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Abstract

Earlier papers [BV22, BV23b, BV23a] introduced the notions of a core and an index

of a relation (an index being a special case of a core). A limited form of the axiom

of choice was postulated —specifically that all partial equivalence relations (pers) have

an index— and the consequences of adding the axiom to axiom systems for point-free

reasoning were explored. In this paper, we define a partial ordering on relations, which

we call the thins ordering. We show that our axiom of choice is equivalent to the property

that core relations are the minimal elements of the thins ordering. We also characterise

the relations that are maximal with respect to the thins ordering. Apart from our axiom

of choice, the axiom system we employ is paired to a bare minimum and admits many

models other than concrete relations — we do not assume, for example, the existence of

complements; in the case of concrete relations, the theorem is that the maximal elements

of the thins ordering are the empty relation and the equivalence relations. This and other

properties of thins provide further evidence that our axiom of choice is a desirable means

of strengthening point-free reasoning on relations.

1 Introduction

Earlier papers [BV22, BV23b, BV23a] introduced the notions of a core and an index of a

relation (an index being a special case of a core). In [BV23b] the focus was on strengthening

standard axiom systems for point-free reasoning. A limited form of the axiom of choice was

postulated —specifically that all partial equivalence relations (pers) have an index— and the

consequences of adding the axiom were explored. The working document [BV22] extends this

work to practical applications of the notions, an extract of which being [BV23a] on diagonals

and block-ordered relations.

In this paper, we define a partial ordering on relations, which we call the thins ordering. We

begin by defining thins on partial equivalence relations (pers), and then extend the ordering

to all relations. We show that our axiom of choice is equivalent to the property that the

minimal elements of the thins relation on pers are precisely the indexes of pers. (See theorem

24 for a precise statement.) We then extend the thins ordering to all relations and we show

that, assuming our axiom of choice, the minimal elements of the ordering are precisely the
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core relations. (See theorem 64.) We also show that, when the thins relation is restricted

to pers, equivalence relations are maximal. Our calculations make use of a limited subset of

the axioms of point-free relation algebra —for example, we do not assume the existence of

complements— thus testifying to the power of our axiom of choice.

Because this paper is an extension of [BV23b] we have omitted all introductory material.

For ease of reference, we do repeat some key topics from [BV23b]. In such cases, we omit

proofs of lemmas and theorems. Hints in our calculations often refer to properties proved in

earlier publications; in such cases we state the properties within square brackets. (See for

example the proof of lemma 8 where the hint in the first step is

[P>< ◦P = P = P ◦P>< ] .

The square brackets should be read as “everywhere”. So the stated property is true for all

instances of the dummy P , which ranges in this case over pers.) Nevertheless, [BV23b] is

recommended reading before embarking on the current paper.

Section 2 gives a brief summary of our axiom system. The novel contributions of the

paper begin in section 3 with the definition of the thins relation. (At this stage, we don’t

call it an “ordering” because that property has yet to be established.) We also reproduce the

definition of an index and the axiom of choice from [BV23b].

Section 4 formulates a number of properties of thins. An important property (specifically,

theorem 14) is that the indexes of a per Q are the pers P that thin Q and are coreflexive.

This section also includes the proof that the thins relation is an ordering relation on pers.

Section 5 is about pers that are minimal with respect to the thins ordering. We show that

coreflexive relations are minimal. The converse property —minimal implies coreflexive— is

then shown to be equivalent to our axiom of choice. The conclusion of the section, theorem

24, is that the axiom of choice is equivalent to the conjunction of two properties: firstly, the

minimal elements of the thins ordering on pers are precisely the coreflexive relations and,

secondly, every per thins to a minimal element.

Section 6 is about maximality. A brief, informal summary of the main theorem (theorem

52) is that the equivalence relations are maximal with respect to the thins ordering on non-

empty pers. The theorem we formulate is, in fact, more general than this since it applies to

models of point-free relation algebra quite different from the standard set-theoretic binary

relations. The statement of the theorem introduces a new idiom to point-free relation algebra

that avoids a case analysis on whether or not a relation is empty.

Section 7 is where we extend the thins ordering to arbitrary relations (and not just pers).

We prove that, assuming our axiom of choice, a relation S is minimal with respect to the

thins ordering on arbitrary relations iff S is a core relation.

2 Point-Free Relation Algebras

In this section, we define a point-free relation algebra. Such an algebra has three components

with interfaces between them: a (typed) monoid structure, a lattice structure, and a converse

structure.

Underpinning any relation algebra is a very simple type structure. We assume the exis-

tence of a non-empty set T of so-called basic types. A relation type is an ordered pair of
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basic types. We write A∼B for the ordered pair of basic types A and B . We often omit

“relation” and refer to A∼B as a “type”. The carrier set of a point-free relation algebra is

typed in the sense that each element X of the carrier set has a type A∼B for some basic

types A and B . A relation of type A∼A , for some A , is said to be homogeneous. If T

has exactly one element we say that the algebra is untyped.

The monoid structure is defined as follows. For each triple of basic types A , B and C ,

and each element X of type A∼B and each element Y of type B∼C , there is an element

X◦Y of type A∼C . Also for each basic type A there is an element I of type A∼A .

The element X◦Y is called the composition of X and Y , and I is called the identity of

A . Composition is required to be associative, and identities are required to be the units of

composition. The composition X◦Y is only defined when X and Y have appropriate types.

(Such a typed monoid structure is commonly called a “category”.)

In principle, the type of the identities should be made explicit in the notation we use: for

example, by writing IA for the identity of type A∼A . It is convenient for us not to do so,

leaving the type information to be deduced from the context. This is also the case for other

operators and constants that we introduce below.

For each type A∼B , we assume the existence of a (finitely) distributive lattice (partially)

ordered by ⊆ . The binary supremum and infimum operators of the lattice are denoted by

∪ and ∩ , respectively. The least and greatest elements of the lattice are denoted by ⊥⊥ and

⊤⊤ , respectively.

The interface between the monoid structure and the lattice structure is the existence of

the two factor operators defined by, for all X , Y and Z of appropriate types,

(Y ⊆ X\Z) = (X◦Y ⊆ Z) = (X ⊆ Z/Y) .

As a consequence, composition distributes over supremum. That is, for all relations R , S ,

T and U of appropriate type

R◦(S∪T) = R◦S∪R◦T ,

(S∪T)◦U = S◦U∪ T◦U ,

R◦⊥⊥ = ⊥⊥ , and

⊥⊥◦R = ⊥⊥ .

(The symbol ⊥⊥ is overloaded in the final two equations: each occurrence may have a different

type.)

The converse structure is very simple: for each element X of type A∼B there is an

element X
∪ of type B∼A .

The interface between the lattice structure and the converse structure is the Galois con-

nection: for all X and Y of appropriate types,

X
∪

⊆ Y ≡ X ⊆ Y
∪

.

The interface between the monoid structure and the converse structure is: for each identity

I ,

I
∪

= I
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and, for all X and Y of appropriate types,

(X◦Y)
∪

= Y
∪
◦X

∪

.

Finally, the modularity law acts as an interface between all three components: for all X , Y

and Z of appropriate types,

X◦Y ∩ Z ⊆ X ◦ (Y ∩ X
∪
◦Z) .

We do not use the existence of the factor operators or the modularity law anywhere explicitly

in this paper. We do, however, make extensive use of the properties of coreflexive relations

and the (coreflexive-)domain operators first mentioned in section 3, as well as the per-domain

operators in section 7. The properties of coreflexive domains rely heavily on the modularity

law, and per domains are defined in terms of the factor operators.

A consequence of the axioms is that all the operators of the algebra —composition, con-

verse, supremum, infimum and the domain operators introduced later— are monotonic with

respect to the ⊆ ordering. We exploit monotonicity frequently in our calculations, sometimes

without explicit mention.

The axioms of point-free relation algebra do not completely characterise all the properties

of binary relations and, therefore, admit other models (for example geometric models: see

[Fv90, 2.158] and [Voe99, section 3.5]). We use the term concrete relation below to refer

to binary relations as they are normally understood. That is, a concrete relation of type

A∼B is an element of the powerset 2A×B . (The types A and B do not need to be finite.)

A point-free relation algebra is said to be unary if it satisfies the cone rule : for all X ,

⊤⊤◦X◦⊤⊤=⊤⊤ ≡ X 6=⊥⊥ .

(The three occurrences of ⊤⊤ may have different types. The rightmost occurrence is assumed

to have the same type as X ; the other two are assumed to be homogeneous relations of the

appropriate types. The terminology reflects the fact that the cartesian product of two relation

algebras is non-unary. See [Voe99, section 3.4.3].)

In [BV22, BV23b], much of the focus was on introducing axioms that facilitate pointwise

reasoning. To this end, the cone rule was used extensively. In contrast, in this paper the goal

is not to facilitate pointwise reasoning but, instead, to strengthen point-free reasoning. So

here the cone rule is deemed to be invalid. See the introductory remarks in section 6.

Example 1 The simplest examples of point-free relation algebras are all untyped. The

simplest of all has just one element: all of the constants ⊥⊥ , I and ⊤⊤ are defined to be

equal. The second simplest has two elements ⊥⊥ and ⊤⊤ ; I is defined to be equal to ⊤⊤

(and different from ⊥⊥ ). The third simplest has three elements: the constants ⊥⊥ , I and ⊤⊤ ,

which are defined to be distinct. (In all three cases, the definitions of the ordering relation,

composition and converse can be deduced from the axioms.)

A four-element algebra is obtained by adding a new element ¬I to the three-element

algebra and defining the composition ¬I ◦¬I to be I and the converse (¬I)∪ to be ¬I . As

suggested by the notation, ¬I is the complement of I . That is, the lattice structure is as

shown in the diagram below.
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⊤⊤

I ¬I

⊥⊥

The simplest example is not unary, the other examples are unary. A model of the two-

element algebra is formed by the (homogeneous) concrete relations on a set with exactly one

element. The other examples do not have such a model since the concrete relations on a set

of size n form a power set of size 2n×n .

✷

3 Basic Definitions

We begin by restricting our study to partial equivalence relations (pers1). In this section we

recall the definition of an index of a per and our axiom of choice. New is definition 5.

Throughout the paper, P and Q denote pers. For pers, the left and right domains co-

incide. (I.e. for all pers P , P<=P> .) For this reason, P>< is used to denote the left/right

domain of P . That is, P<=P><=P> . (We assume familiarity with the properties of core-

flexive2 relations and the domain operators. So, rather than include an extensive list of

their properties, we state the properties being used between square “everywhere” brackets,

as explained earlier.)

Definition 2 (Index of a Per) Suppose P is a per. Then an index of P is a relation J

such that

(a) J⊆P>< ,

(b) J◦P◦J = J ,

(c) P◦J◦P = P .

✷

Axiom 3 (Axiom of Choice) Every per has an index.

✷

Example 4 The three- and four-element algebras detailed in example 1 do not satisfy the

axiom of choice since, in both cases, ⊤⊤ does not have an index. The two simplest examples

do satisfy the axiom of choice because each element is an index of itself.

✷

Definition 5 (Thins) The thins relation on pers is defined by, for all pers P and Q ,

P�Q ≡ P = P>< ◦Q ◦P>< ∧ Q = Q ◦P>< ◦Q .
✷

1Relation P is a per iff it is symmetric (i.e. P= P
∪

) and transitive (i.e. P◦P⊆ P ). Equivalently, P is a
per iff P = P ◦ P

∪

.
2Relation p is coreflexive iff p⊆ I .
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This paper is about the properties of the � relation. We call it the thins relation. (So

P�Q is pronounced P thins Q .) Much of the paper is about the thins relation on pers but

we extend it to all relations in section 7.

Informally, the first conjunct in the definition of P�Q states that the equivalence classes

of P are subsets of the equivalence classes of Q , and the second conjunct states that, for

each equivalence class of P , there is a corresponding equivalence class of Q . Some of the

properties stated below are intended to confirm this informal interpretation of the definition.

Example 6 In all four example algebras detailed in example 1, the pers are ⊥⊥ , I and ⊤⊤

and the thins relation is discrete. (That is, the thins relation is the equality relation on the

pers.)

✷

4 Basic Properties

As the title suggests, this section is about basic properties of the thins relation. Theorem

9 establishes that it is a partial ordering on pers. Theorem 14 formulates an alternative

definition of an index of a per in terms of thins. Subsequent lemmas anticipate properties

needed in later sections.

Obvious from the property that P><⊆ I (for arbitrary P ) and monotonicity of composition,

applied to the property P = P>< ◦Q ◦P>< is that, for all pers P and Q ,

(7) P�Q ⇒ P⊆Q .

We use this frequently below.

The following lemma is also used on several occasions. Compare the lemma with properties

2(b) and 2(c) of an index.

Lemma 8 For all pers P and Q ,

P�Q ⇒ P = P◦Q◦P ∧ Q = Q◦P◦Q .

Proof Assume P = P>< ◦Q ◦P>< . Then

P◦Q◦P

= { domains (specifically [ P>< ◦P = P = P ◦P>< ] ) }

P ◦P>< ◦Q ◦P>< ◦P

= { assumption: P = P>< ◦Q ◦P>< }

P◦P◦P

= { P is a per, [ P=P◦P ] }

P .

Since P�Q ⇒ P = P>< ◦Q ◦P>< , it follows that P�Q ⇒ P = P◦Q◦P . Also,

Q◦P◦Q

⊇ { [ P⊇P>< ] }

Q ◦P>< ◦Q
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= { assumption: P�Q , so Q = Q ◦P>< ◦Q }

Q

= { Q is a per, [ P=P◦P ] with P :=Q }

Q◦Q◦Q

⊇ { (7) and monotonicity }

Q◦P◦Q .

That is, by anti-symmetry, P�Q ⇒ Q = Q◦P◦Q .

✷

The notation we have chosen suggests that thins is a partial ordering. This is indeed the

case:

Theorem 9 The thins relation is a partial ordering on pers.

Proof We must prove that the thins relation is reflexive, transitive and anti-symmetric.

Reflexivity is straightforward:

P�P

= { definition 5 }

P = P>< ◦P ◦P>< ∧ P = P ◦P>< ◦P

= { domains (specifically, [ P>< ◦P = P = P ◦P>< ] ) }

P=P ∧ P=P◦P

= { reflexivitiy of equality; P is a per and [ P=P◦P ] }

true .

Now, suppose P , Q and R are pers, and P�Q and Q�R . Applying (7), we have:

(10) P⊆Q⊆R .

To prove transitivity, we must prove that P�R . Applying definition 5, we must prove that

(11) P = P>< ◦R ◦P><

and

(12) R = R ◦P>< ◦R .

We prove (11) by mutual inclusion:

P

= { domains (specifically, [ P>< ◦P = P = P ◦P>< ] ) }

P>< ◦P ◦P><

⊆ { by (10), P⊆R ; monotonicity }

P>< ◦R ◦P><

⊆ { P is a per and [ P><⊆P ] ; monotonicity }

P ◦R ◦P

= { assumption: P = P>< ◦Q ◦P>< }

P>< ◦ Q ◦ P>< ◦ R ◦ P>< ◦ Q ◦ P><



8

⊆ { [ P><⊆ I ] ; monotonicity }

P>< ◦ Q ◦ R ◦ Q ◦ P><

= { assumption: Q�R , lemma 8 with P,Q :=Q,R }

P>< ◦ Q ◦ P><

= { assumption: P = P>< ◦Q ◦P>< }

P .

Now we prove (12). Again, the proof is by mutual inclusion:

R ◦P>< ◦R

⊆ { [ P><⊆ I ] and monotonicity }

R◦R

⊆ { R is a per (and hence transitive) }

R

= { assumption: Q�R , lemma 8 with P,Q :=Q,R }

R◦Q◦R

= { assumption: P�Q }

R ◦Q ◦P>< ◦Q ◦R

⊆ { assumption: Q�R , (7) and monotonicity }

R ◦R ◦P>< ◦R ◦R

⊆ { R is a per (and hence transitive) }

R ◦P>< ◦R .

Finally, combining (11) and (12) and applying definition 5 (with P,Q :=P,R ) we have shown

that P�R . This concludes the proof that the thins relation is transitive.

Finally, we prove that the thins relation is anti-symmetric. Suppose P�Q�P . Then, by

(7), P⊆Q⊆P . Thus P=Q by the anti-symmetry of the ⊆ relation.

✷

We now consider the properties of indexes with respect to the thins ordering. Our first

goal is to show that the definition of an index J of a per P can be split into two conjuncts,

namely J⊆ I and J�P . (See theorem 14.) First, a lemma:

Lemma 13 If J is an index of P then J�P .

Proof

J is an index of P

= { definition 2 }

J⊆P>< ∧ J◦P◦J = J ∧ P◦J◦P = P

⇒ { domains (specifically, [ P><⊆ I ] and [ Q⊆ I ≡ Q=Q>< ] with Q := J ) }

J= J>< ∧ J◦P◦J = J ∧ P◦J◦P = P

⇒ { Leibniz }

J>< ◦P ◦ J>< = J ∧ P ◦ J>< ◦P = P

= { definition 5 }

J�P .

✷
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Theorem 14 For all pers P and Q ,

P⊆ I ∧ P�Q ≡ P is an index of Q .

Proof The proof is by mutual implication. For ease of reference, we instantiate definition

2 with J,P :=P,Q :

(15) P⊆Q>< ∧ P◦Q◦P = P ∧ Q◦P◦Q = Q .

Suppose P⊆ I ∧ P�Q . We must verify (15). The first conjunct is verified as follows:

P⊆Q><

= { assumption: P⊆ I ; so P=P>< }

P><⊆Q><

⇐ { monotonicity }

P⊆Q

⇐ { (7) }

P�Q .

The second and third conjuncts both follow directly from the assumption P�Q by lemma

8.

For the converse implication, we have:

P is an index of Q

⇒ { definition 2(a) and lemma 13 (both with J,P :=P,Q ) }

P⊆Q>< ∧ P�Q

⇒ { domains (specifically [ P><⊆ I ] with P :=Q ) and transitivity of ⊆ }

P⊆ I ∧ P�Q .

✷

Case analysis is a commonly used reasoning strategy but it is something we want to avoid

whenever possible. Case analysis occurs when complements are used: for example, when

using the law of the excluded middle. Using the cone rule also leads to case analysis: on

when a relation is empty or non-empty. In section 6, a case analysis is unavoidable when

interpreting our characterisation of maximality in terms of concrete relation: our theorem

has the interpretation that a concrete relation is maximal with respect to the thins ordering

iff it is empty or it is an equivalence relation. But we want to avoid such a case analysis in

our formal calculations. Lemma 17 is crucial to our doing so. First, we need a general lemma.

Lemma 16 Suppose P is a per. Then

P>< = (P◦⊤⊤◦P)>< .

(Note that, in general, P◦⊤⊤◦P is a per if P is a per; the easy proof is left to the reader.)

Proof
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P><

= { P is a per, so P=P◦P (applied twice) }

(P◦P◦P)><

⊆ { P⊆⊤⊤ ; monotonicity }

(P◦⊤⊤◦P)><

⊆ { domains (specifically [ (R◦S)<⊆R< ] with R,S := P ,⊤⊤◦P ) }

P>< .

That is, by anti-symmetry, P><=(P◦⊤⊤◦P)>< .

✷

We have included the proof of lemma 16 because none of our earlier publications document

the property. In what follows, we frequently use well-documented properties of coreflexives

and domains. Typical of the sort of properties we use is that, for all pers P and coreflexives

J ,

⊤⊤◦P◦J◦P◦⊤⊤ = ⊤⊤ ◦ J ◦P>< ◦⊤⊤ .

The reader should be able to easily prove this property using the fact that coreflexives com-

mute (i.e. for all coreflexives p and q , p◦q=q◦p ) and are idempotents of composition (i.e.

for all coreflexives p , p◦p=p ) and, for all pers P , P>< is coreflexive and P>< ◦⊤⊤ = P◦⊤⊤

and ⊤⊤ ◦P>< = ⊤⊤◦P . As explained earlier, and illustrated above, we often state the properties

within the square “everywhere” brackets, with the convention that P ranges over pers and

lower case letters (e.g. q ) range over coreflexives.

For concrete relations, an index of a per is empty if and only if the per itself is empty. In

the absence of the cone rule, a different idiom is needed to express such properties. This is

the function of lemma 17.

Lemma 17 Suppose P is a per and J is an index of P . Then

⊤⊤◦P◦⊤⊤ = ⊤⊤◦J◦⊤⊤ .

Proof The proof is by mutual inclusion.

⊤⊤◦J◦⊤⊤

⊆ { J is an index of P , definition 2(a) and [ ⊤⊤◦P = ⊤⊤ ◦P>< ] }

⊤⊤◦P◦⊤⊤

= { J is an index of P , definition 2(c) }

⊤⊤◦P◦J◦P◦⊤⊤

⊆ { [U⊆⊤⊤ ] with U :=⊤⊤◦P and U :=P◦⊤⊤ }

⊤⊤◦J◦⊤⊤ .

✷

Lemma 18 Suppose P is a per, q is coreflexive and J is an index of P∪q . Then J ◦P><

is an index of P and q ⊆ P><∪ J .

Proof The lemma implicitly assumes that P∪q is a per. This is easily verified.

Suppose J is an index of P∪q . We verify the three defining properties of an index, 2(a),

(b) and (c), with J,P := J ◦P>< , P assuming these properties with J,P := J , P∪q . The first,

J ◦P>< ⊆ P>< , is immediate from the fact that J is coreflexive. For the second, we have:
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J ◦P>< ◦P ◦ J ◦P><

= { J and P>< are coreflexive }

J ◦P>< ◦P ◦P>< ◦ J

= { P>< and q are coreflexive, and P><⊆P , so

P>< ◦q ◦P>< ⊆ P>< ◦P>< = P>< ◦P>< ◦P>< ⊆ P>< ◦P ◦P>< }

J ◦ (P>< ◦P ◦P>< ∪ P>< ◦q ◦P><) ◦ J

= { distributivity }

J ◦P>< ◦ (P∪q) ◦P>< ◦ J

= { J and P>< are coreflexive }

P>< ◦ J ◦ (P∪q) ◦ J ◦P><

= { J is an index of P∪q : definition 2(b) with P,J := P∪q , J }

P>< ◦ J ◦P><

= { J and P>< are coreflexive }

J ◦P>< .

Third,

true

= { J is an index of P∪q : definition 2(c) with P,J := P∪q , J }

P∪q = (P∪q) ◦ J ◦ (P∪q)

⇒ { Leibniz }

P ◦ (P∪q) ◦P = P ◦ (P∪q) ◦ J ◦ (P∪q) ◦P

= { distributivity, P◦P=P }

P ∪ P◦q◦P = (P∪P◦q) ◦ J ◦ (P∪q◦P)

= { q⊆ I and P◦P=P , so P◦q◦P⊆P , P◦q⊆P and q◦P⊆P }

P = P◦J◦P

= { P>< ◦P = P }

P = P ◦ J ◦P>< ◦P .

This completes the proof of the claim that J ◦P>< is an index of P . Finally,

q

⊆ { q is coreflexive, so q=q>< ; monotonicity }

(P∪q)><

= { assumption: J is an index of P∪q , definition 2(c) }

((P∪q) ◦ J ◦ (P∪q))><

= { distributivity }

(P◦J◦P ∪ P◦J◦q ∪ q◦J◦P ∪ q◦J◦q)><

⊆ { J⊆ I and q⊆ I , P◦P⊆P and monotonicity }

(P∪ J)><

= { distributivity; J is coreflexive, so J><= J }

P><∪ J .

✷

The remaining lemmas in this section are not needed elsewhere; they are included in order

to give further insight into the nature of the thins ordering on pers.
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Central to the notion of the thins relation is that an index of a per is found by successively

“thinning” the relation. More precisely, an index of a per is a “thinning” of the per and being

an index of a per is invariant under the process of “thinning” the relation. The first of these

two properties is lemma 13; the second is formulated in lemma 19.

Lemma 19 For all pers P and Q , and coreflexive J ,

J is an index of Q ⇐ J is an index of P ∧ P�Q .

Proof We apply theorem 14:

J is an index of Q

= { theorem 14 with P,Q := J,Q }

J⊆ I ∧ J�Q

⇐ { theorem 9 (in particular � is transitive) }

J⊆ I ∧ J�P ∧ P�Q

= { theorem 14 with P,Q := J,P }

J is an index of P ∧ P�Q .

✷

Our earlier informal interpretation of the first conjunct in the definition of thins is rein-

forced by the following simple lemma. Specifically, if J is an index of P , J◦P is the functional

that maps a point a of P to the point in J that represents the equivalence class containing

a . If P�Q then, by lemma 19, J is an index of Q . So, J◦Q is the functional that maps

a point b of Q to the point in J that represents the equivalence class containing b . The

lemma states that the two functionals agree on points common to both P and Q .

Lemma 20 Suppose J is an index of per P . Then, for all pers Q ,

J◦P = J ◦Q ◦P>< ⇐ P�Q .

Proof

J◦P

= { assumption: P�Q , definition 5 }

J ◦P>< ◦Q ◦P><

= { J is an index of P , so, by definition 2(a), J ◦P>< = J }

J ◦Q ◦P>< .

✷

The final lemma in this section gives further insight into the relation between the thins

relation and indexes.

Lemma 21 Suppose P and Q have a common index and P⊆Q . Then P�Q .

Proof Suppose J is an index of both P and Q , and P⊆Q . The definition of the thins

relation demands that we prove two properties. First,
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Q

= { Q is a per, [ P=P◦P ] with P :=Q }

Q◦Q◦Q

⊇ { assumption: P⊆Q , monotonicity }

Q◦P◦Q

⊇ { P is a per, so P><⊆P }

Q ◦P>< ◦Q

⊇ { assumption: J is an index of P , definition 2(a) }

Q◦J◦Q

= { assumption: J is an index of Q , definition 2(c) (with P :=Q ) }

Q .

We conclude, by anti-symmetry, that Q = Q ◦P>< ◦Q . Now for the second property,

P>< ◦Q ◦P><

⊇ { assumption: P⊆Q , monotonicity }

P>< ◦P ◦P><

= { domains }

P

= { assumption: J is an index of P , definition 2(c) }

P◦J◦P

= { assumption: J is an index of Q , definition 2(b) (with P :=Q ) }

P◦J◦Q◦J◦P

= { Q is a per, [ P=P◦P ] with P :=Q }

P◦J◦Q◦Q◦Q◦J◦P

⊇ { assumption: P⊆Q , monotonicity }

P◦J◦P◦Q◦P◦J◦P

= { assumption: J is an index of P , definition 2(c) }

P◦Q◦P

⊇ { P is a per, [ P><⊆P ] }

P>< ◦Q ◦P>< .

We conclude by anti-symmetry that P>< ◦Q ◦P>< = P . Combining the two calculations, we

have shown that P�Q . (See definition 5.)

✷

5 Minimal Pers

Our goal in this section is to characterise the pers that are minimal with respect to the

thins ordering on pers. Section 6 is about characterising the pers that are maximal. The

notions of minimality and maximality with respect to an ordering relation are well known.

For completeness the definition is given below.

Definition 22 Suppose ⊑ is a partial ordering on some set X . With x and y ranging

over elements of X , we say that y is minimal with respect to the ordering iff

〈∀x : x⊑y : x=y〉
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and we say that x is maximal with respect to the ordering iff

〈∀y : x⊑y : x=y〉 .

✷

We apply definition 22 in this section and in section 6 to the thins ordering on pers; in

section 7 we apply the definition to the (yet-to-be-introduced) thins ordering on arbitrary

relations.

A straightforward observation is that coreflexives are minimal:

Lemma 23

〈∀Q :: minimal.Q ⇐ Q⊆ I〉 .

Proof Suppose Q⊆ I and P�Q . We prove that P=Q .

P=Q

= { anti-symmetry }

P⊆Q ∧ Q⊆P

= { assumption: P�Q ; hence, by (7), P⊆Q }

Q⊆P

= { assumption: P�Q ; hence by definition 5, Q = Q ◦P>< ◦Q }

Q ◦P>< ◦Q ⊆ P

⇐ { assumption: Q⊆ I ; monotonicity }

P><⊆P

= { P is a per }

true .
✷

Lemma 23 suggests that we explore the circumstances in which all minimal elements are

coreflexives. We show that this is equivalent to the axiom of choice introduced in [BV22,

BV23b].

Theorem 24 The axiom of choice, axiom 3, is equivalent to

(25) 〈∀P :: minimal.P ≡ P⊆ I〉 ∧ 〈∀Q :: 〈∃P : minimal.P : P�Q〉〉

Proof The proof is by mutual implication. First, assume (25). Suppose Q is an arbitrary

per. We prove that Q has an index.

By assumption, there exists a per P such that P⊆ I and P�Q . Theorem 14 proves that

P is an index of Q .

Now assume the axiom of choice. We must prove (25). We begin with the property

(26) 〈∀P :: minimal.P ≡ P⊆ I〉 .

By lemma 23, it suffices to prove the implication. Suppose P is minimal. By the axiom of

choice, P has an index, J say. Then
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true

= { J is an index of P ; lemma 13 }

J�P

⇒ { P is minimal; definition 22 }

P= J

⇒ { J is an index of P , so, by definition 2(a), J⊆P>< ; [ P><⊆ I ] }

P⊆ I .

We have thus proved (26). Now we consider the property

(27) 〈∀Q :: 〈∃P : minimal.P : P�Q〉〉 .

This is established by choosing, for given Q , an index of Q . Indeed, if P is an index of Q ,

then, by lemma 13, P�Q and, by (26), it is minimal.

✷

Example 28 As observed in example 4, the algebras of example 1 with at least three

elements do not satisfy our axiom of choice. Consequently, they do not satisfy the minimality

property of theorem 24: in both cases, ⊤⊤ is minimal but not coreflexive. (See example 6.)

✷

6 Maximal Pers

In this section we formulate a necessary and sufficient condition guaranteeing that a given

per is maximal with respect to the thins ordering. See theorem 52.

It is relatively straightforward to show that ⊥⊥ is maximal and all equivalence relations are

maximal. This suggests the conjecture that these are the only maximal elements. Rather than

formulate a proof that involves a case analysis, we prove a more general property. Specifically,

we prove that a per P is maximal iff I∩⊤⊤◦P◦⊤⊤ ⊆ P . If the cone rule holds, I∩⊤⊤◦P◦⊤⊤ ⊆ P

is equivalent to I⊆P ∨ P=⊥⊥ . The additional generality comes from instances of relation

algebra where the cone rule does not hold.

6.1 Sufficient Condition for Maximality

First, we prove the “if” statement.

Lemma 29 Per P is maximal if I∩⊤⊤◦P◦⊤⊤ ⊆ P .

Proof Suppose I∩⊤⊤◦P◦⊤⊤ ⊆ P and P�Q . To show that P is maximal we must show

that P=Q . We first show that P><=Q>< .

Q><

= { Q is a per }

I∩Q

= { P�Q , lemma 8 }

I ∩ Q◦P◦Q
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⊆ { Q⊆⊤⊤ and monotonicity }

I ∩ ⊤⊤◦P◦⊤⊤

= { domains }

(I ∩ ⊤⊤◦P◦⊤⊤)><

⊆ { assumption: I∩⊤⊤◦P◦⊤⊤ ⊆ P and monotonicity }

P><

⊆ { assumption: P�Q , (7) and monotonicity }

Q><

Thus P><=Q>< follows by anti-symmetry. Now we show that P=Q :

P

= { assumption: P�Q }

P>< ◦Q ◦P><

= { P><=Q>< (just proved) }

Q>< ◦Q ◦Q><

= { domains }

Q .

✷

6.2 Necessary Condition for Maximality

We now turn to the converse of lemma 29. The key fact is theorem 30.

Theorem 30 Suppose P is an arbitrary per. Then, assuming the axiom of choice, there

is a per Q such that I∩⊤⊤◦Q◦⊤⊤ ⊆ Q and P�Q .

✷

The remainder of this section is about proving this theorem. Throughout we assume that

P is an arbitrary per and q , J , R and Q are defined by (31), (32), (33) and (34):

(31) q = I ∩ ⊤⊤◦P◦⊤⊤ ,

(32) J is an index of P◦⊤⊤◦P ∪ q ,

(33) R = J◦⊤⊤◦J ,

(34) Q = P ∪ R ∪ P◦R ∪ R◦P .

The heuristics that lead to these definitions are as follows. These heuristics are based on

the interpretation of the elements of our algebra as concrete relations and, as such, contain

implicitly several properties on which we do not rely. Great care must therefore be taken

with such interpretations.

Suppose P is an arbitrary per. To prove theorem 30 we have to construct a per Q with

two properties, the first of which is I∩⊤⊤◦Q◦⊤⊤ ⊆ Q . For concrete relations, the interpre-

tation of this property is that Q is either the empty relation, or that Q is an equivalence

relation (a per with domain I ). For concrete relations, this leads to a case analysis on whether
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or not P is the empty relation: in the case that P is the empty relation, Q is defined to

also be the empty relation, and in the case that P is not the empty relation, it is necessary

to define Q to be an equivalence relation. In what follows, we assume that P is non-empty.

The second requirement on Q is P�Q . In order to achieve this additional goal, we

aim to define Q to be an equivalence relation that extends P by adding all points not in

the domain of P to one of the equivalence classes of P . This goal involves several elements.

Extending P means defining Q as P∪U for some U ; adding points to one of the equivalence

classes of P entails choosing one such class; finally, ensuring that Q is an equivalence relation

means guaranteeing that the domain of Q is I and Q is both symmetric and transitive.

In general, P∪U is not a per, even if U is a per. The required transitivity is readily

satisfied if Q is defined as (P∪R)+ for some R ; moreover the required symmetry is also

satisfied if we choose for R a symmetric relation — in particular, if R is itself a per3.

Importantly, if P and R are both pers, (P∪R)+ is the smallest per that contains both P

and R .

The goal becomes to define Q to be (P∪R)+ where R is a per so defined that its domain

includes one of the equivalence classes of P together with all points that are not in the domain

of P . Choosing one of the eqivalence classes of P is achieved by using our axiom of choice.

At this point, we need to anticipate the fact that we do not want to assume the cone

rule. Interpreted as a concrete relation, ⊤⊤◦P◦⊤⊤ is either the empty relation or the universal

relation, depending on whether P is empty or non-empty. The interpretation of I ∩ ⊤⊤◦P◦⊤⊤

is thus either the empty set of points or the set of all points. This interpretation relies on

the cone rule, which we do not wish to exploit. We therefore introduce the abbreviation

q for I ∩ ⊤⊤◦P◦⊤⊤ . In the current context — P is a non-empty, concrete relation— q= I .

References to q below, rather than I , anticipate the more general property that we actually

prove.

Interpreted as a concrete relation, the relation P◦⊤⊤◦P is a per with a single equivalence

class that contains all the points in the domain of P . By choosing an index of P◦⊤⊤◦P , we

effectively choose one point in the domain of P ; an index J of P◦⊤⊤◦P ∪ q is thus interpreted

as a set of points consisting of one point in the domain of P together with all the points in

q that are not in the domain of P . The interpretation of J ◦P>< is the point in the domain

of P chosen by J ; the formal properties of J ◦P>< play a central role in the proof.

The interpretation of J◦⊤⊤◦J is a per with exactly one equivalence class: the class con-

taining all the points equivalent in P to the point J ◦P>< together with all the points in q

that are not in the domain of P . Thus J◦⊤⊤◦J is the per R needed to achieve our objective.

There is one more problem to be resolved. We want to define Q to be the transitive

closure of P∪R : the least transitive relation that includes both P and R (and hence, since

R is a per, the least per that includes both P and R ). But, for arbitrary concrete relation

U , its transitive closure U+ is computed by a possibly non-terminating process: begin-

ning with U continually add to U successive powers of U (thus computing U , U∪U◦U ,

U∪U◦U∪U◦U◦U , and so on). Fortunately, in the case of P∪R where R is defined by (33),

3For arbitrary (homogeneous) relation U , U+ denotes the transitive closure of U — the smallest relation
that includes U and is transitive. For the purposes of the current informal account, we assume familiarity
with properties of U+ . For example, we assume the reader is familiar with the property that, for all U ,
(U+)

∪

= (U
∪

)+ . The formal calculations do not make any such assumption.
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this process is terminating; indeed, it terminates after the first iteration. The definition of

Q above anticipates this fact. See section 6.2.2.

Note that, in the above informal account, we have been obliged to refer to “points” and

to points “not” having a certain property. It is important to note that our calculations make

no assumptions about the existence of points or the existence of complements. The above

informal account is applicable only to concrete relations.

Let us now proceed with the proof of theorem 30 where Q is defined by (34). In section

6.2.1 we establish a number of properties of the index J ; that Q is a per is proved in section

6.2.2; finally, section 6.2.3 is where theorem 30 is proved.

6.2.1 Properties of the Index J

The focus in this subsection is on the properties of the index J . The definition of J assumes

that P◦⊤⊤◦P ∪ q is a per. This is a straightforward consequence of the fact that, in general,

P∪q is a per if P is a per and q is coreflexive, and P◦⊤⊤◦P is a per if P is a per. The

details are left to the reader.

We now proceed to exploit definition (32). A key property is lemma 37; other lemmas are

used either to establish these two lemmas or in later calculations.

Lemma 35

(P◦⊤⊤◦P ∪ q)>< = q .

Proof

(P◦⊤⊤◦P ∪ q)><

= { distributivity property of domain operator }

(P◦⊤⊤◦P)>< ∪ q><

= { lemma 16 and q is coreflexive }

P>< ∪ q

= { definition of q : (31) }

P>< ∪ (I ∩ ⊤⊤◦P◦⊤⊤)

= { [ P>< = I∩P ⊆ I ∩ ⊤⊤◦P◦⊤⊤ ] }

I ∩ ⊤⊤◦P◦⊤⊤

= { definition of q : (31) }

q .

✷

Now J is defined to be an index of P◦⊤⊤◦P ∪ q . So, applying definition 2(a), an immediate

corollary of lemma 35 is that

(36) J⊆q .

The interpretation of J ◦P>< in terms of concrete relations is the point chosen by the index J

that indexes P◦⊤⊤◦P ; the other points in J are the points in q that are not in P>< . Aspects

of these informal interpretations that are relevant to our calculations are expressed by lemma

37.
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Lemma 37 J ◦P>< is an index of P◦⊤⊤◦P . Hence

(38) J ◦P>< = J ◦P>< ◦⊤⊤ ◦P>< ◦ J ,

(39) P◦⊤⊤◦P = P ◦⊤⊤ ◦ J ◦P>< ◦⊤⊤ ◦P ,

(40) ⊤⊤ ◦P>< ◦⊤⊤ = ⊤⊤ ◦ J ◦P>< ◦⊤⊤ , and

(41) q ⊆ P><∪ J .

Proof

true

= { lemma 18 with J,P := J , P◦⊤⊤◦P ∪ q }

J ◦ (P◦⊤⊤◦P)>< is an index of P◦⊤⊤◦P

= { lemma 16 }

J ◦P>< is an index of P◦⊤⊤◦P .

We now derive properties (38), (39), (40) and (41). First (38):

J ◦P><

= { definition 2(b) with J,P := J ◦P>< , P◦⊤⊤◦P }

J ◦P>< ◦P ◦⊤⊤ ◦P ◦ J ◦P><

= { [ P>< ◦P = P = P ◦P>< ] , J and P>< are coreflexive, so J ◦P>< = P>< ◦ J }

J ◦P>< ◦⊤⊤ ◦P>< ◦ J .

Property (39) follows:

P◦⊤⊤◦P

= { definition 2(c) with J,P := J ◦P>< , P◦⊤⊤◦P }

P ◦⊤⊤ ◦P ◦ J ◦P>< ◦P ◦⊤⊤ ◦P

= { [ ⊤⊤◦P = ⊤⊤ ◦P>< ] , [ P>< ◦ J = J ◦P>< ] , [ P>< ◦P = P ] }

P ◦⊤⊤ ◦ J ◦P>< ◦⊤⊤ ◦P .

Next (40):

⊤⊤ ◦ J ◦P>< ◦⊤⊤

= { lemma 17 with J,P := J ◦P>< , P◦⊤⊤◦P }

⊤⊤◦P◦⊤⊤◦P◦⊤⊤

= { [ ⊤⊤◦P = ⊤⊤ ◦P>< ] with P :=P◦⊤⊤◦P , lemma 16 }

⊤⊤ ◦P>< ◦⊤⊤ .

Finally (41):

q ⊆ P><∪ J

= { lemma 16 }

q ⊆ (P◦⊤⊤◦P)><∪ J

= { assumption: J is an index of P◦⊤⊤◦P ∪ q , lemma 18 with P :=P◦⊤⊤◦P }

true .
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✷

If p is coreflexive and non-empty, the (concrete-relational) interpretation of p◦⊤⊤◦p is a

per with domain p that has exactly one equivalence class; the interpretation of (38) is thus

that J ◦P>< is a single point that is in both J and the domain of P . That is, J ◦P>< is the

point in the domain of P chosen by the index J . Property (41) is necessitated by our wish

to avoid assuming the cone rule. For concrete relations, it is interpreted as the property that

P><∪ J is I if P is non-empty.

6.2.2 Q is a per

A basic requirement on Q is that it is a per, i.e. symmetric and transitive. The transitivity of

Q is not obvious. The complication is that we do not wish to exploit the cone rule. Instead,

we have to prove several lemmas that are trivial if the cone rule is assumed: lemmas 42, 43

and 44. Lemma 45 is also needed.

Lemma 42

J◦⊤⊤◦J = J◦⊤⊤◦P◦⊤⊤◦J .

Proof The proof is by mutual inclusion.

J◦⊤⊤◦P◦⊤⊤◦J

⊆ { [U⊆⊤⊤ ] with U :=⊤⊤◦P◦⊤⊤ , monotonicity }

J◦⊤⊤◦J

= { (36), J and q are coreflexive (so J◦q= J ) }

J◦q◦⊤⊤◦J

⊆ { definition of q : (31), monotonicity }

J◦⊤⊤◦P◦⊤⊤◦⊤⊤◦J

⊆ { [U⊆⊤⊤ ] with U :=⊤⊤◦⊤⊤ }

J◦⊤⊤◦P◦⊤⊤◦J .

✷

Lemma 43

R◦P◦R = R = R ◦P>< ◦R .

Proof The proof is by mutual inclusion. Recalling the definition of R , (33), we have:

J◦⊤⊤◦J◦P◦J◦⊤⊤◦J

⊆ { [U⊆⊤⊤ ] with U :=⊤⊤◦J◦P◦J◦⊤⊤ }

J◦⊤⊤◦J

= { lemma 42 }

J◦⊤⊤◦P◦⊤⊤◦J

= { [ ⊤⊤◦P = ⊤⊤ ◦P>< ] , (40) }

J ◦⊤⊤ ◦ J ◦P>< ◦⊤⊤ ◦ J
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= { J and P>< are coreflexive, so J ◦P>< = J ◦ J ◦P>< = J ◦P>< ◦ J }

J ◦⊤⊤ ◦ J ◦P>< ◦ J ◦⊤⊤ ◦ J

⊆ { P><⊆P }

J◦⊤⊤◦J◦P◦J◦⊤⊤◦J

We conclude, by mutual inclusion, that

J◦⊤⊤◦J◦P◦J◦⊤⊤◦J = J◦⊤⊤◦J = J ◦⊤⊤ ◦ J ◦P>< ◦ J ◦⊤⊤ ◦ J .

The lemma follows by instantiating the definition of R .

✷

Lemma 44

⊤⊤◦P◦⊤⊤ = ⊤⊤◦Q◦⊤⊤ .

Proof

⊤⊤◦Q◦⊤⊤

= { definition: (34) and distributivity }

⊤⊤◦P◦⊤⊤ ∪ ⊤⊤◦R◦⊤⊤ ∪ ⊤⊤◦P◦R◦⊤⊤ ∪ ⊤⊤◦R◦P◦⊤⊤

= { [ ⊤⊤◦R⊆⊤⊤ ] and [ R◦⊤⊤⊆⊤⊤ ] ,

so [ ⊤⊤◦P◦R◦⊤⊤ ∪ ⊤⊤◦R◦P◦⊤⊤ ⊆ ⊤⊤◦P◦⊤⊤ ] }

⊤⊤◦P◦⊤⊤ ∪ ⊤⊤◦R◦⊤⊤

= { lemma 43 }

⊤⊤◦P◦⊤⊤ ∪ ⊤⊤◦R◦P◦R◦⊤⊤

= { [ ⊤⊤◦R⊆⊤⊤ ] and [ R◦⊤⊤⊆⊤⊤ ] , so [ ⊤⊤◦R◦P◦R◦⊤⊤ ⊆ ⊤⊤◦P◦⊤⊤ ] }

⊤⊤◦P◦⊤⊤ .

✷

Lemma 45

P◦R◦P ⊆ P .

Proof

P◦R◦P

= { definition: (33) }

P◦J◦⊤⊤◦J◦P

= { [ P ◦P>< = P = P>< ◦P ] }

P ◦P>< ◦ J ◦⊤⊤ ◦ J ◦P>< ◦P

= { J and P>< are coreflexive, so P>< ◦ J = J ◦P>< , (38) }

P ◦ J ◦P>< ◦P

⊆ { J and P>< are coreflexive, and monotonicity }

P◦P

= { P is a per }

P .
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✷

We now show more than just transitivity of Q : we show that Q is the transitive closure

of P∪R .

Lemma 46

(47) Q = (P∪R) ◦ (P∪R) = (P∪R) ◦P>< ◦ (P∪R) , and

(48) Q ◦ (P∪R) = Q .

Proof Property (47) is easy to prove:

(P∪R) ◦P>< ◦ (P∪R)

= { distributivity, P ◦P>< = P = P>< ◦P and P=P◦P }

P ∪ R◦P ∪ P◦R ∪ R ◦P>< ◦R

= { lemma 43 }

P ∪ R◦P ∪ P◦R ∪ R

= { P and R are pers, so P=P◦P and R=R◦R }

P◦P ∪ R◦R ∪ P◦R ∪ R◦P

= { distributivity }

(P∪R) ◦ (P∪R) .

Applying (34), the definition of Q (and using the symmetry of set union), this proves (47).

Turning now to (48), we have:

Q ◦ (P∪R)

= { definition: (34) }

(P ∪ R ∪ P◦R ∪ R◦P) ◦ (P∪R)

= { distributivity and P and R are pers (so P◦P=P and R◦R=R ) }

P ∪ R◦P ∪ P◦R ∪ R ∪ P◦R◦P ∪ R◦P◦R

= { lemmas 45 and 43 }

P ∪ R◦P ∪ P◦R ∪ R

= { definition: (34) }

Q .

✷

Corollary 49 Q is the least transitive relation that includes P∪R . That is, Q is the

transitive closure of P∪R . Also, Q is symmetric and, hence, a per.

Proof First we show that Q is transitive:

Q◦Q

= { (47) }

Q ◦ (P∪R) ◦ (P∪R)

= { (48) (applied twice) }

Q .
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Now we show that it is least among all such relations: we have, for all X ,

P∪R⊆X ∧ X◦X⊆X

⇒ { monotonicity and transitivity of ⊆ }

(P∪R)◦(P∪R)⊆X

= { lemma 46 }

Q⊆X .

That is, Q is the transitive closure of P∪R .

Symmetry of Q is obvious from (47) (specifically, Q = (P∪R) ◦ (P∪R) ) and the fact that

P and R are both pers.

✷

Corollary 49 is not used directly in its entirety, only transitivity and symmetry being

explicitly invoked. It is included in order to provide further justification for the definition

of Q. Specifically, Q is the least per that includes both P and R . That it includes both

P and R means that all the points in the index J are combined with the points in the

equivalence class in P defined by the point in P>< chosen by J ; that it is least means that

other equivalence classes of P are unaffected.

6.2.3 Proof of Theorem 30

We are now in a position to prove the two properties of Q required by theorem 30. See

lemmas 50 and 51 below.

Lemma 50

P�Q .

Proof Recalling definition 5, we have to prove two properties. First,

P>< ◦Q ◦P><

= { (34) }

P>< ◦ (P ∪ R ∪ P◦R ∪ R◦P) ◦P><

= { distributivity and domains (specifically [ P>< ◦P = P = P ◦P>< ] ) }

P ∪ P>< ◦R ◦ P>< ∪ P ◦R ◦P>< ∪ P>< ◦R ◦P

= { P><⊆P and lemma 45 }

P .

Second,

Q ◦P>< ◦Q

= { (48) and, hence, by symmetry, (P∪R) ◦Q = Q }

Q ◦ (P∪R) ◦P>< ◦ (P∪R) ◦ Q

= { (47) }

Q◦Q◦Q

= { Q is a per (corollary 49), so Q◦Q }

Q .
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✷

Lemma 51

I ∩ ⊤⊤◦Q◦⊤⊤ ⊆ Q .

Proof

I ∩ ⊤⊤◦Q◦⊤⊤

= { lemma 44 }

I ∩ ⊤⊤◦P◦⊤⊤

= { definition: (31) }

q

⊆ { lemma 41 }

P>< ∪ J

= { definition of R : (33), lemma 16 with P :=R }

P>< ∪ R><

⊆ { [ P><⊆P ] with P :=P and P :=R ; monotonicity }

P∪R

⊆ { definition: (34), and [ U⊆U∪V ] }

Q .

✷

Lemmas 50 and 51 conclude the proof of theorem 30.

Theorem 52 A per P is maximal with respect to the thins ordering iff I∩⊤⊤◦P◦⊤⊤ ⊆ P .

Proof We have shown (lemma 29) that P is maximal if I∩⊤⊤◦P◦⊤⊤ ⊆ P . Only-if follows

from theorem 30. Specifically, suppose P is a per. By theorem 30, there is a per Q such

that I∩⊤⊤◦Q◦⊤⊤ ⊆ Q and P�Q . So, by definition of maximal, if P is maximal, P=Q .

That is, by Leibniz’s rule, if P is maximal, I∩⊤⊤◦P◦⊤⊤ ⊆ P .

✷

It is remarkable that the proof of theorem 52 does not rely in any way on saturation

properties of the lattices of coreflexives or of relations in general. The proof is entirely

“point-free”. Equally remarkable is that nowhere do we use complements.

It is also worth emphasising that we have avoided the use of the cone rule and, in so

doing, have avoided a case analysis in the statement of theorem 52. This means that the

theorem is also applicable for non-unary relation algebras. For concrete relations (where the

cone rule does apply), the interpretation of theorem 52 is that a per P is maximal iff it is

empty or is an equivalence relation. (This is because, by applying the cone rule, the property

I∩⊤⊤◦P◦⊤⊤ ⊆ P simplifies to P=⊥⊥ ∨ I⊆P .)

7 Extending thins to arbitrary relations

In this section, we extend the thins ordering to arbitrary relations. The section is concluded

by theorem 64 which states that the minimal elements of the extended ordering are exactly

the core relations introduced in [BV22, BV23b].
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Recall that R≺ denotes the left per-domain of R and R≻ denotes its right per-domain.

Definition 53 (Thins) For arbitrary relations R and S of the same type, the relation

R�S is defined by

R�S ≡ R≺�S≺ ∧ R≻�S≻ ∧ R = R< ◦S ◦R> .

✷

The symbol “� ” is overloaded in definition 53. If R and S have type A∼B , the leftmost

occurrence is a relation on relations of type A∼B , the middle occurrence is a relation on

pers of type A and the rightmost occurrence is a relation on pers of type B .

Lemma 54 The thins relation on arbitrary relations is an ordering relation.

Proof The thins relation on arbitrary relations is clearly reflexive. Transitivity is also easy

to prove. Anti-symmetry is proven below.

R�S ∧ S�R

⇒ { definition 53 with R,S :=R,S and R,S :=S,R }

R = R< ◦S ◦R> ∧ S = S< ◦R ◦S>

⇒ { domains }

(R<⊆S< ∧ R>⊆S>) ∧ (S<⊆R< ∧ S>⊆R>)

= { rearranging and anti-symmetry of ⊆ }

R< = S< ∧ R> = S> .

So

R�S ∧ S�R

⇒ { definition 53 and above }

R = R< ◦S ◦R> ∧ R< = S< ∧ R> = S>

⇒ { Leibniz }

R = S< ◦S ◦S>

= { domains }

R = S .

✷

The definition of “minimal” and “maximal” with respect to the thins relation on arbitrary

relations is the same as definition 22 except that the dummies in the universal quantifications

range over arbitrary relations (of appropriate type).

We recall the definition of a core relation [BV22, BV23b].

Definition 55 (Core Relation) A relation R is a core relation iff R<=R≺ and R>=R≻ .

✷

Lemma 56 A core relation is minimal with respect to the thins ordering on arbitrary

relations.

Proof Suppose S is a core relation. Then, for all R ,
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R�S

= { definition 53 }

R≺�S≺ ∧ R≻�S≻ ∧ R = R< ◦S ◦R>

⇒ { assumption: S is a core relation i.e. S<=S≺ and S>=S≻ ,

so, by lemma 23, S≺ and S≻ are minimal; definition 22 }

R≺=S≺ ∧ R≻=S≻ ∧ R = R< ◦S ◦R>

= { S<=S≺ and S>=S≻ , Leibniz }

R≺=S< ∧ R≻=S> ∧ R = R< ◦S ◦R>

⇒ { Leibniz }

(R≺)< = (S<)< ∧ (R≻)> = (S>)> ∧ R = R< ◦S ◦R>

= { per domains and domains

(specifically, for left domains: [ (R≺)<=R< ] , [ (R<)<=R< ] ,

similarly for right domains) }

R<=S< ∧ R>=S> ∧ R = R< ◦S ◦R>

⇒ { Leibiz and domains }

R=S .

Thus, by definition, S is minimal with respect to the thins ordering on arbitrary relations.

✷

For reference, we include the definition of an index of an arbitrary relation and several of

its properties. Proofs are given in [BV22, BV23b].

Definition 57 (Index) An index of a relation R is a relation J that has the following

properties:

(a) J⊆R ,

(b) R≺ ◦ J ◦R≻ = R ,

(c) J< ◦R≺ ◦ J< = J< ,

(d) J> ◦R≻ ◦ J> = J> .

✷

Lemma 58 If J is an index of the relation R then

J≺ ⊆ R≺ ∧ J≻ ⊆ R≻ .

It follows that

J< = J≺ ∧ J> = J≻ .

That is, an index is a core relation.

✷

Lemma 59 Suppose J is an index of R . Then

(a) R≺ ◦ J< ◦R≺ = R≺ ,

(b) R≻ ◦ J> ◦R≻ = R≻ .
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✷

Theorem 60 Suppose J is an index of R . Then J< is an index of R≺ and J> is an index

of R≻ .

✷

We now resume the study of the extended thins ordering.

Lemma 61 If J is an index of R then J�R .

Proof Suppose that J is an index of R . By definition 53, we have to prove that J≺�R≺ ,

J≻�R≻ and J = J< ◦R ◦ J> . For the first property, we have:

J≺ � R≺

= { definition 5 }

J≺ = (J≺)>< ◦R≺ ◦ (J≺)>< ∧ R≺ = R≺ ◦ (J≺)>< ◦R≺

= { domains (specifically [ (R≺)><=R< ] with R := J ) }

J≺ = J< ◦R≺ ◦ J< ∧ R≺ = R≺ ◦ J< ◦R≺

= { J is an index of R : theorem 60 and definition 57(c) with J,R := J< , R≺ ;

J is an index of R : lemma 59(a) }

J≺ = J< ∧ true

= { lemma 58 }

true .

By symmetry, J≻�R≻ . The third property is straightforward:

J< ◦R ◦ J>

= { assumption: J is an index of R , definition 57(b) }

J< ◦R≺ ◦ J ◦R≻ ◦ J>

= { domains }

J< ◦R≺ ◦ J< ◦ J ◦ J> ◦R≻ ◦ J>

= { assumption: J is an index of R , definition 57(c) and 57(d) }

J< ◦ J ◦ J>

= { domains }

J .

✷

Lemma 62 If relation S is minimal with respect to the thins ordering on arbitrary relations

and J is an index of S then J=S .

Proof Immediate from lemma 61 and the definition of minimal.

✷

Lemma 63 Assuming axiom 3 (our axiom of choice), if relation S is minimal with respect

to the thins ordering on arbitrary relations then S≺ and S≻ are mimimal with respect to the

thins ordering on pers.
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Proof

S is minimal

⇒ { lemma 62 (assuming axiom 3) }

S is an index of S

⇒ { lemma 58 and theorem 60 }

S< = S≺ ∧ S< is an index of S≺

⇒ { lemma 23 }

S≺ is minimal .

Symmetrically, if S is minimal then S≻ is minimal.

✷

Note that the axiom of choice is invoked in the proof of lemma 63: the application of

lemma 62 in the first step assumes that S has an index and that this is so is a consequence

of the axiom of choice [BV22, BV23b]. Consequently, the axiom of choice is also required in

the statement and proof of the main theorem of this section:

Theorem 64 Assuming axiom 3 (our axiom of choice), a relation S is minimal with

respect to the thins ordering on arbitrary relations iff S is a core relation.

Proof “If” is lemma 56. “Only if” is a combination of lemma 63 and theorem 24:

S is minimal

⇒ { lemma 63 (assuming axiom 3) }

S≺ is minimal

⇒ { theorem 24 }

S≺⊆ I

= { domains }

(S≺)< = S≺

= { per domains }

S< = S≺ .

That is,

S is minimal ⇒ S< = S≺ .

Symmetrically,

S is minimal ⇒ S> = S≻ .

Thus, by definition 55,

S is minimal ⇒ S is a core relation .

✷
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8 Conclusion

For us, the primary purpose of point-free relation algebra is to enable precise and concise

reasoning about binary relations. Therefore, the axiomatisation does not capture all the

properties of concrete relations and sometimes it is necessary to add axioms in order to

facilitate such reasoning. Earlier work [BV22, BV23b] focused on facilitating pointwise rea-

soning —whilst not compromising the concision and precision of point-free reasoning— by

adding axioms expressing the powerset properties of relations of a given type. To this end,

[BV22, BV23b] proposed an axiom of choice (axiom 3) together with a saturation axiom (the

axiom that the lattice of coreflexives of a given type is saturated by points). In this paper,

the focus is on just the axiom of choice.

A central contribution is to provide further insight into the notion of a core relation

introduced in [BV22, BV23b]. Theorem 64 shows that the relations that are minimal with

respect to the thins relation are precisely the core relations.

The most challenging aspect of the paper has been the proof of theorem 52, which char-

acterises pers that are maximal with respect to the thins ordering. In meeting this challenge,

a major contribution is the introduction of a new idiom to point-free relation algebra that

avoids the case analysis on whether or not a relation is empty. In formal terms, we avoid

appeals to the cone rule. As a consequence, we extend the validity of the characterisation to

models quite different from concrete relations. It remains to be seen whether or not this will

be beneficial in practical applications.

The challenge we imposed on ourselves has undoubtedly increased the length of the proof

of theorem 52 considerably: several of the lemmas (for example, lemma 44) are trivial if the

cone rule is assumed. The fact that we have overcome the challenge attests to the strength

of our axiom of choice.

Acknowledgement Many thanks to Michael Winter for valuable suggestions in the early

stages of this work.

References

[BV22] Roland Backhouse and Ed Voermans. The index and core of a relation. With appli-

cation to the axiomatics of relation algebra and block-ordered relations. Available

at ResearchGate, April 2022.

[BV23a] Roland Backhouse and Ed Voermans. Diagonals and block-ordered re-

lations. Submitted for publication. Available at ResearchGate and

http://arXiv.org/abs/2401.17130, September 2023.

[BV23b] Roland Backhouse and Ed Voermans. The index and core of a relation. With ap-

plication to the axiomatics of relation algebra. Submitted for publication. Available

at ResearchGate and http://arXiv.org/abs/2309.02017, September 2023.
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