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Abstract

We introdu
e the general notions of an index and a 
ore of a relation. We postulate a

limited form of the axiom of 
hoi
e |spe
i�
ally that all partial equivalen
e relations have

an index| and explore the 
onsequen
es of adding the axiom to standard axiom systems

for point-free reasoning. Examples of the theorems we prove are that a 
ore/index of a

difun
tion is a bije
tion, and that the so-
alled \all or nothing" axiom used to fa
ilitate

pointwise reasoning is derivable from our axiom of 
hoi
e.

1 Introduction

We introdu
e the general notions of an \index" and a \
ore" of a relation. As suggested by

the terminology, the pra
ti
al signi�
an
e of both notions is to substantially redu
e the size

of a (possibly very large) binary relation in su
h a way that the relation 
an nevertheless

easily be re
overed. Example 1 illustrates the notions.

Example 1 Fig. 1 depi
ts a relation (on the left) and two instan
es of 
ores of the relation

(in the middle and on the right). All are depi
ted as bipartite graphs. The relation R is a

relation on blue and red nodes. The middle �gure depi
ts a 
ore as a relation on squares of

blue nodes and squares of red nodes, ea
h square being an equivalen
e 
lass of the left per

domain of R (on the left) or of the right per domain of R (on the right). The rightmost

�gure depi
ts a 
ore as a relation on representatives of the equivalen
e 
lasses: the relation

depi
ted by the thi
k green edges. The rightmost �gure also depi
ts an index of the relation;

the middle does not: although the relations depi
ted in the middle and rightmost �gures are

isomorphi
, they have di�erent types.

✷

Although the notion of the \
ore" of a relation is more general than the notion of an

\index", a signi�
ant disadvantage is that a \
ore" typi
ally has a type that is di�erent from

the relation itself; in 
ontrast, an \index" of a relation is a \
ore" that has the same type as

the relation. This is useful for pra
ti
al purposes, parti
ularly in the 
ontext of heterogeneous

relations, be
ause it avoids the ne
essity to introdu
e type judgements. For this reason, our

fo
us us on the notion of an index.

The paper is divided into three parts. The �rst part, 
onsisting of se
tions 2 and 3, sets up

the framework on whi
h our 
al
ulations are based. Se
tion 2 summarises the axiom system
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Figure 1: A Relation, a Core and an Index.

and the notation we use; se
tion 3 lists a number of derived 
on
epts and their properties.

These properties are given without proof.

In se
tion 4, we formalise the notions of a \
ore" and an \index" of a relation in the


ontext of point-free relation algebra. We establish a large 
olle
tion of properties of these

notions whi
h form a basis for the third part of the paper. (Be
ause the notions are new,

almost all the properties are new. An example of a property that some readers may re
ognise,

albeit expressed di�erently, is that a difun
tion has an index that is a bije
tion.)

Se
tion 5 spe
ialises the notion of an index to partial equivalen
e relations and difun
tions.

Se
tion 5.2 
on
ludes by the introdu
tion of a restri
ted form of the axiom of 
hoi
e: we

postulate that every partial equivalen
e relation has an index. This is the same as saying

that it is possible to 
hoose a representative element of every equivalen
e 
lass of a partial

equivalen
e relation. Se
tion 5.3 then shows that every relation has an index. Se
tion 6 is

about applying our axiom of 
hoi
e to the derivation of well-known 
hara
terisations of pers

and difun
tions.

Se
tion 7 examines the 
onsequen
es of adding our axiom of 
hoi
e to point-free relation

algebra in order to fa
ilitate pointwise reasoning. We show that so doing has surprising and

remarkable 
onsequen
es. One su
h 
onsequen
e is that we 
an derive the so-
alled \all-

or-nothing" rule; this is a rule introdu
ed by Gl�u
k [Gl�u17℄ also as a means of fa
ilitating

pointwise reasoning. (See [BDGv22℄ for examples of how the rule is used in reasoning about

graphs.) The main theorem in se
tion 7 is that, with the addition of our axiom of 
hoi
e,

the type A∼B of relations is isomorphi
 to the powerset 2A×B (the set of subsets of the


artesian produ
t of A and B ).

Se
tion 8 
on
ludes the paper with a dis
ussion of the signi�
an
e of the notions we have

introdu
ed and a pointer to the potential value for pra
ti
al appli
ations.

2 Axioms of Point-free Relation Algebra

In traditional, pointwise reasoning about relations, it is not the relations themselves that

are the fo
us of interest. Rather, a relation R of type A∼B is de�ned to be a subset of

the 
artesian produ
t A×B and the fo
us of interest is the boolean membership property

(a, b)∈R where a and b are elements of type A and B , respe
tively. Equality of relations

R and S is de�ned in terms of membership (typi
ally in terms of \if and only if"), leading to
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a la
k of 
on
ision (and frequently pre
ision). In point-free relation algebra, the membership

relation plays no role, and reasoning is truly about properties of relations.

In this se
tion, we give a brief summary of the axioms of point-free relation algebra. For

full details of the axioms, see [BDGv22℄.

2.1 Summary

Point-free relation algebra 
omprises three layers with interfa
es between the layers plus

additional axioms pe
uliar to relations. The axiom system is typed. For types A and B ,

A∼B denotes a set; the elements of the set are 
alled (heterogeneous) relations of type

A∼B . Elements of type A∼A , for some type A , are 
alled homogeneous relations.

The �rst layer axiomatises the properties of a partially ordered set. We postulate that,

for ea
h pair of types A and B , A∼B forms a 
omplete, universally distributive latti
e. In

anti
ipation of se
tion 7, where we add axioms that require A∼B to be a powerset, we use

the symbol \⊆ " for the ordering relation, and \∪ " and \∩ " for the supremum and in�mum

operators. We assume that this notation is familiar to the reader, allowing us to skip a

more detailed a

ount of its properties. However, we use ⊥⊥ for the least element of the

ordering (rather than the 
onventional ∅ ) and ⊤⊤ for the greatest element. In keeping with

the 
onventional pra
ti
e of overloading the symbol \ ∅ ", both these symbols are overloaded.

The symbols \⊥⊥ " and \⊤⊤ " are pronoun
ed \bottom" and \top", respe
tively. (Stri
tly we

should write something like A⊥⊥B and A⊤⊤B for the bottom and top elements of type A∼B .

Of 
ourse, 
are needs to be taken when overloading operators in this way but it is usually

the 
ase that elementary type 
onsiderations allow the appropriate type to be dedu
ed.)

It is important to note that there is no axiom stating that a relation is a set, and there is no


orresponding notion of membership. (In, for example, [ABH

+
92℄ and [Voe99℄, we used the

symbols \⊑ ", \⊔ " and \⊓ " and the name \spe
 
al
ulus" rather than \relation algebra" in

order to avoid misunderstanding.) The la
k of a notion of membership distinguishes point-free

relation algebra from pointwise algebra.

The se
ond layer adds a 
omposition operator. If R is a relation of type A∼B and S is

a relation of type B∼C , the 
omposition of R and S is a relation of type A∼C whi
h we

denote by R◦S . Composition is asso
iative and, for ea
h type A , there is an identity relation

whi
h we denote by IA . We often overload the notation for the identity relation, writing just

I . O

asionally, for greater 
larity, we do supply the type information.

The interfa
e between the �rst and se
ond layers de�nes a relation algebra to be an

instan
e of a regular algebra [Ba
06℄ (also 
alled a standard Kleene algebra, or S-algebra

[Con71℄). For this paper, the most important aspe
t of this interfa
e is the existen
e and

properties of the fa
tor operators. These are introdu
ed in se
tion 2.2. Also, ⊥⊥ is a zero of


omposition: for all R , ⊥⊥◦R=⊥⊥=R◦⊥⊥ .

The 
ompleteness axiom in the �rst layer allows the re
exive-transitive 
losure R∗ of

ea
h element R of type A∼A , for some type A , to be de�ned. For pra
ti
al appli
ations,

this is possibly the most important aspe
t of regular algebra but su
h appli
ations are not


onsidered in this paper. For this paper, 
ompleteness is only relevant when we add axioms

to the algebra that model pointwise reasoning. We do require, however, the existen
e of R∪S

and R∩S , for all pairs of relations R and S of the same type, and the usual properties of
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set union and interse
tion.

The third layer is the introdu
tion of a 
onverse operator. If R is a relation of type

A∼B , the 
onverse of R , whi
h we denote by R
∪

(pronoun
ed R \wok") is a relation of

type B∼A . The interfa
e with the �rst layer is that 
onverse is a poset isomorphism (in

parti
ular, ⊥⊥
∪

=⊥⊥ and ⊤⊤
∪

=⊤⊤ ), and the interfa
e with the se
ond layer is formed by

the two rules I
∪= I and, for all relations R and S of appropriate type, (R◦S)∪ = S

∪
◦R

∪

.

Additional axioms 
hara
terise properties pe
uliar to relations. The modularity rule (aka

Dedekind's rule [Rig48℄) is that, for all relations R , S and T ,

R◦S∩ T ⊆ R ◦ (S ∩ R
∪
◦ T) .(2)

The dual property, obtained by exploiting properties of the 
onverse operator, is, for all

relations R , S and T ,

S◦R∩ T ⊆ (S ∩ T ◦R
∪

) ◦R .(3)

The modularity rule is ne
essary to the derivation of some of the properties we state without

proof (for example, the properties of the domain operators given in se
tion 3.1). Another

rule is the 
one rule :

〈∀R :: ⊤⊤◦R◦⊤⊤ = ⊤⊤ ≡ R 6=⊥⊥〉 .(4)

The 
one rule limits 
onsideration to \unary" relation algebras: 
onstru
ting the 
artesian

produ
t of two relation algebras to form a relation algebra (whereby the operators are de�ned

pointwise) does not yield an algebra satisfying the 
one rule.

2.2 Factors

If R is a relation of type A∼B and S is a relation of type A∼C , the relation R\S of type

B∼C is de�ned by the Galois 
onne
tion, for all T (of type B∼C ),

T ⊆ R\S ≡ R◦T ⊆ S .(5)

Similarly, if R is a relation of type A∼B and S is a relation of type C∼B , the relation R/S

of type A∼C is de�ned by the Galois 
onne
tion, for all T ,

T ⊆ R/S ≡ T◦S ⊆ R .(6)

The existen
e of fa
tors is a property of a regular algebra; in relation algebra, fa
tors are also

known as \residuals". Fa
tors have the 
an
ellation properties:

T ◦ T\U ⊆ U ∧ R/S ◦S ⊆ R .(7)

The relations R\R (of type B∼B if R has type A∼B ) and R/R (of type A∼A if R has

type A∼B ) play a 
entral role in what follows. As is easily veri�ed, both are preorders.

That is, both are transitive :

R\R ◦R\R ⊆ R\R ∧ R/R ◦R/R ⊆ R/R(8)
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and both are re
exive :

I ⊆ R\R ∧ I ⊆ R/R .(9)

(The notation \ I " is overloaded in the above equation. In the left 
onjun
t, it denotes the

identity relation of type B∼B and, in the right 
onjun
t, it denotes the identity relation of

type A∼A , assuming R has type A∼B .) We also have the 
an
ellation property, for all R ,

R ◦R\R = R = R/R ◦R .(10)

Fa
tors enjoy a ri
h theory whi
h underlies many of our 
al
ulations. However, for spa
e

reasons, we omit further details here.

3 Some Definitions

In point-free relation algebra, \
ore
exives" of a given type represent sets of elements of that

type. A 
ore
exive of type A is a relation p su
h that p⊆ IA . Frequently used properties

are that, for all 
ore
exives p ,

p = p
∪

= p◦p

and, for all 
ore
exives p and q ,

p◦q = p∩q = q◦p .

(The proof of these properties relies on the modularity rule.) In the literature, 
ore
exives

have several di�erent names, usually depending on the appli
ation area in question. Examples

are \monotype", \pid" (short for \partial identity") and \test".

3.1 The Domain Operators

The \domain operators" (see eg. [BH93℄) play a dominant and unavoidable role. We exploit

their properties frequently in 
al
ulations, so mu
h so that we assume great familiarity with

them.

Definition 11 (Domain Operators) Given relation R of type A∼B , the left domain

R<
of R is a relation of type A de�ned by the equation

R< = IA ∩ R ◦R
∪

and the right domain R>
of R is a relation of type B is de�ned by the equation

R> = IB ∩ R
∪
◦R .

✷

The name \domain operator" is 
hosen be
ause of the fundamental properties: for all R

and all 
ore
exives p ,

R=R◦p ≡ R> = R> ◦p(12)
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and

R=p◦R ≡ R< = p ◦R< .(13)

A simple, often-used 
onsequen
e of (12) and (13) is the property:

R< ◦R = R = R ◦R> .(14)

In words, R>
is the least 
ore
exive p su
h that restri
ting the \domain" of R on the right

has no e�e
t on R . It is in this sense that R<
and R>

represent the set of points on the left

and on the right on whi
h the relation R is \de�ned", i.e. its left and right \domains".

By instantiating p to ⊥⊥ in (12) and (13) we get

(R<=⊥⊥) = (R=⊥⊥) = (R>=⊥⊥) .(15)

Additional properties used frequently below are as follows.

Theorem 16 For all relations R and 
ore
exives p ,

R>⊆p ≡ R⊆⊤⊤◦p and R<⊆p ≡ R⊆p◦⊤⊤ ,(17)

R>⊆p ≡ R⊆R◦p and R<⊆p ≡ R=p◦R .(18)

✷

Theorem 19 For all relations R and S ,

(a) ⊤⊤ ◦R> = ⊤⊤◦R and R< ◦⊤⊤ = R◦⊤⊤ ,

(b) (R∪)> = R<
and (R∪)< = R>

, and

(c) (R◦S)> = (R> ◦S)> and (R◦S)< = (R ◦S<)< .

✷

We also use the fa
t that the domain operators are monotoni
 (as is evident from de�nition

11).

3.2 Pers and Per Domains

Given relations R of type A∼B and S of type A∼C , the symmetri
 right-division is the

relation R\\S of type B∼C de�ned in terms of right fa
tors as

R\\S = R\S ∩ (S\R)
∪

.(20)

Dually, given relations R of type B∼A and S of type C∼A , the symmetri
 left-division is

the relation R//S of type B∼C de�ned in terms of left fa
tors as

R//S = R/S ∩ (S/R)
∪

.(21)
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The relation R\\R is an equivalen
e relation

1

. Voermans [Voe99℄ 
alls it the \greatest right

domain" of R . Riguet [Rig48℄ 
alls R\\R the \noyau" of R (but de�nes it using nested


omplements). Others (see [Oli18℄ for referen
es) 
all it the \kernel" of R .

As remarked elsewhere [Oli18℄, the symmetri
 left-division inherits a number of (left)


an
ellation properties from the properties of fa
torisation in terms of whi
h it is de�ned.

For our purposes, the only 
an
ellation property we use is the following (inherited from (10)).

For all R ,

R ◦R\\R = R = R//R ◦R .(22)

In this se
tion the fo
us is on the left and right \per domains" introdu
ed by Voermans

[Voe99℄.

Definition 23 (Right and Left Per Domains) The right per domain of relation R ,

denoted R≻
, is de�ned by the equation

R≻ = R> ◦R\\R .(24)

Dually, the left per domain of relation R , denoted R≺
, is de�ned by the equation

R≺ = R//R ◦R< .(25)

✷

The left and right per domains are \pers" where \per" is an abbreviation of \partial

equivalen
e relation".

Definition 26 (Partial Equivalence Relation (per)) A relation is a partial equiva-

len
e relation i� it is symmetri
 and transitive. That is, R is a partial equivalen
e relation

i�

R=R
∪

∧ R◦R⊆R .

Hen
eforth we abbreviate partial equivalen
e relation to per.

✷

That R≺
and R≻

are indeed pers is a dire
t 
onsequen
e of the symmetry and transitivity

of R\\R .

The left and right per domains are 
alled \domains" be
ause, like the 
ore
exive domains,

we have the properties: for all relations R and pers P ,

R=R◦P ≡ R≻ = R≻ ◦P , and(27)

R=P◦R ≡ R≺ = P ◦R≺ .(28)

As with the 
ore
exive domains, we also have:

R≺ ◦R = R = R ◦R≻ .(29)

1

This is a well-known fa
t: the relation R\\R is the symmetri
 
losure of the preorder R\R . The easy proof

is left to the reader.
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(The se
ond of these equalities is an immediate 
onsequen
e of (22) and the properties of

(
ore
exive-) domains; the �rst is symmetri
.) Indeed, R≺
and R≻

are the \least" pers that

satisfy the equalities (29). See [Voe99℄ for details of the ordering relation on pers.

The right per domain R≻

an be de�ned equivalently by the equation

R≻ = R\\R ◦R> .(30)

Moreover,

(R≻)< = R> = (R≻)> .(31)

(See [Ba
21℄ for the proofs of these properties.) Symmetri
al properties hold of R≺
.

The following lemma extends [Rig48, Corollaire, p.134℄ from equivalen
e relations to pers.

Lemma 32 For all relations R , the following statements are all equivalent.

(i) R is a per (i.e. R=R∪

∧ R◦R⊆R ) ,

(ii) R = R
∪
◦R ,

(iii) R=R≺
,

(iv) R=R≻
.

✷

For further properties of pers and per domains, see [Voe99℄.

3.3 Functionality

A relation R of type A∼B is said to be left-fun
tional i� R ◦R
∪ = R<

. Equivalently, R is

left-fun
tional i� R ◦R
∪ ⊆ IA . It is said to be right-fun
tional i� R

∪
◦R = R>

(equivalently,

R
∪
◦R ⊆ IB ). A relation R is said to be a bije
tion i� it is both left- and right-fun
tional.

Rather than left- and right-fun
tional, the more 
ommon terminology is \fun
tional"

and \inje
tive" but publi
ations di�er on whi
h of left- or right-fun
tional is \fun
tional"

or \inje
tive". We 
hoose to abbreviate \left-fun
tional" to fun
tional and to use the term

inje
tive instead of right-fun
tional. Typi
ally, we use f and g to denote fun
tional relations,

and Greek letters to denote bije
tions (although the latter is not always the 
ase). Other

authors make the opposite 
hoi
e.

3.4 Difunctions

Formally, relation R is difun
tional i�

R ◦R
∪
◦R ⊆ R .(33)

As for pers, there are several equivalent de�nitions of \difun
tional". We begin with the

point-free de�nitions:

Theorem 34 For all R , the following statements are all equivalent.



9

(i) R is difun
tional (i.e. R ◦R
∪
◦R ⊆ R ) ,

(ii) R = R ◦R
∪
◦R ,

(iii) R> ◦R\R = R
∪
◦R ,

(iv) R≻ = R
∪
◦R ,

(v) R/R ◦R< = R ◦R
∪

,

(vi) R≺ = R ◦R
∪

,

(vii) R = R∩ (R\R/R)∪ .

✷

The equivalen
e of 34(i) and 34(ii) is well-known and due to Riguet [Rig48℄; the equiva-

len
e of 34(i), (iv) and (vi) is due to Voermans [Voe99℄. The equivalen
e of 34(i), (iii) and

(v) is formally stronger: a 
onsequen
e is that, if R is difun
tional,

R≻ = R> ◦R\R ∧ R≺ = R/R ◦R< .(35)

(Cf. (24).) De�nition (33) is the most useful when it is required to establish that a parti
ular

relation is difun
tional, whereas properties 34(ii)-(vii) are more useful when it is required to

exploit the fa
t that a parti
ular relation is difun
tional.

The 
ombination of theorem 34 (in parti
ular 34(ii) and 34(iv) with lemma 32 allows one

to prove that a per is a symmetri
 difun
tion. (We leave the easy 
al
ulation to the reader.)

This property is sometimes used to spe
ialise properties of difun
tions to properties of pers.

3.5 Squares and Rectangles

We now introdu
e the notions of a \re
tangle" and a \square"; re
tangles are typi
ally het-

erogeneous whilst squares are, by de�nition, homogeneous relations. Squares are re
tangles;

properties of squares are typi
ally obtained by spe
ialising properties of re
tangles.

Definition 36 (Rectangle and Square) A relation R is a re
tangle i� R=R◦⊤⊤◦R . A

relation R is a square i� R is a symmetri
 re
tangle.

✷

It is easily shown that a re
tangle is a difun
tion and a square is a per.

Lemma 37 For all relations R and S , R◦⊤⊤◦S is a re
tangle. It follows that R◦T◦S is a

re
tangle if T is a re
tangle.

Proof Be
ause the proof is based on the 
one rule, a 
ase analysis is ne
essary. In the 
ase

that either R or S is the empty relation, the lemma 
learly holds (be
ause R◦⊤⊤◦S is the

empty relation, and the empty relation is a re
tangle). Suppose now that both R and S are

non-empty. Then
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R◦⊤⊤◦S◦⊤⊤◦R◦⊤⊤◦S

= { 
one rule: (4) (applied twi
e), assumption: R 6=⊥⊥ and S 6=⊥⊥ }

R◦⊤⊤◦S .

If T is a re
tangle, R◦T◦S=R◦T◦⊤⊤◦T◦S ; thus R◦T◦S is a re
tangle.

✷

3.6 Isomorphic Relations

The (yet-to-be-de�ned) 
ores and indexes of a given relation are not unique; in 
ommon

mathemati
al jargon, they are unique \up to isomorphism". In order to make this pre
ise,

we need to de�ne the notion of isomorphi
 relation and establish a number of properties.

Definition 38 Suppose R and S are two relations (not ne
essarily of the same type).

Then we say that R and S are isomorphi
 and write R∼=S i�

〈∃φ,ψ

: φ ◦φ
∪ = R< ∧ φ

∪
◦φ = S< ∧ ψ ◦ψ

∪ = R> ∧ ψ
∪
◦ψ = S>

: R = φ ◦S ◦ψ
∪

〉 .
✷

The relation between R and S in de�nition 38 
an be strengthened to the 
onjun
tion

R = φ ◦S ◦ψ
∪

∧ φ
∪
◦R ◦ψ = S .(39)

Alternatively, the leftmost 
onjun
t 
an be repla
ed by the rightmost 
onjun
t. This is a


onsequen
e of the following lemma.

Lemma 40 For all φ , ψ , R and S ,

(R = φ ◦S ◦ψ
∪ ≡ φ

∪
◦R ◦ψ = S)

⇐ φ ◦φ
∪ = R< ∧ φ

∪
◦φ = S< ∧ ψ ◦ψ

∪ = R> ∧ ψ
∪
◦ψ = S> .

✷

We often 
hoose one or other of the 
onjun
ts in (39), whi
hever being most 
onvenient

at the time.

Lemma 41 The relation

∼= is re
exive, transitive and symmetri
. That is,

∼= is an

equivalen
e relation.

✷

The task of proving that two relations are isomorphi
 involves 
onstru
ting φ and ψ that

satisfy the 
onditions of the existential quanti�
ation in de�nition 38; we 
all the 
onstru
ted

values witnesses to the isomorphism.

Note that the requirement on φ in de�nition 38 is that it is both fun
tional and inje
tive;

thus it is required to \witness" a (1{1) 
orresponden
e between the points in the left domain

of R and the points in the left domain of S . Similarly, the requirement on ψ is that it

\witnesses" a (1{1) 
orresponden
e between the points in the right domain of R and the

points in the right domain of S . Formally, R<
and S<

are isomorphi
 as \witnessed" by φ

and R>
and S>

are isomorphi
 as \witnessed" by ψ :
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Lemma 42 Suppose R and S are relations su
h that R∼=S . Then R<∼=S<
and R>∼=S>

.

Spe
i�
ally, if φ and ψ witness the isomorphism R∼=S ,

R< = φ ◦S< ◦φ
∪

∧ R> = ψ ◦S> ◦ψ
∪

.

Proof Suppose φ and ψ are su
h that

φ ◦φ
∪

= R< ∧ φ
∪
◦φ = S< ∧ ψ ◦ψ

∪

= R> ∧ ψ
∪
◦ψ = S> .

Then

R<

= { R<
is a 
ore
exive }

R< ◦R<

= { assumption }

φ ◦φ
∪
◦φ ◦φ

∪

= { assumption }

φ ◦S< ◦φ
∪

.

That is R< = φ ◦S< ◦φ
∪

. Similarly, R> = ψ ◦S> ◦ψ
∪

. But also (be
ause the domain opera-

tors are 
losure operators),

φ ◦φ
∪

= (R<)< ∧ φ
∪
◦φ = (S<)< ∧ ψ ◦ψ

∪

= (R>)> ∧ ψ
∪
◦ψ = (S>)> .

Applying de�nition 38 with R,S,φ,ψ := R< , S< ,φ ,φ and R,S,φ,ψ := R> , S> ,ψ ,ψ , the lemma

is proved.

✷

The property of the left and right domains stated in lemma 42 is also valid for the left

and right per domains:

Lemma 43 Suppose R and S are relations su
h that R∼=S . Then R≺∼=S≺
and R≻∼=S≻

.

Spe
i�
ally, if φ and ψ witness the isomorphism R∼=S ,

R≺ = φ ◦S≺ ◦φ
∪

∧ R≻ = ψ ◦S≻ ◦ψ
∪

.

Proof Suppose φ and ψ witness the isomorphism R∼=S . We show that the pair (ψ,ψ)

witnesses the isomorphism R≻∼=S≻
. By assumption, ψ ◦ψ

∪ = R>
, ψ

∪
◦ψ = S>

. Moreover,

for all R , (R≻)> = (R≻)< = R>
; thus ψ ◦ψ

∪ = (R≻)> and ψ
∪
◦ψ = (S≻)> . So it remains to

show that R≻ = ψ ◦S≻ ◦ψ
∪

. Now

R≻ = ψ ◦S≻ ◦ψ
∪

⇐ { transitivity }

R≻ = R≻ ◦ψ ◦S≻ ◦ψ
∪ = ψ ◦S≻ ◦ψ

∪

.

The 
al
ulation thus splits into two steps: the proof of the leftmost equality and the proof of

the rightmost equality. The leftmost equality pro
eeds as follows.

R≻ = R≻ ◦ψ ◦S≻ ◦ψ
∪

= { (27), ψ ◦S≻ ◦ψ
∪

is a per (see below) }

R = R ◦ψ ◦S≻ ◦ψ
∪

.
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Continuing with the right hand side:

R ◦ψ ◦S≻ ◦ψ
∪

= { R = φ ◦S ◦ψ
∪

}

φ ◦S ◦ψ
∪
◦ψ ◦S≻ ◦ψ

∪

= { ψ
∪
◦ψ = S>

, domains: (14) and (29) }

φ ◦S ◦ψ
∪

= { see lemma 41 }

R .

Combining the two 
al
ulations, we have established that

R≻ = R≻ ◦ψ ◦S≻ ◦ψ
∪

.

Now, for the rightmost equality, we have:

R≻ ◦ψ ◦S≻ ◦ψ
∪ = ψ ◦S≻ ◦ψ

∪

= { (R≻)< = R>
, domains: (14) }

R> ◦R≻ ◦ψ ◦S≻ ◦ψ
∪ = ψ ◦S≻ ◦ψ

∪

= { R> = ψ ◦ψ
∪

}

ψ ◦ψ
∪
◦R≻ ◦ψ ◦S≻ ◦ψ

∪ = ψ ◦S≻ ◦ψ
∪

⇐ { Leibniz }

ψ
∪
◦R≻ ◦ψ ◦S≻ = S≻

= { 
onverse (noting that R≻
and S≻

are symmetri
) }

S≻ ◦ψ
∪
◦R≻ ◦ψ = S≻

= { (27), ψ
∪
◦R≻ ◦ψ is a per (see below) }

S ◦ψ
∪
◦R≻ ◦ψ = S

= { as above, with R,S,ψ := S ,R ,ψ∪

}

true .

Note that the usage of (27) relies on the fa
t that both ψ ◦S≻ ◦ψ
∪

and ψ
∪
◦R≻ ◦ψ are pers.

The straightforward proof is omitted.

✷

Lemma 44 A relation R is isomorphi
 to a 
ore
exive i� R is a bije
tion.

Proof The proof is by mutual impli
ation. Suppose �rst that R is a bije
tion. That is,

R ◦R
∪

= R< ∧ R
∪
◦R = R> .

We prove that R is isomorphi
 to R<
. (Symmetri
ally, R is isomorphi
 to R>

.) For the

witnesses we take R<
and R . Instantiating de�nition 38, we have to verify that

R< ◦ (R<)
∪

= R< ∧ (R<)
∪
◦R< = R< ∧ R ◦R

∪

= (R<)> ∧ R
∪
◦R = R>

and

R< = R< ◦R ◦R
∪

.
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The veri�
ation is a straightforward appli
ation of properties of the left domain operator.

Now suppose that 
ore
exive p is isomorphi
 to R . Suppose the witnesses are φ and

ψ . That is,

φ ◦φ
∪

= p ∧ φ
∪
◦φ = R< ∧ ψ

∪
◦ψ = R>

(45)

and

p = φ ◦R ◦ψ
∪

.(46)

Then

R<

= { φ
∪
◦φ = R< = R< ◦R< }

φ
∪
◦φ ◦φ

∪
◦φ

= { φ ◦φ
∪ = p = p ◦p

∪

}

φ
∪
◦p ◦p

∪
◦φ

= { (46) }

φ
∪
◦φ ◦R ◦ψ

∪
◦ (φ ◦R ◦ψ

∪)∪ ◦φ

= { 
onverse }

φ
∪
◦φ ◦R ◦ψ

∪
◦ψ ◦R

∪
◦φ

∪
◦φ

= { (45) }

R< ◦R ◦R> ◦R
∪
◦R<

= { domains: (14) }

R ◦R
∪

.

We 
on
lude that R< = R ◦R
∪

. Symmetri
ally, R> = R
∪
◦R . That is, R is a bije
tion.

✷

Theorem 47 Suppose P is a per. Then,

P< = P ⇐ P< ∼= P .

In parti
ular, for all R ,

R< = R≺ ⇐ R< ∼= R≺ .

Symmetri
ally, for all R ,

R> = R≻ ⇐ R> ∼= R≻ .

Proof This is an instan
e of lemma 44. Spe
i�
ally, assuming that P< ∼= P , we may

apply the instantiation p,R := P< , P in lemma 44 to dedu
e that P is a bije
tion. That is,

P ◦P
∪ = P<

. But P is a per (i.e. P = P ◦P
∪

). So we 
on
lude that

P=P< .

That, for all R , R<=R≺
if R< ∼= R≺

now follows by making the instantiation P :=R≺
and

using the fa
t that (R≺)<=R<
. The symmetri
 property of the right domain operators follows

by making the instantiation P :=R≻
and using the fa
t that (R≻)<=R>

.

✷
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4 Indexes and Core Relations

This se
tion introdu
es the notions of \index" and \
ore" of a relation. An \index" is a

spe
ial 
ase of a \
ore" of a relation but, in general, it is more useful. The properties of both

notions are explored in depth.

4.1 Indexes

Re
all �g. 1. We said that the middle and rightmost �gures depi
t \
ore relations". The

property that is 
ommon to both is 
aptured by the following de�nition.

Definition 48 (Core Relation) A relation R is a 
ore relation i� R<=R≺
and R>=R≻

.

✷

The rightmost �gure of �g. 1 is what we 
all an \index" of the relation depi
ted by the

leftmost �gure. The de�nition of an \index" of a relation is as follows.

Definition 49 (Index) An index of a relation R is a relation J that has the following

properties:

(a) J⊆R ,

(b) R≺ ◦ J ◦R≻ = R ,

(c) J< ◦R≺ ◦ J< = J< ,

(d) J> ◦R≻ ◦ J> = J> .

✷

Note parti
ularly requirement 49(a). A 
onsequen
e of this requirement is that an index

of a relation has the same type as the relation. This means that the relation depi
ted by the

middle �gure of �g. 1 is not an index of the relation depi
ted by the leftmost �gure be
ause

the relations have di�erent types.

An obvious property is that a 
ore relation is an index of itself:

Theorem 50 Suppose R is a 
ore relation. Then R is an index of R .

Proof Straightforward appli
ation of de�nitions 48 and 49 together with the properties of

(
ore
exive and per) domains.

✷

In general, the existen
e of an index of an arbitrary relation is not derivable in systems

that axiomatise point-free relation algebra. In se
tion 5.2 we add a limited form of the axiom

of 
hoi
e that guarantees the existen
e of indexes of arbitrary pers; we also show that this

then guarantees the existen
e of indexes for arbitrary relations. For the moment, we establish

a number of properties of indexes assuming they exist. For example, we show that all indexes

of a given relation are isomorphi
: see theorem 60.
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Lemma 51 If J is an index of the relation R then

J≺ ⊆ R≺ ∧ J≻ ⊆ R≻ .

It follows that

J< = J≺ ∧ J> = J≻ .

That is, an index is a 
ore relation.

Proof We �rst prove that J≺ ⊆ R≺
.

R≺

= { de�nition }

R//R ◦ R<

⊇ { 49(a) and monotoni
ity }

R//R ◦ J<

⊇ { see below }

J≺ .

The last step in the above 
al
ulation pro
eeds as follows.

J≺ ⊆ R//R ◦ J<

⇐ { (J≺)> = J< (so J≺ = J≺ ◦ J< ) and J< ◦ J< = J<

monotoni
ity }

J≺ ⊆ R//R

= { de�nition of R//R }

J≺ ⊆ R/R ∩ (R/R)∪

= { J≺ = (J≺)∪ }

J≺ ⊆ R/R

= { shunting }

J≺ ◦R ⊆ R .

We 
ontinue with the lefthand side of the above in
lusion.

J≺ ◦R

= { 49(b) }

J≺ ◦R≺ ◦ J ◦R≻

= { (J≺)>= J< and domains: (14) }

J≺ ◦ J< ◦R≺ ◦ J< ◦ J ◦R≻

= { 49(
) }

J≺ ◦ J< ◦ J ◦R≻

= { (
orefexive and per) domains: (14) and (29) }

J ◦R≻

⊆ { 49(a) }

R ◦R≻

= { per domains: (29) }

R .
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We 
on
lude that J≺ ⊆ R≺
. The equation J≺= J< uses anti-symmetry.

J≺

⊇ { per domains: (25), and re
exivity of J//J }

J<

= { 49(
) }

J< ◦R≺ ◦ J<

⊇ { J≺ ⊆ R≺
(see above), 
omposition of 
ore
exives is idempotent }

J< .

The other two properties are symmetri
al.

✷

An immediate 
orollary of lemma 51 is the following theorem.

Theorem 52 If J is an index (of some relation) then J is an index of J .

Proof Suppose J is an index of R . Then we have to prove the properties 49(a), (b), (
)

and (d) with R := J. These are the properties:

(e) J⊆ J ,

(f) J≺ ◦ J ◦ J≻ = J ,

(g) J< ◦ J≺ ◦ J< = J< ,

(h) J> ◦ J≻ ◦ J> = J> .

Properties (e) and (f) are true of all relations J . Properties (g) and (h) follow from lemma

51 and the fa
t that 
omposition of 
ore
exives is idempotent.

✷

The indexes of a relation are uniquely de�ned by their left and right domains. See 
orollary

54, whi
h is an immediate 
onsequen
e of the following lemma.

Lemma 53 Suppose J is an index of the relation R . Then

J = J< ◦R ◦ J> .

Proof

J

= { domains: (14) }

J< ◦ J ◦ J>

= { 49(
) and (d) }

J< ◦R≺ ◦ J< ◦ J ◦ J> ◦R≻ ◦ J>

= { domains: (14) }

J< ◦R≺ ◦ J ◦R≻ ◦ J>

= { 49(b) }

J< ◦R ◦ J> .

✷
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Corollary 54 Suppose J and K are both indexes of the relation R . Then

J=K ≡ J<=K< ∧ J>=K> .

Proof Impli
ation is an immediate 
onsequen
e of Leibniz's rule. For the \if" part, we

assume that J<=K<
and J>=K>

. Then

J

= { J is an index of R , lemma 53 }

J< ◦R ◦ J>

= { assumption: J<=K< ∧ J>=K> }

K< ◦R ◦K>

= { K is an index of R , lemma 53 with J :=K }

K .

✷

The following lemma be
omes relevant when we study indexes of difun
tions. (See se
tion

5.1.)

Lemma 55 Suppose J is an index of R . Then

R ◦ J
∪
◦R = R ◦R

∪
◦R .

Proof

R ◦ J
∪
◦R

= { per domains: (24) and (25) }

R ◦R≻ ◦ J
∪
◦R≺ ◦R

= { 49(b) and 
onverse }

R ◦R
∪
◦R .

✷

We now formulate a 
ouple of lemmas that lead to lemma 58 whi
h, in turn, leads to

theorem 59.

Lemma 56 Suppose J is an index of R . Then R≺ ◦ J< ◦R≺
and R≻ ◦ J> ◦R≻

are pers.

Proof We prove that

R≺ ◦ J< ◦R≺ = R≺ ◦ J< ◦R≺ ◦ (R≺ ◦ J< ◦R≺)
∪

.

We have:

R≺ ◦ J< ◦R≺ ◦ (R≺ ◦ J< ◦R≺)∪

= { R≺
is a per, J< is a 
ore
exive, 
onverse }

R≺ ◦ J< ◦R≺ ◦ J< ◦R≺

= { 49(
) }

R≺ ◦ J< ◦R≺ .

✷
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Lemma 57 Suppose J is an index of R . Then

(R≺ ◦ J< ◦R≺)< = R< .

Symmetri
ally,

(R≻ ◦ J> ◦R≻)> = R> .

Proof

(R≺ ◦ J< ◦R≺)<

= { domains: theorem 19(
), (R≺)< = R< }

(R≺ ◦ J< ◦R<)<

= { by 49(a), J<⊆R<
, domains }

(R≺ ◦ J)<

= { by 49(a), J>⊆R>
, domains }

(R≺ ◦ J ◦R>)<

= { domains: theorem 19(
), (R≻)< = R> }

(R≺ ◦ J ◦R≻)<

= { 49(b) }

R< .

✷

Lemma 58 Suppose J is an index of R . Then

(a) R≺ ◦ J< ◦R≺ = R≺ ,

(b) R≻ ◦ J> ◦R≻ = R≻ .

Proof

R≺

= { R≺
is a per }

R≺ ◦R≺ ◦R≺

⊇ { R≺⊇R< }

R≺ ◦R< ◦R≺

⊇ { J is an index of R ; de�nition 49(a) and monotoni
ity }

R≺ ◦ J< ◦R≺

= { R≺
is a per }

R≺ ◦ J< ◦R≺ ◦R≺

⊇ { lemma 56: R≺ ◦ J< ◦R≺
is a per }

(R≺ ◦ J< ◦R≺)< ◦ R≺

= { lemma 57 }

R< ◦ R≺

= { (R≺)< = R< }

R≺ .
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By anti-symmetry of the subset relation we have proved (a). Property (b) is symmetri
al.

✷

Theorem 59 Suppose J is an index of R . Then J< is an index of R≺
and J> is an index

of R≻
.

Proof We prove that J< is an index of R≺
. That J> is an index of R≻

is symmetri
al.

Instantiating de�nition 49 with R,J := R≺ , J< , our task is to prove the four properties:

(a) J< ⊆ R≺ ,

(b) (R≺)≺ ◦ (J<)< ◦ (R≻)≺ = R≺ ,

(c) (J<)< ◦ (R≺)≺ ◦ (J<)< = (J<)< ,

(d) (J<)> ◦ (R≺)≻ ◦ (J<)> = (J<)> .

The proof of property (a) is straightforward:

J< ⊆ R≺

⇐ { R<⊆R≺
, transitivity }

J< ⊆ R<

⇐ { monotoni
ity }

J⊆R

= { J is an index of R , 49(a) }

true .

Property (b) simpli�es using the fa
t that (R≺)≺=R≺
, (R≻)≺=R≻

and J<=(J<)< to:

(b’) R≺ ◦ J< ◦R≻ = R≺ ,

This is the �rst of the two properties proved in lemma 58. Using the fa
t that (R≺)≺=R≺
and

J<=(J<)< , property (
) is the same as property (
) of de�nition 49; similarly, using the fa
t

that R≺=(R≺)≻ , and J<=(J<)> , property (d) is also the same as property (
) of de�nition

49.

✷

We show later that the 
onverse of theorem 59 is a pres
ription for 
onstru
ting an index

of an arbitrary relation. See theorem 76.

Theorem 60 If R and S are isomorphi
 relations then indexes of R and S are also

isomorphi
. In parti
ular, indexes of a relation R are isomorphi
.

Proof Suppose φ and ψ witness the isomorphism R∼=S and J is an index of R and K

is an index of S . We verify that λ and ρ de�ned by

λ = J< ◦R≺ ◦φ ◦S≺ ◦K< ∧ ρ = J> ◦R≻ ◦ψ ◦S≻ ◦K>

witness the isomorphism J∼=K .

The task is to verify that

J< = λ ◦λ
∪

∧ λ
∪
◦λ = K< ∧ ρ ◦ρ

∪

= J> ∧ ρ
∪
◦ρ = K>

and
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J = λ ◦K ◦ρ
∪

.

The four domain properties are all essentially the same so we only verify the �rst 
onjun
t:

λ ◦λ
∪

= { de�nition, 
onverse }

J< ◦R≺ ◦φ ◦S≺ ◦K< ◦S≺ ◦φ
∪
◦R≺ ◦ J<

= { K is an index of S , lemma 56 with J,R :=K,S }

J< ◦R≺ ◦φ ◦S≺ ◦φ
∪
◦R≺ ◦ J<

= { theorem 60 }

J< ◦R≺ ◦R≺ ◦R≺ ◦ J<

= { R≺
is a per, J is an index of R , de�nition 49(
) }

J< .

Finally,

λ ◦K ◦ρ
∪

= { de�nition, 
onverse }

J< ◦R≺ ◦φ ◦S≺ ◦K< ◦K ◦K> ◦S≻ ◦ψ
∪
◦R≻ ◦ J>

= { domains: (14) }

J< ◦R≺ ◦φ ◦S≺ ◦K ◦S≻ ◦ψ
∪
◦R≻ ◦ J>

= { K is an index of S , de�nition 49(b) }

J< ◦R≺ ◦φ ◦S ◦ψ
∪
◦R≻ ◦ J>

= { R = φ ◦S ◦ψ
∪

}

J< ◦R≺ ◦R ◦R≻ ◦ J>

= { per domains: (29) }

J< ◦R ◦ J>

= { J is an index of R , de�nition 49(b) }

J .

That the indexes of a relation R are isomorphi
 follows be
ause R is isomorphi
 to itself

(with witnesses R<
and R>

), i.e. the isomorphism relation is re
exive.

✷

The 
onstru
tion of the witnesses λ and ρ looks very mu
h like the proverbial rabbit out

of a hat! In fa
t, they were 
al
ulated using the type judgements formulated in Voermans'

thesis [Voe99℄. We hope at a later date to exploit Voermans' 
al
ulus in order to make the

pro
ess of 
onstru
ting witnesses mu
h more methodi
al.

4.2 Core Relations

Indexes are a spe
ial 
ase of what we 
all \
ore" relations. (Re
all de�nition 48.) This se
tion

is about the properties of a \
ore" of a given relation R , �rst introdu
ed in [BO23℄.

Definition 61 (Core) Suppose R is an arbitrary relation and suppose C is a relation

su
h that

C = λ ◦R ◦ρ
∪
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for some relations λ and ρ satisfying

R≺ = λ
∪
◦λ ∧ λ< = λ ◦λ

∪

∧ R≻ = ρ
∪
◦ρ ∧ ρ< = ρ ◦ρ

∪

.

Then C is said to be a 
ore of R as witnessed by λ and ρ .

✷

(The terminology just introdu
ed anti
ipates theorem 65 whi
h establishes that a 
ore of

a relation is indeed a 
ore relation a

ording to de�nition 48.)

The existen
e of a 
ore of a given relation R has a 
onstru
tive element: it is ne
essary to


onstru
t the \witnesses" λ and ρ . In general, given a per P , a fun
tional relation f with

the property that P equals f
∪
◦ f is 
alled a \splitting" of P . Constru
ting a 
ore of relation

R thus involves \splitting " the pers R≺
and R≻

into fun
tional relations λ and ρ . As with

indexes, the existen
e of 
ores is not derivable in point-free relation algebra. However, just

as for indexes, all 
ores of a given relation are isomorphi
 in the sense of de�nition 38. See

se
tion 6 for further dis
ussion of the 
onstru
tion of 
ores of pers.

Immediately obvious is that an index of a relation is a 
ore of the relation:

Theorem 62 Suppose R is an arbitrary relation and suppose J is an index of R . Then

J is a 
ore of R as witnessed by J< ◦R≺
and J> ◦R≻

.

Proof First,

J

= { lemma 53 }

J< ◦R ◦ J>

= { per domains: (29) }

J< ◦R≺ ◦R ◦R≻ ◦ J>

= { 
onverse, domains are 
ore
exive }

(J< ◦R≺) ◦R ◦ (J> ◦R≻)∪ .

This establishes the required property of C in de�nition 61, with C := J . (The parentheses

in the last line of the 
al
ulation indi
ate the de�nitions of the splittings λ and ρ .) Se
ond,

(J< ◦R≺)∪ ◦ J< ◦R≺

= { 
onverse, (R≺)∪ =R≺
and (J<)∪ ◦ J< = J< }

R≺ ◦ J< ◦R≻

= { lemma 58 }

R≺ .

Third,

J< ◦R≺ ◦ (J< ◦R≺)∪

= { 
onverse, (J<)∪ = J< and R≺ ◦ (R≺)∪ = R≺ }

J< ◦R≺ ◦ J<

= { J is an index of R , de�nition 49(
) }

J<
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= { theorem 59; in parti
ular, J<⊆R< }

(J< ◦R<)<

= { (R≺)<=R<
, domains: theorem 19(
) }

(J< ◦R≺)< .

This establishes the required properties of λ in de�nition 61 (with λ := J< ◦R≺
). The prop-

erties of ρ in de�nition 61 (with ρ := J> ◦R≻
) are established similarly.

✷

Fig. 2 illustrates theorem 62 applied to the relation introdu
ed in �g. 1. The index J is

depi
ted by the green edges in the lower bipartite graph. The de
omposition of the relation

in the de�nition of a 
ore is illustrated by the row of bipartite graphs at the top; the relations

depi
ted are, in order, λ
∪

, λ , R , ρ and ρ
∪

. The 
omposition of the middle three �gures is

the index J .

Figure 2: De
omposition of a Relation into a Core and Witnesses

A number of properties of indexes are derived from the fa
t that indexes are 
ores. The

remainder of this se
tion 
atalogues su
h properties.

The name \
ore" in de�nition 61 anti
ipates theorem 65 where we show that the relation

C is a 
ore relation as de�ned by de�nition 48. Some preliminary lemmas are needed �rst.

For later use, we 
al
ulate the left and right domains of the 
ore of a relation.

Lemma 63 Suppose R , λ , ρ and C are as in de�nition 61. Then

R< = λ> ∧ C< = λ< ∧ R> = ρ> ∧ C> = ρ< .

Proof We prove the middle two equations. First,

R>

= { (31) }

(R≻)<

= { de�nition 61 }
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(ρ∪
◦ρ)<

= { domains }

ρ> .

The dual equation, R< = λ>
, is proved similarly. Se
ond,

C<

= { de�nition 61 }

(λ ◦R ◦ρ
∪)<

= { R> = ρ>
(just proved) }

(λ ◦R ◦R>)<

= { domains: (14) }

(λ ◦R<)<

= { R< = λ>
(see above) }

λ< .

The �nal equation is also proved similarly.

✷

Lemma 64 Suppose R , λ , ρ and C are as in de�nition 61. Suppose also that J is an

index of R . Then C∼= J as witnessed by λ ◦ J< and ρ ◦ J> .

Proof We 
onstru
t the witnesses as follows.

C

= { de�nition 61 }

λ ◦R ◦ρ
∪

= { J is an index of R , de�nition 49(b) }

λ ◦R≺ ◦ J ◦R≻ ◦ρ
∪

= { de�nition 61 }

λ ◦λ
∪
◦λ ◦ J ◦ρ

∪
◦ρ ◦ρ

∪

= { λ and ρ are fun
tional,

so λ< = λ ◦λ
∪

and ρ< = ρ ◦ρ
∪

}

λ ◦ J ◦ρ
∪

= { domains: (14) and 
onverse }

λ ◦ J< ◦ J ◦ (ρ ◦ J>)∪ .

Comparing the last line with the de�nition of an isomorphism of relations (de�nition 38 with

the instantiation R,S,φ,ψ := C , J , λ ◦ J< , ρ ◦ J> ), we postulate λ ◦ J< and ρ ◦ J> as witnesses

to the isomorphism.

It remains to show that λ ◦ J< and ρ ◦ J> are bije
tions on the appropriate domains. First,

(ρ ◦ J>)∪ ◦ρ ◦ J>

= { 
onverse }

J> ◦ρ
∪
◦ρ ◦ J>

= { de�nition 61 }
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J> ◦R≻ ◦ J>

= { J is an index of R , de�nition 49(d) }

J> .

Symmetri
ally,

(λ ◦ J<)
∪
◦λ ◦ J< = J< .

Finally, )

(ρ ◦ J>)<

= { ρ is fun
tional, and ρ
∪
◦ρ = R≻

,

i.e. ρ = ρ ◦ρ
∪
◦ρ = ρ ◦R≻ }

(ρ ◦R≻ ◦ J>)<

= { J>⊆R>
and R>=(R≻)> }

(ρ ◦R≻ ◦ J> ◦ (R≻)>)<

= { domains: theorem 19(b) and (
), R≻=(R≻)∪ }

(ρ ◦ R≻ ◦ J> ◦R≻)<

= { domains: theorem 19(
) }

(ρ ◦ (R≻ ◦ J> ◦R≻)<)<

= { lemmas 56 and 57(b) }

(ρ ◦ R>)<

= { (31) and domains: theorem 19(
) }

(ρ ◦ R≻)<

= { ρ = ρ ◦R≻
(see �rst step) }

ρ<

= { lemma 63 }

C> .

Symmetri
ally, (λ ◦ J<)<=C<
.

Putting all the 
al
ulations together, we 
on
lude that λ ◦ J< and ρ ◦ J> are bije
tions;

the left domain of λ ◦ J< is C<
and its right domain is J< ; the left domain of ρ ◦ J> is C>

and its right domain is J> .

✷

We now prove the theorem alluded to by the nomen
lature of de�nition 61, namely any


ore of a given relation R is a 
ore relation in the sense of de�nition 48.

Theorem 65 Suppose C is a 
ore of R . Then, if R has an index,

C≻ = C>
, and(66)

C≺ = C< .(67)

That is, if R has an index, any 
ore C of R is a 
ore relation. (See de�nition 48.)

Proof Assume that J is an index of R . The proof is a 
ombination of several pre
eding

lemmas and theorems.
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C≺ = C<

⇐ { theorem 47 }

C≺ ∼= C<

⇐ { Leibniz }

J≺= J< ∧ C≺ ∼= J≺ ∧ J< ∼= C<

⇐ { index J is a 
ore relation (lemma 51) }

C≺ ∼= J≺ ∧ J< ∼= C<

⇐ { lemmas 43 and 42 }

C ∼= J

= { lemma 64 }

true .

✷

Note Theorem 65 assumes that relation R has an index J . Likewise, a 
orollary of

lemma 64 is that, assuming relation R has an index, all 
ores of R are isomorphi
. It is

straightforward to prove that all 
ores of R are isomorphi
 without the assumption that R

has an index. Similarly, theorem 65 
an be proved without this assumption but the proof is

quite long and 
omplex. See [Ba
21℄ for full details.

We argue later that this assumption has no pra
ti
al signi�
an
e: in se
tion 5.3 we show

that every relation R has an index if both its per domains have an index. This means that,

for a given R , it is ne
essary to 
al
ulate indi
es of R≺
and R≻

; however, in pra
ti
e, this is

not an issue. End of Note

5 Indexes of Difunctions and Pers

5.1 Indexes of Difunctions

We now spe
ialise the notion of index to difun
tions.

Lemma 68 Suppose J is an index of relation R and J is difun
tional. Then R is

difun
tional.

Proof

R ◦R
∪
◦R

= { J is an index of R , lemma 55 }

R ◦ J
∪
◦R

= { J is an index of R , 49(b) }

R≺ ◦ J ◦R≻ ◦ J
∪
◦R≺ ◦ J ◦R≻

= { domains: (14) and theorem 19(b) }

R≺ ◦ J ◦ J> ◦R≻ ◦ J> ◦ J
∪
◦ J< ◦R≺ ◦ J< ◦ J ◦R≻

= { J is an index of R , 49(d) and (
) }

R≺ ◦ J ◦ J> ◦ J
∪
◦ J< ◦ J ◦R≻

= { domains: (14) and theorem 19(b), and J is difun
tional (i.e. J = J ◦ J
∪
◦ J ) }

R≺ ◦ J ◦R≻

= { 49(b) }

R .
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✷

The property that R is a difun
tion is equivalent to R≺ = R ◦R
∪

(and symmetri
ally to

R≻ = R
∪
◦R ). Also, sin
e R = R ◦R

∪
◦R , the right side of lemma 55 simpli�es to R . In this

way, the de�nition of an index of a difun
tion 
an be restated as follows.

Definition 69 (Difunction Index) An index of a difun
tion R is a relation J that has

the following properties:

(a) J⊆R ,

(b) R ◦ J
∪
◦R = R .

(c) J< ◦R ◦R
∪
◦ J< = J< ,

(d) J> ◦R
∪
◦R ◦ J> = J> ,

✷

Lemma 70 An index J of a difun
tion R is a bije
tion between J< and J> .

Proof

J<

= { 69(
) }

J< ◦R
∪
◦R ◦ J<

⊇ { 69(a) }

J< ◦ J
∪
◦ J ◦ J<

= { domains: (14) and theorem 19(b) }

J
∪
◦ J

⊇ { domains: de�nition 11 }

J< .

Thus, by anti-symmetry,

J< = J
∪
◦ J .

Symmetri
ally, J> = J ◦ J
∪

. That is, J is a bije
tion.

✷

Corollary 71 formulates a method to determine whether a relation is a difun
tion: 
ompute

an index of the relation and then determine whether it is a difun
tion. By 49(a), the se
ond

step in this pro
ess will be no less eÆ
ient than determining difun
tionality dire
tly and, in

many 
ases, may be substantially more eÆ
ient. (There is, however, no guarantee of improved

eÆ
ien
y sin
e the inequality in 49(a) may be an equality.)

Corollary 71 Suppose J is an index of relation R . Then R is a difun
tion i� J is a

difun
tion.

Proof Lemma 68 establishes \if". Lemma 70 establishes \only if" (sin
e a bije
tion is a

difun
tion).

✷
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5.2 Indexes of Pers

That every difun
tion has an index is a desirable property but it is not provable in standard

axiomati
 formulations of relation algebra. Rather than postulate its truth, we shall postulate

that all pers have an index, and then show that a 
onsequen
e of the postulate is that all

difun
tions have an index.

A relation R is a per i� R=R≺=R≻
. Using this property, the de�nition of index 
an

be simpli�ed for pers. Spe
i�
ally, an index J of per R has the following properties. (Cf.

de�nition 49.)

(a) J⊆R ,

(b) R◦J◦R = R ,

(c) J< ◦R ◦ J< = J< ,

(d) J> ◦R ◦ J> = J> .

Lemmas 72 and 73 prepare the way for de�nition 74.

Lemma 72 If a per has an index, then it has an index that is a 
ore
exive.

Proof Suppose R is a per and J is an index of R . The lemma is proved if we show that

J< is an index of R . We thus have to prove that

(e) J<⊆R ,

(f) R ◦ J< ◦R = R ,

(g) (J<)< ◦R ◦ (J<)< = (J<)< ,

(h) (J>)> ◦R ◦ (J>)> = (J>)> ,

assuming the properties (a), (b), (
) and (d) above.

Of the four properties, only (f) is non-trivial. (Properties (g) and (h) follow be
ause

J<=(J<)< and J>=(J>)> . Property (e) follows be
ause, sin
e R is a per, R<⊆R .)

Property (f) is proved as follows.

R ◦ J< ◦R

= { by lemma 70, J ◦ J
∪ = J< }

R ◦ J ◦ J
∪
◦R

= { domains: (14) }

R ◦ J ◦ J> ◦ J
∪
◦R

= { (d) }

R ◦ J ◦ J> ◦R ◦ J> ◦ J
∪
◦R

= { domains: (14) }

R ◦ J ◦R ◦ J
∪
◦R

= { (b) }

R ◦ J
∪
◦R

= { R is a per, so R=R∪

; 
onverse }
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(R◦J◦R)∪

= { R is a per, so R=R∪

; (b) and 
onverse }

R .

✷

Lemma 73 For all pers R , if R has an index then there is a relation J su
h that

(a) J⊆R< ,

(b) J◦R◦J = J ,

(c) R◦J◦R = R .

Conversely, for all pers R , if relation J satis�es the properties (a), (b) and (
) above, then J

is an index of R .

Proof First, suppose R is a per that has an index. By lemma 72, R has a 
ore
exive index.

Let J be su
h a 
ore
exive index of R . We must show that properties (a), (b) and (
) hold.

We have

J⊆R<

⇐ { 49(a) and monotoni
ity }

J= J<

= { J is a 
ore
exive }

true .

This proves (a). Now for (b):

J◦R◦J

= { J is a 
ore
exive, so J= J< ,

R is a per, so R=R≺ }

J< ◦R≺ ◦ J<

= { 49(
) }

J<

= { J is a 
ore
exive, so J= J< }

J .

Finally, (
):

R◦J◦R

= { R is a per, so R=R≺ }

R≺ ◦ J ◦R≺

= { 49(b) }

R .

For the 
onverse, assume R is a per and J satisi�es the properties (a), (b) and (
) above.

We have to 
he
k the four properties listed in de�nition 49. First, 49(a):
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J

⊆ { assumption: (a) above }

R<

⊆ { R is per }

R .

The properties 49(b), (
) and (d) follow be
ause J= J<= J> and R=R≺=R≻
.

✷

As a 
onsequen
e of lemma 73, we postulate the following de�nition of an index of a per.

Definition 74 (Index of a Per) Suppose P is a per. Then a (
ore
exive) index of P

is a relation J su
h that

(a) J⊆P< ,

(b) J◦P◦J = J ,

(c) P◦J◦P = P .

✷

We also postulate that every per has a 
ore
exive index. We 
all this the axiom of 
hoi
e.

Axiom 75 (Axiom of Choice) Every per has a 
ore
exive index.

✷

5.3 From Pers To Relations

It is a desirable property that every relation has an index. However, as mentioned earlier,

this 
an't be proved in standard relation algebra. It 
an be proved if we assume that every

per has an index. The 
onstru
tion is suggested by theorem 59.

Theorem 76 Suppose J and K are (
ore
exive) indi
es of R≺
and R≻

, respe
tively.

Then J◦R◦K is an index of R .

Proof For 
onvenien
e, we list the properties of J and K. These are obtained by instanti-

ating de�nition 74 with J,R := J ,R≺
and J,R := K ,R≻

. (Domain properties have been used

to simplify (a) and (d).)

(a) J⊆R< ,

(b) J ◦R≺ ◦ J = J ,

(c) R≺◦ J ◦R≺ = R≺ ,

(d) K⊆R> ,

(e) K ◦R≻ ◦K = K ,

(f) R≻◦K ◦R≻ = R≻ .
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We have to prove the four properties 49(a)-(d) with the instantiation J,R := J◦R◦K ,R . By

(a), J= J∪= J<= J> . Similarly for K . The proof obligations are thus:

(g) J◦R◦K ⊆ R ,

(h) R≺ ◦ J ◦R ◦K ◦R≻ = R .

(i) (J◦R◦K)< ◦R≺ ◦ (J◦R◦K)< = (J◦R◦K)< ,

(j) (J◦R◦K)> ◦R≻ ◦ (J◦R◦K)> = (J◦R◦K)> ,

Property (g) is an easy 
ombination of (a) and (d). For (h) we have:

R≺ ◦ J ◦R ◦K ◦R≻

= { per domains: (29) }

R≺ ◦ J ◦R≺ ◦R ◦R≻ ◦K ◦R≻

= { (b) and (f) }

R≺ ◦R ◦R≻

= { per domains: (29) }

R .

For (i), we have

(J◦R◦K)> ◦R≻ ◦ (J◦R◦K)>

= { (J◦R◦K)> ⊆ K> = K ,


omposition of 
ore
exives is interse
tion }

(J◦R◦K)> ◦K ◦R≻ ◦K ◦ (J◦R◦K)>

= { (e) }

(J◦R◦K)> ◦K ◦ (J◦R◦K)>

= { (J◦R◦K)> ⊆ K> = K


omposition of 
ore
exives is interse
tion }

(J◦R◦K)> .

The proof is (j) is symmetri
al.

✷

Theorem 76 shows how to 
onstru
t an index of a relation R from indexes J and K of its

left and right per domains. In 
ombination with lemma 53 and 
orollary 54, the 
onstru
tion

is unique. Spe
i�
ally, the steps are, �rst to 
hoose from ea
h equivalen
e 
lass of R≺
and

ea
h equivalen
e 
lass of R≻
a single representative. The 
olle
tion of su
h representatives

de�nes the 
ore
exives J and K . Then the index is de�ned to be J◦R◦K .

6 Characterisations of Pers and Difunctions

This se
tion is about 
hara
terising pers and difun
tions in terms of fun
tional relations.

Although the 
hara
terisations are well known, they are not derivable in point-free relation

algebra. We show that they are derivable using our axiom of 
hoi
e.
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6.1 Characterisation of Pers

A well-known property is that a relation R is a per i�

〈

∃f : f ◦ f
∪

= f< : R = f
∪
◦ f
〉

.(77)

This property is said to be a 
hara
teristi
 property of pers. Perhaps surprisingly, it is not

derivable in systems that axiomatise point-free relation algebra. Freyd and

�

S�
edrov [Fv90,

1.281℄ 
all the fun
tional f witnessing the existential quanti�
ation a \splitting

2

" of R.

Typi
ally, the existen
e of \splittings" is either postulated as an axiom (eg. Winter [Win04℄)

or by adding axioms formulating relations as a so-
alled \power allegory" [Fv90, 2.422℄, or by

adding the so-
alled \all-or-nothing" axiom [Ba
21℄. (See se
tion 7.6 for dis
ussion of \all or

nothing".) See [BO23℄ for a 
omparison of the te
hniques used to establish (77) using these

di�erent axiom systems. Here we show that the existen
e of \splittings" is a 
onsequen
e of

our axiom of 
hoi
e:

Theorem 78 If per P has a 
ore
exive index J , then

P = (J◦P)
∪
◦ (J◦P) ∧ J = (J◦P) ◦ (J◦P)

∪

.

Thus, assuming the axiom of 
hoi
e, for all relations R ,

per.R ≡
〈

∃f : f ◦ f
∪

= f< : R = f
∪
◦ f
〉

.

Proof The proof is very straightforward. We have

(J◦P)∪ ◦ (J◦P)

= { distributivity }

P
∪
◦ J ◦ J ◦P

= { J is 
ore
exive, so J◦J= J ; P=P∪

}

P◦J◦P

= { J is an index of P , de�nition 74(
) }

P

and

(J◦P) ◦ (J◦P)∪

= { distributivity }

J ◦P ◦P
∪
◦ J

= { P is a per, so by lemma 32(ii), P = P
∪
◦P }

J◦P◦J

= { J is an index of P , de�nition 74(b) }

J .

2

Freyd and

�

S�
edrov de�ne a \splitting" in the more general 
ontext of a 
ategory rather than an allegory;

the notion is appli
able to \idempotents" whi
h are also more general than pers.
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This proves the �rst property. It also establishes that (assuming the axiom of 
hoi
e), for all

R ,

per.R ⇒
〈

∃f : f ◦ f
∪

= f< : R = f
∪
◦ f
〉

.

(The witness is J◦R .) The 
onverse is obvious: see [BO23℄ for details. The equivalen
e follows

by mutual impli
ation.

✷

A se
ond so-
alled \
hara
teristi
" property is that a relation R is a difun
tional i�

〈

∃ f,g : f ◦ f
∪

= f< = g ◦g
∪

= g< : R = f
∪
◦g

〉

.

Like the 
hara
teristi
 property of pers, it is not derivable in systems that axiomatise point-

free relation algebra. It is, however, a 
orollary of the existen
e of \splittings" (and thus of

theorem 78), as shown by Winter [Win04℄.

6.2 Unicity of Characterisations

The 
hara
terisation of a per in the form f
∪
◦ f where f is a fun
tional relation is not unique.

(There are typi
ally many representatives one 
an 
hoose for ea
h equivalen
e 
lass; so there

are very many distin
t indexes of a per.) The 
hara
terisation is sometimes des
ribed as

being \essentially" unique or sometimes as unique \up to isomorphism". See our working

do
ument [BV℄ for full details.

7 Enabling Pointwise Reasoning

In this se
tion, our goal is to 
apture the notion that a relation is a set with elements pairs

of points.

In traditional pointwise reasoning about relations, a basi
 assumption is that a type is

a set that forms a 
omplete, universally distributive latti
e under the subset ordering; the

type of a (binary) relation is a set of pairs. The set of relations of a given type thus forms a

powerset of a set of pairs.

In se
tion 7.1, we re
all a general theorem on the stru
ture of powersets. Brie
y, theorem

81 states that a set is isomorphi
 to the powerset of its \atoms" i� it is \saturated". The

se
tion de�nes these 
on
epts; the 
on
epts then form the ba
kbone of later se
tions where

we spe
ialise the theorem to relations.

One (of several) me
hanisms for introdu
ing pointwise reasoning within the framework

of point-free relation algebra involves the introdu
tion of the so-
alled \all-or-nothing rule"

whi
h was postulated as an axiom by Gl�u
k [Gl�u17℄. This rule is 
ombined with 
ompleteness

and \extensionality" axioms whi
h state that, for ea
h type A , the 
ore
exives of type A

form a 
omplete, saturated latti
e. This was the approa
h taken in [BDGv22℄ where pointwise

reasoning was used to formulate and prove properties of graphs. Theorem 102 establishes that

the all-or-nothing rule is a 
onsequen
e of our axiom of 
hoi
e (axiom 75: every per has an

index). Together with the \extensionality" axiom, this enables the appli
ation of theorem 81

to establish that the type A∼B is isomorphi
 to the powerset 2A×B (the set of subsets of

the 
artesian produ
t A×B ). See theorems 102 and 103 in se
tion 7.6.
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Se
tion 7.2 introdu
es \points" and states the extensionality axiom that we assume. A

number of se
tions are then ne
essary in order to establish theorem 103. Se
tion 7.3 introdu
es

\parti
les" and \pairs"; it is then shown that parti
les are points whilst se
tion 7.4 shows

that |assuming the axiom of 
hoi
e| points are parti
les. (For this reason, the terminology

\parti
le" is temporary.) Se
tion 7.5 shows that proper atoms (of a given type) are \pairs".

These are the ingredients for deriving the \all-or-nothing" rule in se
tion 7.6. Se
tion 7.6

also shows that the point-free de�nition of a \pair" in se
tion 7.3 does 
orrespond to what

one normally understands to be a pair of points. The se
tion 
on
ludes with theorem 103.

7.1 Powersets

As mentioned above, this se
tion de�nes \atoms" and \saturated" in the 
ontext of a partially

ordered set. We then state a fundamental theorem relating these 
on
epts to powersets.

The de�nition of an atom is the following.

Definition 79 (Atom and Atomicity) Suppose A is a set partially ordered by the

relation ⊑ . Then, the element p is an atom i�

〈∀q :: q⊑p ≡ q=p ∨ q=⊥⊥〉 .

Note that ⊥⊥ is an atom a

ording to this de�nition. If p is an atom that is di�erent from

⊥⊥ we say that it is a proper atom. A latti
e is said to be atomi
 if

〈∀q :: q 6=⊥⊥ ≡ 〈∃a : atom.a∧a 6=⊥⊥ : a⊑q〉〉 .

In words, a latti
e is atomi
 if every proper element in
ludes a proper atom.

✷

The de�nition of saturated is as follows.

Definition 80 (Saturated) A 
omplete latti
e (ordered by ⊑ ) is saturated i�

〈∀p :: p = 〈⊔a : atom.a ∧ a⊑p : a〉〉 .
✷

The set of subsets of a type is a powerset i� the latti
e is saturated, as formulated in the

following theorem.

Theorem 81 Suppose A is a 
omplete, universally distributive latti
e. Then the following

statements are equivalent.

(a) A is saturated,

(b) A is atomi
 and 
omplemented,

(c) A is isomorphi
 to the powerset of its atoms.

✷
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(See [ABH

+
92, theorem 6.43℄ for the proof of theorem 81.)

We use theorem 81 in two ways. Firstly, for all types A , we simply postulate that the set

of 
ore
exives of type A is isomorphi
 to a powerset under the ⊆ ordering: the atoms are

the \points" introdu
ed in se
tion 7.2. Se
ond, we use this postulate together with our axiom

of 
hoi
e to show that, for all types A and B , the type A∼B of (heterogeneous) relations

is also isomorphi
 to a powerset under the ⊆ ordering: the atoms are \pairs" introdu
ed in

se
tion 7.3. The proof that \pairs" are indeed atoms is the subje
t of se
tion 7.5. A prelude

to this is theorem 94, proved in se
tions 7.3 and 7.4, is that \points" are a spe
ial 
ase of

\pairs".

7.2 Points

We begin by postulating that ea
h type A is a set of \points". We also postulate that the set

of 
ore
exives of type A forms a 
omplete, universally distributive latti
e under the subset

ordering. Finally, we postulate that the latti
e is saturated. With theorem 81 in mind, we

de�ne \points" to be the proper atoms of the latti
e:

Definition 82 (Point) A homogeneous relation a of type A is a point i� it has the

following three properties.

(a) a 6=⊥⊥ ,

(b) a⊆ I , and

(c) 〈∀b : b 6=⊥⊥ ∧ b⊆a : b=a〉 .

In words, a point is a proper, 
ore
exive atom.

✷

If A is a type, we use a , a ′
et
. to denote \points" of type A . Similarly for \points"

of type B . \Points" represent elements of the appropriate type.

For points a and a ′
of the same type,

a=a ′ ∨ a◦a ′=⊥⊥ .(83)

The proof is straightforward. Suppose a and a ′
are points. Then

a=a◦a ′

⇐ { a is an atom, de�nition 79 }

a◦a ′ 6=⊥⊥ ∧ a◦a ′⊆a

⇐ { a ′⊆ I }

a◦a ′ 6=⊥⊥ .

Inter
hanging a and a ′
,

a ′=a◦a ′
⇐ a ′

◦a 6=⊥⊥ .

But, sin
e 
omposition of 
ore
exives is symmetri
, a◦a ′=a ′
◦a . We 
on
lude that

a=a◦a ′=a ′
⇐ a◦a ′ 6=⊥⊥ .
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This is equivalent to (83).

In point-free relation algebra, subsets of a type are modelled by 
ore
exives of that type.

In order to model the property that the 
ore
exives of a given type form a latti
e that is

isomorphi
 to the set of subsets of the type we need to add to our axiom system a saturation

property, viz.:

Definition 84 (Saturation) Suppose A is a type. The latti
e of 
ore
exives of type A

is said to be saturated i�

〈∀p :: p⊆ IA ≡ p = 〈∪a : point.a ∧ a⊆p : a〉〉 .(85)

✷

The axiom that we 
all \extensionality" is then:

Axiom 86 (Extensionality) For ea
h type A , the points of type A form a 
omplete,

universally distributive, saturated latti
e under the subset ordering.

✷

Applying theorem 81, a 
onsequen
e of axiom 86 is that the 
ore
exives of type A form

a latti
e that is isomorphi
 to the powerset 2A . In this sense, the 
ore
exives in point-

free relation algebra represent sets of points in traditional pointwise formulations of relation

algebra.

We now want to show how to formulate the property that the set of relations of type A∼B

is isomorphi
 to the powerset 2A×B , i.e. relations in point-free relation algebra represent pairs

(a, b) of points a and b of type A and B , respe
tively.

7.3 Pairs and Particles

We now turn our attention to the latti
e of relations of a given type. We begin with a point-

free de�nition of a \pair". In subse
tion 7.6, we show that de�nition 87 does indeed 
apture

the notion of a \pair of points" whereby the points are the \parti
les" also introdu
ed in the

de�nition.

Definition 87 (Pair) A relation Z is a pair i� it has the following properties:

(a) Z 6=⊥⊥ ,

(b) Z = Z◦⊤⊤◦Z ,

(c) Z< = Z ◦Z
∪

,

(d) Z> = Z
∪
◦Z .

We 
all a relation a parti
le if it is a pair and it is symmetri
.

✷
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In words, a pair Z is a non-empty \re
tangle" (properties 87(a) and 87(b)) that is a

\bije
tion" on its left domain and right domains (properties 87(
) and 87(d)).

(De�nition 87 was introdu
ed in [Voe99℄ but using the terminology \singleton" instead of

\pair", and \singleton square" instead of \parti
le".)

Our goal is to prove that the points are exa
tly the parti
les. This se
tion is about showing

that a parti
le is a point. See 
orollary 92.

One task is to show that parti
les are atoms. The more general property, whi
h we need

in later se
tions, is that pairs are atoms.

Lemma 88 A pair is an atom.

Proof Suppose Z is a pair and suppose Y is su
h that Y⊆Z . By the de�nition of atom,

de�nition 79, we must show that Y=⊥⊥ ∨ Y=Z . Equivalently, assuming Y 6=⊥⊥ , we must

show that Y=Z . This is done as follows.

Y

= { assumption: Y⊆Z . So, Y<⊆Z<
and Y>⊆Z>

; domains: (18) }

Z< ◦Y ◦Z>

= { Z is a pair, so Z< = Z ◦Z
∪ = (Z◦⊤⊤◦Z) ◦Z∪

; similarly for Z> }

Z ◦⊤⊤ ◦Z ◦Z
∪
◦Y ◦Z

∪
◦Z ◦⊤⊤ ◦Z

= { domains: theorem 19(a) and theorem 19(b) }

Z ◦⊤⊤ ◦Z< ◦Y ◦Z> ◦⊤⊤ ◦Z

= { Z< ◦Y ◦Z> = Y (see �rst step above) }

Z◦⊤⊤◦Y◦⊤⊤◦Z

= { assumption: Y 6=⊥⊥ , 
one rule }

Z◦⊤⊤◦Z

= { Z is a pair }

Z .

✷

Sin
e a parti
le is, by de�nition, a pair, we have:

Corollary 89 A parti
le is an atom.

✷

Lemma 90 A parti
le is 
ore
exive.

Proof Suppose Z is square and a pair. Then

Z

= { assumption: Z is a pair, so Z=Z◦⊤⊤◦Z ;

[ ⊤⊤◦Z = ⊤⊤ ◦Z< ◦Z = ⊤⊤ ◦Z
∪
◦Z ] }

Z ◦⊤⊤ ◦Z
∪
◦Z

= { assumption: Z is a square, so Z = Z ◦⊤⊤ ◦Z
∪ = Z

∪

}

Z
∪
◦Z

= { assumption: Z is a pair, so Z> = Z
∪
◦Z }

Z> .
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That is, Z equals Z>
whi
h is 
ore
exive.

✷

Corollary 91 (Particle) A relation Z is a parti
le i� it has the following three properties.

(a) Z 6=⊥⊥ ,

(b) Z⊆ I , and

(c) Z = Z◦⊤⊤◦Z .

In words, a parti
le is a proper, 
ore
exive re
tangle.

Proof \Only-if" is the 
ombination of the de�nition of a parti
le and lemma 90. \If" is a

straightforward 
onsequen
e of the properties of domains and 
ore
exives.

✷

Corollary 92 A parti
le is a proper, 
ore
exive atom. That is, a parti
le is a point.

Proof This is a 
ombination of lemmas 88 and 90.

✷

7.4 Points are Particles

We now prove the 
onverse of 
orollary 92. We use the assumption that every per has a


ore
exive index: the axiom of 
hoi
e (axiom 75).

Lemma 93 Assuming axiom 75, a point is a parti
le.

Proof Suppose that a is a point. Comparing the de�nition of a point, de�nition 82, with

the de�ning properties of a parti
le, 
orollary 92, it suÆ
es to prove that a=a◦⊤⊤◦a . Clearly

a◦⊤⊤◦a is a per. (The simple proof uses the fa
t that a=a∪

, be
ause a is 
ore
exive, and

⊤⊤◦a◦⊤⊤=⊤⊤ be
ause a 6=⊥⊥ .) So, by the axiom of 
hoi
e, a◦⊤⊤◦a has an index J , say.

We show that J is a parti
le and J=a .

To show that J is a parti
le, we must establish the three properties listed in 
orollary 91

with the instantiation Z := J . Part (a) is proved as follows.

J=⊥⊥

⇒ { ⊥⊥ is zero of 
omposition }

a◦⊤⊤◦a◦J◦a◦⊤⊤◦a = ⊥⊥

= { J is an index of per a◦⊤⊤◦a , de�nition 74(
) }

a◦⊤⊤◦a = ⊥⊥

⇒ { a◦a◦a⊆a◦⊤⊤◦a and a◦a◦a=a (be
ause a⊆ I ) }

a⊆⊥⊥

= { [ R⊆⊥⊥ ≡ R=⊥⊥ ] with R :=a }

a=⊥⊥

= { assumption: a is proper, i.e. a 6=⊥⊥ }

false .
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We 
on
lude that J 6=⊥⊥ . The next step is to show that J=a .

J=a

⇐ { assumption: a is an atom }

J=⊥⊥ ∨ J⊆a

= { J 6=⊥⊥ (see above) }

J⊆a

= { assumption: a⊆ I , so a=(a◦⊤⊤◦a)< }

J ⊆ (a◦⊤⊤◦a)<

= { assumption: J is an index of a◦⊤⊤◦a

de�nition 74(a) }

true .

Property (b) of 
orollary 91 immediately follows be
ause a is 
ore
exive. We now show that

J= J◦⊤⊤◦J .

J◦⊤⊤◦J

= { J=a (proved above) and a⊆ I }

J◦a◦⊤⊤◦a◦J

= { assumption: J is an index of a◦⊤⊤◦a

de�nition 74(
) with P :=a◦⊤⊤◦a }

J .

We 
on
lude that J=a= J◦⊤⊤◦J . Thus a=a◦⊤⊤◦a as required.

✷

Combining 
orollary 92 with lemma 93, we 
on
lude:

Theorem 94 Assuming axiom 75, a relation is a point i� it is a parti
le.

✷

7.5 Proper Atoms are Pairs

The goal of this se
tion is to show that a proper atom is a pair. Aiming to exploit the

equivalen
e of points and parti
les, we begin with lemmas on the left and right domains of a

proper atom.

Lemma 95 Suppose R is a proper atom. Then R<
and R>

are proper atoms

3

.

Proof First, that R<
and R>

are both proper is immediate from (15).

To show that R<
is an atom we have to show that, for all p ,

p⊆R< ∧ p 6=⊥⊥ ≡ p=R< .

We do this by mutual impli
ation. First, the follows-from:

3

Note: stri
tly we should detail the latti
e under 
onsideration here. However, it is easy to show that

a 
ore
exive being an atom in the latti
e of 
ore
exives is equivalent to its being an atom in the latti
e of

relations. This justi�es the omission.
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p⊆R< ∧ p 6=⊥⊥ ⇐ p=R<

= { predi
ate 
al
ulus }

(p⊆R< ⇐ p=R<) ∧ (p 6=⊥⊥ ⇐ p=R<)

⇐ { left 
onjun
t: anti-symmetry, right 
onjun
t: Leibniz }

true ∧ R< 6= ⊥⊥

⇐ { R<
is proper (see above) }

true .

Now we prove the 
onverse. Assume p⊆R<
and p 6=⊥⊥ . Then

p=R<

= { anti-symmetry and assumption: p⊆R< }

R< ⊆ p

⇐ { assumption: p⊆R<
and R<⊆ I , so p=p<

; (p◦R)<⊆p< }

R< = (p◦R)<

⇐ { Leibniz }

R = p◦R

= { p◦R 6= ⊥⊥ (see below for proof)

R is an atom, de�nition 79 (appropriately instantiated) }

p◦R ⊆ R

= { assumption: p⊆R<
and R<⊆ I , monotoni
ity }

true .

In order to verify the penultimate step in the above 
al
ulation, we show that p◦R=⊥⊥ ⇒ false

under the assumption that p⊆R<
and p 6=⊥⊥ .

p◦R=⊥⊥

= { 
one rule: (4) }

⊤⊤◦p◦R◦⊤⊤ = ⊥⊥

= { domains: theorem 19(a) }

⊤⊤ ◦p ◦R< ◦⊤⊤ = ⊥⊥

⇒ { assumption: p⊆R<
, 
omposition of 
ore
exives is interse
tion }

⊤⊤◦p◦⊤⊤ = ⊥⊥

= { assumption: p 6=⊥⊥ , 
one rule: (4) }

false .
✷

Corollary 96 If R is a proper atom, R<
and R>

are parti
les.

Proof By lemma 95 and de�nition 82 of a point, if R is a proper atom, R<
and R>

are

points. Thus, by lemma 93, R<
and R>

are parti
les.

✷

We now aim to verify properties 87(b), (
) and (d) of a pair, with Z instantiated to

proper atom R . Property 87(b) is the following lemma.

Lemma 97 A proper atom is a re
tangle.
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Proof Suppose R is a proper atom. Then

R ◦⊤⊤ ◦R

= { domains: theorem 19(a) }

R< ◦ ⊤⊤ ◦ R>

= { R 6=⊥⊥ , 
one rule: (4) }

R< ◦ ⊤⊤ ◦ R ◦ ⊤⊤ ◦ R>

= { domains: (14) }

R< ◦ ⊤⊤ ◦ R< ◦ R ◦ R> ◦ ⊤⊤ ◦ R>

= { by 
orollary 96, R<
and R>

are parti
les;


orollary 91(
) with Z :=R<
and Z :=R> }

R< ◦ R ◦ R>

= { domains: (14) }

R .

That is, R ◦⊤⊤ ◦R = R . Thus, by de�nition, R is a re
tangle.

✷

We now have all the ingredients for our goal.

Lemma 98 Suppose R is a proper atom. Then, assuming axiom 75, R is a pair.

Proof Suppose R is a proper atom. We have to verify properties 87(b), (
) and (d) (with

Z :=R ) of a pair.

Property 87(b) is lemma 97. Properties 87(
) and (d) assert that R is a bije
tion. To

prove this, let J be an index of R . (This is where axiom 75 is assumed.) Then

J=R

= { R is an atom }

J 6=⊥⊥ ∧ J⊆R

= { J is an index of R , de�nition 49 }

true .

That is, J=R . But R is a re
tangle and thus a difun
tion. So, applying lemma 70, J |and

thus R| is a bije
tion, as required.

✷

To 
on
lude this se
tion and se
tions 7.3 and 7.4, we have:

Theorem 99 Assuming axiom 75, for all types A and B , and all relations R of type

A∼B , R is a proper atom i� R is a pair.

Proof This is a 
ombination of lemmas 88 and 98.

✷

7.6 Pairs of Points and the All-or-Nothing Rule

The �nal step is to show that we 
an derive the \all-or-nothing" rule.

Lemma 100 If Z is a pair then Z<
and Z>

are parti
les.
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Proof Suppose Z is a pair. We begin by showing that its left and right domains are also

pairs.

Properties 87(a), (
) and (d) |with Z :=Z<
and Z :=Z>

| are properties of the domain

operators . This leaves 87(b). For the instan
e Z :=Z<
, we have:

Z< ◦⊤⊤ ◦Z<

= { domains: theorem 19(a) and (b) }

Z ◦⊤⊤ ◦Z ◦Z
∪

= { assumption: Z is a pair, so Z◦⊤⊤◦Z=Z }

Z ◦Z
∪

= { assumption: Z is a pair, so Z ◦Z
∪ = Z< }

Z< .

The proof that Z>
is a pair is symmetri
al.

It now follows immediately that Z<
and Z>

are squares: a square is a symmetri
 re
t-

angle, and both are re
tangles (see above); also, both are 
ore
exives, and 
ore
exives are

symmetri
.

✷

The following theorem is [Voe99, lemma 4.41(d)℄.

Theorem 101 For all Z ,

pair.Z ≡ 〈∃a,b : point.a∧ point.b : Z=a◦⊤⊤◦b〉 .

Proof By mutual impli
ation. First,

pair.Z

⇒ { lemma 100;

de�nition 87(b) and [ Z◦⊤⊤◦Z = Z< ◦⊤⊤ ◦Z> ] }

particle . Z< ∧ particle . Z> ∧ Z = Z< ◦⊤⊤ ◦Z>

⇒ { 
orollary 92 }

point . Z< ∧ point . Z> ∧ Z = Z< ◦⊤⊤ ◦Z>

⇒ { a,b := Z< , Z> }

〈∃a,b : point.a∧point.b : Z=a◦⊤⊤◦b〉 .

For the 
onverse, assume that a and b are points. We have to prove that a◦⊤⊤◦b is a pair.

Applying de�nition 87, this means 
he
king four properties:

(a) a◦⊤⊤◦b 6= ⊥⊥ ,

(b) a◦⊤⊤◦b = a◦⊤⊤◦b◦⊤⊤◦a◦⊤⊤◦b ,

(c) (a◦⊤⊤◦b)< = (a◦⊤⊤◦b) ◦ (a◦⊤⊤◦b)∪ ,

(d) (a◦⊤⊤◦b)> = (a◦⊤⊤◦b)∪ ◦ (a◦⊤⊤◦b) .

Properties (a) and (b) are instan
es of the 
one rule together with the assumption that a

and b are proper. We prove (
) as follows.
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(a◦⊤⊤◦b) ◦ (a◦⊤⊤◦b)∪

= { 
onverse }

a ◦⊤⊤ ◦b ◦b
∪
◦⊤⊤ ◦a

= { assumption: b is a point, 
one rule: (4) }

a◦⊤⊤◦a

= { assumption: a is a point; so, by 
orollary 93, a is a pair;

de�nition 87(b) with Z :=a }

a

= { a◦⊤⊤◦b is a non-empty re
tangle }

(a◦⊤⊤◦b)< .

Property (d) is proved symmetri
ally.

✷

We 
on
lude with the theorem that Gl�u
k's \all-or-nothing" axiom [Gl�u17℄ is a 
onse-

quen
e of our axiom of 
hoi
e.

Theorem 102 (All or Nothing)

〈∀a,b,R : point.a∧point.b : a◦R◦b=⊥⊥ ∨ a◦R◦b=a◦⊤⊤◦b〉 .

Proof Suppose a and b are points. By theorem 101, a◦⊤⊤◦b is a pair. So, by lemma 88,

a◦⊤⊤◦b is an atom. Applying the de�nition of atomi
, we have, for all R ,

true

= { monotoni
ity, R⊆⊤⊤ }

a◦R◦b ⊆ a◦⊤⊤◦b

= { a◦⊤⊤◦b is an atom, de�nition 79 }

a◦R◦b=⊥⊥ ∨ a◦R◦b=a◦⊤⊤◦b .

✷

The signi�
an
e of the all-or-nothing rule is that, together with theorem 81, it follows

that the latti
e of relations of type A∼B is isomorphi
 to the powerset 2A×B .

Theorem 103 Suppose, for types A and B , the latti
es of 
ore
exives of types A and B

are both extensional (i.e. 
omplete, universally distributive and saturated). Then the latti
e

of relations of type A∼B is saturated; the atoms are elements of the form a◦⊤⊤◦b where a

and b are atoms of the poset of 
ore
exives (of types A and B , respe
tively). It follows

that, if the latti
e of relations of type A∼B is 
omplete and universally distributive, it is

isomorphi
 to the powerset of the set of elements of the form a◦⊤⊤◦b where a and b are

points of types A and B , respe
tively.

Proof By theorems 101 and 99, a◦⊤⊤◦b is an atom. It suÆ
es to prove that the latti
e of

relations of type A∼B is saturated. This is easy: for all R of type A∼B ,

R

= { I is unit of 
omposition,

latti
es of 
ore
exives of types A and B are extensional }

〈∪a :point.a :a〉 ◦R ◦ 〈∪b :point.b :b〉
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= { distributivity of 
omposition over ∪ }

〈∪a,b : point.a∧point.b : a◦R◦b〉

= { all-or-nothing rule: theorem 102, ⊥⊥ is zero of supremum }

〈∪a,b : point.a ∧ point.b ∧ a◦R◦b 6=⊥⊥ : a◦⊤⊤◦b〉 .

That the latti
e of relations is a powerset follows from theorem 81. By theorem 101, every

pair is a relation of the form a◦⊤⊤◦b ; also, by lemma 88, a◦⊤⊤◦b is an atom.

✷

Summarising theorem 103, the saturation property is that

〈∀R :: R = 〈∪a,b : a◦⊤⊤◦b⊆R : a◦⊤⊤◦b〉〉 .(104)

Combining theorem 103 with theorem 81, we get the irredu
ibility property: if R is a

fun
tion with range relations of type A∼B and sour
e K , then, for all points a and b of

appropriate type,

a◦⊤⊤◦b ⊆ ∪R ≡ 〈∃k : k∈K : a◦⊤⊤◦b⊆R.k〉 .(105)

Property (104) formalises the interpretation of the property a◦⊤⊤◦b⊆R as the property

(a, b)∈R in standard set-theoreti
 a

ounts of relation algebra.

Theorem 103 assumes that the latti
es of 
ore
exives (of appropriate type) are extensional.

Conversely, if we assume that, for all types A and B , the latti
e of relations of type A∼B

is extensional then so is the latti
e of 
ore
exives of type A , for all A . This is theorem 106.

(The proof of theorem 106 
an be found in the 
ompanion do
ument [BV℄.)

Theorem 106 Suppose, for all types A and B , the latti
e of relations of type A∼B is

extensional, whereby the atoms are elements of the form a◦⊤⊤◦b where a and b are atoms

of the poset of 
ore
exives (of types A and B , respe
tively). Then, for all A , the latti
e of


ore
exives of type A is extensional.

✷

Combining theorems 103 and 106, we get:

Corollary 107 Suppose, for all types A and B , the latti
e of relations of type A∼B is


omplete and universally distributive. Then for all types A and B , the latti
e of relations

of type A∼B is extensional i� for all types A , the latti
e of 
ore
exives of type A is

extensional.

✷

Although the saturation property allows us to identify atoms of the form a◦⊤⊤◦b with

elements (a, b) of the set A×B , it does not establish that the operators of relation algebra

(
onverse, 
omposition et
.) 
orrespond to their standard set-theoreti
 interpretations. This

is straightforward. For example, for 
omposition we have, for all R and S ,

R◦S

= { saturation: (104) }

〈∪a,b : a◦⊤⊤◦b⊆R : a◦⊤⊤◦b〉 ◦ 〈∪b ′,c : b ′
◦⊤⊤◦c⊆S : b ′

◦⊤⊤◦c〉

= { distributivity }
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〈∪a,b,b ′,c : a◦⊤⊤◦b⊆R ∧ b ′
◦⊤⊤◦c⊆S : a◦⊤⊤◦b◦b ′

◦⊤⊤◦c〉

= { b and b ′
are points, so b◦b ′ 6=⊥⊥ ≡ b ′=b


ase analysis on b ′=b ∨ b ′ 6=b , one-point rule }

〈∪a,b,c : a◦⊤⊤◦b⊆R ∧ b◦⊤⊤◦c ⊆ S : a◦⊤⊤◦b◦b◦⊤⊤◦c〉

= { b ranges over points, so b◦b=b 6=⊥⊥ , 
one rule: (4) }

〈∪a,b,c : a◦⊤⊤◦b⊆R ∧ b◦⊤⊤◦c ⊆ S : a◦⊤⊤◦c〉

= { range disjun
tion }

〈∪a,c : 〈∃b :: a◦⊤⊤◦b⊆R ∧ b◦⊤⊤◦c⊆S〉 : a◦⊤⊤◦c〉 .

Comparing the �rst and last lines of this 
al
ulation (and interpreting a◦⊤⊤◦b⊆R as (a, b)∈R

and b◦⊤⊤◦c⊆S as (b, c)∈S ) we re
ognise the standard set-theoreti
 de�nition of R◦S .

The important step to note in the above 
al
ulation is the use of the distributivity of


omposition over union. The validity of su
h universal distributivity | both from the left

and from the right| is a 
onsequen
e of the Galois 
onne
tions (5) and (6) de�ning fa
tors.

A similar step needed in the 
al
ulation for 
onverse relies on the fa
t that 
onverse is the

upper and lower adjoint of itself.

We 
on
lude this se
tion with a brief 
omparison of extensionality as formulated here

with the notion of extensionality formulated by Voermans [Voe99℄.

Voermans [Voe99, se
tion 4.5℄ postulated that the latti
e of binary relations of a given

type is saturated by relations of the form X◦⊤⊤◦Y where X and Y are parti
les. Relations

of this form are then shown to model pairs (x, y) in standard set-theoreti
 presentations of

relation algebra. Here, we have postulated that ea
h type A forms a latti
e that is saturated

by points : see axiom 86; this postulate is 
ombined with our axiom of 
hoi
e: all pers have an

index. Then pairs in standard set-theoreti
 presentations of relation algebra are modelled by

relations of the form a◦⊤⊤◦b , where a and b are points. Be
ause parti
les are points (
orol-

lary 92), the saturation property postulated by Voermans is formally stronger than axiom

86. As a 
onsequen
e, it be
omes slightly harder to establish that, for example, the 
omposi-

tion of two relations does indeed 
orrespond to the set-theoreti
 notion of 
omposition. (See

[Voe99, se
tion 4.5℄ for details of what is involved.) More importantly, the 
ombination of

axioms 75 and 86 fa
ilitates a better separation of 
on
erns: axiom 75 provides a powerful

extension of point-free reasoning, whilst axiom 86 �lls the gap where pointwise reasoning is

unavoidable.

8 Conclusion

Point-free relation algebra has been developed over many, many years (beginning in the 19th


entury) and is generally regarded as a mu
h better basis for the development of the theory of

relations than pointwise reasoning. However, for pra
ti
al appli
ations, pointwise reasoning

is at times unavoidable. For example, path-�nding algorithms on graphs must ultimately

be expressed in terms of the nodes and edges of the graph (the points and elements of the

relation de�ned by the graph). Good pra
ti
e is to develop su
h algorithms in a stepwise

fashion, beginning with point-free reasoning (typi
ally using regular algebra) and delaying

the introdu
tion of points until absolutely ne
essary.

It is 
ommon pra
ti
e to represent an equivalen
e relation by 
hoosing a spe
i�
 element of
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ea
h equivalen
e 
lass. For example, the 
lass of integers modulo 3 is 
ommonly represented

by the set of three elements 0 , 1 and 2 . The 
hara
terisation of an equivalen
e relation

by a representative fun
tion is not derivable in point-free relation algebra sin
e there is

a 
onstru
tive element in the 
hoi
e of representatives. Extensions to point-free relation

algebra, su
h as the postulate that relations form a so-
alled \power allegory" [Fv90, 2.4℄,

are intended to enable pointwise reasoning but nevertheless fail to properly 
apture the use

of representatives. Our axiom of 
hoi
e (axiom 75) together with our point-free formulation

of the notion of an index of a relation does 
apture the use of representatives. The strength

of the axiom together with the fa
t that an index of a relation has the same type as the

relation makes the notion of an index |in our view| very attra
tive and useful. Moreover,

its 
ombination with the extensionality axiom (axiom 86) permits the derivation of Gl�u
k's

\all-or-nothing" axiom [Gl�u17℄. In this way, point-free reasoning has been strengthened whilst

also fa
ilitating pointwise reasoning when unavoidable.

It might be argued that our axiom of 
hoi
e is too strong. On the 
ontrary, we would

argue that it 
orresponds mu
h better to standard pra
ti
e. For example, the 
omputation of

the strongly 
onne
ted 
omponents of a graph involves 
omputing a representative node for

ea
h 
omponent. (Tarjan [Tar72℄, Sharir [Sha81℄, Aho, Hop
roft and Ullman [AHU82℄ and

Cormen, Leiserson, Rivest and Stein [CLRS09, p.619℄ 
all the representative of a strongly


onne
ted 
omponent of a graph the \root" of the 
omponent; Cormen, Leiserson and Rivest

[CLR90, p.490℄ 
all it the \forefather" of the 
omponent.) A suggestion for future work

is to exploit our notion of an index in order to reformulate |mu
h more su

in
tly| the

properties of depth-�rst sear
h that underlie its e�e
tiveness in su
h 
omputations.

Our fo
us in this paper has been on do
umenting the properties of indexes and the


onsequen
es for axiom systems enabling pointwise reasoning. The original motivation for this

work was, however, quite di�erent. Seventy years ago, in a series of publi
ations [Rig48, Rig50,

Rig51℄, Ja
ques Riguet introdu
ed the notions of a \relation difon
tionelle", the \di��eren
e"

of a relation and \relations de Ferrers". In view of possible pra
ti
al impli
ations, parti
ularly

in respe
t of relational databases, our goal was to bring Riguet's work up to date, making

it more a

essible to modern audien
es. In the pro
ess, we began to realise that substantial

improvements 
ould be made by introdu
ing the notions of \
ore" and \index" of a relation,

drawing inspiration from Voerman's [Voe99℄ notion of the (left- and right-) per domains of a

relation. The results of this work are do
umented in the 
ompanion working do
ument [BV℄.

We plan to submit a separate paper reporting on this aspe
t of our work in the near future.
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