
Science of
Computer

LSEVIER
Programming

Science of Computer Programming 22 (1994) 67-105

Relational programming laws in the tree, list, bag, set
hierarchy

Paul F. Hoogendijk *, Roland C. Backhouse
Department of Mathematics and Computing Science, Eindhoven University of Technology,

P.O. Box 513, 5600 MB Eindhoven, Netherlands

Communicated by C. Morgan; revised October 1993

Abstract

In this paper we demonstrate that the basic rules and calculational techniques used in two
extensively documented program derivation methods can be expressed, and, indeed, can be
generalised within a relational theory of datatypes. The two methods to which we refer are the
so-called “Bird-Meertens formalism” for the construction of functional programs and the
“Dijkstra-Feijen calculus” for the construction of imperative programs.

1. Introduction

The Bird-Meertens formalism (to be more precise, our own conception of it) is

a calculus of total functions based on a small number of primitives and a hierarchy of

types including trees and lists. The theory was set out in an inspiring paper by

Meertens [23] and has been further refined and applied in a number of papers by Bird

and Meertens [lo-12,15,16]. Its beauty derives from the small scale of the theory itself

compared with the large scale of its applications.

Essentially there are just three primitive operators in the theory - “reduce”, “map”

and “filter”. (Actually, the names used by Meertens for the first two of these operators

were “inserted-in” and “applied-to-all” in line with Backus [8]; Iverson [21] used the

name “reduce”. Moreover, just the first two are primitive since filter is defined in terms

of reduce and map.) These operators are defined at each level of a hierarchy of types

called the “Boom-hierarchy”’ after H.J. Boom to whom Meertens attributes the concept.

* Corresponding author. E-mail: { paulh, rolandb}@win.tue.nl.
r For the record: Doaitse Swierstra appears to have been responsible for coining the name “Bird-Meertens

formalism” when he cracked a joke comparing “BMF” to “BNF” - Backus-Naur form - at a workshop

in Nijmegen in April 1988. The name “Boom-hierarchy” was suggested to Roland Backhouse by Richard
Bird at the same workshop.

0167-6423/94/$07.00 0 1994 Elsevier Science B.V. All rights reserved

SSDI 0167-6423(93)E0014-0

68 P.F. Hoogendijk, R.C. BackhouselScience of Computer Programming 22 (1994) 67-105

The basis of this hierarchy is given by what Meertens calls “D-structures”. A D-
structure, for given type D, is formed in one of two ways: there is an embedding

function that maps an element of D into a D-structure, and there is a binary join

operation that combines two D-structures into one. Thus, a D-structure is a full binary

tree with elements of D at the leaves. (By “full” we mean that every interior node has

exactly two children.) The embedding function and the join operation are called the

constructors of the type. Other types in the hierarchy are obtained by adding extra

algebraic structure. Trees - binary but non-full - are obtained by assuming that the

base type D contains a designated nil element which is a left and right unit of the join

operation. Lists, bags and sets are obtained by successively introducing the require-

ments that join is associative, symmetric and idempotent.

Meertens describes the D-structures as “about the poorest (i.e., in algebraic laws)

possible algebra” and trees as “about the poorest-but-one possible algebra”. Never-

theless, in [7] we exploit the power of abstraction afforded by the notion of a so-called

relator (a relator is a generalization of a functor) to add several more levels to the

Boom hierarchy each of which is “poorer” than those considered by Meertens. Each

level is characterized by a class of relators that specialises the class at the level below it.

In decreasing order of abstraction these are the “sum” relators, “grounded” and

“polymorphically grounded” relators, “monadic” relators and “pointed” relators. The

reason for introducing these extra levels is organisational: the goal is to pin down as

clearly as possible the minimum algebraic structure necessary to be able to, first,

define the three operators of the Bird-Meertens formalism and, second, establish each

of the basic properties of the operators. In the present paper, we start with (an

instantiation of) pointed relators and give the definition of map, reduce and filter. For

further discussion we refer to the paper [7].

The unconventional nature (and perhaps also the conciseness) of the notations used

in the Bird-Meertens formalism makes the formalism difficult to comprehend for

some groups. The program calculations carried out within the formalism are, how-

ever, strongly related to calculations within other systems. In particular there is

a strong link between a certain combination of the three basic operators of the

formalism and the quantifier expressions used for many years in the Eindhoven school

of program development, this link being expressed via a correspondence between the

basic laws of the two systems. For the benefit of those familiar with the Eindhoven

calculus we use the opportunity to point out elements of this correspondence. What

emerges is that there are typically more laws in the Bird-Meertens formalism than in

the quantifier calculus but the Bird-Meertens formalism exhibits a much better-

developed separation of concerns.

The theorems presented in the current paper are more general than those in the

publications of Bird and Meertens since their work is restricted to total functions.

A danger of generalisation is that it brings with it substantial overhead making

a theory abstruse and unworkable. At this stage in our work, however, the generalisa-

tion from (total) functions to relations has been very positive bringing to mind

P.F. Hoogendijk, R.C. BackhouseiScience of Computer Programming 22 (1994) 67-105 69

a parallel with the extension of the domain of real numbers to complex numbers. The

fact of the matter is that we are rarely aware of working with relations rather than

functions. The following pages are intended to provide some justification for that

claim.

In [3] a rigorous discussion of the Bird-Meertens formalism can be found. This

report was the starting point for the present paper. We start with a brief introduction

to a relational calculus of datatypes as described in [1,4]. Thereafter, we define the

so-called binary structures; also we define the map, reduce and filter operators in our

system. Before we start with the original Boom hierarchy where laws play an

important role, we first define what it means for a relation to be associative, symmetric

or idempotent; also we give a definition for sectioning and units. Next we define

the Boom hierarchy in our system and we show how laws can be incorporated

into the relational calculus. Finally, we relate the formalism to the quantifier

calculus. We prove rules like range translation, trading, range splitting, etc., within

our formalism.

There is some, unavoidable, overlap between this paper and [7], the overlap

occurring within Sections 2 and 3. The novice reader would be well-advised to begin

by reading [7] before embarking on this paper, in particular since Sections 2 and 3 of

this paper form a very concise summary of [7].

2. The algebraic framework

The relational theory of datatypes we exploit combines a (point-free) axiomatisa-

tion of the algebra of relations with axioms postulating the existence of a unit type,

a sum and a product operator. The axiom system and basic rules are summarised in

this section. Full details can be found in [1,4,5].

2.1. Relation algebra

We begin with the axiomatisation of the algebra of relations. For pedagogic reasons

we prefer to decompose the algebra into three layers with their interfaces and two

special axioms. The algebra is, nevertheless, well known and can also be found in, for

example, [26].

2.1.1. Plat calculus
Let d be a set, the elements of which are to be called specs (from specification). We

use identifiers R, S, etc., to denote specs. On JJZ we impose the structure of a complete,

completely distributive, complemented lattice (zzZ, n, u, -I, T-T, LL) where n and u
are associative and idempotent binary infix operators with unit elements m and
U, respectively, and 1 is the unary prefix operator denoting complement (or

negation). We assume familiarity with the standard definition of a lattice given

70 P.F. Hoogendijk, R.C. Backhouse/ Science of Computer Programming 22 (1994) 67-105

above. We call such a structure a plat, the p standing for power set and lat stand-
ing for lattice.

The second layer is the monoid structure for composition: (d, 0, I) where 0 is an
associative binary infix operator with unit element 1. The interface between these two
layers is: o is coordinatewise universally cup-junctive. That is, for V, W _C d,
(uI/)o(uW)=u(R,S:REVASEW:R~S).

The third layer is the reverse structure: (d, u) where u is a unary post-fix operator
such that it is its own inverse. The interface with the first layer is that u is an
isomorphism of plats. That is, for all R, SE J$, R u 2 S s R 2 SW. The interface with
the second layer is that u is a contravariant monoid isomorphism: (R 0 S) u = Su 0 Ru.

A model for this axiom system is the set of binary relations over some universe, with
u, n and z interpreted as set union, set intersection and set containment, respective-
ly. The constants TT, Y, and I are, respectively, the universal relation, the empty
relation and the identity relation. The operator 0 is relational composition and u is
the converse operator.

2.1.2. Operator precedence

Some remarks on operator precedence are necessary to enable the reader to parse
our formulae. First, operators in the metalanguage (z, s and + together with
v and A) have lower precedence than operators in the object language. Next, the

operators in the object language = , 2 and E all have equal precedence; so do u and
n; and, the former is lower than the latter. Composition o has a yet higher precedence
than all operators mentioned thus far. Finally, all unary operators in the object
language, whether prefix or postfix, have the same precedence which is the highest of
all. Parentheses will be used to disambiguate expressions where necessary.

2.1.3. The Middle Exchange Rule and the Cone Rule
To the above axioms we now add an axiom relating all three layers:

Middle Exchange Rule. XzRo YoS ~1 YzRuo~XOSU.

In a system with negation, this axiom is equivalent to the rule variously known as
the Dedekind rule [25] or the law of modularity [18]: (R n TO SW) 0 S =I R 0 S n T.

Our last axiom, which is sometimes referred to as Tarski’s Rule, we call the

ConeRule. rroRorr=rrzR#~.

2.2. Imps and domains

The notions of functionality, totality, injectivity and surjectivity can be defined
using the operations introduced above. To avoid confusion between object language
and metalanguage we use the term imp instead of function:

P.F. Hoogendijk, R.C. BackhouselScience of Computer Programming 22 (1994) 67-105 71

Definition 2.1.
(a) R is an imp iff I 2 R 0 Ru.
(b) Ristotaliff RuoRzI.
(c) R is a co-imp iff RU is an imp.

(d) R is surjective iff Ru is total.

The term imp is derived from the word implementation. By interpretation, the

definition of imps says that R is zero- or single-valued; the definition of totality means

that R always returns some result.

We say that spec A is a monotype iff I? A. Monotypes may be interpreted as an

implementation of sets: element x is contained in the set corresponding to monotype

A iff x(A)x.
We need to refer to the “domain” and “co-domain” (or “range”) of a spec. In order to

avoid unhelpful operational interpretations we use the terms left-domain and right-
domain instead. These are denoted by c and >, respectively, and defined by as follows.

Definition 2.2 (Domains).
(a) R< = RoRunI.
(b) R> = RuoRr-11.

Note that domains are monotypes. Moreover, R< is the smallest monotype satisfy-

ing the equation:

X::R = XoR.

One of the main considerations of the development of the theory described in [l]

was that the notion of domain is a part of the system itself: it is not something defined

outside the system. This means that we can use type-information in our calculations in

a very natural way, type considerations being a part of a particular law itself rather

than being expressed in some overall context within which the law is applicable.

2.3. Relators

In categorical approaches to type theory a parallel is drawn between the notion of

type constructor and the categorical notion of “functor”, thereby emphasising that

a type constructor is not just a function from types to types but also comes equipped

with a function that maps arrows to arrows. In [1,4] an extension to the notion of

functor is given, the so-called “relator”:

Definition 2.3. A relator is a function, F, from specs to specs such that

(a) 17 F.I,
(b) R ZS + F.R 2 F.S,
(c) F.(RoS) = F.RoF.S,
(d) F.(Ru) = (F.R)w

72 P.F. Hoogendijk, R.C. BackhouselScience of Computer Programming 22 (1994) 67-105

One of the main properties of a relator is that it commutes with the domain

operators, i.e. F.(R>) = (F.R)>. Another is that relators respect imps.

In this section we postulate axioms guaranteeing the existence of a sum relator,

a product relator, and a unit monotype. The so-called map relators (of which trees and

lists are an instance) are then defined via fixed-points with these as building blocks.

2.3.1. Sum and product

We begin by postulating the existence of four specs: the two projections << (pro-

nounced “project left”) and >> (pronounced “project right”) for product and the two

injections C+ (pronounced “inject left”) and cl (pronounced “inject right”) for sum.

Further, we introduce four binary operators on specs: for product A (pronounced

“split”, commonly the notation (_ , _) is used) and x (pronounced “times”), and for

sum v (pronounced “junc”, commonly the notation [_, _] is used) and + (pro-

nounced “plus”), defined in terms of the projection and injection specs as follows:

PAQ= (<<uoP)n(>>uoQ), (1)

PvQ = (PO ~u)u(Qo +=Ju), (2)

PxQ=(Po <<)a@~>>), (3)

P+Q=(c,oP)v(+=oQ). (4)

The relational model that we envisage assumes that the universe is a term algebra

formed by closing some base set under three operators: the binary operator mapping

the pair of terms x, y to the term (x, y), and two unary operators CL and c=,

mapping the term x to the terms 4.x and cl> .x, respectively. The interpretation of

<< and >> is that they project a pair onto its left and right components. The operators

defined above have a higher precedence than composition.

Our first axiom is that the injections are both imps.

Zz(c,o4u)u(C, 0 4u). (5)

The “dual” of this axiom that we propose is:

I~(<~uo<~)~(>~vo>~), (6)

which says that projecting a pair onto its first and second components and then

recombining the components leaves the pair unchanged.

We remark that axioms (5) and (6) take the following form when rephrased in terms

of the product and sum operations.

ZzZ+l and Izlxl. (7)

This is reassuring since it is one step on the way to guaranteeing that + and x are

binary relators. Product and conjunction are closely related. Specifically, we have (in

the set-theoretic interpretation of x)

x(PnQ)y =(x,x)<PxQ)(Y,Y).

P.F. Hoogendijk, R.C. BackhouselScience of Computer Programming 22 (1994) 67-105 73

Abstracting from this property in order to find an axiom that has a pleasing syntactic

shape we are led to the following axiom:

(PAQ)uo(RAS) = (PuoR)n(QuoS). (8)

The dual axiom for sum is

(PvQ)o(RvS)u = (PoRu)u(QoSu). (9)

As a final axiom we postulate that left projection is possible if and only if right

projection is possible:

<< > = >> z (10)

Property (10) is equivalent to r-r 0 << = m 0 >>. Its dual is therefore the trivially true:

CL+ 0 x = +X 0 JJ. There are thus no further axioms for sum.

From the axioms it is possible to prove that <<, >> are imps and cz+, +z are imps

and co-imps. Furthermore, we have

Theorem 2.4. x and + are binary relators.

Also, we have the following distribution properties:

PAQoRG(PoR)A(Q~R), (11)

PAQ of= (P of)~(Q of), for all imps f, (12)

RoPvQ = (RoP)v(RoQ). (13)

Property (12) is called split-imp fusion and property (13) is called spec-junc fusion.

Another way of characterising v is given in the following theorem.

Theorem 2.5 (Unique extension property). For all specs R, S and X,

Xo(Z+I)=RvS E XO~,=RAXO+Z=S.

Two direct consequences are the computation rules for v and + :

Corollary 2.6 (Computation rules).

(a) RvSoct = R.
(b) RvSo +I = S.
(c) R+So+= c+oR.
(d) R+SO+ZJ = a”S.

Due to the non-determinism, the unique extension property for A is conditional:

Theorem 2.7 (Unique extension property). For all specs R and S and spec X such that
1X10X = (<< oX)A(>> OX),

(ZXZ)OX=RAS 3 <<oX=RoS> A B~X=SQR>.

14 P.F. Hoogendijk, R.C. BackhousejScience of Computer Programming 22 (1994) 67-105

Note that the condition of the above theorem holds if X is an imp. Furthermore, it
also holds if X is a split which gives us the computation rules for A and x :

Corollary 2.8 (Computation rules).
(a) << ORAS = RoS>.
(b) >> ORAS = SoR>.
(c) <<oRxS=Ro<<~lxS>.
(d) >> o R x S = S 0 >> 0 R> x I.

2.3.2. Unit
The last axiom we add is the existence of a unit type. The unit type (denoted ?1),

when viewed as a set of pairs, consists of at most one pair, the two components of
which are identical:

Unit: u#Q A 12Qorr4

Two of the main properties of 21 are that it is a monotype and that it is an atom.

2.3.3. Map relators
In this section we define the so-called “map” relators via least fixed points. Before

doing so we introduce the notion of a catamorphism, the generalisation of the fold
operator in functional programming languages.

Given a relator F we define PLF to be the least solution of X : : X = F.X. In general,
one can view pF (which is always a monotype) as the recursively defined type
corresponding to the relator F. Corresponding with pF we can define the so-called
catamorphism operator.

Definition 2.9 (Catamorphism). Catamorphism aF; RD is defined to be the least
solution of

X::X = R0F.X.

Catamorphisms can be viewed as recursively defined specs which follow the same
recursion pattern as the elements of @‘. For catamorphisms we have another charac-
terisation which is more suitable for calculations.

Theorem 2.10 (Unique extension property). For relator F and specs X and R,

X=aF;RJ) = X=RoF.XopF.

When there is no doubt about the relator in question we will drop the argument
F within the catamorphism brackets.

The coincidence in (IIR]) of the least and greatest solutions of the right-hand
side of Theorem 2.10 together with the Knaster-Tarski theorem gives the following
theorem.

P.F. Hoogendijk, R.C. BackhouselScience of Computer Programming 22 (1994) 67-105 75

Theorem 2.11.

(a) Xz(cR]) + XzRoF.XopF.
(b) XF~R]) -c= XcRoF.Xo@‘.

A corollary of the unique extension property and the above that figures very

prominently in program calculations is the following corollary.

Corollary 2.12 (Catamorphism fusion).

(a) UoaV])=(CRD S= UoV= R0F.U.
(b) UoaVj)z([R]) e Uo VzR0F.U.
(c) Uo([V])E[R]) -z= Uo v~R0F.u.

In earlier publications [3,22] instead of fusion laws, the term “promotion” property

was used, this term having been used by Bird to name a technique for improving the

efficiency of programs [9] and which our notion captures and generalised. Maarten

Fokkinga [17] suggested the more descriptive term “fusion” property, and we have

been glad to adopt his suggestion.

If the relator F is of the shape I 0, i.e. F. X = I @ X where @ is a binary relator, we

can define the so-called map operator.

Theorem 2.13 (Map). The function *from specs to specs dejned by

*R=(IIZ@;R@ZD

is a relator.

The function * defines a family of monotypes, namely, the monotypes *B where

B ranges over monotypes. In particular, *I = ,u(Z 0). For each spec R, the spec *R
has left domain *(R<) and right domain *(R>). In addition, for monotypes A

and B and imps f~ A +-- B, *f E *A +- *B. An instance of such a relator is the List
relator. In functional programming texts *f is commonly called “map f” (and

sometimes written that way too) and denotes a function from lists to lists that

“maps” the given function f over the elements of the argument list (i.e. constructs a list

of the same length as the argument list, where the elements are obtained by applying

f to each of the elements of the argument list). This then is the origin of the name

“map” for *.

This concludes our summary of the algebraic framework.

3. Binary structures

Throughout this paper we consider the following so-called “pointed relator”:

F.X=Z+(Q +XxX). (14)

16 P.F. Hoogendijk. R.C. BackhouselScience of Computer Programming 22 (1994) 67-105

3.1. Constructors and computation rules

For the relator F defined above we have the following four constructors:

Informally stated, z is the singleton constructor: from an element of the universe I it
constructs a singleton containing that element. 0 is the unit constructor and # is the
join operator: from two elements of pF it constructs their join. Note that

v]= q v#.

So, q is just the combination of two other constructors. Elements of pF we call bins
(short for binary structures); bins correspond to Meertens’ D-structures.

We may assume without loss of generality that every F-catamorphism, where F is
given by (14) can be written as tRv(Sv @)I) with @ > c I x I. We call specs with right
domains contained in I x I binary specs. From now on @ denotes a binary spec.

For the constructors defined above we have the following computation rules.

Theorem 3.1 (Computation rules).
(a) aRv(Sv @)J)oT = R.
(b) aRv(Sv@)Do Cl = Sol.

(4 aRv(Sv C3)Do-k = 0 oaRv(Sv @)D x aRv(Sv @)D.

Also, we can state the unique extension property using the constructors, as in the
following theorem.

Theorem 3.2. For spec X such that X = X 0 pF,

X = ([Rv(Sv @)D
=

XO~=RAX~O=SOIIAX~~=@~XXX.

For later use we define the following shorthand:

Definition 3.3 (Empty tree). E = Cl 0~.

The spec E can be viewed as the constant function always returning ‘i <, i.e. the unit
element. Functions like E are the so-called points. The definition of a point is given in
the following definition.

P.F. Hoogendijk, R.C. BackhouselScience of’Computer Programming 22 (1994) 67-105 17

Definition 3.4 (Point). Spec x is a point iff x is an imp A x = x 0 n.

As mentioned above, points are constant functions: applied to an arbitrary element

they always return the same element.

We introduce the following abbreviations:

RQS= QoRAS,

R@S=(Ro<<)@(So>>)= @oRxS,

For R @ S we have by split-imp fusion (12):

R@Sof= (Rof)@(Sof), for impf.

Note that the computation rule for # can now be rewritten as:

aRWvO)D~tt =(CRv(SvO)DO(CRv(SvO)l).

(19)

(20)

(21)

(22)

3.2. Map and reduce

In this section we define the map and reduce operators. Instantiating the definition

of map, Theorem 2.13, gives us for the relator F for the binary structures the following

theorem.

Theorem 3.5 (Map). The function *from specs to specs de$ned by

*R = ([R + (II + I x I)])

is a relator.

We will mostly use a different but equivalent definition for map that exploits the

particular structure of the relator 0. That definition is obtained by using the

following theorem.

Theorem 3.6 (Map fusion). (PvQI)o*R = iUPoR)vQD

Theorem 3.7 (Map - alternative definition). *R = (J(z 0 R)vq]).

The reason why we sometimes prefer this definition is that catamorphisms of the

shape ([Rvq]) enjoy many properties.

Instantiating the computation rule, Theorem 3.1, with the above definition of * we

obtain the following computation rules:

*Roz = zoR,

*RoO=U,

*Ro# = j+o*Rx*R.

78 P.F. Hoogendijk, R.C. BackhousejScience of Computer Programming 22 (1994) 67-105

One can view *R as a spec which, when applied to an element of pF, applies R to

the ground elements (the elements constructed by z) but does not destroy the original

structure.

Another primitive in the Bird-Meertens formalism is called “reduce” and is denoted

by the symbol / . In the context of our work, reduce is a function from specs to specs.

We shall adopt the same symbol but use it as a prefix operator in order to remain

consistent with our convention of always writing function and argument in that order.

Thus we write /S and read “reduce with S” or just “reduce S”. (In choosing to write

reduce as a prefix operator we are turning the clock back to Backus’ Turing award

lecture [S] rather than following the example of Bird and Meertens. In the context of

Bird and Meertens’ original work reduce was a binary infix operator with arguments

a pair consisting of a binary operator, say 0, and a list, say x, thus giving O/x. In the

course of time it was recognised that calculations and laws could be made more

compact by working with the function (x I-+ O/x) rather than the object @ix. To

achieve the compactness the notation @/ (or sometimes (@/)) was adopted for the

function, the process of abstracting one of the arguments of a binary operator being

commonly referred to as “sectioning”. By this development, presumably, they came to

the convention of using / as a postfix operator. Since our concern is to profit from

what has been learnt rather than repeat the learning process we shall not adopt their

notation in its entirety.)

The idea behind reduce is that it should have a complementary behaviour to map.

Recall that map, applied to an element of pF, leaves the structure unchanged but

applies its argument to the ground elements. Reduce should do the opposite: leave the

ground elements unchanged but destroy the structure. Since a catamorphism does

both (modifies the ground elements and the structure) we formulate the requirement

on reduce as being that every catamorphism is factorisable into a reduce composed

with a map. That is for all specs R and S,

/So*R = (CRvSl).

Let us try to calculate a suitable definition for /S.

= (We try to express /S as a catamorphism

l /S = aPVQ1))

af’vQIb*R

= {map fusion: (Theorem 3.6)

aU’ oWvQ1)

= {chooseP=IandQ=S}

aRvSD.

P.F. Hoogendijk. R.C. BackhouselScience of Computer Programming 22 (1994) 67-105 79

Thus, if we define the reduce operator by

/s = (CIVSI), (23)

then we have established the following factorisation property.

Lemma 3.8 /So*R = (IIRvSJ.

A special reduce is /q (for list-structures this is the “flattening” catamorphism; it

maps a list of lists to a list). For this catamorphism there exist two well-known

“leapfrog” properties:

Theorem 3.9 (/q leapfrog).

(a) /So/q = /So*/S.

(b) *R o/y = /II 0 **R.

3.3. Conditionals

Conditionals (if-then-else statements) are, of course, a well-established feature of

programming languages. Several publications have already appeared documenting

the algebraic properties of conditionals, the most comprehensive account that we

know of being given by Hoare et al. [20].

In order to be able to define conditionals we need to have the complement of

monotypes. We achieve this in a slightly roundabout way. That is to say, we consider

the right-domains of so-called right-conditions. For right-conditions we have the

following definition:

Definition 3.10 (Right condition). We call spec p a right-condition if

(Of course, we have a dual definition for left conditions.) We adopt the convention

that lower case letters p, q and r denote right-conditions.

In the relational model right-conditions may be used to represent boolean tests: the

predicate b may be represented by the right-condition p where for all elements x and y

x<p)y = b.y.

Now the complement of the monotype p> is just (1 p) >, i.e. we have the properties

p z u (-I p)> = I and p > n(l p) > = II. Right-conditions are closed under union,

intersection, negation and right composition. In order to give the properties of

conditionals a more familiar appearance we shall write p A q instead of p n q, and

p v q instead of pu q. Other familiar boolean operators can then be defined on right-

conditions, such as p * q = 1p v q. We also sometimes write true instead of n and

false instead of U. We define “conditional” now.

80 P.F. Hoogendijk, R.C. RackhouselScience of Computer Programming 22 (1994) 67-105

Definition 3.11 (Conditional). For all right conditions p we define the binary oper-

ator apt, by:

RapDS = Rep> USO(lP)> .

Notes. In [19] Hoare defines conditionals, although for propositions, as follows,

P~QDR = (PnQ)u(RniQ)

Note that our definition corresponds to Hoare’s definition because

Rap> uSo(lp)z = (Rnp)u(Snip).

In [7] an alternative definition of conditionals that eliminates the need to restrict p to

a right condition is proposed. Moreover, a more comprehensive account of their

properties is included.

The conditional R opt S can be viewed as a spec which applies R to those elements

for which condition p holds and applies S to the other ones.

For conditionals we have the commonly known properties which one can find for

instance in [20]. The subset of those properties that we use in the present paper is

given in the following theorem.

Theorem 3.12. For all specs R, S, T, conditions p and q, and imp f:

(a) RatruetzS = R,

(b) Rafalset>S = S,
(c) R~~DR = R,
(d) R~lpt>S = S~PDR,

(e) R~~D(SU~DT)= R<lpt>T=(Rqp~S)ap~T,

(f) Ra(p A q)Ds = (RapDS)aqDS,

(g) Ra(p v q)Ds = Rupt+RdqbS),
(h) (Rdpt>S)aqb T = (Roqb T) apD(SaqD T),

(i) (RxI~DS)AT= (RAT)u~D(SAT),

(j) To Ru~DS = (To R)apr>(To S),

(k) RopbS”.f= (R”f)~(pof)b(pof)~

Note that for property (k) the condition that f is an imp is necessary. Property (k) is

called the range translation rule for conditionals.

The last two properties we conclude this section with, are given in the following

theorem.

Theorem 3.13 (_ @ _-Conditional abides law).

(a) (RQPD~) 0 (PapbQ) = (R 0 P)~PD(S 0 Q).
04 (R~PDS) 0 (PqDQ) = (CR 0 P)qD(R 0 Q))uPD(@ 0 P)%ID(S 0 Q)).

P.F. Hoogendijk, R.C. BackhouselScience of Computer Programming 22 (1994) 67-105 81

3.4. Filters

The definition of filter is borrowed directly from the work of Meertens [23] and

Bird [14]:

Definition 3.14 (Filter). For right-condition p,

op = /r/ 0 *(ZQpDE).

Note that from the fact that z and E are imps and the fact that conditionals, junc and

catamorphisms respect imps it follows that ap is an imp.

In this section we explore some algebraic properties of the filter operation. The

properties that we seek are motivated by the relationship between the Bird-Meertens

formalism and the so-called quantifier calculus, which relationship will be clarified in

Section 6.

By design Q true is the identity function on specs of the correct type.

Theorem 3.15. atrue = *I.

Now we consider whether two filters can be fused into one. Since up is a catamor-

phism of the form /q 0 xp where p = saps E it pays to begin by exploring whether

a map can be fused with a filter. lndeed it can.

Lemma 3.16.

(a) *R o <up = /ylo *((z 0 R)QPDE).

(b) /r/o*Ro~p =

82 P.F. Hoogendijk, R.C. Backhouse/ Science of Computer Programming 22 (1994) 67-105

associative, idempotent and to have left and right units. So-called “sectioning” is
introduced here in order to define units, but it will also prove useful later in other contexts.

4.1. Sections

One important notion we know for binary functions is sectioning, i.e. we can
construct a unary function from a binary function, by fixing one of the arguments. For
instance (l+) is defined to be the function such that

V(x :: (1+).x = 1 + x).

In the relational setting, the fixed argument does not necessarily have to be a point; we
can generalise it to a left-condition because left-conditions can be viewed as the
relational generalisation of constants. We define left-sectioning as follows.

Definition 4.1 (Left-sections). For p a left-condition, and Q a binary spec, we define

PO =pQl.

(See (19) for the definition of p Q I).

For the spec pQ we then have the desired property.

Theorem 4.2 (Left-sectioning). p@ o R = p @ R.

Note that by taking R := I it follows that pQ is the only spec for which Theorem 4.2
holds for arbitrary spec R. Similarly, we define right-sectioning as follows.

Definition 4.3 (Right-sections). For left condition q, and binary spec 0,

Qq=ZQq.

We have the following property for right-sections.

Theorem 4.4 (Right-sectioning). Qq 0 R = R Q q.

4.2. Symmetry, associativity and idempotence

As usual, we say that Q is symmetric if R Q S = S Q R for all specs R and S. There
is a dummy-free characterization of symmetry:

Theorem 4.5 (Symmetry). Q is symmetric ifl Q = Q 0 y where y = >> A << i.e. y is
a natural transformation such that R x S 0 y = y 0 S x R for all specs R and S.

Similarly, we say that Q is associative if R Q (S Q T) = (R Q S) Q T for all specs
R, S and T. Again, there is a dummy-free characterisation of associativity:

P.F. Hoogendijk, R.C. BackhouselScience of Computer Programming 22 (1994) 67-105 83

Theorem 4.6 (Associativity). &I is associative ifs @ 0 1 x @ = @ 0 @ x IO /I where

p = (I x <<)A(>> 0 >>), i.e. p is a natural transformation such that (R x S) x Top

=/?oRx(SxT) forallspecsR,Sand T.

For idempotency we must be careful. Were we to define idempotency by

R @R = R for all specs R, we would have in particular I @ I = 1. Since

I @ I = @ 0 la1 this implies the very strong surjectivity condition @ < = I. Fortu-

nately, a simple definition is at hand.

Definition 4.7 (Idempotence). @ is idempotent iff I @ I G I.

4.3. Unit

We define left-units by

Definition 4.8 (Left-unit). 1, is a left-unit of @ iff

leftLcondition.1, A (0 o KU)> 21,~ A 1, Q = (0 D >>“)P..

We demand the first conjunct because otherwise 1, @ is not defined. The second

conjunct expresses that 1,~ should not contain junk outside the domain of the left

argument of 0. The third conjunct expresses that 1, @ is the identity on the domain

of the right argument of 0.

Of course, we can give a dual definition for rB being a right-unit of 0.

Definition 4.9 (Right-unit). rB is a right-unit of 0 iff

left_condition.r, A (0 o >>u)> 2rB< A Or, = (0 D CC”), .

For an arbitrary binary spec 0 nothing is known about the uniqueness of the left-

or right-unit. But if we know that @ has a left- and a right-unit we have.

= {definition left-, right-unit: 1~ 1, @ z rBc }

1, @or@

= (sectioning}

Or,0 1,

= {definition left-, right-unit: 1~ Or, A l,d >

43 .

84 P.F. Hoogendijk, R.C. BackhouselScience of Computer Programming 22 (1994) 67-105

So they are the same and hence unique. This leads us to the following

definition:

Definition 4.10 (Unit). 1 8 is the unique unit of @ iff 1 8 is a left- and a right-unit of 0.

Note: Very often we are interested in the reduce /(l@v 0); that is why we allow

ourselves to write just /@ instead of the cumbersome /(ls,v 0).

5. The Boom-hierarchy

The Boom-hierarchy consists of four levels: trees, lists, bags and sets. A tree can be

represented by a bin. Note that many bins can represent the same tree. For instance

bin x and E # x represent the same tree. Also, we can represent a list by a tree if we

forget about the order in which sublists are joined, i.e. x#(y#z) and (x# y)#z

represent the same list. A bag can be represented by a list if we forget about the

ordering of the elements: x # y and y +t x represent the same bag. Similarly, a set can be

represented by a bag if we forget about the number of occurrences of an element in

a bag: x # x and x represent the same set. We now give a construction for a congru-

ence relation on PF such that the equivalence classes of that congruence relation are

just those bins (trees, lists, bags) that represent the same tree (list, bag, set). We denote

the four congruence relations by Tree, List, Bag and Set.

5.1. Congruence relations

By definition, CI is a congruence relation on pF if it is an equivalence relation (er) on

,L$ and it is F-substitutive. That is, a is symmetric and transitive

cc=au A aZaoa, (24)

it is reflexive on pF,

crnZ= pF,

or equivalently,

crzpF~clopF=a, (25)

and it is F-substitutive:

l27F.R. (26)

Conditions (24)-(26) define an F-congruence whatever the relator F, not just the

particular one we are studying here. However, for our particular needs it pays to

rephrase (26) in terms of the constructor #. This is achieved by noting that for all ers
X and Y

XG!Y=X=XxY (= YOX). (27)

P.F. Hoogendijk, R.C. BackhouselScience of Computer Programming 22 (1994) 67-105 85

Note that relator F maps ers on yF to ers on ,uF. Hence, (26) is equivalent to

a0 F.u = a.

Now,

a0F.u

= (definition of F, z, U and #}

CI 0 zv((cl v(i-t 0 CI x c!))

= (spec-junc fusion}

(aoz)v((ao cl)v(ao # oaxC1)).

Similarly,

CI = ao,uF = (aoz)v((ao q)v(ao#)).

Thus, by the unique extension property of v, for all ers on pF,

CI is F-substitutive = CI = c(0 # 0 c1 x a.

The right-hand side of (28) we call the absorption rule.

(28)

5.2. Tree, List, Bag and Set

Next we give a formal definition of the four congruence relations Tree, List, Bag and

Set. Let 8 be one of these relations; we define the following constructors.

rp = -Par. (29)

O~=_!&U. (30)

#z=Zo#. (31)

So, for instance, spec ZList is the singleton-list constructor, i.e. when we apply rList to an

element we get as result the whole equivalence class of List of which each bin

represents the same singleton-list.

Definition 5.1 (Boom-hierarchy). Tree is the least congruence relation such that

&r__ is the unit of $ rree:

(a) tt rree 0 &rree A Tree = Tree.

(b) # Tree 0 TreeaETree = Tree.

List is the least congruence relation such that List 2 Tree and +tList is associative:

(c) ttLisr” itListXz= ttListozx l+List’P.

Bag is the least congruence relation such that Bag z List and fBag is symmetric:

(d) tt~ag = tt~sgo~.
Set is the least congruence relation such that Set 2 Bag and +tSer is idempotent:

(e) itset oIAI= Set.

86 P.F. Hoogendijk, R.C. BackhouselScience of Computer Programming 22 (1994) 67-105

(p and y are the natural transformations as used for the definition of associativity,

Theorem 4.6, and symmetry, Theorem 4.5.)

An obvious question is now: is this a good definition? That it is is well known, but it

may be helpful to outline the argument.

The basic idea is to appeal to the Knaster-Tarski theorem: to do so we transform

the requirements for Tree, List, Bag and Set into a fixpoint equation in the complete

lattice of ers on @.

By unfolding the definition of # re and Ed and using the absorption rule, we can shift

the type information in (a)-(e) entirely to the left, which gives us:

(a) TreeoE# = Tree,
(b) Tree 0 #E = Tree,
(c) Listoj+o* xl = Listoj+oZx #o/3,
(d) Bago#oy = Bag0 j-t,

(e) Set 0 # 0 Zal = Set.
The requirements (a)-(e) all have the same form, namely

where f> = g> and imp.f and imp.g.

(In the case of (a), (b) and (e), you have to realise that 9 = 9? 0 @, and instantiate

g to I.IF.) Now using properties of imps and of ers we can prove that for all ers X and

all f and g satisfying the above conditions

So, denoting by fa . . . fe and ga . . . ge the pairs of imps occurring in requirements

(a)-(e) we have, for example, that Tree is the least congruence relation containing

fa 0 gau and fb 0 gbU. Thus, Tree is the least solution of

X:er.X: X7(faogau)u(fbogbu)uF.X.

But for er X and spec R,

XzR -XZ(RURU)*,

where S* denotes the least transitive and reflexive-on-@ spec containing S. Thus,

Tree is the least solution of the equation:

X:er.X: XZ(b,u8’buF.X)*,

where 8, =faogauugaOfau and c??,, =fbogbuugbOfbu.

Since the right side of this equation is a monotonic endofunction on er X, and the

ers form a complete lattice, it follows by Knaster-Tarski that the equation has a least

solution.

Similarly, we can transform the definitions of List, Bag and Set into a least fixpoint

equation. Hence, Definition 5.1 is a valid definition. For more details the reader is

referred to [27] where a more general construction is given using partial equivalence

P.F. Hoogendijk, R.C. Backhouse JScience of Computer Programming 22 (1994) 67-105 87

relations instead of ers on ,aF and which permits the combination of laws and

restrictions on types.

By definition, we have the following lattice ordering:

pF c Tree E List G Bag E Set. (32)

Using property (27) it follows that

Tree = Tree 0 pF ,

List = List 0 Tree = List 0 pF,

(33)

(34)

Bag = Bag 0 List = Bag 0 Tree = Bag 0 pF , (35)

Set = Set 0 Bag = Set 0 List = Set 0 Tree = Set 0 pF. (36)

5.3. Respecting laws

Definition 5.2. We say that spec R respects an equivalence relation 56 iff

RoLY=R.

Informally, if spec R respects 9 it means that spec R does not differentiate between

representatives of the same equivalence class of A?. For instance, if R 0 Set = R holds

then spec R yields the same result when applied to bins x and x jt x. Furthermore,

from equations (33)-(36) it follows that if a spec respects a type from the Boom-

hierarchy, it also respects a type lower in the level of the Boom-hierarchy. For

instance, if a spec R respects Set, it also respects List.

For each level of the Boom-hierarchy we have the following conditions for a cata-

morphism to respect the corresponding equivalence relation.

Theorem 5.3 (Type of catamorphism). In order to state the theorem let us introduce the

following abbreviations. First let %? be a shorthand for aRv(Sv a)]). Then let us

consider the following five properties, which we refer to later by their labels:

(a) (Sorr)@o%?= V,

(b) @(Sorr)o% = %‘,

(Note that (c), respectively (d), holds if @ is associative, respectively symmetric.)

Now we can state the theorem, which is:

V respects Tree = (a) A (b).

V respects List = %’ respects Tree A (c).

V respects Bag E V respects List A (d).

GE: respects Set = G?? respects Bag A (e).

88 P.F. Hoogendijk, R.C. Backhouse / Science of Compuler Programming 22 (1994) 67-105

Next we derive properties for map and filter concerning laws. From these properties

it follows that the type of a catamorphism remains the same if it is composed with

a filter or a map (in the case of Set only if the argument of the map is an imp). The

following is an important theorem.

Theorem 5.4 (Type-7 fusion). For 2 equal to Tree, List, Bag or Set,

Using this property we can prove the following type judgements.

Theorem 5.5. For 9 equal to Tree, List or Bag, and imp f,

(a) 9 0 az+7rl) respects 2,
(b) Set ~[fvr]) respects Set,

(c) 2’ 0 *R respects 64,
(d) Set 0 *f respects Set,

(e) _P 0 up respects 2,

(f) Set 0 ap respects Set.

The importance of Theorem 5.5 is that if a spec R does not differentiate between

representatives of, say, the same bag, i.e. spec R respects Bag, then for instance R 0 dp

also respects Bag. Thus, using these theorems we can move around the type informa-

tion in our formulae.

6. Comparison with quantifier notation

In this section we make a link to the quantifier notation. We define

@(i:p.i:R.i)=/@o*Roap,

where R. i is defined by

(37)

R.i = Rob, (38)

with io being a point “pointing at i”, i.e. ioc = ((i, i)}.
It is vital to note that the expression @ (i : p. i : R. i) denotes a function. This appears

to be counter to normal usage; that it is not so is explained by the fact that the domain

of the dummy i is always left implicit in the quantifier notation. We can make it

explicit by writing @ (i E A : p.i : R.i); if we now suppose that d is an enumeration of

the elements of the type A and @ is both associative and symmetric then we make the

definition

@(iEA:p.i:R.i) = /Q O*RNI~OJZZ. (39)

Note that for the quantification over @ to be meaningful it is always assumed that

@ is both associative and symmetric. We will not demand this unless it is necessary.

P.F. Hoogendijk, R.C. Backhouse/Science of Computer Programming 22 (1994) 67-105 89

6.1 Trading and translation

Two rules known for the quantifier notation hold at the level of bins. The first rule is

trading; the laws govern the interchange of expressions between the range and the

function part of the quantification. Using Lemma 3.16(a) and Theorem 3.9 it is easy to

prove that

/Oo*Rodp=/Oo*(Rap~l,). (40)

The well-known trading rules for universal and existential quantification are immedi-

ate corollaries of (40).

/ando*qo~p=/ando*(p~q),

/oro*qoQp = /or’J*(p A q),

where p and q are right-conditions, and 4 is a total imp to B defined by

4 = trueaqbfalse,

(41)

(42)

with true and false the points “pointing” at true and false (B is a monotype containing

two elements: false and true) and and and or the total imps from B x B to LB corres-

ponding to disjunction and conjunction.

To derive (41) and (42) it suffices to observe that

cjapbtrue = p s q (43)

and

qapr>false = p A q, (44)

which follows directly from the definition of the bar and the properties of conditionals.

As an example we prove (43)

ijapbtrue

= {property conditionals: Theorem 3,12(d)}

trueolpD4

= {definition bar)

truedipr>(trueaqr>false)

= {property conditionals: Theorem 3.12(g)}

trueolp v qbfalse

= {definition +, definition bar}

90 P.F. Hoogendijk, R.C. Backhouse / Science qf Computer Programming 22 (1994) 67-105

Less familiar consequences of (40) are the trading rules for equivalence and in-

equivalence.

These follow because, like conjunction, the unit of equivalence is true and, like

disjunction, the unit of inequivalence is false.

The literal translation of (41) and (42) into the quantifier notation yields

V(i:p.i:q.i) = V(i::p.i - q.i)

and

3(i:p.i:q.i)= 3(i::p.i A q.i).

The trading rules in the quantifier calculus are, however, slightly more general;

specifically:

V(i:p.i A r.i:q.i) = V(i:r.i:p.i 5 q.i)

and

3(i:p.i h r.i:q.i) = !l(i:r.i:p.i A q.i).

But these properties stated in our formalism follow directly from Lemma 3.17:

a(p A r) = 4pO4r. (47)

The second rule we have already derived is range translation. From the filter range

translation rule, Theorem 3.18, and compositionality of map it follows that, for imp f;

(48)

In the quantifier notation this would be expressed as

@(iet.A:p.i:f.i) = @(jEA:p.(t.j):J(t.j)).

In the following sections we derive other well-known rules like the unit rule, range

splitting and range disjunction. We try to derive these properties as early as possible in

the Boom-hierarchy.

6.2. Unit law

In this section we concentrate on trees. Using the results of the previous section and

the property of the constructors, Definition 5.1(a), we can prove the unit rule:

P.F. Hoogendijk, R.C. BackhouselScience of Computer Programming 22 (1994) 67-105 91

Theorem 6.1 (Unit). Tree 0 @se = Tree 0 E 0 pF.

Note that the added type information is crucial: without it, the equality does not

hold. For instance, afalse transforms a j-t (b ++ c) into L j+ (E j+ 8) and the latter is

only equal to E if we consider trees. The added “0 pF” is necessary because the right

domain of ufalse is pF.
Using Theorem 6.1 we can prove the following corollary.

Corollary 6.2 (Unit rule). IfaRv(Sv @)D respects Tree then

Proof.

aRv(Sv @)a 0 ofalse

= {aRv(Sv O)]) respects Tree}

aRv(Sv O)]) 0 Tree 0 afalse

= (Theorem 6.1)

aRv(Sv@)])o TreeoEapF

= (aRv(Sv 0)]) respects Tree}

aRv(Svo)])o&opF

= (definition E}

= {computation rule q }

The above calculation is a nice example of how we treat type information in our

system. By the assumption the type information pops up at the right place and having

used the type information we can get rid of it by using the assumption again.

Examples of the unit rule are

/and 0 *R 0 afalse = true 0 pF ,

for 0 *R 0 ufalse = false 0 pF ,

92 P.F. Hoogendijk, R.C. Backhouse/ Science of Computer Programming 22 (1994) 67-105

because 00, lo, true and false are the units of + , x, and and or. These are written in

the quantifier form as follows:

C(i:fulse: R.i) = 0,

II(i:fulse: R.i) = 1,

V(i:fulse: R.i) = true,

3(i:fulse: R.i) =fulse.

Note that the proof given here is valid for trees (and thus also if the catamorphism

respects lists, bags or sets). This is an improvement over the one in [2] since there the

range splitting rule was used but that rule is only valid for bags and not lists or trees.

6.3. Associutivity and symmetry

Throughout this section we assume the existence of an associative and symmetric

binary spec @ and the existence of a spec U, such that

An obvious candidate for U is 1, if it exists. First we prove a property of 0:

Theorem 6.3 (0 - 0 abides law).

(ROS)O(POQ)=(ROP)O(SOQ).

Proof.

(R@S)OV’OQ)

= {property (20) >

((R 0 <<) @ (S 0 >>)) 0 ((P 0 K) 0 (Q 0 x))

= { @ associative and symmetric}

((Ro<<)O(Po<<))~((So>>)~(Qo>>))

= {cc, >> imps, split-imp fusion (21))

(R@Po<<)@(S@Qo>>)

= (property (20))

(ROf’)@(SOQ). •I

By applying the unique extension property, Theorem 3.2, we also have the following

theorem.

P.F. Hoogendijk, R.C. Backhouse/Science of Computer Programming 22 (1994) 67-105 93

Theorem 6.4 (Asso-sym rule).

aw 0 sbw O)I) = ~RV(UV on 0 awuv on.

We can now prove, because a filter is an imp, the following theorem.

Theorem 6.5.

aw 0 S)V(UV 0 11) o 4~

=

((CRWv @)Doap) 0 ((CWUV @)Dov).

Proof.

au7 0 wuv O)Doqp

= {asso-sym rule: Theorem 6.4)

aRv(uvO)i)OasV(uvO)i)oap

= {q imp, split-imp fusion (21))

((CRv(Uv @)D~V)O (awuv O)I)OQP). q

Theorem 6.5 is the direct analogue of the associativity and symmetry rule in [2],

expressed in the quantifier notation as follows:

@(i:p.i:Ji@g.i) = @(i:p.i:f.i)@ O(i:p.i:g.i).

By definition Bag O# is associative and Bag 0 E is the unit of Bag otf, thus

Theorem 6.4 holds with U := Bag 0 U and 0 := Bag 0 #. This results in the following

theorem.

Theorem 6.6 (Asso-sym rule).

Bw([(RttS)vvD = m70ami)ttasva

For the proof of range splitting (below) and range disjunction (in the next section)

we will use Theorem 4.6 to move the join operator inside the catamorphism, then we

use Theorem 3.13(a) or (b) to move it inside the arguments of the conditionals and

finally, with some shuffling around, we use the properties of the constructors to

remove it entirely.

Theorem 6.7 (Range splitting). Bag 0 ap -/f u up = Bag.

94 P.F. Hoogendijk, R.C. BackhouselScience of Computer Programming 22 (1994) 67-105

Proof. First we prove:

Bago(TUpD&)j+(TUlpD&)

= (property conditionals: Theorem 3.12(d)}

BUgo(TUpD&)#(&UpDT)

= {-f abides with apr>: Theorem 3.13(a))

Bag”(rtta)W+ttr)

= {property conditionals: Theorem 3.12(j)}

(BUgoz~E)UpD(BUgo&~z)

= {property constructors: Definition 5.1(a) and (b))

(Bag 0 r) upD(Bag 0 z)

= (property conditionals: Theorem 3.12(a)}

Bagor.

And from this the theorem follows:

Bagouptf-alp

= {definition filter)

Bag”([(rV+Vl) it ([(ralPDs)v?l)

= {asso-sym rule: Theorem 6.6)

Bag o(II((zQPDE)tt(ZQIPD&))VtlD

= (type-y fusion: Theorem 5.4)

(S(Baga(~uPD&)~(~QIPD&))V(Bag~r)l)

= {calculation above}

a(Bag 0 r)v(Bag 0 v)D

= (type-u] fusion: Theorem 5.4)

Bag4bvyD

= {(IIzvtj]) = pF, Bug opLF = Bag)

Bug. q

Using the range splitting rule, we can prove the following theorem.

P.F.

Theorem 6.8. ZfaRv(Sv @)I) respects Bag then

(awm3)Do4p A 4))0((CRv(SvO)l)~a(lP * 4)).

Proof.

= {(aRv(Sv @)J) respects Bag, range splitting}

@Rv(Sv @)D-v+T-FI

= {definition _#-, computation rule j+ }

(aRv(Sv o)Doap)O(aRvSv~Doalp)oaq

= {uq imp, split-imp fusion}

((CRv(SvO)Doapoaq)O((rRvSvODoalpouq)

= {filter-distribution}

Expressed in the quantifier notation, Theorem 6.8 takes the form:

@((i:q.i:f.i)

=

@(i:p.i A q.i:Ji)@ @(i:1p.i A 4.i:f.i).

6.4. Extensionality

In the following section we introduce the so-called cross-product. The cross-

product is not a catamorphism; it is a so-called parameterised catamorphism. Having

a notion of extensionality one can define a parameterised catamorphism using

ordinary catamorphisms. Although there is some research [6] going on towards

defining other richer (recursive) structures than catamorphisms inside the relational

calculus, i.e. without using points, these results are too preliminary to mention in the

current paper.

By way of preparation we introduce the concept of extensionality. The extensional-

ity axiom enables us to give point-wise proofs. Not that such proofs are preferable. On

the contrary: we prefer to avoid point-wise proofs as much as possible. However, there

are occasions when the avoidance of dummies becomes tortuous and point-free

calculations become ugly. We postulate:

96 P.F. Hoogendijk, R.C. BackhouselScience of Computer Programming 22 (1994) 67-105

Axiom 6.9 (Extensionality).

R = S = V(x : point.x : R 0 x = S 0 x).

Remark. From now on lower case letters x, y, z etc. denote points. Furthermore, we

will drop the phrase: for all points x. So, if we say that P(x) holds, we actually mean

V(x : point.x : P(x)). Extensionality will thus be used as follows:

Rox=S~x

s {extensionality}

R=S.

In [24] a full discussion about extensionality can be found.

For binary specs we have the following instantiation of the extensionality axiom.

Theorem 6.10 (Extensionality for binary specs). For binary specs @ and 0,

@ = @ =v(X,y::@oXAy= @oXAy)

or equivalently,

0 = 0 = V(x, y : :x @ y = x @ y).

We can use extensionality to define new specs and to prove the uniqueness of such

a spec. In general, we want to construct a spec R, not containing x, such that

Rex = Exp(x), (49)

where Exp(x) denotes an arbitrary expression containing x, i.e. Exp is a function from

specs to specs.

Note that this is the normal way to define functions, i.e. we can define for instance

square to be the function such that square.x = x x x.

So, in the relational setting, a logical question is: for which Exp(x) is it possible to

construct such a spec R? Note that the left-hand side of (49) is a left-condition, so

Exp(x) must be a left-condition for every point x. Thus Exp(x) has to satisfy

Exp(x) = Exp(x) 0 rr . (W

It turns out that this condition is enough in order to construct a spec R satisfying

equation (49). More precisely, we have the following theorem.

Theorem 6.11 (Unique extension property). ZfExp(x) is a left-conditionfor every point

x then

R = u(x:point.x:Exp(x)oxu)

z!

V(x : point.x : R 0 x = Exp(x)).

P.F. Hoogendijk, R.C. BackhouselScience of Computer Programming 22 (1994) 67-105 91

6.5. Cross-product

In this section we introduce the so-called cross-product. Conventionally, the cross-

product (X) is a binary spec which takes two lists and returns the list containing all

pairs of the elements of both lists, for example

Ca, bl X Cc, 4 el = [(a x 4 (b x 4, (a x 4, UJ x 4, (a x e), (b x e)] .

Note that in the result list the values of the left argument of the pairs run faster.

Definition 6.12 (Cross-product). We define

xx = @xOvqD,

where 0 is defined to be the binary spec such that @a = *(Zaa). Furthermore, we

define X@by X@=*@oX.

At the level of lists X B returns the list of all values a @ b with a taken from the first

list and b taken from the second list.

Note that X > _c pF x ,uF.

In this section, we adopt the convention that x, y and z denote points representing

elements of pF, i.e. ,PF z XC, y< , and a denotes an arbitrary point (thus not necessarily

an element of ,uF).

For the cross-product we have the following computation rules:

Theorem 6.13 (Cross-product computation).

(a) x X 07=x0.

(b) xx 00 = 0.

(c)xX 0++~0xxxxx.

In [131, Bird restricts discussion to lists. Here we also have

Listox x 0# =Listo# 0(X X)x(xX)

and filling in the arguments we have by extensionality, for all y and z

Listox X (y +f 2) = Listo(xXy)#(xXz).

Thus, this definition does indeed agree with the definition of the cross-product given

by Bird.

Operationally, because the elements of the first arguments of X run faster, the

leapfrog property with respect to the second argument is weaker. Only when we

consider bags, i.e. if we add associativity and symmetry, do we have symmetric

computation rules for the right-sectioning of X.

98 P.F. Hoogendijk, R.C. Backhousel Science of Computer Programming 22 (1994) 67-105

Theorem 6.14 (Cross-product computation).

(a) XY or = *yoyo.
(b) Tree0 Xy 0 q = Tree0 0.
(c) Bag0 xy Of = Bag0~0(Xy)x(Xy).

(Recall that y = >> A << is a natural transformation such that R x S 0 y = y 0 S x R.)

Proof. As an example we give the proof of part (c). It is easily proved, with the aid of
extensionality, that yQ j+zO = (y j+z)O. Using this we can prove:

&P(YW tt (ZX)

= (definition _ X >

mdbm~~tta~~~~n

= (asso-sym rule: Theorem 6.6)

W~abOttzO)vll
= {remark above}

~~goawtzm7i)
= { y j-t z point, definition -X}

Bag~(yilz)X.

From this it follows that

Bag0 Xy0j-t =Bagott_O Xyx Xy

= {extensionality}

&.XJo Xy+tAS= &Zgo#o XYX +tAS

= {fusion A, definition _%-}

Bag0 XyOt#s = BagO(Xy0t)j+(XyOs)

E {sectioning}

BagO(t#s)X Oy = BagO(tX Oy)#(sX Oy)

E {split-imp fusion (38))

Bago(t#s)X “y = Baggily

= (calculation above)

true. 0

The similarity between these computation rules and the normal computation rules
suggests that cross-product is symmetric in a certain sense when we consider bags. If

P.F. Hoogenduk, R.C. Backhouse/Science of Computer Programming 22 (1994) 67-105 99

we interchange the two arguments of X, the arguments of the pairs of the result list
get interchanged. Formally, we have the following theorem.

Theorem 6.15.

BagoX=Bago 2,

where for a binary spec 0, & is dejined by Q 0 y.

Proof.

BagoX=Bago Zy,

G (definition z,}

Bag~X=Bago*y~ X oy

z {extensionality)

BagoXoxal= BUgo*yoXoyoXAI

z (definition sectioning, property y)

BagoxX = Bago*yoXoIax

s {definition xX , definition sectioning}

BagoKxOaq]) = Bago*yoXx

s (type-q fusion)

a(Bag oxa)v(Bago q)D = Bag0 *y 0Xx

E (unique extension property}

Bago*yoXxoz = Bagox

A Bago*yoXxo 0 = Bag0 0

A Bago*yoXxo # = Bag0 j-t o(Bago*yoXx)x(Bago*yoXx).

The first two conjuncts follow from the cross-product computation rule of Theorem
6.14(a) and (b), and y o y = I x I. For the last conjunct we have:

Bago*yoXxo ff

= {Theorem 5.2(c), cross-product computation: Theorem 6.14(c)}

Bago*yo # 0(Xx)x(Xx).

= {definition map, computation rule # }

Bag0 j- o*yx*yo(Xx)x(Xx)

= (fusion x }

Bag0 j+ o(*yo Xx)x(*?0 Xx)

100 P.F. Hoogendijk, R.C. BackhouselScience of Computer Programming 22 (1994) 67-IO5

= {absorption rule}

Bag0 j-t oBagxBag~(*y~Xx)x(*y~ Xx)

= (fusion x >

Bag0 # o(Bag~*y~Xx)x(Bag~*y~Xx). q

A direct consequence of Theorem 6.15 in combination with Theorem 5.5(c) is the

following corollary.

Corollary 6.15.

BagoX@ = Bago~~.

This theorem, which was suggested by Lambert Meertens, summarises everything

we have proven for cross-product until now.

Using this corollary we can prove the Cartesian product rule:

Theorem 6.17 (Cartesian product). If/@ respects Bag then

/@~*(/@~xX@+y
=

Proof, First we prove

IO=&

= {definition X @}

/c+*@~xx

= {definition xX}

/@"*@oboAqD

= (factorisation}

lo~*o~/~~*(xo)

= (/q leapfrog Theorem 3.9(b), xX o z = x.)

/+/ip**~"*(xx~z)

= {/q leapfrog Theorem 3.9(b), fusion map}

/+*/@~*(*@Oxx~z)

= {definition X @, fusion map}

/O’J*(/Oox X&T).

P.F. Hoogendijk, R.C. Backhouse JScience of Computer Programming 22 (1994) 67-105 101

Using this and the assumption we derive the dual property:

IO&Y

= {/@ respects Bug, Corollary 6.16)

IQ OY%

= {property 1}

/O~Y%l

= {calculation above}

/@~*(/QOyx~~r)

= {/@ respects Bug, Corollary 6.16)

io~*C’o~YL)

= {property I}

/@ o*yo oX,yor).

And combining the two gives us

/@~*(/@~xx,+y

= {first calculation)

lO~~&PY

= {sectioning}

100 X,Y~X

= {second calculation}

/@0*(/O 0 x@y+x. 0

Within the quantifier calculus the Cartesian product rule looks much more familiar:

@(yEA:q.y:@(xEB:p.x:x@y))

@(x~B:p.x: @(YEA

6.6. Adding idempotence

In this section we add

:q.y:x@ y)).

idempotence, i.e. we consider sets. We know that

Set = Set 0 Bug so we may use the asso-sym rule (Theorem 6.6). Furthermore, we

know that Set 0 j+ is idempotent, which gives us the following theorem.

Theorem 6.18 (Range disjunction). Set 0 dp#aq = Set 0 a(p v q).

102 P.F. Hoogendijk, R.C. BackhouselScience of Computer Programming 22 (1994) 67-105

Proof. First we prove:

Seto(z4pD&) j+ (TuqDE)

= {property conditionals: Theorem 3.13(b)}

%r o ((7 tt r)Wb(r tt c))QP((s tt +W’(s # s))

= {property cond’t 1 ionals: Theorem 3.12(b), constructors: Definition 5.1(a), (b)

and (e)>

Set o(T~~DT)~~D(T~~D&)

= {property conditionals: Theorem 3.12(a)}

&t~T4pD(WlqD&)

= (property conditionals: Theorem 3.12(g)}

Then we have:

= {definition filter}

Set o([IzapDEv9jD # ([lrdqD&vfjj)

= {Theorem 6.6)

Set”(II((zQPDE) tt (tdqD&))“d

= {type-q fusion: Theorem 5.4, calculation above}

seto(Z4pVqD&V?f])

= (definition filter}

Setoq(pvq). q

Again we can combine this with a catamorphism to get the following theorem.

Theorem 6.19. Zf aRv(Sv @)D respects Set then

WWWD-(pvd

= (([IRv(SvO)l)oap)~(aRv(Sv0)Doaq).

P.F. Hoogendijk, R.C. Backhouse/ Science of Computer Programming 22 (I994) 67-105 103

Proof,

aRvw@)1)~4P” 4)

= (([Rv(Sv@)a respects Set, range disjunction}

aRvwc+)l)“~P it 44
= {definition _#-, computation rule +t }

((CRv(SvO)D~~p)O(aRv(Sv0)])~aq). n

Theorem 6.19 stated in the quantifier notation yields

@(i:p.i v q.i:f.i) = @(i:p.i:f.i)@ @(i:q.i:f.i).

7. Conclusion

By now the so-called “Boom-hierarchy of types” is very familiar (if perhaps not

under that name) and the substantial majority of properties established in this paper

have been published elsewhere (in texts on APL, in Backus’ Turing award lecture and

in Meertens’ paper). The contribution of this paper has principally been to organise

the rules, making clear at which level of the hierarchy each rule becomes valid. The

paper has also generalised the rules from a strictly typed, functional framework to

a polymorphic, relational framework. A surprising outcome is the low incidence of

appeals to extensionality and/or functionality. Indeed, extensionality has only been

used in the definition of the cross-product and recent work suggest that its use in this

context can be eradicated.

A major distinguishing feature of the spec calculus is that it tries to capture true

polymorphism rather than parameterised polymorphism, which is expressed by

naturality properties in category theory. A consequence of this design decision is that

type considerations occasionally enter into equational laws rather than being ex-

pressed in some overall context within which the law is applicable. This difference is

illustrated by the split operator. In category theory the arrow RAS is only defined if

R and S have the same right domain; if this is the case one has the computation rule

c~RAS=R. (51)

In the spec calculus split is a total operator: RAS is a spec for all specs R and

S irrespective of whether R and S have the same right domain, and the rule (51) takes

the form

<<QRAS=ROS>. (52)

Our experience is that this has been a fortunate design decision: one is rarely

hindered by the types that occasionally crop up in calculations, and calculations

proceed more smoothly because one is not continually nervous about unconscious

104 P.F. Hoogendijk, R.C. BackhousejScience of Computer Programming 22 (1994) 67-105

omission of some type restriction, the laws themselves containing the reminder that

such is necessary.

This aspect of the theory is particularly emphasised in this paper: a great many of

our calculations are prefaced by “List 0” or “Bug 0” etc. It may indeed seem that the

decision to develop a calculus in which types are part and parcel of the equational

laws was misguided: here, after all, is the evidence how cumbersome it can be. But one

must remember that the whole content of this paper is the discussion of which laws are

valid for trees, which for lists, etc., and it is because of this that the type constraints are

every present.

Acknowledgements

We would like to thank Netty van Gasteren, Ed Voermans and Jaap van der

Woude for their contributions to this work.

The investigations of the first author were (partly) supported by the Foundation for

Computer Science in the Netherlands (SION) with financial support from the Nether-

lands Organization for Scientific Research (NWO).

References

[l] C.J. Aarts, R.C. Backhouse, P.F. Hoogendijk, TX Voermans and J. van der Woude, A relational

theory of datatypes (in preparation).

[2] R.C. Backhouse, Program Construction and VeriJcation (Prentice-Hall International, Hemel

Hempstead, England, 1986).

[S] R.C. Backhouse, An exploration of the Bird-Meertens formalism, Tech. Report CS8810, Department

of Mathematics and Computing Science, University of Groningen, Netherlands (1988).

[4] R.C. Backhouse, P. de Bruin, P.F. Hoogendijk, G. Malcolm, T.S. Voermans and J. van der Woude,

Polynomial relators, in: M. Nivat, C.S. Rattray, T. Rus and G. Scollo, eds., Proceedings of the 2nd
Conjzrence on Algebraic Methodology and Software Technology, AMAST’91, Workshops in Comput-

ing Series (Springer, Berlin, 1992) 303-362.

[5] R.C. Backhouse, P. de Bruin, G. Malcolm, T.S. Voermans and J. van der Woude, Relational

catamorphisms, in: B. Moller, ed., Proceedings of the IFIP TC2/WGZ.I Working Conjizrence on
Constructing Programs (Elsevier Science Publishers B.V., Amsterdam, 1991) 287-318.

[6] R.C. Backhouse and H. Doornbos, Induction and recursion on datatypes, Department of Computing

Science, Eindhoven University of Technology, Netherlands (1993).

[7] R.C. Backhouse and P.F. Hoogendijk, Elements of a relational theory of datatypes, in: B. Miiller,

H. Partsch and S. Schuman, eds., Formal Program Development, IFIP TCZ/WGZ.I State-of-the Art
Report, Lecture Notes in Computer Science 755 (Springer, Berlin, 1993) 7-42.

[8] J. Backus, Can programming be liberated from the von Neumann style? A functional style and its

algebra of programs, Comm. ACM 21 (8) (1978) 613-641.
[9] R.S. Bird, The promotion and accumulation strategies in transformational programming, ACM

Trans. Programming Languages Syst. 6 (4) (1984) 487-504.
[lo] R.S. Bird, Transformational programming and the paragraph problem, Sci. Comput. Programming

6 (1986) 159-189.

[ll] R.S. Bird, An introduction to the theory of lists, in: M. Broy, ed., Logic of Programming and Calculi of
Discrete Design, NATO ASI Series F 36 (Springer, Berlin, 1987) 5-42.

[IZ] R.S. Bird, A calculus of functions for program derivation, Tech. Report, Programming Research

Group, Oxford University (1988).

P.F. Hoogendijk, R.C. BackhouselScience of Computer Programming 22 (1994) 67-105 105

[13] R.S. Bird, Constructive functional programming, in: Proceedings International Summer School on
Constructive Methods in Computing Science, Marktoberdorf, Germany (1988).

[14] R.S. Bird, Lectures on constructive functional programming, in: M. Broy, ed., Constructive Methods in
Computing Science, NATO ASI Series F 55 (Springer, Berlin, 1989) 151-216.

[lS] R.S. Bird, J. Gibbons and G. Jones, Formal derivation of a pattern matching algorithm, Tech. Report,

Programming Research Group, Oxford University (1988).

[16] R.S. Bird and L.G.L.T. Meertens, Two exercises found in a book on algorithmics, in: L.G.L.T.

Meertens, ed., Program Specification and Transformations (Elsevier Science Publishers B.V., North-

Holland, Amsterdam, 1987) 451-457.

[17] M.M. Fokkinga, Law and order in algorithmics, Ph.D. Thesis, Universiteit Twente, Netherlands

(1992).

[18] P.J. Freyd and A. Scedrov, Categories, Allegories (North-Holland, Amsterdam, 1990).

[19] C.A.R. Hoare, A couple of novelties in the propositional calculus, Z. Math. Logik Grundl. Math. 31(2)
(1985) 173-178.

[20] C.A.R. Hoare et al., Laws of programming, Comm. ACM 30 (8) (1987) 672-686; Corrigenda, Comm.

ACM 30 (9) (1987) 770.

[21] K. Iverson, A Programming Language (Wiley, New York, 1962).

[22] G. Malcolm, Data structures and program transformation, Sci. Comput. Programming 14 (1990)
255-279.

[23] L.G.L.T. Meertens, Algorithmics-towards programming as a mathematical activity, in: Proceedings
CWI Symposium on Mathematics and Computer Science (North-Holland, Amsterdam, 1986) 289-334.

[24] F.J. Rietman, A note on extensionality, in: J. van Leeuwen, ed., Proceedings Computer Science in The

Netherlands 91 (1981) 468-483.

[25] J. Riguet, Relations binaires, fermetures, correspondances de Galois, Bull. Sot. Math. France 76 (1948)
114-155.

[26] G. Schmidt and T. Striihlein, Relationene und Grafen (Springer, Berlin, 1988).

[27] E. Voermans, Pers as types, inductive types and types with laws, in: PHOENIX Seminar and
Workshop on Declarative Programming, Sasbachwalden, Workshops in Computing Series (Springer,

Berlin, 1991).

