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In an earlier paper, one of the autheys presented an algebra for formulating and solving
extremal path problems. There"are striking simifarities between that algebra and the
algebra of regular languages, which lead one to.consides whether the previous results can
be generalized—for instance to pat‘h :ﬁiumeréﬁom problems:r-and whether the algebra
of regular languages can itself be profitably used {gi-the genéral study of path-finding
problems. This paper gives affirmative answers to bothi these, questions.
¢ , ,

1. Introduction o Sy
IN AN EARLIER paper (Carré, 1971), afi dlgebra was presented for the formulation of
certain extremal path problems, i.e. problems involving the determination of a path
through a graph such that some specified function of the numerical labels of its arcs
is either maximized or minimized. It was shown that in terms of this algebra, an
extremal path problem can be posed as that of solving a matrix equation of the form
Y = AY+B where A and B are specified, and it was demonstrated that such equations
can be solved by variants of classical methods of linear algebra, differing from these
only in the significance of the additive and multiplicative operations.

There is a striking similarity between some of the results in this earlier paper and
some results in regular algebra, i.e. the algebra of regular languages. 1t is therefore
natural to consider whether the results of the earlier paper (henceforth referred to as
BAC 71) can be generalized—for instance to path enumeration problems—and
whether it is profitable to use regular algebra itself to obtain general methods of solving
path problems.

In Section 2 we first give an axiomatic definition of regular algebra. This differs
slightly from that given by other authors, in two respects. Firstly, it employs a concept
of “definiteness”, which is a generalization of the notion of definiteness of BAC 71.
This concept has various concrete interpretations, which will be discussed subse-
quently: for instance it will be proved that for regular languages, non-definiteness
corresponds to the empty word property. The only other novelty of our axiomatic
formulation of regular algebra is that it is equally applicable to matrices on regular
algebras; our reasons for making this innovation will become evident in the following
sections.

1 Now at Department of Computer Science, Heriot-Watt University, Edinburgh, Scotland.
1 On leave from the University of Southampton, England.
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In Section 3 we note some well-known identities of regular algebra. It is then shown
(in Section 4) that two of these identities yield product forms for the closure A*
of a square matrix A, similar to the Jordan product form and triangular factor re-
presentations of inverse matrices in linear algebra. The product forms immediately
give algorithms for computing closure matrices and for solving equations of the form
Y = AY+B. These algorithms are similar to some of those derived in BAC 71, but
the algorithms given here are more general, and more evidently related to methods of
linear algebra.

We then consider various homomorphic images of regular algebras (in Section 5),
and find that these include several algebras which have already been applied to path
problems by other authors. In Section 6 we compare regular algebra with the network
algebra of BAC 71, and find that they are inconsistent in only one respect: that
whereas in regular algebra the closure A* of any matrix A is well-defined, if we add
to its axiom system the cancellative property of BAC 71 then A* ceases to be well-
defined unless A is meaningful in a physical sense.

We conclude with an illustrative example, in which we apply regular algebra and
one of its homomorphic images to path enumeration problems. The resulting algorithm
is the most efficient method of enumerating elementary paths known to us.

2. Regular Algebra
2.1. Definitions
2.1.1. Axioms. We shall consider an algebra R = (S, +, ., %) consisting of a set S on

which are defined two binary operations + and . and one unary operation *. The
following are assumed as-axiomatic.

Al (@+B)+y = a+(B+y) Ad a.(B+y) = (x.p)+(x.7)
A2 a.(B.y)=(x.f).y A5 (@+B).y = (x.7)+(B.7)
A3 o+pf = f+a A6 ata =«

where o, §, y € S.
The set .S contains a zero element§@such that
A7 a+¢d=a A8 ¢.a=¢=a.¢,
and a unit element e such that
AY ec.a=a=u.e
Finally the star (or closure) operator * obeys:
Al0 o* = e4a.a*

S.
All o* = (eta)* } forallae

2.1.2. Partial ordering. In view of Al, A3 and the idempotency law A6 we can define
a partial ordering <{ on the set S by

a<peotp=p
and a strict ordering < by
a<feoaxf and « # B
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1t is easily verified that
@< B oty < B,
«.y<B."
and
y.a<y.p foralla, B,7€S.
Note that we do not assume the cancellative property

a.y=p.y=>a=4,
and in consequence we cannot in general infer that
if a<p then a.y<B.7

2.1.3. Solution of equations. We define an element « of S to be definite if and only if
t=a.t=>1= ¢. Then we assume the following rule of inference:
Rl y=a.y+f=>yxa*.p
and furthermore, if a is definite then
y=a.y+f=y=a*.f
It will be observed that for any given « and f, the equation V¥ = a. Y+ p always has
a solution Y = o* . B. The first part of our rule R1 postulates that = a*. § is the
minimal solution, and the second part gives a condition under which this solution is
unique.
Henceforth we shall denote the set of axioms Al-All and the rule of inference
R1 by F1, and we shall call any algebra R = S, +,-% such that the set F1 is valid
in R a regular algebra.

2.1.4. Square matrices. Given any regular algebra R we can form a new regular
algebra .# (R) consisting of all p x p matrices whose elements belong to R. In the
algebra .# ,(R) the operators + and . and the order relation <X are defined as follows:
let A = [a;] and B = [b;}] be any p x p matrices with elements in R; then

P
A+B = [a,+b,), A.B=AB= [21 Qi « b"f]’
k=

and
A <B ifandonlyif a;=<by for all 4, j.

The unit matrix E = [e;)] is defined as that p x p matrix with e;; = e if i = j and
e; =@ ifi #J. The rows and columns of this matrix are described as unit vectors.
The zero or null matrix N is that matrix all of whose entries are ¢.

The powers of a square matrix A are

A’ =E, Ak = AFTIA k=12...)
Finally, the closure of A is

A* = ) Ak
k=0
Assuming the above definitions of +, ., and *, and with N replacing ¢, it is a
logical problem to prove (by induction on p) that .# H(R) forms a regular algebra,
ie. that all of A1-Al1 and the rule of inference R1 are valid in .# ,(R). This problem
does not concern us here, the interested reader is referred to its discussion by Conway
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(1971). However, we shall remark in Section 5 that for those examples of .# (R)
which concern us, we can infer the validity of the axioms and rule of inference from
previous literature.

2.2 An Example
There are various interpretations of S and the operators +, ., and * each of which
~ gives rise to a regular algebra. In particular, the above axiom system was first put
forward for Regular Languages (Salomaa, 1969) which are defined below.

2.2.1. Regular languages. Consider any finite non-empty set V= {v,,v,,...,0,},
which we call an alphabet or vocabulary, and whose elements we call letters. A word
over V is a finite string of zero or more letters of ¥; the string consisting of zero
letters is called the empty word.

The set of all words over ¥ is denoted by V'*. A language over V is any subset of
V*. The symbol ¢ denotes the empty set, and @* = e denotes the set consisting of the
empty word.

The sum o+ f of two languages « and B is their set union, and the product or
concatenation o. . B is the set consisting of all words formed by concatenating a word
in o with a word in B. The powers of a language « are defined by

=e ="t a (k=12..),

o
and the closure o* of a is defined to be 3 ok,
K=o

The regular expressions over V are the well-formed formulae obtained from the
alphabet V' U {¢}, the operators +,., and *, and the parentheses ( and ). Thus
(1) . (va+ve)* . (v; . (vs*) . v,)* is a regular expression. Also allowed are expressions
in which the dot is omitted, being denoted by juxtaposition, and parentheses are
omitted. In this latter case operator precedence is . before -+, and * before + and ..

Each regular expression denotes a language over V called a regular language.
If S(V) is the set of all regular expressions over ¥ U {¢}, then R(V) = (S(V), +, ., %)
is the free regular algebra generated by V.

2.2.2. Labelled graphs. A labelled graph G = (X, I') consists of a set X of p elements
X15 X2, - + -, X, together with a subset I of the ordered pairs (x;, x;) of elements taken
from X. The elements of X are called nodes and the elements of T are called arcs.
Each arc (x,, x,) is said to be directed from x, to x;, and is labelled with some element
1;; of a regular algebra R.

A sequence of ¢ arcs

H = (xb xkl)s (xkl’ xk;)’ ooy (xk,-ﬁ xj)
such that the terminal node of each arc coincides with the initial node of the following
arc is called a path from x; to x;, of order ¢. If i # j then the path p is said to be open;
whereas if i = j, pis called a closed path or cycle. A path (open or closed) is elementary
if it does not traverse any of its nodes more than once. The path product w(u) of a
path u is defined as the product of its arc labels:
W) = Iy, by, "+ - b e ‘

It is well-known that a p-node labelled graph G = (X, T ) can be described by a p x p
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matrix A = [a;;] where a,; = [;; if (x;, x;) €T and a;; = ¢ otherwise. Conversely, a
p X p matrix A can always be visualized as a p-node graph.

If we now interpret R as in the previous section, regarding each arc label on a
graph G as some regular language, then for any path u from x; to x; the corresponding
path product w(u) is obtained by concatenating the arc labels of u. Each word in the
resulting language is said to be a word taking node x; to node x;. The transitive closure
A* = [al}] of the matrix A of G will be such that af; is the set of all words taking node
x;to x;.

As this example suggests, the central problem in path-finding is to determine
particular elements of the closure A* of a matrix A in some algebra .#,(R). Some
methods of calculating these elements will be presented in the following sections.

3, Some Identities of Regular Algebra and their Analogues in Linear Algebra
w

If A is a matrix on a regular algebra .#,(R), then by R1 its closure A* = ) A*
k=0
is a solution of the equation

Y = AY+E 3.1)

and moreover, it is the unique solution if A is definite, i.e. if T = AT =T = N,
We observe here an analogy with linear algebra, where the equation

Y = AY+I 3.2)

has the unique solution Y = (I—A) ™! if I— A isnon-singular, thatis to sayif T = AT =
T = 0. With A* replacing (I—A)~?, a surprising amount of the theory of real matrices
holds in regular algebra, and several authors have already used variants of methods
of linear algebra to solve problems in the algebra of regular expressions (Salomaa,
1969), and also to solve extremal path problems (BAC 71). Here we shall derive
general methods—valid in any regular algebra—which are again related to linear
algebraic techniques.

For this purpose we need a number of identities in regular algebra, which are
listed below. In regular algebra all these identities are well-known, indeed they are
often listed as axioms (e.g. Conway, 1971). The identities can all be verified easily,
by writing each closure in expanded form and comparing terms on both sides;
alternatively, they can be proved formally using the system F1. We also give the
analogous identities in linear algebra, obtained by writing I—M) ™! in place of M*.

In regular algebra In linear algebra
A*A = AA* I-A)7"1A = AD-A)7! (3.3)
A(BA)* = (AB)*A A0I—-BA)™ ! = I-AB) 1A (34
(A+B)* = A*(BA*)* (I-(A+B))™' = I-A)"'I-BIA-A)"']"! (3.5
(A+B)* = (A*B)*A* (I-(A+B)™ ' = I-I-A)"'B]"1@I-A)"! (3.6)
(AB)* = E+A(BA)Y'B (I-AB)™! = I+A(I-BA)™'B 3.7

4. Product Forms for Closure Matrices

In this section we shall use the identities (3.5)-(3.7) to derive product forms for the
closure A* of a p x p matrix A, analogous to the Jordan product forms and triangular
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factor representations of inverse matrices in linear algebra. These product forms yield
algorithms analogous to the direct methods of linear algebra, for calculating the
minimal solution Y = A*B of a set of equations of the form Y = AY +B. They also
provide us with efficient methods of computing particular rows, columns, or other
submatrices of A*, which are frequently required in automata studies (Conway, 1971)
and in operational research (BAC 71).

Our techniques for deriving product forms are based on the following simple idea:
Given a matrix A = A®, we can split A into two matrices C® and S, and using
(3.6), write A* = AO)* — (C(1)+S(”)* = (C“’*S(”)*C(l’* = A(")*C“)*, say. In
doing so, the problem of determining the closure of A is turned into the problem
of finding the closure of two matrices A®) and C, Our strategy is to choose C*)
and S such that (a) the closure of C*) can be immediately calculated and (b) AD
has a “simpler” form than A(®). We can then repeat the process for AW, reducing
the problem of finding AW* to that of finding C@* and A®*, and so on. The process
{s terminated when, after p steps A® is of such a form that its closure A®* can also
be immediately calculated. Using alternative methods of splitting, combined with
different identities of regular algebra, we can derive different product forms for A*.

In the following discussion, the typical elements of a matrix M and its closure M*
will be denoted by m;; and mf; respectively, and the closure of an element m;; of M
will be denoted by (m,))*. The ith row and the jth column of M will be denoted by

m;, and my, respectively.

4.1. The Jordan Product Forms
4.1.1. Row and column decompositions. To obtain a product form for A*, we first set
A© — A and express A in terms of its column vectors:

P
A® = ,; alle . 4.1)

Then we can express A as the matrix sum
A® — CW 4 SM
where
P
O = affesy and 5 = 3 affep. @)

Hence, from (3.6),

AO* = (C(”+S(l))* = A(l)*c(l)*’ where AWD = C(”*Sm. (4'3)
Now since the first column of SM is null, the first column of A" is null also, so AW
can in turn be expressed as the sum

AW = C? 4 8@

where

P
C? = alle,o, and S@ = Y afje, (4.4)
i=3

and applying (3.6) again,
AL — (C(2)+S(2))* = A@*C®*  where AQ) = C*8@), 4.5)
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Continuing in a similar manner, setting

N N T
Jj=k+1
AW = CWxgw, (k=12,...,p), (4.6)
we obtain
AGTDE = ABRCBE (k= 1,2,...,p). %)
Now A® is null, so AP* = E. Therefore (4.7) gives
A¥* = CP*Cp—Dx . .. C*, (4.8)

We note that from (4.6) and (3.7),
CH* = (all™ Veyo)* = E+af D(eoaly V) e = E+ ali D(alk™ e,  (4.9)
Hence C%* differs from the unit matrix only in its kth column, where
cip* = {ag‘:: Xaimt®, for ek *.10)
(aii™ ), for i=k,
Also from (4.6) and (4.9),

» :
AR = ;—; 1 C(k)*agk]—l)ejo (k=12,...,p)

+

P
) l(E+af>"["(aﬁ‘.‘f")"‘em)aﬁ)“f”e,-o (k=12...p)

P . -
= j_'z:,“(a%",-‘"+a8*k“’(a£ﬁ“’)*a£’} Dyeso  (k=12,...,p) (411

The non-null columns of A% can therefore be obtained directly from those of A
using

J

+

(k—1)
b

) = alf )+ aly Daft ),
for k<j<p k=12..,p=0. 4.12)
The product form (4.8) was derived by repeated application of the relation (3.6),
(P+Q)* = (P*Q)*P*, to column decompositions. Alternatively, it is possible to
apply (3.5), (P+Q)* = P*(QP*)*, to row decompositions. Corresponding to (4.6)-
(4.8), if we set

P
R® = egal™ D, ™ = ) ecals
i=k+1
A® = TOR®* (kK =1,2,...,p), (4.13)
then
AG-D% _ ROFAGE (k= 1,2,..., D), (4.14)
hence
A* = RO*R@*. .. R@®*, 4.15)

We describe (4.8) and (4.15) as the Jordan product forms for A*. It will be observed
that if (as™ V)* is interpreted as 1/(1—aix "), then in linear algebra (4.8) and (4.15)
become the usual product form representations of the inverse of the matrix I—A
(Fox, 1964; Reid, 1971). '
4.1.2. Triangular matrices. For triangular matrices the relations (4.6)-(4.8) and (4.13)-
(4.15) defining the Jordan product forms can be greatly simplified. Specifically, in

12
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applying the column decomposition method to a lower triangular matrix L, (4.12)

gives IG) = G V=-= 1) for k < j < p, and so
) 4
L® = Y e (k=12,.., D) (4.16)
J=F+1

which is simply the original matrix L with its first & columns nullified. Thus C® is
formed directly from the kth column of L, and corresponding to (4.8) and (4.9) we
have
L* = C(p)*c(p—l)* vee QD%
where
C®* = E+lop(hs)*exos k=12,...,p) 4.17)
Similarly for an upper triangular matrix U, (4.13)-(4.15) give
U* = RW*R@* . .. RP*
where
R®* = E+ equ(th) ko> k=12..,p. (4.18)
If L and U are strictly triangular then (f)* = e and (uy)* = e for all k, so (4.17)
and (4.18) can be even further simplified, giving the relations
L* = Clr—1xCl=2)% . .. C(i)*’ where C®* = E+lge.0 4.19)
Ut = RIW*R@* . .. RP™D*, where R®* = E-+eqo 4.20)
which were derived in BAC 71.
4.1.3. Applications to the solution of equations. The product form (4.8) immediately
yields an algorithm for computing the minimal solution Y = A*B of the equation
Y = AY+B. From (4.8),
A*B = CP*C—Dx. .. C(”*B, .21
so if we form the sequence '
B = B, B® = CR*B*-1 k=12,...,p), 4.22)
the final term gives the required solution: B® = A*B. We note that from (4.9), the
successive B® matrices are given by
B = B, B® = B*~ D pal (k- Uyl (k=1,2,..,p). (423
Hence the solution can be obtained simply by performing p successive transformations
of A and B, the matrices A® and B® at each stage being obtained from (4.12) and
(4.23) respectively. This. method is analogous to the Jordan method of solving
Y = AY+B in linear algebra, with Y = A®Y +B® (k= 1,2,...,p) being the
equivalent system obtained after elimination of the kth Y-variable.
To obtain the minimal solution Y = L*B of a lower triangular system Y =LY+B,
(4.17) and (4.22) give the familiar forward substitution method
B® =B, B® =B Vil )Y (*=12..,p, (429
which does not involve any modifications of L. For an upper triangular system
Y = UY+B, (4.18) enables us to express the minimal solution as
U*B = R(l’*Rm* ... RIP*B (4.25)
which leads to the back-substitution method
B = B, B® = RP-k+*p&-D k=12,...,p) (4.26)
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From (4.18), the B matrices here are given by

BW® — B(k-—1)+eoq(uqq)*uqoB(k—1) (4.27)
where ¢ = p—k+1; hence they have elements
bs‘—l) for i+#gq,
* _ »
by b§7_1)+(u“)* Y ou, b4 for i=gq. (4.28)
r=gq

4.14. Weak transitive closure matrices. In regular algebra it is sometimes necessary

to compute the matrix A+ = Y A* for instance in compiling computer programs
k=1

(Barron, 1968). Now since A* = A*A, A* is the minimal solution of Y = AY+A,

which can be obtained by the Jordan method as defined above., However, with

B@ = A in (4.22), the final p-k columns of B® are identical to the corresponding

columns of A®. Indeed from (4.6) and (4.22),

al) = COCr-Dx ... %) = b¥, for k <j<p. (4.29)

Hence, from (4.22) and (4.29) we obtain the simpler algorithm
B® =4, B®=B&U4p U0k E Y k=1,2...p). (4.30)
On the two element Boolean algebra, (4.30) is known as Warshall’s algorithm

(Warshall, 1961). The complete A*-matrix is seldom required explicitly, but it can be
obtained by applying (4.30) and then using A* = E+ A+,

4.2. The Gauss Product Form

It will now be shown that by alternate applications of the row and column de-
composition methods defined above, one can express A* as a product of elementary
triangular matrices. The resulting product form leads immediately to analogues of
the Gauss elimination method and its variants.
4.2.1. Triangular decomposition. We again consider a p x p matrix A®, to which we
first apply the row decomposition

A® = RO LT

where

P
R =egal® and TV = Y eyal9 4.31)
i=2
whence
A% (R(l)+T(1))* = R(l)*S“)*, where S = TORM*, (4.32)
We note that since the first row of T™") is null, the first row of S™ is null also. We
now perform the column decomposition
S — C(1)+A(1)
where
P
C = gfe,, and AW = 12—:2 S{){i)ejo (4.33)
whence
SMx — (C(”+A(1))* = (C(l)*A(l))*C(l)*_ (4'34)

Here both the first column and the first row of A® are null; and since only the first
column of C is non-null, in (4.34) we have C(V*AM = (E+ CO*CONYAD = A,
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Therefore (4.34) simplifies to

SW* A(”*C(l)*, (4.35)
so (4.32) gives
A0k — R(l)*A(l)*C(l)*_ (4.36)
Continuing in a similar fashion, setting
RO = egal™ D, T® = T epalt™h, S® = TOR®*,
§=
’;“ k=1,...p (437
C® = s§leo, AW = % sgiej0,
i=k+1
we obtain
Al — R+ D g (et Dk e+ 1)% k = 1,2,...,p). (4.38)
At the pth stage A® and C*?’ are null, so (4.38) gives
A¥ = RWD*RZI* ... RWP*Cl-DxeCr=Dx CWr*, (4.39)

This decomposition process is illustrated in Fig. 1, which shows the disposition of the

non-null elements of the successive R®, C¥, and A® matrices. It will be observed
P

that the R® matrices together form an upper triangular matrix U = Y. R®, whose
k=1

closure by (4.20) is
U* = RI*R@)* ... RP* (4.40)

p—1
and that the C*® matrices form the strictly lower triangular matrix L = ) C%,
k=1

whose closure by (4.19) is
L* = Cr-DxClp—2)% . .. Cx, 4.41)

Hence (4.39) can be written as
A* = U*L*, (4.42)

The product forms (4.39) and (4.42) both have obvious analogies in linear algebra.

R(I)
R'2)

ct” R

S AW

Fic. 1. Triangular decomposition.

To obtain a convenient method of calculating the successive C® A® and R®
matrices, we note firstly that from (4.37) and (3.7),

RO = (s )" = Eeqy(afh )ty (43
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and hence

SO = TORO® = P oot Dt afl ek A (449
i=k+1
Therefore, by (4.37), the C** and A® matrices are given by

k
CW = Sgk)eko = SWeg,e0

P
= 3 eofat™V+al D alk D el e

i=k+1
& (k 1) (k= 1)k
= Z e (ak ) eko, (4.45)
i=k+1
and
(k) (k) 3 (k) |
A = Sojejo = Z S eo jo
J 1 i=k+1

eo;(a(k 1)+a(k l)(a(k 1))*ak; l))eo

~.

H
]
M= s %Mv

Me e

eOi(al(f T4 ci(lf)a:ff “ejo. (4.46)
j=k+ 1 i=k+1 .
The matrix RW is already defined directly in terms of A%~V by (4.37).

Since the non-null elements of R, R®, .., R® and CV, C?, ..., C® and AW
all occupy different positions (see Fig. 1), all the R® and C*» matrices can be computed
and recorded simply by performing p—1 successive transformations of the original
A-matrix. Writing M@ = A, we compute M® (k =1,2,..., p—1), where the
elements of M) are obtained using successively

m§ ™ (mk~1)* for k<i<p j=k (4.47a)
&) = {m"‘ DimPmi~D for k<i, j<p, (4.47b)
-v otherwise. (4.47¢)

By comparing (4.47a) with (4.45), it will be seen that (4.47a) forms the non-null
elements of C, and by comparing (4.47b) with (4.46), it is clear that this forms the
non-null elements of A® (which include those of R%**+V); (4.47c) simply preserves the
non-null elements of RM, R™, .  R® and CV,C?,... C% Y Hence on
termination, M%) contains the non-null elements of all the R® and C*® matrices,
in their appropriate positions. If A is sparse, this fact can be exploited in the computa-
tion and storage of M (Knuth, 1968; Reid, 1971).

4.2.2. The solution of equations. From (4.42), the minimal solution of Y = AY+B is

Y = A*B = U*L*B (4.48)

which can be expressed as the minimal solution Y of the coupled system
F=LF+B (4.49a)
Y = UY+F. (4.49b)

Hence if we calculate L and U (which are the lower and upper triangles of M®~1),
as obtained by (4.47)), the required solution can be derived by applying the forward
substitution method (4.24) to (4.49a), and then applying the back-substitution method
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(4.26) to (4.49b), which give in turn F = L*B and Y = U*L*B. We note that since L
is here strictly lower triangular, the forward substitution method (4.24) simplifies to

B® =B, B®=B¢Uilbs"  (k=12..,p—1) (450
The above procedure is analogous to the Gauss elimination method in linear algebra.

4.2.3. The computation of submatrices of A*. It is often necessary, for a given graph
G = (X, T), to determine the sum of all words which take node x; to node x;, for all
x;€ Vand x; € W, where V and W are subsets of X. This problem arises for instance
when it is required to determine all the sequences of inputs which take a finite-state
automaton from each of its initial states to each of its terminal states. In terms of the
matrix A of G, this problem involves finding a submatrix H of A*, composed of the
intersection of each row af, where x; € ¥ with each column a§; where x; € W.

In the particular case where complete columns of A* are required, these can be
obtained by applying the Gauss method to the equation Y = AY+B, where B is
composed of the corresponding unit column vectors. (For each column a§; of A*
can be expressed as A*ey;, which is the minimal solution of Y = AY +e,)). Similarly,
particular rows of A* can be obtained by computing the product BA*, where B is
composed of the corresponding unit row vectors; this product can also be obtained
by the Gauss method, since (BA*) is the minimal solution of Y = ATY +BT.

To solve the general problem, we observe that any s x ¢ submatrix H of A* can be
expressed as

H = PA*Q = PU*L*Q ' 4.51)
where P is an s x p matrix composed of s unit row vectors and Q is a p x ¢ matrix
composed of ¢ unit column vectors. The expression (4.51) can be evaluated by a method
analogous to the Aitken method (Fox, 1964), involving the formation of L and U,
the products PU* and L*Q, and the product (PU*)(L*Q).

As in linear algebra, the formation of L and U and the calculation of these products
can be combined conveniently, by a simple extension of the algorithm (4.47): With

Ri© — [‘; ‘ﬂ 4.52)

we form M® (k = 1,2, . . ., p) where (cf. (4.47))
k- 1)( (k=1 for k<i<p+s, j=k

k<i<p+s
Aa® = w4 mPmE- D
iy + rity ity for {k <j < ptt (4.53)
w1 otherwise.
It is easily verified that at the kth stage of this algorithm,
- M® QW
B = [P("’ Hm] (4.54)

where M@ is defined in Section 4.2.1, and !
P® — PRI*RD)x ... RE*

Q(k) = C*Ck—1)% ... C(”*Q
k

H® = iZ pblaid
=1

(4.55)



PATH-FINDING PROBLEMS 173

which on termination give P® = PU* Q® =L*Q, and H® = PPQ® =
PU*L*Q.
An application of this algorithm will be demonstrated in Section 6.

4.3. Woodbury's formula

Our method of deriving product forms for closure matrices, using (3.5)-(3.7), is
based on the same principles as a method discussed by Householder (1953) for
finding inverse matrices in linear algebra, involving repeated use of the formula:

(B+URVT)™! = B !—B 'UR"'+V'B™'U)"!'V'B~ . (4.56)
Indeed, by combining our relations (3.6) and (3.7) we obtain the analogous formula:
(A+USVT)* = A* 4+ A¥U(SVTA*U)*SVTA*, “4.57)
which can be verified as follows:
(A4+USVT)* = (A¥USVT)*A* (by (3.6))
= (E+A*¥USVTA¥U)*SVT)A* (by (3.7))
= A*+A*U(SVTA*¥U)*SVTA*, (4.58)

To demonstrate that (4.56) and (4.57) are analogous, we replace the symbolism M* by
(I-M)"! in (4.57), which glves .

I-A-USVT)~! = I—A) ' +(I—-A)"UA-SVTA-A)" ')~ 1ISVTA—A)"! (4.59)
or

I-A-USVH)™t = (I—A)"+(I—-A)“‘U(S"‘—VT(I—A)"‘U)“VT(I—A)‘1 (4.60)
If in (4.60) we set I—A = B, and S = —R, we immediately obtain (4.56). It would
have been possible to derive our product forms from (4.57), but it is more convenient
to apply (3.5)-(3.7) separately.

Asin linear algebra, the direct application of (4. 57)is not usually to be recommended
as a practical method of computing closure matrices, but it is sometimes useful for
finding the modification of a closure matrix A* which results from a change of a
single element of A. In particular, from (4.57) the modification of A* caused by adding
o to the element a;; of A is given by

(A+eq0e50)* = A*+afi(aal)*oal. (4.61)
A concrete form of (4.61) has been derived from graph-theoretic considerations by
Murchland (1967) and Rodionov (1968), who used it to calculate the changes in
distances in a transportation network when one of its arc lengths is reduced.

5. Interpretations

In this section we shall consider various interpretations of the operators +, ., and *
and show that the system F1 is in each case consistent with the interpretation. It is
natural to consider first of all the most general form of a regular algebra. To this end,
we define a regular algebra R = (S, +, ., *) to be free if and only if the only equalities
holding between elements of S are those which are deducible using only the axioms
Al-A1l and the rule of inference R1. Now consider a finite set ¥, and consider the
set S(V) of all regular expressions over ¥ U {¢}. Then we shall call the free regular
algebra Ry(¥V) = (S(V), +, ., *) the free algebra generated by V.

Any interpretation for which the system F1 is consistent and complete will form
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a free regular algebra. In general though 4 ,(R) for any algebra R and for p > 1

will not form a free algebra. For example, if J; = [Z’ i] and J, = [g qZ],

then J, J, = N, but this is not deducible from F1 alone.
Before discussing particular interpretations it is useful to note that the condition
for uniqueness of solution of equations in regular algebra can be weakened as follows.

LEMMASL. AT #Nst. T=A. TN AT #Nst. T<A.T).
Proof. = is trivial. So let us assume 3T ¢ N such that T <X A . T. Then
T <X AT = A*T <X A*AT = AA*T (by 3.3).

But by A0, ’

A*T = AA*T.
Hence

A*T = A(A*T),

iie. T" = A*T = AT’, and the lemma is proved.

5.1. Regular Languages

When we interpret + as set union and . as concatenation of words, we obtain the
algebra of regular languages (see Section 2.2), denoted here by RL. If we then consider
the algebra of all p x p matrices #,(RL) over RL, then RL can be identified with
A (RL). The consistency of . ,(RL) with F1 has been studied by Salomaa (1969).
For this case the axioms A1-All are relatively easy to verify. However, Salomaa’s
condition for uniqueness of solutions of equations (rule R1) differs outwardly from
ours. The relevant definition and theorem are given below.

Definition (Salomaa). A p xp matrix M = [m,;] possesses the empty word property
(ewp) iff there is a sequence of numbers i,, i,, . . ., iy (k = 1) such that
eem,,, for 1 <v<k-1 and eemiy,.

THEOREM 5.1 (Salomaa). If the matrix M does not possess ewp then the equation
Y = MY +R has a unique solution, namely Y = M*R.

For 1 x 1 matrices, i.e. regular languages, it is obvious that we have the equivalence:
M does not possess ewp <> M is definite. The equivaience is not so obvious for larger
matrices, but it is nevertheless easily proved.

THEOREM 5.2. Let A € M ,(RL). Then A does not possess ewp <> A is definite.
Proof. (i) <. Suppose 3T # N such that T = AT. Then the equation T = AT+N
has more than one solution, namely T and N. Therefore A possesses ewp.

(ii) =. Suppose A possesses ewp. Then the labelled graph G = (X, I) of A contains
a cycle

Y= (xh’ xiz)’ (xlz9 xig)’ LRI ] (xlk’ xil) (51)
such that
lhiz Ilzlis e likh ?’ e. (52)

Now let H be the partial graph of G whose arcs are the arcs of y and let B be the
matrix of H. Clearly B < A, so we may choose a matrix C such that B+C = A.
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Now let T = B*. By 5.2,
(bhizblzig te bml)(bmzbm; e bm.)* = (billzbm, U bi.‘i,)* (5.3)

and it follows that T = BT. But then
T < BT+CT = AT

and therefore, by Lemma 5.1, A is not definite.

Since the two characterizations of definiteness are equivalent, one can choose at
will which to employ. As a test for definiteness Salomaa’s characterization is un-
doubtedly better, but in proving theorems we have found our own algebraic character-
ization easier to use.

Finally, we note that F1 forms a complete system for regular languages (as proved
also by Salomaa), which in turn means that the regular languages over the vocabulary
V form the free regular algebra generated by V.

5.2. Generating Relations

Since any algebra is the homomorphic image of some free algebra, we can construct
new examples of regular algebras by considering homomorphisms & on regular
algebras. Given any homomorphism 6 on an algebra R we can define a congruence
relation ¢go on R by

o = P(ge) < af = B0

and it is well known that the homomorphic image R0 is isomorphic to the quotient
algebra R/ge. Thus an alternative and equivalent approach to constructing new
regular algebras is to consider congruence relations on the elements of the algebra.
We can go one step further still: the quotient algebra R/ge may be considered to be
the same as the algebra R excepting that, within R/gs, elements belonging to the
same congruence class are now considered equal. Now, since go is a congruence relation
it can be completely specified by stating what equalities hold between the generators
v, of the free algebra R Thus we can specify a quotient algebra by adding to the
formal system F1 a list of generating relations, which are precisely the above-mentioned
equalities holding between generators. The quotient algebra is then the maximal
homomorphic image of Ry which is consistent with F1 and the new generating
relations.

Some examples are given below.

5.3. Yoeli’'s Q-semiring
Consider the free regular algebra Rg(V) generated by V u {¢} where V =
{v), 03, . . ., U,,}. Let us add to the system F1 the generating relations

etv,=e, l<i<m (5.4)
Then one deduces that for all words w = v, vy, -+ * Ui,
e+w=e, (5.5

and hence to be consistent with All,
w¥ = e. (5.6)
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By induction on the number of occurrences of the star operator, one concludes that
for all regular expressions a,

etoa=e (6N))
and

o* = e. (5.8)

Since by (5.8) the value of a* is trivial we may eliminate the operator * from the
algebra, and consider an algebra with the two operators + and . only. The axioms for
this algebra, given by A1-A9 and (5.7) are easily recognized to be those of Yoeli’s
Q-semirings (Yoeli, 1961), which have been applied to various path-finding problems
(Benzaken, 1968; Robert & Ferland, 1968). We shall denote this algebra by Ry.

Let us now consider the algebra .4 »(Ro) of all pxp matrices over Rp. Let A be
any such matrix, and let G = (X, I) be the corresponding labelled graph. We recall
(Yoeli, 1961; BAC 71) that the elements of A* = [af;] may be expressed as

ay= Y w (59)
neMiyy
where MJ; is the set of all paths from x; to x; of order r, and hence that B® =
[6%)] = E+A+A%+ - - - A" has elements

B =3 ¥ w (5.10)
k=0 peMf

where, by definition, w(u) = ¢ for every open path p of order zero and w) = e
for every closed path u of order zero. Also we recall that (i) the maximal order of any
elementary path is p—1, and (ii) that if p' is any non-elementary path from x, to X,
then there exists a lower-order elementary path u from x; to x;, which can be obtained
from ' by eliminating some of its arcs, and by (5.4), w(u)+w(u’) = w(). It follows
that B” = B®~D for all r > p—1. We are therefore entitled to define A* = E4+A+
A’+ - £ AP71 and the validity of our axioms is assured by the following well-
known theorem.

THEOREM 5.3. Let A e # »(Ro). Then the series E+A+A%+ - -+ is finitely convergent,
with
E+A+A%+ - - A" = E+A+A%4 - + AP = A* forallr > p—1.

This algebra is applicable to several different types of path-finding problems, for
instance (i) the determination of shortest or least-cost paths in transportation networks
(subject to the restriction that all arc costs are non-negative) and (ii) the determination
of routes with least probability of blockage in communication networks. (For details
of these, and further references, see BAC 71, Section 2.1). Also, Benzaken (1968)
has shown that this algebra can be used to enumerate the paths on a directed graph;
- this application will be discussed in detail in Section 7.

Unfortunately, for Q-semirings in general, it seems impossible to obtain a test for
definiteness of the type which Salomaa has given for regular languages. However, it is
possible to characterize definiteness for one very important class of Q-semirings—
the distributive lattices—as will be shown below.

5.4. Distributive Lattices
Let us add to the axiom system Ry the generating relations
V.0 = 0.0, 1<i,j<sm, (5.11)
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and

v;.0; =0, 1<i<m (5.12)

Now since (5.8) holds, we need only consider regular expressions formed from

elements of V, the operators + and ., and parentheses; and furthermore, since we

have the distributive laws A4 and AS, each of these expressions can be considered

as a sum of words over V. It is therefore evident that by (5.11), for every pair of
regular expressions o and f,

a.f=p.a (5.13)
and that by (5.11) and (5.12), for every regular expression «,
o.o = 0. (5.14)

The axioms of Rg together with (5.13) and (5.14) form the axiom system of distributive
lattices, which we denote by Rp;.

In order to characterize definiteness for distributive lattices, we present the following.
THEOREM 5.4. If the graph of a matrix A € M (Rpy) is acyclic then the equation
Y = AY B has a unique solution, namely A*B.

Proof. Let Y, be an arbitrary solution of Y = AY+B, i.e. let

Y, = AY,+B. (5.15)
Then by substitution we obtain
Y, = A(AY,+B)+B = A%Y,+(E+A)B, (5.16)
and by successive substitutions, )
Yo = AYo+(E+A+A%+ -+« +AHB, forall k > 1. (5.17)
Hence by Theorem 5.3,
Y, = A*Yy+A*B, forall k= p. (5.18)

But if the graph of A is acyclic then A¥ is null for all ¥ > p, in which case Y, = A*B.

This theorem is the counterpart of Salomaa’s Theorem 5.1 for regular languages;
the counterpart of Theorem 5.2, which characterizes definiteness, is given below.
THEOREM 5.5. Let A € # ,(Rp;) and let G be the graph of A. Then A is definite iff G is
acyclic. ,

Proof. Suppose A is not definite. Then Y # N such that Y = AY, and therefore
the equation Y = AY+N has more than one solution. Hence by Theorem 5.4, G
is not acyclic.

Now suppose that G is not acyclic. Let y be any cycle on G, let H be the partial
graph of G whose arcs form y, and let B be the matrix of H. Since B < A, we may also
choose some matrix C such that B+ C = A. Let us denote the order of y by r; then
it follows from (5.13) and (5.14) that

Brts = B¥*s forall k> 1,s>0. (5.19)
Hence :
B‘B* = B'B*, forall g > r. (5.20)
If we now set T = B'B*, we have by (5.20) that T = BT. It follows that
T < BT+CT = AT,
and therefore A is not definite.
As important examples of Ry, we have the Boolean algebras, which have many
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applications in Automata Theory and Operational Research (Hammer & Rudeanu,
1968). Another example is the algebra proposed by Hu (1961) for finding maximal-
capacity routes through networks.

5.5. Benzaken's Algebra

Our view of generating relations is similar to that of Benzaken (1968). As well as
considering Rg, he proposed the following algebra for enumerating the paths on a
graph:

Consider a vocabulary V' = {v,, v,, ..., v,} and let Ry be the free regular algebra
generated by ¥ on which the following generating relations are imposed:

v, 0.0 =00 = ¢, i=1,2,...,p) (5.21)
for all languages «. In this algebra one can prove that
* = eto, (5.22)

and so once again the operator * can be discarded.

To enumerate the elementary paths on a p-node graph G = (X, I'), we give a name
v, to each node x; € X, and we label each arc of G with the name of its terminal node,
i.e. we set /;; = v, for all (x,, x;) € I'. Then within the algebra .# ,(Rp), the closure A*
of the matrix A of G gives all elementary paths on G: specifically, each product
{v;} . a}; is a language of sequences of node names, each of these sequences defining
an elementary path from x; to x;.

In this context, one well-known method of obtaining A* is to set M = E+A and
then to compute successively M2, M4, . . ., M?", where r is the first integer such that
2" > p—1;then by Theorem 5.3, M2" = A*, This is the “Latin multiplication method”
first proposed by Kaufmann & Malgrange (1963) and subsequently re-invented by
several authors. It would of course be less laborious to calculate A* by one of the
methods of Section 4; however an even more effective method, using Rg, will be
demonstrated in Section 7.

6. A Comparison with our Network Routing Algebra

There is obviously great similarity between regular algebra and the algebra pre-
sented in BAC 71. In particular, the definition of definiteness and the condition for
uniqueness of solutions of equations in BAC 71 are almost identical to those given
by Salomaa for regular languages (see Section 5.1 above). However, before we can
make a precise comparison we must remove the obstacles caused by differences
between the definitions used here and in BAC 71.

The earlier paper was concerned exclusively with the solution of extremal path
problems, and its definition of A* was tailored to this purpose. Let us here define A
to be the matrix whose (i, /)th element is the sum of the path products of all elementary
paths from x; to x; on the graph G = (X,I") of A; the matrix A as defined here
corresponds to A* in BAC 71 (Section 3.2). Now to relate A to the closure A* of A
we recall our previous definition of semi-definiteness, which can be paraphrased as
follows: Let A be a p x p matrix with graph G; then A is semi-definite iff there is no
closed pathy in G with path-product w(y) > e.

Now let R denote the algebra proposed in BAC 71. Then in addition to A1-A9
the following were assumed:
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(a) commutativity of multiplication, a.f = . a, Vo, B,
(b) the order relation < is total, i.e. for any a, f, eithera < for f <X o,
(c) the cancellation property:
a.f=a.y=>B=y Vy # ¢. .
With the above properties holding in R, the correspondence between A and our new

definition of A* is given by Theorem 4.1 of BAC 71, which we rephrase accordingly
below.

THEOREM 6.1. Let A be a p x p semi-definite matrix. Then the series E+A+A%+ - -
is finitely convergent, with
E+A+AY4 - +A" = A = A%, forall r>p-1

We can now attempt to obtain R, as a homomorphic image of regular algebra,
in the following way. Consider any p-nocde graph G and its matrix A. There are at
most p? arcs in G, and so we can take as a generating set ¥V = {vy, v,, .. ., v, } Where
each v; is a distinct label (or “measure” in the terminology of BAC 71) of some arc
of G,and 1 < m < p* To the axioms of regular algebra we can then add generating
relations of the form

v, 40, = U, (6.1)
which give the order relation existing between every possible combination of elements
of V. We can also add the generating relations

V.0 = U;. 0 1<i,j<m. (6.2)
to obtain commutativity of multiplication.

However, if we postulate the cancellative property (c), then when we attempt to
define «* for a > e we encounter difficulties. For o e = aa* 2= o*. But since o* > ao*
by A10, we conclude that a* = aa*, and this equality violates the assumption (c) of
cancellation. Thus we find that the axioms of regular algebra together with the addi-
tional axioms (a)-(c) form a consistent system only if we preclude the existence of
a* fora > e.

It will be observed however that in BAC 71, the derivation of algorithms for
calculating A and for solving equations of the form Y = AY +B was given only for
the case where A is semi-definite. Here, for any matrix A which is semi-definite, the
closure A* remains well-defined when we postulate the cancellative property, since
Theorem 6.1 assures the validity of the axioms of regular algebra for such matrices.
Furthermore if A is semi-definite, it can be proved that our derivations of algorithms
in Section 4 all remain valid even when we preclude the existence of a* for a > e.
For this purpose we first prove the following.

THEOREM 6.2. Let A, B, Ce M (Rc), and let B, C <X A. Then if A is semi-definite,
all of B, C, B*C and BC* are also semi-definite.
Proof. Let us assume that A is semi-definite. Then:

(i) let G and H be the graphs of A and B respectively. By comparing the measures
of corresponding elementary cycles on G and H, it is clear that the maximal
elementary cycle measure on H is not greater than the maximal elementary
cycle measure on G. Hence if A is semi-definite, B must be semi-definite. Equally
C is semi-definite.
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(ii) Since every elementary cycle on G has a measure not greater than e, every non-
elementary cycle on G also has a measure not greater than e. And since every

elementary cycle on the graph G* of A* corresponds to a cycle on G, A* must
be semi-definite.

Now since B and C are semi-definite, their closures are well-defined, by Theorem 6.1.
And since B <X A and C < A, B*C < A*A < A*, It follows by argument (i) above
that since A* is semi-definite, B*C must be semi-definite. Similarly, BC* <{ AA* < A%,
so BC* is semi-definite.

From this theorem it follows that in (4.6), (4.13), and (4.37), the property of semi-
definiteness is preserved in constructing A® from A%~Y, Accordingly, the graph
G*~1 of A®=1) never contains any loop / with w(l) > e, so we never have afi " > e,
and hence in all the algorithms of Section 4, the closure of each pivotal element
ak~ " always exists.

In BAC 71, the concept of semi-definiteness was given the following physical
interpretation. Consider the concrete form of R¢ = (S, +, .) where S is the set of real
numbers together with + oo, a+b is defined as min(a, b), and a . b is the arithmetic
sum of a and b. Also, let G be a graph whose arc labels represent length, and let A be
the matrix of G. Now if A is semi-definite, A* = A, and so each element afy of A*
is the distance (i.e. the length of a shortest path) from x; to x,. I A is not semi-definite,
G contains at least one cycle of negative length, and the concept of distance becomes
meaningless. In these circumstances it is not surprising that the series E+ A+ A%+ - -
fails to converge, and we would not expect A* to exist. Thus we find that in BAC 71,
methods of solving the equation Y = AY +B are derived only for those cases where
it is meaningful, and for those cases our present derivations using regular algebra
remain valid. )

7. An Illustrative Example: The Enumeration of Paths on a Graph

To illustrate some of the results of earlier sections of the paper we shall now consider
the following problems: Given a graph G = (X, I') and two specified subsets X, and

Fia. 2.

"X, of X, find for each node x; € X; and each node x, € X,, (a) the set of all paths
from x, to x;, and (b) the set of all elementary paths from x, to x;. As specific examples,
we shall solve these problems for the graph of Fig. 2, with X; = {x,} and X, =

{xz, X4}.
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Let us give the arcs of G distinct names (Fig. 2). If we consider these arc labels as
regular languages, then in .# »(RL) each element al; of the closure A* of the matrix A
corresponding to G is the set of all words taking node x; to x; (see Section 2.2.2);
and since the arc labels on G are distinct, there is a one-one correspondence between
words in af; and paths from X to x;. Hence problem (a) involves finding the elements
a}; and a¥,, using .# o(RL).

These elements can be found efficiently by using the Gauss method to form the
third row of A*, or alternatively, by applying the Aitken method (4.53) to the matrix

MOP=Tmn ¢ ¢ | ¢ ¢
¢ ¢ ¢ p e ¢
¢ g9 ¢6r | ¢ ¢
s ¢t ¢ ¢ e

6 ¢ e ¢ | ¢ ¢

where e = ¢*, Following the latter procedure, we obtain successively

M® = "m no ¢ ¢ | ¢ ¢
¢ ¢ ¢ p e ¢
¢ a4 ¢ r| ¢ ¢
sm* sm*n t ¢ ¢ e
L6 ¢ e 6| ¢ 4
MP=Tm n ¢ ¢ ¢ ¢
¢ ¢ ¢ p e ¢
¢ 9 ¢ rigp 7 ¢,
sm*  sm*n ¢ sm*np sm*n e

s
©-
®
©-
S
S

M® = [ m n ¢ ¢ ¢ ¢
o ¢ ¢ P e ¢
¢ g ¢ r+gp q ¢

sm* sm*n t sm*np+ t(r+qp) sm*n+tq e
L b e r+qp q ¢

The final matrix M is identical to Ni¢® except in the last three elements of its final
row, which are

WY = (r+gp)sm*np+1(r+gp))*,

Y = g+ (r+pg)(sm*np + 1(r+ gp))*(sm*n + 1g),

MY = (r+qp)sm*np+ t(r+gp))*.
The last two of these define the required paths, since M = a%, and mY = af,.
It is to be noted that in general, if one re-orders the nodes of G (or simultaneously
permutes rows and columns of A) then one obtains different regular expressions for

the set of paths between a specified pair of nodes, although of course all such expres-
sions are equivalent.
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Considering now problem (b), it follows from our discussion in Section 5.3 that
this problem can be solved in the same manner as problem (a), but using in place of
RL the homomorphic image of RL having the additional axioms (5.7) and (5.8),
viz. e+o = e and a* = e. The Aitken method (4.53) then takes the simpler form

. {mg—l)_‘_mg’l‘c-nm%—n for {k < 1 < pts,
iy = k<j<p+t, 7.0
s~V otherwise,

and applying this to the matrix M defined above we obtain

MO =[m n ¢ ¢ ¢ ¢
¢ ¢ ¢ p e ¢
¢ q ¢ r ¢ ¢,
s sm t ¢ ¢ e
6 6 e b | ¢ @
M®=Tm n ¢ ¢ ¢ ¢
¢ ¢ ¢ »p e ¢
¢ g ¢ r+ap q ¢,
s sn t snp sn e
6 6 ¢ | & o
1\71(3) =Tm n ¢ ¢ ¢ (l’
¢ ¢ ¢ P e ¢
¢ q ¢ r+gqp q9 @,
s sm t snp+tr+iqp sn+tq e
¢ ¢ e r+qp qg ¢
M® =Tm n ¢ ¢ ¢ ¢
o ¢ ¢ P e ¢
¢ 9 ¢ r+qp q ¢
s sn t snptitrtiqp sn+tq e
o ¢ e r+gp qg+rsn r+qp

Hence there are two elementary paths from x to x,, viz. “g” and “rsn”, and there are
also two elementary paths from x; to x,, viz. “r”” and “gp”.

It is important to note that in applying (7.1), the concatenation i '”n”:i'}_” in
general contains words which represent non-elementary paths, and that to eliminate
all such words from the solution it is necessary to apply (5.7), i.e. to perform all
possible absorptions of the type

aa,-* a,+ba, - bag o aby, =aa;a,. (1.2)
For instance, in forming m$ in the above example we have
M = (r+qp)sn+1q) = rsn+rtq+qpsn-+qpiq,
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giving
WY = g+rsn+rtg+gpsn+qptq
= g+rsn, by (7.2).
In our very simple example, words representing non-elementary paths are generated
only in the calculation of M), but in general this can happen at any stage of the
computation, and for larger graphs the work involved in applying (7.2) is quite pro-
hibitive,

However, with the Aitken method in particular—which involves only a sequence
of eliminations and no back-substitutions—it is easy to prevent the generation of
unwanted words. We shall give an indication of how this can be done, because the
resulting path enumeration method is the most efficient one known to us.

To obtain the process, it is convenient to consider the Aitken method in graph-
theoretic terms: We observe that the application of (7.1) to the matrix M(® = [A Q]

v P ¢

is equivalent to the application of the algorithm

"o = {n:afz::+m§f'”m,£';-” for k.< i, j < p+s+t, (13)
1y otherwise
to the matrix ‘
M®=TA ¢ Q
[P ¢22 ¢23} (7.4
¢31 ¢32 ¢33

where ¢,, and ¢33 are square matrices of order s and ¢ respectively, in that at the
kthstage (for k = 1, 2, .. ., p) we have (cf. (4.54)):

M® = rM® &4z Q®w
P ¢22 H® .

¢31 ¢32 ¢33

With P and Q defined as in Section 4.2.3, the augmented matrix M(® of (7.4) has
a graph G = (XV X{U X, TUY,VY,) where X{= {x},, x},...,x},} and
Xj = {x}j, X}, . . ., x},} are sets of ““duplicates” of the nodes of X, = {Xus Xp2see st}
and X, = {x;,, X5, ..., X;} respectively, ¥, is a set of arcs joining each node
xj. € X{ to the corresponding node x;, € Xy, and y, is a set of arcs joining each node
Xj € X, to the corresponding node xj; € X3, each arc of ¥, and ¥, being labelled
with e = ¢*.

Now with reference to the augmented matrix (7.4) and its graph G2, it is clear
that in the Aitken method, each element iy for i,j > k is the sum of all words
corresponding to paths from x; to x; whose intermediate nodes (if any) all belong
to the set S, = {x{, x;,..., x;}. This has two important consequences concerning
the execution of the method.

(a) Since the absorption rule (7.2) holds, in forming each element ri{y using (7.1)
it is not necessary to add to m{f " any word aff of the concatenation

g~ DD = {uflaeml™D,  pemfy ) (7.6)
for which the corresponding path pu(«p) is non-elementary.
13

(1.5)
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(b) If the words of M®*-D all represent elementary paths (and this is evidently
true for M(®), then it is easy to determine whether any word af of the concatenation
(7.6) represents a non-clementary path, which in turn makes it possible to exclude
words representing non-elementary paths from M®. For if u(x) and p(f) are both
elementary, then p(af) is non-elementary only if () and p(B) have at least one of
their intermediate nodes in common. But then o and § can each be split into two
subwords: « = oo, and B = BB, such that u(«2B4) is an elementary cycle. In this
case p(Ba,) is also an elementary cycle; and since it has initial and terminal nodes

ep s . (k= 1) o
x, and all its intermediate nodes belong to S,.(, f10; € Hik . Conversely, it is
evident that if « and B have splittings « = «;a, and f = BB, such that B, € ik,
then p(af) is non-elementary.

Thus we can execute (7.1), excluding all words representing non-elementary paths,
in the following manner. For each word a € i~ in turn,

(a) Form the set T, as follows: For eachye m%=1 find its longest final subword y,
which is also a final subword of «; if this subword is non-empty then assign to T,
the word y, obtained by removing y, fromy.

(b) For each word B € miy~ Y, add «f to wiis 1 if and only if no word of 7, is an
initial subword of f.

FiG. 3. List representation of /%Y.

This process can be performed conveniently on a computer by representing words
by doubly-linked lists (Knuth, 1968) of the form shown in Fig. 3. Using this type of
representation the performance of the Aitken method compares favourably with that
of the well-known search method employing a stack (Kroft, 1967). For instance,
for a 24-node graph representing an electrical switching network (Fig. 5 of Carré &
Ladley, 1972), the time taken for the reduction of its A-matrix by the Aitken method
is equivalent to that used by the stack method for only five origin-destination pairs.
For each additional column of M, the average time required is one-quarter of that used
by the stack method for a single origin-destination pair.

Finally we note that some methods of enumerating elementary paths which have
been presented by other authors are also related to methods of Section 4. For instance
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the methods of Benzaken (1968) and Murchland (1965) are both applications of the
Jordan method to the equation Y = AY+A.

8. Conclusions

It is remarkable how much of the theory of real matrices holds in regular algebra.
One might speculate about the possibility of defining concepts similar to those of
eigenvectors and eigenvalues for matrices on regular algebras, where the latter could
be related to path products of cycles on the graphs of these matrices. This possibility
can be dismissed however, because the existence of eigenvectors and eigenvalues is
tautologous with the Cayley—Hamilton theorem, which depends for its proof on the
notion of linear dependence in a p-dimensional vector space. But in regular algebra
one has in general no notion of linear dependence.

Most of our methods of solving equations will be recognized by regular algebraists
as techniques which have been in use for some years. However, the derivation of the
methods in terms of product forms is perhaps helpful in relating the methods to each
other, and to their counterparts in linear algebra. Of course we have not attempted
to catalogue all the possibilities, and there are several other well-known methods
which can be derived from results in Section 4. For instance the escalator method,
which has been used both in automata theory (Eggan, 1963) and in operational
research (BAC 71), can be regarded as a reverse application of triangular decomposi-
tion, and the formulae defining this method can be derived directly from (4.38).

Finally, it is interesting to observe that most, if not all, path-finding algebras can
be regarded as homomorphic images of free regular algebras. The results of Sections
3 and 4 therefore have numerous practical applications outside the context of regular
languages.
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