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In a paper I re
eived from Martin Simons the following theorem is veri�ed.

Let X and Y be sets and suppose there exist one-to-one maps f∈X→Y and g∈Y→X .

Then there exists a bije
tive map h from X onto Y.

The proof Martin sent me uses a lemma (\Bana
h De
omposition") whi
h 
omes out

of the blue. I wanted to see if I 
ould 
onstru
t a proof of the theorem | rather than

verify the theorem. This note des
ribes the out
ome.

First, I found it bene�
ial to translate the theorem into the algebra of relations. Given

are two relations f and g. Both are fun
tional and inje
tive, and the range of the one is


ontained in the domain of the other. That is,

f∪ ◦ f = rng.f ⊑ dom.g = g ◦g∪
(1)

and

g∪ ◦g = rng.g ⊑ dom.f = f ◦ f∪ .(2)

(The 
ondition f∪ ◦ f = rng.f expresses that f is fun
tional { from left to right {, the


ondition dom.g = g ◦g∪
that g is inje
tive.)

Required is to 
onstru
t two relations h and k su
h that

h=k∪
(3)

h◦k= dom.f(4)

k◦h=dom.g .(5)

This then is the problem. Apart from reformulating it in the algebra of relations I have

also introdu
ed the fun
tion k for the simple reason that by doing so the symmetry

between f and g remains inta
t.

Using (2) and (3) we 
an rewrite (4) into the form

h ◦h∪ = f ◦ f∪ .(6)
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Similarly, (5) 
an be rewritten into the form

k ◦k∪ = g ◦g∪ .(7)

The obvious assignments h := f and k :=g do not however ne
essarily satisfy (3).

On the other hand, the assignments h := f and k := f∪ satisfy (4) and (6) but not

ne
essarily (7). Dually, the assignments h :=g and k :=g∪
satisfy (4) and (7) but not

ne
essarily (6). The solution would thus seem to be to assign to h some 
ombination of

f and g∪
, and to k some 
ombination of f∪ and g. Let us therefore introdu
e monotypes

(\guards") A and B and postulate

h = A◦f ⊔ ¬A ◦g∪
(8)

and

k = B◦g ⊔ ¬B ◦ f∪ .(9)

(Note that the form of these postulates has been 
arefully 
hosen so as to retain the

symmetry in the problem.)

Now we try to solve (3) through (9). We begin with (3).

h=k∪

≡ { (8) and (9), 
onverse }

A◦f ⊔ ¬A ◦g∪ = g∪ ◦B ⊔ f ◦¬B

⇐ { Leibniz and 
ommutativity of ⊔ }

A◦f = f ◦¬B ∧ ¬A ◦g∪ = g∪ ◦B

≡ { 
onverse }

A◦f = f ◦¬B ∧ B◦g = g ◦¬A .

Thus we demand

A◦f = f ◦¬B(10)

and

B◦g = g ◦¬A .(11)

The follows-from step above may seem to be very 
oarse, but it is justi�ed by the fa
t that

the only known relationship between f and g is the relationship between their domains.

In the next step we use some elementary domain 
al
ulus.
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A◦f = f ◦¬B

≡ { domain translation (exploiting dom.f = f ◦ f∪) }

f ◦ rng.(A◦f) = f ◦¬B

⇐ { Leibniz }

rng.(A◦f)=¬B .

Symmetri
ally,

B◦g = g ◦¬A ⇐ rng.(B◦g)=¬A .

We therefore repla
e (10) and (11) by

rng.(A◦f)=¬B(12)

rng.(B◦g)=¬A .(13)

The key step is to observe that (12) and (13) do have (simultaneous) solutions in the

unknowns A and B. Spe
i�
ally, by eliminating B we obtain the requirement on A

rng.(¬(rng.(A◦f)) ◦g)=¬A .

But the fun
tion A 7→¬(rng.(¬(rng.(A◦f)) ◦g)) is monotoni
 (sin
e rng is monotoni
 and

¬ is anti-monotoni
). Moreover, the relations (of a given type) form a 
omplete latti
e

under the usual subset ordering. The fun
tion thus has a �xed point { 
ourtesy of the

Knaster-Tarski theorem. Equally, the fun
tion B 7→¬(rng.(¬(rng.(B◦g)) ◦ f)) also has a

�xed point, and substituting the two �xed points for A and B, respe
tively, we obtain a

solution to the two requirements (12) and (13).

It remains to see whether (12) and (13) automati
ally guarantee (4) and (5). By

symmetry it is suÆ
ient to 
he
k (4). Re
alling that (12) and (13) are implied by (10)

and (11), we have:

h◦k

= { (8) and (9) }

(A◦f ⊔ ¬A ◦g∪)◦(¬B ◦ f∪ ⊔ B◦g)

= { distributivity }

A ◦ f ◦¬B ◦ f∪ ⊔ A◦f◦B◦g ⊔ ¬A ◦g∪ ◦¬B ◦ f∪ ⊔ ¬A ◦g∪ ◦B ◦g

= { (10) and (11) }

A ◦ f ◦ (A◦f)∪ ⊔ f ◦¬B ◦B ◦g ⊔ g∪ ◦B ◦¬B ◦ f∪ ⊔ (B◦g)∪ ◦B ◦g
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= { domain 
al
ulus and (2); monotypes;

monotypes; range 
al
ulus and (7) }

dom.(A◦f) ⊔ ⊥⊥ ⊔ ⊥⊥ ⊔ rng.(B◦g)

= { 
al
ulus }

dom.(A◦f)⊔ rng.(B◦g)

= { domain 
al
ulus; }

A ◦dom.f ⊔ rng.(B◦g)

= { rng.(B◦g)⊑{monotoni
ity} rng.g⊑{(2)} dom.f }

A ◦dom.f ⊔ rng.(B◦g) ◦dom.f

= { (13) and 
al
ulus }

dom.f .

This 
ompletes the proof.
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