoy = (TTr—y)".
Thus in”-T.TT = TT®T.TT -in” }
(TTeT.TT - in”)\(id;®A)

= { factors: (2) }
in" Y (MM @T.TT)\ (id;BA))
2 { relators distribute over coreflexive factors;

this also holds for binary relators }
i ((TT\id))@ (T Ty 4))
= { R\id; =id; (for all R of type I+1I); R:==TT; }
in”\ (id; @ (T.TT \ A))

O

The following theorem is not deep, nevertheless it is extremely useful. Recall
that the refinement order of programs is the same as inclusion of relations. The
content of theorem 6 is therefore that reductivity is preserved under refinement.

Theorem 6. If R is F-reductive and S C R then S is F-reductive.

Proof Immediate from the definition of F-reductivity and the monotonicity
properties of the coreflexive factor, relators and the fixpoint operator .
O

Now we can return to the proof of termination of selection sort. We have
that select C List. TT since select is a relation on equal-length lists. By theorem 6,
relation in” - select is (1+1I x)-reductive if in” - List.TT is, which is a consequence
of theorem 5 obtained by taking List for map, and idy+(RxS)=R®S.

5.2 New F-reductive relations from old

This section is intended to show how, given an F-reductive relation, other re-
ductive relations can be constructed.

An important lemma in fixed-point calculus is the so-called square rule. The
rule says that if in is an initial F-algebra then in- F.in is an initial F2-algebra.

A concrete instance of this theorem in action is the definition of integer
division by two: 0 and 1 divided by two are both 0, and n+2 divided by two is
equal to n divided by two plus one. This defines division by two on a (L+1+)-
algebra, rather than on a (1+)-algebra which is the usual case when defining
functions by primitive recursion on the natural numbers.

The theoretical importance of the square rule is as a lemma in the proof
that the cartesian product of two algebraically complete categories is also alge-
braically complete [13]. The square rule can clearly be extended to an nth power
rule. The corresponding reductivity lemma is the following:

Theorem 7 (Power Rule). Suppose R is F-reductive. Define the function f
on positive numbers by f.1=R, f.(n+1) = F.(f.n)- R. Then f.n is F"-reductive.

Proof We first prove by induction on n, n>1, that
(R\oF)".A C fnm\F".A .
The basis, n=1, is trivial. For the induction step, we have:
(R\oF)"t1. A

= { definition of g"*1 1}
R\ F.((R\oF)".A)
- { induction hypothesis, monotonicity of Ry and F}
R\ F.(fn\ F".A)
C { factors: (2), F distributes through composition }
= { factors: (2) }
(F.(fm)-R)\ F.(F".A)
= { definition }

f(n+1)y Fntt A .
The proof of the lemma is now straightforward. We have:

f-n is F™-reductive
= { definition }
(WA fmny F™A) D ids

<= { above, monotonicity of the fixed-point operator }
(A 2 (RyoF)™.A) D idy
= { u(g")2ng }

(uA :: (R\oF).A) D ids
= { definition of composition and reductivity }

R is F-reductive .

O

The next two theorems can be used to change the “kind of reductivity”,
i.e. to construct F-reductive relations from G-reductive relations. These the-
orems formalise the idea that composing a reductive relation with a relation
which transforms G-structures into F-structures without affecting the contents
of the structures —the only thing that can happen is that elements are copied or
discarded— results in a reductive relation. In order to state the theorem precisely
we need to formalise what is often loosely described as “plumbing”.

Definition 5. Relation R is a plumbing to relator F' from relator G, written
R: F < G, iff R has type F.I — G.I, for some I, and for all coreflexives A under
I

G.AC RL\FA .

O
Natural transformations are families of plumbing relations:

Theorem 8. Suppose a : F <= G is a natural transformation. Then, for each
I, ay is a plumbing to F' from G.

Proof Suppose A is a coreflexive under I. Then

GACar\FA

= { factors: (2) }
(ar-G.A)<CFA

= { domains }
FA-a;-GA=ar-G.A

= { a:F—G. Thus, F.A-ar O a7 -G.A.

GA-GA=GA }

FA-a;-GACar-G.A

= { FACidrpr }
true .

O
We can now formulate our theorem.

Theorem 9. Let @ be G-reductive and S : F' < Id, where Id denotes the
identity relator. Then F.Q - S is (F'eG)-reductive.

Proof We prove the stronger:
(A= QY G.A) C (uA: (F.Q-S)\ F.(G.A))

This follows, by monotonicity of the fixpoint operator u, from the fact that, for
all A,

(F.Q-8)\ F.(G.A)

= { factors: (2) }
S\ (F.QYF.(G.A)

2 { factors: (2) }
SVF.(QYG.A)

2 { S:F<Id }

QLG.A .

O

A typical use of theorems (6) and (9) is: R is F-reductive follows from the
fact that there is a well-founded relation @) and a relation S : F' < Id such that
RCFQ-S.

As an example of this theorem, consider the largest relation R with the
property that m(R)x implies that = is a natural number and m is a list of
natural numbers, all smaller than x. Now consider the relation fan which relates
a number z to a list of arbitrary length containing only copies of z. This relation
certainly has the property fan- A C List.A - fan for all A: if fan is applied to an
argument enjoying property A, the result is a list and all of the elements in that
list have property A. If fan is now composed with the relation List.<, where <
is the (well-founded) less-than relation on the natural numbers, it follows that
the resulting relation List.< - fan has precisely the properties of relation R. By
instantiating @ to < and G to the identity relator in theorem 9, it follows that
R is List-reductive.

This argument is, in fact, an instance of the generic discussion of membership
in section 4.2. Associated with each container type F' there is a family of fan
relations such that fan; has type F.I < I. Given a seed value = of type I, the
fan relation fan; constructs non-deterministically an F-structure in which the
value stored at each storage location is x. Given relation R of type I+I, the
relation F.R-fan; is equal to mem\ R where mem is the membership for F' (of
the appropriate type). See [20, 19] for further details. Thus, by applying theorem
3, F.R -fan is F-reductive if R is well-founded.

An important and commonly occurring pattern in program construction is
structural recursion on just one of possibly several input parameters of a pro-
gram. The abstract theorem that captures the termination properties of such
programs is the following.

Theorem 10. Suppose R is F-reductive, and suppose S is such that S : HoG <
GoF, where (G is a relator that is a lower adjoint in a Galois connection. Then
S-G.R is H-reductive.

Proof We have to prove that G.id; C (uA :: (S-G.R)\ H.A), assuming that
R is F-reductive. We prove the stronger: for all F-coalgebras R

(15) G.{(pA:: R\ F.A) C (uA:(S-G.R)\ H.A)

The theorem then follows from the assumed F-reductivity of R. Because G is
a lower adjoint in a Galois connection, property (15) follows by fixpoint fusion
[27] from the fact that, for all A,

(S-G.R)\ H.(G.A)

= { factors: (4) }
G.R\ (S\ H.(G.A))
) { S : HoG < GoF, monotonicity }

G.R\ G.(F.A)

) { factors: (2), G is a relator? }
G.(R\ F.A)

O

The restriction on relator G in this theorem is satisfied by the sections (Jx)
and (xJ) of the product relator. It is this instantiation of G that allows one
to prove termination of programs with several parameters that are defined by
structural recursion on one of the parameters.

There are many examples of such programs. Elementary examples are the
inductive definitions of addition, multiplication and exponentiation on natural
numbers:

0+n =n and (m+1)+n = (m+n)+1 ,
Oxn =0 and (m+1l)xn = mxn+n ,
n® =1 and n"t = nmxn .
All these definitions have the form
X.(0,n) = fn and X.(m+1,n) = ¢g.(X.(m,n), n)

where X is the function being defined and f and g are known functions. In
hylomorphism form,

X = comb - (idy +X) xid - pass - inNat” x id;

Here inNat is the initial algebra with carrier the natural numbers. The function
pass is a function of type (14 (IxJ))x J« (L +1) x J that is polymorphic in
the types I and J; its task is to make a copy of its second argument (of type
J), which is passed to the recursive call. The function comb is a combination of
the functions f and g which is applied to the result of the recursive call and the
“passed” second argument.

Another example, with the same structure but defined on a datatype other
than the natural numbers, is the program that appends two lists. The standard
definition comprises the two equations

nil ys = ys and (x : xs) # ys = z : (zs H ys)

As a single equation (where we write join instead of), the definition has the
form:

join = post - (idy + (id; x join)) X idyjst.; - pass - inList” X id|st.s
Here inList is the initial algebra with carrier lists, and pass is a function of type
M+ Ix(JxK)xK «— (1+{IxJ))x K

that is polymorphic in I, J and K. Yet another example (which we will not spell
out in detail) is the program that inserts an element in a tree. The recursion

is according to the structure of its tree argument. The other argument, i.e. the
element to be inserted, serves as a parameter that is only used in the “base case”
of the recursion.

All these examples conform to the general form:

(16) X = R-FXxidp - F.(id;xS) xidp - pass - in” x idp

Here idp is the identity function on the type of the parameter. The carrier of
the initial algebra in is I, and the type of X is J <« Ix P for some J. The types
of the relations R and S are J « F.J x P and P« P, respectively.

The generic component pass has type F.(IxP)x P «— F.I x P. Its function
is to copy the parameter, and at the same time pass it to all values stored in an
F-structure. (The latter is also called a “broadcast” [19] or a “strength” [31].)
It can be shown that, for any so-called regular relator (a relator built, possibly
inductively, from constant, product, sum and map relators), such a relation pass
can be constructed in such a way that, for all S,

F.(idpxS) xidp - pass
is a plumbing relation with type
(XP)oFo(xP) < (XP)oF .

Furthermore, (x P) is a relator which distributes over all unions of coreflexives.
By theorem 10, it now follows that

F.(idpxS) xidp - pass - in” xidp

is a ((x P) o F)-reductive relation. Hence, program (16) is a terminating program.
In this way, with one theorem we have also proved that all the examples men-
tioned above (addition, multiplication, exponentiation and join) are terminating
programs.
From theorem 10, the next theorem follows as a simple corollary.

Theorem 11. If Ris F-reductive and S : H <« F then S- R is H-reductive.

Proof Instantiate theorem 10 with the identity relator (which, of course, is the
lower adjoint in a Galois connection with itself as upper adjoint).
O

Two datatype-generic applications of theorem 11 are to so-called paramor-
phisms and mutumorphisms.

Paramorphisms were introduced by Meertens [28] as a (datatype-generic)
abstraction of the “eliminators” in intuitionistic type theory. The general form
of a paramorphism is a solution of the equation

X = X =R-F(id;xX)-Fdouble-in"

where double.x = (z,x) and R is an arbitrary relation (of the appropriate type).
Applying 11, it is straightforward to show that execution of a para program

always terminates. Specifically, relation in“ is F-reductive. Furthermore, we have
(for all coreflexives A under I)

F.A C F.double F.(id;xA)
since
A C double\ (id;yx A)

and relators distribute through composition and are monotonic. This means that
relation F.double is a plumbing relation of type Fo(Ix) <« F. It now follows
by corollary 11 that F.double-in" is an (F o (Ix))-reductive relation. Hence, the
para program is terminating (and has, by theorem 14 proved later, a unique
solution).

Mutumorphisms were introduced by Fokkinga [12] as an abstraction of mu-
tual recursion. A mutu program is defined by an equation of the form:

X @ X =R-FXxFX -double-in”

The proof that such programs are terminating is similar to the proof for paramor-
phims. One needs to check that double is of type G < F' | where relator G is
defined by G.Y = F.Y x F.Y, i.e. one has to show that

F.A C doubley (F.A x F.A)

which follows immediately from the definitions of double and the product relator.

5.3 Bound functions

The mathematical construction of while loops typically makes use of a so-called
bound function, often with range the natural numbers. The idea is that termi-
nation of the loop is guaranteed if the loop body decreases the bound function
at each iteration of the loop. The formal basis for the use of bound functions is
the theorem that if R is a well-founded relation on the set I, and f is a func-
tion to I from some set J, then any relation S on J such that S C f“-R- f is
well-founded. That is, S is well-founded if, for all z and y, 2(S)y implies that
f-x(R) f.y. In particular, taking J to be the state space of the program, S to be
the loop body, and R to be the less-than ordering on natural numbers, it thus
follows that S is well-founded if 2:(S)y implies that f.z < f.y.

Generalising this theorem to F-reductivity, we have to take account of the
fact that the outputs of an F-coalgebra are F-structures. We get:

Theorem 12. Let R of type F.I < I be an F-reductive relation. Suppose f,
of type I<J, is a single-valued relation. Then F.f" - R - f is F-reductive.

Proof With dummy A ranging over coreflexives under J, we have:
(WA = (F.f° - R- f)} F.A)
= { factors: (2) }

(uAz f\ (B - R)\ F.A)

= { rolling rule (see eg [27]) }
Py ApA = (Ff° - R)N F(fYA))
= { factors: (2) }
Py (pA = RVESO\ F(/YA)
) { factors: (2), F is a relator, monotonicity }
Py i = RY B (75 A))
= { factors: (2) }
P (pA = RYFE((F-f7)%A))
o) { f-f° Cid;, antimonotonicity of \,

monotonicity of the other operators }
I\ (A 2 R\F.A)

So, if R is F-reductive, (uA :: (F.fY - R - f)N F.A) 2 f\ids. The result follows
from the fact that S\id; equals id; for all S of type [<—J.
O

It now follows by theorem 6 that, if R and f satisfy the conditions of theorem
12, and S satisfies the property

SCFf'-R-f,

then S is F-reductive. This condition is satisfied when f is a homomorphism to
coalgebra R from coalgebra S. In particular we have:

Theorem 13. Let f be an isomorphism to F-coalgebra S from F-reductive
relation R. Then S is F-reductive. In other words: reductivity is preserved under
isomorphism of coalgebras. O

6 Connections to other concepts

The notion of F-reductivity is original and, as such, needs to be explored from
several different angles before it can be claimed that it is the “right” notion. In
this section, we study the connection between reductivity and alternative notions
that might have been proposed in its place.

In general, a relation on some state space is well-founded iff it admits induc-
tion. An alternative notion that we might wish to explore is therefore a gener-
alisation of well-founded to “F-well-founded”. This alternative is discussed in
section 6.1 where it is shown that every F-reductive relation is F-well-founded.
It is shown, however, that not every F-well-founded relation is F-reductive.

We also explore in section 6.2 a point-free formulation of the principle of
structural induction, which we call “F-inductivity”. Here we show that the con-
verse of every total F-reductive relation is F-inductive but that it is not the case

that the converse of every F-inductive relation is F-reductive. We also show that
the converse of every injective F-inductive relation is F-reductive.

6.1 Well-foundedness generalised

In general, a relation on some state space is well-founded iff it admits induction.
Point-free formulations of these concepts have been given in [9]. Comparing these
with the definition of F-reductivity it is clear that F-reductivity generalises the
notion of admitting induction. Our concern in this section is with generalising the
notion of well-foundedness and relating the generalised notion to F-reductivity.

Well-foundedness of relation R is equivalent to the equation X:: X=X R
having a unique solution (which is obviously LL, the empty relation) [9]. This
is easily generalised to the property that the equation X:: X =5-X-R has a
unique solution, for all relations S. The generic notion of well-foundedness we
propose focuses on this unicity of the solution of equations.

Definition 6 (F-well-founded). Relation R of type F.I«+—1 is F-well-

founded iff, for all relations S of type I« F.I and X of type I—1,
X=SFX-R = X={uY:S FY-R)

O

As mentioned above, a relation is Id-well-founded iff it is well-founded in the
traditional sense [8]. So F-well-foundedness is a proper generalisation of well-
foundedness.

Next we show that the property that reductivity implies well-foundedness
goes through for the generalised notions. In other words: if R of type F.I I
is an F-reductive relation then, for any relation S of type I < F'.I, the function
(Y :: S- FY - R) has a unique fixed point. This, in turn, is equivalent to: every
fixed point is contained in the least fixed point. So we assume that X is an
arbitrary fixed point and Z is the least fixed point of (Y :: S- F.Y - R). We have
to show that X C Z under the assumption that R is F-reductive.

XCZ

= { R is F-reductive, i.e (uA :: R\ F.A) =id; }
X-(uA::RY\FA) C Z

“= { p-fusion (see eg [27]); Z is least fixed point }
(VA = X -R\FA C S-F(X -A)-R)

= { X is a fixed point; F' distributes over composition }
(VA = S-FX-R-R\FA C S-FX-FA R)

= { monotonicity }
(VA = R-R\FA C FA-R)

= { cancellation of factors }

true .

This completes the proof of the following theorem.

Theorem 14. An F-reductive relation is F-well-founded. O

For the identity relator, it is the case that “admitting induction” and “well-
founded” are equivalent notions. This is not the case for the generalisations
F-reductive and F-well-founded. Indeed, suppose we define the relator F' by
F.X =X xX. Then, if R is a non-empty ld-well-founded relation of type I<1I, the
relation id;2 R of type I xI « I, which (non-deterministically) maps argument x
into a pair (z,y) where y stands in the relation R to z, is F-well-founded but
not F-reductive. Informally, execution of the hylo program X = §- X xX -idjaR
will not terminate because of the (demonicly chosen) infinite recursion on the
copy of the input parameter. However, the equation has exactly one solution
because R is well-founded. See [8] for a detailed proof.

Because an F-reductive relation is also F-well-founded, a terminating hylo-
equation has a unique solution (i.e. defines a unique input-output relation).

Theorem 15. If R is F-reductive, the hylo equation X = S-F.X - R has a
unique solution.

Proof Combine theorem 14 and definition 6.
O

In order to illustrate the importance of unicity consider the following context-
free grammar:

S = £]aSbS|bSaS .

Here € denotes the empty word and the assumed alphabet is {a,b}. Associated
with this grammar is a data structure: the class of parse trees for strings in
the language generated by the grammar. This data structure, Stree, satisfies the
equation:

Stree = 1+ (AxStreex BxStree) + (BxStreex AxStree)

Here, A={a} and B={b}. It is an initial F-algebra where the relator F' maps
X tol+ (AxXxBxX)+ (BxXxAxX). Now the process of unparsing a parse
tree is very easy to describe since it is defined by induction on the structure of
parse trees. Indeed, the unparse function is an F-catamorphism (unp) (where
the details of unp need not concern us). Moreover, its left domain is equal to
the language generated by the grammar. Since, in general, the left domain of
function f is f- f" the language generated satisfies

S = (unp)- (unp)“ .

This equation defines a (nondeterministic) program to recognise strings in the
language. The program is a partial identity on words. Words are recognised by
first building a parse tree and then unparsing the tree. By the hylo theorem, we
also have the hylo program

S = unp - idy+ (idaxSxidgxS)+ (idgxSxidax.S) - unp” .

This is a program that works by (nondeterministically) choosing to check whether
the word is the empty word, or can be split into four segments either of the form
aXbY (i.e. a followed by a word X followed by b followed by a word Y') or the
form bXaY. Subsequently any segments so constructed are recombined into one.

The hylo program corresponding to this grammar is clearly terminating. For-
mally, this is a consequence of theorem 12: the bound function is the length
function on words, which is clearly reduced in every recursive call of the hylo
program. It therefore follows that the language generated, L.S, is the unique
fixed point of the hylo equation. Equivalently, L.S is the unique fixed point of
the equation

17) X: X = {e}U{a}X{b}X U {b}X{a}X .

The language generated by this grammar is in fact the set of all words with an
equal number of as and bs. Let M denote this set. The unicity property means
that we can prove this fact by showing that, first,

M 2 {e}U{a}M{b}M U {b}M{a}M
and, second,
M C {e}U{a}M{b}M U {b}M{a}M .

The former (which is easy to prove) shows that M is at least the least solution of
(17), whilst the latter (which is the harder part to prove and, of course, depends
on the alphabet being {a,b}) shows that M is at most the greatest solution of
(17). Since (17) has unique solution L.S it follows that M equals L.S.

Now consider the grammar

S == ¢]aSb|bSa | SS .

Straightforward fixed-point calculus shows that the languages generated by the
two grammars are equal. However, the hylo equation corresponding to this gram-
mar is not terminating. Indeed it is easy to see that {a,b}* is also a solution of
the equation

X: X = {e}U{a}X{b} U {b}X{a}UXX .

The task of proving that the language generated by this grammar is M cannot
be achieved by using the same strategy. Thus, either one has to show that the
transformation to the original grammar is valid, or one has to use an inductive
argument based on the length of words in M. The former strategy is, in our view,
preferable in that it separates the proof into distinct lemmas, each of which is
relatively straightforward and each of which adds additional insight.

6.2 Structural Induction

Structural induction is the standard induction scheme that is part of the defini-
tion of recursive datatypes. For instance, structural induction over the type of

natural numbers is what is usually called the principle of induction, and its va-
lidity is one of the defining properties of the naturals. In this section we present a
point-free relational definition of structural induction and relate it to reductivity.

The principle of induction on natural numbers can be expressed informally
as: a property is true of all natural numbers if it is an invariant of inNat. By this
we mean that the property is established by zero —a property is an “invariant”
of a constant function if the result of the function satisfies the property— and
the property is an invariant of the successor function, succ, if succ maps numbers
satisfying the property to numbers also satisfying the property.

The question we have to tackle is how to formalise the notion of “invariance”.
We propose calling a coreflexive A an invariant of R whenever

(R-FA)<CA .
Equivalently, in predicate calculus, A is an invariant of F-algebra R iff
(Vx: (Fy:x(R)y:yeF.A) : z€A)

We call this property an invariance property because it expresses the idea that
an F-structure (y) all of whose elements satisfy property A (y € F.A) is mapped
by R into a value () also satisfying A (z€A).

Our notion of a relation R being “inductive” with respect to F' is that it is
possible to deduce that all elements of the left domain of R satisfy some property
A whenever A is an invariant of R.

Definition 7 (F-inductivity). A relation R of type I« F.I is said to be
F-inductive if, for all coreflexives A under I,

(18) R<CA « (R-FA<CA .

O

There is another way of justifying the definition of inductivity which we will
just sketch. Recall that termination of a hylo program depends on the assumption
that if, due to non-determinism there is, at a certain point during the execution,
more than one possibility to proceed, only one of those possibilities is chosen.
Had we adopted the other assumption, viz. that all possible continuations of the
executions are pursued, it would have turned out that the maximal safe set for
coalgebra R should be a solution of the equation B=(F.B- R)>. The argument
in this case is that a set A is safe iff a computation of R started in set A has at
least one output for which every recursive call is in the safe set B. That is,

ACB = AC(F.B-R)>

Thus inductivity corresponds to an angelic notion of termination whereas reduc-
tivity is demonic.

Recall that reductivity was meant to formalise strong induction, that is, it
should be in a sense stronger than inductivity. Since inductivity is a property of
algebras and reductivity is a property of coalgebras, the right question to ask
is: is the converse of a reductive relation inductive? This turns out to be almost
true.

Theorem 16. Let R be an F-reductive relation such that R< C F.R>. Then
R is F-inductive.

Proof Suppose R has type F.I «+ I. Then, for all coreflexives A under I,

(R)<c A

= { X<=(X")> }
R>CA

= { factors: (2) }
id; C R>\ A

= { R is F-reductive }
RVF.(R>VA) CR-\A

<= { factors (2), relators }

R>-R\(F.R>\ F.A)C A

= { factors (2) }
R (FR> R\FAC A

= { assumption: R< C F.R> }
R>-R\FACA

= { domains: R> - R\F.A = (R - R\F.A)> }
(R-R\F.A)>C A

<« { factors: R- RA\F.A C FFA-R }
(FFA-R)>C A

- [Xe=(x")
(R°-FA)<CA .

O

An immediate corollary is that the converse of a total, reductive coalgebra is
inductive. This totality restriction is not severe and, indeed, is often desirable.

Next, we address the question whether reductivity is really stronger than
inductivity. Does there exist an inductive relation such that its converse is not
reductive? To find such a counter example, we first prove a theorem that gives
a sufficient condition such that inductive implies reductive. The theorem can be
read as: the converse of an inductive injection is reductive.

Theorem 17. If R of type I+ F.I is an injective F-inductive relation, then
R" is F-reductive.

Proof We use characterisation (c¢) of F-reductivity given in theorem 2. Assume
A is a coreflexive under I. Then

(R)>C A
= { R is F-inductive, (R")> = R<, definition 7}
(R-FA)<CA
= { X <=(X")>; distribution properties of ¥ }
(F.A-R°)>CA
= { for single-valued S and all coreflexives A,
S>.SY\A = (A-8)>
R" is single-valued (i.e. R is injective) }

(RV)> - R'\F.A C A

= { (R°)>Cid; }
R'\FACA

<~ { reflexivity of C }
R'\FA=A .

O

To find a relation that is inductive but whose converse is not reductive we
therefore have to look at non-injective inductive relations. To this end, consider
the datatype Join.I of join lists with elements of type I. Let F' be the relator
that maps X to (XxX)+ ([+1). Let join be the function that constructs a
list of type Join.I by joining two lists of type Join.I; let 7 be the function that
maps a value z of type I to the singleton list [z] of type Join.I, and let nill
map the single element of the unit type 1 to the nil list of type Join.I. Then
joinv (7w nill), the function that chooses to apply join, 7 or nill depending on
the type of its argument, is an initial F-algebra of type Join.I « F.(Join.I).
That it is F-inductive is equivalent to the well-known induction rule on lists:
consider three cases, the join of two lists, singleton lists and lists that are the
empty list. However, its converse, (joinv (7 vnill)), is not reductive. This is
because (join v (7 v nill))" holds between a tagged pair of lists and their join. The
tag inl injects the pair into the left component of the disjoint sum. Now, the
relation ex| - inl” (where ex| extracts the left component of a pair) is a natural
transformation of type Id <« F. So, if (joinv (7 v nill))” were F-reductive, the
relation

exXljoin.7 x Join.1 * (iNl(Join.1 x Join.1) + (1+1))” + (join v (7 ¥ nill))”

would be Id-reductive by corollary 11 — in other words, it would be well-founded.
However, since the join of two empty lists is the empty list, this relation relates
the empty list to the empty list, and so is not well-founded.

7 Generic Unification

In this section, we apply the notion of F-reductivity to a key lemma in the proof
of correctness of a generic unification algorithm. Such an algorithm was first
formulated by Jeuring and Jansson [21] and is further elaborated in [6]. The
algorithm is “generic” in the sense that it is parameterised by a relator F' that
specifies the structure of expressions to be unified.

Here, we show that the “occurs-properly-in” relation on expressions is well-
founded. Particularly remarkable about our proof is that it is very simple. This
is a result of its not requiring the definition of a size function on expressions
in any way, the key to the proof being instead the fact that the converse of an
initial F-algebra is F-reductive.

(The reader is invited to compare the proof presented here with the one
given in [6]. Although the one presented here was the first to be developed, it
was considered expedient at the time not to burden the reader of [6] with too
many new ideas, and to present a more conventional proof instead.)

In its generic form, unification is expressed as follows. A parameter is a relator
F. A second parameter is a type V', elements of which are called variables. Given
these two, we may define a relator Fy which maps relation X to F.X +idy. Then
we assume that in is an initial Fy -algebra with carrier F*V. That is, in has type

F*V—FF*V+V .

The relator F* (together with appropriately defined unit and multiplier) is a
monad which, as the Kleene-star-like notation suggests, is obtained by repeated
application of the relator F. Elements of F*V are called expressions; the pa-
rameter F' limits the way that new expressions are built up out of subexpres-
sions. Substitution of an expression for a variable can now be defined in such a
way that the composition of substitutions is Kleisli composition in the monad.
The ordering “more general than” on substitutions is defined in the usual way.
Generic unification is then the problem of finding a substitution that unifies two
expressions and is more general than any other unifier.

A fundamental lemma in a proof of correctness of unification is to show that
if a variable occurs in an expression then the variable and expression are not
unifiable. The way to do this is to define an “occurs-properly-in” relation between
expressions, show that this relation is well-founded (and thus is irreflexive) and
finally show that it is preserved by substitution. Here we will just show the first
two of these steps as an illustration of the reductivity calculus.

Suppose mem is the membership relation of the relator F. Let inl; ; de-
note the injection function of type I+J « I. (We will drop subscripts from now
on for simplicity.) Then we can define the relation occurs_properly_in of type
F*V — F*V by

occurs_properly_in = (mem - (in-inl)")"

Informally, the relation (in-inl)” (which has type F.(F*V') « F*V') destructs an
element of F*V into an F-structure and then mem identifies the data stored in

that F-structure. Thus mem - (in-inl)* destructs an element of F*V into a number
of immediate subcomponents. Application of the transitive-closure operation
repeats this process thus breaking the structure down into all its subcomponents.

The occurs_properly_in relation has a very simple structure. We ought to be
able to see that it is well-founded almost directly just from that structure. Indeed
this is what the reductivity calculus allows us to do. The lemma and its proof
follow. The first step involves a well-known property of well-founded relations.
Otherwise, every non-trivial step uses the reductivity calculus.

Theorem 18. The relation occurs_properly_in is well-founded.

Proof
occurs_properly_in is well-founded
= { definition of occurs_properly_in,
R is well-founded = RT is well-founded }
mem - (in-inl)" is well-founded
= { mem - R is well-founded = R is F-reductive }
(in-in)" is F-reductive
= { (in-inl)? = inl”-in", }
inl”-in" is F-reductive
= { theorems 8 and 9}
in” is Fy-reductive A inlY : F'« Fy
= { theorem 4, definition of «
(where R has type I+J, for some I and J) }
true A (VR :: F.R -inl” D inl" - Fy.R)
= { definition of Fyy }
(VR = F.R-inl° 2 inl” - F.R+idy)
= { converse and defn. of inl }
true .
O

Note that the proof is entirely algebraic and does not involve any notion
of the “size” of expressions. Many well-foundedness arguments are based on
defining a variant function with range the natural numbers and exploiting their
well-foundedness. The above proof is based on the basic reductivity theorem
that the converse of an initial F-algebra is F-reductive, a consequence of which
theorem is that the natural numbers are well-founded. Introducing the natural
numbers into the proof would be introducing unnecessary detail.

8 Conclusion

This paper has demonstrated how to reason effectively about computations
where the structure of the data is a parameter — so-called datatype-generic
reasoning. Generic programming, whereby the structure of the data and/or
problem-solving strategy is a parameter, has much, as yet unexplored, poten-
tial. This paper establishes a theoretical basis for generic programming that is
simple and effective. Evidence has been provided for why program development
should be based on relation algebra, even when the desired implementation ve-
hicle is a functional programming language.

The paper has also discussed the relationship between reductivity, well-
foundedness and structural induction. Generic formulations of the latter two
notions have been presented, and the precise mathematical relationship with
reductivity has been explored.

There are several directions in which the current work can be extended. The
rules on F-reductivity presented in section 5 are clearly incomplete. More effort
needs to be expended on building up a useful collection of rules. For example,
it should be possible to develop rules based on the structure of the relator F
(whether it is the sum of two relators or the product of two relators, etc.).
What is remarkable about the rules presented in section 5 is that, in some cases,
they reduce proofs of program termination to a process akin to type checking.
The core of the termination argument is the presence of (the converse of) an
initial G-algebra in the program, for some Gj this is combined with plumbing
relations to construct the desired F-reductive relation. This paves the way for
the possibility of verifying the termination of hylo programs at the compilation
stage. The process will never be complete in a formal sense but there is a good
possibility that it is sufficiently powerful to make it worthwhile.

The notion of termination of programs is based here on a demonic model
of program execution. OQur work could be used as inspiration for a study of
termination properties based on an angelic model of computation. Such a study
would lead to theorems and lemmas like the ones in section 5 and could be useful
in gaining a better understanding of the design of logic programs and distributed
programs.

References

1. R.C. Backhouse. Naturality of homomorphisms. Lecture notes, International Sum-
mer School on Constructive Algorithmics, vol. 3, 1989.

2. R.C. Backhouse, P. de Bruin, P. Hoogendijk, G. Malcolm, T.S. Voermans, and
J. van der Woude. Polynomial relators. In M. Nivat, C.S. Rattray, T. Rus, and
G. Scollo, editors, Proceedings of the 2nd Conference on Algebraic Methodology and
Software Technology, AMAST 91, pages 303-326. Springer-Verlag, Workshops in
Computing, 1992.

3. R.C. Backhouse, P. de Bruin, G. Malcolm, T.S. Voermans, and J. van der
Woude. Relational catamorphisms. In Moéller B., editor, Proceedings of the IFIP
TC2/WG2.1 Working Conference on Constructing Programs from Specifications,
pages 287-318. Elsevier Science Publishers B.V., 1991.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

R.C. Backhouse and J. van der Woude. Demonic operators and monotype factors.
Mathematical Structures in Computer Science, 3(4):417-433, December 1993.
Roland Backhouse and Paul Hoogendijk. Final dialgebras: From categories to
allegories. Theoretical Informatics and Applications, 33(4/5):401-426, 1999.
Roland Backhouse, Patrik Jansson, Johan Jeuring, and Lambert Meertens. Generic
programming. An introduction. In S.D. Swierstra, editor, 8rd International Sum-
mer School on Advanced Functional Programming, Braga, Portugal, 12th-19th
September, 1998, volume LNCS 1608, pages 28-115. Springer Verlag, 1999.
Richard S. Bird and Oege de Moor. Algebra of Programming. Prentice-Hall Inter-
national, 1996.

H. Doornbos. Reductivity arguments and program construction. PhD thesis, Find-
hoven University of Technology, Department of Mathematics and Computing Sci-
ence, June 1996.

H. Doornbos, R.C. Backhouse, and J. van der Woude. A calculational approach
to mathematical induction. Theoretical Computer Science, 179:103-135, 1997.
Henk Doornbos and Roland Backhouse. Induction and recursion on datatypes. In
B. Moller, editor, Mathematics of Program Construction, 3rd International Con-
ference, volume 947 of LNCS, pages 242—-256. Springer-Verlag, July 1995.

Henk Doornbos and Roland Backhouse. Reductivity. Science of Computer Pro-
grammang, 26(1-3):217-236, 1996.

Maarten M. Fokkinga. Law and Order in Algorithmics. PhD thesis, Universiteit
Twente, The Netherlands, 1992.

Peter Freyd. Algebraically complete categories. In G. Rosolini A. Carboni,
M.C. Pedicchio, editor, Category Theory, Proceedings, Como 1990, volume 1488 of
Lecture Notes in Mathematics, pages 95—-104. Springer-Verlag, 1990.

P.J. Freyd and A. Scedrov. Categories, Allegories. North-Holland, 1990.

Jeremy Gibbons. Patterns in datatype-generic programming. In Jorg Strieg-
nitz and Kei Davis, editors, Multiparadigm Programming, volume 27. John von
Neumann Institute for Computing (NIC), 2003. First International Workshop
on Declarative Programming in the Context of Object-Oriented Languages (DP-
COOL).

Ralf Hinze. Polytypic values possess polykinded types. Science of Computer Pro-
grammang, 43(2-3):129-159, 2002.

Ralf Hinze, Johan Jeuring, and Andres Loh. Type-indexed data types. Science of
Computer Programming, 51(1-2):117-151, 2004.

C.A.R. Hoare and Jifeng He. The weakest prespecification. Fundamenta Informat-
icae, 9:51-84, 217-252, 1986.

Paul Hoogendijk. A Generic Theory of Datatypes. PhD thesis, Department of
Mathematics and Computing Science, Eindhoven University of Technology, 1997.
Paul Hoogendijk and Oege de Moor. Container types categorically. Journal of
Functional Programming, 10(2):191-225, 2000.

P. Jansson and J. Jeuring. PolyP - a polytypic programming language extension.
In POPL ’97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 470-482. ACM Press, 1997.

P. Jansson and J. Jeuring. Functional pearl: Polytypic unification. Journal of
Functional Programming, 1998.

J. Jeuring and P. Jansson. Polytypic programming. In J. Launchbury, E. Meijer,
and T. Sheard, editors, Proceedings of the Second International Summer School
on Advanced Functional Programming Techniques, pages 68—114. Springer-Verlag,
1996. LNCS 1129.

24.

25.

26.

27.

28.
29.

30.
31.

32.

33.

Andres Loh, Dave Clarke, and Johan Jeuring. Dependency-style Generic Haskell.
In Olin Shivers, editor, Proceedings of the International Conference, ICFP’03,
pages 141-152. ACM Press, August 2003.

G. Malcolm. Algebraic data types and program transformation. PhD thesis, Gronin-
gen University, 1990.

G. Malcolm. Data structures and program transformation. Science of Computer
Programming, 14(2-3):255-280, October 1990.

Eindhoven University of Technology Mathematics of Program Construction Group.
Fixed point calculus. Information Processing Letters, 53(3):131-136, February
1995.

L. Meertens. Paramorphisms. Formal Aspects of Computing, 4(5):413-424, 1992.
Eric Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with
bananas, lenses, envelopes and barbed wire. In FPCA ’91: Functional Program-
ming Languages and Computer Architecture, number 523 in LNCS, pages 124-144.
Springer-Verlag, 1991.

Erik Meijer. Calculating Compilers. PhD thesis, University of Nijmegen, 1992.

E. Moggi. Notions of computation and monads. Information and Computation,
93(1):55-92, 1991.

J.C. Reynolds. Types, abstraction and parametric polymorphism. In R.E. Mason,
editor, IFIP ’83, pages 513-523. Elsevier Science Publishers, 1983.

P. Wadler. Theorems for free! In 4’th Symposium on Functional Programming
Languages and Computer Architecture, ACM, London, September 1989.

