Congruences on Initial Algebras

Roland C. Backhouse,

Department of Mathematics and Computing Science,
Eindhoven University of Technology,
P.O. Box 513,
5600 MB Eindhoven,
The Netherlands.

Grant Malcolm,

Department of Computing Science,
Rijksuniversiteit Groningen,
P.O. Box 800,

9700 AV Groningen,

The Netherlands.

Jaap van der Woude,

Department of Mathematics and Computing Science,
Eindhoven University of Technology,
P.O. Box 513,
5600 MB Eindhoven,
The Netherlands.

September 4, 1990

Abstract
The notion of relational catamorphism is used to give a necessary and sufficient condition
for a relation to be a congruence relation on an abstract data type. The condition is shown
to be a generalisation of the homomorphism theorem of universal algebra.

Initial algebra semantics provides an attractive formalism for defining abstract data types
(see [5, 11, 10]). An advantage of the formalism is that initiality gives a mechanism for construct-
ing and proving equality of recursive functions on the defined type: the algebraic properties of
these functions can be exploited in developing a calculus of program transformation (see [8, 9]).
Abstract data types so defined have a particularly elegant semantics in the category of sets with
total functions as arrows; in a lecture given by the first-named author [1], it was shown that,
by restricting the notion of functor, data types which are initial algebras on such a category are
also initial on an underlying category of sets with relations as arrows. In this setting, initiality
provides a mechanism for constructing recursive relations, thereby generalising the construction
of recursive functions and allowing non-determinism. The algebraic properties of these relations
lead to a calculus of program refinement, a topic to be set out in detail in a forthcoming paper

2].



Beside the desire to allow non-determinism, a further motivation to study abstract-data types
in a relational setting is to provide a homogeneous treatment of types with laws. Essentially, one
replaces the equality relation on the underlying type with a congruence relation: for example,
the type of binary trees, modulo associativity of the node operator, gives the type of semigroups.

This paper contains a preliminary investigation of congruence relations on initial algebra
data structures. The main result is a necessary and sufficient condition for a relation to be a
congruence relation. A related result, given in the final section, is a proof of a theorem cited by
Ehrig & Mahr [4]: the theorem states that a relation constructed from a function is a congruence
relation iff the function is a homomorphism. We show that the theorem is a corollary to our
characterisation of congruence relations.

Notation is introduced and concepts defined in section 1 and the first half of section 2. These
should not be considered mere preparation, for we are just as interested in how we prove as in
what we prove. Our broader interest lies in developing a type-oriented calculus for the formal
manipulation of relations (and, therefore, of programs). This is why we prefer the initial algebra
characterisation of data types to the inductive characterisation (as in, for example, Martin-Lo6f’s
type theory).

The exposition of relations below is couched in set-theoretic terms; the paper referred to
above ([2]) presents an axiomatic theory which has the set-theoretic relations as a model.

1 Relations

That R is a relation between objects of type a and objects of type f is denoted by R € o ~
B. Given this notation, there is only one sensible notation for composition of relations: the
composition of R € a ~ 3 and § € B ~ 7 is written

Reoe S € a~y,

and has the standard meaning that a € « is related by the composition to ¢ € v iff there is a
b € B such that R relates a to b and § relates b to c.
The equality relation for a type « is denoted by « itself, so that

Rea~f3 = acR=R=R->?°p.

Composition is associative, and each type has an equality relation which is a neutral element
of composition, so we have just described a category, whose objects are types and whose arrows
are relations. In particular, the identity arrow for a given type is that type’s equality relation.
This simple structure is further enriched by the standard operations on set-theoretic relations:
intersection (N), union (U), containment (2), and converse (v). We write converse as a postfix
operator, thus the converse of R € @ ~ 3 is Rv € § ~ a. A particularly useful property of
converse is its distribution through composition:

(R ° S)u = Suo Ru,

Note the reversal of R and §.

Functions are considered to be special cases of relations: that is, function f € a«f is also a
relation of type a ~ 3 such that a € o stands in relation f to b € 8 iff a = f.b. For example, the
identity function on a type is just the equality relation on that type. We use the notation a—/
for the type of total functions with range @ and domain 3. We also use lowercase letters f, g,h,. ..
to denote (total) functions, and uppercase letters R,S,T,... to denote arbitrary relations. The
defining characteristics of total functions can be expressed very neatly:



Definition 1 (total functions) That R € a ~ 3 is functional is expressed by:

(function) a 2 Ro R
and that it is total (defined everywhere on 3) by:
(totality) Ru o R D .

Moreover, R is injective iff Rv is functional, and R is surjective iff Ru is total.
O

There are many properties specific to total functions, for example, that composition with
functions distributes backwards through intersection. The following Galois correspondences,
which the reader can easily prove for himself, are particularly useful.

Property 2 Suppose R€ a~ 3, S € a~ v, and fis a total function of type 8<~. Then
RoefDS = RD So fu

O

Property 3 Suppose Re a~ 3,5 € v~ f3,and f is a total function of type a«+. Then
RDfoeS = fvoRDS

]

2 Congruence Relations

We are interested in examining the properties of congruence relations on recursively defined
types. The paradigm of type definition that we consider is based on that of Hagino types [6] and
is closely related to initial algebra semantics of ADT’s (see Manes and Arbib [10]); the paradigm
extends both of these approaches to a relational setting. A data type is viewed as initial in a
category of algebras whose structure is determined by a relator:

Definition 4 (relator) A relator maps types to types and relations to relations. Specifically,
® is a relator iff:

(a) if o is a type, then ®.a is a type;
(b) if R € a ~ B is a relation, then there is a relation ®.R € ®.a ~ ¢.5;
(c) ® preserves composition: ®.(R o §) = ®.R o ®.5;

(d) @ preserves identity: that is, ® maps the equality relation of type a to the equality relation
of type ®.a — in our notation this takes the form of the truism ¢.a = ®.c.

So far, these requirements state only that a relator is an endofunctor on the category of relations.
A relator must also respect the extra structure of relations:

(e) @ is monotonic: R2 S = ®.RD ¢.5; and

(f) ® preserves converse: ®.(Rv) = (®.R)v — in view of this equality, we shall omit the
parentheses, writing simply ®.Rvu.



O

We remark that these properties also guarantee that @ preserves functions. Specifically, if
f € a « B is a total function then ®.f € .0 — ®.3. Thus a relator is also a functor of the
category SET with sets as objects and functions as arrows.

Definition 5 (initial types) For a relator ®, the type u® is characterised (up to isomorphism)
by:

(a) a bijection 7 € u®—o.1P; and

(b) the “unique extension property” that for all § € a ~ ®.a there is a relation (S) € a ~ ud
such that for all R € a ~ u®,

R=(S) = Ror =S0@R
R2(S) « Ror 2 So @R
RC(S) « Ror C S &.R

O

The first of the three properties in (b) is the statement of initiality: for every ®-algebra (a, § €
a ~ ®.a) there is precisely one homomorphism (S) € a ~ u®. (A homomorphism from a
®-algebra (8, T € B ~ ®.0) to another ®-algebra (a, S5 € a ~ ®.a) is a relation H €
a ~ fBsuch that H o T = § o & H.) We shall refer to homomorphisms of the form ({S] as
“catamorphisms”. The other two properties in (b) arise from the fact that ({S) is the unique
solution to

X = X =8§0&Xo71u,

Thus, by Knaster-Tarski, it is also the least solution to the containment and the greatest solution
to the inclusion. Proofs of these claims are given in [2].
We turn now to congruence relations on initial types.

Definition 6 (congruence relation) Relation R € u® ~ u® is a congruence relation iff it
is an equivalence relation (i.e., it enjoys the familiar properties of reflexivity, transitivity and
symmetry) and it is ®-substitutive:

(refl.) R D u®

(trans.) RDORo-R
(symm.) R = Rv

(subst.) RoT 2 10 d.R.

We shall say that relation R is a half-congruence iff it is reflexive, transitive and substitutive
(but not necessarily symmetric).
a

The remainder of this section contains a proof that a relation is a congruence relation iff it
can be expressed in a certain form. We need one more definition:

Definition 7 For a relation R € a ~ 3, the relation Rt € 3 ~ 3 is defined by the following
property: for all S € § ~ g3,
Rt 28 = R 2D RS

]



The relation Rt is a typed variant of the “weakest prespecification” R/R of Hoare and He
(see [7]); its equational presentation lends itself well to the sort of calculational style of proof in
which we are interested. (To be precise Rf = o R/Ro . Strictly, therefore, the type 8 should
appear as an argument to {. We only use the definition here in the case that § = u®.)

For the moment, we shall ignore symmetry and concentrate on the properties of half-
congruences. Consider relation B € pu® ~ ud.

Property 8 Rj is reflexive.
Proof: R 2 R o u®, hence by definition 7, Rt D> ud.
a

Property 9 (cancellation) R 2 R o Rf.
Proof: Rt D Rft, hence by definition 7, R O R o Rf.
a

Property 10 Rj is transitive.
Proof:

Rt 2 Rt o Ri

= { definition 7 }
R D Ro Rio Ri

< { property 9, twice }
R DR

true
a

Property 11 If R is a catamorphism, then R is ®-substitutive.
Proof: Assume that R is a catamorphism; in particular, let B = (S]), and therefore, by the
unique extension property 5(b), R © 7 =S o ®.R. Substitutivity is proven as follows.

Ri o1 D 1o ®.(R})
{ property 2 }

T o & (R}t) o TU
definition 7 }

RorT o d(R})o TuU
uep 5(b) )

S o ®R o O(R}) o TU
definition of relator, in particular 4(c) }
S o ®(Ro Rf)orTu
property 9; ® is monotonic }
S o®RoTU
property 2 }

2 S50 &R
uep 5(b) }

=

1
Il
o
PRI & SR (N IV - U

-
=
c
(4]



a

To sum up properties 8, 10 and 11:

Corollary 12 If R is a catamorphism, then Rt is a half-congruence.
0

We now address the reverse implication: that is, we show that all half-congruences can be
expressed in the form (S))t for some .

Lemma 13 R{ = R iff R is reflexive and transitive.
Proof: By properties 8 and 9, Rt is reflexive and transitive; thus if Rf = R, then R too is

reflexive and transitive. Conversely,

R is reflexive and transitive
{ definition }
R D> uyd A R 2 R°R
= { monotonicity, definition 7 }
RoRt{ 2 udo Rt A Rf 2 R
{Rtep®~pud}
RoRt 2 Rt A R} 2 R
= { property 9 }
R > Rt AN Rf 2 R
{ antisymmetry }
Rt = R

O

Lemma 14 If R is reflexive and transitive, then R = (Ro 7)) iff R is ®-substitutive.

Proof: Let R be reflexive and transitive. We prove “if” and “only if” separately. First,

R = (RoT)
= { uep 5(b) }
Ror = Rorto d.R
= { RO ud, reud~oud }

Rer D2 10 &R
Now, for the other implication,

Ror DO 7o ®R
=> { monotonicity, R 2 R o R }
Ror D Roro®.R

{ see below }
Ror = RoTo ®.R



{ uep 5(b) }
R = (RoT7)
The hint “see below” is the following:
Roto &R
2 { R D u®, relator @ is monotonic}
RoTo &.ud
{repud —o.ud}
RoerT

[mi

Property 15 R = (Reo7)tiff R is a half-congruence.
Proof:

R is a half congruence
{ definition }
(R is reflexive) A (R is transitive) A (R is substitutive)

= {13 and 14 }

Rt = R A R = (RoT)
= { calculus }

R = (Ro )t
= {8,10,11}

(R is reflexive) A (R is transitive) A (R is substitutive)
{ definition }
R is a half congruence

Now for arbitrary §, we have that ()1 is a half congruence, but not necessarily symmetric,
so we shall consider the intersection of such a relation with its own converse: clearly the result
is reflexive, transitive and symmetric, since intersection and converse preserve reflexivity and
transitivity. We need only show that intersection and converse preserve ®-substitutivity. First

converse:

Property 16 R is substitutive iff Ru is.
Proof:

Ror D 70 ®R

{ property of v, relators }
Tuo Ru D @.Ruo Tu

{ property 3 }
70 ® Ruo Tu

property 2 }
Rouor D 7T o0 & RU

Ii

Rv D
{



O

Property 17 Intersection preserves substitutivity.
Proof: Assume that R and § are ®-substitutive; i.e., assume

(18) Ror 2D 70@®R
(19) SeT D 70095

Substitutivity of their intersection is proven by:

(RNS)orT
= { set theory, T is a function }

(Rer)nN(SerT)

2 { assumption; monotonicity of intersection }
(r o ®R) N (1 o 3.5)

2 { set theory }
7o (®.RND.5)

o) { monotonicity of relators }
7o & (RNS)

]

Properties 16 and 17 together show that substitutivity of (S){ N (S)tv follows from substi-
tutivity of (S)t, which has already been established. In all we have proven:

Theorem 20 Relation R € u® ~ ud is a congruence relation iff R = ({S)t N (S)tv for some
S.
g

3 Induced Congruence Relations

We conclude with a proof of a theorem on congruence relations which are induced by functional
catamorphisms. A weaker version of the theorem (an implication rather than an equivalence)
occurs as a standard exercise in many universal algebra textbooks; the stronger version given
here is stated (with a proof only of the implication) in Ehrig & Mahr ([4], p.77).

Theorem 21 For (total) function f € a—u®, f is a catamorphism iff fu o fis a congruence
relation.

Proof: To see that if f is a catamorphism. then fu o f is a congruence, note first that fu o f
is equal to ft, since for all X

f 2 X

= { definition of { }
f 2 feX

= { property 3 }
feof 2 X



Moreover, fu o fis obviously symmetric, so we have fu o f = fin ffu. It follows by theorem 20
that if f is a catamorphism, then fu o fis a congruence relation.
The other implication is proven as follows:

fu o f is a congruence

=> { lemma 14 }

foof = (o for
= { uep 5(b) }

fuofor = fuoforod(fuo f)
= { monotonicity }

fofuofor = fofuoforod(fuof)
{ f = feofuof, definition of a relator 4(c) }
for = forod. fuodf
{ uep 5(b) }
f = (foro @ fu)

}

4 Conclusion

In this paper we have given a complete characterisation of a congruence relation on an initial
algebra in terms of relational catamorphisms. Whether or not this will prove to be a particularly
useful characterisation we cannot yet say. However, we are strongly encouraged by the economy
of our calculations which is a major driving force in our work. The economy that has been
achieved here can be traced back to the concise statment of the initiality of u® and the use of
three Galois correspondences, namely, properties 2 and 3 and definition 7.

Acknowledgement

All proofs in this document were prepared using the proof editor system developed by Paul
Chisholm [3].

References

[1] R.C. Backhouse. Naturality of homomorphisms. Lecture notes, International Summer
School on Constructive Algorithmics, vol. 3, 1989.

[2] R.C. Backhouse, P. de Bruin, G. Malcolm, E. Voermans, and J. van der Woude. Types
and relations. Eindhoven University of Technology and University of Groningen, September
1990.

[3] P. Chisholm. Calculation by computer: Overview. Technical Report CS 9007, Department
of Computing Science, University of Groningen, 1990.



[4] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification I. EATCS Monographs on
Theoretical Computer Science. Springer-Verlag Berlin, 1985.

[5] J.A. Goguen, J.W. Thatcher, and E.G. Wagner. An initial algebra approach to the specifi-
cation, correctness and implementation of abstract data types. In R.T. Yeh, editor, Current

Trends in Programming Methodology, Volume 4: Data Structuring, pages 80-149. Prentice-
Hall, 1978.

[6] T. Hagino. A typed lambda calculus with categorical type constructors. In D.H. Pitt,
A. Poigne, and D.E. Rydeheard, editors, Category Theory and Computer Science, pages
140-57. Springer-Verlag Lecture Notes in Computer Science 283, 1988.

[7] C.A.R. Hoare and Jifeng He. The weakest prespecification. Fundamenta Informaticae,
9:51-84, 217-252, 1986.

[8] G. Malcolm. Data structures and program transformation. To appear, Science of Computer
Programming, 1990.

[9] G. Malcolm. Algebraic data types and program transformation. PhD thesis, Groningen
University, 1990.

[10) E.G. Manes and M.A. Arbib. Algebraic Approaches to Program Semantics. Texts and
Monographs in Computer Science. Springer-Verlag, Berlin, 1986.

[11) J. Meseguer and J.A. Goguen. Initiality, induction and computability. In M. Nivat and J.C.
Reynolds, editors, Algebraic Methods in Semantics, pages 459-542. Cambridge University
Press, 1985.

10



