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Abstract

We introduce the general notions of an index and a core of a relation. We postu-
late a limited form of the axiom of choice —specifically that all partial equivalence
relations have an index— and explore the consequences of adding the axiom to stan-
dard axiom systems for point-free reasoning. Examples of the theorems we prove
are that a core/index of a difunction is a bijection, and that the so-called “all or
nothing” axiom used to facilitate pointwise reasoning is derivable from our axiom
of choice. We reformulate and generalise a number of theorems originally due to
Riguet on polar coverings of a relation. We study the properties of the “diagonal”
of a relation (called the “différence” by Riguet who introduced the concept in 1951).
In particular, we formulate and prove a general theorem relating properties of the
diagonal of a relation to block-ordered relations; the theorem generalises a property
that Riguet called an “analogie frappante” between the “différence” of a relation and
“relations de Ferrers” (a special case of block-ordered relations).
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1 Introduction

Seventy years ago, in a series of publications [Rig48, Righ0, Rig51], Jacques Riguet in-
troduced the notions of a “relation difonctionelle”, the “différence” of a relation and
“relations de Ferrers”. In the case of finite relations, he provided an informal mental
picture of a “relation de Ferrers” in the form of a staircase-like structure. But his formal
definition of a “relation de Ferrers” bears little or no resemblance to the mental picture
and it is difficult to see how the formal corresponds to the informal. The name “relation
de Ferrers” also gives little clue as to the practical relevance of the notion. Riguet’s def-
initions, particularly of the “différence” of a relation, use (in our view) over-complicated
and outdated formulae involving nested complements that are better formulated using
the factor operators (aka division or residual operators). Riguet also relies heavily on
natural language justifications of important properties as well as asserting several prop-
erties without proof. More recent publications, some of which do not cite Riguet but
which copy his definitions, introduce errors by failing to recognise the restrictions that
Riguet made clear in his account of the properties of the notions.

The writing of this paper initially began as an exercise in applying modern calcu-
lational reasoning to bring Riguet’s work up to date and more accessible to a wider
audience. In view of the extant errors in relatively recent publications and to try to
avoid introducing yet more errors, we decided to include full details of all proofs. In
the process, we decided that some changes in terminology were desirable: we call the
“différence” of a relation the “diagonal” of the relation and we call “relations de Ferrers”
“staircase” relations. We also realised that certain generalisations of Riguet’s work were
desirable, the primary one being from “staircase” relations to “block-ordered relations”:
the property of being a “staircase” relation demands a certain total ordering on “blocks”
(“rectangles totalement ordonnées par inclusion” [Rigb1]), being “block-ordered” does
not require the ordering to be total.

As this work continued, we began to realise that substantial improvements could be
made by introducing the notion of the “core” of a relation, drawing inspiration from
Voerman'’s [Voe99] notion of the (left- and right-) per domains of a relation. The results
were documented by Backhouse in [Bac21].

A significant disadvantage of the general notion is that a “core” of a relation typically
has a type that is different from the type of the relation itself. (The complications this
involves is particularly evident when one’s subject of interest is homogeneous relations
because it forces one to introduce type judgements.) Voermans suggested that the notion
of “core” could be better replaced by the notion of an “index” of the relation, with the
property that an index of relation R is a subset of R, and thus has the same type as R.
Here is a simple example.



Example 1  Fig. 1 depicts a relation (on the left) and two instances of cores of the
relation (in the middle and on the right). All are depicted as bipartite graphs. The
relation R is a relation on blue and red nodes. The middle figure depicts a core as
a relation on squares of blue nodes and squares of red nodes, each square being an
equivalence class of the left per-domain of R (on the left) or of the right per-domain of
R (on the right). The rightmost figure depicts a core as a relation on representatives of
the equivalence classes: the relation depicted by the thick green edges. The rightmost
figure also depicts an index of the relation; the middle does not: although the relations
depicted in the middle and rightmost figures are isomorphic, they have different types.
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Figure 1: A Relation, a Core and an Index.

Further (joint) work led us to fresh insights on relation algebra, in particular on
point-free versus pointwise relation algebra, which we report on in this paper.

The paper is divided into three parts. In the first part, we introduce the notions
of a “core” and an “index” of a relation in the context of point-free relation algebra.
We establish a large collection of properties of these notions which form a basis for
parts II and III of the paper. (Because the notions are new, almost all the properties
are new. An example of a property that some readers may recognise, albeit expressed
differently, is that a difunction has an index that is a bijection.) Part I concludes by the
introduction of a restricted form of the axiom of choice: we postulate that every partial
equivalence relation has an index. This is the same as saying that it is possible to choose
a representative element of every equivalence class of a partial equivalence relation.

Part II examines the consequences of adding our axiom of choice to point-free relation
algebra in order to facilitate pointwise reasoning. We show that so doing has surprising
and remarkable consequences. One such consequence is that we can derive the so-called
“all-or-nothing” rule; this is a rule introduced by Gliick [Glil7] also as a means of
facilitating pointwise reasoning. (See [BDGv22] for examples of how the rule is used in
reasoning about graphs.) The main theorem in part II is that, with the addition of our
axiom of choice, the type A~B of relations is isomorphic to the powerset 24*P (the set
of subsets of the cartesian product of A and B).



Part III applies the results of part II to revise and generalise Riguet’s earlier work. We
show, for example, that any relation is “covered” by a collection of rectangles with very
special properties. (Riguet [Righ1] showed how to construct a ““réunion” of “rectangles”
but only for the case of “rectangles de Ferrers”.)

A novel result in part III is a generalisation of Riguet’s “analogie frappante” between
difunctions and “relations de Ferrers”. We introduce the notion of a “block-ordered rela-
tion” and formulate and prove a theorem which allows one to determine whether or not
a given relation is block-ordered by analysing the relation’s “diagonal” (its ‘différence”
in Riguet’s terminology). We call the theorem the “analogie frappante” in recognition
of Riguet’s pioneering insights. Several other properties of the “diagonal”, which we
believe to be novel, are also presented.



Part 1
Point-free Relation Algebra

2 Axiomatisation

In traditional, pointwise reasoning about relations, it is not the relations themselves that
are the focus of interest. Rather, a relation R of type A~B is defined to be a subset of the
cartesian product AxB and the focus of interest is the boolean membership property
(a,b)eR where a and b are elements of type A and B, respectively. Equality of
relations R and S is defined in terms of membership (typically in terms of “if and
only if”), leading to a lack of concision (and frequently precision). In point-free relation
algebra, the membership relation plays no role, and reasoning is truly about properties
of relations.

In this section, we give a brief summary of the axioms of point-free relation algebra.
For full details of the axioms, see [BDGv22].

2.1 Summary

Point-free relation algebra comprises three layers with interfaces between the layers plus
additional axioms peculiar to relations. (It is useful to separate the layers for use in
other application areas.)

The axiom system is typed. For types A and B, A~B denotes a set; the elements
of the set are called (heterogeneous) relations of type A~B. Elements of type A~A,
for some type A, are called homogeneous relations.

The first layer axiomatises the properties of a partially ordered set. We postulate
that, for each pair of types A and B, A~B forms a complete, universally distributive
lattice. In anticipation of part II, where we add axioms that require A~B to be a
powerset, we use the symbol “C?” for the ordering relation, and “U” and “N” for
the supremum and infimum operators. We assume that this notation is familiar to the
reader, allowing us to skip a more detailed account of its properties. However, we use ||
for the least element of the ordering (rather than the conventional () and TT for the
greatest element. In keeping with the conventional practice of overloading the symbol
“(0”, both these symbols are overloaded. The symbols “ 1L ” and “TT ” are pronounced
“bottom” and “top”, respectively. (Strictly we should write something like A Ll and
A ITg for the bottom and top elements of type A~B. Of course, care needs to be taken
when overloading operators in this way but it is usually the case that elementary type
considerations allow the appropriate type to be deduced.)

It is important to note that there is no axiom stating that a relation is a set, and there



is no corresponding notion of membership. (In, for example, [ABH * 92] and [Voe99], we
used the symbols “C”, “LI” and “IM” and the name “spec calculus” rather than “relation
algebra” in order to avoid misunderstanding.) The lack of a notion of membership
distinguishes point-free relation algebra from pointwise algebra.

The second layer adds a composition operator. If R is a relation of type A~B and S
is a relation of type B~C, the composition of R and S is a relation of type A~C which
we denote by RoS. Composition is associative and, for each type A, there is an identity
relation which we denote by I, . We often overload the notation for the identity relation,
writing just I. Occasionally, for greater clarity, we do supply the type information.

The interface between the first and second layers defines a relation algebra to be
an instance of a regular algebra [Bac06] (also called a standard Kleene algebra, or
S-algebra [Con71]). For this paper, the most important aspect of this interface is the
existence and properties of the factor operators. These are introduced in section 2.2.
Also, 1l 1is a zero of composition: for all R, 1loR= 11 =Roll.

The completeness axiom in the first layer allows the reflexive-transitive closure R* of
each element R of type A~A , for some type A, to be defined. For practical applications,
this is possibly the most important aspect of regular algebra but such applications are
not considered in this paper. For this paper, completeness is only relevant when we
add axioms to the algebra that model pointwise reasoning. We do require, however, the
existence of RUS and RNS, for all pairs of relations R and S of the same type, and the
usual properties of set union and intersection.

The third layer is the introduction of a converse operator. If R is a relation of type
A~B, the converse of R, which we denote by R” (pronounced R “wok”) is a relation of
type B~A. The interface with the first layer is that converse is a poset isomorphism (in
particular, |1~ =11 and TT =TT ), and the interface with the second layer is formed by
the two rules I” =1 and, for all relations R and S of appropriate type, (ReS)” = S”“oR".

Additional axioms characterise properties peculiar to relations. The modularity rule
(aka Dedekind’s rule [Rig48]) is that, for all relations R, S and T,

(2)  ReSNT C Ro(S N R6T) .

The dual property, obtained by exploiting properties of the converse operator, is, for all
relations R, S and T,

(3) SeRNT C (S N ToR")oR .

The modularity rule is necessary to the derivation of some of the properties we state
without proof (for example, the properties of the domain operators given in section 3.1).
Another rule is the cone rule:

(4) (VR = TToRoTT =TI = R#1L)



2.2 Factors

If R is a relation of type A~B and S is a relation of type A~C, the relation R\S of
type B~C is defined by the Galois connection, for all T (of type B~C),

(5 TCR\S = RTCS .

Similarly, if R is a relation of type A~B and S is a relation of type C~B, the relation
R/S of type A~C is defined by the Galois connection, for all T,

(6) TCR/S = ToSCR .

In relation algebra, factors are also known as “residuals”. We prefer the term “factor”
because it emphasises calculational properties whereas “residual” emphasises an opera-
tional understanding (what is left after taking something away). In particular, factors
have the cancellation properties:

(7) TeT\UCU A R/SeS C R .

The factor operators (which we pronounce “under” and “over” respectively) are mutually
associative. That is

8)  R\(S/T) = (R\S)/T .

This means that it is unambiguous to write R\S/T — which we shall do in order to
promote the associativity property by making its use invisible (in the same way that the
use of the associativity of composition is made invisible).

The relations R\R (of type B~B if R has type A~B) and R/R (of type A~A if
R has type A~B) play a central role in what follows. As is easily verified, both are
preorders. That is, both are transitive:

(9) R\Ro.R\R € R\R A R/R°R/R C R/R
and both are reflerive:
(10) T CR\R A TCR/R.

(The notation “I” is overloaded in the above equation. In the left conjunct, it denotes
the identity relation of type B~B and, in the right conjunct, it denotes the identity
relation of type A~A, assuming R has type A~B. We often overload constants in this
way. Note, however, that we do not attempt to combine the two inclusions into one.) In
addition, for all R,

(11) ReR\R = R = R/RoR ,
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(12) R/R\R) = R = (R/R\R
(13)  (R\R)/(R\R) = R\R = (R\R)\(R\R) and
(14)  (R/R\(R/R) = R/R = (R/R)/(R/R) .

In fact, we don’t use (12) directly; its relevance is as the initial step in proving the
leftmost equations of (13) and (14). We choose not to exploit the associativity of the
over and under operators in (13) and (14) —by writing, for example, (R\R)/(R\R) as
R\R/(R\R) — in order to emphasise their r6le as properties of the preorders R\R and
R/R.

Properties (11) thru (14) are also called cancellation rules.

3 Domains

In point-free relation algebra, “coreflexives” of a given type represent sets of elements of
that type. A coreflerive of type A is a relation p such that p CI.. Frequently used
properties are that, for all coreflexives p,

p=p =pp
and, for all coreflexives p and q,
peq = pMNq = qop .
(The proof of these properties relies on the modularity rule.) In the literature, coreflex-

ives have several different names, usually depending on the application area in question.
Examples are “monotype”, “pid” (short for “partial identity”) and “test”.

3.1 The Domain Operators

The “domain operators” (see eg. [BH93]) play a dominant and unavoidable role. We
exploit their properties frequently in calculations, so much so that we assume great
familiarity with them.

Definition 15 (Domain Operators)  Given relation R of type A~B, the left do-
main R< of R is a relation of type A defined by the equation

R< = Iax N RoR"
and the right domain R> of Ris a relation of type B is defined by the equation
R- = Iz N R7eR .
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The name “domain operator” is chosen because of the fundamental properties: for
all R and all coreflexives p,

(16) R=Rep = R>=R-op

and

(17) R=peR = R<=poR< .

A simple, often used consequence of (16) and (17) is the property:
(18) R<oR = R = RoR- .

In words, R> is the least coreflexive p such that restricting the “domain” of R on the
right has no effect on R. It is in this sense that R< and R> represent the set of points
on the left and on the right on which the relation R is “defined”, i.e. its left and right
“domains”.

For readers unfamiliar with the domain operators, we summarise their properties
below. We restrict our attention here to the right-domain operator. The reader is
requested to dualise the results to the left-domain operator.

The intended interpretation of R> (read R “right”) for relation R is {x|(Jy::y[R]x)}.
Two ways we can reformulate this requirement without recourse to points are formulated
in the following theorem.

Theorem 19 (Right Domain)  For all relations R and coreflexives p,
(20) R-Cp = RCTTop
and

(21) R-Cp = R=Rep .
O

The characterisations (20) and (21) predict a number of useful calculational properties
of the right domain operator. Some are immediate, some involve a little bit of work for
their verification. Immediate from (20) —a Galois connection— is that the right domain
operator is universally U-junctive, and ( TTo) is universally distributive over infima of
coreflexives. In particular,

TTe(pNg) = (TTep) N (TTeq)
(RUS)> =R-US>

and
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The last of these can in fact be strengthened to
(22) R-=1l = R=1L .

The property is obtained by instantiating p to LL in (16).

From (20) we may also deduce a number of cancellation properties. But, in combina-
tion with the modularity rule, the cancellation properties can be strengthened. We leave
their proofs together with a couple of other interesting applications of Galois connections
as exercises.

Theorem 23  For all relations R, S and T
(a) TTeR>=TToR ,

(b) RN SeTTeT = S<oRoT> |

(c) (RY)>=R-,

(d) (RNSeT)>=(S"RNT)> ,

(e) (RoTTeS)>=S> & R#LL

(f) (ReS)> = (R-0S)-

(8) (ReS)< = (RoS<)<
O

3.2 Pers and Per Domains

Given relations R of type A~B and S of type A~C, the symmetric right-division is
the relation R\\S of type B~C defined in terms of right factors as

(24) R\S = R\SN(S\R)” .

Dually, given relations R of type B~A and S of type C~A , the symmetric left-division
is the relation R/S of type B~C defined in terms of left factors as

(25) R/S = R/SnN (S/R)” .

The relation R\R is an equivalence relation’. Voermans [Voe99| calls it the “greatest
right domain” of R. Riguet [Rig48] calls R\R the “noyau” of R (but defines it using
nested complements). Others (see [Oli18] for references) call it the “kernel” of R.

1This is a well-known fact: the relation R\R is the symmetric closure of the preorder R\R. The easy
proof is left to the reader.
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As remarked elsewhere [Olil8], the symmetric left-diviston inherits a number of
(left) cancellation properties from the properties of factorisation in terms of which it
is defined. For our purposes, the only cancellation property we use is the following
(inherited from the property RoR\R = R). For all R,

(26) RoR\R =R .

In this section the focus is on the left and right “per-domains” introduced by Voermans
[Voe99].

Definition 27 (Right and Left Per Domains)  The right per-domain of relation
R, denoted R-, is defined by the equation

(28) R~ = R-oR\R .
Dually, the left per-domain of relation R, denoted R=, is defined by the equation

(29) R-< = R//ROR< .
O

The left and right per-domains are “pers” where “per” is an abbreviation of “partial
equivalence relation”.

Definition 30 (Partial Equivalence Relation (per)) A relation is a partial equiv-
alence relation iff it is symmetric and transitive. That is, R is a partial equivalence
relation iff

R=R" A ReRCR .

Henceforth we abbreviate partial equivalence relation to per.
O

That R~ and R- are indeed pers is a direct consequence of the symmetry and tran-
sitivity of R\R.

The left and right per-domains are called “domains” because, like the coreflexive
domains, we have the properties: for all pers P,

(31) R=ReP = R-=R-oP

and

(32) R=PoR = R<=PoR< .

As with the coreflexive domains, we also have:

(33) R<oR = R = RoR- .
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(The second of these equalities is an immediate consequence of (26) and the properties
of (coreflexive-) domains; the first is symmetric.)

Indeed, R< and R~ are the “least” pers that satisfy the equalities (33). (See [Voe99]
for details of the ordering relation on pers.)

In order to prove additional properties, it is useful to record the left and right domains
of the relation R\RoR>.

Lemma 34 For all R,
(R\RcR>)> = R> = (R>oR\R)< ,
(R\RcR>)< = R> = (R=oR\R)> ,

R\RoR> = R>oR\ReR> = R>cR\R .

O
Lemma 34 has the consequence that R- can be defined equivalently by the equation

(35) R> = R\\ROR>
and, moreover,
(36) (R>)< = R> = (R>)> .

Symmetrical properties hold of R<.
A property that we need later is

Lemma 37  For all relations R,
R>oR\R = R-oR\R .

Proof By anti-symmetry of the subset relation:

R\Ro R~

C { by (24), (35) and monotonicity, R- C R\RoR> }
R\RoR\RoR-

C { by cancellation, R\RoR\R C R\R }
R\Ro R~

C { ICR\R, so by (35) and montonicity, R~CR- }
R\RoR~ .
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]
The following lemma extends [Rig48, Corollaire, p.134] from equivalence relations to
pers.

Lemma 38  For all relations R, the following statements are all equivalent.

(i) R is a per (i.e. R=R? ARRCR) ,

(i) R=R"R ,
(iii) R=R= ,
(iv) R=R-~-

]

For further properties of pers and per-domains, see [Voe99].

3.3 Functionality

In this section, we present a number of lesser-known properties of “functional” relations.
A relation R of type A~B is said to be left-functional iff RoR” = R<. Equivalently,
R is left-functional iff RoR” C I,. It is said to be right-functional iff R“oR = R>
(equivalently, R“oR C I ). A relation R is said to be a bijection iff it is both left- and
right-functional.

Rather than left- and right-functional, the more common terminology is “functional”
and “injective” but publications differ on which of left- or right-functional is “functional”
or “injective”. We choose to abbreviate “left-functional” to functional and to use the
term injective instead of right-functional. Typically, we use f and g to denote func-
tional relations, and Greek letters to denote bijections (although the latter is not always
the case). Other authors make the opposite choice.

The properties we present here stem from the observation that functionality can be
defined via a Galois connection. Specifically, the relation f is (left-)functional iff, for all
relations R and S (of appropriate type),

(39) fRCS = f-oRC foS .

It is a simple exercise to show that (39) is equivalent to the property fof” C I. (Although
(39) doesn’t immediately fit the standard definition of a Galois connection, it can be
turned into standard form by restricting the range of the dummy R to relations that
satisfy f>oR = R, i.e. relations R such that R<Cf>.)
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The converse-dual of (39) is also used frequently: g is functional iff, for all R and
S,

(40) Reg" €S = Reg- C Seg .

Comparing the Galois connections defining the over and under operators with the Ga-
lois connection defining functionality (see (39)) suggests a formal relationship between
“division” by a functional relation and composition with the relation’s converse. The
precise form of this relationship is given by the following lemma.

Lemma 41  For all R and all functional relations f,

f-of\R = f’oR .

Proof We use the anti-symmetry of the subset relation. First,

fYoR C f-of\R
= { domains }
f-of"oR C f-of\R
& { monotonicity }
fYoR C f\R
= { factors }
fof'oR C R
& { definition and monotonicity }

f is functional
Second,
f-of\R C f’oR
& { f> C f”of; monotonicity and transitivity }
fPofof\R C f’oR

& { monotonicity }
fof\R C R
= { cancellation }

true .
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]

Two lemmas that will be needed later now follow. Lemma 42 allows the converse of a
functional relation (i.e. an injective relation) to be cancelled, whilst lemma 43 expresses
a distributivity property.

Lemma 42 For all R and all functional relations f,
f<of'\(f’oR) = f<oR .
Proof

f<of7\ (f"oR)
= { assumption: f is functional }

fofof \(foR)

C { cancellation }
fof”oR
= { assumption: f is functional }
f<oR .
Also,

f<oR C f<o f'\ (f°oR)
& { monotonicity }
R C '\ (f°oR)
= { factors }

true .

The lemma follows by anti-symmetry of the subset relation.
O

Lemma 43 For all R and S and all functional relations f ,
R\(Sef)of> = R\Sof .

Proof
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R\(Sof)of> C R\Sof
& { f> C f”of, monotonicity }
R\(Sef)of” C R\S

= { factors }

RoR\(Sef)of” C S

& { cancellation }
Sofof” C S
= { assumption: f is functional }
true .
Also,

R\Sof C R\(Sof)of>

& { monotonicity, f = fof> }
R\Seof C R\(Sof)

= { factors and cancellation }

true .

The lemma follows by anti-symmetry of the subset relation.
O

The following lemma is crucial to fully understanding Riguet’s “analogie frappante”;
see lemma 221. (The lemma is complicated by the fact that it has five free variables.
Simpler, possibly better known, instances can be obtained by instantiating one or more
of f, g, U and W to the identity relation.)

Lemma 44 Suppose f and g are functional. Then, for all U, V and W,
o (g W\V/(Wot<)ag
= f>o(guoUof)\(gUoVof)/(guoWof)og> .

Proof Guided by the assumed functionality of f and g, we use the rule of indirect
equality. Specifically, we have, for all R, U, V and W,

f>oRog> - fuo(g<OU)\V/(Wof<)og
= { assumption: f and g are functional, (39) and (40) }
foRog” C (g=oU)\V/(Wofx)
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= { factors }
g<oUofoRog oWof< C V
= { assumption: f and g are functional
ie. fof'=1f< A gog’=g- |}
geg eUofoRog oWofof’ C V
= { assumption: f and g are functional, (39) and (40) }
g-og oUocfoRog oWofof> C g oVof
= { domains (four times) }
g oUofof-0Rog=0g"oWof C g oVof
= { factors }
f-oRog> C (g oUef)\(g o Vor)/(g o W)
= { f> and g- are coreflexives }

f>oRog> - f>o(gUOUOf)\<gUoVof)/<gUoWof)og>

The lemma follows by instantiating R to the left and right sides of the claimed equation,
simplifying using domain calculus, and then applying the reflexivity and anti-symmetry
of the subset relation.

O

The final lemma in this section anticipates the discussion of per domains in section
5.

Lemma 45  Suppose relations R, f and g are such that
fof’ = f< = R< A g< = gog .

Then, for all S,

(46) g-o(f'oReg)\(f'oS) = g oR\S .

It follows that

(47)  g-e(f eRog)\(f eReg)og- = g oR\Reg .

Proof The proof of (46) is as follows.

g>o(f"oRog)\(f = 5)

= { factors: }

9> g\((f e R)\(f"= 5))
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= { lemma 41 with f,R:=g,(f"oR)\(f"=S) }
g o(f oR)\(f"=S)
= { factors }
g oR\(f"\ (f"=5))
= { [R\S=R\(R<0S) ] with R,S := R, 7\ (f"0S)
assumption: f<=R< }
g~ oR\(f<o f7\ (f"0S))
= { lemma 42 with f,R:=f,S }
gU OR\(f<OS)
= { assumption: f<=R<, [R\S=R\(R<oS)] }
g oR\S .
Now we prove (47).
g>o(onRog)\(onRog)og>
= { (46) with S:=Reg }
g~ eR\(Reg)eg-
= { lemma 43 }
g oR\Rog .
O

3.4 Difunctions
Formally, relation R is difunctional equivales
(48) RoReR C R .

As for pers, there are several equivalent definitions of “difunctional”. We begin with the
point-free definitions:

Theorem 49  For all R, the following statements are all equivalent.
(i) R is difunctional (i.e. ReR"oR C R) ,
(i) R = RoR"0R

(iii) R-oR\R = R“oR ,
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(iv) R- = RYeR ,

(v) R/RoR- = RoR” |
(vi) R< = RoR" |
(vii) R = RN (R\R/R)"

Proof For the equivalence of (i) and (ii), we first observe that, for all R,

R C RoR”0R
since
R C RoR“oR
& { R> C R”oR and monotonicity }
R = RoR>
= { domains }
true .

That (i) and (ii) are equivalent thus follows from the anti-symmetry of the subset relation.
Next we establish the equivalence of (i) and (iii). Again, we begin by observing a
property that holds for all R, namely

(50)  R"°eR D R-oR\R .
The proof is as follows:
R”"oR D R=oR\R
= { cancellation }
R”"oRoR\R D R-oR\R
& { monotonicity }
R“oR D R>
& { definition 15 }

true .

We now prove that the opposite inclusion follows from (i).



22

RYoR C R-oR\R

& { R>0oR” = R” and monotonicity }
RV6R C R\R

& { factors }
RoR"oR C R .

Thus, by anti-symmetry, (iii) follows from (i). But

R-oR\R = R“oR
= { Leibniz }
RoR>oR\R = RoR”0oR
= { domains }
RoR\R = RoR"oR
= { cancellation }
R = RoR”0R .
That is, (iii) implies (ii) which, as we have already shown, is equivalent to (i). We
conclude, by mutual implication, that (iii) and (i) are equivalent.

A similar proof establishes the equivalence of (i) and (iv). Once again we begin by
observing a property that holds for all R, namely

(51) R7oR D R- .

We have:

R”oR

> { (50) }
R>oR\R

> [ R\R=RRNRWR)" }
R>oR\R

= { definition: (28) }
R- .

We now prove that the opposite inclusion follows from (i).

R“sR C R-



= { definition: (28) }
R“sR C R-oR\R

& { R>0oR” = R” and monotonicity }
R“sR C R\R

= { R”oR is symmetric, R\R = R\RN(R\R)” }
R“sR C R\R

& { factors }
RoR"oR C R .

Thus, by anti-symmetry, (iv) follows from (i). But

R~ = R”oR

= { Leibniz }
RoR- = RoR”0R

= { per domains }
R = RoR"0R .

The equivalence of (i), (v) and (vi) is symmetrical.
The proof that (v) is equivalent to (48) is straightforward:

R = RN(R\R/R)"

= { definition of infimum }
R C (R\R/R)"

= { converse and factors }

RoR”oR C R .
]

The equivalence of 49(i) and 49(ii) is well-known and due to Riguet [Rig48|; the
equivalence of 49(i), (iv) and (vi) is due to Voermans [Voe99]. The equivalence of 49(i),
(iii) and (v) is formally stronger: a consequence is that, if R is difunctional,

(52) R- = R=cR\R A R< = R/RoR- .

(Cf. (28).) These formulae are exploited in section 12.4. Definition (48) is the most
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useful when it is required to establish that a particular relation is difunctional, whereas

properties 49(ii)-(vii) are more useful when it is required to exploit the fact that a

particular relation is difunctional.
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The combination of theorem 49 (in particular 49(ii) and 49(iv) with lemma 38 allows
one to prove that a per is a symmetric difunction. (We leave the easy calculation to
the reader.) This property is sometimes used to specialise properties of difunctions to
properties of pers.

3.5 Provisional Orderings

There are various well-known notions of ordering: preorder, partial and linear (aka total)
ordering. For our purposes all of these are too strict. So, in this section, we introduce the
notion of a “provisional ordering”. The adjective “provisional” has been chosen because
the notion “provides” just what we need.

The standard definition of an ordering is an anti-symmetric preorder whereby a pre-
order is required to be reflexive and transitive. It is the reflexivity requirement that is
too strict for our purposes. So, with the intention of weakening the standard definition
of a preorder to requiring reflexivity of a relation over some superset of its left and right
domains, we propose the following definition.

Definition 53  Suppose T is a homogeneous relation. Then T is said to be a provi-
stonal preorder if

T<CT AN T-=CT A TTCT .

Fig. 2 depicts a provisional preorder on a set of eight elements as a directed graph.
The blue squares should be ignored for the moment. (See the discussion following lemma
59.) Note that the relation depicted is not a preorder because it is not reflexive: the
top-right node depicts an element that is not in the left or right domain of the relation.

An immediate consequence of the definition is that the left and right domains of a
provisional preorder must be equal:

Lemma 54 If T is a provisional preorder then
T<=T> .
Proof Suppose T is a provisional preorder. Then
T-C T-<
= { domains }
(T-)< C T-

& { monotonicity }
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Figure 2: A Provisional Preorder

T-CT
= { assumption: T-CT }
true .
That is, T> C T<. Dually, T< C T>. Thus, by anti-symmetry, T< = T>.

O
A trivial property that is nevertheless used frequently:

Lemma 55 T is a provisional preorder equivales T~ is a provisional preorder.

Proof Immediate from the definition and properties of converse.
O

A preorder is a provisional preorder with left (equally right) domain equal to the
identity relation. In other words, a preorder is a total provisional preorder. It is easy
to show that, for any relation R, the relations R\R and R/R are preorders. It is also
easy to show that R is a preorder if and only if R=R\R (or equivalently if and only if
R=R/R). These properties generalise to provisional preorders.

Lemma 56  For all relations R, the relations R>oR\R and R/RoR< are provisional
preorders.

Proof The proof is very straightforward. First,

(R-=R\R)-
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= { [CR\R, so (R\R)<=1I; domains }
(R>)<

= { R> is a coreflexive }
R-

C { I CR\R, monotonicity }
R-oR\R .

Second,

(R-<R\R)-

= { domains }
(ReR\R)-

= { cancellation }

R>

N

{ I CR\R, monotonicity }
R-oR\R .

Third,

R-oR\RoR=0R\R

N

{ R>C 1, monotonicity }
R-0oR\RoR\R
{ R\RoR\R C R\R

N

(easy use of definition of factors and cancellation) }

R-oR\R .

Comparing the above properties with definition 53, we have shown that R>oR\R is a
provisional preorder. The dual property, R/RoR< is a provisional preorder, is obtained
by the instantiation R:=R" and application of distributivity properties of converse.

O

Lemma 57 T is a provisional preorder equivales

T = T<ocT\T = T/TeT> = T<oT\T/ToT> .
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Proof Follows-from is a straightforward consequence of the fact that T\T is a preorder
for arbitrary T.

Implication is also straightforward. Assume that T is a provisional preorder. The
proof of the leftmost equality is by mutual inclusion. First

TCT<oT\T

& { T=T<oT and monotonicity }
TCT\T

= { factors }
ToTCT

= { assumption: T is transitive }
true .

For the opposite inclusion we have

T<ocT\TCT

& { assumption: T<C T, monotonicity }
T-T\TCT

= { cancellation }
true .

Thus T = T<oT\T by anti-symmetry. That T = T/T-T> follows from lemma 55 and the
properties of converse. Finally,

T

= { T=ToT> and T =T<oT\T (proved above) }
T<oT\ToT-

= { T =T/ToT- (proved above) }
T<oT\(T/ToT>)oT>

= {  [R\(SeR-)oR>=R\SoR-] with R,;S:=T,T }
T<oT\T/ToT- .

O
Lemma 57 is sometimes used in a form where the domains are replaced by per do-
mains.



Lemma 58 Suppose T is a provisional preorder. Then
T = T<oT\T = T/ToT- = T=<oT\T/ToT- .

Proof Immediate from lemma 57 and the per domain equations, for all R,
R = R<oR = R<oR<oR = RoR- = RoR-oR- .

For example,

T

= { [ R = R<eR | with R:=T }
T<oT

= { lemma 57 }
T<oT<oT\T

= { [ R<ocR< = R< ] with R:=T }
T<oT\T .

|

Lemma 59  Suppose T is a provisional preorder. Then
T~ = TNnT = T- .
Hence TNT" is a per.
Proof We exploit lemma 57:
T-
= { definition: (28) and (24), lemma 34 }
T>0o (T\TN (T\T)") o T~
= { distributivity (T~ is coreflexive) }
T-oT\TeT> N (T)<oT7 /T o (T”)<
= { lemma 54
(twice, once with T:=T" using lemma 55) }
T<oT\ToT> N (TH)<oT7/T7 o (T)>
= { lemma 57 }
ToT> N (T)<oT"
= { domains }

TNT .

28
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The dual property T< = TNT" is immediate from the properties of converse.
O
Referring back to fig. 2, the blue squares depict the equivalence classes of the sym-
metric closure of a provisional preorder. As remarked earlier, the depicted relation is not
a preorder; correspondingly, the blue squares depict a truly partial equivalence relation.
We assume the reader is familiar with the notions of an ordering and a linear (or total)
ordering. We now extend these notions to provisional orderings. (The at-most relation
on the integers is both anti-symmetric and linear. The at-most relation restricted to some
arbitrary subset of the integers is an example of a linear provisional ordering according
to the definition below.)

Definition 60 Suppose T is a homogeneous relation of type A~A, for some A.
Then T is said to be provisionally anti-symmetric if

TNT C 1A .

Also, T is said to be a provisional ordering if T is provisionally anti-symmetric and T
is a provisional preorder. Finally, T is said to be a linear provisional ordering if T is
a provisional ordering and

TUT? = (TNT)eTTo(TNT)

Definition 60 weakens the equality in the standard notion of anti-symmetry to an
inclusion. The standard definition of a partial ordering —an anti-symmetric preorder—
is weakened accordingly (as mentioned earlier, in order to “provide” for our needs).

The following lemma anticipates the use of provisional preorders/orderings in exam-
ples presented later.

Lemma 61  Suppose T is a provisional ordering. Then
T- = TNnT® = T- .
Proof For the first equality, we have
TNT  C T<
= { I is unit of composition, definition of T< }
(TAT )l C INToTT
= { assumption: TNT” C I ; infimum and monotonicity }

true .

Also,
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T<-CTNT”
= { infimum }
T<-CT A T<CT”
= { T is a provisional preorder, so T<CT; (T<)"=T< }

true .

The second equality is obtained by instantiating T to T~ .
O

4 Squares and Rectangles

We now introduce the notions of a “rectangle” and a “square”; rectangles are typi-
cally heterogeneous whilst squares are, by definition, homogeneous relations. Squares
are rectangles; properties of squares are typically obtained by specialising properties of
rectangles. (For example, lemma 66 shows that the intersection of two rectangles is a
rectangle by giving an explicit construction; the same construction applies to squares
from which it is easily shown that the intersection of two squares is a square.)

Definition 62 (Rectangle and Square) A relation R is a rectangle iff R=RoTT<R.
A relation R is a square iff R is a symmetric rectangle.
O

More generally, we have:

Lemma 63  For all relations R and S, RoTTeS is a rectangle. It follows that RoToS
is a rectangle if T is a rectangle.

Proof Because the proof is based on the cone rule, a case analysis is necessary. In the
case that either R or S is the empty relation, the lemma clearly holds (because RoTT oS
is the empty relation, and the empty relation is a rectangle). Suppose now that both R
and S are non-empty. Then

RoTToSoTToReTT oS
= { cone rule: (4) (applied twice), assumption: R# 1l and S# 1L }
RoTToS .

If T is a rectangle, RoToS =RoToTToToS; thus RoToS is a rectangle.
O

Lemma 64 A rectangle is a difunction and a square is a per.
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Proof Suppose R is a rectangle. Then

RoR”0R

= { definition 62 (applied to outer terms) }
RoTToRoR"0oRoTToR

C { TT is greatest relation, monotonicity }
RoTToR

= { definition 62 }
R .

That is, RoR”oR C R. Thus, by definition, R is a difunction.
A similar calculation shows that a square is a per.
O

4.1 Inclusion and Intersection

Using colloquial terminology, the left and right domain of a rectangle are the “sides” of
the rectangle. In general, a rectangle is defined by its two sides. More precisely:

Lemma 65 Suppose R and S are rectangles of the same type. Then
RCS = R<CS< A R-CS> .
It follows that
R=S = R<=S< A R-=8S5>.
Proof By mutual implication:
RCS
= { monotonicity }
R<CS< N R-CS>
= { monotonicity }
R<oTToR> C S<oTT oS-
= { domains }
RoTToR C SoTToS
= { assumption: R and S are rectangles, definition 62 }

RCS .
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The second property follows straightforwardly from the anti-symmetry of the subset
relation.
O

Lemma 66 The intersection of two rectangles is a rectangle. Specifically, for all
rectangles R and S,

RNS = (R<NS<)oTTo(R>NS>) .

Proof We have, for all R, S, T and U,

RoTTeS M ToTToU

= { property of conditionals }
RoTT M TTeS N ToTT N TTeU

= { property of conditionals }
(RNT)eTT N TTo(SNU)

= { property of conditionals }
(RNT)eTTo(SNU) .

(The properties of conditionals used above are not shown in this paper but easily proven.
Hint: use the modularity rule (2).) Also, for all R and S, ReTTeS = R<oTT oS>. So

RNS
= { assumption: R and S are rectangles }
RoTToR N SoTT oS
= { [ RoTToS = R<oTT oS> | with R;S:=R,R and R,S:=S,S }

R<oTToR> N S<oTT oS>
= { above with R,S,T,U := R<,R>,S<,S> }
(R<NS<)oTTeo(R>NS>) .

5 Isomorphic Relations

Definition 67 Suppose R and S are two relations (not necessarily of the same type).
Then we say that R and S are isomorphic and write R=S iff
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(3,0
Pop” =R A §ehp =5 A pop’=R- A P o =5-
R=¢oSerp”

The relation between R and S in definition 67 can be strengthened to the conjunction
(68) R=¢doSop” A ¢ oRop =S .

Alternatively, the leftmost conjunct can be replaced by the rightmost conjunct. This is
a consequence of the following lemma.

Lemma 69 For all ¢, P, R and S,

(R=dpoSop” = ¢ oRop = S)
& §od =R A ¢Teh =5 A o)’ =R- A Yo =5- .

Proof The proof is by mutual implication.

R=¢oSop”

= { Leibniz }
¢ oRop = P opoSoh o

= { assume: ¢~ odp = S< and P o = S>, domains }
¢“oRop = S

= { Leibniz }
pod oRopop” = oSy’

= { ssume: ¢pod” = R< and Pop” = R>, domains }
R=doSo” .

O

We often choose one or other of the conjuncts in (68), whichever being most conve-
nient at the time.

Y Y

Lemma 70  The relation = is reflexive, transitive and symmetric. That is, & is an
equivalence relation.
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Proof This is very straightforward. The details are left to the reader.
O

The task of proving that two relations are isomorphic involves constructing ¢ and
1V that satisfy the conditions of the existential quantification in definition 67; we call the
constructed values witnesses to the isomorphism.

Note that the requirement on ¢ in definition 67 is that it is both functional and
injective; thus it is required to “witness” a (1-1) correspondence between the points in
the left domain of R and the points in the left domain of S. Similarly, the requirement on
P is that it “witnesses” a (1-1) correspondence between the points in the right domain
of R and the points in the right domain of S. Formally, R< and S< are isomorphic as
“witnessed” by ¢ and R> and S- are isomorphic as “witnessed” by 1 :

Lemma 71 Suppose R and S are relations such that R=S. Then R<=S< and
R>2S>. Specifically, if ¢ and  witness the isomorphism R=S,

R<=dhoS<op” A R>=1PoS-01p” .
Proof Suppose ¢ and 1 are such that
dod” =R« A ¢ op =S« A Yo’ =R> A P op =S> .

Then

R<

— { R< is a coreflexive }
R<oR<

— { assumption }
Podp oo’

= { assumption }
$hoS<od” .

That is R<= ¢poS<o¢”. Similarly, R> =1PoS>0o”. But also (because the domain
operators are closure operators),

(1)0(])U = (R<)< /\ d)uod) = (S<)< /\ ‘Ll)oll)u = <R>)> /\ 'LI)UO'LI) = (S>)> .

Applying definition 67 with R,S,b, := R<,S<,d,$ and R,S,p,p := R>,S>,1,, the
lemma is proved.
O

The property of the left and right domains stated in lemma 71 is also valid for the
left and right per domains:
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Lemma 72 Suppose R and S are relations such that R=S. Then R<=S< and
R-22S~. Specifically, if ¢ and 1 witness the isomorphism R=S,

R<=poS<odp” /A R-=1PoS-o1p” .
Proof Suppose ¢ and 1 witness the isomorphism R=S. Then
R>oR\RoR>
= { assumption: Ppop” =R> }
Yo oR\Reporp”
= { (47) with f,g:=b, b }
Potp-o (¢ oRe)\ (¢ o Roth) orp-o1p”
= { domains, assumption S = ¢~ oRop }
PoS\Sop” .
So
R~
= { definition: (28) }
R>oR\RoR> N (R>oR\RoR>)"

— { above }
PoS\Sau’ 1 (PeS\Sep)”
= {  assumption: {>=S>, domains }

‘Ll_)OS>OS\SOS>O'LI)U M (Ll)oS>oS\SoS>o‘LI)U)U
= { distributivity (1 is a bijection) }
11) o (S> ) S\S oS> N <S> o S\S o S>)U) ol_l)U
= { definition }
PoS-oh” .
We have thus calculated that the the pair (\,\) is a candidate witness of the iso-
morphism R-=S-. It remains to check the domain requirements in definition 67.
By assumption, o~ = R> and P~ o =S>. Moreover, for arbitrary relation R,
(R-)> = (R-)< = R>; 50 Pop” = (R-)> and P~ o = (S-)>. Applying definition 67 with
R,S,d, b := R~,S-,1P, , we have proved that R-=S-.
The proof that R<=S< is symmetrical.



36

A quite different proof of lemma 72 is as follows. (It is always reasssuring to have
different proofs.)
Alternative proof

***x* Hd. Ik ben niet overtuigd dat dit bewijs beter is want er zitten twee konijntjes
in: eerst (\,\y) als witness kiezen en tweede de transitivity stap (zie beneden). Het
nadeel van mijn bewijs is dat we eigenschappen zoals (47) moeten opnemen in het stuk.
Voorlopig laat ik allebei blijven staan. ****

Suppose ¢ and 1 witness the isomorphism R=S. We show that the pair (1, ) wit-
nesses the isomorphism R-2=S-. As above, {op” = R>, P o =S>, Poh” = (R-)>
and P~ o = (S-)>. So it remains to show that R- = PpoS-01”. Now

R- = PoS-orp”
& { transitivity }
R- = R>01b05>oll)u = 1|)oS>oll)U .

The calculation thus splits into two steps: the proof of the leftmost equality and the
proof of the rightmost equality. The leftmost equality proceeds as follows.

R- = R>OIPOS>OL|)U
= { (31), WoS-o” is a per (see below) }
R = RopoS-oh” .

Continuing with the right hand side:

RotoSs o
= [ R=¢eSey” )
GoSop o oS
= { P~ o = S>, domains: (18) and (33) }
$oSorp”
= { see lemma 70 }
R .

Combining the two calculations, we have established that
R~ = R>olj)oS>olpU .

Now, for the rightmost equality, we have:
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R-oPoS-op” = PoS-orh”

= { (R-)< = R>, domains }
R-oR-opoSroh” = oS-op”

— o R=ped )
Yo oR-oPoS-oh” = PoS-oh”

& { Leibniz }
P oR-ohoS- = S-

= { converse (noting that R- and S- are symmetric) }
S-oP“oR-0p = S~

= { (31), P oR-o1 is a per (see below) }
Sop oR-o0p = S

= { as above, with R,S; := S, R, " }
true .

Note that the usage of (31) relies on the fact that both {oS-oy” and P~ oR-o1 are
pers. The straightforward proof is omitted.
O

Lemma 73 A relation R is isomorphic to a coreflexive iff R is a bijection.

Proof The proof is by mutual implication. Suppose first that R is a bijection. That
is,

RoR"=R< A R7eR=R- .

We prove that R is isomorphic to R<. (Symmetrically, R is isomorphic to R>.) For the
witnesses we take R< and R. Instantiating definition 67, we have to verify that

R<O(R<)U:R< A (R<)UOR<:R< i\ RORU:(R<)> A R°R =R->
and
R<:R<ORORU .

The verification is a straightforward application of properties of the left domain operator.
Now suppose that coreflexive p is isomorphic to R. Suppose the witnesses are ¢
and 1V . That is,

(74)  ¢od" =p A ¢ chp=R- A P o =R-
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and
(78)  p=doRep” .
Then
R-
= { ¢“odp = R< =R<oR= }
P ododod
=  { ¢ =p=pop’ }
b epepod
= { (75 }
d o oRo o (poRoP”) o
= { converse |
P odoRop oPpoR od” o
= { (4 }
R<oRoR>0R"6oR<
= { domains }
RoR” .

We conclude that R< = RoR”. Symmetrically, R> = R“oR. That is, R is a bijection.
O

Theorem 76  Suppose P is a per. Then,
P<=P & P<=P .
In particular, for all R,
R<=R< & R<=R=< .
Symmetrically, for all R,

R>:R> @ R>gR>.

Proof This is an instance of lemma 73. Specifically, assuming that P< = P, we may
apply the instantiation p,R := P<,P in lemma 73 to deduce that P is a bijection. That
is, PoP” = P<. But P is a per (i.e. P =PoP"”). So we conclude that

P=P- .
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That, for all R, R<=R< if R< = R< now follows by making the instantiation P:=R< and
using the fact that (R<)<=R<. The symmetric property of the right domain operators
follows by making the instantiation P:=R- and using the fact that (R-)<=R-.

O

6 Indexes and Core Relations

This section introduces the notions of “index” and “core” of a relation. An “index” is a
special case of a “core” of a relation but, in general, it is more useful. The properties of
both notions are explored in depth.

6.1 Indexes

Recall fig. 1. We said that the middle and rightmost figures depict “core relations”. The
property that is common to both is captured by the following definition.

Definition 77 (Core Relation) A relation R is a core relation iff R<=R~< and
R>=R-.
O

The rightmost figure of fig. 1 is what we call an “index” of the relation depicted by
the leftmost figure. The definition of an “index” of a relation is as follows.

Definition 78 (Index) An indez of arelation R is a relation | that has the following
properties:

(a) JCR ,
(b) R<cJoR- =R,
(c) J<oR<oJ< = J=
(d) J>oR-oJ> = J> .

|

Note particularly requirement 78(a). A consequence of this requirement is that an
index of a relation has the same type as the relation. This means that the relation
depicted by the middle figure of fig. 1 is not an index of the relation depicted by the
leftmost figure because the relations have different types.

An obvious property is that a core relation is an index of itself:

Theorem 79  Suppose R is a core relation. Then R is an index of R.



40

Proof Straightforward application of definitions 77 and 78 together with the properties
of (coreflexive and per) domains.
O

In general, the existence of an index of an arbitrary relation is mot derivable in
systems that axiomatise point-free relation algebra. In section 7.2 we add a limited form
of the axiom of choice that guarantees the existence of indexes of arbitrary pers; we
also show that this then guarantees the existence of indexes for arbitrary relations. For
the moment, we establish a number of properties of indexes assuming they exist. For
example, we show that all indexes of a given relation are isomorphic: see theorem 89.

Lemma 80 If | is an index of the relation R then
J<CR< A J-CR- .

It follows that
Je=J< A Jo=T .

That is, an index is a core relation.

Proof We first prove that J< C R<.

R<
- { definition }
R/R o R=
2 { 78(a) and monotonicity }
R/R o IE
D) { see below }
J< .

The last step in the above calculation proceeds as follows.
J< C RJReJ-
& [ (9-=J (0 J< = J<oJ<) and Jeo]< = -
monotonicity }
c R/R
= { definition of R/R '}
C R/RN(R/R)”



= { =09 1
J< € R/R

= { shunting }
J<eR C R .

We continue with the lefthand side of the above inclusion.

J<oR
= { 78(0b) }
J<oR=<o]oR-
= { (J<)>=]J< and domains }
J<oJ<oR=<o]<o]oR-
= {78 }
J<oJ<oJoR~
= { (corefexive and per) domains }
JoR-
c {78 }
RoR>-
= { per domains }
R .

We conclude that J< C R<. The equation J<=]< uses anti-symmetry.

J=<

V)

{ per domains }
J<
= {78 }
J<oR=<o]<

V)

{ J< C R« (see above), composition of coreflexives is idempotent
J- .

The other two properties are symmetrical.
O

An immediate corollary of lemma 80 is the following theorem.

}
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Theorem 81 If ] is an index (of some relation) then | is an index of J.

Proof Suppose | is an index of R. Then we have to prove the properties 78(a), (b),
(c) and (d) with R:=]. These are the properties:

() JCT

(F) J=eJe)- =17
(8) J-eJ=e)- = J- ,
(h) J-eJe]- = J- .

Properties (e) and (f) are true of all relations J. Properties (g) and (h) follow from
lemma 80 and the fact that composition of coreflexives is idempotent.
O

The indexes of a relation are uniquely defined by their left and right domains. See
corollary 83, which is an immediate consequence of the following lemma.

Lemma 82  Suppose | is an index of the relation R. Then

] = J<oRoJ> .
Proof
J
= { domains }
]<o]o]>
= { 78(c) and (d) }
]<oR-<o]<oJo]>oR>oJ>
= { domains }
]<oR—<o]oR>oJ>
- {  78(0b) }
]<oRo]> .

|

Corollary 83  Suppose ] and K are both indexes of the relation R. Then

J=K = J-=K- A J-=K- .
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Proof Implication is an immediate consequence of Leibniz’s rule. For the “if” part, we
assume that J<=K< and J>=K>. Then

J

— { J is an index of R, lemma 82 }
]<oRo]>

= { assumption: J<=K< A J>=K-> }
K<oRoK>

= { K is an index of R, lemma 82 with J:=K }

O
The following lemma becomes relevant when we study indexes of difunctions. (See
section 7.1.)

Lemma 84  Suppose | is an index of R. Then

ROJUOR = RORUOR .

Proof
RoJ7oR
= { per domains }
RoR-o]”oR<oR
= { 78(b) and converse }
RoR"6R .
]

We now formulate a couple of lemmas that lead to lemma 87 which, in turn, leads to
theorem 88.

Lemma 85 Suppose | is an index of R. Then R<ocJ<ocR< and R-o]>0R- are pers.
Proof We prove that
R<o]<oR< = R<o]<oR<o(R<o]<oR<)U .

We have:



R<oJ<oR<o(R<oJ<oR<)"
= { R~ is a per, J< is a coreflexive, converse
R<OJ<OR<OJ<0R<
= {78 }
R<oJ<oR< .
O
Lemma 86  Suppose | is an index of R. Then
(R<o]<oR<)< = R< .
Symmetrically,

(R>OJ>OR>)> = R> .

Proof
(R-<o]<oR-<)<
= { domains, (R<)< = R< }
(R-<OJ<OR<)<
= { by 78(a), J<CR<, domains }
(R<e])-
= { by 78(a), J> CR>, domains }
(R-<o]oR>)<
= { domains, (R-)< = R> }
(R-<OJOR>)<
— {780 }
R< .
]

Lemma 87  Suppose | is an index of R. Then
(a) R<OJ<OR< = R< s
(b) R>o]>oR> = R~ .

Proof

}
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R~
= { R~ is a per }
R<oR<oR<

{ R<DR< }
R<oR<oR<

V)

V)

{ J is an index of R; definition 78(a) and monotonicity }
R<o]<oR<
= { R~ is a per }
R<oJ<oR=oR<

U

{ lemma 85: R<oJ<oR< is a per }
(R<oJ<oR=<)< o R<
= { lemma 86 }
R< o R<
= { (R)-=R )
R~ .

By anti-symmetry of the subset relation we have proved (a). Property (b) is symmetrical.
O

Theorem 88  Suppose | is an index of R. Then J< is an index of R< and J> is an
index of R-.

Proof We prove that J< is an index of R<. That J> is an index of R- is symmetrical.
Instantiating definition 78 with R,J := R<, J<, our task is to prove the four properties:

(a) J<CR<,
(b) (R<)=o(J<)<o(R-)=< = R« ,
(c) (Jo)=e(R=)=e(J=)= = (Jo)= ,
(d) (Jo)=oR<)=o(J<)> = (J<)> .
The proof of property (a) is straightforward:
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J< C R<
& { R< C Rx, transitivity }
J< C R-
& { monotonicity }
JCR
= { J is an index of R, 78(a) }

true .
Property (b) simplifies using the fact that (R<)<=R<, (R-)<=R- and J<=(J<)< to:
(b’) R<oJ<oR~ = R« |

This is the first of the two properties proved in lemma 87. Using the fact that (R<)<=R=<
and J<=(J<)<, property (c) is the same as property (c) of definition 78; similarly, using
the fact that R<=(R<)-, and J<=(]<)>, property (d) is also the same as property (c)
of definition 78.

O

We show later that the converse of theorem 88 is a prescription for constructing an
index of an arbitrary relation. See theorem 107.

Theorem 89 If R and S are isomorphic relations then indexes of R and S are also
isomorphic. In particular, indexes of a relation R are isomorphic.

Proof Suppose ¢ and 1 witness the isomorphism R=S and ] is an index of R and
K is an index of S. We verify that A and p defined by

A:J<0R<O¢OS<OK< /\ p:]>oR>ol_|)oS>oK>

witness the isomorphism J=K.
The task is to verify that

J<:)\o}\u /\ }\UOA:K< /\ popU:]> /\ puop:K>
and
] = AoKop” .

The four domain properties are all essentially the same so we only verify the first con-
junct:
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Ao

= { definition, converse }
J<oR<odoS=<oK<oS=od"”oR=o]=

= { K is an index of S, lemma 85 with J,R:=K,S }

J<oR<odoS<od”oR<o]<

= { theorem 89 }
]<oR<oR<oR<o]<

= { R~ is a per, ] is an index of R, definition 78(c) }
J< .

Finally,

AoKop”

= { definition, converse }

J<oR<odoS<oK<oKoK>0S-o1p”oRro]J>

= { domains }
J<oR<odpoS=<oKoSrohpoRro]>

= { K is an index of S, definition 78(b) }
J<oR<odoSop”oR-o]>

= [ R=¢oSep” )
]<oR-<oRoR>o]>

= { per domains }
]<oRo]>

= { J is an index of R, definition 78(b) }
J .

That the indexes of a relation R are isomorphic follows because R is isomorphic to itself
(with witnesses R< and R>), i.e. the isomorphism relation is reflexive.
O

The construction of the witnesses A and p looks very much like the proverbial
rabbit out of a hat! In fact, they were calculated using the type judgements formulated
in Voermans’ thesis [Voe99]. We hope at a later date to exploit Voermans’ calculus in
order to make the process of constructing witnesses much more methodical.
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6.2 Core Relations

Indexes are a special case of what we call “core” relations. (Recall definition 77.) This
section is about the properties of a “core” of a given relation R.

Definition 90 (Core) Suppose R is an arbitrary relation and suppose C is a relation
such that

C = AoRop”
for some relations A and p satisfying
R<=A%A A A<=AcA" A R-=pop A p==pop .

Then C is said to be a core of R as witnessed by A and p.
O

The existence of a core of a given relation R has a constructive element: it is necessary
to construct the “witnesses” A and p. In general, given a per P, a functional relation f
with the property that P equals f~of is called a “splitting” of P. Constructing a core of
relation R thus involves “splitting ” the pers R< and R- into functional relations A and
p. As with indexes, the existence of cores is not derivable in point-free relation algebra.
However, just as for indexes, all cores of a given relation are isomorphic in the sense of
definition 67: see theorem 93. See section 8 for further discussion of the construction of
cores of pers.

Immediately obvious is that an index of a relation is a core of the relation:

Theorem 91 Suppose R is an arbitrary relation and suppose ] is an index of R.
Then ] is a core of R as witnessed by J<oR< and J>oR-.

Proof First,

J
= { lemma 82 }

J<oRo]>

= { per domains }
J<oR<oRoR~oJ>

= { converse, domains }
(JcoR<)oRo(J=0R>)" .

This establishes the required property of C in definition 90, with C:=]. (The paren-
theses in the last line of the calculation indicate the definitions of the splittings A and
p.) Second,
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(J<oR=)" o J<oR=

= {  converse, (R<)"=R< and (J<)"cJ<=]< }
R<oJ<oR~

= { lemma 87 }
R~ .

Third,

J<oR=<o(J<oR<)"

= { converse, (J<)”=J< and R<o(R<)" =R< }
J<oR=o]=

= { J is an index of R, definition 78(c) }
J<

= { theorem 88; in particular, J<CR< }
(J<oR<)<

= { (R<)<=R<, domains }
(J<oR<)< .

This establishes the required properties of A in definition 90 (with A := J<oR<). The
properties of p in definition 90 (with p := J>oR-) are established similarly.
O

Fig. 3 illustrates theorem 91 applied to the relation introduced in fig. 1. The index
] is depicted by the green edges in the lower bipartite graph. The decomposition of the
relation in the definition of a core is illustrated by the row of bipartite graphs at the
top; the relations depicted are, in order, A”, A, R, p and p~. The composition of the
middle three figures is the index J.

A number of properties of indexes are derived from the fact that indexes are cores.
The remainder of this section catalogues such properties.

The name “core” in definition 90 anticipates theorem 96 where we show that the
relation C is a core relation as defined by definition 77. Some preliminary lemmas are
needed first.

Lemma 92  Suppose R, C, A and p are as in definition 90. Then
R = A oCop .

Proof
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c e o e
: o o :

=

Figure 3: Decomposition of a Relation into a Core and Witnesses

= { per domains: (33) }

R<oRoR~
= { R<=A"oA and R- = p”op }
AoAoRop o p
= { definition 90 }
AN oCop .

O
Lemma 92 has the corollary that cores of a given relation are isomorphic:

Theorem 93  Suppose Sy and S; are both cores of R. Then Sy=S;.

Proof Suppose, for i=0 and i=1, S; = A;oRop, where R< = AoA; and R~ = p{op;.
(That is, So and S; are both cores of R.) Then

So

= { assumption }
AooRepg

= { lemma 92 }
AoeAjeSieprepy .
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Applying definition 67 with f,g := AgoA{, p1op, in combination with theorem 116, we
conclude that Sy =S;.
O

For later use, we calculate the left and right domains of the core of a relation.
Lemma 94  Suppose R, A, p and C are as in definition 90. Then
R<:}\>/\C<:}\</\R>:p>/\c>:p<_

Proof We prove the middle two equations. First,

R-

= { (36 1}
(R-)-

= { definition 90 }
(p"op)=

= { domains }
p> .

The dual equation, R< = A~ is proved similarly. Second,

C-

= { definition 90 }
(AeRep”)-

— { R> = p> (just proved) }
()\oRoR>)<

= { domains }
(AoR<)=

= { R< = A~ (see above) }
A< .

The final equation is also proved similarly.
O

Lemma 95 Suppose R, A, p and C are as in definition 90. Suppose also that | is
an index of R. Then C=] as witnessed by AcJ< and po]J-.

Proof We construct the witnesses as follows.



C
= { definition 90 }
AoRop”
= { J is an index of R, definition 78(b) }
AoR<oJoR-op"
= { definition 90 }
AoA’oAo]op opop”
= { A and p are functional,

s0 A< = AoA” and p< = pop” }

7\oJopU

{ domains }
7\0]<o]o(po]>)u .
Comparing the last line with the definition of an isomorphism of relations (definition 67
with the instantiation R,S,p,p := C,]J,AcJ<, poJ>), we postulate AcJ< and po]J- as

witnesses to the isomorphism.
It remains to show that AoJ< and peo]> are bijections on the appropriate domains.

First,
(poJ=)"epe]>
= { converse }
J-opopo]-
= { definition 90 }
J-oR-o]>
= { J is an index of R, definition 78(d) }
| B
Symmetrically,
(Aquuoxo]< = J- .
Finally,

(peJ>)<
{

p is functional, and p”op = R~,

52
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lLe. p=popop=poR- }

(p o R> o J>)<

= { J> g R> a__'[]_d_ R> = (R>)> }
(p o R> o J> o (R>)>)<

= { domains, R-=(R-)" }
(p o R>OJ>OR>)<

= { domains }
(p o (R> o J> o R>)<)<

= { lemmas 85 and 86(b) }
(p [} R>)<

= { (36) and domains }
(p o R>)<

= { p = poR- (see first step) }

p<

= { lemma 94 }

(GEI
Symmetrically, (AoJ<)<=C-.

Putting all the calculations together, we conclude that Ao J< and p-]J> are bijections;
the left domain of AoJ< is C< and its right domain is J<; the left domain of po]J> is
C> and its right domain is J>.

O

We now prove the theorem alluded to by the nomenclature of definition 90, namely
any core of a given relation R is a core relation in the sense of definition 77.

Theorem 96  Suppose C is a core of R. Then, if R has an index,

(97) C- =C> ,and

(98) C<=C- .

That is, if R has an index, any core C of R is a core relation. (See definition 77.)

Proof Assume that ] is an index of R. The proof is a combination of several preceding
lemmas and theorems.
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C< = C<
& { theorem 76 }
C<x @ C<

& { Leibniz }
J<=J< A C<=]J< A J-=C-

& { index | is a core relation (lemma 80) }
C<xJ< A J-=C-

& { lemmas 72 and 71 '}

{ lemma 95 }

true .

O

Note Theorem 96 assumes that relation R has an index J. Likewise, a corollary
of lemma 95 is that, assuming relation R has an index, all cores of R are isomorphic.
As mentioned earlier, it can be proven that all cores of R are isomorphic without the
assumption that R has an index. Similarly, theorem 96 can be proved without this
assumption but the proof is quite long and complex. See [Bac21] for full details.

We argue later that this assumption has no practical significance: in section 7.3 we
show that every relation R has an index if both its per domains have an index. This
means that, for a given R, it is necessary to calculate indices of R< and R-; however,
in practice, this is not an issue. End of Note

7 Indexes of Difunctions and Pers

7.1 Indexes of Difunctions
We now specialise the notion of index to difunctions.

Lemma 99  Suppose | is an index of relation R and ] is difunctional. Then R is
difunctional.

Proof
RoR”oR
— { J is an index of R, lemma 84 }

RoJ”R
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= { J is an index of R, 78(b) }
R<o]oR>o]UoR<o]oR>

= { domains }
R<oJoJ>0R-o0]>0]"0J<oR=0o]<o]oR~

= { J is an index of R, 78(d) and (c) }
R<oJoJ=0]"0]<o]oR~

= { domains and ] is difunctional (i.e. J=JoJ o]) }
R<oJoR~

= { 78(b) }

O

The property that R is a difunction is equivalent to R< = RoR" (and symmetrically
to R- =R"oR). Also, since R = RoR”oR, the right side of lemma 84 simplifies to R.
In this way, the definition of an index of a difunction can be restated as follows.

Definition 100 (Difunction Index) An index of a difunction R is a relation | that
has the following properties:

(a) JER ,

(b) RoJ"eR =R .

(c) J<oRoR”o]= = J- |
(d) J-oRoRoJ- = J- .

O

Lemma 101 An index | of a difunction R is a bijection between J< and J-.
Proof
J<
= { 100(c) }
]< o RU o R o ]<
2 { 100(a) }
J< [¢] JU [e] J [¢] J<
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= { domains }
Jo]
D) { domains }
J< .
Thus, by anti-symmetry,
Jo = Je]
Symmetrically, J- = JoJ~. That is, J is a bijection.

O

Corollary 102 formulates a method to determine whether a relation is a difunction:
compute an index of the relation and then determine whether it is a difunction. By 78(a),
the second step in this process will be no less efficient than determining difunctionality
directly and, in many cases, may be substantially more efficient. (There is, however, no
guarantee of improved efficiency since the inequality in 78(a) may be an equality.)

Corollary 102  Suppose | is an index of relation R. Then R is a difunction iff | is
a difunction.

Proof Lemma 99 establishes “if”. Lemma 101 establishes “only if” (since a bijection
is a difunction).
O

7.2 Indexes of Pers

That every difunction has an index is a desirable property but it is not provable in
standard axiomatic formulations of relation algebra. Rather than postulate its truth, we
shall postulate that all pers have an index, and then show that a consequence of the
postulate is that all difunctions have an index.

A relation R is a per iff R=R<=R~. Using this property, the definition of index can
be simplified for pers. Specifically, an index ] of per R has the following properties.
(Cf. definition 78.)

(a) JER,

(b) ReJoR=R,
(c) J<oRoJ< = J<
(d) J-eRe]- = J-
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Lemmas 103 and 104 prepare the way for definition 105.
Lemma 103 If a per has an index, then it has an index that is a coreflexive.

Proof Suppose R is a per and | is an index of R. The lemma is proved if we show
that J< is an index of R. We thus have to prove that

(e) J<QR y

(f) R°J<°R =R,

(8) (Jo)<eRe(Jo)< = (Jo)= ,
(h) (J2)zoRe(J>)> = (J7)> ,

assuming the properties (a), (b), (c) and (d) above.
Of the four properties, only (f) is non-trivial. (Properties (g) and (h) follow because
J<=(J<)< and J>=(J>)>. Property (e) follows because, since R is a per, R<CR.)
Property (f) is proved as follows.

Ro ]< oR

= { by lemma 101, JoJ" =J< }
RoJo]”oR

= { domains }
RoJoJ-0]"oR

= { () }
RoJoJ-oRoJ>0]"oR

= { domains }
Ro ] oRo JU oR

= { ()
RoJ“oR

= { R is a per, so R=R"; converse }
(ReJoR)"

= { R is a per, so R=R"; (b) and converse }
R .
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Lemma 104  For all pers R, if R has an index then there is a relation | such that

(a) JCR<
(b) JeRe] =],
(c) RoJoR=R .

Conversely, for all pers R, if relation ] satisfies the properties (a), (b) and (c) above,
then ] is an index of R.

Proof First, suppose R is a per that has an index. By lemma 103, R has a coreflexive
index. Let ] be such a coreflexive index of R. We must show that properties (a), (b)
and (c) hold. We have

JCR-
& { 78(a) and monotonicity }
J=]-
= { ] is a coreflexive }
true .

This proves (a). Now for (b):

JoRe]

= { J is a coreflexive, so J=]<,

R is a per,so R=R< }

J<oR=<o]<

= 1 780c) )
J<

= { J is a coreflexive, so J=J< }
J .

Finally, (c):

RoJoR

= { R is a per,so R=R< }
R<oJoR~

- k) )
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For the converse, assume R is a per and ] satisifies the properties (a), (b) and (c) above.
We have to check the four properties listed in definition 78. First, 78(a):

J

- { assumption: (a) above }
R-

C { R is per }
R .

The properties 78(b), (c) and (d) follow because J=]J<=]> and R=R<=R-.
O

As a consequence of lemma 104, we postulate the following definition of an index of
a per.

Definition 105 (Index of a Per)  Suppose P is a per. Then a (coreflezive) indez
of P is a relation | such that

(a) JCP<
(b) JePe] =] ,
(c) PoJoP =P .
O

We also postulate that every per has a coreflexive index. We call this the aziom of
chotce.

Axiom 106 (Axiom of Choice) Every per has a coreflexive index.
O

7.3 From Pers To Relations

It is a desirable property that every relation has an index. However, as mentioned earlier,
this can’t be proved in standard relation algebra. It can be proved if we assume that
every per has an index. The construction is suggested by theorem 88.

Theorem 107 Suppose ] and K are (coreflexive) indices of R< and R-, respectively.
Then JoRoK is an index of R.

Proof For convenience, we list the properties of ] and K. These are obtained by
instantiating definition 105 with J,R:=],R< and J,R:=K,R-. (Domain properties
have been used to simplify (a) and (d).)



60

(a) JCR-
(b) JeR<o] =] ,
(c) R=oJoR< = R< ,
(d) KCR- |

(e) KoR-oK = K |

(f) R-oKoR- = R~ .

We have to prove the four properties 78(a)-(d) with the instantiation J,R := JoRoK,R.
By (a), J=] =]J<=]J>. Similarly for K. The proof obligations are thus:

(g) JoREKC R,
(h) R<oJoRoKoR- = R .
(i) (JoReK)-cR=o(JoRK)< = (JoReK)~ ,
() (JoRK)-oReo (JoReK)- = (JoReK)~
Property (g) is an easy combination of (a) and (d). For (h) we have:
R<oJoRoKoR~
— {  per domains }
R<oJoR<oRoR~0KoR-
= { (b)and(f) }
R<oRoR~
= { per domains }

R .
For (i), we have
(]oRoK)> oR~o (]oRoK)>
— { (JoReK)> C K> = K,
composition of coreflexives is intersection }
(]oRoK)> oKoR~0Ko (]oRoK)>
= { (¢ }
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(JOROK)> o K o (JOROK)>
= { (JoReK)> C K> = K
composition of coreflexives is intersection }

(JRK)- .

The proof is (j) is symmetrical.
O

Theorem 107 shows how to construct an index of a relation R from indexes | and
K of its left and right per domains. In combination with lemma 82 and corollary 83, the
construction is unique. Specifically, the steps are, first to choose from each equivalence
class of R~ and each equivalence class of R~ a single representative. The collection of
such representatives defines the coreflexives | and K. Then the index is defined to be
JeRoK.

8 Characterisations of Pers and Difunctions

This section is about characterising pers and difunctions in terms of functional relations.
Although the characterisations are well known, they are not derivable in point-free rela-
tion algebra. We show that they are derivable using our axiom of choice.

8.1 Characterisation of Pers
A well-known property is that a relation R is a per iff
(108) (If : fof’ = f<: R="f"of) .

This property is said to be a characteristic property of pers. Perhaps surprisingly, it is
not derivable in systems that axiomatise point-free relation algebra. Freyd and Sé¢edrov
[Fv90, 1.281] call the functional f witnessing the existential quantification a “splitting®”’
of R. Typically, the existence of “splittings” is either postulated as an axiom (eg. Winter
[Win04]) or by adding axioms formulating relations as a so-called “power allegory” [Fv90,
2.422], or by adding the so-called “all-or-nothing” axiom [Bac21]. (See section 9.6 for
discussion of “all or nothing”.) The existence of “splittings” is a consequence of our
axiom of choice:

Theorem 109 If per P has a coreflexive index | , then

P = (JoP)'o(JoP) A ] = (JoP)o(JoP)” .

2Freyd and Séedrov define a “splitting” in the more general context of a category rather than an
allegory; the notion is applicable to “idempotents” which are also more general than pers.
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Thus, assuming the axiom of choice, for all relations R,
perR = (If : fof = f<: R=1 of) .

Proof The proof is very straightforward. We have

(JoP)" < (J+P)

= { distributivity }
PYoJo]oP

= { J is coreflexive, so JoJ=]; P=P~ }
PojoP

= { J is an index of P, definition 105(c) }
P

and

(JoP) o (JoP)"

= { distributivity }
JoPoPYo]

= { P is a per, so by lemma 38(ii), P =P P }
JoPe]

= { J is an index of P, definition 105(b) }
J .

This proves the first property. It also establishes that (assuming the axiom of choice),
for all R,

perR = (I : fof = f<:R=1of) .

(The witness is JoR.) The converse is obvious because, for all f such that fof" = f<,

o fo (f2of)"
— { converse |
flofofof
= {  assumption: fof’ = f< }

fYof<of



63

= { domains }
foof .
That is, by lemma 38(ii),
(Vf @ fof” = f< : per.(f’of))
and hence
per.R & <E|f D fof’ = f<: R:fuof> .
The equivalence follows by mutual implication.

O

8.2 Characterisation of Difunctions
A second so-called “characteristic” property is that a relation R is a difunctional iff
(3f,g : fof = f<=gog =g : R=fog) .

Like the characteristic property of pers, it is not derivable in systems that axiomatise
point-free relation algebra. However, it is a corollary of theorem 109 as we now show.
The basis for the construction is the construction of a per from a difunctional relation:

Lemma 110  For all relations R, RoR" is a per if R is difunctional.
Proof Suppose R is difunctional. We exploit lemma 38 :

RoR" is a per

= { lemma 38(ii) with R:= RoR” and converse }
RoR” = RoR”6oRoR”

& { Leibniz }
R = RoR"0R

= { theorem 49 }
R is difunctional.
O

Theorem 111  Assuming the axiom of choice (axiom 106), for all relations R,

difunction.R = (3f,g : fof = f< = gog” = g<: R=fog) .
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Proof The proof is by mutual implication. First assume that R = f”og where

U

fofU:f<:gog :g< .

Then

RoR”0R

= { assumption: R = f“og and converse }
flogogofofiog

= {  fefi=1f<=gog =g }
fog<og<og

= { domains }
fog

= { assumption: R = f"og }

R .

Applying lemma 38, we conclude that R is difunctional.
Suppose now that R is difunctional. (We owe the following construction to Winter
[Win04].) Exploiting lemma 110 combined with theorem 109,

(112) (3f : fof’ = f<: RoR” =f"of) .

Suppose therefore that fof” = f< and RoR” = fof. Define the relation g by

(113) g = foR .
Then
gog’
= { (113) and converse }
foRoR”of"
= { (12 }
fof ofof”
— { (112) }
feof<
= { f< is a coreflexive }

f< .
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It follows that g< = gog~. Thus
(114) fof’ = f<=g<=gog .
Moreover,
fog
= { (13) }
f7ofoR
= { RoR” = f7of }
RoR”6R
= { R is difunctional: theorem 49 }
R .
Combined with (114), we have thus shown that
(115) (3f,g : fof = f< =gog’ =g= : R="f'og) .
O

8.3 Unicity of Characterisations

The characterisation of a per in the form f”of where f is a functional relation is not
unique. (There are typically many representatives one can choose for each equivalence
class; so there are very many distinct indexes of a per.) The characterisation is sometimes
described as being “essentially” unique or sometimes as unique “up to isomorphism”.
This is made precise by theorem 116:

Theorem 116 Suppose R is a per and suppose f and g are functional relations such
that R = f'of = g”og. Then fXg.

Proof We have

foge(feg?)”
= { converse }
fog ogof”
= { assumption: f'of = g7og }
fof ofof”
= { assumption: f is functional, i.e. fof” = f< }

f< .



That is,

(117) f"oguo(f"ogu)U = f< .

Similarly,
(118) (fog') ofeg = g= .
Also,
g-
— { domains }
(97°9)
= { assumption: f'of = g“og }
(o 1)-
— { domains }
f> .
That is,
(119) f- = g~ .
Hence,
f
— { domains }
f<of
- @D )
fog“o(fog”) of
= { properties of converse }
fogogofof
= { assumption: f'of = ¢g”og }
fog ogog“og
= { assumption: ¢ is functional, i.e. gog” = g=<

fog og .

}
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Applying definition 67 with R,S,b,p := f, g, fog”~, g>, we conclude that = g. (Prop-
erties (117) and (118) are the required properties of ¢ ; property (119) together with
straightforward properties of the right-domain operator establish the required properties

of ¥ .)
O

It is important to note that theorem 116 assumes that there is at least one character-
isation of per R by a functional relation; it thus establishes that there is at most one
such characterisation (“up to isomorphism”).

Uniqueness “up to isomorphism” is a common phenomenon. The characterisation of
difunctional relations is another example:

Theorem 120 Suppose f and g are relations such that
fof’ = f< = gog” = g= .
Suppose also that h and k are relations such that
hoh” = h< = kok™ = k= .
Suppose further that
flog = h'ok .
Then
f=h A g=k .
Proof Our task is to construct witnesses ¢ and P satisfying definition 67 (with
R,S:=f,h and R,S:=g,k). Define ¢ by ¢ = foh”. We prove that
(121) ¢odp” = f< A ¢ od = h- .
(In words, ¢ is a bijection with left domain the common left domain of f and g, and
right domain the common left domain of h and k.) The proof is as follows.

$od”
= { definition, converse }
foh”ohof”

= { assumption: h< = kok” }
foh”okok”ohof”

— { assumption: f’og = hck }
foflogog ofof”

= {  assumption: fef’ = f< = gog~ }
f<
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and
¢ o
— { definition, converse }
hof ofoh”
= {  assumption: f< = gog” }
hof’ogog”ofoh”

= { assumption: fog = h”ok (used twice) }
hoh”okok”ohoh”
= { assumption: hoh” = h< = kok” }
h< .
We now prove that f=doh.
doh
= { definition }
foh”oh
= { assumption: h< = kok” }
foh’okok”oh
= { assumption: fog = h”ok (used twice) }
fof'ogogof
= { assumption: fof” = f< = gog” }
f .
It follows that
(122) f = ¢pohoh- A h- = f .

The combination of (121) and (122) (together with straightforward properties of h-)
establishes that ¢ and h- witness the isomorphism f=h. The property g=k is
proved similarly.

]
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Part II
Pointwise Reasoning

9 Enabling Pointwise Reasoning

In this section, our goal is to capture the notion that a relation is a set with elements
pairs of points.

In traditional pointwise reasoning about relations, a basic assumption is that a type
is a set that forms a complete, universally distributive lattice under the subset ordering;
the type of a (binary) relation is a set of pairs. The set of relations of a given type thus
forms a powerset of a set of pairs.

In section 9.1, we recall a general theorem on the structure of powersets. Briefly,
theorem 125 states that a set is isomorphic to the powerset of its “atoms” iff it is “satu-
rated”. The section defines these concepts; the concepts then form the backbone of later
sections where we specialise the theorem to relations.

One (of several) mechanisms for introducing pointwise reasoning within the frame-
work of point-free relation algebra involves the introduction of the so-called “all-or-
nothing rule” which was postulated as an axiom by Gliick [Glii17]. This rule is combined
with completeness and “extensionality” axioms which state that, for each type A, the
coreflexives of type A form a complete, saturated lattice. This was the approach taken in
[BDGv22, Bac22| where pointwise reasoning was used to formulate and prove properties
of graphs. Theorem 148 establishes that the all-or-nothing rule is a consequence of our
axiom of choice (axiom 106: every per has an index). Together with the “extensionality”
axiom, this enables the application of theorem 125 to establish that the type A~B is
isomorphic to the powerset 22*B (the set of subsets of the cartesian product AxB). See
theorems 148 and 149 in section 9.6.

Section 9.2 introduces “points” and states the extensionality axiom that we assume.
A number of sections are then necessary in order to establish theorem 149. Section
9.3 introduces “particles” and “pairs”; it is then shown that particles are points whilst
section 9.4 shows that —assuming the axiom of choice— points are particles. (For this
reason, the terminology “particle” is temporary.) Section 9.5 shows that proper atoms
(of a given type) are “pairs”. These are the ingredients for deriving the “all-or-nothing”
rule in section 9.6. Section 9.6 also shows that the point-free definition of a “pair” in
section 9.3 does correspond to what one normally understand to be a pair of points. The
section concludes with theorem 149.
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9.1 Powersets

As mentioned above, this section defines “atoms” and “saturated” in the context of a
partially ordered set. We then state a fundamental theorem relating these concepts to
powersets.

The definition of an atom is the following.

Definition 123 (Atom and Atomicity) Suppose A is a set partially ordered by the
relation C. Then, the element p is an atom iff

(Vg = qCp = q=p V q=11)
Note that Ll is an atom according to this definition. If p is an atom that is different
from 1l we say that it is a proper atom. A lattice is said to be atomic if

(Vq = q#1L = (Ja:atom.aAa#1l:alCq))
In words, a lattice is atomic if every proper element includes a proper atom.

|

The definition of saturated is as follows.
Definition 124 (Saturated) A complete lattice (ordered by L) is saturated iff

(Vp = p = (Ua:atomaANaCp:a)) .
O
The set of subsets of a type is a powerset iff the lattice is saturated, as formulated in
the following theorem.

Theorem 125  Suppose A is a complete, universally distributive lattice. Then the
following statements are equivalent.

(a) A is saturated,
(b) A is atomic and complemented,

(c) A is isomorphic to the powerset of its atoms.
O

(See [ABH * 92, theorem 6.43] for the proof of theorem 125.)

We use theorem 125 in two ways. Firstly, for all types A, we simply postulate that
the set of coreflexives of type A is isomorphic to a powerset under the C ordering:
the atoms are the “points” introduced in section 9.2. Second, we use this postulate
together with our axiom of choice to show that, for all types A and B, the type A~B
of (heterogeneous) relations is also isomorphic to a powerset under the C ordering: the
atoms are “pairs” introduced in section 9.3. The proof that “pairs” are indeed atoms is
the subject of section 9.5. A prelude to this is theorem 139, proved in sections 9.3 and
9.4, is that “points” are a special case of “pairs”.
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9.2 Points

We begin by postulating that each type A is a set of “points”. We also postulate that
the set of coreflexives of type A forms a complete, universally distributive lattice under
the subset ordering. Finally, we postulate that the lattice is saturated. With theorem
125 in mind, we define “points” to be the proper atoms of the lattice:

Definition 126 (Point) A homogeneous relation a of type A is a pownt iff it has
the following three properties.

(a) azll
(b) aCl , and
(c) (Vb:b#1llL AbCa:b=aq)

In words, a point is proper, coreflexive and an atom.
O

If A is a type, we use a, a’ etc. to denote “points” of type A. Similarly for
“points” of type B. “Points” represent elements of the appropriate type.
For points a and a’ of the same type,

(127) a=a' V aea’'=11 .
The proof is straightforward. Suppose a and a’ are points. Then
a=aca’
& { a is an atom, definition 123 }
aca’# 1L N aea’Ca
& | a’'Cl }
aca’# 1L .
Interchanging a and a’,
a’'=aca’ & aca# 1L .
But, since composition of coreflexives is symmetric, aca’=a’ca. We conclude that
a=aca’'=a’ & aca'# 1L .

This is equivalent to (127).

In point-free relation algebra, subsets of a type are modelled by coreflexives of that
type. In order to model the property that the coreflexives of a given type form a lattice
that is isomorphic to the set of subsets of the type we need to add to our axiom system
a saturation property, viz.:
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Definition 128 (Saturation) Suppose A is a type. The lattice of coreflexives of
type A is said to be saturated iff

(129) (vp = pCIn = p=(Ua: point.aANaCp: a)) .
]

The axiom that we call “extensionality” is then:

Axiom 130 (Extensionality) For each type A, the points of type A form a com-

plete, universally distributive, saturated lattice under the subset ordering.
O

Applying theorem 125, a consequence of axiom 130 is that the coreflexives of type A
form a lattice that is isomorphic to the powerset 2. In this sense, the coreflexives in
point-free relation algebra represent sets of points in traditional pointwise formulations
of relation algebra.

We now want to show how to formulate the property that the set of relations of type
A~B is isomorphic to the powerset 2**P | i.e. relations in point-free relation algebra
represent pairs (a,b) of points a and b of type A and B, respectively.

9.3 Pairs and Particles

We now turn our attention to the lattice of relations of a given type. We begin with
a point-free definition of a “pair”. In subsection 9.6, we show that definition 131 does
indeed capture the notion of a “pair of points” whereby the points are the “particles”
also introduced in the definition.

Definition 131 (Pair) A relation Z is a pasr iff it has the following properties:
(a) Z#LL ,

(b) Z=ZoTToZ ,

(c) Z< = Z-2"

(d) Z- =Z2"-Z .

We call a relation a particle if it is a pair and it is symmetric.
O

In words, a pair Z is a non-empty “rectangle” (properties 131(a) and 131(b)) that is
a “bijection” on its left domain and right domains (properties 131(c) and 131(d)).

(Definition 131 was introduced in [Voe99| but using the terminology “singleton” in-
stead of “pair”, and “singleton square” instead of “particle”.)
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Our goal is to prove that the points are exactly the particles. This section is about
showing that a particle is a point. See corollary 136.

One task is to show that particles are atoms. The more general property, which we
need in later sections, is that pairs are atoms.

Lemma 132 A pair is an atom.

Proof Suppose Z is a pair and suppose Y is such that YC Z. By the definition
of atom, definition 123, we must show that Y=_11 V Y=Z. Equivalently, assuming
Y # 11, we must show that Y=2Z. This is done as follows.

Y
= { assumption: YC Z. So, by monotonicity, Y<C Z< and Y>CZ>;
domains }
Z<oYoZ-
= { Z isapair,so Z<=ZoZ" = (ZLoTToZ)oZ"

similarly for Z> }

ZoTToZoZ oYoZ oZoTToZ

= { domains }
ZoTToZ<oYoZ>0TToZ

= { Z<oYoZ> =Y (see first step above) }
LoTTeYoTToL

= { assumption: Y= Ll , cone rule: (4) }
ZoTToZ

= { Z is a pair }
O

Since a particle is, by definition, a pair, we have:

Corollary 133 A particle is an atom.
O

Lemma 134 A particle is coreflexive.

Proof Suppose Z is square and a pair. Then



74

= { assumption: Z is a pair, so Z=ZoTToZ;
[—|_|—OZ:—|_|—OZ<OZ:—|_|—OZUOZ] }

ZoTToZ oZ

= { assumption: Z is a square,so Z=ZoTloZ" =272 '}
VARV

= { assumption: Z is a pair,so Z>=Z72"oZ }
Z- .

That is, Z equals Z> which is coreflexive.
O

Corollary 135 (Particle) A relation Z is a particle iff it has the following three
properties.

(a) Z#1L

(b) ZC1 , and

(c) Z=12-TToZ

In words, a particle is a proper, coreflexive rectangle.

Proof “Only-if” is the combination of the definition of a particle and lemma 134. “If”
is a straightforward consequence of the properties of domains and coreflexives.
O

Corollary 136 A particle is proper, coreflexive and an atom. That is, a particle is a
point.

Proof This is a combination of lemmas 132 and 134.

O

9.4 Points are Particles

We now prove the converse of corollary 136. We use the assumption that every per has
a coreflexive index: the axiom of choice (axiom 106).

Lemma 137 Assuming axiom 106, a point is a particle.
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Proof Suppose that a is a point. Comparing the definition of a point, definition
126, with the defining properties of a particle, corollary 136, it suffices to prove that
a=aoTToa. Clearly a-TTea is a per. (The simple proof uses the fact that a=a",
because a is coreflexive, and TTeaoTT =TT because a1l .) So, by the axiom of
choice, a-TToa has an index |, say. We show that | is a particle and J=a.

To show that | is a particle, we must establish the three properties listed in corollary
135 with the instantiation Z:=]. Part (a) is proved as follows.

J=1L
= { 11 is zero of composition }
aoTTeqaoJoao TToa = LI
= { J is an index of per aoTTea, definition 105(c) }

acflTea = L1
= { acacaC acTToa and acaca=a (because aCI) }
aCll
= { [RC1l = R=11] with R:==a }
a=_11
= { assumption: a is proper, i.e. a# 1l }
false .

We conclude that J# 1L . The next step is to show that J=a.

J=a
& { assumption: a is an atom }
J=1 V]JCa
= { J# LL (see above) }
JCa
= { assumption: aCl,so a=(a-TTea)< }

] C (asTTea)-
= { assumption: | is an index of a-TTeca
definition 105(a) }
true .

Property (b) of corollary 135 immediately follows because a is coreflexive. We now show
that J=JoTToJ.
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JoTTe]
= { J=a (proved above) and aCI }
JoaoTToao]
= { assumption: | is an index of aoTTeca
definition 105(c) with P:=acTTea }
] .

We conclude that J=a=]JoTToJ. Thus a=a-TTea as required.
]

Relations of the form RoboS, where b is a point, play an important role later when
we consider “polar coverings”. Such relations are always rectangles:

Lemma 138 If R has type A~B, S has type B~C, and b is a point of type B, the
relation ReboS is a rectangle.

Proof Immediate consequence of lemma 63 since, by lemma 137, b is a rectangle if b
is a point.
O

Combining corollary 136 with lemma 137, we conclude:

Theorem 139 A relation is a point iff it is a particle.

O

9.5 Proper Atoms are Pairs

The goal of this section is to show that a proper atom is a pair. Aiming to exploit the
equivalence of points and particles, we begin with lemmas on the left and right domains
of a proper atom.

Lemma 140 Suppose R is a proper atom. Then R< and R- are proper atoms?.

Proof First, that R< and R> are both proper is immediate from (22).
To show that R< is an atom we have to show that, for all p,

PCR< Ap#1ll = p=R-< .

We do this by mutual implication. First, the follows-from:

3Note: strictly we should detail the lattice under consideration here. However, it is easy to show that
a coreflexive being an atom in the lattice of coreflexives is equivalent to its being an atom in the lattice of
relations. This justifies the omission.
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PER-Ap#ll & p=R-

= { predicate calculus }
(PER< <= p=R) A (p#LL < p=R-)
& { left conjunct: anti-symmetry, right conjunct: Leibniz }

true /A R<# 1L
& { R< is proper (see above) }
true .

Now we prove the converse. Assume p CR< and p# L. Then

p=R=
= { anti-symmetry and assumption: pCR< }
R<Cp
& {  assumption: pCR< and R<CI ,s0 p=p=; (pR)<Cp= }
R< = (peR)-
& { Leibniz }
R = peR

= { poR # 1L (see below for proof)
R is an atom, definition 123 (appropriately instantiated) }
peRCR
= { assumption: p CR< and R<C1 , monotonicity }
true .

In order to verify the penultimate step in the above calculation, we show that peR=_11 = false
under the assumption that pCR< and p# LL.

peR=_1L
= { cone rule: (4) }
TTopoReTT = 1L
= { domains: (dual of) theorem 23(a) }
TT o po R<oTT = 1L
= { assumption: p CR<, composition of coreflexives is intersection }

—|_|—o‘po—|_|— = J_L
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= { assumption: p= 11, cone rule: (4) }

false .
O

Corollary 141 If R is a proper atom, R< and R> are particles.

Proof By lemma 140 and definition 126 of a point, if R is a proper atom, R< and R~
are points. Thus, by lemma 137, R< and R> are particles.
O

We now aim to verify properties 131(b), (c) and (d) of a pair, with Z instantiated
to proper atom R. Property 131(b) is the following lemma.

Lemma 142 A proper atom is a rectangle.
Proof Suppose R is a proper atom. Then

RoTT oR
= { domains }
R<o TT o R>
= { R# 1L, cone rule: (4) }
R<oTT oRo TT o R>
= { domains }
R<oTT oR<oRoR>0TT o R>
= { by corollary 141, R< and R- are particles
corollary 135(c) with Z:=R< and Z:=R- }
R<oRoR-
= { domains }

R .

That is, RoTT oR = R. Thus, by definition, R is a rectangle.
O

Properties 131(c) and (d) require a proper atom to be a bijection. Aiming to apply
lemma 101, we introduce an obvious property of rectangles.

Lemma 143 A rectangle is a difunction.

Proof Suppose R is a rectangle. Then
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RoR“oR C R

— { R is a rectangle, so R=RoTToR }
RoRYsR C RoTToR

& { monotonicity }

= { [RCTT] with R:=R” }

Now we have all the ingredients for our goal.
Lemma 144  Suppose R is a proper atom. Then, assuming axiom 106, R is a pair.

Proof Suppose R is a proper atom. We have to verify properties 131(b), (c) and (d)
(with Z:=R) of a pair.

Property 131(b) is lemma 142. Properties 131(c) and (d) assert that R is a bijection.
To prove this, let ] be an index of R. (This is where axiom 106 is assumed.) Then

J=R
= { R is an atom }
J#LL A JCER

= { J is an index of R, definition 78 }

true .

That is, J=R. But R is a rectangle and thus a difunction. So, applying lemma 101, ]
—and thus R— is a bijection, as required.
O

To conclude this section and sections 9.3 and 9.4, we have:

Theorem 145  Assuming axiom 106, for all types A and B, and all relations R of
type A~B, R is a proper atom iff R is a pair.

Proof This is a combination of lemmas 132 and 144.
O

9.6 Pairs of Points and the All-or-Nothing Rule

The final step is to show that we can derive the “all-or-nothing” rule.
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Lemma 146 If Z is a pair then Z< and Z- are particles.

Proof Suppose Z is a pair. We begin by showing that its left and right domains are
also pairs.

Properties 131(a), (c) and (d) —with Z:=Z< and Z:=Z-— are properties of the
domain operators . This leaves 131(b). For the instance Z:=Z<, we have:

Z<oTT o/<
= { domains (specifically
[ Z<oTT =ZoTT J and [ TToZ" = TToZ<« = TToZoZ"]) }
ZoTToZoZ"
= { assumption: Z is a pair, s0 ZoTloZ=7Z }
Zo7"
= { assumption: Z is a pair, so ZoZ” =7~ }
Z< .

The proof that Z-> is a pair is symmetrical.

It now follows immediately that Z< and Z- are squares: a square is a symmetric
rectangle, and both are rectangles (see above); also, both are coreflexives, and coreflexives
are symmetric.

O

The following theorem is [Voe99, lemma 4.41(d)].
Theorem 147  For all Z,
pair.Z = (da,b: point.a/\point.b : Z=aoTTob) .
Proof By mutual implication. First,

pair.Z
= { lemma 146;
definition 131(b) and [ ZoTTeZ = Z<oTToZ>] }
particle. Z< /\ particle.Z> /\ Z =Z<oTloZ>
= { corollary 136 }
point.Z< A point.Z> N Z=Z<oTToZ>
= { ab:=27<,7- }
(3a,b : point.a/Apoint.b : Z=a-TTob) .
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For the converse, assume that a and b are points. We have to prove that a-TTob is a
pair. Applying definition 131, this means checking four properties:

(a) aoTTeb # 1L

(b) acTTeb = aoTToboTToasTTob

(c) (a°TTeb)< = (aoTTeb)o(asTTeb)” |
(d) (aeTTob)> = (acTTob) o (asTTob) .

Properties (a) and (b) are instances of the cone rule together with the assumption that
a and b are proper. We prove (c) as follows.

(aoTTob)o(aeTTob)"
= { converse |}
aocTTobob o TToa
= { assumption: b is a point, cone rule: (4) }
aolToa
= { assumption: a is a point;
so, by corollary 137, a is a pair;

definition 131(b) with Z:=a }

= { acTTob is a non-empty rectangle }
(aoTTob)< .

Property (d) is proved symmetrically.
O

We conclude with the theorem that Gliick’s “all-or-nothing” axiom [Gliil7] is a con-
sequence of our axiom of choice.

Theorem 148 (All or Nothing)
(Va,b,R : point.a/\point.b : acRob=_11 V acReb=acTTeb) .

Proof Suppose a and b are points. By theorem 147, a-TTob is a pair. So, by lemma
132, aoTTeb is an atom. Applying the definition of an atom, we have, for all R,
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true
= { monotonicity, RCTT }
aoReb C aoTTob
= { aoTTeb is an atom, definition 123 }
acReb=_11 V acReb=acTTob .
O

The significance of the all-or-nothing rule is that, together with theorem 125, it follows
that the lattice of relations of type A~B is isomorphic to the powerset 24*P .

Theorem 149  Suppose, for types A and B, the lattices of coreflexives of types A
and B are both complete, universally distributive and extensional. Then the lattice of
relations of type A~B is saturated; the atoms are elements of the form a-TTob where a
and b are atoms of the poset of coreflexives (of types A and B, respectively). It follows
that, if the lattice of relations of type A~B is complete and universally distributive, it
is isomorphic to the powerset of the set of elements of the form acTTob where a and b
are points of types A and B, respectively.

Proof By theorems 147 and 145, aoTTob is an atom . It suffices to prove that the
lattice of relations of type A~B is saturated. This is easy: for all R of type A~B,

R

= { I is unit of composition,

lattices of coreflexives of types A and B are extensional }

(Ua:point.a:a)eRo (Ub:point.b:b)

= { distributivity of composition over U }
(Ua,b : point.a/\point.b : acRob)

= { all-or-nothing rule: theorem 148, 1l is zero of supremum }
(Ua,b : point.a /\ point.b /A acReb # LI : acTTob)

That the lattice of relations is a powerset follows from theorem 125. By theorem 147,

every pair is a relation of the form a-TTob; also, by lemma 132, a-TTob is an atom.
O

Henceforth, we assume that, for each type A, the lattice of coreflexives of type A
is complete, universally distributive and saturated (in other words, we postulate axiom
130). That is, recalling theorem 125, we assume that the coreflexives of a given type form
a powerset. We also assume that, for each pair of types A and B, the lattice of relations
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of type A~B is complete and universally distributive. Theorem 149 then states that

—with the additional postulate of our axiom of choice (axiom 106)— , for each pair of

types A and B, the lattice of relations of type A~B is a powerset with atoms of the form

aoTTob where a and b are points of type A and B, respectively. Standard properties

of powersets —the properties of set union, intersection and complementation— will be

assumed, sometimes without specific mention and sometimes with the hint “set theory”.
Summarising theorem 149, the saturation property is that

(1560) (VR = R=(Ua,b:a°TTebCR: a-TTeb)) .

Combining theorem 149 with theorem 125, we get the irreducibility property: if R is a
function with range relations of type A~B and source K, then, for all points a and b
of appropriate type,

(151) @acTTeb € UR = (Jk:keK: aoTTobCR.K) .

Theorem 149 assumes that the lattices of coreflexives (of appropriate type) are exten-
sional. Conversely, if we assume that, for all types A and B, the lattice of relations of
type A~B is extensional then so is the lattice of coreflexives of type A, for all A. This
is theorem 154. First, we need a lemma.

Lemma 152  The identity relation I, of type A satisfies, for all points a and a’ of
type A,

(183) aoTTea’ C Ip = a=a’ .

Proof The proof is by mutual implication. First,

a=a’

= { Leibniz }
acTTea’ = aoTTea
= { a point is a particle (lemma 137)
131(b) (with Z:=a) }
acTTea’ = a
= { definition a point (definition 126) }

aocTToa’ C In .

For the converse, we first prove that, for arbitrary points a and a’, acTTea’# 1L .
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acTTea’#£ 1L
= { cone rule: (4) with Ri=acTTea’ }
TToaocTToa’eTT = TT
= { cone rule: (4) (with R:=a and R:=a’), a# 1l and a’# 1L }

true .
So

aocTToa’ C Iu

= { monotonicity }
acao TToa’ca’ C aoclpea’

= { aca=a, a’ca’=a’, I5 is identity of composition }
acTTea’ C aeca’

= { composition of coreflexives is intersection }
aclTea’ C a /A aollea’ C a’

= { aoTToa’# 11 (proved above), a and a’ are atoms }
acTTea’ = a A aoTlTea’ = a’

= { transitivity }

a=a’

|

Theorem 154  Suppose, for all types A and B, the lattice of relations of type A~B
is extensional, whereby the atoms are elements of the form a-TTob where a and b are
atoms of the poset of coreflexives (of types A and B, respectively). Then, for all A,
the lattice of coreflexives of type A is extensional.

Proof By assumption, for all A, the lattice of relations of type A~A is complete and
universally distributive. It follows straightforwardly that the lattice of relations of type
A~A bounded above by any fixed relation is also complete and universally distributive.
In particular, the coreflexives (which are bounded above by I, ) form a complete and
universally distributive lattice. It suffices thus to prove that the lattice of coreflexives of
type A is saturated. That is, we have to prove that, for all coreflexives p of type A,

p=(Ua:aClp:a)

where dummy a ranges over points of type A . This we do as follows.
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(Ua:aCp:a)
= { (153) with a,a’:=a,a }
(Ua : a°TTeaCp : aoTTea)
= { one-point rule }
(Ua,b : a=b A aeTTebCp : acTTob)
= { p is coreflexive, i.e. pCla
@ TTobCIyn = {(153) with a,a’:=a,b} a=b }
(Ua,b:aeTTebCp: aoTTeb)
= { assumption: lattice A~A is saturated }

P .
]

Combining theorems 149 and 154, we get:

Corollary 155 Suppose, for all types A and B, the lattice of relations of type A~B
is complete and universally distributive. Then for all types A and B, the lattice of
relations of type A~B is extensional iff for all types A, the lattice of coreflexives of
type A is extensional.

O

Although the saturation property allows us to identify atoms of the form a-TTob
with elements (a,b) of the set AxB, it does not establish that the operators of relation
algebra (converse, composition etc.) correspond to their standard set-theoretic interpre-
tations. This is straightforward. For example, for composition we have, for all R and
S,

RoS
= { saturation: (150) }
(Ua,b:aeTTebCR: aeTTeb) o (Ub'yc:b/eTToc CS:b'oTToc)
= { distributivity }
(Ua,b,b’sc 1 acTTobCR A b/eTToc CS @ aoTTobob’oTToc)
= { b and b’ are points, so beb’#£ 1L =b'=Db
case analysis on b’=b V b’#b, one-point rule }
(Ua,byc @ aTTebCR A beTToc €S : aoTToeboboTTec)
= { b ranges over points, so bcb=b# |l , cone rule: (4) }
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(Ua,byc @ @ TTobCR A beTToc €S : aoTToc)
= { range disjunction }
(Uay,e @ (b = acTTebCR A beTTeocCS) @ aecTToc) .

Comparing the first and last lines of this calculation (and interpreting a-TTobCR as
(a,b)€R and boTToc CS as (b,c)€S) we recognise the standard set-theoretic definition
of RoS.

The important step to note in the above calculation is the use of the distributivity
of composition over union. The validity of such universal distributivity — both from
the left and from the right— is a consequence of the Galois connections (5) and (6)
defining factors. A similar step needed in the calculation for converse relies on the fact
that converse is the upper and lower adjoint of itself.

We conclude this section with a brief comparison of extensionality as formulated here
with the notion of extensionality formulated by Voermans [Voe99].

Voermans [Voe99, section 4.5] postulated that the lattice of binary relations of a
given type is saturated by relations of the form XoTToY where X and Y are particles.
Relations of this form are then shown to model pairs (x,y) in standard set-theoretic pre-
sentations of relation algebra. Here, we have postulated that each type A forms a lattice
that is saturated by points: see axiom 130; this postulate is combined with our axiom
of choice: all pers have an index. Then pairs in standard set-theoretic presentations
of relation algebra are modelled by relations of the form aoTTob, where a and b are
points. Because particles are points (corollary 136), the saturation property postulated
by Voermans is formally stronger than axiom 130. As a consequence, it becomes slightly
harder to establish that, for example, the composition of two relations does indeed corre-
spond to the set-theoretic notion of composition. (See [Voe99, section 4.5] for details of
what is involved.) More importantly, the combination of axioms 106 and 130 facilitates
a better separation of concerns: axiom 106 provides a powerful extension of point-free
reasoning, whilst axiom 130 fills the gap where pointwise reasoning is unavoidable.

10 Pointwise Interpretations

We have now shown that, with the addition of axioms on the completeness and universal
distributivity of the relations of a given type together with the axiom of choice, axiom
106, the type A~B (for each type A and B) is isomorphic to the powerset 2A*B,
The proper atoms are events of the form aoTTob where a and b are points; such an
event models the pair (a,b) in conventional pointwise formulations of relation algebra.
Specfically, the property

acTTeb C R
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models the property (a,b)€R in conventional formulations, whilst
acReb =11

models the converse property (a,b)¢#R.

A major benefit of enabling pointwise reasoning in this way is that we can derive
pointwise interpretations of the operators in the calculus in a precise and concise fashion.
This section is about the pointwise interpretations of some of the less familiar operators.
The properties presented are needed in later sections.

Lemma 156 gives pointwise interpretations of the factor operators.

Lemma 156  For all relations R of type A~C and S of type B~C (for some A, B
and C) and all points a and b,

aTTob CR/S = (boS)> C (acR)> .
Dually, for all relations R of type C~A and S of type C~B, and all points a and b,
aoTTob C R\S = (Rea)< C (Seb)< .

Proof By mutual implication:

aoTTob C R/S
= { definition of factor }
aoTToboS C R
= { a and b are points, monotonicity and domains }

(b:S)- C (asR)-
= { monotonicity }
aoTTo(beS)> C aoTTo(asR)-
— { domains }
aoTTebeS C aoTToacR
— { a is a point (so a-TTea=a) }
aoTToboS C aoR
= { a is a coreflexive }
Qo TToboS C R
= { definition of factor }

aoTTob C R/S .
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The second equivalence is proved similarly.

aoTTob C R\S
= { definition of factor }
RoaoTTob C S
= { monotonicity and coreflexives }

(Rea)- C (¢b)-
= { (as in above calculation) }
aoTTob C R\S .

O

For relations R and S with the same source, the relation R/SN(S/R)” is the “sym-
metric left division” of R and S. Dually, for relations R and S with the same target,
the relation R\SN(S\R)" is their “symmetric right division”. The following corollary of
lemma 156 gives a pointwise interpretation of these “division” operators.

Corollary 157 For all relations R and S with the same source, and all points a and
b (of appropriate type),

aoTTob € R/SN(S/R)” = (acR)> = (boS)> .
Dually, for all relations R and S with the same target, and all points a and b (of
appropriate type),

aoTTeb C R\SN(S\R)" = (Rea)< = (Seb)=< .
Proof Straightforward application of lemma 156 and anti-symmetry:

a°TTeb C R/SN(S/R)"
= { infima and converse }
asTTob C R/S A boTTea C S/R
= { lemma 156 }
(b:5) C (asR)> A (asR)- C (bsS)-
= { anti-symmetry }
(aoR)> = (beS)> .

O
The pointwise interpretations of the left and right per domains are given by the
following lemma.
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Lemma 158  For all relations R of type A~B and all points a and a’ of type A,
aTloa’ CR< = aCR< A (aR)>=(a’°R)> A a’'CR-< .
Dually, for all relations R of type A~B and all points b and b’ of type B,
boTTeb’ CR- = bCR> A (Rob)<=(Rob’)< A b'CR> .
Proof Assume that b and b’ are points. Then
boTTob! C R-
= { definition (28) and lemma 34 }
boTTob’ C R>oR\RoR>
= { domains (using mutual implication) }
bCR> A boTTeb’ € R\R A b'CR>
= { corollary 157, with R,S:=R,R }
bCR> A (Reb)< = (Reb’)< A Db'CR> .

The dual property follows from the distributivity properties of converse.
O
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Part III
Applications

11 Coverings

This section is motivated by Riguet’s study of so-called “relations de Ferrers” [Righ1]
(which we call “staircase relations” [Bac21]). A central element in Riguet’s study was a
theorem characterising such relations as the “réunion” of “rectangles” that have a very
special property. We abstract the notion of a “polar covering” of a relation and we prove
the theorem that every relation has a polar covering. See definition 163 and theorem
166. In anticipation of section 12, we also define the notion of a “non-redundant” polar
covering. For finite relations, it is straightforward to show that a non-redundant polar
covering can always be constructed from a given polar covering of the relation. The
algorithm may, however, not be practical; moreover, there are infinite relations that do
not have a non-redundant polar covering. (The less-than relation on real numbers is an
example.)

11.1 Completely Disjoint Rectangles

Definition 159 (Indexed Bag/Set) Suppose R is a function with source K. Then
R is said to be a bag indezed by K. The values R.k, where k ranges over K, are said
to be the elements of R. In the case that R is injective, it is said to be an indezed
set.

O

The distinction between “bag” and “set” in definition 159 emphasises the fact that
the same element may occur repeatedly in an indexed bag whereas each element occurs
exactly once in an indexed set. That is, an indexed set R has the property that, for all
j and k in K,

Rj=Rk = j=k .

We normally apply definition 159 to bags/sets of rectangles. Specifically, suppose A, B
and K are types and R 1is a function with source K and target rectangles of type A~B.
Then ‘R is said to be an indexed bag of rectangles; it is an indexed set of rectangles
if it is injective.

Two relations R and S are disjoint if RNS =11 . One can show that, for all rectan-
gles R and S,

RNS=1 = R<NS<=1L V R-NS>= 11 .
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(This is a consequence of lemma 66.) The definition of “completely” disjoint strengthens
the disjunction to a conjunction. Note that we don’t use continued equality because the
symbol “_ LIl " is overloaded.

Definition 160 (Completely Disjoint) Two rectangles R and S are said to be
completely disjoint iff

R<NS<=1 A R-NS>= 11 .

Suppose R is an indexed bag of rectangles. Then R is said to be a completely disjoint
bag of rectangles iff, for all j and k in the index set of R,

Rj#Rk = (Rj)<N(RK)=<=1L A (Rj)>-N(RK)>= 1L .

R is said to be a completely disjoint set of rectangles iff in addition it is injective. That
is, R is a completely disjoint set of rectangles iff, for all j and k in the index set of
R,

j£k = (Rj)<N(RK)<=1L A (Rj)-N(RK)> =1L .

We give several constructions of bags/sets of rectangles. When we do so, the ver-
ification that the bags/sets are completely disjoint is achieved by mutual implication.
The “if” part is established by proving its contrapositive. That is, the proof obligation
becomes to show that, for all indices j and k,

Rj=Rk = (Rj)<N(R.k)<# 1L N (R.j)>N(R.k)> # LL
which simplifies to, for all j,
R.j# 1L .

(The same simplification is valid whether the construction yields a bag or a set.) Thus
the first step is to show that the construction yields non-empty elements. The “only-if”
part is to show that, for all indices j and k,

Rj#Rk = (Rj)<N(R.k)<=1L A (Rj)>N(R.k)>= 1L .
For this part, the following lemma is exploited.
Lemma 161  For all relations R and S,

R<NS< = 1. = RS =1 .
Symmetrically,

R-NS> = 1L RoS™ = 1l .
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Proof First note that
R<NS< = 1. = R<oS< = 1l
since the intersection of coreflexives is the same as their composition. Then

R<oS< = 1L
= { 1L 1is zero of composition }
RY0R<0S<0S = 1L
= { domains: (18) }
R”6S = 1L
= { 1L 1is zero of composition }
RoR”0S0oS” = 11
= { monotonicity, [ R=1L =RC 1l | (applied twice) }
(INReR”)o(INS-S”) =1L
= { domains: definition 15 }

R<oS< = 11 .

The lemma follows by mutual implication.
O

The foregoing discussion is formalised in the following lemma.
Lemma 162 Suppose R is an indexed bag of rectangles. Then R is completely
disjoint iff
(Vj = Rj#1LL)
AN Vik = Rj#ZRKk = (Rj)eRk = LL A Rjo(RX) = 11) .
Also, R is completely disjoint and injective —i.e. an indexed set— iff
(Vj=Rj#LL)
A (Vik = j#£k = (Rj)7oRk = 1L A Rjo(R.k) = 11) .
Proof
R is completely disjoint
= { definition 160 }
Vik = Rj#Rk = (Rj)<N(R.k)<=1L A (R.j)>N(R.k)>= L)
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- { mutual implication }
(Vik = Rj£Rk & (Rj)-N(RK)=-= 1L A (Rj)>N(RK)>= LL)
A (Vik = Rj£ARXk = (Rj)<N(RK)<= 1L A (Rj)-N(R.XK)-

I
E

= { contrapositive; lemma 161 }
(Vjk = Rj=Rk = (Rj)<N(R.k)<# LL V (R.j)>N(R.K)> # LL)
AN (Vik @ Rj#Rk = Rjo(RK) =1L A (Rj) -Rk=_1L)
= { Leibniz, reflexivity of equality, idempotence of intersection }
(W = (Rj)<#1L V (Rj)-#1L)
AN (Vjk = Rj#ZRKk = R.jo(R.k)” =1L A (Rj)" Rk = 1)
= { domains
([(Re=1l)=(R=1L)=(R>=11)] with R:=R.j)) }
(Vj = Rj#1L)
A (Vjk © Rj#RXK = Rjo(Rk)” =1L A (R.j)"eR.k=L1L) .
Injectivity of R is the property that (Vj,k @ Rj=R.k = j=k) . The characterisation

of completely disjoint and injective thus follows by the use of Leibniz’s rule.
O

11.2 Polar Coverings

Definition 163 (Polar Covering) Suppose R is an indexed bag of rectangles. (See
definition 159.) Then R is said to be polar if, for all elements U and V of R,

U<C V< = U2 V> .

Also, R is said to be linear if, for all elements U and V of R,
U<Ccv< VvV V<ClU- .

(Equivalently,
u-cv- Vv V-Cu- .

A relation R is covered by R if R=UR. The covering R is non-redundant if there
is a total function D from indices of R to a set of completely disjoint subrectangles of
UR that “defines” the elements of R. To be precise, the covering R is non-redundant
if there is a function D with the same source as R such that
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(Vk = rectangle.(D.k) A D.kCR.K)
A (Vik = Dj£Dk = (Dj)-N(DK)<=LL A (Dj)-N(D.K)> = LL)
N (Vjk = Dj=Dk = Rj=RK) .

In such a case, we call the indexed bag D a definiens of R.
O

Lemma 164  Suppose R is an indexed bag of rectangles and suppose R is polar.
Then, for all elements U and V of R,

U=V = U<=V-< .
Proof

u=v
= { U and V are rectangles: lemma 65 }
U<=V< A U-=V-
= { anti-symmetry }
Uu<cv< A U<DV< A U-CV- A U-DV-
— { R is polar: definition 163 }
Uu<cv< A U-Cv-
= { anti-symmetry }
U<=V< .
]

Definition 165 Suppose R is a polar covering of relation R. The polar ordering of
the elements of R, denoted henceforth by the symbol C, is defined by, for all indices j
and k of R,

RJCRKk = (Rj)< C(RXKk)< .
Equivalently,

RjCRk = (RK)-C (Rj)- .
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As suggested by the notation, the relation C is a provisional ordering on the elements
of any indexed bag of relations; it is anti-symmetric whenever R is an indexed bag of
polar rectangles by virtue of lemma 65 and definition 163 of “polar”.

Definition 163 defines a bag of rectangles rather than a set of rectangles. (Recall that
a set is an injective bag: see definition 159.) Generally it is easier to construct a bag
rather than a set of polar rectangles that cover a given relation. Nevertheless, sets are
more desirable than bags. Our theory of indexes of a relation provides the mechanism
to construct sets rather than bags. See theorem 166. Note that a definiens D of an
indexed set R is also a set (because R.j=7R.k equivales j=k).

The adjective “polar” alludes to the property that the left and right domains of a
covering are “polar” opposites: the larger the one, the smaller the other. The notion was
introduced by Riguet [Rigb1] in the context of a theorem on “relations de Ferrers”. More
precisely, Riguet introduced the notion of a lznear polar covering. For further details of
Riguet’s theorem see the section on staircase relations in [Bac21].

In the case of the empty relation, 11 , there are two distinct polar coverings according
to our definition. One is the empty function (the unique function with source the empty
set) and the second is the constanct function with source the unit type that returns
1L . The former is the preferred covering because it means that, for all relations R, all
elements of a polar covering of R are proper (different from Ll ). We call such polar
coverings proper coverings and, from now on, make the assumption that all coverings
are proper.

Theorem 166 Suppose R is a relation of type A~B and suppose | is a (coreflexive)
index of R-. Define the function R by

R = (b:bCJ:ReboR\R) .

Then R is an injective, polar covering of R. (Note: the source of the function R is the
subset of B corresponding to the points given by the range restriction on the dummy
b.)

Proof The elements of R are obviously rectangles because its index set is a set of
points. (See lemma 138.) The “polar” property is established as follows. For all b, b’
such that bCR> and b’CR>,

(Rob’oR\R)> C (RoboR\R)-

= { assumption: bCR> and b’ CR>, domains }
(b'oR\R)> C (boR\R)-

= { lemma 156 with R,a,a’ := R\R,b,b’ }
beTTob’ C (R\R)/(R\R)
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= { (13 }
boTTob’ C R\R

= { lemma 156 }
(Reb)< C (Reb’)-

= { ICR\R, domains }
(RoboR\R)< C (Rob/oR\R)< .

The property R=UR is established as follows.

UR

= { definition of R and saturation axiom (129) }
RoJoR\R

= { R =RoR- and J =]JoR> (since | is a coreflexive index R) }
RoR-oJoR>oR\R

= { lemma 37 }
RoR-oJoR~oR\R

= { J is an index R, definition 78(d) }
RoR-oR\R

— {  R=RoR- }
RoR\R

= { cancellation: (11) }
R .

This completes the proof that R=UR . The final task is to show that the function R
is injective. To this end, suppose b and b’ are points such that bC ] and b’ C]. We
have to show that

b=b’ & RoboR\R = Rob’oR\R .
We have

RoboR\R = Rob’oR\R
= { R is a polar covering (proved above), lemma 164 }

(ReboR\R)< = (Rob’oR\R)<
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= { (R\R)< =1, domains }
(Reb)- = (Reb)-

= { bCJCR- and b’CJCR~, lemma 158 }
boTTeb’ C JoTTo] N R~

= { theorem 23(b), J is a coreflexive, so J<=]=]> }
boTTob’ C JoR-o]J

= { J is a (coreflexive) index of R-, definition 105(b) with P:=R- }
boTTob’ C J

= { b and b’ are points, | is a coreflexive, (153) with a,a’:=b,b’ }
b=b’ .

O

Example 167  The less-than relation on real numbers has a polar covering. Specif-
ically, suppose x is a real number. Let lt.x denote (the coreflexive representing)
{y:yeR:y<x} and al.x denote (the coreflexive representing) {y:ycR:x<y}. The-
orem 166 predicts that

(x : x€R : lt.xo TT o al.x)

is a polar covering of the less-than relation. (The only non-trivial part is to check that
the at-most relation < equals <\<.)

This covering is, of course, not unique. More significantly, it is not non-redundant
since

(Vuy @ ou<x<v oo x#FI(utx) A u<i(utx) <v) .

For any real number x, it is possible to remove the rectangle defined by x without
affecting the supremum.
O

Given the straightforwardness of theorem 166, it is inevitable that our focus is not on
the polarity of coverings but on the existence of non-redundant coverings. The adjective
“non-redundant” is meant to express the property that removal of any element from a
covering R will have the effect of strictly reducing UR. Example 167 demonstrates
that the less-than relation on real numbers has a polar covering but, as we shall see,
the less-than relation on real numbers is an example of a relation for which there is no
non-redundant covering.
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The notation “D” in definition 163 is chosen primarily to express the property that
D.k uniquely “defines” (or “identifies”) R.k. Conveniently, it also expresses the prop-
erty that the relation covered by a definiens (the relation UD) is always difunctional:
see lemma 169.

A polar covering is not obviously redundant in the sense that, for all elements U
and V of R,

ucv = u=v .

(The easy proof is left to the reader.) That is, it is not possible to identify two elements
U and V such that U is a proper subset of V and, thus, U can be removed from R
without affecting UR . Example 167 shows that the less-than relation on real numbers
has a polar covering that has non-obvious redundancies. Example 168 is an example of a
finite relation for which the polar covering constructed by theorem 166 has a non-obvious
redundancy.

Example 168  Fig. 4 shows a relation R of type {A,B,C}~{«,f,y,0}. The four re-
lations depicted in fig. 5 are rectangles of type {A,B,C}~{«,B,y,0} (as indicated by the
surrounding rectangular boxes); for greater clarity only edges connecting nodes in their
left and right domains have been displayed.

Figure 4: A Relation of Type {A,B,C}~{«,f,y,0}

These four rectangles are the elements of the polar covering constructed by theorem
166. The (reflexive-transitive reduction of the) ordering on the elements of the covering
is depicted by arrowed brown lines. Take care to note how the depicted edges correspond
to the ordering of the left domains of the rectangles:

{B}C{AB} N {B}C{B,C} N {AB}C{A,B,C} A {B,C}C{AB,C}
and to the “polar” ordering of their right domains:
{08,750} 2{et,d} A {x,B,y,6} 2{B,0} A {e,d}2{8} A {B,0}2{8} .

The top rectangle is redundant (but not “obviously” so). By removing this rectangle,
one obtains a non-redundant polar covering: this is the polar covering that is the dual of



Figure 5: Polar Covering
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the covering detailed in theorem 166 (thus indexed by {A,B,C} rather than {«,(,y,5}).
The definiens of this covering is depicted by the bold green edges in fig. 5.

The red and blue squares surrounding instances of the elements of {A,B,C} and
{e,B,v,0} should be ignored for the moment. We return to this example later;
O

11.3 A Definiens is a Difunction

Crucial to establishing non-redundancy of a covering is the construction of a definiens.
Those familiar with the theory of difunctions will immediately recognise that a definiens
of a covering is necessarily a difunction (because a relation is a difunction iff it is the
union of a set of completely disjoint rectangles). Because we don’t need the full theory
here, we present just the relevant property and its proof:

Lemma 169 Suppose D is a function such that

(Vk = rectangle.(D.k))
A (Vjk = Dj#Dk = (Dj)<N(DK)-= LL A (Dj)-N(D.k)- = LL) .

Then UD is a difunction.

Proof Recalling lemma 64 (every rectangle is a difunction), we know that
(170) <Vk iz D.ko(D.k) oDk C D.k> .
Aiming to exploit this property, we calculate:
(UD)”oUD
= { distributivity }
(Uj,k = (D.j)” o D.k)
= { range disjunction: D.j=D.k V D.j#D.k }
(Ujk : D.j=D.k : (D.j)"oD.k) U (Uj,k : D.j#D.k : (D.j) -D.k)
= { D is, by definition, a completely disjoint bag rectangles
lemma 162 }
(Uj,k : D.j=D.k : (D.j)"D.k)
= { Leibniz, nesting }

(Uk = (Uj: D.j=D.X : (D.k) oD.k))

N

{ by reflexivity of the subset relation,
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(Vj : D.j=D.Xk : (D.k)°DXk C (D.k)"D.K)
monotonicity, definition of supremum }

(Uk = (D.k)”oD.K)

Thus,
UDo (UD)"” cUD
C { above, monotonicity, distributivity }
(Uj,k : Djo(D.K) o D.k)
C { similar calculation to that above }

(Uk : D.ko (D.k)" o D.k)
c (@) )
(Uk:D.K)
= { definition }
uD .

It follows, by definition of a difunction, that UD is a difunction.
O

12 The Diagonal

This section anticipates the study of block-ordered relations in section 13. We introduce
the notion of the “diagonal” of a relation in section 12.1 and formulate some basic
properties in section 12.2.

In section 11.2, we introduced the notion of a polar covering of a relation. Theorem
166 shows how to construct a polar covering for any given relation but example 167
demonstrates that the construction does not always produce a non-redundant covering.
In section 12.4, we explore conditions under which the diagonal of the relation guarantees
the non-redundancy of the covering.

12.1 Definition and Examples

Straightforwardly from the definition of factors, properties of converse and set intersec-
tion,

(171) R is difunctional = R = RN(R\R/R)"” .

More generally, we have:
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Lemma 172  For all R, RN (R\R/R)" is difunctional.

Proof Let S denote RN(R\R/R)”. We have to prove that S is difunctional. That is,
by definition,

SoS§".S C S .

Since the right side is an intersection, this is equivalent to
S05”eS C R A S057.S C (R\R/R)” .

The first is (almost) trivial:

NEREEN
C { SCR, SC(R\R/R)",
converse, monotonicity }

RoR\R/RoR

N

{ cancellation }

R .

In the above calculation, the trick was to replace the outer occurrences of S on the
left side by R and the middle occurrence by (R\R/R)”. The replacement is done the
opposite way around in the second calculation.
S0§”-S C (R\R/R)"
& { SC(R\R/R)”, SCR, monotonicity and transitivity }
(R\R/R)”=R"= (R\R/R)" C (R\R/R)"
= { converse |
R\R/RoR=R\R/R C R\R/R
= { Galois connection }
RoR\R/RoRoR\R/RoR C R
= { cancellation, monotonicity and transitivity }
true .

O
We call the relation RN (R\R/R)” the diagonal of R; Riguet [Rigbl] calls it the
“différence” of the relation. (Riguet’s definition does not use factors but is equivalent.)
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Definition 173 (Diagonal) The diagonal of relation R is the relation RN (R\R/R)".
For brevity, RN (R\R/R)"” will be denoted by AR.
]

Many readers will be familiar with the decomposition of a preorder into a partial
ordering on a set of equivalence classes. The diagonal of a preorder T is the equivalence
relation TNT". More generally:

Example 174  The diagonal of a provisional preorder T is TNT~. This is because,
for an arbitrary relation T,

TAMT/T) = TN T<o(T\T/T) oT> .
But, if T is a provisional preorder,
T<o(T\T/T) oT> = T° .

(See lemmas 54 and 57.)
O

Example 175 A particular instance of example 174 is if G is the edge relation of a
finite graph. Then A(G*) is G*N(G")*, the relation that holds between nodes a and b
if there is a path from a to b and a path from b to a in the graph. Thus A(G*) is the
equivalence relation that holds between nodes that are in the same strongly connected
component of G.

O

Example 176 In this example, we consider three versions of the less-than relation: the
homogeneous less-than relation on integers, which we denote by <z, the homogeneous
less-than relation on real numbers, which we denote by <g, and the heterogeneous less-
than relation on integers and real numbers, which we denote by z<gr. Specifically, the
relation z<g relates integer m to real number x when m<x (using the conventional
over-loaded notation). We also subscript the at-most symbol < in the same way in order
to indicate the type of the relation in question.

The diagonal of the less-than relation on integers is the predecessor relation (i.e. it
relates integer m to integer n exactly when n=m-+1). This is because <z\<z = <z,
and <z/<gz relates integer m to integer n exactly when m <zn+1 (where the sub-
script Z indicates the type of the ordering). The diagonal is thus functional and injec-
tive.

The diagonal of the less-than relation on real numbers is the empty relation. This
is because <g\<gr = <gr, <g/<r =<g and <gN>gr=_1lLg. (Again, the subscript
indicates the type of the ordering.)
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The diagonal of the heterogeneous less-than relation z<g relates integer m to real
number x when m<x<m+1. This is equivalent to [x] =m+1. The diagonal is thus a
difunctional relation characterised by —in the sense of theorem 111— the ceiling function
(x::[x]) and the successor function (m : m+1).

We leave the reader to check the details of this example. See also examples 167 and
217.

O

The following example introduces a general mechanism for constructing illustrative
examples of the concepts introduced later. The example exploits the observation that
AR is injective if the preorder R\R is anti-symmetric; that is, AR is injective if R\R
is a partial ordering. (Equivalently, AR is functional if R/R is a partial ordering.) We
leave the straightforward proof to the reader.

Example 177 Suppose X is a finite type. We use dummy x to range over elements
of type X . Let S denote a subset of 2. Let in denote the membership relation of
type X~S. That is, if S is a subset of &, xoTTeSCin exactly when x is an element
of the set S. The relation in\in is the subset relation of type S~S.

(Conventionally, in is denoted by the symbol “€” and one writes x€S instead of
xoTToS Cin. Also, the relation in\in is conventionally denoted by the symbol “C”. That
is, if S and S’ are both elements of S, SoTToS’ Cin\in exactly when SCS’. Were we
to adopt conventional practice, the overloading of the notation that occurs is likely to
cause confusion, so we choose to avoid it.)

The relation in\in is anti-symmetric. As a consequence, Ain is injective. (Equiva-
lently, (Ain)” is functional.) Specifically, for all x of type X and S of type S,

xoTTeS C Ain = xoTToSCin A (VS':xoTToS' Cin: SoTToS' Cin\in) ,

where dummy S’ ranges over elements of S. Using conventional notation, the right side
of this equation is recognised as the definition of a minimum, and one might write

x [Ain] S = S= (MINS":xeS":S)

)

where the venturi tube “="
expression on its right side.
Fig. 6 shows a particular instance. The set A" is the set of numbers from 0 to 3.
The set S is a subset of 210123 the chosen subset and the relation in\in for this choice
are depicted by the directed graph forming the central portion of fig. 6. The relation Ain
of type X ~S is depicted by the undirected graph whereby the atoms of the relation
are depicted as rectangles. Note that the numbers 0 and 3 are not related by Ain to
any of the elements of S.
O

indicates an equality assuming the well-definedness of the
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()—Cew)) G2

Figure 6: Diagonal of an Instance of the Membership Relation

12.2 Basic Properties
Primarily for notational convenience, we note a simple property of the diagonal:
Lemma 178

(AR)” = A(RY) .

Proof
(AR)”
= { definition and distributivity }
R”NR\R/R
— { factors }
RN (R”\R”/R")"
= { definition }
A(R") .
O

A consequence of lemma 178 is that we can write AR” without ambiguity. This we
do from now on.

Very straightforwardly, the relation RoR" is a per if R is difunctional. For a difunc-
tional relation R, the relation RoR" is the left per domain of R. (Symmetrically, R”oR
is the right per domain of R. See theorem 49, parts (iv) and (vi).) Thus AR (AR)"
is the left per domain of the diagonal of R. The following lemma is the basis of the
construction, in certain cases, of an economic representation of the diagonal of R and,
hence, of R itself.
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Lemma 179  For all relations R,
(AR)< = (AR)<oR< = R=<o(AR)< .
Dually,
(AR)> = R-o(AR)> = (AR)>oR~ .
Proof We prove the first equation by mutual inclusion. First,
(AR)< C (AR)<oR=<
= { AR is difunctional, theorem 49; definition: (28) }
AR-AR” C (AR)<oR/R
& { domains and monotonicity }
ARoAR” C R/R
= { definition of R/R, converse and factors }
ARoAR”eR C R
= { ARCR; AR”"CR\R/R and cancellation }
true .
Second,
(AR)<oR< C (AR)<
= { AR is difunctional, theorem 49 }
(AR)<oR< C ARcAR"”
& { domains and definition: (28) }
ARoAR”oR/R C AR-AR"
& { monotonicity and converse }
R/R-AR C AR
= { definition of diagonal }
R/R-AR C R A R/RoAR C (R\R/R)”
& { ARCR ; converse }
R/RoR C R A AR"°.R/R C R\R/R
= { cancellation; factors }

true A RoAR“oR/RoR C R
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& { cancellation and AR CR\R/R }
RoR\R/RoR C R
= { cancellation }

true .

The remaining three equalities are simple consequences of the properties of converse,
pers and coreflexives.
O

The following corollary of lemma 179 proves to be crucial later:

Lemma 180  For all relations R,
(AR)< = R< = (AR)<=R-< .
Dually,
(AR)- = R- = (AR)>=R> .
Proof The proof is by mutual implication:
(AR)< = R<
= { lemma 179 and Leibniz }
(AR)< = R<oR~
= { dual of (36) }
(AR)< = R<
= { Leibniz }
((AR)<)< = (R<)<
= { dual of (36) with R:=AR and R:=R }
(AR)< = R< .

O

12.3 Reduction to the Core

In this section our goal is to prove that if ] is an index of relation R then AJ is an
index of AR. Instantiating definition 100 with J,R:=AJ,ARthe properties we have to
prove are as follows.

(a) AJCAR ,
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(b) ARoAJ”AR = AR .
(c) (A])<eARAR=(A])< = (A])< ,
(d) (A])>°AR”ARe(A])> = (A])- .

Of these, the hardest to prove is (b). For properties (a), (c) and (d), all we need is
that ] is an arbitrary index of R. For property (b), we use the fact that an index of
an arbitrary relation R is defined to be JoRcK where | is an index of R« and K is an

index of R-.
We begin with the easier properties.

Lemma 181  Suppose | is an index of R. Then
AJCAR .
Proof
AJC AR
= {  definition 173 }
JN(J\J/])” € RN(R\R/R)"

= { domains }

JNJ<e(\J/])" 2] € RO(R\R/R)”

& { J is an index of R, so JCR; monotonicity }

J<e\J/])"2J> € (R\R/R)”

= { converse |

J-oJ\J/TeJ< S R\R/R

= { factors }
RoJ=oJ\J/Jo]J<eR C R

= { J is an index of R, definition 78(b); per domains }
R<oJoR-o]>0]\J/JoJ<oR=cJoR~ C R<oRoR-

& { monotonicity }

JeR-oJ-o]\J/JeJ<eR=c] C R .

Continuing with the left side of the inclusion:



JOR%OJ>OJ\J/JOJ<OR<OJ

= { domains }

Jo]>oR>oJ>o]\]/]o]<oR<o]<o]

= { J is an index of R; definition 78(c) and (d)
]o]>o]\]/]o]<o]

C { domains and cancellation }
J

- { J is an index of R; definition 78(a) }
R .

O

Lemma 182  Suppose ] is an index of R. Then
(A])< e AR AR" o (A])< = (A])-
Dually,
(A])- = AR" = AR = (A])- = (A])-
Proof
(AJ)< o AR = AR™ o (A])-
{ AR is a difunction, theorem 49 }
(AJ)< ° (AR)= < (A])-
{ lemma 179 (and symmetry) }
(AJ)< © (AR)<oR=e (AR)= e (A])-
{ by lemma 181 and monotonicity, (AJ)<C (AR)<
(&])<oR== (A])-
{ (A])<CJ= (since AJCT) }
(A])< oJ<oR<oJ<o (A])
{ J is an index of R, definition 78(c) }
(AJ)=eJ<o(A])=
{ (A])<CJ- (since AJCT) }
(A])= .

}

}
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O
In order to prove (b), we prove a more general theorem on cores. First, a lemma:

Lemma 183 Suppose R, C, A and p are as in definition 90. Then
R-oR\R/RoR< = p oC\C/CoA .
Proof
R>oR\R/RoR<
= { (36 }
(R-)- o R\R/Ro (R<)-
= { R< = A”0oA, R~ = p”op, and domains }
p>oR\R/RoA>
= { lemma 92 }
p=o (A7 Cop)\(A"eCop)/(A"oCop)o)-
= { lemma 44 with f,g,U,V,W:=pA,C,C,C }
p o (A< C)\C/(Cop=)oA
= { C=AoRop”;80 A<cC=C=Cop=< }
p o C\C/CoA .
]

Theorem 184  Suppose R, C, A and p are as in definition 90. Then
AR = AN oACop A AC = AoARop” .

In words, if A and p witness that C is a core of R, then A and p witness that AC is
a core of AR.

Proof
AR
= { definition }
RN (R\R/R)"
= { domains and converse }

R N (R>oR\R/RoR<)"
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= { lemma 183 }
R N (p”oC\C/CoA)"
= { lemma 92 }
AZoCop N (p7oC\C/CoA)”
= { distributivity of converse and functional relations }
Ao (CN(C\C/C)")ep
= { definition 173 }
A oACop .

Hence

AoARop"
= { above }
AoA"oACopop”
= { A and p are functional }
A<oACop<
= { ACCC;s0 (AC)< C C< and (AC)> C C>
lemma 94 and domains }

AC .
O

We are now in a position to prove the final property (b) above.
Lemma 185 Suppose | is an index of R. Then
ARoAJ“sAR = AR .

Proof We begin by noting that theorem 184 applies with C instantiated to | and A
and p defined by A =J<oR< and p = J>oR~. This is because ] is a core of R : see
theorem 91. So

ARsAJ”s AR

= { theorem 184 with CA\,p := ], J<oR<,J>oR- }
AR (Ao AR o p¥)” o AR

= { converse }

AR o p o AR o A o AR
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Theorem 186

{ definition of p and A, (J<oR<)” = R=<o]J<
AR o ]>oR> o AR" o R<o]< o AR
{ per domains }
AR5 (AR)- o J>oR~ o AR” o R<0J<0 (AR)< o AR
{ lemma 179 }
ARG (AR)>0R- o J>oR- o AR” o R<cJ<oR<o(AR)< o AR
{ lemma 87 }
AR©(AR)>0R- o AR” o R<o (AR)< o AR
{ lemma 179 }
ARo(AR)~ o AR” o (AR)< o AR
{ per domains }
AR o AR” o AR
{ AR is difunctional, theorem 49 }
AR .

Putting all the lemmas together, we have:
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}

Suppose | is an index of R. Then AJ is an index of AR.

Proof Lemmas 181, 182 and 185 combined with definition 100 (instantiated with
J,R:=AJ,AR).
]

We conclude with a beautiful theorem.

Theorem 187  Suppose | is an index of R. Then

A] g J<OAROJ> /\ AR —= R-<OAJOR> .

Proof We first prove, by mutual implication, that the two equations are equivalent.
Assume that

Then,

AR = R<oAJoR~ .

J<OAROJ>

{ assumption }
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J<oR<oAJoR-o]>

= { AJCTJ,s0 (A])<CJ< and (A])>C]J>; domains }
J<oR<o]<0AJo]>oRro]>

= { J is an index of R, definition 78(c) and (d) }
J<oAJo]>

= { reverse of middle step }
AJ .

Conversely, assume
A] = J<OAROJ> .
Then,
R~<o A] o R~
= { assumption }
R<OJ<OAROJ>OR>
= { lemma 179 }
R<o]<o (AR)<0R<OAROR>0 (AR)>0]>0R>

= { lemma 181 and domains }
R<oJ<oR<0ARoR~o]J>0R~

= { definition 78(c) and 78(d) }
R<oARo R~

= { lemma 179 and domains }
AR .

Combining the two calculations, the two equations are equivalent and, therefore, it suf-
fices to prove just one of them*. We prove the second by mutual inclusion:

AR
= { AR is difunctional }
AR AR” o AR

41t is not necessary to prove the equivalence of the two statements in order to prove the theorem; we
could have omitted the second calculation. But some redundancy in proofs enhances their reliability.
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= { lemma 185, converse }
ARoAR” 0 AJo AR" o AR

= { AR is difunctional, theorem 49(iv) and (vi) }
(AR)<o A] o (AR)-

= { lemma 179 }
(AR)<oR<oAJoR>»o(AR)>

N

{ domains are coreflexive }

R<oAJoR>

N

{ lemma 181 and monotonicity }
R<oARoR>
= { lemma 179, domains }

AR .
O

12.4 Non-Redundant Polar Coverings

We have shown in theorem 166 how to construct an injective polar covering of a given
relation R. Now we consider circumstances in which the covering is non-redundant. In
the case that R is difunctional, it is straightforward to show that the covering constructed
in theorem 166 is non-redundant and is its own definiens. (We omit the proof because
it is a special case of theorem 188.) This suggests that, in general, a covering of the
diagonal of a relation R can be used as the definiens of a covering of R. This, however,
is not the case: see example 195. It is true so long as the diagonal is sufficiently large.
Specifically:

Theorem 188  Suppose R is a relation and suppose (AR)>=R>. Suppose | is an
index of R-. Then the function D defined by

D = (b:bCJ:ARcboAR\AR)

is an injective, polar covering of AR. Moreover, if (AR)>=R>, for all points b and b’
such that bC ] and b'CJ,

b#b = (ARoboAR\AR)< o (ARob’oAR\AR)< = 1l
and

b#b = (ARcboAR\AR)- o (ARob’oAR\AR)> = 11 .
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It follows that, if (AR)>=R>, D is a completely disjoint, injective, polar covering of
AR.

Proof That D is an injective covering of AR is an application of theorem 166 with
R:=AR: it suffices to note that the assumption (AR)>=R- is equivalent to the assump-
tion (AR)-=R~-, by lemma 180, and so | is an index of (AR)-.

We use lemma 162 to show that D is completely disjoint. First, the elements are
non-empty because D is a polar covering. That is,

(189) (Vb : bCJ : ARcboAR\AR # 1L) .

For the second proof obligation (see lemma 162), assume that b # b’. We begin by
noting that we can exploit (52) to rewrite the definition of D. Specifically,

ARoboAR\AR
= { bCJC(AR) }
ARsbo(AR)- o AR\AR
- { AR is difunctional, (52) }
ARobo (AR)- .
That is,

(190) D = (b:bCJ:ARsbe(AR)-) .

We use this defintion of D to prove that its elements are completely disjoint. First, the
left domains. We have, for all points b and b’ such that bCJ and b’C]J,

ARobo(AR)-o(ARob’o(AR)-)"

= { converse, (AR)- is a per, b’ is coreflexive }
ARobo(AR)-ob’o AR

= { bC]J and b’C]J, b, b’ and | are coreflexive }
ARoboJo(AR)-oJob’o AR

= { J is an index of (AR)-, lemma 104 with R:=(AR)- }
ARoboJob’o AR

= { bC]J and b’C]J, b, b’ and | are coreflexive }
ARobob’o AR”

= { assumption: b #b’, (127) }
1.
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That is,
(191) (Vbb' : bCJAb#Db’ : (ARobo(AR)-)o(AReb’o (AR)-)" = LL1) .
The calculation for the right domains is similar. We have:
(ARobo(AR)-)"o(ARob’o (AR)>)
= { converse |
(AR)~oboAR” o ARob’o (AR)-
= { theorem 49 }
(AR)-obo(AR)>ob’o(AR)~
= { bo(AR)-ob’ = bob’ (see last calculation) }
(AR)-obob’o (AR)>
= { assumption: b#b’, (127) }
1.
That is, applying lemma 161,
(192) (Vbb" : bCJAb#DbL’ : (ARobo(AR)-)’c(ARob'o(AR)-) = LL) .
The combination of (189), (191) and (192) together with lemma 162 establishes that the
elements of D are completely disjoint.
]

It is now easy to see that D is a definiens of the injective polar covering of R defined
in theorem 166:

Theorem 193  Suppose R is a relation such that (AR)>=R>. Suppose also that ] is
a coreflexive index of R-. Then the indexed bag R of rectangles defined by

R = (b:bCJ: ReboR\R)

is a non-redundant, injective, polar covering of R. (In particular, R is an indexed set.)
A definiens of the covering is the indexed set D defined by

D = (b:bCJ:ARcboAR\AR) .
Moreover, by theorem 188, D is a covering of AR.

Proof Theorem 166 shows that R is an injective, polar covering of R. It remains to
show that it is non-redundant as witnessed by the function D.

We must first prove that, for all points b such that bCJ, D.b CR.b. To this end,
we use (190) as definition of D. Assume b is a point such that bCJ. Then
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D.bCR.b

= { (190) and definition of R}
ARsbo(AR)- C RoboR\R

& { AR CR, monotonicity }

(AR)- CR\R

= { factors }
Ro(AR)- C R

= { assumption: (AR)>=R>; so, by lemma 180, (AR)-=R- }
RoR- C R

= { per domains }
true .
That the elements of D form a completely disjoint set of rectangles was shown in theorem

188. It remains to show that D “defines” R . We have, for all points b and b’ such
that bC ] and b'CJ,

R.b =R.b’

- { R is injective (theorem 166) }
b="’

- { D is injective (theorem 188) }
D.b=D.b’ .

O

Example 194

Fig. 7 pictures a small example of the theorems in this section. Fig. 7(a) depicts a
(core) relation R of type {«,B,y}~{A,B}; other parts of the figure depict the result of
applying different functions to the relation R. (Heterogeneous relations are depicted
as bipartite graphs whereas homogeneous relations are depicted as directed graphs.)
Specifically, these are as follows.

(a) R , (b) AR
(c) R\R , (d) R/R,

() ReAsR\R ,  (f)RoBoR\R ,
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(g) ARcAoR- ,  (h) ARsBoR- ,
(i) R/RoaoR , (j) R/RoBoR , (k) R/RoyoR .

We have chosen to depict the relation as a graph (rather than a boolean matrix)
because —for very small examples such as this— it is much easier for a human being to
perform the necessary calculations by manipulating the graphs. For example, computing
the composition of two relations is executed by chasing edges.

The example has been chosen deliberately to illustrate a number of aspects simulta-
neously. Note particularly that, for the relation depicted, (AR)>=R> but (AR)<#R-.
This means that theorem 193 is applicable but its dual is not.

Considering the application of theorem 166, note that the combination of figs. 7(e)
and 7(f) covers the relation R; also the relation depicted by 7(g) uniquely identifies
the rectangle RoAoR\R shown in fig. 7(e) whilst 7(h) uniquely identifies the rectangle
RoAoR\R shown in fig. 7(f). In contrast, figs. 7(i), (j) and (k) depict the relations
R/RoxoR, R/Rof3oR and R/ReoyeoR but none of these is identified by any subrectangle:
the rectangles depicted by figs. 7(i) and (k) are disjoint but both have a non-empty
intersection with the rectangle depicted by fig. 7(j).

O

Example 194 is an example of a relation R such that (AR)>=R> but (AR)<#R<. It
is thus the case that, for this example,

R = (Ub:bC(AR)>:RoboR\R) .

(Note the range restriction on the dummy b.) Curiously, in spite of the fact that
(AR)<#R<, it is also the case that

R = (Ua:aC(AR)<:R/Reca°R) .

(Again, note the range restriction on the dummy a. To check the validity of the equation,
it suffices to observe that the relation R is the union of the relations depicted by figs. 7(i)
and (k).) This is also a non-redundant polar covering of R. One might thus conjecture
that, in all cases, the diagonal AR is the key to finding a non-redundant polar covering
of a given relation R. However, this is not always the case, as evidenced by the following
example.

Example 195
The top diagram of fig. 8 pictures a relation R of type {A,B,C}~{«x,p,y} such that

AR is the empty relation. The example is a simplification of the example on p.161 of
[KGJO00].
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(a) Relation

(b) Non-redundant covering

& ¢ ©
(c) A Definiens

Figure 8: Empty Diagonal and Non-Redundant Covering

The three components of the polar covering predicted by theorem 166 are depicted
in the second row. (The index set of the covering is {«,3,y}.) Note that the covering
is non-redundant: the third row pictures a function that satisfies the definition of a
definiens of the covering. This contradicts [KGJ00, theorem 1,p.159]: each of the edges
in this third row is what [KGJO0O] calls an “isolated point” in a “maximal rectangle” but
none is a “point” in the diagonal.

O

13 Block-Ordered Relations

In general, dividing a subset of a set A into blocks is formulated by specifying a func-
tional relation f, say, with source® the set A; elements a0 and al are in the same
block equivales f.a0 and f.al are both defined and f.a0=f.al. In mathematical ter-
minology, a functional relation f defines the partial equivalence relation f”of and the
“blocks” are the equivalence classes of f~of. (Partiality means that some elements may
not be in an equivalence class.)

5In the terminology we use, a relation of type A~B has target A and source B.
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Given functional relations f and g with sources A and B, respectively, and equal
left domains, relation R of type A~B is said to be block-structured by f and g if there
is a relation S such that R = f”oSog. Informally, whether or not a and b are related
by R depends entirely on the “block” (f.a, g.b) to which they belong. Note that it is
not required that f and g be total functions: it suffices that f>=R< and g>=R>. The
type of S is C~C where C includes {a: aof> = a: f.a} (equally {b: bof> = b: g.b}).

Definition 196 (Block-Ordered Relation) Suppose T is a relation of type C~C,
f is a relation of type C~A and g is a relation of type C~B. Suppose further that T
is a provisional ordering, i.e. that

(197) TNT " CIT A T=(TNT)eTo(TNT) A TTCT .
Suppose also that f and g are functional and onto the domain of T. That is, suppose
(198) fof’ = f< = TNT” = g- = gog” .

Then we say that the relation f"oTog is a block-ordered relation. A relation R of
type A~B is said to be block-ordered by f, g and T if R=f"oTog and f oTog is
a block-ordered relation.

]

The archetypical example of a block-ordered relation is a preorder. Informally, if R
is a preorder, its symmetric closure RNR" is an equivalence relation, and the relation
R defines a partial ordering on the equivalence classes. Equivalently, if a representative
element is chosen for each equivalence class, the relation R is a partial ordering on the
representatives. Theorem 201 makes this precise.

Assume that T is a provisional preorder. That is, by definition 53 and lemma 57,

(199) T<=T> AN T<CT A T-CT A ToTCT .
Also, by lemma 59,

(200) TNT = T< = T~ .

Theorem 201  Suppose T is a provisional preorder and suppose | is a (coreflexive)
index of T<. Then JoTo] is an index of T and is a provisional ordering. Hence, T is a
block-ordered relation.

Proof That JoTo] is an index of T is the combination of (200) and theorem 107. So,
it remains to show that JoToJ is a provisional ordering. That is, we must show that
JeTe] 1 (JoTe])™ < 1.
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JeTe] N (JoTe])”

= { J is coreflexive, distributivity }
Jo(TNT)o]
c [ (0 )
JoT=o]
= { J is an index of T~, definition 105(b) with P:=T~< }
J
- { J is coreflexive }
I .

O

Identifying a block-ordering of a relation —if it exists— is important for efficiency.
Although a relation is defined to be a set of pairs, relations —even relations on finite
sets— are rarely stored as such; instead some base set of pairs is stored and an algo-
rithm used to generate, on demand, additional information about the relation. This is
particularly so of ordering relations. For example, a test m<mn on integers m and n
in a computer program is never implemented as a table lookup; instead an algorithm
is used to infer from the basic relations 0 <1 together with the internal representation
of m and n what the value of the test is. In the case of block-structured relations,
functional relations f and g define partial equivalence relations f”of and g“og on
their respective sources. (The relations f~of and g~ og are partial because f and g are
not required to be total.) Combining the functional relations with an ordering relation
on their (common) target is an effective way of implementing a relation (assuming the
ordering relation is also implemented effectively).

Example 202 Suppose G is the edge relation of a finite graph. The relation G* is, of
course, a preorder and so is block-ordered. The block-ordering of G* given by theorem
201 is, however, not very useful. For practical purposes a block-ordering constructed
from G (rather than G*) is preferable. Here we outline how this is done.

Recall from example 175, that the diagonal A(G*) is the relation G*N(G")* and that
this is an equivalence relation on the nodes of G, whereby the equivalence classes are
the strongly connected components of G. Let N denote the nodes of G and C denote
the set of strongly connected components of G. By theorem 109, there is a function sc
of type C+N such that

(203) G*N(G”)* = sc’osc .
The relation A defined by

scoGosc” N —l¢
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is a homogeneous relation on the strongly connected components of G, i.e. a relation of
type C~C. Informally, it is a graph obtained from the graph G by coalescing the nodes
in a strongly connected component of G into a single node whilst retaining the edges
of G that connect nodes in distinct strongly connected components®. A fundamental
theorem is that

(204) G* = sc oA*osc .
Moreover, A is acyclic. That is,
(205) IcnN A" = 1L .

(See [BDGv22, Bac22] for the details of the proof of (204) and (205). In fact the theorem
is valid for all relations G ; finiteness is not required.)

The relation A* is, of course, transitive. It is also reflexive; combined with its
acyclicity, it follows that

(206) A*N(A*)” = Ic .

That is, A* is a (total) provisional ordering on C. The conclusion is that G* is block-
ordered by sc, sc and A*.

Informally, a finite graph can always be decomposed into its strongly connected com-
ponents together with an acyclic graph connecting the components.

Although the informal interpretation of this theorem is well-known, the formal proof
is non-trivial. Although not formulated in the same way, it is essentially the “transitive
reduction” of an arbitrary (not necessarily acyclic) graph formulated by Aho, Garey and
Ullman [AGU72, Theorem 2].

The decomposition (204) is (implicitly) exploited when computing the inverse A~
of a real matrix A in order to minimise storage requirements: using an elimination tech-
nique, a so-called “product form” is computed for each strongly connected component,
whilst the process of “forward substitution” is applied to the acyclic-graph structure.

O

It is important to note the very strict requirement (198) on the functionals f and g.
Were this requirement to be omitted (retaining only that f and g are functional relations
into —not onto— the domain of T), there would be no guarantee of non-redundancy.
As we shall see, our definition of block-ordering does guarantee the existence of a non-
redundant polar covering (theorem 228) but not vice-versa (corollary 231). This suggests
that the requirement may be too strong.

Theorem 207 makes precise the statement that block orderings —where they exist—
are unique “up to isomorphism”.

6 Although we don’t go into details, for any function f of appropriate type, the graph foGof”~ is
“pathwise homomorphic” [McN67] to G.
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Theorem 207  Suppose T is a provisional ordering. That is, suppose
TNT"CTI A T=(TNT)eTo(TNT) A ToTCT .
Suppose also that f and g are functional and onto the domain of T. That is, suppose

fof' = f<« = TNT = g< = gog .

Suppose further” that S, h and k satisfy the same properties as T, f and g (respec-
tively) and that

(208) f'oTog = h oSok .

Then

(209) f>=h- A g>=k- ,

(210) f'og=h"ok ,

(211) f’oT’og = h”"oS"0k , and

(212) foh® = gok’ .

Also, letting ¢ denote foh” (equally, by (212), gok”),

(213) ¢od” =TNT A ¢"op =SNS" A PoT=Sed .

In words, ¢ is an order isomorphism of the domains of T and S.

Proof In combination with the assumption (208), properties (209), (211) and (210) are
immediate from (222), (223) and (224), respectively.

Proof of (212) is a step on the way to proving (213). From symmetry considerations,
it is an obvious first step.

foh”

= { assumption: kok” =h< }
foh”okok”

- () )
fof'ogok”

= { assumption: fof’ =g< }
gok” .

"The types of T and S may be different. The types of f and h, and of g and k will then also be
different. As in lemma 221, the requirement is that the types are compatible with the type restrictions on
the operators in all assumed properties. The symbol “1” in (213) is overloaded: if the type of T is A~A
and the type of S is B~B, ¢ o has type A~A and ¢~ o¢ has type B~B.
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Now,

o’

— { definition of ¢, converse }
foh”ohof”

= {  (212) }
g ok"ohof”

= { (210) and converse }
gog ofof”

— {  assumption: fof’=TNT" =gog” }
TnT .

Symmetrically, ¢“o¢p = TNT" . Finally,
Ted
= { definition of ¢ }
Tofoh”
= { assumptions: fof  =TNT = gog"”
T = (TATYeTo(TATY) )

foonTogogUofohU
= { assumption: f oTog = h”oSok , (210) and converse }
foh”oSokok”ohoh”
= { assumption: hoh” =SNS” =kok” }
foh”oS
= { definition of ¢ }
¢S .

O

13.1 Pair Algebras and Galois Connections

In order to find lots of examples of block-ordered relations one need look no further than
the theory of Galois connections (which are, of course, ubiquitous). In this section, we
briefly review the notion of a “pair algebra” —due to Hartmanis and Stearns [HS64,
HS66]— and its relation to Galois connections.
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Hartmanis and Stearns studied a particular practical problem: the so-called “state
assignment problem”. This is the problem of how to encode the states and inputs of a
sequential machine in such a way that state transitions can be implemented economically
using logic circuits. However, as they made clear in the preface of their book [HS66],
their contribution was to “information science” in general:

It should be stressed, however, that although many structure theory results
describe possible physical realizations of machines, the theory itself is in-
dependent of the particular physical components of technology used in the
realization.

The mathematical foundations of this structure theory rest on an algebraiza-
tion of the concept of “information” in a machine and supply the algebraic
formalism necessary to study problems about the flow of this information.

Hartmanis and Stearns limited their analysis to finite, complete posets, and their
analysis was less general than is possible. This work was extended in [Bac98| to non-
finite posets and the current section is a short extract.

A Galois connection involves two posets (A,C) and (B,=<) and two functions,
Fe A—B and GeB«.A. These four components together form a Galois connection
iff for all beB and acA

(214) FbCa=b=<G.a .

We refer to F as the lower adjoint and to G as the upper adjoint.

A Galois connection is thus a connection between two functions between posets.
Typical accounts of the properties of Galois connections (for e.g. [GHK * 80]) focus on
the properties of these functions. For example, given a function F, one may ask whether
F is a lower adjoint in a Galois connection. The question posed by Hartmanis and Stearns
was, however, rather different.

To motivate their question, note that the statement F.b C a defines a relation be-
tween B and A. So too does b<G.a. The existence of a Galois connection states
that these two relations are equal. A natural question is therefore: under which condi-
tions does an arbitrary (binary) relation between two posets define a Galois connection
between the sets?

Exploring the question in more detail leads to two separate questions. The first is:
suppose R is a relation between posets (A,C) and (B,=). What is a necessary and
sufficient condition that there exist a function F such that

(a,b)eR = FbCa ?
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The second is the dual of the first: given relation R, what is a necessary and sufficient
condition that there exist a function G such that

(a,b)eR = b<G.a 7

The conjunction of these two conditions is a necessary and sufficient condition for a
relation R to define a Galois connection. Such a relation is called a pair algebra.

Example 215 It is easy to demonstrate that the two questions are separate. To
this end, fig. 9 depicts two posets and a relation between them. The posets are {«,f3}
and {A,B}; both are ordered lexicographically: the reflexive-transitive reduction of the
lexicographic ordering is depicted by the directed edges. The relation of type {,p}~{A,B}
is depicted by the undirected edges.

B—— B

a A

Figure 9: A Relation on Two Posets

Let the relation be denoted by R. Define the function F of type {«,3}«{A,B} by
F.B=«o and FFA=f. Then it is easy to check that. for ac{x,f} and be{A,B},

(a,b)eR = FbCa .

(There are just four cases to be considered.) On the other hand, there is no function G
of type {A,B}+{«x,} such that

(a,b)eR = b=<G.a .

To check that this is indeed the case, it suffices to check that the assignment G.A=«
is invalid (because «C « but («,A)¢R) and the assignment G.A=f is also invalid
(because o= 3 but («,A)&R).

]

Example 216 A less artificial, general way to demonstrate that the two questions
are separate is to consider the membership relation. Specifically, suppose S is a set.
Then the membership relation, denoted as usual by the —overloaded— symbol “€”, is
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a heterogeneous relation of type S~25 (where 25 denotes the type of subsets of S).
Now, for all x of type S and X of type 2%,

xeX = {x}CX .

The right side of this equation has the form F.bC a where F is the function that maps
an element into a singleton set and the ordering is the subset ordering. Also, its left side
has the form (a,b)€R, where the relation R is the membership relation and a and
b are x and X, respectively. (This is where the overloading of notation can become
confusing, for which our apologies!) It is, however, not possible to express x € X in the
form x <G.X (except in the trivial cases where S has cardinality at most one). We
leave the proof to the reader.

O

Example 217 An example of a Galois connection is the definition of the ceiling
function on real numbers: for all real numbers x, [x]| is an integer such that, for all
integers m,

x<m = [x]<m .

To properly fit the definition of a Galois connection, it is necessary to make explicit
the implicit coercion from integers to real numbers in the left side of this equation.
Specifically, we have, for all real numbers x and integers m,

x <grealm = [x] <zm

where real denotes the function that “coerces” an integer to a real, and <g and <z
denote the (homogeneous) at-most relations on, respectively, real numbers and integers.
If, however, we consider the symbol “<” on the left side of the equation to denote the
heterogeneous at-most relation of type R~ Z, the fact that

x<m = [x] <zm

gives a representation of the (heterogeneous) “<” relation of type R~Z as a block-
ordered relation: referring to definition 196, the provisional ordering is <z, f is the
ceiling function and ¢ is the identity function.

More interesting is if we take the contrapositive. We have, for all real numbers x and
integers m,

m<x = m<|[x]-1

On the right of this equation is the (homogeneous) at-most relation on integers. On the
left is the (heterogeneous) less-than relation of type Z ~R. The equation demonstrates
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that this relation is block-ordered; the “blocks” of real numbers being all the numbers
that have the same ceiling. (The functional f is the identity function, the functional g
maps real number x to [x]—1 and the provisional ordering is the ordering <z.) The
example is interesting because the (homogeneous) less-than relation on real numbers is
not block-ordered. This is because its diagonal is empty. See [Bac21] for details.

O

Returning to the discussion immediately preceding example 215, the two separate
questions are each of interest in their own right: a positive answer to either question
may predict that a given relation has a block-ordering of a specific form: in the case
of the first question, where the functional g in definition 196 is the identity function,
and, in the case of the second question, where the functional f in definition 196 is the
identity function. In both cases, a further step is to check the requirement on f and g:
in the first case, one has to check that the function F is surjective and in the second case
that the function G is surjective. (A Galois connection is said to be “perfect” if both F
and G are surjective.) For example, the fact that

x<m = x <grealm

does not define a block-ordering because the function real is not surjective.

The relevant theory predicting exactly when the first of the two questions has a
positive answer is as follows. Suppose (B,C) is a complete poset. Let M denote the
infimum operator for B and suppose p is a predicate on B. Then we define wnf-
preserving by

(218) p is inf-preserving = (Vg : p.(Ng) = (Vx = p.(g.x))) .

So, for a given a, the predicate (b:: (a,b)€R) is inf-preserving equivales
(Vg = (a,MNg)eR = (¥x: (a, g.x)ER)) .

Then we have:

Theorem 219 Suppose A is a set and (B,C) is a complete poset. Suppose RC AxB
is a relation between the two sets. Define F by

(220) Fa = (b : (a,b)eR:Db) .
Then the following two statements are equivalent.
e (Va,b : acAADbeEB : (a,b)eR = FalCb).

e For all a, the predicate (b: (a,b)€R) is inf-preserving.
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The answer to the second question is, of course, obtained by formulating the dual of
theorem 219.

In general, for most relations occurring in practical information systems the answer
to the pair-algebra questions will be negative: the required inf- and sup-preserving prop-
erties just do not hold. However, a common way to define a pair algebra is to extend a
given relation to a relation between sets in such a way that the infimum and supremum
preserving properties are automatically satisfied. Hartmanis and Stearns’ [HS64, HS66]
solution to the state assignment problem was to consider the lattice of partitions of a
given set; in so-called “concept analysis”, the technique is to extend a given relation to
a relation between rectangles.

An important property of Galois connections is the (well-known) theorem we call the
“unity of opposites”: if F and G are the adjoint functions in a Galois connection of the
posets (A,C) and (B,=), then there is an isomorphism between the posets (F.3, C)
and (G.A4,=). (F.B denotes the “image” of the function F, and similarly for G.A.)
Knowledge of the unity-of-opposites theorem suggests theorem 207, which expresses an
isomorphism between different representations of block-ordered relations.

13.2 Analogie Frappante

In this section, we relate block-orderings to diagonals. The main results are theorems 228
and 235. We have named theorem 235 the “analogie frappante” because it generalises
Riguet’s “analogie frappante” connecting “relation de Ferrers” to diagonals.

Lemma 221  Suppose T is a provisional ordering of type C~C. That is, suppose
TNT  CIe A T=(TNT)eTo(TNT) A ToTCT .

Suppose also that f and g are functional and onto the domain of T. That is, suppose®
that

fof' = f< = TNT = g< = gog .

Let R denote f”oTog. Then
(222) R<=f> A R>=g> ,

(223) f7oT’og = R<o(R\R/R)”oR>, and

8The ordering T must be homogeneous but f and g may be heterogeneous and of different type, so
long as both have target C.
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(224) f'og = AR ,
(225) R<= (AR)< A R-= (AR)> ,
(226) R< = ARoAR” = f'of A R- = AR72AR = g og .

Proof Property (222) is a straightforward application of domain calculus:

R-
= { definition: R=1f"oTog }
(T2 g)-
= { domains (specifically, [ (UsV)>=(U>>V)>] and [ (U”)>=U<]) }
(f< oTo g)>
= { assumption: T = f<oTog< (so T="f<oT) }
(Teg)-
= { domains (specifically, [ (UoV)>=(U>oV)>]) }
(T> o g)>
= {  lemma 61 and assumption: TNT" =g« }
g- .

By a symmetric argument, (f"oTog)<=f>.

Now we consider (223). The raison d’étre of (223) is that it expresses the left side as a
function of f"oTog. In a pointwise calculation a natural step is to use indirect ordering.
In a point-free calculation, this corresponds to using factors. That is, we exploit lemma
58:

foT 0 g
= { assumption: T is a provisional ordering
lemmas 55, 59 and 58 }

o (TATY) o TO\TY /T« (TATY) o g

= { assumption: f<=TNT =g=< }
fPoT\T /T 0og

= { lemma 44 and assumption: T = f<oTog< }
foo(gieT ef)\(g"eT of) /(g eT of) o g

= { (222) and definition of R}
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R- o R“\R”/R" o R~
= { factors }

R<o(R\R/R)”oR> .

Note the use of lemma 44. The discovery of this lemma is driven by the goal of the
calculation.

The pointwise interpretation of f”og is a relation expressing equality between values
of f and g. This suggests that, in order to prove (224), we begin by exploiting the
anti-symmetry of T:

fog
= { f< = TNT’ = ¢g< and domains }
f7o(TNT )og
= { distributivity (valid because f and g are functional) }

f7oTog N 70T 0g
= { definition of R and (223) }
freTog N fo((fTeTeg)\(feTog)/(feTeg)) og-
= { (227) (see below) }
frofioTogeg- N ((fTeTog)\(feTog)/(feTeg))"
= { domains (specifically, f>of” =~ and gog>=g¢g) }
froTog N ((feTog)\(feTog)/(feTeg))"
= { definition of R and AR }
AR .

A crucial step in the above calculation is the use of the property
(227) U NpeVeq = po(UNV)eq = polleq NV

for all relations U and V and coreflexive relations p and q. This is a frequently used
property of domain restriction.
The remaining equations (225) and (226) are straightforward. First

(AR)<
= {  (229) }
(frog)=
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= { domains and assumption: f<=g< }
f>

= { assumption: f< = TNT~ }
(TNT7)of)>

= { domains and converse }
(1o (TN T))-

= { lemma 61 and domains }
(fVoT)=

= { domains and assumption: g< =TNT"

and lemma 61 }
(ffeTeg)< .

That is (AR)< = R<. The dual equation (AR)> = R> is immediate from the fact that
(AR)”=A(R") and properties of the domain operators. For the per domains, we have:

R~

= { R< = (AR)< and R> = (AR)> (above); lemma 180 }
(AR)~

= { AR is difunctional, theorem 49 (with R:=AR) }
AR AR”

= { lemma 221 and definition of AR}

fuogo(fuog)U
= { converse and f< = g< = gog~ }
flof .

Again, the dual equation is immediate.
O

Theorem 228  Suppose R=1f"oTog where f, g and T have the properties stated
in definition 196. Then the function R defined by

(229) R = {(c:cCTNT : foTocoTog)
is a non-redundant, injective, polar covering of R, and the function D defined by

(230) D = (c:cCTNT : focog)
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is a definiens of R such that UD=AR. That is, a block-ordered relation has a non-
redundant, injective, polar covering such that the definiens of the covering is a covering
of the diagonal of R.

Proof The theorem is a consequence of lemma 221, theorem 193 and theorem 188.
Specifically, lemma 221 (in particular (226) and (225)) states that the conditions required
to apply theorem 193 are met with p instantiated to g. Thus,

R = (c:cCg=:Rog ocogoR\R)

is a non-redundant, injective polar covering of R. The definition of R is simplified as
follows. First,

goR\R
= { R=foTeg }
go(fTeTog)\(f eTog)
= { lemma 45 with R,S,f,g:=T,Teg,f,g }
geg oT\(Teg)
= { geg=9g- }
g<oT\(Teg) .

So, for all ¢ such that cCg-,

Rog”scogoR\R
= { R covers R, s0 (Reg”ocogoR\R)>CR> ; R>-=g>
(in preparation for lemma 43) }
Rog”ocogoR\Rog>
= { R=1"0Tog and goR\R = g<oT\(Teg) (see above) }
foTogog ocog=oT\(Tog)og>
= { gog” = g<, assumption: ¢ Cg<, lemma 43 with R;f:=T,g }
f'oTocoT\Tog
= { T is a provisional ordering, TNT~ = g<,
lemma 57 }

f7oTocoTog .
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Since g< = TNT’ by assumption, we have established (229).
Theorem 193 defines the definiens of the covering as the indexed set D where

D = (c:cCg<:AReg ocogoR-) .
But, for all ¢ such that cCg-,
ARogUocogoR>
=  {  (226) and (224) }
fuogogUoCogogUog
= { geg” = g<, assumption: ¢cCg=< }
fZocog .
Using the assumption that g< = TNT” once again, we have established (230). That
UD = f“og = AR follows from f’og = AR and the saturation axiom.

O
Lemma 221 has as immediate corollary that the converse of theorem 228 is invalid.

Corollary 231  There are relations that have a non-redundant polar covering but are
not block-ordered.

Proof Examples 194 and 195 are both examples of finite relations that have non-
redundant polar coverings. Example 194 has the property that (AR)<#R<; however,
(AR)>=R>. Example 195 has an empty diagonal; that is, (AR)<#R< (and (AR)>#R>).
So by (the converse of) lemma 221 (specifically, (225)), neither relation is block-ordered.
O

We now prove the converse of lemma 221.

Lemma 232 A relation R is block-ordered if R< = (AR)< and R> = (AR)-.

Proof Suppose R< = (AR)< and R> = (AR)>. Our task is to construct relations f, g
and T such that

R:onTog y
TAT"CIT A T=(TNT)To(TNT’) A TTCT and

fof' = f< = TNT = g< = gog

Since AR is difunctional, theorem 111 is the obvious place to start. Applying the
theorem, we can construct f and ¢ such that AR =1f"og and

AR:ong AN fofl = f< = gogU = g< .
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Using standard properties of the domain operators together with the assumption that
R< = (AR)< and R> = (AR)>, it follows that

R<:f>/\R>:g>_

It remains to construct the provisional ordering T. The appropriate construction is
suggested by lemma 221, in particular (223). Specifically, we define T by the equation

(233) T = goR\R/Rof" .
The proof that R = f“oTog is by mutual inclusion. First note that
(234) f'oTog = ARoR\R/RoAR
since
onTog
— { (233) }
f?ogoR\R/Rof”og
= {  AR=freg }
AR°R\R/RcAR .
So
fYoTog
[ (234) and ARCR }
RoR\R/RoR

N

N

{ cancellation }

Also,

RC f'eTog
(239 )
R C ARoR\R/RoAR
= { per domains: (33) }
R<oRoR~ C ARoR\R/RoAR
= { assumption: R< = (AR)< and R> = (AR)>, lemma 180 }
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(AR)<oRs(AR)- C ARsR\R/RoAR

= { AR is difunctional, theorem 49 (with R:=AR) }
ARoAR”oRoAR“sAR C ARoR\R/RsAR

& { monotonicity }
AR“oRoAR” C R\R/R

& { AR” C R\R/R, monotonicity }
R\R/RoRsR\R/R C R\R/R

= { factors }
RoR\R/RoRoR\R/RoR C R

= { cancellation }

true .

Combining the two inclusions we conclude that indeed R =f"oTog.
We now establish the requirements on T. First,

TnT"
= { definition and converse }

goR\R/Rof” N fo(R\R/R)"og"

N

{ modular law }
fo(f ogoR\R/Rof’og N (R\R/R)")og"
- { AR=1f"eg }
fo(ARoR\R/RoAR N (R\R/R)”)og"

N

{ AR CR, monotonicity and cancellation }
fo(R N (R\R/R)")og"
= { AR =R N (R\R/R)” }
foARog"”
= { AR =f"og }
fofuogogU
= { fofU:f<:gogU:g< }
f< .

Thus TNT" C f<. So TNT” C I. Now
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f<CTNT"

= { infima and f< is coreflexive }
f<CT

& { domains }
fof’ C T

& { definition of T and monotonicity }
f C goR\R/R

& { f< = gog”, domains and monotonicity }
g“of C R\R/R

= { fPog=AR }
AR” C R\R/R

= { AR = RN (R\R/R)", converse }

true .

So, by anti-symmetry we have established that TNT” = f<. Since also f<=g<, we
conclude from the definition of T and properties of domains that

T = (TﬂT“)oTo(TﬂT“) )
The final task is to show that T is transitive:

ToT
= { definition }
goR\R/RofsgoR\R/Rof"
= {  AR=feg }
goR\R/RoAR6R\R/Rof"
{ ARCR }
goR\R/RoRoR\R/Rof
{ factors }
goR\R/Rof"
= { definition }

N

N
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O

It is interesting to reflect on the proof of lemma 232. The hardest part is to find
appropriate definitions of f, g and T such that R =f’oTog. The key to constructing
f and g is Riguet’s “analogie frappante” [Rig51] whereby he introduced the “différence”
—the diagonal AR— of the relation R. Expressing the diagonal in terms of factors as
we have done makes many parts of the calculations very straightforward. One much less
straightforward step is the use of lemma 180 in the proof that R C f"oTog. Note how
calculational needs drive the search for the lemma: in order to simplify the inclusion it
is necessary to expose the term R\R/R on the right side, and that is precisely what the
lemma enables.

We conclude with the theorem that we call the “analogie frappante”. It is not the
theorem that Riguet presented but we have chosen to give it this name in order to
recognise Riguet’s contribution.

Theorem 235 (Analogie Frappante) A relation R is block-ordered if and only if
R< = (AR)< and R> = (AR)-.

Proof Lemma 221 establishes “only-if” and lemma 232 establishes “if”.
O

Example 236 Recall that example 194 is of a relation R such that R< = (AR)<
but R> # (AR)>. Because of the simplicity of the example, it is possible to check,
by exhausting all possible assignments to f and g, that the relation is not block-
ordered. For suppose, on the contrary, that R = f"oTog, where f, T and g satisfy
the conditions for a block-ordering. Then it must be the case that g.A #g.B (since
(RoA)<# (RoB)<). But also it must be the case that f.a, f.3 and f.y are distinct (be-
cause, eg., (xoR)># (foR)>). This has the consequence that f<+#g<. But, by defining
f.x=x, f.p=y, f.y=z, gA=x, g.B=z and yCx and yLCz, it is the case that
R =f"oCog. We say that the relation has an “imperfect” block-ordering.

O

Example 237 A generic way to construct examples of relations that are not block-
ordered is to exploit example 177. In order to avoid unnecessary repetition, we refer the
reader to that example for the definition of the relation in given a finite set A and a
set S of subsets of X.

(Example 236 is a slightly disguised instance of the generic construction: the nodes
A and B can be identified with, respectively, {«,3} and {B,y}.)

Recall that the diagonal Ain of type X'~S is injective. It follows that the size of
(Ain)< is at most the size of S. If, however, the set S has X as one of its elements, the
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size of in< equals the size of X'. Theorem 235 thus predicts that, if A is an element of
S, a necessary condition for in to be block-ordered is that the sizes of X and S must
be equal; conversely, if A is an element of S, in is not block-ordered if the sizes of X
and S are different.

Fig. 6 (example 177) shows that, even if the sizes of X and S are equal, the relation
in may not be block-ordered: as remarked then, for the choice of § shown in fig. 6, in<
and (Ain)< are different since 0 and 3 are elements of the former but not the latter.

It is straightforward to construct instances of X and S such that the relation in is
block-ordered. It suffices to ensure that three conditions are satisfied: X" is an element of
S, the sizes of X and S are equal, and, for each x in X', the set of sets represented by
(xein)> is totally ordered. Fig. 10 is one such. Referring to definition 196, the functional
f is Ain~ (depicted by rectangles) and the functional g is Is; the ordering relation is
the subset relation in\in (depicted by the directed graph).

@

A

{0} {3} @

Figure 10: A Block-Ordered Membership Relation

The following theorem is a corollary of theorem 184. In combination with theorem
235 it states that a relation is block-ordered iff its core is block-ordered. Testing whether
or not a given relation is block-ordered can thus be decomposed into computing the core
of the relation and then testing whether or not that is block-ordered.

Theorem 238  Suppose R is an arbitrary relation and suppose C is a core of R as
witnessed by A and p. Then

R< = (AR)< = C< = (AC)< .
Dually,
R> = (AR)>

C- = (AC)- .
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Proof Suppose R, C, A and p are as in definition 90. Then
C< = (AQ)-
= { definition 90 and theorem 184 }
(AeRep”)< = (AoARep”)<
= { Leibniz }
(Ao (AoRop”)<)< = (A% (Ao AR p”)<)-
= { domains }
(A”oAeRep”)c = (A”eAoARop")<
= { A"oAoR = R<oR = R,
(p”)< = (p”op)< = (R-)< = R>, and domains }
R< = (A“oAoARop")<
= { (p”)< = (p”op)< and domains }
R< = (A\“oAoARop”op)<
= { theorem 184 }
R- = (A\YsACop)=
= { theorem 184 }

R< = (AR)< .
Similarly,
R< = (AR)<

= { definition 90, theorem 184 and Leibniz }
(A"oCop)< = (A"oACop)=<

= { Leibniz and domains }
(AoA”oCop)< = (AoA”cACop)=

= { p< = (pop”)< and domains }
(AoA e Copop”)< = (AoA”0ACopop”)-

= { theorem 184 (applied twice) }
C< = (AC)< .

The property

R< = (AR)< = C- = (AC)-
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follows by mutual implication. The dual follows by instantiating R to R” and applying
the properties of converse.
O

By combining the definition of block-ordering with theorem 184, it is immediately
clear that R is block-ordered if its core C is a provisional ordering. In general, a core
of a block-ordered relation will not be a provisional ordering. This is because the types
of the targets of the components A and p in the definition of a core are not required
to be the same; on the other hand, orderings are required to be homogeneous relations.
However by carefully restricting the choice of core, it is possible to construct a core that
is indeed a provisional ordering.

Theorem 239  Suppose R is an arbitrary relation. Then if R is block-ordered it has
a core that is a provisional ordering.

Proof Suppose R is block-ordered. That is, suppose that f, g and T are relations
such that T is a provisional ordering,

R frmnd fUOTog
and

fof”

f<« = TNT = g< = gog .

Then, by lemma 221, R< = f"of and, R- = g og. Thus f and g satisfy the conditions
for witnessing a core C of R. (Cf. definition 90 with A p:=f,g.) Consequently,

C

= { definition 90 }
foRogU

= { R=foTeg }
foonTogogU

= { fof” = f< = TNT” = g< = gog~ }
(TATH)oTo(TNT)

= { T is a provisional ordering, lemma 61 and domains }
T .

We conclude that C is the provisional ordering T.
O

Combining theorem 239 with theorem 93, we conclude that any core of a block-
ordered relation is isomorphic to a provisional ordering. Loosely speaking, block-ordered
relations are provisional orderings up to isomorphism and reduction to the core.
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Example 240 From the Galois connection, for all reals x and integers m,
[x]<m = x<m

defining the ceiling function, we deduce that the heterogeneous relation g<z has core
the provisional ordering <z. This is because the ceiling function is surjective. Its core
in not the ordering <gr because the coercion real from integers to reals is not surjective.
(See also example 217.)

On the other hand, if a Galois connection

FbCa=b=<G.a

of posets (A,C) and (B,=) is “perfect” (i.e. both F and G are surjective), both the
orderings T and = are cores of the defined heterogeneous relation. That the orderings
are isomorphic is an instance of the unity-of-opposites theorem [Bac02].

O
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14 Conclusion

A major advantage of point-free relation algebra is the combination of concision with pre-
cision. But there are numerous circumstances where pointwise reasoning is unavoidable.
Unbridled use of pointwise reasoning is, in our view, unwelcome because of the potential
lack of concision, with the danger of an accompanying loss of precision. In this paper,
we have shown how the pointwise reasoning that is necessary to formulate the properties
of polar coverings of a relation and of block-ordered relations can be conducted in a way
that avoids such dangers. Doing so has led to the introduction of the concepts of an in-
dex and a core of a relation which we believe may have important practical applications
when dealing with very large volumes of data. Our definitions of indexes and cores of a
(heterogeneous) relation are point-free.

The primary contribution of the paper has been to show how the addition of a simple
axiom to relation algebra —essentially, it is possible to choose a representative element of
every equivalence class of a partial equivalence relation— has far-reaching consequences
in enabling pointwise reasoning, whilst not sacrificing the combination of concision and
precision. Some may criticise the axiom for being non-constructive, but the criticism
has little practical relevance. For finite pers, it is straightforward to construct an index
and, indeed, in practice this is done as a matter of course. For example, the two-phase
algorithm attributed to R.Kosaraju and M.Sharir by Aho, Hopcroft and Ullman [AHUS82]
for constructing the strongly connected components of a graph computes a representative
element (called a “delegate” in [Bac19]) of each component in the second phase.

One focus of this investigation has been on showing that the so-called “all-or-nothing”
rule introduced by Gliick [Gliil7] is a consequence of our axiom. There are other ways
of facilitating pointwise reasoning in relation algebra. Bird and De Moor [BdM97| argue
that the introduction of “tabulations” and a “unit” (as formulated by Freyd and Seedrov
[Fv90]) “makes it possible to mimic pointwise proofs in a categorical setting”. But Bird
and De Moor do not give any practical application of tabulations®. Separately from
tabulations, Bird and De Moor [BdM97, section 4.6, p.103] introduce so-called “power
allegories”. This involves the introduction of “power-objects”, the “power transpose”
of a relation, and a “membership relation”. Subsequently, they do make significant
practical use of these notions in their derivation of algorithms. However, as we have
shown elsewhere [BDGv22, Bac22|, these notions can be derived from the all-or-nothing
rule.

In fact, the only practical application of pointwise reasoning in this paper is in section

®Indeed, their only use of tabulations is in an erroneous proof. [BAM97, theorem 5.1] asserts that (in
a tabular allegory) a functor is a relator iff it preserves converse. However, the penultimate step in the
“proof” asserts that application of a functor to a “simple” relation preserves the “simple” property. A
traditional pointwise argument makes clear that the step has no justification.



145

11 on coverings of a relation. In this case, points are unavoidable because they define
the individual rectangles in the covering. In contrast, our investigation of the diagonal
of a relation and block-ordered relations, and the formulation of the analogie frappante
connecting the two, is entirely point-free. At the same time, we make extensive use of our
(point-free) formulation of indexes and cores in order to significantly improve previous
calculations of the same results [Bac21].

As shown elsewhere, the direct use of pointwise reasoning (as formulated here) does
combine concision with precision in an elegant way in the construction of the charac-
terisations of pers and difunctions. (See section 8.) Specifically, [BO22] compares the
explicit use of points with the use of the power transpose of a relation. This paper offers
an alternative third way. We leave the reader to make the judgement on which method
is to be preferred.

Finally, a few words on notation. The very rich algebraic properties of the converse
of a relation mean that many notions and properties come in pairs, each element of the
pair being the dual mirror-image of the other. For example, we have defined both the
left domain and right domain of a relation. Some authors emphasise such mirroring by
their choice of notation. Freyd and Séedrov [Fv90], for example, denote the source and
target of a relation R by OR and RO, respectively.

A consequence of this is that it is possible to get away with defining just one of a
pair of operators, leaving its mirror image to have an “obvious” definition in terms of
relational converse. Doing this systematically would mean introducing the notation R-<
for the left domain of relation R and then using the notation (R”)< to denote the right
domain of R. Similarly, one might introduce just the left factor R/S and then write
(S”/R")" for the right factor R\S. This is, of course, very undesirable because then the
associativity of the operators (the rule that R\(S/T) and (R\S)/T are equal, which we
exploit by using the notation R\S/T) becomes the very cumbersome

(S/T)"/RT)" = (S7/R)7/T .

Even worse is when a symmetric notation is used for an operator that has both left
and right variants — as is done by both Freyd and Séedrov [Fv90] and Schmidt and
Strohlein [SS93, p.80] in the case of the so-called “symmetric division/quotient” of a
relation. By writing § (or R+S), the reader may be misled into supposing that either
the operator has no mirror image or that the mirror image is % (or S+R). The main
drawback, however, is that the notation gives —literally and figuratively— a one-sided
view of relation algebra that inhibits progress. The notions of “index” and “core” of a
relation are, so far as we know, novel; the insight leading to their introduction is the

simple formula

R = R-<OROR>
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combined with well-known properties of (partial) equivalence relations. It is, in our view,
a striking example of the sort of insight that is obscured using Freyd and Sé¢edrov’s or
Schmidt and Strohlein’s notation.

Acknowledgement Many thanks to Jules Desharnais for helping to locate Riguet’s
publications.
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