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i L Introduction

Path-finding problems appear in a variety of disguises,
mostly obvious but some of which are not readily apparent.
Examples'of the latter can be found in [Backhouse, 1979;
Carré: 1979: Tarijan;, 19791. In recent years it has
become evident that there is a small central core of path-
finding algorithms, variants of which have been repeatedly
rediscovered in novel applications. Indeed, this central
core consists almost exclusively of algorithms known to
numerical analysts for many, many years which solve a
system of linear equations AX = b where A is a real nxn
matrix, X is an nxl vector of variables and b is an nx1

vector of real constants.

The connection of path-finding problems with the solution
of linear equations has been a fruitful one, both for
numerical analysts interested in sparse systems [see e.g.
Duff, 1977] and computer scientists in general [e.g. Aho,
Hopcroft and Ullman, 1974], but it still cannot be claimed
that the connection is completely understood. Some
authors have attempted to find a minimal axiom system for
which the classical techniques will work [Aho, Hopcroft

and Ullman, 1974; Lehman, 1977]. An alternative approach
initiated by Backhouse and Carré [1975] and further
developed by Tarjan [1979] is to use the algebra of regular
expressions, expressing path-finding problems via homo-

morphisms which map all paths through a graph to the given



problem domain.

One particularly important contribution made by Tarjan
[1979] was to introduce the notion of a non-redundant
regular expression. Tarjan then related the problem

of solving the linear system of equations Ax = b in real

arithmetic to the problem of finding non-redundant

regular expressions, thus clarifying greatly our under-
standing of the relationship between the two problems.
Unfortunately, Tarjan's results were based on a lemma
(lemma 2, "The hardest result in this paper") whose proof
was incomplete and unnecessarily hedged with qualifications.
The sole objective of the present paper is to provide a

complete and accurate proof of Tarjan's lemma.

The proof we give of Tarjan's lemma is long and often
tedious. Essentially, it consists of a reworking of the
well-known technique [Ginzburg, 1968] for establishing
whether two regular expressions are equal, but with the
additional handicap of establishing whether they are equal
when viewed as functions of real numbers. However, the
proof does introduce, we believe, novel insights into the
relationship between matrix algebra and graph theory. For
example,lemmas 7 and 8 prove that the process of reducing

a deterministic finite-state machine has an equally valid
analogue in real arithmetic. To allay the reader's boredom
we have tried to highlight sight insights in introductory

comments scattered through the text.



2. Regular Expressions

Let £ be a finite alphabet containing neither "A" nor
b A regular expression over I is any expression
built by applying the following rules:

(1a) "A" and "@" are atomic regular expressions; for

any a € I, '"a" is an atomic regular expression.

(1b) If P and Q are regular expressions then P + Q

is a compound regular expression.

(1c) If P and Q are regular expressions then P°Q is a

compound regular expression

(1d) If P is a regular expression then P* is a compound

regular expression.

In a regular expression, A may be interpreted as the empty
word, @ as the empty set, + as set union, ° as concaten-
ation and * as reflexive, transitive closure (under
concatenation). Thus one interpretation of a regular
expression R is a set o(R) of strings. More precisely,
we define o(R) as follows:

(22) oCA) = {A}; o(P)

@; o(a) = {a} for each a in I.

(2b) o(P+Q)

{w| we Por we Q}

(2¢) o(P'Q)

{w | w=w,"wW, where w; € P and w, € Q}

(2d) o(P¥) = {w | w=Aorw= W1Ws...W, where w, eP.,

T =1 20},

A second interpretation of a regular expression is as a

function of real numbers. Specifically, suppose a mapping



r is defined from £ to JR (the set of real numbers).
Then we extend r to all regular expressions as follows:

(Ja) # r(Wp=aqs im0

(3b) r(P+Q) = r(P) + r(Q)

(3c) r(P'Q) = r(P)'r(Q)

(3d) r(P*) = 1
1-r(P)

Note that r(R) is not always defined - since inverses

don't always exist.

It is useful to introducé some additional terminology:
A constant expression is a regular expression built from
@ and A using only the + operation. A linear expression
is a regular expression built from I using only the +

operation. A constant + linear expression is one built

from the atomic expressions using only the + operation.

A constant (linear,constant + linear) matrix is a matrix

all of whose elements are constant (linear, constant +

linear) expressions.



3. Redundancy

A regular expression R is simple if R = @ or R does not
contain @ as a subexpression. A regular expression R

is non-redundant if each string in o(R) is represented

uniquely in R. A more precise definition is as follows:

(4a) A, @ and a, for a € I, are non-redundant.
(4b) Let P and Q be non-redundant.
P+Q is non-redundant if o(P)no(Q) = ¢
P°'Q is non-redundant if each w € o (P-Q) is
uniquely decomposable into w = uv with
u e of(P) and v.¢ 0(Q).
P* is non-redundant if A ¢ o(P)
and each w # A in o(P*) is uniquely
decomposable into w = WiWz .o Wy with

LA e ofR) ftor 1 < 1 < k.




4. Equivalence of Regular Expressions

Let R and Q be regular expressions. R and Q are said to
be equivalent (written R = Q) if and only if
(i) o(R) = o(Q)
(ii) r(R) and r(Q) are both defined, and

(1i1) E(BJB-T(

Below we observe some simple equivalences between regular
expressions. These equivalences will be used without

comment in the sequel.

Let P,Q,R be regular expressions and suppose r(P), r(Q),
and r(R) are all defined. Then, we have

Al (P+Q)+R

P+(Q+R)
Q) T irCR)
(P°R) + (Q'R)

A2 P’ (Q+R)

A3 (P+Q) "R

A4 P'(Q°R) = (P°Q)’R

A5 P+Q = Q+p

A6 P+0 = P

A7 P*A S-S 4t
A8 P9 = p-= Al

Suppose R is a regular expression and suppose r(R*) is
defined. Then

A9 R* = A + R-R*

Note that, using A5,A6,A7 and A8 and the observation @*:=A,
it is possible to transform any regular expression R such
that r(R) is defined into an equivalent, simple regular

expression. This is achieved by.repeating the following
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transformations until none is applicable:
(i) replace any subexpression of the form ¢.P
or P.p by 0;
(ii) replace any subexpression of the form @+P
or P+ by P;

(iii) replace any subexpression of the form @* by A.

We shall use matrix notation as a shorthand for a set

of equivalences. Specifically, suppose
Y = [yl,...,ym]', B = 1iDi.csialyl' and C =
[(c1,...,cnl' are m x 1 vectors of regular expressions

and A = [aij] is an m X m matrix of regular expressions.

Then T = B
is short for ¥:; ©b; Vi, 1 21 < my,
T 2 B
is short for ¥ = b Tt o (Vi, 1 << m)
 GEle S L
is short for y; = ajyb; + a;5by ... +ajpbpy (Vﬁ, 15isnm)
and | Y = A-B+C
is short for -y; = a;yb; + ajoby + ... *+ ajaby + ¢

(V&, I £ 1 < my).

We shall use the notation a;, and a,j; for the ith row

and ith column (respectively) of the matrix A. géz)

is used to denote the 1lxm row vector [§,...,0,A,0,...,0]

in which the ith element is A and the remainder are §.

Séi)is the transpose of gég) - i.e. it is the corresponding

¢(mxn)

column vector. is used to denote the mxn matrix all

is used

¢(m)

of whose entries are 9. The abbreviation
instead of ¢(mX!) and ¢(m)'instead of ¢(lxm). l(m) is used

to denote the mxm unit matrix (with elements in [K).



Finally, suppose A=[aij] is an mxn matrix of regular
expressions. Then o(A) is defined . to be [o(aij)] and

r(A) is defined to be [r(aij)].

> >



5. The main lemma and its proof - an outline

Our objective is to prove the following lemma.
Lemma M. Suppose P and Q are non-redundant regular
expressions and r(P) and r(Q) are both defined. Then

P.=Q if and only.if o(P) = 0(Q).

To prove lemma M we show that all the processes used to
prove (or disprove) the claim o(P) = 0(Q) can be used to

prove (or disprove) r(P) = r(Q).

Let us review the steps used to prove that o(P) = o(Q).

[ Ginzburg, 1967] Firstly, any regular expression may
be naturally associated with a transition diagram having
a single start node and a single final node. A-arcs
may then be eliminated from the transition diagram thus
producing a non-deterministic machine. The '"subset
method" may then be applied to construct a deterministic
machine all of whose states are accessible from the start
state. Finally, equivalent states in the deterministic
machine may be '"coalesced" to form a reduced machine.
When this has been done for the two expressions P and Q,
o(P) = 0(Q) if and only if the two machines are identical

(up to renaming of states).

Algebraically, each of these steps amounts to constructing
an equational characterisation o(Y) = o(A)o(Y) + o(B) of

the given expression P in which Y and B are column vectors
and A is a matrix. The different types of machine are |

expressed by constraints on A. B is a constant vector
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indicating which states are the final states and the
element ys of Y corresponding to the start state s is

B (We shall always arrange that s = 1.)

Our proof that P = Q iff o(P) = o0(Q) therefore consists
of showing that the algebraic manipulations implicit in
constructing reduced machines for P and Q do not violate

the rules of real arithmetic and that the resulting

equations have a unique solution whether the regular

expressions are interpreted as sets or as functions of
real numbers. Thus we can conclude that if o(P) = o0(Q),

r(P) and r(Q) are solutions of the same non-singular

system of simultaneous equations and hence are equal.
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6. Preliminary Lemmas

Suppose A = [aijJ is an mxm matrix of regular expressions.
We say that A is definite if and only if r(A) is defined
and, forall mxl vectors T,

P AT = o TogY

Lemma 1 Suppose B is an mxl vector of regular expressions

and suppose A is a definite mxm matrix of regular expressions.
Then the equation ;
Y = 0(A)Y +0(B)

has the unique solution

b &

o(A)*o(B)
and the equation

: 4

r{(a)xr + r(B)
has the unique solution

Y= a™- raan™e®

Proof If A is definite then oc(A) does not possess the
"empty-word property" [Backhouse and Carré, 1975], hence
Y_= o(A)Y + o(B) has the unique solution Y = o(A)*o(B)
[Salomaa, 19691].

(m)

Also, if A is definite then r(A) is defined and 1 - r(A)

is non-singular. Thus the equation Y = r(A)Y + r(B)

1

has the unique solution Y = (l(m)— r(A)) 'r(B). O

In view of lemma 1 let us use the notation A* as a shorthand
within equivalences as follows: '
Let £(P,Q,...) be an expression involving P,Q,... and
the operations + and ° . Then the equivalence
T = iae PN
is a shorthand for
£(a(A)*, o(P), o(Q))
£(a™- ray”!, r@), r@).

a(Y)

and rCY)
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Using this shorthand we can rephrase lemma 1 as:
Lemma 1 Suppose B is an mxl vector of regular expressions
such that r(B) is defined, and suppose A is a definite
mxm matrix of regular expressions.
Then the equation

Y =AYe +'B
has the unique solution

T = A'D 0

One tactic which is used in constructing a deterministic
machine from a regular expression is to add extra A-arcs
to an existing graph (possibly also adding extra nodes).
As we shall see, this is modelled algebraically as adding
the product CD of an mxl vector C and a 1xm vector D to

an mxm matrix B. We therefore need two general results

concerning the definiteness of B+CD.

Lemma 2 Suppose B, C and D are, respectively, an mxm,
mx1 and 1xm matrix of regular expressions. Suppose
A = B+CD. Then A is definite if B and DB*C are

definite.

Proof Suppose T = AT, A = B+CD and B and CB*D are definite.
We will prove that T = Q(m)t.
Now, since T =2F

y g

(B+CD)T

BT + CDT (1)
So, since B is definite,

T

B*CDT

.' DT

DB*CDT e (2)
But DB*C is definite. We conclude from (2) that

DT = ¢
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Substituting in (1),

T

BT
But, since B is definite, we conclude that
Lemma 3 Suppose the mxm matrix A is definite. Suppose

also that A = B+CD where B is mxm, C is mx1l and D is 1xm.

Then [B c] is also definite.
. 5 ¢

Proof Suppose T = [B 1T

D9
)
Define the mxl and 1x1 vectors T, and T, by T =| T2,

Then T, = Bf; + CL,
and Th o= oD
Hence T, = (B +Ch)Py = AT,

But A is definite. Therefore T, = Q(m)f
Thus Tz DT1 ¢-

@) - ang -[B c] is definite. O

Ioer T

D9
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7. Equational Characterisation

Let R be a simple and non-redundant regular expression.

We say that R is equationally characterised in terms of

Y,A,B (or Y,A,B is an equational characterisation of R) if

and only if

s £ Y is EY1,...,ym]', an mxl vector of regular
expressions, for some m 2 1, such that
(a) vy is simple and non-redundant (1 < i < m)
(b) R is yi
Gc) For all i, 1. < i < m,‘a W& rx-such

that {u}‘o(yi) s o(R).

2. A is a definite, constant + linear matrix of order
mxm.
S B is an mxl constant vector.

4. 1= 4% +8

9% AY + B is an mxl vector of non-redundant regular

expressions.

Remarks: We can regard Y,A,B as specifying a transition
diagram with start node 1 (condition 1(b)). The final
nodes are those nodes j such that bj o K. The
diagram is all-admissible (condition 1(c)) and vy i85 a
regular expression describing the set of all words taking

node i to a final node (condition 4).

Note that condition 1(b) can be expressed by the matrix
formula
= )
R = B Y

We shall make use of this formula. later.
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8. The Proof

The first step in the proof of lemma M is to show how

to construcf a transition diagram from a given regular
expression (lemma 4, below). Much of lemma 4 is tedious,
being concerned with checking the definiteness and non-
redundancy of the equational characterisation. By far
the most interesting part of the proof of lemma 4 is (e)
in which it is shown that a definite equational charécter-
isation of a non-redundant regular expression of the form
P* can always be constructed. The property of definite-
ness was not established by Tarjan;l consequently he was
only able to claim the validity of his lemma '"except on a
set of measure zero" rather than everywhere as we shall

establish.
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Lemma 4 (Construction of a transition diagram from a

regular expression.)

Let R # § be a simple and non-redundant regular expression
such that r(R) is defined. Then 4 Y' = [y;,...,y T, A=la ;]
and B = [bl...bm]'such that R is equationally characterised
by Y,A and B. Moreover A and B have the additional
properties.

goTPy - 9_(()2)

FivEy ™= Q(m) and 2 = Q(m)'.
(i.e. node m is the only final node, and there are no arcs

entering node 1 or leaving node m.)

Proof Suppose R # § is a simple and non-redundant regular
expression such that r(R) is defined. We argue by induction
on the structure of R.
(a) Suppose R is A.

Then K = [§]1 A + &,

i.e. [Al, [gl, [A] is an equational characterisation of R.

[ This corresponds to the diagram ::::

(b) Suppose R is a, an element of I.

p 3l (2]~ (2]

i.e. [a] « [? al, |[@p| is an equational characterisation
9 9]

Then

- p
j I |
1}

A
of: R S

- y a
[This corresponds to the diagram —><:::>——1><:::) |

(¢c) Suppose R is P+Q. Then if R is simple and non-redundant
so too must be P and Q. Thus, by induction we may

suppose that P is characterised by U = [ui,...,upl’', M



.]-7‘

(m) : 2 2 :
and e and Q is characterised by V [vl,...,vn] 5
n
N) a'nd _e_c()n)' Let Y })_e [P+Q}Iu1’ooolyum’v1’ oo,vn)A]"
A be & oY efP !¢
o | - (m)
g(@n+l) il ! g(mxn) Zom
¢(nxm) N i (D)
-~ 1—on
g g(m+n+1)'
(m+n+2) & =
and B be Eo,m+n+2 :
{Trhis construction is equivalent to
P
A
A
Q

, =

Clearly, properties 1(a),(b) and (c) hold by induction
and the assumption that P+Q is simple and non-redundant.

To prove that A is definite, suppose T = AT.

T _
et T = T; where T;, Ty, Ts, and T, are

Ts
b



(d)
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are respectively of order 1x1, mxl, nxl and 1x1.

Then
= (m (n)
Ty = Elo)Tz + 830 Ty
- .. (m)
Tz - M Tz <5 gom Tlo
Ba = ey @ én)Tu
~on
Tz. = ¢'T|. = ¢

Hence, by induction, T, Q(m)' and T; = Q(D)

2(m+n+2)

e By = BBl T = i.e. A is definite.

It is easily verified using the induction hypothesis
that-¥ = =AY & Be Also, A and B are obviously non-

n
redundant, and AY + B = [P+Q, MU + e(m) e( )

NV +
—om’ —on '’

%
So, again by induction, AY + B is non-redundant.
The remaining properties are also easily verified.
Suppose R is P-Q. Suppose P and Q have been

characterised as in (c) above.

Let Y be [u;v,, U2Vi,eee,UnVis Vyiyeee,Vnl',
: Tom . 1?
|
(nxm)!
2 I N
" (m+n) .
and B be so,m+n

[EE&S construction is equivalent to

Q}A—GQ > 5
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Firstly, each element in Y is non-redundant.
Porst 1A not,zai, W; Wi,iiWa,¥Wi's5iwe! sueh that
W = W,Wp. mowp'wy! e o(uyvy)

where w;,w;' € U(Ui),W2,W2' € o(vi)

and w; # w;' and wa # wy'.

But property 1l(c) holds on U. That is,awa STy
such that wsw; e o(u;) and waw;'e o(uy).

Hence (wawi)w, = (wawi')wa'e o(uvy) = o(P*Q)
contradicting the non-redundancy of P-Q.

Properties 1(b) and 1(c) are easily established on Y.

To establish property 2, suppose T = ng where

Th 18 mxl and T; 15 nxit. Suppose T = AT. where
: . (m) _(n)
Thén~T; = HI % i 2

and T, = NT,

Thus, T, = g'®) (since N is definite)

dd- = NE,
= o) ; A o
Hence T; = @ (since M is definite)
l.¢.f T E Q(m+n).

To prove that Y = AY + B;note that

@ (m)
DM gom

Hence Uv; = MUOv,; + e(m)v1

=om

But W= gS%)V

g Uv, = MUv,; + e(m) g&?)V

Also, V = NV + Qé:)

Hence Uv, : M lséz)aéﬁ) Uv,| + séT;fg
v ¢(nxm)l N v

1.6, T S AY ¥ B,



(e)

Consider now property 4.

By the induction

hypothesis, AY + B is non-redundant if MUv,; +

e(n)V is non-redundant.

MU + géﬁ), by the induction hypothesis,

is non-redundant.

(m)
Eom =10
Now, U =
(m)
and MU + e

non-redundant and o(MU) < o(u;).

Therefore, MU is

Hence, since

u;v; is non-redundant by assumption, MUv,; must be

non-redundant.

Finally,

e(m)

. e(n
=om ) |

a)v is obviously

non-redundant and so (again making use of the non-

redundancy of MU +

non-redundant.

(m)

e
=Om

) (MUv,) + (e

HP_ES?)V) is

Suppose R is P* and P has been characterised as in

(c) above.

Let Y be [P*,UP*+e ™) A7

[R,u1R+A,u2R,...,umR,A]'),

(i.e.

. ) * 3
e . _“L i a2
(m+2) . (m)_(m) _(m)
2 § M+20m = 10 g-01
- , Q(m)' £¢ -
and B be gé?;f;.

This construction is equivalent to

0235 )
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Note: M + 9‘2; QET) is constructed by adding A to the

(m,1)th entry of M which, by induction, is 0. Hence

e oD o) = x0) + xce® oD

(m) (m)
T(M) + re_ )ergl).
Properties 1(a)-(c) are easily established on Y.
Consider the definiteness of A (property 2). It is easy

(m) _(m)

to show that A is definite if M + e = is definite.
-—0om =10
But M is definite.

also, o(e!™)oy*a(eln)) = o(P) (1)
aid’  r(d®y (1) san) tee™)y = rp9) ()
Tl g “om

Thus, since P* is non-redundant,

A ¢ oe™)yoy*o(e'™)
e ~om

and, since r(P*) = (1 - r(P))—1 is defined,
(m) (m) =1 2 ()
S npells avsd O0) i Son el
. )y 2 (M) be il o .
i.e. 210 y#gom is definite and, using lemma 2,

A is definite.
[Eq.(1) is proved as follows:
P = e(m)U and U = MU + e(m)
: el T ~om

by the inductive hypothesis. Whence, since M is definite,
(m)
= *x
ag(U) o(M)*o(e " )

Thus o(P) = c(gET))c(M)*c(gﬁg)).

Similarly, r(U) (l(m)—r(M))_1 r(ggz))

and so r(P) = r(_e_ET)) (l(m)-r(M))-1 r(gé::)).

This is equation (2).]
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Now, consider property 4.

We have, U = MU + gégn (induction hypothesis)
Hence, UP* + e(m)s (MU + e(m))P* + e(m)
= =om e B!
Also, P = e(m)U
-4
and P* = PP* + A
(). . (m), (m) (m)
* + = * * 4+ -
s g01 e Y Som (210 - ) go1
But Mgg?) = Qfm) (property 7 of the induction hypothesis)
and e(m) = e(m) e(m) e(m)
~om “om (F10 . i
c P UIE = (o W) () Jppall, LUIEYS ()
s oL} =01 =01

It is now straightforward to show that Y = AY+B.

Finally, consider property 5. (The remainder are obvioﬁs).
We have to show that AY+B is a vector of non-redundant
regular expressions. Now, we have already observed that

M + 3;5) SST) ié non-redundant and B is obviously so.

Thus,‘it amounts to showing that (M + ggz) EST)) (UP* + EST))
+ ggT) is a vector of non-redundant regular expressions
(m)

om
redundant. The proof parallels that given in case (d)

knowing that U, P = gET)U, P* and MU + e are all non-

above and so is omitted. O

The next step is to show in algebraic terms how to construct
a deterministic finite state: machine from the transition

diagram corresponding to R.

It simplifies the proofs if we consider two separate
processes - one which introduces A-arcs followed by one
which eliminates them. The next lemma relates to the

elimination of A-arcs.
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Lemma 5

Let R # § be a simple, non-redundant regular expression
and suppose Y, A, B is an equational characterisation of
R. Then there is an equational characterisation

Y, M, D of R related to Y, A, B as follows:

(a) A = C+L where C and L are non-redundant constant and

and linear matrices, respectively.

(b) M C*L and D = C*B.

Proof Since, by definition, A is a constant+linear matrix
and each entry aij is non-redundant it is easy to abstract
constant and linear matrices C and L such that

A= C+L

Hence Y (C+L)Y+B = CY+LY+B
Now, C must be acyclic (since A is definite).
Therefore, C is definite, and

LS

C*LY+C*B. (1)
Construct the non-redundant, linear matrix M as follows:

Each entry m.. is § or the sum of elements a € I where

ij

a e mij <=> a € zij or E}k 2 1 and indices i, il,....;ik
Buch that 1 = 1, A ¢ Cy 83§
s-17s 3 s

Clearly, o(M) = o(C)a(M) + o(L)

(1 ssesk)_and a c Li i

Hence, since C is definite,

o(M) = g(C)*a(L) (2)

To prove that‘

ra) = (1™ _rcy) ey (3)



24.

consider the matrix Q of regular expressions, where

b5

_m
j = L Cyp Dyj 13

M3 Ty
We claim that Q is non-redundant.
Suppose otherwise. Since M,C and L are, by construction,
non-redundant there are only two possibilities

(1) cikl mklj - - cikz mk2j is non-redundant for some
i,j,k1 and ko

(ide) Cikmkj + Zij is non-redundant for some i,j and k.

Case (i). Consider the non-redundant expression

He 8 Taaig e Gl U B

Now, o(Y) = o(C)*o(L)o(Y) + c(C)*d(Bj

and o(M) g(C)*o(L).

g(Y) = o(M)o(Y) + o(C)*ao(B). ; (4)
Thus, a e o’(cik1 mklj) n o(cikzmkzj)

=> a € c(mk j) n c(mkzj)

1

and A e c(aikl) n o(aikz)

= E] w e_c(yj) such that
AW &l i (T
k{ ko
and A € o(aik ) n c(aik )
1 2
=> o(aik Vi ) i c(aik Vi ) # 0, ite. AY+B is
: 3 1 2 2
non-redundant.
This is a contradiction.
Case (ii) is proved similarly. Suppose a € o(cy, @kj) n
o(zij). Hence a € c(mkj) n o(aij) and A € PP
Let w € c(yj); Then aw € ¥ (using (4)) and so

aw € c(aik yk). Also, a e °(a1j yj). Hence
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N Vi i aij yj is non-redundant which contradicts the

non-redundancy of AY + B.

m
Now, c(mij) = Q;é c(cik)c(mkj) v o(gij)
m
and, since both mij andkilcikmkj + zij are linear,

non-redundant expressions, it is clear that

m
r(mij) = kzi r(cik)r(mkj) + r(zij).

i.e. r(M) r(C)r(M) + r(L).
and, so r(M) - (l(m)—r(C))‘lr(L).

We have thus proved (3).

Now, construct the non-redundant constant vector D as
follows. Each entry di 1g § or §. di ia X _1¥ bi is

A or E]kzl and indices i,, ix:---:ik such that A € cis-lis
(1lss<k), i, = i and bi = A.

S

We can now repeat the argument used on M to show that

o(D) = o(C)*a(B) (5)

1™ _rccy)) 1r() (6)

and : r(D)

Finally, combining (1),(2),(3),(5) and (6) we have
: ¥ =MY+D
and M= C*L
M is definite because

T = MT

=> 4

C*LT

(A+CC*)LT

LT +-€(C*LT)
LT + €T

1]

AT

= g(m) since A is definite.

Il
\
=
]
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Lastly, we can prove that MY + D is non-redundant by a
similar argument to that used in cases (i) and (ii)

above. O

Now we show how to construct a deterministic machine for

a simple, non-redundant regular expression R.

Lemma 6

Let R # § be a simple, non-redundant regular expression.
Thenia an equational characterisation Y,A,B of R such
that A = [aij] (1<i,jsm, for some m) is a linear matrix
and o(aij) n o(aik) = @ for all i (1<i<m) and all j,k,

1<sj#ksm.

Proof We begin by describing two procedures both of which
transform an equational characterisation U,M,C in which M
is linear into another equational characterisation Y,A,B

in which A is linear.

Procedure N (Removal of non-determinism).

Suppose U,M,C is an equational characterisation of R where

M is a linear, mxm matrix. Consider node i of M and suppose
there is an arc labelled a (a2 € ) from i to each node j

in some set S. Suppose the cardinality of S is greater

than 1. Define the non-redundant matrix M by
M+ ae(m).z e(m)

M =
Tol jeSTJe
Construct N = B
= 2™
' oi
5 )
des Jo | ol
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[;his corresponds to introducing an (m+1l)th node and

connecting it to node i and nodes j € S as shown below:

} nodes in S

o |

Let V be [ul,...,um,'z.uj]'
jes

and D be EC, 91 .
We claim that V,N,D is an equational characterisation of
B In fact this is easily checked - V and NV+D are non-

redundant because of the non-redundancy of MU+C, N is

definite by lemma 3 and, obviously, V = NV+D.

Now, eliminate the A-arcs from N using lemma 4. hat is,

construct the non-redundant matrix P such that

i = _
E(mm) g(m) » M ,,_‘_..a_e-(m)
-- ‘ol
P = ot} 2
e (m)"' -
jes jo L B b
% -2 2 £
Note that Biy » [M]ij when 1 < j < m.
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Thus the only arc labelled a leaving node i enters node

m+1 (which corresponds to S).

Construct also the non-redundant vector
e

e -l -
& - gl Q(m) * C
,Ess(.m) p ?
g Jd e

Then, by lemma 4, V,P,E is an equational characterisation

of R in which P is linear.

The second procedure allows us to identify and coalesce

'similar' nodes constructed by procedure N.

Procedure C (Coalescing similar nodes).

Suppose U,M,C is an equational characterisation of R in

which M is an mxm, linear matrix. We say that i and j

(1l<i,j<m) are similar in the characterisation if oo = Ejo
and ¢y = cj. Note that if i and j are similar then u; = uJ,
although the converse is not necessarily true. Testing

similarity is straightforward since, by the linearity and

non-redundancy of M, m =W, 1f and only 1T rLhe vectors of

io =jo
finite sets c(gio) and o(gjo) are equal. Also, since C is

a non-redundant, constant matrix, cy = cj it .and only if cy

and cj are both A or both 9.

If i and j are similar in U,M,C and i # 1 # j we can
coalesce them into one node as follows. Define the non-
redundant matrix M by

M = M + m + m

io 7 =jo°
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Construct
N = - ‘g(m)+ g(m)
| Jod oJ
i
Do p
E i
and D = [cl""’ci—1’¢’ci+1"'"cj-1’¢’°j+1’""cm’ci]"

This corresponds to introducing an (m+1l)th node, connecting
it to i and j as shown below, making i and j non-final nodes

and m+1 a final node if i was a final node.

\

} arcs from i
(equally, arcs
from j)

Let V be [U,ui]. Once again it is easy to show that

V,N,D is an equational characterisation of R.

Now eliminate the A-arcs and the nodes i and j as follows:

Let W be [Vl"'"Vi—l’vi+1’""vj-l’vj+1""’vm+1]'

Let P be [psfl where

pst ey — mSt if 1ss,tsm

s, m+1 = (g (¥ (2L l<s<m
.pm+1,s = if 1<s<m
Ppe1,ms1 = Mgty

Construct Q from P by removing rows i and j and columns

iand .
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d 5

Finally, let E be [dl""’di—l’di+1""’dj—l’dj+1""’ St

We claim that W,Q,E is an equational characterisation of R.

The proof of this claim relies on noting the following
subsidiary claims:

(i) P = LF*

(ii) giz:I)F* B giﬁ:l) when k # i and k # j.
A o = 1
{(111) Poo Rjo = ¢(m+ ) ;
:
where F = Q(mxm) 1e(m) v Tt B
ot 6l
g 9
5 >4
and L = M ¢(m)
= | Zio ? =
Now V3 polbBiE Yot =D

Hence, since N = L+F is definite,

¥V = (17D

But F is obviously definite. Hence LF* is also definite

and v

F* (LF*)*D

(1.e. =(V) = 20D L opiiy=1 om0 ry. (1) 1)) 1y 2e)
and  o(V) = o(F)*(o(L)a(F)*)*a(D)).

Therefore, if k # i and k # J,

S ), o el
wEEae = - THULET
= ggm]:'l)(LF*)*D (using (il))

e(™*1) (L px(LF*)*D + D)
—ok

S(m+1)

*
£ mwan
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et D) BV 1aD) (using- (1)).
SFOK

Thus, using (iii),

| e e 0 [55s coll Ik

It remains to check that QW+E is non-redundant. This as

straightforward except to observe that p is non-

m+1,m+1
redundant. This is because i and j are similar and MU+C
is non-redundant. Thus mijuj + miiui = mijuj - miiuj -

(mij + mii)uj is non-redundant.

At last we have all the bits and pieces needed to describe
the process of constructing a deterministic machine

characterising the simple, non-redundant expression R.

Firstly, by lemma 4, we can construct a constant + linear
equational characterisation Y,,A,;,B; of R. Using lemma
5 this can be transformed into a linear equational
characterisation Y,,A,,B,. Suppose A, is of order nxn.

Then with each j, 1l<js<n, we define the set associated with

node j to be {j}. Now apply the following process

starting with i = 0.

Suppose U,M,C is the linear equational characterisation of

R constructed so far. Suppose m is of order mxm.

Increment i by 1 and if i > m stop. Otherwise apply pro-
cedure N to U,M,C for each a e I. Now each application

of procedure N may introduce an (m+1l)th node associated with
some set S, say. If a node j (1<js<m) exists which is
already associated with S then nodes m+l1l and j are similar
and can be coalesced using procedure C (renumbering the

nodes appropriately). Otherwise m is incremented by 1.
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It is well-known that this "subset method" will terminate
and constructs a deterministic machine recognising R.
That is, it constructs a linear matrix A and a constant
vector B such that
o(R) = o(e10)0(A)*c(B)

and c(aij)ﬁc(aik) =9 Tor sll-3, and aitl T, k
s.t. 3.# k. Thus we have proved that the subset method has
the stronger property of constructing an equational

characterisation Y,A,B of R. 0

We now need to discuss the construction of a reduced

deterministic machine recognising o(R).

Suppose U,M,C is an equational characterisation of R where
M is a deterministic mxm matrix. Because M is deterministic
we can define mi(t), for each i (1<i<m) and each t € I, by
mi(t) = 1-11 and only 1T T ¢ o(mi.). If no such j exists

J
then mi(t) is defined to be m+l.

Suppose-1 s isds.m. . Then m+1 is said to be distinguishable

from i, Also i and j are said to be distinguishable if cy > cj

or%ﬂ t. € ¥ such that mi(t) is distinguishable from mj(t).
Now, indistinguishability defines an equivalence relation on
{1..m} which can be used to reduce M. Specifically, suppose
[i] denotesthe equivalence class‘containing i and suppose
there are n such classes. Number the classes from 1 to n
and let s(i) denote the number assigned to [i]. Without
loss of generality, assume s(1l) = 1. Define the non-

redundant, nxn matrix A as follows:
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Let p and q be integers in the range 1..n. Suppose
p = s(i) and q = s(Jj). Then apq is the sum of elements
téeol suchithatit e c(mij). (Note: t ¢ c(mij) = t e
o(mkl) for atl k € 1 3] and X . 17}, Thus A is well-

defined.) A is called the reduced form of M.

Lemma 7 A is definite.
Proof Let us define ap(t) (1<psn,tel) analogously to

mi(t): ap(t) =-q ¥f £ € c(apq). If no such q exists then

ap(t) is defined to be n+l. Note that
&) = s(m (t)) (1)

as(i

where s(n+l) is defined to be n+1l.

Now, suppose Y = [yl,...,yn]' = A-Y.

Let yinjre 9. Then
y = ..t bV (1<pz<n) (2)
P ter ap(t)

From Y we can construct an mxl vector W by defining
Wi ® doray

Let us also define N @.

Suppose P = gy{ly).

Then, w y

i P

n

tel o - o

L t'w
tex Bi(%)

In other words, W = M.W.
But M is definite, hence W = Qfm) 3 Consequently,

Y = 9" and A is definite. O



Analogously to the reduction of M, let us reduce the
mxl vector C to the nxl vector D. Specifically, we

define d ci and refer to D as the reduced form of C.

ECL)

Lemma 8 i and j are distinguishable if and only if u; # uj.

Proof It is easy to prove (and, indeed, well-known) that
if i and j are distinguishable then c(ui) # c(uj) and

hence uy 3 uj. What we have to prove is the converse -

i and j indistinguishable => uy Wiie

J

Cohsider the reduced form A and D of M and C.
Suppose X = [xl,...,xn]' is a vector of reals and

suppose
X =r(A)X + r(D) (1)

Such a vector exists and is unique by the definiteness of
/. Define the mxl vector Y = [yl,...,:m]' of reals by
- xs(i)' It is straightforward to verify that
Y = r(M)Y + r(C) (2)
(The proof parallels the verification of the definiteness
of A.) But M is definite and hence Y is the unique solution
to equation (2).
Hence Y = r(U)
since r(U) = r(M)r(U)+r(C).
Thus i is indistinguishable from j = r(ui) = r(uj) (3)
Similarly, we may define the vector P = [P1,---.Pn3' of
subsets of I* to be the unique solution of the equation
P = g(A)P+a(D)
and extend P to a solution Q of

Q = o(M)Q+a(C)
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Whence Q = o(U), and
i is indistinguishable from j = o(ui) = c(uj) (4)

Combining (3) and (4) we have proved our lemma. O

Corollary Define the reduced form V = [vl;...,vn]' of U

by Vs(i) =, Then V,A,D is an equational characterisation

of R.

Theorem
Suppose Q and R are non-redundant regular expressions and
r(Q) and r(R) are both defined. Then Q = R if and only if

g(Q) = o(R).

Proof We have already observed that a non-redundant regular
expression R can always be transformed into a simple, non-
redundant regular expression P such that R = P. So,
without loss of generality, we may assume that R and Q are
simple. Also, by definition, Q = R = ¢(Q) = o(R), so we

only need prove the converse.

Now, o(Q) = @ if and only if Q is @ (since it's simple).
Thus we only need to prove that

R#9and Q# 9 and o(Q) = o(R) = Q

mn
o

Suppose R # 9, Q # ¢ and o(Q) = o(R).

Then by lemma 6 there are equational characterisations U,M,C
and V,N,D of R and Q (respectively) where M is a deterministic
mxm matrix (for some m) and N is a deterministic nxn matrix
(for some n). Construct the reduced forms A,E and B,F of

M,C and N,D respectively. Then it is well-known that
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c(Q) = o(R) => a(A) = o(B) and o(E) = o(F) (after possibly
some renaming of nodes). But since A,B,E and F are non-
redundant, r(A) = r(B) and r(E) = r(F). Consequently,

*(R) = r(Q) and sSo, trivially, @ = R. ]
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