Mathematics and Programming
A Revolution in the Art of Effective Reasoning

Roland Backhouse*

Inaugural Lecture
24th October, 2001

Abstract

The modern world is highly dependent on the reliable function-
ing of computer software. The sheer scale of software systems makes
their design and implementation a highly demanding intellectual ac-
tivity. Meeting these demands has inspired a revolution in the way
that mathematics, the art of effective reasoning, is conducted and
presented. Continued effort is needed in education and research in
the mathematical construction of programs, based on the controlled
manipulation of mathematical formulae.

At a recent computer expo, Bill Gates reportedly compared the computer
industry with the car industry. “If General Motors had kept up with technol-
ogy like the computer industry has” he is reported to have said, “we would
all be driving $25 cars that get 1,000 to the gallon”.

“That may be true” was the swift response of the president of General
Motors, “but who would want to drive a car that crashes twice a day!”.

As you will have guessed, this is just a joke. But the joke is not without
foundation. It is true that there have been major, almost incredible advances
in computer hardware and software. However, it is also true that computer
software is often highly unreliable and liable to crash spontaneously — as it
did for Bill Gates during a demonstration he gave of the Windows 98 system
at the 1998 COMDEX expo.

*School of Computer Science and Information Technology, University of Nottingham,
Nottingham NG8 1BB, England

“While we're all very dependent on technology, it doesn’t always
work”

Bill Gates, when Windows 98 crashed during a demonstration he
was giving at the Comdex Expo, April 20, 1998.

So-called “computer errors” are frequently reported in the newspapers.
For example, on the weekend that I was preparing this lecture, the report
you see on the screen appeared in the Guardian. The errors are, of course,
not “computer errors” but programming errors made by human beings.

NatWest was hit by a computer error that affected those who
withdrew £20 from cash machines last weekend. They were deb-
ited twice.

The Guardian October 13 2001

Computer software is often unreliable. But even so, the president of Gen-
eral Motors would probably not dare to complain about crashing computers.
In any case it would be very ironic if he did — in the nineteen-fifties General
Motors built cars that were liable to spontaneous crashes. The company also
succeeded in sabotaging an advertising campaign by the Ford Motor Com-
pany to promote increased safety in their cars. (The quotes shown on the
screen are taken from Ralph Nader’s acclaimed book “Unsafe at Any Speed”
and are reported to be statements made by leading figures in General Motors
at the time.)

"Ford sold safety while Chevy sold cars.”
”Sales strategies and safety do not mix.”

Quotations taken from Ralph Nader “Unsafe at any speed” (1965).

There are other parallels between the car manufacturers of the nineteen-
fifties and sixties and software manufacturers of today. Then the car manu-
facturers tried to put the blame on the drivers, software manufacturers now
seem to want to put the blame on the users. During the preparation of this
talk, the computer crashed on me on three occasions. On the screen is the
message [got when I rebooted.

Because Windows was not properly shut down, one or more of
your disks may have errors on it.

In order to avoid seeing this message again, always shut down
your computer by selecting Shut Down from the Start Menu.

Ladies and Gentlemen, I have said enough about the computer industry.
That is not my topic. My concern is with developing a science of computing.

”The hallmark of a science is the avoidance of error”

Robert J. Oppenheimer

Fitness-for-purpose, reliability, dependability. These are the core ele-
ments of my agenda. And, fortunately, these concerns have been paramount
on the research agenda of some of the most influential university academics
since the very beginnings of the development of the science of computing.
This has led to a revolution in the way that mathematics is conducted —
a quiet revolution, one that has not and is never likely to hit the headlines
of the newspapers, but nevertheless an important revolution that will have
significant and lasting impact on the way that future computer systems are
designed and built. It is about this revolution that I want to talk today.

The main issues in computing are the problems of scale. Computer
programs are mathematical formulae, with a precise formal meaning and
embodying constructive theorems about the system they implement. But,
unlike conventional mathematical formulae, which are compact and manage-
able, computer programs often extend to tens of thousands and sometimes
to millions of lines of code. The huge complexity of computer systems is
further compounded by the legacy of unreliable software making so-called
“defensive programming” —developing systems that can withstand faults in
other components with which they communicate— a necessity. The utmost
economy, of expression and of thought, is vital to our ability to master this
complexity.

Computer programs embody constructive theorems about the systems
they implement. But there are major differences between these theorems and
the ones normally studied by mathematicians. For one, they are often shallow
and relatively simple. But these are theorems that are applied incredibly
often during the execution of a program —millions of times per second—
whereas the theorems studied by mathematicians may with luck be applied

a handful of times and sometimes never at all. Even worse the programmer’s
theorems are applied by an unforgiving machine, rather than an educated
and understanding human being, with the effect that even the smallest error
is brutally punished, as Bill Gates found out to his cost at the 1998 Comdex
expo.

The vast complexity of computer software makes its unreliability under-
standable, but not excusable. The implementation of reliable computer sys-
tems, carrying a guarantee of fitness-for-purpose, imposes major intellectual
challenges that can only be met by a science of computing whose hallmark
is the avoidance of error.

Equational Logic

In rising to this challenge, computing science has already had a major influ-
ence on developments in mathematics. Perhaps the most obvious of those
influences is the modern emphasis on formal logic. Nowadays, most, if not
all, undergraduate degrees in mathematics and computing science will in-
clude some training in formal logic. Thirty-five years ago, when I began a
degree in mathematics at Cambridge University, that was not the case. One
of the first lectures I attended still stands clear in my mind. The lecturer
wrote an upside-down A (V) on the board and one very brave student had the
temerity to ask what it meant. “Oh, don’t you know that,” said the lecturer.
“That means for all. And I will also be using this symbol” —at which point
he wrote a backwards E (3) on the board— “and that means there exists.”
And that, ladies and gentlemen, was the sum total of my formal education
in logic, anno 1966.

Of course, I do not wish to imply that mathematicians have failed to
recognise the importance of logic. The line from Hilbert’s promotion of for-
mal logic to Turing’s brilliant and world-famous paper on the Entscheidungs
Problem is well-known. But the needs of computing science has brought
formal logic to the fore because the software engineer is a voracious user of
logic rather than one who studies logic and logical systems.

Computing science’s influence on the development of logic is still contin-
uing and impinges on the very fundamentals of the way logic is presented.
The computing scientist demands simplicity and conciseness of expression.
A good example of this is the modern computing scientists emphasis on

equational reasoning in logic rather than the traditional emphasis on logical
implication.

Equality is the most fundamental of mathematical operators if only be-
cause of the rule of substitution of equals for equals, the rule for which Leibniz
is duly famous.

Equational reasoning, as in for example, school algebra is familiar and
straightforward. But equational reasoning is obscured in traditional logic
texts because equality of propositions is introduced as “if and only if” —the
combination of two operators “if” and “only if”— rather than as an operator
in its own right.

It sometimes comes as a surprise to those brought up on “if and only
if” to be told that it is just the equality operator, so on this slide I have
compared its truth table with the truth table for equality of numbers. They
both have the same form: the true entries are along the diagonal and the
false entries are off the diagonal. (It also comes as a surprise to many that
“exclusive or” is “different from” or the negation of equality, but that is a
different story.)

“If and only if”, “necessary and sufficient” condition: these phrases make
something that is very basic sound very complicated. Compared with logical
implication (only if), equality is very simple. And simplicity and economy of
thought and expression are the bywords of the practising programmer.

Equality of propositions (“if and only if”)

t f
t f
f t

Equality of numbers (“is”)

e s N N N R
s s T B i
i N e e s o I NG
i e e)
e e s N

Another surprise for those brought up on logical equality as “if and only
if” is that it is associative. Very simple and commonplace examples can be
used to illustrate this fact.

Consider the multiplication of two non-zero numbers y and z. The result
is positive if y and z have the same sign, that is if the boolean value “y is
positive” equals the boolean value “z is positive”. The product is negative if
they are different, one is positive whilst the other is negative.

For all non-zero y and z:
y X z is positive = (y is positive = 2z is positive)

Now equality of boolean values (if and only if, if you will) is associative.
That is, we immediately have the property that the sign of y times z equals
the sign of y exactly when z is positive.

(y x z is positive = y is positive) = 2z is positive

This use of the associativity of boolean equality is a beautiful example of
the economy of expression that is made possible by equational logic. But it is
an example that often confuses mathematicians and logicians: the confusion
arises because there is no way of pronouncing the formula in natural language
that allows us to also capture the associativity property. Here is where formal
logic takes us beyond the limitations of “natural” modes of reasoning. But
also, the fact that the true nature of logical equality is obscured by the use of
“if and only if” is perhaps excusable; after all the equality symbol was only
introduced in 1557 — which is very recent in the history of mathematics.

The purpose of logic is not to mimic verbal reasoning but to
provide a calculational alternative.

Edsger W. Dijkstra [Dij90]

Construction versus verification

The needs of programmers to find simple but effective ways to specify and
reason about their programs has also resulted in major fundamental changes
in the way that the reasoning process is recorded and communicated to oth-
ers.

The programmer’s task is to construct programs to meet their specifi-
cations. Mathematical proof is of course fundamental to establishing the
correctness of the decisions made by the programmer but, for the practising
programmer, the traditional post-hoc verification of mathematical theorems
is just not good enough. The process of construction is paramount and math-
ematical design tools must reflect this.

I can illustrate the difference between construction and verification with
another recollection I have of my own early mathematical education. When
I was at school, in the 6th form, we learnt about proof by induction. We
learnt, for example, how to verify that the sum of the first n positive numbers
is n(n+1)/2.

I + 2 4+ ... + n = nn+1)/2
12+ 22 + ...+ n2 = nnh+1D)2n+1)/6

We also learnt how to verify that the sum of the squares of the first n
positive numbers is n(n + 1)(2n 4+ 1)/6. I remember being fascinated with
this process, so much so that I still remember these formulae. My interest
was no doubt encouraged because I found proof by induction a very easy
process to apply. In those days I was supposedly good at mathematics —
we were given a handle that we could turn and I could turn it pretty quickly
and score high marks in the exams.

My fascination, however, quickly turned to disillusion. The reason was
that I began to think about how to apply proof by induction to other ex-
amples. [wondered for example about summing the cubes of the first n
numbers

?o+ 22+ 4+ 0 = M
and summing higher powers:
T+ 22T 4+ T =

But the problem was that I didn’t know the answers! I didn’t know the
formulae to be filled in on the right side of the equations! And to apply proof
by induction as I had been taught required one to know the right answer
first. (The method I had been taught was to look for a pattern, formulate
a conjecture, and then verify the conjecture — in other words, guess and

verify. But after many attempts at guesses, I had to admit defeat and give
up.)

This was my first encounter with the difference between construction and
verification and my first feeling of unease with the way mathematics was
conducted. To put it very bluntly, my disillusion was this: at the time,
I wasn’t really interested in learning facts discovered by Newton, Galois,
Gauss, Cauchy or whatever great mathematician of years gone by. What I
wanted to know was how I could discover new facts and develop new ideas.
And the “guess and verify” method did not impress me then and still does
not impress me now.

Concrete Mathematics

The emphasis on construction rather than verification permeates a number
of texts in computing science. A prominent example is the text “Concrete
Mathematics” by Graham, Knuth, and Patashnik [GKP89]. Concrete Math-
ematics is, according to its authors, “the controlled manipulation of math-
ematical formulas, using a collection of techniques for solving problems.”

Elsewhere they give their goals: “One of the main objectives of this book
is to explain how a person can solve recurrences without being clairvoyant.”
The conclusion of this will be that: “Once you, the reader, have learned
the material in this book, all you will need is a cool head, a large sheet of
paper, and fairly decent handwriting in order to evaluate horrendous-looking
sums, to solve complex recurrence relations, and to discover subtle patterns
in data.” The emphasis on the word “discover” is my own but clearly also
very important to them. It is not surprising that two of the authors of this
text are world-renowned both as mathematicians and computing scientists
as the discovery of “subtle patterns” is one of the major intellectual demands
of computer programming.

An important aspect of enabling construction as opposed to verification is
making the rules of the game completely clear. In other words, using formal
calculational rules. This is what Graham, Knuth, and Patashnik mean by
“the controlled manipulation of mathematical formulas”.

An example of the sort of simple, but effective innovations is the formal-
isation of rules for manipulating quantifiers. I expect most of the audience

8

will be familiar with the Sigma notation for summing a set of values. This is
an example of a quantification where in this case the quantifier is Sigma(X),
meaning summation. Other elements of the quantification are the bound
variables (k), the range (from 1 to n), and the term being summed (k?).

> ¥
k=1

What Graham, Knuth and Patashnik do in their book is very simple.
They begin by stating explicitly the rules for manipulating such summations.
The rules are, mostly, very simple — for example, it is permitted to rename
the bound variables provided that the new name has not already been used
elsewhere in the formula.

Y= 5
=1 =1

Other rules are equally simple, but nevertheless vital. For example, the sum
over an empty range is zero.

o o= 0

WE

k=1

By formalising the rules of manipulation we increase understanding and facil-
itate accurate formal calculation, with enormous benefits for problem solving.
This is what they mean by the “controlled manipulation of mathematical for-
mulas”.

We can go further than Graham, Knuth and Patashnik’s book. Quan-
tifications other than summation abound in computing problems. In mathe-
matics, think of universal and existential quantification and the infimum or
supremum of a set of values — but the notation is highly unsystematic and
the manipulation rules are rarely formalised.

Va.p(z)

An example of a quantification taken from database technology is a query.
The query shown returns the set of all authors who have written books with
“Effective Reasoning” in the title.

select author: Y
from biblio._ X,
X.author Y,
X.title Z
where ‘‘Effective Reasoning’’ in Z

Like summation we can recognise in this query a quantifier (select), a
number of bound variables (X, Y, Z), the range of the quantification (books
with “Effective reasoning in the title”) and the term that is being quantified
(author: Y).

The added value of a formal study of the “controlled manipulation” of
finite summations and other quantifications is that the rules apply just as
well to manipulating queries of this nature. So not only do we increase un-
derstanding, we are also well equipped to determine better ways of satisfying
the query or determining the consequences when the query fails. (Computer
crashes often occur because the programmer has failed to take proper account
of extreme cases. The supposition is that the users of a database will pose
meaningful queries. But many queries are automatically generated —often
by unreliable software— and, in any case, human beings are not very reliable
either!)

Goal-Directed Constructions

Construction as opposed to verification also has major implications for the
way that mathematical theorems are presented. The traditional theorem-
followed-by-proof reflects the guess-and-verify style of reasoning which is
quite inadequate for the construction of computer programs. Instead a goal-
followed-by-construction style of presentation is needed.

I can illustrate the difference between the two by a simple numerical
example. On the screen you will see a proof that the square root of 2 plus
the square root of seven is greater than the square root of 3 plus the square
root of 5. It is a Hilbert-style proof which means that each step in the proof
is either self-evident or follows simply from previous lines in the proof. For
example, step 3 is self-evident, and step 4 follows from step 3 by simple
arithmetic.

As a wverification of the claimed inequality, this proof is perfectly ade-
quate — it is easily checked either by human beings or by machines. But

10

if a>0 and b>c>0 then a+b>a+c>0
if a>b>0 then /a>v/b>0

224>9>0

V224>+/9>0

4y/14>3>0

57+4/14>574+3>0

(

(3 and arithmetic)

(
V/57+4/14>+/57+3>0 (1 and 5)
14+2v/14>2/15>0 (6 and arithmetic)
8+1+2v/14>8+2v/15>0 (
- V8+142¢/14>1/8+421/15>0 (

(

10.v/24V7>v/3+/5>0

S R o el

9 and arithmetic)

Figure 1: A Formal Proof of V24T>V34+V5.

as a construction it is appallingly bad. Note that the proof begins with the
statement that 224 is greater than 9. But what have 224 and 9 got to do
with 2, 7, 3 and 57 An incredible amount of clairvoyance would appear to
be needed to construct this simple proof.

The goal-directed construction, on the other hand, is quite straightfor-
ward. The goal is to determine the ordering relation between V2 + /7 and

V3 + V5.
V2 + V7T X V3 + V6

So we name the unknown —here I have indicated it by X— and proceed
to calculate it. X may be one of less-than, equals or greater-than, and for
each of these we have rules such as if a and b are greater than 0,

a’> X b = a X b

In this way (see fig. 2)all clairvoyance is eliminated and the calculation
becomes what it should be —a straightforward exercise in algebraic manipu-
lation. Moreover, the calculation can now be easily generalised to a computer
program that solves the problem in the general case that 2,3, 5 and 7 are
replaced by arbitrary integers a, b, ¢ and d. And that is very important.

11

V2+VT X V345

= { squaring is invertible and monotonic with respect to X

(V24+V7)? X (V3+5)?
= { arithmetic }
9+2V/14 X 8+ 2V15

= { addition is invertible and monotonic with respect to X
14+2v14 X 215
= { squaring is invertible and monotonic with respect to X

(1+2V14)2 X (2/15)2
= { arithmetic }
57 + 414 X 60

= { addition is invertible and monotonic with respect to X
4414 X 3

= { squaring is invertible and monotonic with respect to X
224 X 9

= { arithmetic }
X iS “>7’

Figure 2: Constructing the relationship between v/24++/7 and v/3+/5.

12

Only by eliminating clairvoyance in this way, can we progress from specific
cases to general computer programs.

Unfortunately, the Hilbert-style proof that I so lamented here is very
common in mathematical texts —I could show you lots of examples—. The
reason is, of course, that verification is so much easier than construction.
But a focus on verification rather than construction is ducking the issue.
The need to write reliable computer programs is the driving force behind
this new, formal calculational style of creating mathematics.

Abstraction and Specialisation

Another important element of programming is the need to be able to abstract
from the specific to the more general. In science this has long been recognised
as the abstraction-specialisation cycle.

Abstraction

Specialisation

Science progresses by abstracting general laws from a variety of obser-
vations. These general laws are then applied in specific situations in order
to predict new, as yet unknown, properties. These predictions lead to novel
applications, yet greater understanding and input for a further round of ab-
straction followed by specialisation.

The abstraction-specialisation cycle is particularly relevant to the devel-
opment of the science of computing because the modern digital computer is,
above all else, a general-purpose device that is used for a dazzling range of
tasks. Harnessing this versatility is the core task of software design.

To the software designer the abstraction-specialisation cycle is better
known as the abstraction-customisation cycle. Good, commercially viable,
software products evolve in a cycle of abstraction and customisation.

13

Abstraction

Customisation

Abstraction, in this context, is the process of identifying a single, general-
purpose product out of a number of independently arising requirements. Cus-
tomisation is the process of optimising a general-purpose product to meet the
special requirements of particular customers. Software manufacturers are in-
volved in a continuous process of abstraction followed by customisation.

The buzz word that is used in this context is “generic”: in order to
survive, software has to be generic, software libraries have to be generic,
software tools have to be generic, software systems have to be generic.

Computing science has facilitated the software designer’s task of pro-
ducing generic software by the continued development of general-purpose,
high-level programming languages. Since the first high-level languages were
introduced in the early fifties there have been very substantial developments
supporting enhanced generality of computer programs.

The progress that has been made can be seen by comparing languages of
today with languages of yesterday. All high-level languages have, of course,
supported parameterising procedures by values as in, for example, procedures
to evaluate the sine or cosine of a real value x. It is the extent to which they
support other kinds of parameters that distinguishes languages among each
other. In one of the first high-level programming languages, FORTRAN
(1957), procedures could be defined, but not used as parameters. In Algol
60 procedures (including functions) were allowed as parameters, but only by
name. In neither language could types be named, nor passed as parameter.

Functional languages, of which Haskell is a good example, stand out
in the evolution of programming languages because of the high-level of ab-
straction that is achieved by the combination of higher-order functions and
parametric polymorphism. The abstraction mechanisms are also founded on
sound mathematical theories that enable us to reason effectively about the
behaviour of computer programs.

“The controlled manipulation of mathematical formulas, using a collec-

14

Date Language Values Procedures Types
(approx.) (eg integers) and functions

1957 FORTRAN | yes no no

1960 Algol 60 yes yes no

1995 Haskell yes yes yes and no

Figure 3: Parameters

Date Language Values Procedures Types
(eg integers) and functions

1957 FORTRAN | yes yes no

1960 Algol 60 yes yes no

1995 Haskell yes yes yes

Figure 4: Naming

tion of techniques for solving problems” which is so important to creative,
concrete mathematics is possible and practical in the development of func-
tional programs. Moreover, the level of generality, when used wisely, con-
siderably eases the burden of proof because the costs are spread over a wide
range of applications.

From what I have just said, it would seem that all the programming
problems have been solved and we can all go home and sleep contentedly.
Unfortunately, that is not the case. The level of genericity still has its limi-
tations and there is an ongoing challenge to find new ways of parameterising
programs in a way that is supported by effective reasoning. For example, the
so-called “design patterns” [GHJV95] that have recently emerged as a very
effective means of designing object-oriented programs have not yet been for-
mulated in terms of precise and concise mathematical abstractions —at least
not to my knowledge— nor even can they be captured as statements or decla-
rations in any existing programming language. The use of design patterns is
very much meta programming, that is programming at a level that is not ex-
pressible in the programming language itself. The abstraction-specialisation
cycle goes on turning.

15

Thanks

At this point, I would like to extend my thanks to those who have influenced
my own views on mathematics and programming and, in so doing, have
fostered my career and helped me to get to where I am now. I am fortunate
in that, during my early research career, the dominant leaders in the field
—Donald Knuth, Tony Hoare, Edsger Dijkstra, Niklaus Wirth, to name just
a few— were scientists who clearly regarded the twin activities of education
and research as equally important.

I want to stress this point because I fear that the current generation of
young researchers is being corrupted by a climate that rewards quantitative
measures of research above all else, this climate having been created by an
assessment system that separates the functions of research and education. It
is not that I am against assessment, it is the lack of recognition of the duality
of these activities in the assessment process that I believe is distorting the
way that university research is currently conducted. And, unfortunately,
this seems to be particularly true in the case of computing science where the
commercial potentials and interests are so obviously predominant.

In a research-oriented university ...the major transfer of in-
formation ...to industry does not occur through journal articles
and publications; rather it comes about through students who get
degrees and then take jobs in industry.

John E. Hopcroft [Hop86]

In my career I have been very fortunate in being able to rub shoulders with
two truly great computing scientists — Tony Hoare (now Sir Tony Hoare)
and Edsger Dijkstra. I would like to thank Tony Hoare for the encouragement
and support he has given me over a number of years, starting at a very early
stage in my career in his role as editor of the series of books in which my
own two books were published. I hope that I may continue to write books
and articles worthy of his high standards of clarity and rigour.

I would also like to thank Edsger Dijkstra for the example he has set in
his research and teaching. The phrase “the art of effective reasoning” in the
subtitle of my talk is due to Dijkstra — it is his definition of mathematics.

The example that Dijkstra has set and which I am striving to emulate is
still not properly appreciated and respected by many computing scientists.

16

Only just last month I was at a conference at which a prominent computing
scientist complained about Dijkstra’s “polished” performances, The subject
of the conference was software reliability and the argument was, apparently,
that “faultless” program design was unnatural and beyond mere mortals and
that to pretend that it could be achieved was a distortion of reality.

I find this attitude both saddening and defeatist. To see how saddening it
is, let me draw a comparison with the world of sport. In sport, top athletes
strive for perfection and are not ashamed to admit it. Even those who know
that they will never reach the top still strive to do as well as the top athletes,
and again are not ashamed to admit it. What characterises top athletes
from the rest is economy of effort, achieved by honing their skills by constant
practice. But when it comes to our most precious skill, our ability to reason
effectively, it would appear not to be acceptable to strive for perfection,
because that is seen as arrogance, and it is not considered acceptable to
challenge our students, because that is seen as being elitist.

“I believe it is fundamentally wrong to teach a science like pro-
gramming by reinforcing the students’ intuition when that intu-
ition is inadequate and misguided. On the contrary, our task
is to demonstrate that a first intuition is often wrong and to
teach the principles, tools, and techniques that will help overcome
and change that intuition! Reinforcing inadequate intuitions just
compounds the problem.”

David Gries [Gri90]

Conclusion

Ladies and Gentlemen, our lives and livelihoods are now highly dependent
on the reliable functioning of computer software. The sheer scale of software
systems makes their design and implementation a highly demanding intel-
lectual activity. Meeting these demands has inspired a revolution in the way
that mathematics, the art of effective reasoning, is conducted and presented.
Continuing effort is needed in education and research in the mathematical
construction of programs, based on the controlled manipulation of mathe-
matical formulae. I will strive to promote these activities in every aspect of
my work and I look forward to the continued support of the university and
my colleagues in achieving my objectives.

17

Acknowledgements and Bibiliography

Many of the ideas and opinions expressed in this lecture have been heavily
influenced by or are directly attributable to others. Where I know the source
I give bibliographic details below. In some cases, unfortunately, I no longer
know where the idea came from. (Anyone who does is welcome to contact
me so that I can include the appropriate reference here in future revisions of
this bibliography.) My thanks go to the many friends, colleagues and fellow
computing scientists who have helped formed my views, whether or not they
are explicitly acknowledged below.

Equational logic, and in particular the exploitation of the associativity
of logical equivalence, was introduced by Dijkstra and Scholten [DS90]. A
good introductory text is [GS93]. The latter text also introduces a uniform
notation for quantification together with rules for their manipulation. (The
notation, apart from minor lexical differences, is due to Dijkstra and his
colleagues at Eindhoven University of Technology.)

See [Sim95] for further discussion of the abstraction-customisation cycle,
particularly with respect to the design of computer software.

For an introduction to generic programming see [BJJM99]. The ac-
count of the development of parametrisation mechanisms in programming
languages is adapted from the discussion in this paper, and is due to Lam-
bert Meertens.

References

[BJIM99] Roland Backhouse, Patrik Jansson, Johan Jeuring, and Lambert
Meertens. Generic programming. An introduction. In S.D. Swier-
stra, editor, 3rd International Summer School on Advanced Func-
tional Programming, Braga, Portugal, 12th-19th September, 1998,
volume LNCS 1608, pages 28—-115. Springer Verlag, 1999.

[Dij90] Edsger W. Dijkstra, editor. Formal Development of Programs
and Proofs, chapter Fillers at the YOP Institute, pages 209-228.
The UT Year of Programming Series. Addison-Wesley Publishing
Company, 1990.

[DS90] E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program
Semantics. Springer-Verlag, Berlin, 1990.

18

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pat-

[GKP8Y]

[Gri90]

[GS93]

[Hop86]

[Sim95]

terns — Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1995.

Ronald L. Graham, Donald E. Knuth, and Oren Patashnik.
Concrete Mathematics : a Foundation for Computer Science.
Addison-Wesley Publishing Company, 1989.

David Gries. Formal Development of Programs and Proofs, chap-
ter Influences (or Lack Thereof) of Formalism in Teaching Pro-
gramming and Software Engineering, pages 229-236. The UT
Year of Programming Series. Addison-Wesley Publishing Com-
pany, 1990.

David Gries and Fred B. Schneider. A Logical Approach to Dis-
crete Math. Springer-Verlag, 1993.

John E. Hopcroft. The impact of robotics on Computer Science.
Communications of the ACM, 29(6):486-498, 1986.

Charles Simonyi. The death of computer languages, the birth
of intentional programming. Proceedings of the 28th Annual In-
ternational Seminar on the Teaching of Computing Science at
University Level, Sponsored by ICL and University of Newcastle
upon Tyne, Department of Computing Science, September 1995.

19

