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Abstract

The tor
h problem (also known as the bridge problem or the 
ashlight problem)

is about getting a number of people a
ross a bridge as qui
kly as possible under 
er-

tain 
onstraints. Although a very simply stated problem, the solution is surprisingly

non-trivial. The 
ase in whi
h there are just four people and the 
apa
ity of the

bridge is two is a well-known puzzle, widely publi
ised on the internet. We 
onsider

the general problem where the number of people, their individual 
rossing times

and the 
apa
ity of the bridge are all input parameters. We present two methods

to determine the shortest total 
rossing time: the �rst expresses the problem as an

integer-programming problem that 
an be solved by a standard linear-programming

pa
kage, and the se
ond expresses the problem as a shortest-path problem in an

a
y
li
 dire
ted graph, i.e. as a dynami
-programming problem. The 
omplexity of

the linear-programming solution is diÆ
ult to predi
t; its main purpose is to a
t as

an independent test of the 
orre
tness of the results returned by the se
ond solution

method. The dynami
-programming solution has best- and worst-
ase time 
omplex-

ity proportional to the square of the number of people. An empiri
al 
omparison of

the eÆ
ien
y of both methods is also presented.

This manus
ript has been a

epted for publi
ation in S
ien
e of Computer Pro-

gramming. The manus
ript will undergo 
opyediting, typesetting, and review of the

resulting proof before it is published in its �nal form. Please note that during the

produ
tion pro
ess errors may be dis
overed whi
h 
ould a�e
t the 
ontent, and all

dis
laimers that apply to the journal apply to this manus
ript.

A de�nitive version was subsequently published in S
ien
e of Computer Program-

ming, 1 May 2015, Vol.102:76{107,

http://dx.doi.org/10.1016/j.scico.2015.01.003.

The (
apa
ity-C) tor
h problem is as follows.
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N people wish to 
ross a bridge. It is dark, and it is ne
essary to use a tor
h

when 
rossing the bridge, but they only have one tor
h between them. The

bridge is narrow and at most C people 
an be on it at any one time. The

people are numbered from 1 to N. Person i takes time t.i to 
ross the bridge;

when a group of people 
ross together they must all pro
eed at the speed of

the slowest.

Derive an algorithm that will 
onstru
t a sequen
e of 
rossings to get all N

people a
ross in the shortest time. Prove that the algorithm does indeed �nd

the shortest time.

The tor
h problem is a generalisation of a problem involving four people wishing

to 
ross a bridge of 
apa
ity two and with spe
i�
 
on
rete times. In this form, the

problem is believed to have �rst appeared in 1981. Rote [Rot02℄ gives a 
omprehensive

bibliography.

The main interest in the tor
h problem is that what is \obvious" or \intuitive" is

often wrong. For example, the \obvious" solution of letting the fastest person repeatedly

a

ompany C−1 people a
ross the bridge is wrong. (If N=4, C=2 and the travel times

are 1, 1, 2 and 2, this solution takes time 7 whereas the shortest 
rossing time is 61.)

Also, the \obvious" property that the shortest time is a
hieved when the number of


rossings is minimised is in
orre
t. (If N=5, C=3 and the travel times are 1, 1, 4, 4 and

4, the shortest time is 8, whi
h is a
hieved using 5 
rossings. The shortest time using 3


rossings is 9.) It is not diÆ
ult to determine an upper bound on the 
rossing time, even

in the general 
ase. Nor is it diÆ
ult to provide 
ounterexamples to in
orre
t solutions.

The diÆ
ulty is to establish an irrefutable lower bound on the 
rossing time. A proper

solution to the problem poses a severe test of our standards of proof.

We present two pra
ti
al solutions to the problem: an integer-programming solution

and a dynami
-programming solution. The pra
ti
ality of the solutions is made possible

by a transformation of the problem from �nding sequen
es of 
rossings to �nding bags

(multi-sets) of 
rossings. The formal basis for the transformation is outlined in se
tion

1 and developed further in se
tion 2. The signi�
an
e of the transformation from se-

quen
e to bags 
annot be underestimated; it is vital to 
onstru
ting solutions that are of

polynomial-time 
omplexity and not exponential-time. The two solution methods, whi
h

are not unrelated, are presented in se
tion 4. The best- and worst-
ase time 
omplexity

of the dynami
-programming solution is O(N2) and its spa
e 
omplexity is O(N
2

C
). This

means that the spa
e requirement is proportional to N2
for small values of C (for exam-

ple, C equal to 3) but redu
es for larger values of C. Our experien
e in pra
ti
e is that

the spa
e requirement is the main pra
ti
al limitation. Se
tion 4.6 sket
hes the results

1

Our examples are 
hosen so that it is easy for the reader to dis
over the fastest 
rossing time. Of


ourse, the examples in puzzle books are deliberately 
hosen to make it diÆ
ult.
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of a pra
ti
al 
omparison of both the integer-programming and dynami
-programming

solutions. Both have been tested for large values of N (up to 25000) and of C (up to 50

for the largest values of N); exe
ution times for the dynami
-programming solution are

at most se
onds and for the integer-programming solution are at most minutes. Spa
e

limitations prevented us from testing with larger values.

Hen
eforth, we assume that N is at least C+1. (When N is at most C, it is obvious

that exa
tly one 
rossing gives the optimal solution. When N is at least C+1, more than

one 
rossing is required.) We assume that C is at least 2 sin
e, otherwise, the problem

is not solvable. We also assume that 
rossing times are positive (that is, 0≤ t.i for all

i) and the people are sorted so that t.i≤ t.j for all i and j su
h that 1≤ i≤ j≤N. The

motivation for the latter assumption be
omes apparent in se
tion 3. Abusing English

slightly, we say that person i is faster than person j (or j is slower than i) if i< j, even

though their 
rossing times may be equal. Finally, to avoid 
lutter, we often treat N, C

and t as global parameters (
onstants) on whi
h other notions may impli
itly depend.

(O

asionally, N is introdu
ed as an expli
it parameter for the purposes of an indu
tive

proof or 
onstru
tion.)

In a pre
ursor to this paper, Ba
khouse [Ba
08℄ proposed a di�erent dynami
-programming

solution to the problem. The 
urrent algorithm is simpler and its spa
e requirements are

also less. We would therefore no longer re
ommend Ba
khouse's solution but we have

implemented it as a further 
he
k on the 
orre
tness of our algorithms. Other improve-

ments that we have made are to remove the requirements that all persons have distin
t


rossing times and that the 
rossing times have to be stri
tly positive. Ba
khouse's

paper established the theorem that is fundamental to �nding an eÆ
ient algorithm (in

this paper, theorem 38) but the 
hanges we have made have obliged us to revise all our

proofs.

1 Outline Strategy

The tor
h problem is a 
lassi
al optimisation problem: it is about designing an algo-

rithm that 
onstru
tively determines the minimum of an obje
tive fun
tion de�ned on

a domain of putative solutions. Formally, the minimum time is expressed by

2

〈⇓s : PutativeSequence.s : TotalTime.s〉 ,

where the predi
ate PutativeSequence formulates the requirement that a putative solu-

tion is a sequen
e of 
rossings that gets everyone a
ross in a

ordan
e with the rules, and

2

The symbols ⇓ and ⇑ denote the maximum and minimum quanti�ers, respe
tively; later we also use

the symbols ↓ and ↑ to denote the binary minimum and maximum operators.
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the fun
tion TotalTime evaluates the time taken for all people to 
ross for a given pu-

tative sequen
e. The algorithm must be 
onstru
tive in the sense that it must expli
itly


onstru
t a sequen
e s that realises the minimum time.

1.1 Transforming Optimisation Problems

Our solution involves a series of non-trivial transformations of the problem spe
i�
ation

and it is as well to begin by explaining the logi
al basis of su
h transformations.

Suppose we are given an optimisation problem in the form

〈⇓s : s∈P : T.s〉 .

The set P de�nes the solution spa
e and the fun
tion T is the obje
tive fun
tion. A

transformation of the problem in its most general form repla
es P by some set Q and

the obje
tive fun
tion T by some fun
tion U su
h that

〈⇓s : s∈P : T.s〉 = 〈⇓r : r∈Q : U.r〉 .

The goal of making su
h a transformation is to improve the eÆ
ien
y of the 
al
ulation

of an optimal value, usually by redu
ing the spa
e of solutions in some way. For example,

transforming the spa
e of solutions from the set of permutations of n values to the set

of subsets of n values \redu
es" the size of the sear
h spa
e from n! to 2n.

Establishing the 
orre
tness of the transformation typi
ally involves an at-most-and-

at-least argument. That is, we prove

〈⇓s : s∈P : T.s〉 ≤ 〈⇓r : r∈Q : U.r〉

(the at-least argument) and

〈⇓s : s∈P : T.s〉 ≥ 〈⇓r : r∈Q : U.r〉

(the at-most argument). The required equality is then inferred from the anti-symmetry

of the at-least relation on numbers.

Both inequalities are proved by showing how one optimisation problem is transformed

to another. The logi
al basis for the subsequent proof obligation is the following 
al
u-

lation.

〈⇓s : s∈P : T.s〉 ≤ 〈⇓r : r∈Q : U.r〉

= { de�nition of minimum quanti�
ation }

〈∀r : r∈Q : 〈⇓s : s∈P : T.s〉 ≤ U.r〉

= { minimum is a 
hoi
e operator }
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〈∀r : r∈Q : 〈∃s : s∈P : T.s≤U.r〉〉

= { axiom of 
hoi
e }

〈∃τ : τ∈Q→P : 〈∀r : r∈Q : T.(τ.r)≤U.r〉〉 .

Vi
e-versa,

〈⇓s : s∈P : T.s〉 ≥ 〈⇓r : r∈Q : U.r〉

= { as above }

〈∃σ : σ∈P→Q : 〈∀s : s∈P : U.(σ.s)≤T.s〉〉 .

That is, we have to prove

〈∃τ : τ∈Q→P : 〈∀r : r∈Q : T.(τ.r)≤U.r〉〉

and

〈∃σ : σ∈P→Q : 〈∀s : s∈P : U.(σ.s)≤T.s〉〉 .

The fun
tions τ and σ are 
alled transformations be
ause they transform one solution

spa
e to another.

Publi
ations on optimisation algorithms often negle
t to provide full details of the


orre
tness proofs | typi
ally by not giving details of one or other of the transformations

τ or σ, let alone establishing the 
orre
tness of the transformation. In many 
ases the

transformation and 
orre
tness proof are trivial. For example, if the solution spa
e Q is a

subset of P and the obje
tive fun
tions T and U are identi
al, a suitable transformation τ

is the identity fun
tion onQ and the �rst proof obligation is trivial; the se
ond proof obli-

gation is then met by establishing that every solution s in P is \subsumed" by a solution

σ.s in Q. However, the most interesting problems involve non-trivial transformations of

the solution spa
e, and obje
tive fun
tions that are not identi
al.

In our solution to the tor
h problem some of the steps involve simple transformations

but others are de
idedly non-trivial be
ause the fun
tions T and U are di�erent and

the relation between the sets P and Q is non-trivial. It is important to give expli
it

details of the transformation τ in order to give a 
onstru
tive solution to the given

optimisation problem. Expli
it details of σ are unne
essary for this purpose but, even so,

it remains important to provide a rigorous proof of 
orre
tness. When the spe
i�
ation

of a transformation involves an iterative algorithm (as is the 
ase for several of the

transformations we present) it is ne
essary to establish the 
orre
tness of the algorithm.

This explains why this paper is perhaps longer than the length of the �nal java 
ode

might at �rst suggest.
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1.2 Putative and Regular Sequences

Re
all that a sequen
e of 
rossings that gets everyone a
ross in a

ordan
e with the rules

is 
alled a putative sequen
e. Let us be more pre
ise.

When 
rossing the bridge, the tor
h must always be 
arried. This means that 
ross-

ings, both of groups of people and of ea
h individual person, alternate between \for-

ward"and \return" \trips". Formally, a trip is a non-empty set of people and, given a

sequen
e of trips, a forward trip in the sequen
e is an odd-numbered element of the

sequen
e (the �rst, the third, the �fth, et
.) and a return trip is an even-numbered

element of the sequen
e; the sequen
e of trips made by person p is the subsequen
e

given by those trips of whi
h p is an element. A sequen
e of trips is putative if

(a) the sequen
e has odd length, and ea
h trip has at least one and at most C elements,

(b) ea
h person is an element of at least one trip,

(c) the sequen
e of trips made by ea
h person alternates between forward and return

trips, and begins and ends with a forward trip.

The time taken by a sequen
e of trips is the sum of the times taken by ea
h element

of the sequen
e. The time taken by an individual trip is the time taken by the slowest

person in the trip, who we 
all the \leader" of the trip. Given our global assumption that

the 
rossing-time fun
tion t is monotoni
, the leader of a trip is the highest-numbered

person in the trip.

We say that one putative sequen
e subsumes another putative sequen
e if the time

taken by the �rst is at most the time taken for the se
ond. An optimal sequen
e is

a putative sequen
e that subsumes all putative sequen
es. The problem is to �nd an

optimal sequen
e.

A forward trip is regular if it is made by at least two people, and a return trip is

regular if it is made by exa
tly one person. A sequen
e of trips is regular if it is a

putative sequen
e that 
onsists entirely of regular forward and return trips. Given a

sequen
e of trips s the bag of trips FwdBag.s is obtained from s by removing the return

trips and ignoring the order in whi
h the trips are made. It is important to note that

the total time taken by a regular sequen
e s of trips 
an always be 
al
ulated knowing

just FwdBag.s. This is be
ause every person makes one fewer return trips than forward

trips and ea
h return trip in a regular sequen
e is made by just one person; so the total

time for the return trips 
an be dedu
ed.

1.3 Outline Transformations

An outline of our solution is as follows.
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1. Lemma 10 redu
es the sear
h spa
e to the spa
e of regular sequen
es.

This has the 
onsequen
e that the sear
h spa
e for an optimal solution be
omes

�nite: there are at most N−1 forward trips in any regular sequen
e. More impor-

tantly, the time taken by a regular sequen
e 
an be evaluated knowing only whi
h

forward trips are made. This suggests the next step.

2. De�nition 15 de�nes a \regular" bag of forward trips and theorem 30 redu
es

the sear
h spa
e to the spa
e of su
h bags. It does so by establishing a formal


orresponden
e between regular sequen
es of forward and return trips and regular

bags of forward trips.

The step from sequen
es to bags is the most important in designing an eÆ
ient

algorithm be
ause it eliminates attributes of sequen
es that are not relevant to the

total time taken whilst still retaining a 
onstru
tive algorithm in the sense that

it is also possible to 
onstru
t a sequen
e of 
rossings that a
hieves the minimum

time.

3. Theorem 38 redu
es the sear
h spa
e yet further from the spa
e of regular bags to

the spa
e of ordered bags, as de�ned in de�nition 37.

4. Se
tion 4 presents two methods for 
al
ulating an optimal ordered bag of forward

trips.

Both methods exploit the property that a trip in an ordered bag 
an be represented

by two people: the slowest person in the trip (who we 
all the \leader" of the trip),

and the slowest \nomad" in the trip. (A \nomad" is a person who makes at least

one return trip.) Se
tion 4.4 shows how to use integer programming to determine

the minimum time and se
tion 4.5 shows how to exploit dynami
 programming.

The integer-programming solution has unpredi
table 
omplexity; our main purpose

in formulating su
h a solution was to 
he
k the results determined by our dynami
-

programming solution against the results determined by a standard, open-sour
e

linear-programming pa
kage. The dynami
-programming solution has best- and

worst-
ase time 
omplexity proportional to the square of the number of people,

as shown in se
tion 4.5.1. Se
tion 4.6 summarises an empiri
al 
omparison of the

eÆ
ien
y of both solutions.

5. Se
tion 5 re
e
ts on what has been a
hieved.

1.4 Terminology

Hen
eforth the numbers N and C and the fun
tion t will be treated as global parameters

(
onstants) on whi
h other entities may depend. By a person we mean a number in the
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range 1..N and by a trip we mean a subset of {1..N} that has at least 1 and at most C

elements. The forward trips in a sequen
e of trips are the odd-numbered trips (that is,

the �rst, the third, the �fth, et
.); the return trips are the even-numbered trips.

Let us suppose a putative sequen
e of trips is given. By extra
ting just the forward

trips in the sequen
e and ignoring the order in whi
h they are made, we obtain a bag

(multiset) of non-empty sets. We use F to denote su
h a bag. Note that a bag is a set with

multipli
ities. We sometimes use a notation exempli�ed by {|{3,4} , 2 ∗ {1,4} , 2 ∗ {1,2,4}|} to

denote a bag; the example is a bag of trips in whi
h the trip {3,4} o

urs on
e (that is,

has impli
it multipli
ity 1), and the trips {1,4} and {1,2,4} o

ur twi
e.

For the purposes of formalising our algorithms, it is useful to equate a set of elements

of type S with a fun
tion of type S→bool (e�e
tively, its membership relation) and a bag

of elements of type S with a fun
tion of type S→IN. This 
onvention has some notational

advantages: if b is a bag of elements of type S, then, for all x in S, the multipli
ity of x

in b is b.x and the set of elements of b is de�ned to be the fun
tion e where, for all x in

S, e.x ≡ 0<b.x. Also, the size of b, denoted as usual by |b|, is Σb (that is, 〈Σx :x∈S :b.x〉

where S→IN is the type of b).

In this way, if {1..N} identi�es the set of people, a trip T is a fun
tion of type

{1..N}→bool and a bag F of trips is a fun
tion of type ({1..N}→bool)→ IN; also per-

son i is an element of the trip T if T.i and the multipli
ity of T in F is F.T . By a slight

abuse of notation, we write x∈b and 
all x an element of b if x is an element of the set

underlying bag b, that is, if 0<b.x. Similarly, we also write i∈T instead of T.i.

For brevity, we sometimes de�ne a bag b of type S→IN by spe
ifying b.x only for those

x su
h that b.x is greater than 0. For elements y of S not in
luded in the de�nition, the


onvention will be that b.y is 0.

For a given bag of forward trips F, the number of times person i makes a forward trip

is given by the fun
tion f de�ned by

f.F.i = 〈ΣT : i∈T :F.T〉 .(1)

The number of times that ea
h person returns is given by the fun
tion r; sin
e ea
h

person makes one more forward trip than return trip, we let

r.F.i = f.F.i−1 .(2)

A person who makes a return trip is 
alled a nomad :

nomad.F.i ≡ r.F.i > 0 .(3)

A settler is a person who 
rosses but does not return:

settler.F.i ≡ r.F.i = 0 .(4)
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We divide the forward trips into \pure", \nomadi
" and \mixed". A pure trip is a trip

in whi
h everyone is a settler:

pure.F.T ≡ 〈∀j : j∈T : settler.F.i〉 .(5)

A nomadi
 trip is a trip in whi
h everyone is a nomad:

nomadic.F.T ≡ 〈∀i : i∈T :nomad.F.i〉 .(6)

A mixed trip is a trip that is neither pure nor nomadi
 (that is, a trip that involves both

settlers and nomads). A full trip is a trip that has C elements and a non-full trip is

one that has less than C elements.

Given our assumption that the 
rossing-time fun
tion t is monotoni
, the leader of

a trip is de�ned to be the person in the trip with the highest number:

lead.T = 〈⇑i : i∈T : i〉 .(7)

Mixed and pure trips have multipli
ity 1 in the bag F, and ea
h settler is an element

of exa
tly one element of F. It is therefore possible to de�ne a fun
tion from settlers to

people that identi�es the highest-numbered person in the trip made by the settler. Let

us 
all this fun
tion boss.F. Then the de�ning property of boss.F is

〈∀ i,T : settler.F.i ∧ T∈F ∧ i∈T : lead.T =boss.F.i〉 .(8)

For nomads, the fun
tion boss.F is unde�ned.

Example 9 (Nomads and settlers, nomadic, mixed and pure trips) SupposeN=9

and C=3. Let F be the bag

{|2∗{1,2} , {3,4,5} , {3,6,7} , {7,8,9}|} .

Persons 1, 2, 3 and 7 are nomads and persons 4, 5, 6, 8 and 9 are settlers. The trip

{1,2} is nomadi
 and non-full and the trips {3,4,5}, {3,6,7} and {7,8,9} are mixed and full.

There are no pure trips.

The tables below exemplify the di�erent fun
tions. The leftmost table shows the

forward and return 
ounts for ea
h person, the middle table shows the lead fun
tion for

ea
h of the trips and the rightmost table shows the boss fun
tion for ea
h of the settlers.

Later (example 31) we show that F is the bag of forward trips de�ned by a regular

sequen
e of trips that gets 9 people a
ross a bridge of 
apa
ity 3.

9



i f.F.i r.F.i

1 2 1

2 2 1

3 2 1

4 1 0

5 1 0

6 1 0

7 2 1

8 1 0

9 1 0

T lead.T

{1,2} 2

{3,4,5} 5

{3,6,7} 7

{7,8,9} 9

i boss.F.i

4 5

5 5

6 7

8 9

9 9

A simple example of a bag that does have pure trips is

{|2∗{1,2} , {3,4}|} .

(The trip {3,4} is pure and the trip {1,2} is nomadi
.) This is also the bag of forward

trips de�ned by a regular sequen
e of trips, this time to get 4 people a
ross a bridge of


apa
ity 2.

✷

2 Regular Sequences Versus Regular Bags

This se
tion is 
ru
ial to the rest of the paper. We show in theorem 30 that the sear
h

spa
e 
an be limited to bags of forward trips as opposed to sequen
es of forward and

return trips. To do so, we exploit the \regularity" property. Re
all that a \regular"

sequen
e is a sequen
e in whi
h ea
h forward trip involves at least two people and ea
h

return trip involves exa
tly one person. We begin with a lemma that restri
ts attention

to just the regular sequen
es. Then in se
tion 2.1 we show how regular sequen
es of

forward and return trips 
an be re
onstru
ted from a bag of forward trips (with 
ertain

minimal properties).

Lemma 10 Every putative sequen
e is subsumed by a regular sequen
e.

Proof The proof is similar to the one given by Rote [Rot02, Lemma 1℄ for the 
ase that

the 
apa
ity is 2. It di�ers be
ause we do not assume that 
rossing times are distin
t or

stri
tly positive. However, we do need to assume that 
rossing times are positive.

We des
ribe an iterative algorithm that initialises variable s to the given putative

sequen
e and terminates when s is regular. At ea
h iteration, s is repla
ed by a sequen
e

s ′ that subsumes s. The algorithm makes progress by always redu
ing the total number

10



of person-trips (that is, it redu
es the sum over persons p of the total number of trips

made by p).

Suppose a given putative sequen
e s 
ontains irregular trips. There are two 
ases to


onsider: the �rst irregular trip is a return trip and the �rst irregular trip is a forward

trip.

If the �rst irregular trip is a return trip, 
hoose one person, p say, making the return

trip. Identify the (regular) forward trip made by p prior to the return trip, and remove p

from both trips. Be
ause the 
rossing times are positive, the result is a putative sequen
e

that subsumes the given sequen
e; it also has a smaller person-trip 
ount.

Now suppose the �rst irregular trip is forward. There are two 
ases to 
onsider: the

irregular trip is the very �rst in the sequen
e, and it is not the very �rst.

If the �rst trip in the sequen
e is not regular, it means that one person 
rosses and

then immediately returns. These two trips 
an be removed. Be
ause the 
rossing times

are positive, the result is a putative sequen
e that subsumes the given sequen
e; it also

has a smaller person-trip 
ount.

If the �rst irregular trip is a forward trip but not the very �rst, let us suppose it is

person q who 
rosses, and suppose p is the person who returns immediately before this

forward trip. (There is only one su
h person be
ause of the assumption that q's forward

trip is the �rst irregular trip.) Consider the latest trip that pre
edes p's return trip and

involves p or q. There are two 
ases: it is a forward trip involving p or it is a return trip

involving q.

If it is a forward trip, repla
e p by q in the trip and remove p's return trip and q's

irregular trip. The result is a putative sequen
e that subsumes the given sequen
e (sin
e,


rossing times are positive and, for any positive x, t.p ↑x + t.p + t.q ≥ t.q↑x) and has

a smaller person-trip 
ount.

If it is a return trip, repla
e q by p in the trip, and remove p's return trip and q's

irregular trip. The result is a putative sequen
e that subsumes the given sequen
e (sin
e

t.p+ t.q+ t.p ≥ t.q) and has a smaller person-trip 
ount.

✷

Theorem 11

〈⇓s :PutativeSequence.s :TotalTime.s〉 = 〈⇓s :RegularSequence.s :TotalTime.s〉

where the predi
ates PutativeSequence are RegularSequence are as de�ned in se
tion

1.3.

Proof As dis
ussed in se
tion 1.1, lemma 10 establishes that the left side of the equation

is at least the right side. By de�nition, a regular sequen
e is a putative sequen
e so the

identity transformation witnesses the opposite inequality.

✷
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2.1 Scheduling Forward Trips

In view of theorem 11, we now 
onsider bags of forward trips in the image set of the

fun
tion FwdBag. (Re
all that FwdBag.s is obtained from sequen
e s by removing

return trips and ignoring the order of the forward trips.) Suppose s is a regular bag of

trips and F=FwdBag.s. Be
ause s is regular (and hen
e also putative), F has a number

of properties. First, ea
h person must 
ross at least on
e:

〈∀i : 1≤ i≤N : 1≤ f.F.i〉 .(12)

In a regular sequen
e, ea
h forward trip involves at least 2 and at most C people:

〈∀T : T∈F : 2≤ |T |≤C〉 .(13)

Finally, sin
e the number of forward trips is |F| and ea
h return trip is undertaken by

exa
tly one person,

|F| = 〈Σi : 1≤ i≤N : r.F.i〉 + 1 .(14)

Properties (12), (13) and (14) play a 
entral role. Their importan
e is highlighted by

the following de�nition.

Definition 15 (Regular bag) A bag of trips, F, is said to be regular if it satis�es

(12), (13) and (14) (for given values of N and C).

✷

Cru
ially, given an arbitrary regular bag of trips, F, it is possible to 
onstru
t a

regular sequen
e s su
h that F=FwdBag.s. To establish this theorem, we �rst prove

several properties relating the number of pure trips, the number of nomads and the

number of non-pure trips in F.

We de�ne the fun
tions bnc (\bag nomad 
ount"), tnc (\trip nomad 
ount"), rc

(\return 
ount"), pc (\pure-trip 
ount") and npc (\non-pure trip 
ount") as follows.

In the de�nitions, G is an arbitrary bag of trips. That is, G is a fun
tion of type

({1..N}→bool)→ IN. Variable T ranges over elements of G and variable i ranges over

{1..N}. See earlier for the de�nitions of the fun
tions nomad, settler, pure and r.

bnc.G = 〈Σi : nomad.G.i : 1〉 .(16)

tnc.G.T = 〈Σi : nomad.G.i ∧ i∈T : 1〉 .(17)

rc.G = 〈Σi : nomad.G.i : r.G.i〉 .(18)

pc.G = 〈ΣT : pure.G.T : 1〉 .(19)

npc.G = 〈ΣT : ¬(pure.G.T) : G.T〉 .(20)

(Note that pure trips always have a multipli
ity of 1.)

12



Lemma 21 Suppose G is a bag of trips. Then

bnc.G ≤ rc.G ,(22)

rc.G = 〈ΣT :: tnc.G.T ×G.T〉 − bnc.G ,(23)

npc.G 6=1 .(24)

Proof Properties (22) and (23) are straightforward. Property (24) is proved as follows.

npc.G=1

= { de�nition of npc }

〈ΣT : ¬(pure.G.T) : G.T〉 = 1

⇒ { de�nition of pure and arithmeti
 }

〈∃j : nomad.G.j : 〈ΣT : j∈T : G.T〉 ≤ 1〉

⇒ { de�nition of nomad and f }

〈∃j : 1 < f.G.j : f.G.j ≤ 1〉

= { inequalities }

false .

✷

Corollary 25 If G is a bag of trips su
h that |G| = rc.G + 1 then

bnc.G=0 ≡ |G|=1 , and(26)

〈∀T ::¬(pure.G.T)〉 ⇐ bnc.G=1 .(27)

Proof First,

bnc.G=0

= { (16), arithmeti
 }

〈∀i ::¬(nomad.G.i)〉

= { de�nition of nomad, (18), arithmeti
 }

rc.G=0

= { assumption: |G| = rc.G + 1 }

|G|= 1 .

13



Se
ond,

〈∀T ::¬(pure.G.T)〉

⇐ { de�nition of pure, arithmeti
 }

〈∀T :: tnc.G.T =1〉

⇐ { 〈∀T : T∈G : tnc.G.T ≤1〉 ⇐ bnc.G=1, arithmeti
 }

bnc.G=1 ∧ 〈ΣT :: G.T〉 = 〈ΣT :: tnc.G.T ×G.T〉

= { |G| = 〈ΣT :: G.T〉, (23) }

bnc.G=1 ∧ |G| = rc.G + bnc.G

= { assumption: |G| = rc.G + 1 }

bnc.G=1 .

✷

In general, the impli
ation in (27) 
annot be strengthened to an equivalen
e. For ex-

ample, the bag G equal to {{1,3} , {1,2,4} , {2,5}} satis�es the property that |G| = rc.G + 1

and every trip in G is non-pure. However, the set of nomads in G is {1,2}. That is,

bnc.G 6=1.

Lemma 28 Suppose G is a bag of trips satisfying |G| = rc.G + 1 and suppose 1< |G|.

Then G 
ontains a non-pure trip T su
h that tnc.G.T −1 ≤ pc.G.

Proof

〈∃T : T∈G∧¬(pure.G.T) : tnc.G.T −1 ≤ pc.G〉

= { G is non-empty, property of minimum }

〈⇓T : T∈G∧¬(pure.G.T) : tnc.G.T〉 ≤ pc.G + 1

⇐ { pigeon-hole prin
iple (the minimum of a non-empty

bag of integers is at most the average),

(20) and integer inequalities }

〈ΣT : T∈G∧¬(pure.G.T) : tnc.G.T ×G.T〉 < npc.G × (pc.G + 2)

= { (23) }

rc.G + bnc.G < npc.G × (pc.G + 2)

⇐ { (22) }

2 × rc.G < npc.G × (pc.G + 2)

14



= { by range splitting, |G| = pc.G + npc.G ; |G| = rc.G + 1 }

2× (pc.G + npc.G − 1) < npc.G × (pc.G + 2)

⇐ { arithmeti
 }

2 ≤ npc.G

= { (24) }

0 6= npc.G

= { (26) and assumption: 1< |G| }

true .

✷

Lemma 29 Suppose G is a bag of trips su
h that |G| = rc.G+1. Let the set of people

P be the set of nomads and settlers in G. That is, P = {i | nomad.G.i∨ settler.G.i}.

Then there is a sequen
e s of forward and return trips with the properties that

(a) the sequen
e has odd length, and ea
h return trip has exa
tly one element;

(b) for ea
h person i in P, the subsequen
e of s 
onsisting of trips made by person i

alternates between forward and return trips, and begins and ends with a forward

trip;

(c) G=FwdBag.s .

Proof By indu
tion on |G|. If |G|=1 then rc.G=0. Let T be the unique element of G.

De�ne s to be [T ] (the sequen
e of length one 
onsisting of T). It is easy to verify that

the required properties are satis�ed.

Now suppose 1< |G|. Then, by lemma 28, we 
an 
hoose a non-pure trip T su
h that

tnc.G.T −1 ≤ pc.G. De�ne the bag G ′
and the sequen
e s0 as follows. The sequen
e

s0 begins with the trip T and has total length 2× tnc.G.T . The trip T is followed in

s0 by a sequen
e of alternating return and forward trips, beginning and ending with a

return trip. The return trips are made by the tnc.G.T nomads in T , the order being

arbitrary; the tnc.G.T −1 forward trips are distin
t pure trips taken from G, their 
hoi
e

also being arbitrary. The bag G ′
is the result of removing all the forward trips in the

sequen
e s0 from the bag G. It is straightforward to 
he
k that |G ′| = |G|− tnc.G.T and

rc.G ′ = rc.G− tnc.G.T . It follows that |G ′| = rc.G ′+1. Moreover |G ′|< |G| (sin
e T is a

non-pure trip, i.e. 0<tnc.G.T); so the indu
tion hypothesis 
an be applied to G ′
. Let s ′

be the sequen
e 
onstru
ted from G ′
. De�ne s to be s0++ s ′. It is then straightforward

to verify that s satis�es the indu
tion hypothesis.

✷
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Theorem 30 Suppose F is a regular bag of trips. Then there is a regular sequen
e of

trips s su
h that F=FwdBag.s.

Proof Immediate from lemma 29 with G :=F and the de�nition of a regular sequen
e

(noting that 1≤ i≤N ≡ nomad.F.i∨ settler.F.i).

✷

Example 31 (Regular bag) As an example of the algorithm given in lemma 29, let

F be the bag

{|2∗{1,2} , {3,4,5} , {3,6,7} , {7,8,9}|} .

Re
all that this was the bag introdu
ed in example 9. From the data given there, it is

easy to verify that F satis�es (12), (13) and (14) when N is 9 and C is 3.

Sin
e the algorithm is non-deterministi
, there are typi
ally several di�erent sequen
es

that might be 
onstru
ted. In this 
ase there are eight valid sequen
ings of the bag


aptured by the algorithm. Variable G is initialised to equal F so that the initial number

of pure trips in G is 0. As a 
onsequen
e, the �rst trip T that is 
hosen may be {3,4,5} or

{7,8,9}. Choosing the former, the trip {3,4,5} is s
heduled together with a return trip by

person 3. Then G still has no pure trips so the next trip T that is 
hosen may be either

{3,6,7} or {7,8,9}. (Note that person 3 is no longer a nomad in G.) Choosing {3,6,7}, this

forward trip is s
heduled together with a return trip by person 7. After removal of the

trip from G, trip {7,8,9} is pure and one of the two o

urren
es of {1,2} must be 
hosen.

In this way, the sequen
e of trips that is 
omputed is the following.

+{3,4,5} ;−{3} ;+{3,6,7} ; −{7} ;+{1,2} ; −{1} ;+{7,8,9} ;−{2} ;+{1,2} .

(Inter
hanging the trips +{3,6,7} and +{7,8,9} in the above is also a valid sequen
ing of

the bag. The return trips −{1} and −{2} may also be inter
hanged. Similarly, a further

four possibilities are obtained by 
hoosing +{7,8,9} as the �rst element in the sequen
e.

There are other valid sequen
ings not 
aptured by the algorithm. For example, there are

valid sequen
ings that begin with the trip +{3,6,7}.)

✷

3 The Optimisation Problem

Let us summarise the development so far. Theorem 11 proves that the solution spa
e


an be restri
ted to the set of regular sequen
es of trips. A regular sequen
e of trips is

then easily transformed to a regular bag of trips (by forgetting the return trips and the

sequen
ing) and, vi
e versa, any su
h bag 
an be transformed into a regular sequen
e of

trips (see theorem 30). We have thus transformed the solution spa
e from sequen
es to
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bags but must now show how to transform the obje
tive fun
tion. This is straightforward

be
ause the time taken is independent of the order of the trips in a sequen
e, and knowing

just the forward trips made by ea
h person in a regular sequen
e of trips, we 
an easily


al
ulate the bag of return trips that are made.

This se
tion begins by formulating the obje
tive fun
tion for our new optimisation

problem. We then introdu
e theorem 38 whi
h shows how to redu
e the solution spa
e

yet further to \ordered" bags of trips.

Let T be a trip. The time taken to make the trip T is, by de�nition, the time of the

slowest person in the trip. Determining the time is fa
ilitated if persons are sorted so

that t.i≤ t.j if i≤ j; the time taken by the trip is then the time taken by the leader of

the trip:

time.T = t.(lead.T) .(32)

(Re
all that the leader of a trip is the highest numbered person in the trip. See (7).)

Let G be a bag of non-empty trips. (So G has type ({1..N}→bool)→ IN and G.∅=0.)

We extend the fun
tion time to G by adding individual trip times:

time.G = 〈ΣT : T∈G : G.T × time.T〉 .(33)

Now, suppose a regular sequen
e of trips is given and suppose F is the bag of forward

trips in the sequen
e. The bag of return trips in the given sequen
e is 
al
ulated from F

by the fun
tion RetTrips de�ned by

RetTrips.F.{i} = r.F.i .(34)

The total time taken by the sequen
e is then de�ned by the fun
tion TotTime:

TotTime.F = time.F + time.(RetTrips.F) .(35)

Spelling out the de�nition of time and RetTrips, TotTime.F is equal to

〈ΣT : T∈F : t.(lead.T) × F.T〉 + 〈Σi :: t.i× r.F.i〉 .

(Forward trip T takes time t.(lead.T) and has multipli
ity F.T , and person i makes r.F.i

return trips ea
h of whi
h takes time t.i be
ause the sequen
e is regular.)

In summary, assuming that persons are sorted so that t.i≤ t.j if i≤ j, we have:

Theorem 36

〈⇓s : RegularSequence.s : TotalTime.s〉 = 〈⇓F : Regular.F : TotTime.F〉

where the predi
ate Regular is given by De�nition 15 and the obje
tive fun
tion TotTime

is given by (35).

17



✷

Our optimisation problem has thus been transformed to a 
onstru
tive 
omputation

of

〈⇓F : Regular.F : TotTime.F〉 .

That is, we have to determine a regular bag F of forward trips that realises the minimum

total time. The algorithm des
ribed in lemma 29 may then be applied to 
ompute Seq.F

giving an optimal putative sequen
e of forward and return trips.

We 
ontinue to use the notion of \subsumption" but now applied to (regular) bags

rather than sequen
es. So regular bag F subsumes regular bag G if F's total travel time

is at most that of G. A bag is optimal if it is regular and subsumes all other bags.

Theorem 38, below, redu
es the sear
h spa
e yet further to bags that are also ordered.

The notion of an \ordered" bag is de�ned as follows.

Definition 37 (Ordered) We say that a bag of trips, F, is ordered if it is regular and

it also satis�es the following properties.

(a) For ea
h T in F, the nomads in T are persons 1 thru tnc.F.T . That is,

〈∀i,T : T∈F∧ i∈T : nomad.F.i ≡ 1≤ i≤ tnc.F.T〉 .

(b) The fun
tion boss.F is monotoni
ally in
reasing. That is, for all settlers i and j,

boss.F.i≤boss.F.j ⇐ i≤ j .

(c) All pure trips in F are full. All mixed trips in F are full with the possible ex
eption

of the fastest

3

mixed trip.

(d) The settler 
ount sc de�ned by

sc.F.T = 〈Σi : settler.F.i∧ i∈T : 1〉 .

is a monotoni
ally in
reasing fun
tion of the leader of the trip. That is, for all trips

T and U in F,

sc.F.T ≤ sc.F.U ⇐ lead.T ≤ lead.U .

For all non-nomadi
 trips, the fun
tion tnc is a monotoni
ally de
reasing fun
tion

of the leader of the trip. That is, for all non-nomadi
 trips T and U in F,
3

Two mixed trips may have the same 
rossing time. However, re
all our 
onvention that if people i

and j have the same 
rossing time, i is faster than j if i < j.
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tnc.F.T ≥ tnc.F.U ⇐ lead.T ≤ lead.U .

(e) If the fastest mixed trip is not full, it has bnc.F nomads.

In anti
ipation of later usage, we say that a bag of trips, F, is semi-ordered if it satis�es

properties (a), (b), (
) and (e) but not ne
essarily property (d).

✷

Theorem 38 Every regular bag of trips is subsumed by an ordered bag of trips.

✷

In words, 37(a) expresses the property that the nomads are the fastest, and always

make forward trips in a 
ontiguous group

4

whi
h in
ludes person 1. Property 37(b)

expresses the property that the trips in a regular bag divide the settlers into 
ontiguous

groups. So, in summary, theorem 38 establishes the \intuitively obvious" property that

the sear
h for an optimal solution 
an be restri
ted to bags of trips in whi
h, in order of

in
reasing travel times, the groups of people are: the nomads, the settlers in a non-full

mixed trip, the settlers in full mixed trips and the pure settlers. Moreover, the number

of settlers in
reases as the trips get slower.

To prove theorem 38 we present an algorithm that a

omplishes the required trans-

formation. The algorithm is a sequential 
omposition of several iterative algorithms that

in turn establish properties 37(a), (b) and (
), followed by (d) and (e). Property 37(a)

is established in se
tion 3.1, properties 37(b) and (
) are established in se
tion 3.2 and

properties 37(
) and (d) in se
tion 3.3. Of 
ourse, it is ne
essary to ensure that the

algorithm to establish one property maintains the properties earlier in the list.

Non-nomadi
 trips have multipli
ity 1 in F. Thus, for non-nomadi
 trips T , there is

no 
onfusion between the trip T and the individual o

urren
es of T in F. On the other

hand, nomadi
 trips may have multipli
ity greater than 1 in F. For su
h trips, we are


areful to make 
lear whether the transformation is applied to all o

urren
es of the trip

or just one.

3.1 Choosing Nomads

We begin with property 37(a). The transformation algorithm is a 
ombination of two

iterative algorithms, presented in lemmas 40 and 41. Both algorithms maintain the

regularity property whilst 
hoosing the fastest people to be the nomads in non-pure

trips. A

ordingly, the measure of progress is

〈Σi : 1≤ i≤N : f.F.i× i〉 .(39)

We �rst establish that the nomads are persons 1 thru n, for some n.

4

A \
ontiguous" group of people is a set of people of the form {i..j} for some i and j.
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Lemma 40 Every regular bag of trips is subsumed by a regular bag in whi
h all

settlers are slower than all nomads.

Proof Suppose that, within regular bag F, i is the fastest settler and j is the slowest

nomad. Suppose i is faster than j (that is, i< j and t.i≤ t.j).

Inter
hange i and j everywhere in F. We get a regular bag, F ′
. The return time is


learly redu
ed by at least t.j− t.i.

The times for the forward trips in F involving j are not in
reased in F ′
(be
ause

t.i≤ t.j). The time for the one forward trip in F involving i is in
reased in F ′
by an

amount that is at most t.j− t.i. This is veri�ed by 
onsidering two 
ases. The �rst 
ase

is when j is an element of i's forward trip. In this 
ase, swapping i and j has no e�e
t

on the trip, and the in
rease in time taken is 0. In the se
ond 
ase, j is not an element

of i's forward trip. In this 
ase, it suÆ
es to observe that, for any x (representing the

maximum time taken by the other parti
ipants in i's forward trip),

t.i ↑x + (t.j− t.i)

= { distributivity of sum over max, arithmeti
 }

t.j↑ (x+(t.j− t.i))

≥ { t.i≤ t.j, monotoni
ity of max }

t.j↑x .

Finally, the times for all other forward trips are un
hanged.

The net e�e
t is that the total time taken does not in
rease. That is, F ′
subsumes F.

Repeating the pro
ess is guaranteed to terminate be
ause the measure of progress (39)

is de
reased by

(1×i + f.F.j× j) − (f.F.j× i + 1×j)

and 1<f.F.j and i< j; that is, the measure of progress is stri
tly de
reased.

✷

Lemma 41 Every regular bag of forward trips is subsumed by a regular bag that

satis�es 37(a).

Proof Suppose a regular bag F of forward trips is given. By lemma 40, we may assume

that the nomads in F are persons 1 thru bnc.F. (If not, apply the transformation detailed

in lemma 40 �rst.)

Suppose T is a trip in F su
h that the nomads in T are not persons 1 thru tnc.F.T .

(Re
all that tnc.F.T is the number of nomads in trip T .) Repla
e one o

urren
e of T in

the bag F by the trip T ′
where

T ′ = (T ∩ {i | settler.F.i}) ∪ {i | 1≤ i≤ tnc.F.T } .
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This repla
es F by a bag F ′
. To see that F ′

is regular, we 
onsider the three sets T∩T ′
,

T ∩¬T ′
and T ′∩¬T . We have

〈∀i : i∈T∩T ′ : f.F.i = f.F ′.i〉 ,

〈∀i : i ∈ T ∩¬T ′ : f.F.i = f.F ′.i+1 ∧ tnc.F.T < i≤bnc.F〉 ,

〈∀i : i ∈ T ′∩¬T : f.F ′.i = f.F.i+1 ∧ 1≤ i≤ tnc.F.T〉 .

It follows that people that are settlers in F are also settlers in F ′
but some people may

be nomads in F but settlers in F ′
. However, the number of forward trips made by

ea
h person remains stri
tly positive (sin
e a nomad makes at least 2 forward trips, by

de�nition). Moreover, |T |= |T ′| and |T ∩¬T ′|= |T ′∩¬T |. It follows that (12), (13) and

(14) are invariant under the repla
ement. That is, F ′
is regular. Clearly, F ′

subsumes F

and, by a similar argument to that used in lemma 40, the measure of progress (39) is

stri
tly de
reased. If in F ′
there is a nomad that is slower than a settler, the 
onstru
tion

in lemma 40 
an be used to re
tify the situation. In this way, repeated appli
ation of

the transformation is guaranteed to terminate with a bag satisfying 37(a).

✷

Property 37(a) of a regular bag F guarantees that the number of nomads in F is at

most C be
ause tnc.F.T ≤C for ea
h trip T in F.

From now on, we assume that we are given a regular bag F that satis�es 38(a). The

transformations detailed in the lemmas below rely on this assumption and are designed

to maintain the property.

Ex
ept where otherwise stated, the measure of progress we use in both se
tion 3.2

and 3.3 is

〈ΣT : T∈F : lead.T〉 .(42)

Note that a transformation that guarantees a stri
t de
rease of (42) whilst making no


hange to the nomads automati
ally guarantees the subsumption relation be
ause the

total time is a monotoni
 fun
tion of the leaders of the trips.

3.2 Permuting Settlers

In this se
tion, we 
onsider properties 37(b) and (
).

Lemma 43 Every regular bag is subsumed by a regular bag that satis�es 37(b).

Proof Suppose F does not satisfy 37(b). Take any two settlers i and j su
h that

boss.F.i>boss.F.j and i≤ j. It follows that i 6= j and they must be in di�erent trips, T

and U say. Swap boss.F.j in trip U with person i in trip T . Then, using primes to denote
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the new trips, lead.T ′= lead.T =boss.F.i and lead.U ′<lead.U be
ause boss.F.j has

been repla
ed by i and i< j≤boss.F.j. So the measure of progress (42) stri
tly de
reases

and F ′
subsumes F. Repeated appli
ation of the transformation is thus guaranteed to

terminate with a bag that subsumes the given bag and satis�es 37(b). The nomads are

una�e
ted so 37(a) is maintained.

✷

In order to prove 37(
), we 
onsider pure and mixed trips separately. Lemmas 44 and

45 show, respe
tively, how pure trips and mixed trips are �lled.

Lemma 44 Every regular bag is subsumed by a regular bag in whi
h all pure trips

are full.

Proof Suppose T is a non-full pure trip in F. Among su
h trips, 
hoose the one with the

fastest leader. By 
ombining property 37(a) with 
orollary 25, we 
an 
hoose a non-pure

trip with at least 2 nomads, and let U be one o

urren
e of the trip. (The possibility

that bnc.F=0 is ex
luded be
ause of the assumption that C<N.) Add person 1 to T.

Remove the slowest nomad from U. Additionally, if the size of U is redu
ed to 1, remove

U altogether from F. This results in a regular bag that has total travel time at most

the total travel time for F. (The forward time for T is not 
hanged be
ause of 37(a),

the forward time for U does not in
rease or is eliminated entirely, and the total return

time is not in
reased by the removal of the slowest nomad from U and the addition of

person 1 to T .) That is, we have 
onstru
ted a regular bag that subsumes F and has one

fewer non-full pure trips. Repeating the pro
ess until there are no non-full pure trips is

guaranteed to terminate with a bag that subsumes F.

✷

Lemma 45 Every regular bag is subsumed by a regular bag satisfying 37(
).

Proof Suppose F is a regular bag of trips satisfying 37(a) and (b). Apply lemma 44 in

order to ensure that all pure trips are full. Sort the mixed trips in F in des
ending order

of their leaders. Now rearrange the settlers so that the mixed trips are �lled in order

whilst maintaining 37(b). That is, the slowest mixed trip is �rst �lled (if not already

full) by shunting settlers from the next slowest mixed trip into the trip in des
ending

order of 
rossing time. Then the next slowest trip is �lled, and so on. For example,

if the 
apa
ity is 5, the nomads are persons 1, 2, and 3, and the non-nomadi
 trips in

des
ending order of leader are

{1,12,11,10} , {1,2,9,8,7} , {1,2,6,5} , {1,2,3,4}

repla
e the trips by

{1,12,11,10,9} , {1,2,8,7,6} , {1,2,5,4} , {1,2,3} .
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The transformation may result in one or more trips with just one element (inevitably

person 1 be
ause of property 37(a)). If so, remove this trip.

The transformation stri
tly de
reases the measure of progress (42) and so does not

in
rease the total travel time. The number of non-full mixed trips is redu
ed to at most

one whi
h is ne
essarily the fastest.

✷

3.3 Monotonicity Properties

We now turn to properties 37(d) and (e). We begin by proving monotoni
ity of the

settler 
ount just for the full non-nomadi
 trips.

Lemma 46 Every regular bag is subsumed by a regular bag for whi
h for all full

non-nomadi
 trips the settler 
ount sc is a monotoni
 fun
tion of the leader of the trip.

Proof We assume that F satis�es 37(a), (b) and (
) and 
onstru
t F ′
to satisfy the

lemma whilst maintaining these properties.

Suppose the lemma is not satis�ed. Then there must be full trips T and U in F

su
h that sc.F.T >sc.F.U and lead.T ≤ lead.U. Be
ause sc.F.T >0 and F satis�es 37(a),

lead.T is a settler. But settlers are elements of exa
tly one trip. We 
on
lude that

sc.F.T >sc.F.U>0, both T and U have multipli
ity 1 in F, and lead.T < lead.U.

In order to preserve property 37(b), we must 
hoose T and U so that the settlers in

T∪U form a 
ontiguous group. This is a
hieved by (for example) ordering the trips by

their leaders and looking for the �rst 
onse
utive pair of trips T and U that violate the

monotoni
ity property.

Rearrange the settlers in T and U so that sc.F.T and sc.F.U are un
hanged (thus

guaranteeing a regular bag) and the slowest settlers are in T and the fastest settler are in

U. Using primes to denote the lowest values of T and U, we have that lead.T ′= lead.U

(sin
e U is the slowest settler) and lead.U ′≤ lead.T (sin
e sc.F ′.U ′= sc.F.U<sc.F.T and

U ′

ontains the fastest settler). It follows that the measure of progress (42) stri
tly

de
reases and

t.(lead.T ′)+ t.(lead.U ′) ≤ t.(lead.T)+ t.(lead.U) .

That is, F ′
subsumes F and repeated appli
ation of the transformation is guaranteed to

terminate in a bag with the required property. Properties 37(a), (b) and (
) are 
learly

maintained; in parti
ular, property 37(
) remains true be
ause the transformation only

a�e
ts full trips.

✷

Lemma 47 Every regular bag F is subsumed by a regular bag su
h that any non-full

mixed trip in F has bnc.F nomads.
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Proof By the foregoing lemmas, we may assume that F satis�es properties 37(a), (b)

and (
), the settler 
ount for full non-nomadi
 trips is a monotoni
 fun
tion of the leader

of the trip and any non-full mixed trip in F is the fastest mixed trip. Suppose the fastest

mixed trip in F is U. Suppose U is not full and tnc.F.U<bnc.F. (Re
all that tnc.F.U is

the number of nomads in U and bnc.F is the number of nomads in F.) There must be

at least two trips with stri
tly more nomads than U. The transformation 
onsists of two

steps: the �rst step ensures that all mixed trips are full or no nomadi
 trips have bnc.F

nomads; the se
ond step ensures that no mixed trip has more nomads than U.

The �rst step repeats the following transformation whileU is non-full, tnc.F.U<bnc.F

and there is a nomadi
 trip with bnc.F nomads.

Choose a nomadi
 trip T su
h that tnc.F.T =bnc.F. Let n equal bnc.F. Add

tnc.F.U+1 to U and remove n from one o

urren
e of T . If the resulting trip has size 1,

remove it from F. The transformed bag is regular and the total time does not in
rease.

It also satis�es properties 37(a) and (b). In the transformed bag of trips, n may be a

settler; if, in addition, U remains non-full the transformed bag may not satisfy 37(
). If

this is the 
ase then, before the transformation, the trip T has multipli
ity 2 in F. Move

person n from the se
ond o

urren
e of T to U; remove the trip from F if its size is now

1. The transformed bag is regular, it satis�es 37(a) and (b), and the total time does not

in
rease. The bag now also satis�es 37(
). If the settler 
ount for full mixed trips is no

longer a monotoni
 fun
tion of the leader of the trip, apply the 
onstru
tion in lemma

46 to reinstate the property.

Repeated appli
ation of the above transformation is guaranteed to terminate be
ause

the size of U stri
tly in
reases at ea
h iteration.

On termination of this �rst step, suppose that U is still non-full and has fewer than

bnc.F nomads. There is now no nomadi
 trip with bnc.F nomads. Be
ause all other

non-nomadi
 trips are full and the settler 
ount for these trips is a monotoni
 fun
tion

of the leader of the trip, the bag F 
ontains a subbag of {|U1 . . .Uk|} of k full mixed trips,

for some k at least 2, ea
h of whi
h has bnc.F nomads; moreover, sin
e the settler 
ount

for full non-nomadi
 trips is a monotoni
 fun
tion of the leader of the trip, these are

the fastest full mixed trips in F. Let U0 be U and assume that the trips are indexed in

de
reasing order of speed. (So, by 37 (
), U0 is faster than U1 whi
h is faster than U2,

and so on.) Let n be tnc.F.U. Remove bnc.F from Uk and add n+1 to U0. Now �ll ea
h

of U1 to Uk by moving the leader of Ui into Ui+1 for ea
h i, 0≤ i<k. This rearranges

the settlers in the trips so that F remains regular and satis�es properties 37(a), (b) and

(
). The number of settlers in Uk in
reases by 1 but, by 
hoosing the largest possible

value for k, this does not invalidate the property that the settler 
ount is monotoni
ally

in
reasing. The number of nomads may remain 
onstant or may be redu
ed by 1; in

the latter 
ase, k=2 and the settler 
ount of U1 in
reases by 1. This does not invalidate

the monotoni
ity of the settler 
ount. The size of U remains un
hanged; it has one
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more nomad and one fewer settler. Repeating the pro
ess until U has bnc.F nomads

is therefore guaranteed to terminate with a bag of trips that satis�es all the required

properties.

✷

Corollary 48 Every regular bag that satis�es properties 37(a), (b) and (
) is subsumed

by a regular bag that also satis�es 37(d) and 37(e)

Proof Comparing lemma 46 with 37(d), we have to show that the settler 
ount in
reases

monotoni
ally with the leader of the trip for all trips and not just the full trips. We also

have to show that the nomad 
ount is a monotoni
ally de
reasing fun
tion of the leader

for all non-nomadi
 trips.

By lemma 46, the nomad 
ount is a monotoni
ally de
reasing fun
tion of the leader

for all full non-nomadi
 trips sin
e, if T is full, sc.F.T + tnc.F.T = C. Lemma 47 extends

this property to all non-nomadi
 trips be
ause any non-full nomadi
 trip is the fastest

mixed trip (37(
)) and bnc.F is the slowest nomad. It is then an immediate 
onsequen
e

that the settler 
ount is a monotoni
ally in
reasing fun
tion of the leader for all trips.

(The settler 
ount for nomadi
 trips is 0 and the nomadi
 trips have the fastest leaders

by 37(a).)

✷

Theorem 49

〈⇓F : Regular.F : TotTime.F〉 = 〈⇓F : Ordered.F : TotTime.F〉

where F ranges over bags of (forward) trips and the predi
ate Ordered expresses the

property that F is ordered.

Proof The lemmas and 
orollaries from lemma 40 through to 
orollary 48 establish

theorem 38 and, hen
e, that the left side of the equation is at least its right side. Sin
e

ordered bags are by de�nition regular, the left side is trivially at most the right side.

✷

4 Constructing an Optimal Bag of Forward Trips

Theorem 49 has transformed our problem to determining a bag of trips F that realises

〈⇓F : Ordered.F : TotTime.F〉 .

A dire
t way of solving the problem would be to en
ode some (eÆ
ient) pro
edure for

sear
hing the spa
e of all ordered bags of trips whilst evaluating the total time in
urred
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by the bag. This was the basis of the solution in [Ba
08℄. But this is not ne
essarily the

most eÆ
ient way to solve the problem. Instead of sear
hing the spa
e of ordered bags,

an optimal solution 
an be determined by 
omputing

〈⇓F : SemiOrdered.F : TotTime.F〉(50)

for some predi
ate SemiOrdered su
h that

〈∀F :: Ordered.F ⇒ SemiOrdered.F ⇒ Regular.F〉 .(51)

In words, an algorithm will 
orre
tly solve the optimisation problem if it e�e
tively

sear
hes a spa
e of regular bags of trips that is guaranteed to in
lude all ordered bags.

Choosing the predi
ate SemiOrdered is di
tated by implementation 
onsiderations |

su
h as whether an integer-programming or dynami
-programming solution is desired.

In this se
tion, we present two solutions to the problem of �nding an optimal regular

bag of trips. The �rst (se
tion 4.4) is an integer-programming solution. By formulating

the problem in this way, it 
an be solved using a freely available linear-programming

pa
kage. (We have used the pa
kage 
alled lp solve.) The disadvantage of this solution

method is that the time needed to 
al
ulate an optimal solution is unpredi
table. The

se
ond solution formulates the problem as solving an a
y
li
 system of simultaneous

equations (a so-
alled \dynami
 programming" problem); be
ause the system of equa-

tions is a
y
li
, the equations 
an be solved in (best- and worst-
ase) time proportional

to the number of terms in the equations.

Sin
e the e�e
tiveness of an integer-programming solution is unpredi
table, our in-

terest in it is as a semi-independent test of the 
orre
tness of our implementation of the

dynami
-programming solution. The main fo
us of this se
tion is therefore the dynami
-

programming solution and the integer-programming solution is a by-produ
t. We begin

in se
tion 4.1 with an explanation of the essen
e of dynami
 programming. In brief, a

dynami
-programming solution requires an indu
tive formulation of the solution spa
e

together with a \
ost" fun
tion that respe
ts this indu
tive stru
ture. In order to realise

these requirements, we introdu
e an en
oding of a trip as a pair of numbers, whi
h we


all an \NCL pair", in se
tion 4.2. NCL is an abbreviation for \nomad-
ount, lead".

Se
tion 4.3 then shows how a bag of trips is en
oded as a bag of NCL pairs and how su
h

bags are assigned 
osts. This en
oding is the basis for both the integer-programming

and dynami
-programming solutions but neither solution is an exa
t en
oding of or-

dered bags of trips. The integer-programming solution dis
ussed in se
tion 4.4 en
odes

minimal requirements on \semi-ordered" bags of trips whilst the dynami
-programming

solution detailed in se
tion 4.5 en
odes more stringent requirements. The key properties

are dis
ussed in se
tion 4.3.
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4.1 The Essence of Dynamic Progamming

A so-
alled \dynami
 programming" solution to an optimisation problem

〈⇓s : PutativeSoln.s : Cost.s〉

in its most 
ommon form 
an be brie
y des
ribed as �nding an optimal path from one

node to another in a �nite, a
y
li
 graph. There are thus three 
omponents that are


ru
ial to su
h a solution method. First, the optimisation problem must be generalised

by the introdu
tion of a parameter 
orresponding to nodes of the graph. Se
ond, sin
e

paths in a graph are formed of individual edges and the graph is required to be a
y
li


(equivalently, there is a well-founded ordering on the nodes of the graph), the (gener-

alised) solution spa
e must be 
hara
terised indu
tively

5

. That is, the set of putative

solutions for a given node n in the graph must be formulated as a 
omposite of the edges

n7→n ′
from the node and the set of putative solutions for the nodes n ′

. Finally, the


ost fun
tion must have the same indu
tive stru
ture as the spa
e of putative solutions,

thus enabling it to be evaluated indu
tively in a topologi
al (\bottom-up") sear
h of the

nodes of the graph. (The 
ost fun
tion must obey the so-
alled \prin
iple of optimal-

ity".) Note that this last 
omponent is important not only to the eÆ
ient evaluation of

the optimal 
ost but is also 
ru
ial to determining the optimal solution | it would be

pointless to determine, say, the length of a shortest path between two points if the route


ould not also be found just as eÆ
iently.

These three 
omponents are evident in the 
lassi
 examples of dynami
 programming.

For example, the ubiquitous matrix-multipli
ation algorithm (see, for example, [Sed88℄)

solves the problem of determining how to minimise the number of arithmeti
 operations

when multiplying a sequen
e of matri
es. It does so by generalising the problem to de-

termining how to eÆ
iently multiply subsequen
es of the given sequen
e. The indu
tive

stru
ture of the solution spa
e is inherited from the indu
tive stru
ture of the subse-

quen
e relation. Finally, and 
ru
ially, the fa
t that addition distributes over minimum

means that the 
ost fun
tion (the total number of arithmeti
 operations) has the same

indu
tive stru
ture as the subsequen
e relation.

(The matrix-multipli
ation algorithm is not a shortest-path algorithm in the sense

that the indu
tive de�nition of the 
ost fun
tion is non-linear; nevertheless, it does


onform to the general stru
ture des
ribed above provided a more liberal de�nition of

\path" is understood.)

The dynami
 programming solution to the tor
h problem follows this pattern. The

solution spa
e (the set of ordered bags of trips) is �rst generalised: the number n of

5

We prefer the word \indu
tively" to the more 
ommon \re
ursively" be
ause \re
ursion" 
an be

unrestri
ted, making formal reasoning diÆ
ult, whereas \indu
tion" has a 
lear mathemati
al meaning

allied to formal proof.
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people is an obvious generalisation but, as anti
ipated in se
tion 4.4, we add an extra

parameter e 
alled the \ex
ess". The ex
ess of a bag of forward trips b is the di�eren
e

between |b|−1 and the number of return trips en
oded by b; the required solution is the


ase that the ex
ess is 0 but the solution method extends the solution spa
e to 
ases

when the ex
ess is not 0. Cru
ially, by 
hoosing to order pairs of numbers n and e

lexi
ographi
ally, the introdu
tion of the ex
ess parameter allows us to formulate the

solution spa
e indu
tively. It is then straightforward to exploit the fa
t that addition

distributes over minimum (equivalently, the \prin
iple of optimality" for shortest-path

problems) to also formulate the optimal total travel time indu
tively | indeed, as a


lassi
 shortest-path problem. This 
ompletes the solution method: the optimal total

travel time is 
omputed in topologi
al order of pairs n and e; the relevant 
hoi
es are

re
orded simultaneously so that an optimal solution 
an be re
onstru
ted on 
ompletion

of the evaluation.

The running time of a dynami
-programming solution is dependent on the total

number of terms in the indu
tive de�nition of the 
ost fun
tion. The best- and worst-


ase running times are the same and proportional to the total number of terms; the spa
e

requirements are proportional to the number of nodes in the underlying graph stru
ture.

Be
ause the latter is not monotoni
 in the subset relation on the set of putative solutions,

it 
an be more eÆ
ient to explore a larger solution spa
e and less eÆ
ient to explore a

smaller solution spa
e! This is of relevan
e here. Instead of formulating the set of ordered

bags of trips indu
tively (whi
h is what we did in [Ba
08℄), it is better to 
onstru
t an

indu
tive 
hara
terisation of a set of putative solutions that en
odes a superset of su
h

bags. These are the NCL-pair bags satisfying the predi
ate SemiOrdered.N introdu
ed

in de�nition 81.

4.2 Representing Trips As Pairs

If T is a trip in an ordered bag F, the nomads in T are, by 37(a), persons k where

1≤k≤ tnc.F.T ; the settlers in T are the settlers k su
h that boss.k= lead.T . Sin
e the

boss fun
tion is monotoni
 (37(b)), the settlers are persons k, where k ′<k≤ lead.T ,

for some k ′
. The value of k ′

is governed by 37(a), (
) and (e). This suggests the

representation of a trip T by the pair (tnc.F.T , lead.T). Spe
i�
ally, we de�ne the

fun
tion fwd of type {0..C}×{2..N}→Trip by, for all (i, j)∈ {0..C}×{2..N},

fwd(i, j) = {k |1≤k≤ i} ∪ {k | i↑(j−(C−i))<k≤ j} .(52)

Trip T is represented by the pair (tnc.F.T , lead.T) in the following sense:

Lemma 53 Suppose the bag of trips F is ordered. Then

〈∀T : T∈F : T = fwd(tnc.F.T , lead.T)〉 .
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Moreover, if T is a nomadi
 trip in F or T is a non-full mixed trip in F,

T = fwd(i , lead.T) ⇐ 0≤ i≤ tnc.F.T .

Proof For all T∈F, lead.T ≥C equivales T is full. (Clearly, if lead.T <C, T is not full.

Vi
e-versa, by 37(
), if T is not full it is either a nomadi
 trip or the fastest mixed trip. In

the former 
ase, by 37(a), lead.T <C. In the latter 
ase, by 37(e), (a) and (b), the people

in the trip are the nomads 1 .. (bnc.F) together with persons (bnc.F+1) .. (lead.T); that

is, T = {1 .. (lead.T)}. Hen
e, lead.T <C.)

This suggests a 
ase analysis on the type of trips: pure and full mixed trips, nomadi


trips and non-full mixed trips. In the 
ase of a pure trip T , tnc.F.T =0. Sin
e, by

37(
), all pure trips are full, it follows that lead.T ≥C and it is easily 
he
ked that

T = fwd(0 , lead.T). For full mixed trips T , it is again the 
ase that lead.T ≥C and the

property follows from properties 37(a) and (b) of an ordered bag.

The 
ase of nomadi
 trips follows from 37(a). (For nomadi
 trip T , tnc.F.T = lead.T .)

Finally, for a non-full mixed trip T , properties 37(a), (b) and (e) guarantee that the trip

is {k | 1≤k≤ lead.T }, where lead.T <C.

✷

Lemma 53 allows some 
exibility in representing the nomadi
 trips and a non-full

mixed trip whi
h we return to later.

Definition 54 (NCL-pair bag) A fun
tion b of type {0..C}×{2..N}→ IN with the

property that

〈∀ i,j : 0≤ i≤C ∧ 2≤ j≤N ∧ 0<b(i, j) : i≤ j ∧ (i=C⇒ j=C)〉(55)

is 
alled an NCL-pair bag.

✷

\NCL" is an abbreviation of \nomad-
ount, lead". An NCL-pair bag b represents

the bag Fwd.b where

6

Fwd.b = 〈⊎ i,j : 0≤ i≤C∧2≤ j≤N : {|b(i, j) ∗ fwd(i, j)|}〉 .(56)

The 
onstraint (55) is ne
essary to guarantee that person j is the slowest person in trip

fwd(i, j). Spe
i�
ally,

Lemma 57 If b is an NCL-pair bag then

〈∀ i,j : 0≤ i≤C ∧ 2≤ j≤N ∧ 0<b(i, j) : lead.(fwd(i, j))= j〉 .

6⊎ denotes the bag-union quantifer.
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It follows that

〈∀ i,j : 0≤ i≤C ∧ 2≤ j≤N ∧ 0<b(i, j) : time.(fwd(i, j))= t.j〉

and

time.(Fwd.b) = 〈Σi,j : 0≤ i≤C∧ 2≤ j≤N : b(i, j)× t.j〉 .

✷

The lemma is easily 
he
ked by expanding the de�nitions.

As well as representing a bag of forward trips, an NCL-pair bag also represents a bag

of return trips. Spe
i�
ally, the fun
tion rets with domain {0..C}×{2..N} and range the

power set of the set of return trips is de�ned by, for all (i, j)∈ {0..C}×{2..N},

rets(i, j) = {k: 1≤k≤ i: {k}}(58)

and the fun
tion Rets with domain {0..C}×{2..N}→ IN and range Trip→IN, is de�ned by

Rets.b = 〈⊎ i,j,k : 0≤ i≤C∧ 2≤ j≤N∧1≤k≤ i : {|b(i, j)∗{k}|}〉 .(59)

Note that rets(0, j) is the empty set, for all j.

In this way, an NCL-pair bag represents a bag of forward trips and a bag of return

trips. The total trip time for the two bags is de�ned by the fun
tion Cost where

Cost.b = 〈Σi,j : 0≤ i≤C∧2≤ j≤N : b(i, j)×cost(i, j)〉(60)

and

cost(i, j) = t.j+ 〈Σk : 1≤k≤ i : t.k〉 .(61)

4.3 Representing Bags of Trips

Lemma 53 allows some 
exibility in representing a forward trip by an NCL pair. For

example, a nomadi
 trip with n nomads 
an be represented by (n, n) or by (0, n); both

represent the forward trip {k: 1≤k≤n:k}. However, they di�er in the set of return

trips they represent. Spe
i�
ally, rets(n, n) = {k: 1≤k≤n: {k}} whilst rets(0, n) is the

empty set. We now want to transform our optimisation problem from �nding an optimal

regular bag of trips to that of �nding an NCL-pair bag that optimises the fun
tion Cost.

There is yet more 
exibility in the sear
h spa
e that we 
hoose. It is not ne
essary that

NCL-pair bags in the sear
h spa
e en
ode regular bags of trips, nor that they en
ode

ordered bags of trips. But we do need to impose some 
onditions on NCL-pair bags in

order that the 
exibility is limited in a way that guarantees that the transformation is


orre
t.
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Until now, the number of people, N, and the 
apa
ity, C, have been impli
it param-

eters. In anti
ipation of our dynami
-programming solution, it is ne
essary to make the

parameter N expli
it. The \ex
ess" parameter, dis
ussed earlier, will also be introdu
ed

shortly.

For our integer-programming solution, we introdu
e the predi
ate RegularNCL.N

on NCL-pair bags in de�nition 66; for our dynami
-programming solution, we introdu
e

the predi
ate SemiOrdered.N on NCL-pair bags in de�nition 81. Then, with dummy F

ranging over bags of trips and dummy b ranging over NCL-pair bags, we show that

〈⇓F : Regular.F : TotTime.F〉 ,(62)

〈⇓b : RegularNCL.N.b : Cost.b〉 ,(63)

〈⇓b : SemiOrdered.N.b : Cost.b〉 and(64)

〈⇓F : Ordered.F : TotTime.F〉(65)

are all equal. We do this by an at-most and at-least proof. The proof takes the following

form:

〈⇓F : Regular.F : TotTime.F〉

≤ { de�nition 66; lemma 72 and 
orollary 77 }

〈⇓b : RegularNCL.N.b : Cost.b〉

≤ { lemma 82 }

〈⇓b : SemiOrdered.N.b : Cost.b〉

≤ { de�nition 81; lemma 83 }

〈⇓F : Ordered.F : TotTime.F〉 .

Be
ause we have already established the equality of (62) and (65), the equality of all four

quanti�
ations follows by transitivity and anti-symmetry of the at-most relation.

Definition 66 Suppose b is an NCL-pair bag (that is, b has type {0..C}×{2..N}→ IN

and satis�es (55)). Then b satis�es the predi
ate RegularNCL.N i� it satis�es two


onstraints. The �rst 
onstraint is that the number of forward trips represented by b is

one more than the number of return trips:

|Rets.b|+1 = |Fwd.b| .(67)

The se
ond 
onstraint is that for every person the number of forward trips is one more

than the number of return trips:

crosses.N.b(68)
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where crosses.N.b is the predi
ate

〈∀k : 1≤k≤N : fwdNo.b.k = 1+ retNo.b.k〉(69)

and fwdNo and retNo are de�ned by

fwdNo.b.k = 〈Σi,j : k∈ fwd(i, j) : b(i, j)〉 ,(70)

retNo.b.k = 〈Σi,j : {k}∈ rets(i, j) : b(i, j)〉 .(71)

As the abbreviations suggest, fwdNo and retNo 
ount the number of forward and return

trips of ea
h person.

✷

We now show that

〈∃τ : τ ∈ RegularNCL.N → Regular : 〈∀b :: TotTime.(τ.b)≤Cost.b〉〉 .

Unsurprisingly, the transformation τ is the fun
tion Fwd:

Lemma 72 Suppose b satis�es RegularNCL.N. Then RetTrips.(Fwd.b)=Rets.b.

Moreover, Fwd.b is a regular bag and, if b satis�es (55), Cost.b=TotTime.(Fwd.b).

Proof First, we have for all k, 1≤k≤N,

RetTrips.(Fwd.b).{k}

= { de�nition of RetTrips: (34) }

〈ΣT : k∈T : Fwd.b.T〉 −1

= { de�nition of Fwd: (56) }

〈Σi,j : k∈fwd(i, j) : b(i, j)〉 −1

= { (68) }

〈Σi,j : {k}∈rets(i, j) : b(i, j)〉

= { de�nition of Rets: (59) }

Rets.b.{k} .

We 
on
lude that

RetTrips.(Fwd.b) = Rets.b .(73)

To show that Fwd.b is a regular bag, we have to show that

〈∀ i,j : 0≤ i≤C ∧ 2≤ j≤N ∧ 0<b(i, j) : 2≤ |fwd(i, j)|≤C〉(74)
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(that is, every forward trip involves at least two and at most C people: see (13)),

|Fwd.b| = |RetTrips.(Fwd.b)|+1 .(75)

(that is, the total number of forward trips is one more than the total number of return

trips: see (14)) and

〈∀k : 1≤k≤N : 1≤ f.(Fwd.b).k〉(76)

(that is, ea
h person 
rosses at least on
e: see (12)).

Property (74) is immediate from (52). Property (75) is an immediate 
onsequen
e of

(67) and (73); property (76) is an immediate 
onsequen
e of (68) and (73). Finally,

TotTime.(Fwd.b)

= { de�nition of TotTime }

time.(Fwd.b)+ time.(RetTrips.(Fwd.b))

= { RetTrips.(Fwd.b)=Rets.b }

time.(Fwd.b)+ time.(Rets.b)

= { lemma 57, de�nition of time and Rets }

〈Σi,j : 0≤ i≤C∧2≤ j≤N : b(i, j)× (t.j+ 〈Σk : 1≤k≤ i : t.k〉)〉

= { de�nition }

Cost.b .

✷

Corollary 77

〈⇓F :Regular.F :TotTime.F〉 ≤ 〈⇓b :RegularNCL.b :Cost.b〉

Proof Immediate from lemma 72 and the general theory of transforming optimisation

problems dis
ussed in se
tion 1.1.

✷

We now turn to the de�nition of \semi-ordered" NCL-pair bags. Be
ause dynami


programming inevitably involves an indu
tive de�nition of the sear
h spa
e, we need to

make the indu
tive parameters expli
it. The fun
tions we introdu
e are parameterised by

the number of people n and the so-
alled \ex
ess". Spe
i�
ally, suppose b is an NCL-pair

bag. Then we de�ne the fun
tion excess of type IN→ ({0..C}×{2..N}→ IN)→ Int by

excess.n.b = 〈Σi,j : 0≤ i≤C∧2≤ j≤n : b(i, j)×(i−1)〉 +1 .(78)
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Informally, the value of excess.n.b is the di�eren
e between the number of return trips

en
oded by b and the number of return trips needed to e�e
t the bag of forward trips

in Fwd.b.

Our de�nition of semi-ordered is the 
onjun
tion of \quasi-ordered" and the ex
ess

is 0. In order to de�ned \quasi-ordered", we de�ne the predi
ate service by

service.n.b = 〈∀k : 2≤k≤n : 0≤ excess.k.b〉 .(79)

and the predi
ate allsettler by

allsettler.n.b = 〈∀k : C<k≤n : fwdNo.b.k = 1〉 .(80)

Then:

Definition 81 Suppose b is an NCL-pair bag and suppose 2≤n≤N. Then, we de�ne

the predi
ate QuasiOrdered.n by

QuasiOrdered.n.b ≡ crosses.n.b∧ service.n.b∧allsettler.n.b

and the predi
ate SemiOrdered.n by

SemiOrdered.n.b ≡ QuasiOrdered.n.b∧ (excess.n.b=0) .

(The requirement service.n.b does not guarantee that Fwd.b is an ordered bag but it

does guarantee that any pure trips in Fwd.b are \servi
ed" by trips that involve faster

people. That is, all the properties of an ordered bag are satis�ed ex
ept for the property

37(d) | the number of settlers may not be an in
reasing fun
tion of the leader of a

trip.)

✷

Lemma 82

〈⇓b :RegularNCL.N.b :Cost.b〉 ≤ 〈⇓b :SemiOrdered.N.b :Cost.b〉 .

Proof We have, for all N and NCL-pair bags b,

SemiOrdered.N.b

⇒ { de�nition 81, weakening }

crosses.N.b ∧ (excess.N.b=0)

= { de�nition 78 }

crosses.N.b ∧ (〈Σi,j : 0≤ i≤C∧ 2≤ j≤N : b(i, j)×(i−1)〉 +1=0)

= { 〈Σi,j : 0≤ i≤C∧2≤ j≤N : b(i, j)×i〉 = |Rets.b|,
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〈Σi,j : 0≤ i≤C∧2≤ j≤N : b(i, j)×1〉 = |Fwd.b| }

crosses.N.b ∧ (|Rets.b|− |Fwd.b|+1=0)

= { de�nition 66 }

RegularNCL.N.b .

That is, SemiOrdered implies RegularNCL everywhere. The lemma follows trivially:

the transformation from semi-ordered NCL-pair bags to regular NCL-pair bags is the

identity fun
tion.

✷

We now show that

〈∃τ : τ ∈ Ordered → SemiOrdered.N : 〈∀F :: Cost.(τ.F)≤TotTime.F〉〉 .

It is at this point that the 
exibility in the 
hoi
e of NCL pairs dis
ussed in lemma 53

be
omes important.

Lemma 83 Suppose F is an ordered bag. De�ne the bag b as follows. First, among

all the trips with bnc.F nomads 
hoose one that has the smallest lead value. Call this

lasttrip. (The 
hoi
e 
an always be made by de�nition of bnc.F; it is 
alled lasttrip

be
ause it is always a 
andidate for sele
tion as the last trip when exe
uting the algorithm

given in the proof of theorem 30 to transform F into a sequen
e of forward and return

trips.) Let G be the result of removing one o

urren
e of lasttrip from F. De�ne b by

b = 〈⊎T : T∈G : {|G.T ∗ (tnc.F.T , lead.T)|}〉 ⊎ {|1∗(0 , lead.lasttrip)|} .

Then b is an NCL-pair bag and satis�es SemiOrdered.N. Moreover, Cost.b=TotTime.F.

Proof We observe �rst that

lasttrip = fwd(0 , lead.lasttrip) .(84)

The proof is by a 
ase analysis: lasttrip is either a nomadi
 trip or a mixed trip. (It


an't be a pure trip be
ause 0<bnc.F; see (26).) In both 
ases, we have

fwd(0 , lead.lasttrip)

= { de�nition of fwd }

{k |1≤k≤ 0} ∪ {k | 0↑(lead.lasttrip−C)<k≤ lead.lasttrip}

= { 1≤k≤0 ≡ false, set 
al
ulus }

{k | 0↑(lead.lasttrip−C)<k≤ lead.lasttrip} .

Suppose lasttrip is a nomadi
 trip. Then
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{k | 0↑(lead.lasttrip−C)<k≤ lead.lasttrip}

= { lasttrip is a nomadi
 trip and F is ordered;

so, by 
hoi
e of lasttrip and 37(a), lead.lasttrip=bnc.F≤C }

{k | 0<k≤bnc.F}

= { lasttrip has bnc.F nomads and F is ordered; 37(a) }

lasttrip .

Suppose lasttrip is a mixed trip. Then

{k | 0↑(lead.lasttrip−C)<k≤ lead.lasttrip}

= { lasttrip has bnc.F nomads and is the fastest mixed trip,

also F is ordered; so, by 37(b), lead.lasttrip≤C }

{k | 0<k≤ lead.lasttrip}

= { arithmeti
, set union }

{k | 1≤k≤bnc.F} ∪ {k | bnc.F<k≤ lead.lasttrip}

= { lead.lasttrip≤C, de�nition of fwd }

fwd(bnc.F , lead.lasttrip)

= { lasttrip has bnc.F nomads, lemma 53 }

lasttrip .

We have thus veri�ed (84) in both 
ases.

Sin
e F is regular, it follows that b has the right type.

We now have to establish properties (55), (67), (68), (79) and (80). That b satis�es

(55) is an immediate 
onsequen
e of property 37(a) of an ordered bag (the nomads in T

are persons 1 thru tnc.F.T).

That b satis�es (67) and (68) is a 
onsequen
e of the fa
t that Fwd.b=F and

Rets.b=RetTrips.F. The properties are thus inherited from the properties of the re-

turn trips of F. We prove the two equalities as follows.

Fwd.b

= { de�nition }

〈⊎T : T∈G : {|G.T ∗ (tnc.F.T , lead.T)|}〉 ⊎ {|1 ∗ fwd.(0 , lead.lasttrip)|}

= { lemma 53 and (84) }

〈⊎T : T∈G : {|G.T ∗ T |}〉 ⊎ {|1∗lasttrip|}
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= { de�nition of G }

F .

Also,

Rets.b

= { de�nition of b and Rets: (59) }

〈⊎ i,j,k : 1≤k≤ i : 〈⊎T : T∈G ∧ (tnc.F.T , lead.T)= (i, j) : {|G.T ∗ {k}|}〉〉

= { one-point rule }

〈⊎T : T∈G : 〈⊎k : 1≤k≤ tnc.F.T : {|G.T ∗ {k}|}〉〉

= { lasttrip.F has bnc.F nomads }

〈⊎T : T∈F : 〈⊎k : 1≤k≤ tnc.F.T : {|F.T ∗ {k}|}〉〉

− 〈⊎k : 1≤k≤bnc.F : {|1∗{k}|}〉

= { F is ordered; so, for all trips T , the nomads in T are persons k

su
h that 1≤k≤ tnc.F.T , de�nition of f.F: (1) }

〈⊎k : 1≤k≤bnc.F : {|(f.F.k−1)∗{k}|}〉

= { de�nition of r.F: (2) }

〈⊎k : 1≤k≤bnc.F : {|r.F.k∗ {k}|}〉

= { de�nition of RetTrips: (34) }

RetTrips.F .

Consequently,

TotTime.F

= { (35) }

time.F + time.(RetTrips.F)

= { above 
al
ulations }

time.(Fwd.b) + time.(Rets.b)

= { lemma 57 }

Cost.b .

We now show that b satis�es (79).

A brief, informal summary of the proof is that the value of excess.n.b is de
reased

by pairs (0, n) su
h that 0<b(0, n) and is in
reased by pairs (i, n) su
h that 0<b(i, n)
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and 2≤ i. That is, the ex
ess is de
reased by lasttrip and by pure trips and is in
reased

by nomadi
 and mixed trips. If F is ordered, lasttrip is either a slowest nomadi
 trip

or the fastest mixed trip, and the pure trips are the slowest trips. Hen
e, the value of

excess.n.b is always at least 0.

We split the formal proof into three 
ases determined by the value of lead.lasttrip

and the number of pure trips in F. The �rst 
ase is n≤ lead.lasttrip, the se
ond 
ase

is lead.lasttrip < n ≤ N − C×pc.F and the �nal 
ase is N − C×pc.F < n ≤ N.

We �rst show that lead.lasttrip ≤ N − C×pc.F. We use proof by 
ontradi
tion:

lead.lasttrip > N − C×pc.F

= { arithmeti
 }

〈∃j :: N − C×pc.F < j ≤ lead.lasttrip〉

⇒ { by 37(
) and de�nition of lasttrip,

j≤ lead.lasttrip ⇒ j∈ lasttrip }

〈∃j : N − C×pc.F < j : j∈lasttrip〉

⇒ { 37(
) and (d) }

lasttrip is a pure trip

⇒ { de�nition of lasttrip }

bnc.F=0

= { (26) and C<N }

false .

Now re
all the de�nition of lasttrip: it is a trip in F that has the smallest lead value

among those trips with bnc.F nomads. Thus lasttrip is either a nomadi
 trip or, be
ause

of property 37(e), it is the fastest mixed trip. By a simple 
ase analysis, it follows that,

for all trips T in F,

lead.T ≤ lead.lasttrip ⇒ T = lasttrip ∨ 0<tnc.T(85)

and

b(0 , lead.lasttrip) = 1 .(86)

Now we begin our analysis of the three 
ases identi�ed above. First, assume n≤ lead.lasttrip.

Then

0≤ i≤C ∧ 2≤ j≤n ∧ 0<b(i, j)
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= { de�nition of b, 37(a) }

〈∃T : T∈G : i= tnc.F.T ∧ j= lead.T ∧ 2≤ lead.T ≤n〉

∨ (0= i ∧ j= lead.lasttrip)

⇒ { assumption: n≤ lead.lasttrip }

〈∃T : T∈G : i= tnc.F.T ∧ j= lead.T ∧ 2≤ lead.T ≤ lead.lasttrip〉

∨ (0= i ∧ j= lead.lasttrip)

⇒ { (85) }

0<i ∨ (0= i ∧ j= lead.lasttrip)

⇒ { (86) }

0≤ i−1 ∨ b(i, j)=1 .

For lead.lasttrip < n ≤ N − C×pc.F, abbreviating lead.lasttrip to ll, we have

excess.n.b

= { de�nition: (78), range splitting }

excess.ll.b + 〈Σi,j : 0≤ i≤C∧ ll< j≤n : b(i, j)×(i−1)〉

≥ { excess.ll.b≥ 0 }

〈Σi,j : 0≤ i≤C∧ ll< j≤n : b(i, j)×(i−1)〉

≥ { assumption: ll < n ≤ N − C×pc.F; so, by 37(d),

〈∀T : T∈F ∧ ll< lead.T ≤n : 0<tnc.F.T〉 ; de�nition of b }

0 .

and in the 
ase that N − C×pc.F < n ≤ N, we have

excess.n.b

= { de�nition: (78), range splitting }

excess.N.b − 〈Σi,j : 0≤ i≤C∧n< j≤N : b(i, j)×(i−1)〉

= { excess.N.b=0, negation distributes through summation }

〈Σi,j : 0≤ i≤C∧n< j≤N : b(i, j)×(1−i)〉

= { assumption: n ≥ N − C×pc.F; so, by 37(d),

〈∀T : T∈F ∧ n<lead.T ≤N : 0= tnc.F.T〉 ; de�nition of b }

〈Σi,j : 0≤ i≤C∧n≤ j<N : b(i, j)〉
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≥ { b(i, j)≥0 }

0 .

This 
ompletes the proof of the fa
t that b satis�es (79).

Finally, b satis�es (80) be
ause F is ordered and so satis�es 37(a). (Everyone 
rosses

and the nomads |the non-settlers| are persons 1 thru tnc.F, where tnc.F≤C.)

✷

Corollary 87 Suppose F is an ordered bag of trips. Then

〈⇓b :SemiOrdered.N.b :Cost.b〉 ≤ 〈⇓F :Ordered.F :TotTime.F〉 .

Proof Immediate from lemma 83 and the general theory of transforming optimisation

problems dis
ussed in se
tion 1.1.

✷

Combining 
orollary 87, lemma 82 and 
orollary 77 with the fa
t that (62) and (65)

are equal, we 
on
lude:

Theorem 88 The quanti�
ations (62), (63), (64) and (65) are all equal to the minimum

time required for N people to 
ross the bridge under the given 
onstraints.

✷

4.4 Integer-Programming Solution

The problem of evaluating 〈⇓b : RegularNCL.b : Cost.b〉 is already in the form of an

integer programming problem. The equations (67) and (68) are both linear 
onstraints

on b and the 
onstraint (55) simply redu
es the number of variables in the integer-

programming problem. The fun
tion Cost is also 
learly a linear fun
tion.

Optionally, a third 
onstraint 
an be added:

〈∀ i,j : 2≤ i≤C ∧ C<j≤N : b(i, j)≤1〉 .

This 
onstraint is implied by (80).

4.4.1 Example

Let us give a simple, 
on
rete example. We take the 
lassi
 
ase of 4 people and a bridge

of 
apa
ity 2. That is, N=4 and C= 2. We assume that 0≤ t.1≤ t.2≤ t.3≤ t.4. The

problem is to 
ompute a fun
tion b indexed by pairs (i, j) that satisfy the 
onstraints:

0≤ i≤2, 2≤ j≤ 4, i≤ j and i=2⇒ j=2 (
f. (55)). In the table below, the �rst two


olumns list values of i and j satisfying these 
onstraints. The remaining 
olumns show
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the values of four fun
tions on su
h pairs, the 
olumn header giving the name of the

fun
tion.

i j fwd(i, j) rets(i, j) time.(fwd(i, j)) time.(rets(i, j))

0 2 {1,2} ∅ t.2 0

0 3 {2,3} ∅ t.3 0

0 4 {3,4} ∅ t.4 0

1 2 {1,2} {{1}} t.2 t.1

1 3 {1,3} {{1}} t.3 t.1

1 4 {1,4} {{1}} t.4 t.1

2 2 {1,2} {{1},{2}} t.2 t.1+ t.2

Now the problem is to minimise Cost.b, i.e. to minimise

b(0, 2)×(t.2+0)+b(0, 3)×(t.3+0)+b(0, 4)×(t.4+0)

+ b(1, 2)×(t.2+ t.1)+b(1, 3)×(t.3+ t.1)+b(1, 4)×(t.4+ t.1)

+ b(2, 2)×(t.2+(t.1+ t.2))

subje
t to two sets of 
onstraints. The �rst set is the 
onstraints given by (68). These

are given without simpli�
ation below. In order, the 
onstraints spe
ify that persons 1,

2, 3 and 4 ea
h make one more forward trip than return trips.

b(0, 2)+b(1, 2)+b(1, 3)+b(1, 4)+b(2, 2) = 1+b(1, 2)+b(1, 3)+b(1, 4)+b(2, 2)

b(0, 2)+b(0, 3)+b(1, 2)+b(2, 2) = 1+b(2, 2)

b(0, 3)+b(0, 4)+b(1, 3) = 1

b(0, 4)+b(1, 4) = 1

(Note that the �rst equation simpli�es to b(0, 2)=1 and the se
ond then simpli�es to

b(0, 3)+b(1, 2) = 0.) The se
ond set of 
onstraints has just one element obtained by

instantiating the 
onstraint (78). It is too long to write out in full. Simpli�ed, it is the

equation:

b(0, 2)+b(0, 3)+b(0, 4)−b(2, 2)−1 = 0 .

Performing the obvious simpli�
ations by hand

7

, the problem be
omes to minimise

7

In our implementation, these simpli�
ations are done automati
ally in order to minimise the number

of variables and the total size of the equations in the linear-programming model. See the appendix for an

example.
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t.2 + b(0, 4)×t.4 + b(1, 3)×(t.3+ t.1) + b(1, 4)×(t.4+ t.1) + b(2, 2)×(t.1+2×t.2)

subje
t to

b(0, 4)+b(1, 3) = 1

b(0, 4)+b(1, 4) = 1

and

b(0, 4) = b(2, 2) .

This 
orresponds to the standard solution to the problem [Rot02, Ba
11℄: the 
hoi
e is

between b(0, 4)=1 with time t.2+ t.4+(t.1+2× t.2) and b(1, 3)=b(1, 4)=1 with time

t.2+(t.3+ t.1)+(t.4+ t.1). That is, the slowest person, person 4, 
rosses in a pure trip

if 2× t.2 is at most t.3+ t.1 and in a mixed trip (with person 1) if t.3+ t.1 is at most

2× t.2.

Of 
ourse, knowing the solution to the integer-programming problem is insuÆ
ient:

the desired solution is how to get the people a
ross, not how long it will take! This

is why the 
al
ulation of Fwd.b (and its 
orre
tness as expressed in lemma 72) and

the algorithm to 
al
ulate a regular sequen
e from a regular bag (see theorem 30) are

indispensable.

The appendix shows the lp solve 
ode for an example with 11 people and a 
apa
ity

of 3.

4.5 Dynamic-Programming Solution

In this se
tion, we show how to use dynami
 programming to solve the tor
h problem.

Let dummy b range over NCL-pair bags. Then our dynami
-programming solution

determines the value of B where

B = 〈⇓b : QuasiOrdered.N.b ∧ (excess.N.b=0) : Cost.b〉 .

As shown in se
tion 4.3, B equals the optimal total travel time to get all N people a
ross

a bridge of 
apa
ity C where their individual 
rossing times are given by the fun
tion t.

Sin
e the \ex
ess" plays a 
ru
ial role, we begin by introdu
ing a parameter e in the

equations for B:

B = s(N,0)

where s(n,e) is expressed formally as follows:
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s(n,e)

= 〈⇓b

: QuasiOrdered.n.b

∧ (excess.n.b=e)

∧ 〈∀ i,j : 0≤ i≤C ∧ n<j≤N : b(i, j)=0〉

: Cost.b

〉 .

The dummy b 
ontinues to range over NCL-pair bags. The fun
tion s is parameterised

by variables n and e where 2≤n≤N. The requirement service.n.b in the de�nition

of QuasiOrdered.n means that s(n,e) is only de�ned for values of e su
h that 0≤ e.

Moreover, sin
e

excess.n.b

= { de�nition: (78), arithmeti
 }

excess.N.b− 〈Σi,j : 0≤ i≤C∧n< j≤N : b(i, j)×(i−1)〉

= { excess.N.b=0, arithmeti
 }

〈Σj :n< j≤N :b(0, j)〉 − 〈Σi,j : 2≤ i≤C∧n< j≤N : b(i, j)×(i−1)〉

≤ { arithmeti
 }

〈Σj :n< j≤N :b(0, j)〉

≤ { allsettler.N.b and j∈fwd(0, k) ≡ k−C<j≤k }
⌊

N−n

C

⌋

the requirement also implies the upper bound e≤
⌊

N−n
C

⌋

.

The �rst step is to identify the indu
tive stru
ture of the range of variable b. Ob-

serving that

excess.n.(b⊎ {|(i, n)|}) = excess.n.b+(i−1)

we infer two equations for the range of dummy b. First for C<n it is 
lear from (71)

that retNo.b.n=0. From (70) it follows that fwdNo.b.n=1. In order to meet this

requirement and the requirement in the de�nition of s(n,e) that b(i, j) is 0 for all j su
h

that n< j≤N, it is ne
essary that

〈∃i,b ′ : 0 ≤ i < C : b=b ′⊎ {|(i, n)|}〉 .
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That is, b must en
ode a trip led by person n with i nomads, for some i. The number

of nomads i must also be at most (e+1), otherwise it is impossible to 
hoose b ′
so that

the predi
ate service is satis�ed everywhere. Moreover, the remaining n−(C−i) people

must be at least 2 and must be \servi
ed" by b ′
. So, we obtain that for C<n and

0≤e≤
⌊

N−n
C

⌋

,

s(n,e)

= 〈⇓i : 0 ≤ i ≤ (C−1)↓(e+1) ∧ 2≤n−(C−i)

: 〈⇓b ′

: QuasiOrdered.(n−(C−i)).b ′

∧ (excess.(n−(C−i)).b ′ = e+1−i)

∧ 〈∀k,j : 0≤k≤C ∧ n−(C−i)<j≤N : b ′(k, j)=0〉

: Cost.(b ′⊎ {|(i, n)|})

〉

〉 .

By using the equality Cost.(b ′⊎ {|(i, n)|}) = Cost.b ′+ cost(i, n) and fa
toring out the

term cost(i, n), we thus obtain that, for C<n and 0≤e≤
⌊

N−n
C

⌋

,

s(n,e) = 〈⇓i : 0↑(C+2−n) ≤ i ≤ (C−1)↓(e+1)

: s(n−(C−i) , e+1−i) + cost(i, n)

〉 .

(It is ne
essary to 
he
k that e+1−i≤
⌊

N−(n−(C−i))

C

⌋

if e≤
⌊

N−n
C

⌋

and 0≤ i. This is easily

done.) Now we formulate equations for the 
ase that n≤C. In this 
ase, the allsettler


onstraint in the de�nition of QuasiOrdered is no longer relevant. If the ex
ess is 0 and

there are at most C people left, there is only one possible 
hoi
e for the NCL-pair bag

b, namely {|(0, n)|}. So, for n≤C,

s(n,0) = cost(0, n) .

If the ex
ess is greater than 0 and n is at most C, any NCL-pair bag b in the de�nition of

s(n,e) must in
lude a pair (i, n) where 2≤ i (so that the ex
ess is de
reased) and i≤e+1

(so that the ex
ess remains positive). In order to guarantee the predi
ate crosses, the

number i of return trips be
omes the number of people remaining to 
ross again. So, for

2≤n≤C and 0<e≤
⌊

N−n
C

⌋

,

s(n,e) = 〈⇓i : 2≤ i≤ (e+1)↓n : s(i , e−i+1)+ cost(i, n)〉 .

The above three indu
tive equations 
onstitute the dynami
-programming solution

to the tor
h problem.
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4.5.1 Solving the Equations

Finding the total travel time in
urred by an optimal bag of forward trips is a
hieved by

solving the equations in s. First, the (N−1)×(C+1) values of the cost fun
tion are tab-

ulated using N×(C+1) additions. Then, for n in the range 2..C, the (C−1)×(
⌊

N−n
C

⌋

+1)

values of s(n,e) 
an be 
omputed in order of in
reasing n and in
reasing e. This

requires at most (C−1)×(
⌊

N−2
C

⌋

+1)×C additions/
omparisons. Next,

⌊

N−n
C

⌋

+1 val-

ues of s(n,e) must be 
omputed for ea
h n greater than C. This requires at most

(N−C)×(
⌊

N−2
C

⌋

+1)×C additions/
omparisons. In this way, the optimal solution 
an be

determined with O(N2) additions/
omparisons. The spa
e requirements are di
tated by

the need to store values of the fun
tion s: in total, at most O(N
2

C
) storage lo
ations are

required. For small values of C (for example, C equal to 2) the spa
e requirement is

O(N2) but it is less when C is proportional to N.

A bag of pairs that realises the minimum time is 
al
ulated at the same time as the

equations are solved: whenever s(n,e) is evaluated, for some n and e, a value of i that

realises the minimum quanti�
ation in the equation for s is re
orded. On
e the value

of s(N,0) has been 
al
ulated, the bag of pairs 
an be a

umulated by retra
ing the

sequen
e of 
hoi
es.

Java 
ode for the 
omplete algorithm is given in the appendix. The 
ode uses the

array nmds (short for \nomads"), indexed by the number of people and the ex
ess, to

re
ord a value of i that realises the minimum in the equations for s given above. The


ode for 
omputing a sequen
e of 
rossings (rather than just the bag of forward trips) is

also in
luded.

The evaluation of s(N,0) is equivalent to a shortest-path problem. The nodes in

the graph are pairs (n, e) where 2≤n≤N and 0≤ e≤
⌊

N−n
C

⌋

. There is also a single

terminal node. The start node is the node (N, 0). The edges are de�ned by cost terms

in the equations. There is an edge of length cost(0, n) from ea
h node (n, 0), where

n≤C, to the terminal node. For pairs (n, e) where C<n, there is an edge of length

cost(i, n) from the node (n, e) to the node (n−(C−i) , e+1−i) for ea
h i su
h that

0↑(C+2−n) ≤ i ≤ (C−1)↓(e+1). For pairs (n, e) where n≤C and 0<e there is an edge

of length cost(i, n) from the node (n, e) to the node (i , e+1−i) for ea
h i su
h that

2≤ i≤ (e+1)↓n. That s is indu
tively de�ned is equivalent to the graph being a
y
li
.

The algorithm sket
hed above is a topologi
al sear
h algorithm with best- and worst-


ase time 
omplexity proportional to the number of edges in the graph, and best- and

worst-
ase spa
e 
omplexity proportional to the number of nodes.
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4.6 Evaluation

In order to evaluate our dynami
-programming solution, we have implemented it and

the earlier, more 
ompli
ated solution [Ba
08℄ in Java; we have also implemented the

integer-programming solution. A substantial number of test 
ases was used to evaluate

the eÆ
ien
y of the di�erent solutions and the results 
ompared. For some tests we

for
ed the number of pure trips to be at least a 
ertain number by 
hoosing extremely

large 
rossing times for a 
ertain proportion of the people. (To for
e at least p pure

trips, the 
rossing times for p×C people are 
hosen to be, say, 103×C whilst the 
rossing

times for the remaining people are 
hosen randomly but mu
h smaller | for example,

in the range 1 to 102.) Further details of the methodology used for the 
omparisons

are in the se
ond author's MS
 dissertation [Tru11℄. The results of the 
omparison in

[Tru11℄ are, however, now out of date be
ause we have sin
e improved both the dynami
-

programming algorithm and the generation of the integer-programming model.

The primary goal of implementing the integer-programming solution was to have a

semi-independent test of the 
orre
tness of the dynami
-programming solution. The

test is independent in the sense that we used a publi
ly available pa
kage. However, it


annot be regarded as 
ompletely independent be
ause both solutions rely on the same

representation of a solution as a bag of pairs of numbers. Our implementation generates

from given input values an integer-programming problem expressed in the syntax of

lp solve. See the appendix for an example. The number of variables in the lp solve

program is approximately N×C.

This element of the evaluation was su

essful: all three methods returned the same

value for the optimal value of the total 
rossing time in all tests (more pre
isely, in all

tests where all three methods su

essfully ran to 
ompletion).

We implemented two versions of the program to generate the integer-programming

model. The �rst version, dis
ussed in [Tru11℄, made no attempt to minimise the number

of variables; a se
ond version identi�ed variables that are ne
essarily zero in order to

minimise the number of variables and the size of the equations in the generated model.

For the �rst version, the exe
ution time of lp solve was dependent on the individual


rossing times and somewhat unstable. With small values of the 
apa
ity (less than 5) the

exe
ution time was 
ommensurate with the exe
ution time of the dynami
-programming

solution; when the 
apa
ity was in
reased to 50 the exe
ution time for 2000 people was

variable up to a maximum of about 30 minutes. The time taken to generate the lp solve

�le is not in
luded; it was insigni�
ant. For larger values of the 
apa
ity and/or number

of people, the unpredi
tability of the exe
ution time hindered further tests. We were able

to test the se
ond version on the same input data as used for the dynami
 programming

solution, i.e. up to 25000 people and with 
apa
ity ranging from 2 to 50. Beyond these

numbers, spa
e limitations on the program to generate the model prevented further tests.
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The exe
ution time of lp solve was slower than the dynami
-programming solution and,

for the largest problems, two to three minutes. Even so, we were very surprised by the

size of the problems that 
ould be su

essfully solved.

The dynami
-programming solution is more eÆ
ient than the integer-programming

solution, a major fa
tor being that the best- and worst-
ase exe
ution times of a dynami
-

programming solution are always the same. Our earlier algorithm [Ba
08℄ was 
ompara-

ble to the integer-programming solution but its signi�
antly larger spa
e requirements

were prohibitive for large values of N and/or C. The algorithm presented in this paper is

also limited by spa
e: we ex
eeded the available heap storage with N equal to 50000 and

C equal to 50 but solutions were found (in se
onds) for N equal to 25000. In general, in

spite of the quadrati
 
omplexity of the algorithm, exe
ution times were always se
onds

rather than minutes.

Be
ause the problem redu
es to a shortest-path problem, it is possible to ignore the

fa
t that the graph is a
y
li
 and use an alternative shortest-path algorithm. Su
h an

algorithm may have better best-
ase performan
e. We haven't investigated the relative

merits of su
h a solution method. The greatest potential bene�t is to improve the best-


ase spa
e requirements (although it is unlikely that the worst-
ase spa
e requirements

would be improved).

5 Conclusion

Puzzles have long been used to inspire further learning and to test problem-solving skills.

The 
lassi
 tor
h problem of 4 people and a bridge of 
apa
ity 2, usually formulated

with spe
i�
 
rossing times like 1, 2, 5 and 10, is an example that has apparently been

used in job interviews for major 
ompanies. But isolated examples have little long-term

edu
ational value. On
e the solution has been seen, the 
lassi
 tor
h problem is qui
kly

dismissed. By introdu
ing input parameters for the 
rossing times, the problem be
omes

an interesting introdu
tion to 
onditional statements. (See se
tion 4.4.1.)

A mu
h bigger and more 
hallenging step is to also parameterise the number of peo-

ple. The general 
apa
ity-2 problem o�ers a very good example of algorithmi
 problem

solving. The problem is easily understood but �nding an eÆ
ient solution is very 
hal-

lenging. Most importantly, it demonstrates that \obvious" solutions may be in
orre
t.

See [Rot02℄ for publi
ations and web links. Obtaining a 
orre
t solution demands parti
-

ular attention to the avoidan
e of unne
essary detail. Like the 
apa
ity-C problem, the

solution is obtained by fo
using on just the forward trips

8

. The problem is sometimes

used in a 
ourse on algorithmi
 problem solving [Ba
11℄ for entry-level Computer S
ien
e

students at the University of Nottingham.

8

The importan
e of bags versus sequen
es is mentioned by Rote [Rot02℄ in a footnote.
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The 
apa
ity-C problem appears to be mu
h more diÆ
ult than the 
apa
ity-2 prob-

lem. By far the greatest part of this paper has been devoted to deriving an algorithm

that is 
orre
t by 
onstru
tion; the �nal (Java) implementation of the dynami
 program-

ming algorithm is quite short. This is not atypi
al. The late Edsger W. Dijkstra [Dij76℄

observed that the derivation of an algorithm from its (formal) spe
i�
ation is typi
ally an

order of magnitude longer than the algorithm itself. This is seldom re
e
ted in 
urrent

textbooks on algorithm design but it is indeed our own experien
e.

That the 
apa
ity-C problem 
an be solved in time proportional to the square of

the number of people appears to be new. The problem is mentioned on some (non-

peer-reviewed) websites but none o�ers a pra
ti
al solution. Our solution 
ould be

used in advan
ed 
ourses on algorithm design and/or operations resear
h as a detailed

illustration of the 
omplexities of optimisation problems and their solutions. A number

of fa
ets of the solution are edu
ational: the redu
tion in size of the sear
h spa
e by a

fo
us on bags of forward trips rather than sequen
es of forward and return trips, the


hoi
e of a suitable representation of bags of forward trips, the formulation as an integer-

programming problem, and the various 
omponents essential to a dynami
-programming

solution. It is disappointing that we have not been able to dis
over a linear-time or (more

importantly as it turns out) linear-spa
e algorithm. When the 
apa
ity is 2, our theorem

49 redu
es to Rote's [Rot02℄ theorem 2 (albeit formulated using di�erent terminology).

A greedy algorithm, dis
ussed by Rote [Rot02℄, is then easily derived sin
e the pure trips

are in (1{1) 
orresponden
e with the nomadi
 trips. Indeed, a sub-linear, binary sear
h


an be used to determine the optimal number of pure trips on
e people have been sorted

in order of 
rossing time [Ba
11℄. This simpli�
ation of the algorithm is re
e
ted in

a very regular stru
ture of the graph underlying the dynami
-programming algorithm.

For 
apa
ities greater than 2, it seems plausible that similar stru
tural properties 
an

be exploited in order to obtain a more eÆ
ient algorithm but su
h an algorithm has so

far eluded us. Note that we do not expe
t other well-known shortest-path algorithms

to improve on the worst-
ase eÆ
ien
y of our dynami
-programming solution although

they may o�er some improvement in the best 
ase.
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Appendix

Integer-Programming Solution

This is an example of the lp solve �le 
onstru
ted for an instan
e of the tor
h problem

with N equal to 11 and C equal to 3. The numbers 35, 46, et
. in the obje
tive fun
tion

are (random) 
rossing times for the individual people. The variables beginning with the

letter X represent the multipli
ity of pairs in the 
onstru
ted bag of trips. For example,

X1_7 is the multipli
ity of the pair (1, 7). The variables beginning with the letters r

and f represent numbers of return trips and numbers of forward trips, respe
tively. For

example, r1 is the number of times person 1 makes a return trip. The variable pc is the

number of pure trips. Variables that are ne
essarily zero are not in
luded. For example,

there is no variable X0_10 be
ause person 10 
an never lead a pure trip. In fa
t, person

10 
an never lead any trip and so there is no 
onstraint generated by person 10. In this

way, the total size of the model is redu
ed as mu
h as possible.

// lpsolve citation data

// ----------------------

// Description : Open source (Mixed-Integer) Linear Programming system

// Language : Multi-platform, pure ANSI C / POSIX source code,

// Lex/Yacc based parsing

// Official name : lp_solve (alternatively lpsolve)

// Release data : Version 5.0.0.0 dated 1 May 2004

// Co-developers : Michel Berkelaar, Kjell Eikland, Peter Notebaert

// Licence terms : GNU LGPL (Lesser General Public Licence)

// Citation policy : General references as per LGPL

//

// objective function

min: 35X0_2 + 46X0_3 + 53X0_5 + 104X0_8 + 148X0_11 + 51X1_4 + 53X1_5

+ 66X1_6 + 79X1_7 + 104X1_8 + 138X1_9 + 148X1_11 + 35X2_2 + 46X2_3

+ 51X2_4 + 53X2_5 + 46X3_3 + 13r1 + 35r2 + 46r3 ;

// Each person j where j>C makes exactly one forward trip

X0_11 + X1_11 = 1 ;

X0_11 + X1_9 = 1 ;

X0_8 + X1_8 + X1_9 = 1 ;

X0_8 + X1_7 + X1_8 = 1 ;

X0_8 + X1_6 + X1_7 = 1 ;

X0_5 + X1_5 + X1_6 + X2_5 = 1 ;
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X0_5 + X1_4 + X1_5 + X2_4 = 1 ;

// Return trips

X3_3 = r3 ;

X2_2 + X2_3 + X3_3 + X2_4 + X2_5 = r2 ;

X2_2 + X2_3 + X3_3 + X1_4 + X2_4 + X1_5 + X2_5 + X1_6 + X1_7 + X1_8

+ X1_9 + X1_11 = r1 ;

// Forward Trips: (Potential) Nomads

X0_3 + X0_5 + X1_4 + X2_3 + X3_3 = f3;

X0_2 + X0_3 + X2_2 + X2_3 + X2_4 + X2_5 + X3_3 = f2;

X0_2 + X0_3 + X1_4 + X1_5 + X1_6 + X1_7 + X1_8 + X1_9 + X1_11 + X2_2

+ X2_3 + X2_4 + X2_5 + X3_3 = f1;

// Relation between individual return- and forward-trip counts

r1 = f1 - 1 ;

r2 = f2 - 1 ;

r3 = f3 - 1 ;

// Relation between total return- and forward-trip counts

pc = X0_2 + X0_3 + X0_5 + X0_8 + X0_11 ;

pc = X2_2 + X2_3 + X2_4 + X2_5 + 2*X3_3 + 1 ;

// Declarations

bin X0_2, X0_3, X0_5, X0_8, X0_11, X1_4, X1_5, X1_6, X1_7, X1_8, X1_9

, X1_11, X2_3, X2_4, X2_5;

int X2_2, X3_3;
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Java Implementation of Dynamic-Programming Solution

This appendix 
ontains the implementation (in Java) of the dynami
-programming al-

gorithm presented in se
tion 4.5.

Exe
ution of the implementation is limited by storage requirements (whi
h in
rease

as C de
reases).

class DynamicProgramming{

int N = CommonProperties.numPeople;

int C = CommonProperties.capacity;

int maxNoPureTrips = (int)Math.floor((double)(N-2)/C);

int[][] m = new int[N][maxNoPureTrips+1];

int[][] nmds = new int[N][maxNoPureTrips+1];

/* m[n-1][e] is optimal time for n people to cross with excess e */

/* thus m[n-1][e] = s(n,e) */

/* where the function s is as defined in the paper */

/* nmds[n-1][e] is the number of nomads in the trip with lead n */

/* in an optimal solution to n people crossing with excess e */

public int cost(int i0, int j0){

int t = CommonProperties.travellingTime[j0-1];

for (int i = 1; i <= i0; i++){

t += CommonProperties.travellingTime[i-1];

}

return t;

}

public void run(){

/* assert(2<=C && C<=N); */

// Calculate optimal travel time

/* At most C people*/

/* excess equals 0 */

for (int n= 2; n <= C; n++){

m[n-1][0] = cost(0,n);

nmds[n-1][0] = 0;

};

/* excess e>0 */
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for (int n= 2; n <= C; n++){

for (int e= 1; e <= maxNoPureTrips; e++){

int i= Math.min(e+1, n);

int min= cost(i,n) + m[i-1][e-i+1];

nmds[n-1][e]= i;

i--;

while (2 <= i){

int temp;

temp= cost(i,n) + m[i-1][e-i+1];

if (temp < min){

min= temp; nmds[n-1][e]= i;

};

i--;

}

m[n-1][e] = min;

}

};

/* n>C */

/* n=C+1 */

for (int e= 0; e <= maxNoPureTrips; e++){

/* no pure trip: mixed trip with at least one nomad */

int min = cost(1,C+1) + m[1][e];

nmds[C][e]= 1;

int temp, i;

i= 2;

while (i <= Math.min(e+1, C-1)){

temp= cost(i,C+1) + m[i][e-i+1];

if (temp < min){

min= temp;

nmds[C][e]= i;

};

i++;

}

m[C][e] = min;

}

/* n>C+1 */
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for (int n= C+2; n <= N; n++){

int maxExcess= (int)Math.floor(((double)N-n)/C);

for (int e= 0; e <= maxExcess ; e++){

int min= cost(0,n) + m[n-C-1][e+1];

nmds[n-1][e]= 0;

int temp;

for (int i= 1; i <= Math.min(e+1, C-1); i++){

temp= cost(i,n) + m[n-(C-i)-1][e-i+1];

if (temp < min){

min= temp;

nmds[n-1][e]= i;

}

}

m[n-1][e] = min;

}

};

System.out.print("Optimal time = "); System.out.println(m[N-1][0]);

// compute the sequence of crossings

int [] leadPureTrips = new int[maxNoPureTrips] ;

/* stack of pure trips waiting to be scheduled */

int p= 0, pureTrips= 0;

/* p is the stack index */

/* pureTrips counts total number of pure trips */

int n= N, e= 0;

while (n > C){

int i= nmds[n-1][e];

if (i == 0){/* stack pure trip with lead n*/

leadPureTrips[p]= n; p++; pureTrips++;

n= n-C; e++;

}

else {System.out.print("Forward Trip: nomads 1..");

System.out.print(i); System.out.print(" ; settlers ");

System.out.print(n-(C-i)+1); System.out.print("..");

System.out.println(n);

e= e-(i-1); n= n-(C-i);

System.out.print("Return Trip: nomad ");

System.out.println(i); i--;

54



/* unstack and schedule pure trips */

while (i>0){

System.out.print("Forward Trip: settlers ");

System.out.print(leadPureTrips[p-1]-C+1);

System.out.print("..");

System.out.println(leadPureTrips[p-1]); p--;

System.out.print("Return Trip: nomad ");

System.out.println(i); i--;

}

}

};

/* n =< C */

while (n != 0){

int i= nmds[n-1][e];

System.out.print("Forward Trip: 1.."); System.out.println(n);

n= i;

/* assert(((i==0)==(e==0)) && ((i==0)||(i>=2}})) */

if (i>0){

e= e-i+1;

System.out.print("Return Trip: nomad ");

System.out.println(i); i--;

/* unstack and schedule pure trips */

while (i>0){

System.out.print("Forward Trip: settlers ");

System.out.print(leadPureTrips[p-1]-C+1);

System.out.print("..");

System.out.println(leadPureTrips[p-1]); p--;

System.out.print("Return Trip: nomad ");

System.out.println(i); i--;

}

}

}

}

}
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