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In a paper I received from Martin Simons the following theorem is verified.

Let X and Y be sets and suppose there exist one-to-one maps f€ X—Y and ge Y—X.
Then there exists a bijective map h from X onto Y.

The proof Martin sent me uses a lemma (“Banach Decomposition”) which comes out
of the blue. I wanted to see if I could construct a proof of the theorem — rather than
verify the theorem. This note describes the outcome.

First, I found it beneficial to translate the theorem into the algebra of relations. Given
are two relations f and g. Both are functional and injective, and the range of the one is
contained in the domain of the other. That is,

(1) fuof =rng.f C dom.g = gogv
and
(2) gueg =rng.g C dom.f = fofu .

(The condition fuof =rng.f expresses that f is functional — from left to right —, the
condition dom.g = geogv that g is injective.)
Required is to construct two relations h and k such that

(3) h=ku
(4) hek=dom.f
(56) keh=dom.g .

This then is the problem. Apart from reformulating it in the algebra of relations I have
also introduced the function k for the simple reason that by doing so the symmetry
between f and g remains intact.

Using (2) and (3) we can rewrite (4) into the form

(6) hohu=fofu .



Similarly, (5) can be rewritten into the form
(7) koku:gogu .

The obvious assignments h:=f and k:=g do not however necessarily satisfy (3).
On the other hand, the assignments h:=f and k:=fv satisfy (4) and (6) but not
necessarily (7). Dually, the assignments h:=g and k:=gu satisfy (4) and (7) but not
necessarily (6). The solution would thus seem to be to assign to h some combination of
f and gv, and to k some combination of fu and g. Let us therefore introduce monotypes
(“guards”) A and B and postulate

(8) h = Aof U—Aogu
and
(9) k = BeglL —Bofu .

(Note that the form of these postulates has been carefully chosen so as to retain the
symmetry in the problem.)
Now we try to solve (3) through (9). We begin with (3).

h=kv

{  (8) and (9), converse }
Aof Ll mAogu = gueB U fo—B
& { Leibniz and commutativity of LI }
Aof = fo—B A =Aogu = guoB

{ converse |

Aof = fo—=B /A Beg = go—A .
Thus we demand

(10) Aof =fo—B

and

(11) Beg =go—A .

The follows-from step above may seem to be very coarse, but it is justified by the fact that
the only known relationship between f and g is the relationship between their domains.
In the next step we use some elementary domain calculus.



Aof = fo—B
{ domain translation (exploiting dom.f = fofu) }

forng.(Aof) = fo—B

& { Leibniz }
rng.(Aof) =—B .

Symmetrically,
Beg = go—A & rng.(Beg)=—A .
We therefore replace (10) and (11) by
(12) rng.(Aof)=—B
(13) rng.(Beg)=—A .

The key step is to observe that (12) and (13) do have (simultaneous) solutions in the
unknowns A and B. Specifically, by eliminating B we obtain the requirement on A

rmg.(—(rng.(Aef))og)=—A .

But the function A +— —(rng.(—(rng.(Aof))og)) is monotonic (since rng is monotonic and
— is anti-monotonic). Moreover, the relations (of a given type) form a complete lattice
under the usual subset ordering. The function thus has a fixed point — courtesy of the
Knaster-Tarski theorem. Equally, the function B+ —(rng.(—(rng.(Bog))of)) also has a
fixed point, and substituting the two fixed points for A and B, respectively, we obtain a
solution to the two requirements (12) and (13).

It remains to see whether (12) and (13) automatically guarantee (4) and (5). By
symmetry it is sufficient to check (4). Recalling that (12) and (13) are implied by (10)
and (11), we have:

hok
= { (8and(9) }

(Aof LI =A o gu)o(—Bofu Ll Bog)
= { distributivity }

Aocfo—Bofu L AofoBog L —\Aoguo—'Bofu L ﬂAoguoBog
= { (10) and (11) }

Acfo(Aof)u U fomBoBog L guoBo—Bofu L (Beg)uoBog
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= { domain calculus and (2); monotypes;
monotypes; range calculus and (7) }

dom.(Aof) U 1L U 1L U rng.(Beg)

= { calculus }
dom.(Aef) LIrng.(Bog)

= { domain calculus; }
Aodom.f U rng.(Beog)

= { rng.(Bog) C{monotonicity}rng.g ={(2)}dom.f }
Aodom.f U rng.(Bog) odom.f

= {  (13) and calculus }
dom.f .

This completes the proof.



