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Abstract

We introdu
e the general notions of an index and a 
ore of a relation. We postu-

late a limited form of the axiom of 
hoi
e |spe
i�
ally that all partial equivalen
e

relations have an index| and explore the 
onsequen
es of adding the axiom to stan-

dard axiom systems for point-free reasoning. Examples of the theorems we prove

are that a 
ore/index of a difun
tion is a bije
tion, and that the so-
alled \all or

nothing" axiom used to fa
ilitate pointwise reasoning is derivable from our axiom

of 
hoi
e. We reformulate and generalise a number of theorems originally due to

Riguet on polar 
overings of a relation. We study the properties of the \diagonal"

of a relation (
alled the \di��eren
e" by Riguet who introdu
ed the 
on
ept in 1951).

In parti
ular, we formulate and prove a general theorem relating properties of the

diagonal of a relation to blo
k-ordered relations; the theorem generalises a property

that Riguet 
alled an \analogie frappante" between the \di��eren
e" of a relation and

\relations de Ferrers" (a spe
ial 
ase of blo
k-ordered relations).
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1 Introduction

Seventy years ago, in a series of publi
ations [Rig48, Rig50, Rig51℄, Ja
ques Riguet in-

trodu
ed the notions of a \relation difon
tionelle", the \di��eren
e" of a relation and

\relations de Ferrers". In the 
ase of �nite relations, he provided an informal mental

pi
ture of a \relation de Ferrers" in the form of a stair
ase-like stru
ture. But his formal

de�nition of a \relation de Ferrers" bears little or no resemblan
e to the mental pi
ture

and it is diÆ
ult to see how the formal 
orresponds to the informal. The name \relation

de Ferrers" also gives little 
lue as to the pra
ti
al relevan
e of the notion. Riguet's def-

initions, parti
ularly of the \di��eren
e" of a relation, use (in our view) over-
ompli
ated

and outdated formulae involving nested 
omplements that are better formulated using

the fa
tor operators (aka division or residual operators). Riguet also relies heavily on

natural language justi�
ations of important properties as well as asserting several prop-

erties without proof. More re
ent publi
ations, some of whi
h do not 
ite Riguet but

whi
h 
opy his de�nitions, introdu
e errors by failing to re
ognise the restri
tions that

Riguet made 
lear in his a

ount of the properties of the notions.

The writing of this paper initially began as an exer
ise in applying modern 
al
u-

lational reasoning to bring Riguet's work up to date and more a

essible to a wider

audien
e. In view of the extant errors in relatively re
ent publi
ations and to try to

avoid introdu
ing yet more errors, we de
ided to in
lude full details of all proofs. In

the pro
ess, we de
ided that some 
hanges in terminology were desirable: we 
all the

\di��eren
e" of a relation the \diagonal" of the relation and we 
all \relations de Ferrers"

\stair
ase" relations. We also realised that 
ertain generalisations of Riguet's work were

desirable, the primary one being from \stair
ase" relations to \blo
k-ordered relations":

the property of being a \stair
ase" relation demands a 
ertain total ordering on \blo
ks"

(\re
tangles totalement ordonn�ees par in
lusion" [Rig51℄), being \blo
k-ordered" does

not require the ordering to be total.

As this work 
ontinued, we began to realise that substantial improvements 
ould be

made by introdu
ing the notion of the \
ore" of a relation, drawing inspiration from

Voerman's [Voe99℄ notion of the (left- and right-) per domains of a relation. The results

were do
umented by Ba
khouse in [Ba
21℄.

A signi�
ant disadvantage of the general notion is that a \
ore" of a relation typi
ally

has a type that is di�erent from the type of the relation itself. (The 
ompli
ations this

involves is parti
ularly evident when one's subje
t of interest is homogeneous relations

be
ause it for
es one to introdu
e type judgements.) Voermans suggested that the notion

of \
ore" 
ould be better repla
ed by the notion of an \index" of the relation, with the

property that an index of relation R is a subset of R , and thus has the same type as R .

Here is a simple example.
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Example 1 Fig. 1 depi
ts a relation (on the left) and two instan
es of 
ores of the

relation (in the middle and on the right). All are depi
ted as bipartite graphs. The

relation R is a relation on blue and red nodes. The middle �gure depi
ts a 
ore as

a relation on squares of blue nodes and squares of red nodes, ea
h square being an

equivalen
e 
lass of the left per-domain of R (on the left) or of the right per-domain of

R (on the right). The rightmost �gure depi
ts a 
ore as a relation on representatives of

the equivalen
e 
lasses: the relation depi
ted by the thi
k green edges. The rightmost

�gure also depi
ts an index of the relation; the middle does not: although the relations

depi
ted in the middle and rightmost �gures are isomorphi
, they have di�erent types.

Figure 1: A Relation, a Core and an Index.

✷

Further (joint) work led us to fresh insights on relation algebra, in parti
ular on

point-free versus pointwise relation algebra, whi
h we report on in this paper.

The paper is divided into three parts. In the �rst part, we introdu
e the notions

of a \
ore" and an \index" of a relation in the 
ontext of point-free relation algebra.

We establish a large 
olle
tion of properties of these notions whi
h form a basis for

parts II and III of the paper. (Be
ause the notions are new, almost all the properties

are new. An example of a property that some readers may re
ognise, albeit expressed

di�erently, is that a difun
tion has an index that is a bije
tion.) Part I 
on
ludes by the

introdu
tion of a restri
ted form of the axiom of 
hoi
e: we postulate that every partial

equivalen
e relation has an index. This is the same as saying that it is possible to 
hoose

a representative element of every equivalen
e 
lass of a partial equivalen
e relation.

Part II examines the 
onsequen
es of adding our axiom of 
hoi
e to point-free relation

algebra in order to fa
ilitate pointwise reasoning. We show that so doing has surprising

and remarkable 
onsequen
es. One su
h 
onsequen
e is that we 
an derive the so-
alled

\all-or-nothing" rule; this is a rule introdu
ed by Gl�u
k [Gl�u17℄ also as a means of

fa
ilitating pointwise reasoning. (See [BDGv22℄ for examples of how the rule is used in

reasoning about graphs.) The main theorem in part II is that, with the addition of our

axiom of 
hoi
e, the type A∼B of relations is isomorphi
 to the powerset 2A×B (the set

of subsets of the 
artesian produ
t of A and B ).
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Part III applies the results of part II to revise and generalise Riguet's earlier work. We

show, for example, that any relation is \
overed" by a 
olle
tion of re
tangles with very

spe
ial properties. (Riguet [Rig51℄ showed how to 
onstru
t a \\r�eunion" of \re
tangles"

but only for the 
ase of \re
tangles de Ferrers".)

A novel result in part III is a generalisation of Riguet's \analogie frappante" between

difun
tions and \relations de Ferrers". We introdu
e the notion of a \blo
k-ordered rela-

tion" and formulate and prove a theorem whi
h allows one to determine whether or not

a given relation is blo
k-ordered by analysing the relation's \diagonal" (its `di��eren
e"

in Riguet's terminology). We 
all the theorem the \analogie frappante" in re
ognition

of Riguet's pioneering insights. Several other properties of the \diagonal", whi
h we

believe to be novel, are also presented.
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Part I

Point-free Relation Algebra

2 Axiomatisation

In traditional, pointwise reasoning about relations, it is not the relations themselves that

are the fo
us of interest. Rather, a relation R of type A∼B is de�ned to be a subset of the


artesian produ
t A×B and the fo
us of interest is the boolean membership property

(a, b)∈R where a and b are elements of type A and B , respe
tively. Equality of

relations R and S is de�ned in terms of membership (typi
ally in terms of \if and

only if"), leading to a la
k of 
on
ision (and frequently pre
ision). In point-free relation

algebra, the membership relation plays no role, and reasoning is truly about properties

of relations.

In this se
tion, we give a brief summary of the axioms of point-free relation algebra.

For full details of the axioms, see [BDGv22℄.

2.1 Summary

Point-free relation algebra 
omprises three layers with interfa
es between the layers plus

additional axioms pe
uliar to relations. (It is useful to separate the layers for use in

other appli
ation areas.)

The axiom system is typed. For types A and B , A∼B denotes a set; the elements

of the set are 
alled (heterogeneous) relations of type A∼B . Elements of type A∼A ,

for some type A , are 
alled homogeneous relations.

The �rst layer axiomatises the properties of a partially ordered set. We postulate

that, for ea
h pair of types A and B , A∼B forms a 
omplete, universally distributive

latti
e. In anti
ipation of part II, where we add axioms that require A∼B to be a

powerset, we use the symbol \⊆ " for the ordering relation, and \∪ " and \∩ " for

the supremum and in�mum operators. We assume that this notation is familiar to the

reader, allowing us to skip a more detailed a

ount of its properties. However, we use ⊥⊥

for the least element of the ordering (rather than the 
onventional ∅ ) and ⊤⊤ for the

greatest element. In keeping with the 
onventional pra
ti
e of overloading the symbol

\ ∅ ", both these symbols are overloaded. The symbols \⊥⊥ " and \⊤⊤ " are pronoun
ed

\bottom" and \top", respe
tively. (Stri
tly we should write something like A⊥⊥B and

A⊤⊤B for the bottom and top elements of type A∼B . Of 
ourse, 
are needs to be taken

when overloading operators in this way but it is usually the 
ase that elementary type


onsiderations allow the appropriate type to be dedu
ed.)

It is important to note that there is no axiom stating that a relation is a set, and there
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is no 
orresponding notion of membership. (In, for example, [ABH

+
92℄ and [Voe99℄, we

used the symbols \⊑ ", \⊔ " and \⊓ " and the name \spe
 
al
ulus" rather than \relation

algebra" in order to avoid misunderstanding.) The la
k of a notion of membership

distinguishes point-free relation algebra from pointwise algebra.

The se
ond layer adds a 
omposition operator. If R is a relation of type A∼B and S

is a relation of type B∼C , the 
omposition of R and S is a relation of type A∼C whi
h

we denote by R◦S . Composition is asso
iative and, for ea
h type A , there is an identity

relation whi
h we denote by IA . We often overload the notation for the identity relation,

writing just I . O

asionally, for greater 
larity, we do supply the type information.

The interfa
e between the �rst and se
ond layers de�nes a relation algebra to be

an instan
e of a regular algebra [Ba
06℄ (also 
alled a standard Kleene algebra, or

S-algebra [Con71℄). For this paper, the most important aspe
t of this interfa
e is the

existen
e and properties of the fa
tor operators. These are introdu
ed in se
tion 2.2.

Also, ⊥⊥ is a zero of 
omposition: for all R , ⊥⊥◦R=⊥⊥=R◦⊥⊥ .

The 
ompleteness axiom in the �rst layer allows the re
exive-transitive 
losure R∗
of

ea
h element R of type A∼A , for some type A , to be de�ned. For pra
ti
al appli
ations,

this is possibly the most important aspe
t of regular algebra but su
h appli
ations are

not 
onsidered in this paper. For this paper, 
ompleteness is only relevant when we

add axioms to the algebra that model pointwise reasoning. We do require, however, the

existen
e of R∪S and R∩S , for all pairs of relations R and S of the same type, and the

usual properties of set union and interse
tion.

The third layer is the introdu
tion of a 
onverse operator. If R is a relation of type

A∼B , the 
onverse of R , whi
h we denote by R
∪

(pronoun
ed R \wok") is a relation of

type B∼A . The interfa
e with the �rst layer is that 
onverse is a poset isomorphism (in

parti
ular, ⊥⊥
∪

=⊥⊥ and ⊤⊤
∪

=⊤⊤ ), and the interfa
e with the se
ond layer is formed by

the two rules I
∪ = I and, for all relations R and S of appropriate type, (R◦S)∪ = S∪

◦R
∪

.

Additional axioms 
hara
terise properties pe
uliar to relations. The modularity rule

(aka Dedekind's rule [Rig48℄) is that, for all relations R , S and T ,

R◦S∩T ⊆ R ◦ (S ∩ R
∪

◦ T) .(2)

The dual property, obtained by exploiting properties of the 
onverse operator, is, for all

relations R , S and T ,

S◦R∩T ⊆ (S ∩ T ◦R
∪

) ◦R .(3)

The modularity rule is ne
essary to the derivation of some of the properties we state

without proof (for example, the properties of the domain operators given in se
tion 3.1).

Another rule is the 
one rule :

〈∀R :: ⊤⊤◦R◦⊤⊤ = ⊤⊤ ≡ R 6=⊥⊥〉 .(4)
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2.2 Factors

If R is a relation of type A∼B and S is a relation of type A∼C , the relation R\S of

type B∼C is de�ned by the Galois 
onne
tion, for all T (of type B∼C ),

T ⊆ R\S ≡ R◦T ⊆ S .(5)

Similarly, if R is a relation of type A∼B and S is a relation of type C∼B , the relation

R/S of type A∼C is de�ned by the Galois 
onne
tion, for all T ,

T ⊆ R/S ≡ T ◦S ⊆ R .(6)

In relation algebra, fa
tors are also known as \residuals". We prefer the term \fa
tor"

be
ause it emphasises 
al
ulational properties whereas \residual" emphasises an opera-

tional understanding (what is left after taking something away). In parti
ular, fa
tors

have the 
an
ellation properties:

T ◦T\U ⊆ U ∧ R/S ◦S ⊆ R .(7)

The fa
tor operators (whi
h we pronoun
e \under" and \over" respe
tively) are mutually

asso
iative. That is

R\(S/T) = (R\S)/T .(8)

This means that it is unambiguous to write R\S/T | whi
h we shall do in order to

promote the asso
iativity property by making its use invisible (in the same way that the

use of the asso
iativity of 
omposition is made invisible).

The relations R\R (of type B∼B if R has type A∼B ) and R/R (of type A∼A if

R has type A∼B ) play a 
entral role in what follows. As is easily veri�ed, both are

preorders. That is, both are transitive :

R\R ◦R\R ⊆ R\R ∧ R/R ◦R/R ⊆ R/R(9)

and both are re
exive :

I ⊆ R\R ∧ I ⊆ R/R .(10)

(The notation \ I " is overloaded in the above equation. In the left 
onjun
t, it denotes

the identity relation of type B∼B and, in the right 
onjun
t, it denotes the identity

relation of type A∼A , assuming R has type A∼B . We often overload 
onstants in this

way. Note, however, that we do not attempt to 
ombine the two in
lusions into one.) In

addition, for all R ,

R ◦R\R = R = R/R ◦R ,(11)
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R/(R\R) = R = (R/R)\R ,(12)

(R\R)/(R\R) = R\R = (R\R)\(R\R) and(13)

(R/R)\(R/R) = R/R = (R/R)/(R/R) .(14)

In fa
t, we don't use (12) dire
tly; its relevan
e is as the initial step in proving the

leftmost equations of (13) and (14). We 
hoose not to exploit the asso
iativity of the

over and under operators in (13) and (14) |by writing, for example, (R\R)/(R\R) as

R\R/(R\R)| in order to emphasise their rôle as properties of the preorders R\R and

R/R .

Properties (11) thru (14) are also 
alled 
an
ellation rules.

3 Domains

In point-free relation algebra, \
ore
exives" of a given type represent sets of elements of

that type. A 
ore
exive of type A is a relation p su
h that p⊆ IA . Frequently used

properties are that, for all 
ore
exives p ,

p = p
∪

= p◦p

and, for all 
ore
exives p and q ,

p◦q = p∩q = q◦p .

(The proof of these properties relies on the modularity rule.) In the literature, 
ore
ex-

ives have several di�erent names, usually depending on the appli
ation area in question.

Examples are \monotype", \pid" (short for \partial identity") and \test".

3.1 The Domain Operators

The \domain operators" (see eg. [BH93℄) play a dominant and unavoidable role. We

exploit their properties frequently in 
al
ulations, so mu
h so that we assume great

familiarity with them.

Definition 15 (Domain Operators) Given relation R of type A∼B , the left do-

main R<
of R is a relation of type A de�ned by the equation

R< = IA ∩ R ◦R
∪

and the right domain R>
of R is a relation of type B is de�ned by the equation

R> = IB ∩ R
∪

◦R .

✷
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The name \domain operator" is 
hosen be
ause of the fundamental properties: for

all R and all 
ore
exives p ,

R=R◦p ≡ R> = R> ◦p(16)

and

R=p◦R ≡ R< = p ◦R< .(17)

A simple, often used 
onsequen
e of (16) and (17) is the property:

R< ◦R = R = R ◦R> .(18)

In words, R>
is the least 
ore
exive p su
h that restri
ting the \domain" of R on the

right has no e�e
t on R . It is in this sense that R<
and R>

represent the set of points

on the left and on the right on whi
h the relation R is \de�ned", i.e. its left and right

\domains".

For readers unfamiliar with the domain operators, we summarise their properties

below. We restri
t our attention here to the right-domain operator. The reader is

requested to dualise the results to the left-domain operator.

The intended interpretation of R>
(read R \right") for relation R is {x | 〈∃y ::y[[R]]x〉} .

Two ways we 
an reformulate this requirement without re
ourse to points are formulated

in the following theorem.

Theorem 19 (Right Domain) For all relations R and 
ore
exives p ,

R>⊆p ≡ R⊆⊤⊤◦p(20)

and

R>⊆p ≡ R=R◦p .(21)

✷

The 
hara
terisations (20) and (21) predi
t a number of useful 
al
ulational properties

of the right domain operator. Some are immediate, some involve a little bit of work for

their veri�
ation. Immediate from (20) |a Galois 
onne
tion| is that the right domain

operator is universally ∪ -jun
tive, and (⊤⊤◦
) is universally distributive over in�ma of


ore
exives. In parti
ular,

⊤⊤◦(p∩q) = (⊤⊤◦p)∩ (⊤⊤◦q) ,

(R∪S)> = R>∪S> ,

and

⊥⊥>=⊥⊥ .
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The last of these 
an in fa
t be strengthened to

R>=⊥⊥ ≡ R=⊥⊥ .(22)

The property is obtained by instantiating p to ⊥⊥ in (16).

From (20) we may also dedu
e a number of 
an
ellation properties. But, in 
ombina-

tion with the modularity rule, the 
an
ellation properties 
an be strengthened. We leave

their proofs together with a 
ouple of other interesting appli
ations of Galois 
onne
tions

as exer
ises.

Theorem 23 For all relations R , S and T

(a) ⊤⊤ ◦R> = ⊤⊤◦R ,

(b) R ∩ S◦⊤⊤◦T = S< ◦R ◦T> ,

(c) (R∪)> = R< ,

(d) (R∩S◦T)> = (S∪
◦R ∩ T)> ,

(e) (R◦⊤⊤◦S)> = S> ⇐ R 6=⊥⊥ ,

(f) (R◦S)> = (R> ◦S)> ,

(g) (R◦S)< = (R ◦S<)< ,

✷

3.2 Pers and Per Domains

Given relations R of type A∼B and S of type A∼C , the symmetri
 right-division is

the relation R\\S of type B∼C de�ned in terms of right fa
tors as

R\\S = R\S ∩ (S\R)
∪

.(24)

Dually, given relations R of type B∼A and S of type C∼A , the symmetri
 left-division

is the relation R//S of type B∼C de�ned in terms of left fa
tors as

R//S = R/S ∩ (S/R)
∪

.(25)

The relation R\\R is an equivalen
e relation

1

. Voermans [Voe99℄ 
alls it the \greatest

right domain" of R . Riguet [Rig48℄ 
alls R\\R the \noyau" of R (but de�nes it using

nested 
omplements). Others (see [Oli18℄ for referen
es) 
all it the \kernel" of R .

1

This is a well-known fa
t: the relation R\\R is the symmetri
 
losure of the preorder R\R . The easy

proof is left to the reader.
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As remarked elsewhere [Oli18℄, the symmetri
 left-division inherits a number of

(left) 
an
ellation properties from the properties of fa
torisation in terms of whi
h it

is de�ned. For our purposes, the only 
an
ellation property we use is the following

(inherited from the property R ◦R\R = R ). For all R ,

R ◦R\\R = R .(26)

In this se
tion the fo
us is on the left and right \per-domains" introdu
ed by Voermans

[Voe99℄.

Definition 27 (Right and Left Per Domains) The right per-domain of relation

R , denoted R≻
, is de�ned by the equation

R≻ = R> ◦R\\R .(28)

Dually, the left per-domain of relation R , denoted R≺
, is de�ned by the equation

R≺ = R//R ◦R< .(29)

✷

The left and right per-domains are \pers" where \per" is an abbreviation of \partial

equivalen
e relation".

Definition 30 (Partial Equivalence Relation (per)) A relation is a partial equiv-

alen
e relation i� it is symmetri
 and transitive. That is, R is a partial equivalen
e

relation i�

R=R
∪

∧ R◦R⊆R .

Hen
eforth we abbreviate partial equivalen
e relation to per.

✷

That R≺
and R≻

are indeed pers is a dire
t 
onsequen
e of the symmetry and tran-

sitivity of R\\R .

The left and right per-domains are 
alled \domains" be
ause, like the 
ore
exive

domains, we have the properties: for all pers P ,

R=R◦P ≡ R≻ = R≻ ◦P(31)

and

R=P◦R ≡ R≺ = P ◦R≺ .(32)

As with the 
ore
exive domains, we also have:

R≺ ◦R = R = R ◦R≻ .(33)
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(The se
ond of these equalities is an immediate 
onsequen
e of (26) and the properties

of (
ore
exive-) domains; the �rst is symmetri
.)

Indeed, R≺
and R≻

are the \least" pers that satisfy the equalities (33). (See [Voe99℄

for details of the ordering relation on pers.)

In order to prove additional properties, it is useful to re
ord the left and right domains

of the relation R\\R ◦R>
.

Lemma 34 For all R ,

(R\\R ◦R>)> = R> = (R> ◦R\\R)< ,

(R\\R ◦R>)< = R> = (R> ◦R\\R)> ,

R\\R ◦R> = R> ◦R\\R ◦R> = R> ◦R\\R .

✷

Lemma 34 has the 
onsequen
e that R≻

an be de�ned equivalently by the equation

R≻ = R\\R ◦R>
(35)

and, moreover,

(R≻)< = R> = (R≻)> .(36)

Symmetri
al properties hold of R≺
.

A property that we need later is

Lemma 37 For all relations R ,

R> ◦R\R = R≻ ◦R\R .

Proof By anti-symmetry of the subset relation:

R\R ◦R≻

⊆ { by (24), (35) and monotoni
ity, R≻ ⊆ R\R ◦R> }

R\R ◦R\R ◦R>

⊆ { by 
an
ellation, R\R ◦R\R ⊆ R\R }

R\R ◦R>

⊆ { I⊆R\\R , so by (35) and montoni
ity, R>⊆R≻ }

R\R ◦R≻ .
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✷

The following lemma extends [Rig48, Corollaire, p.134℄ from equivalen
e relations to

pers.

Lemma 38 For all relations R , the following statements are all equivalent.

(i) R is a per (i.e. R=R∪

∧ R◦R⊆R ) ,

(ii) R = R∪
◦R ,

(iii) R=R≺
,

(iv) R=R≻
.

✷

For further properties of pers and per-domains, see [Voe99℄.

3.3 Functionality

In this se
tion, we present a number of lesser-known properties of \fun
tional" relations.

A relation R of type A∼B is said to be left -fun
tional i� R ◦R
∪ = R<

. Equivalently,

R is left-fun
tional i� R ◦R
∪ ⊆ IA . It is said to be right-fun
tional i� R

∪
◦R = R>

(equivalently, R
∪
◦R ⊆ IB ). A relation R is said to be a bije
tion i� it is both left- and

right-fun
tional.

Rather than left- and right-fun
tional, the more 
ommon terminology is \fun
tional"

and \inje
tive" but publi
ations di�er on whi
h of left- or right-fun
tional is \fun
tional"

or \inje
tive". We 
hoose to abbreviate \left-fun
tional" to fun
tional and to use the

term inje
tive instead of right-fun
tional. Typi
ally, we use f and g to denote fun
-

tional relations, and Greek letters to denote bije
tions (although the latter is not always

the 
ase). Other authors make the opposite 
hoi
e.

The properties we present here stem from the observation that fun
tionality 
an be

de�ned via a Galois 
onne
tion. Spe
i�
ally, the relation f is (left-)fun
tional i�, for all

relations R and S (of appropriate type),

f◦R ⊆ S ≡ f> ◦R ⊆ f
∪

◦S .(39)

It is a simple exer
ise to show that (39) is equivalent to the property f ◦ f
∪ ⊆ I . (Although

(39) doesn't immediately �t the standard de�nition of a Galois 
onne
tion, it 
an be

turned into standard form by restri
ting the range of the dummy R to relations that

satisfy f> ◦R = R , i.e. relations R su
h that R<⊆ f> .)
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The 
onverse-dual of (39) is also used frequently: g is fun
tional i�, for all R and

S ,

R ◦g
∪

⊆ S ≡ R ◦g> ⊆ S◦g .(40)

Comparing the Galois 
onne
tions de�ning the over and under operators with the Ga-

lois 
onne
tion de�ning fun
tionality (see (39)) suggests a formal relationship between

\division" by a fun
tional relation and 
omposition with the relation's 
onverse. The

pre
ise form of this relationship is given by the following lemma.

Lemma 41 For all R and all fun
tional relations f ,

f> ◦ f\R = f
∪
◦R .

Proof We use the anti-symmetry of the subset relation. First,

f
∪
◦R ⊆ f> ◦ f\R

= { domains }

f> ◦ f
∪
◦R ⊆ f> ◦ f\R

⇐ { monotoni
ity }

f
∪
◦R ⊆ f\R

= { fa
tors }

f ◦ f
∪
◦R ⊆ R

⇐ { de�nition and monotoni
ity }

f is fun
tional .

Se
ond,

f> ◦ f\R ⊆ f
∪
◦R

⇐ { f> ⊆ f
∪
◦ f ; monotoni
ity and transitivity }

f
∪
◦ f ◦ f\R ⊆ f

∪
◦R

⇐ { monotoni
ity }

f ◦ f\R ⊆ R

= { 
an
ellation }

true .
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✷

Two lemmas that will be needed later now follow. Lemma 42 allows the 
onverse of a

fun
tional relation (i.e. an inje
tive relation) to be 
an
elled, whilst lemma 43 expresses

a distributivity property.

Lemma 42 For all R and all fun
tional relations f ,

f< ◦ f
∪

\ (f
∪

◦R) = f< ◦R .

Proof

f< ◦ f
∪

\ (f∪ ◦R)

= { assumption: f is fun
tional }

f ◦ f
∪

◦ f
∪

\ (f∪ ◦R)

⊆ { 
an
ellation }

f ◦ f
∪
◦R

= { assumption: f is fun
tional }

f< ◦R .

Also,

f< ◦R ⊆ f< ◦ f
∪

\ (f∪ ◦R)

⇐ { monotoni
ity }

R ⊆ f
∪

\ (f∪ ◦R)

= { fa
tors }

true .

The lemma follows by anti-symmetry of the subset relation.

✷

Lemma 43 For all R and S and all fun
tional relations f ,

R\(S◦f) ◦ f> = R\S ◦ f .

Proof
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R\(S◦f) ◦ f> ⊆ R\S ◦ f

⇐ { f> ⊆ f
∪
◦ f , monotoni
ity }

R\(S◦f) ◦ f∪ ⊆ R\S

= { fa
tors }

R ◦R\(S◦f) ◦ f∪ ⊆ S

⇐ { 
an
ellation }

S ◦ f ◦ f
∪ ⊆ S

= { assumption: f is fun
tional }

true .

Also,

R\S ◦ f ⊆ R\(S◦f) ◦ f>

⇐ { monotoni
ity, f = f ◦ f> }

R\S ◦ f ⊆ R\(S◦f)

= { fa
tors and 
an
ellation }

true .

The lemma follows by anti-symmetry of the subset relation.

✷

The following lemma is 
ru
ial to fully understanding Riguet's \analogie frappante";

see lemma 221. (The lemma is 
ompli
ated by the fa
t that it has �ve free variables.

Simpler, possibly better known, instan
es 
an be obtained by instantiating one or more

of f , g , U and W to the identity relation.)

Lemma 44 Suppose f and g are fun
tional. Then, for all U , V and W ,

f
∪
◦ (g< ◦U)\V/(W ◦ f<) ◦g

= f> ◦ (g∪
◦U ◦ f)\(g∪

◦V ◦ f)/(g∪
◦W ◦ f) ◦g> .

Proof Guided by the assumed fun
tionality of f and g , we use the rule of indire
t

equality. Spe
i�
ally, we have, for all R , U , V and W ,

f> ◦R ◦g> ⊆ f
∪
◦ (g< ◦U)\V/(W ◦ f<) ◦g

= { assumption: f and g are fun
tional, (39) and (40) }

f ◦R ◦g
∪ ⊆ (g< ◦U)\V/(W ◦ f<)
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= { fa
tors }

g< ◦U ◦ f ◦R ◦g
∪
◦W ◦ f< ⊆ V

= { assumption: f and g are fun
tional

i.e. f ◦ f
∪ = f< ∧ g ◦g

∪ = g< }

g ◦g
∪
◦U ◦ f ◦R ◦g

∪
◦W ◦ f ◦ f

∪ ⊆ V

= { assumption: f and g are fun
tional, (39) and (40) }

g> ◦g
∪
◦U ◦ f ◦R ◦g

∪
◦W ◦ f ◦ f> ⊆ g

∪
◦V ◦ f

= { domains (four times) }

g
∪
◦U ◦ f ◦ f> ◦R ◦g> ◦g

∪
◦W ◦ f ⊆ g

∪
◦V ◦ f

= { fa
tors }

f> ◦R ◦g> ⊆ (g∪
◦U ◦ f)\(g∪

◦V ◦ f)/(g∪
◦W ◦ f)

= { f> and g>
are 
ore
exives }

f> ◦R ◦g> ⊆ f> ◦ (g∪
◦U ◦ f)\(g∪

◦V ◦ f)/(g∪
◦W ◦ f) ◦g>

The lemma follows by instantiating R to the left and right sides of the 
laimed equation,

simplifying using domain 
al
ulus, and then applying the re
exivity and anti-symmetry

of the subset relation.

✷

The �nal lemma in this se
tion anti
ipates the dis
ussion of per domains in se
tion

5.

Lemma 45 Suppose relations R , f and g are su
h that

f ◦ f
∪

= f< = R< ∧ g< = g ◦g
∪

.

Then, for all S ,

g> ◦ (f
∪

◦R ◦g)\(f
∪

◦S) = g
∪

◦R\S .(46)

It follows that

g> ◦ (f
∪

◦R ◦g)\(f
∪

◦R ◦g) ◦g> = g
∪

◦R\R ◦g .(47)

Proof The proof of (46) is as follows.

g> ◦ (f∪ ◦R ◦g)\(f∪ ◦S)

= { fa
tors: }

g> ◦g\((f∪ ◦R)\(f∪ ◦S))
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= { lemma 41 with f,R := g , (f∪ ◦R)\(f∪ ◦S) }

g
∪
◦ (f∪ ◦R)\(f∪ ◦S)

= { fa
tors }

g
∪
◦R\(f∪ \ (f∪ ◦S))

= { [ R\S=R\(R< ◦S) ] with R,S := R , f
∪

\ (f∪ ◦S)

assumption: f<=R< }

g
∪
◦R\(f< ◦ f

∪

\ (f∪ ◦S))

= { lemma 42 with f,R := f,S }

g
∪
◦R\(f< ◦S)

= { assumption: f<=R<
, [ R\S=R\(R< ◦S) ] }

g
∪
◦R\S .

Now we prove (47).

g> ◦ (f∪ ◦R ◦g)\(f∪ ◦R ◦g) ◦g>

= { (46) with S :=R◦g }

g
∪
◦R\(R◦g) ◦g>

= { lemma 43 }

g
∪
◦R\R ◦g .

✷

3.4 Difunctions

Formally, relation R is difun
tional equivales

R ◦R
∪

◦R ⊆ R .(48)

As for pers, there are several equivalent de�nitions of \difun
tional". We begin with the

point-free de�nitions:

Theorem 49 For all R , the following statements are all equivalent.

(i) R is difun
tional (i.e. R ◦R
∪
◦R ⊆ R ) ,

(ii) R = R ◦R
∪
◦R ,

(iii) R> ◦R\R = R
∪
◦R ,
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(iv) R≻ = R
∪
◦R ,

(v) R/R ◦R< = R ◦R
∪

,

(vi) R≺ = R ◦R
∪

,

(vii) R = R∩ (R\R/R)∪ .

Proof For the equivalen
e of (i) and (ii), we �rst observe that, for all R ,

R ⊆ R ◦R
∪

◦R

sin
e

R ⊆ R ◦R
∪
◦R

⇐ { R> ⊆ R
∪
◦R and monotoni
ity }

R = R ◦R>

= { domains }

true .

That (i) and (ii) are equivalent thus follows from the anti-symmetry of the subset relation.

Next we establish the equivalen
e of (i) and (iii). Again, we begin by observing a

property that holds for all R , namely

R
∪

◦R ⊇ R> ◦R\R .(50)

The proof is as follows:

R
∪
◦R ⊇ R> ◦R\R

= { 
an
ellation }

R
∪
◦R ◦R\R ⊇ R> ◦R\R

⇐ { monotoni
ity }

R
∪
◦R ⊇ R>

⇐ { de�nition 15 }

true .

We now prove that the opposite in
lusion follows from (i).
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R
∪
◦R ⊆ R> ◦R\R

⇐ { R> ◦R
∪ = R∪

and monotoni
ity }

R
∪
◦R ⊆ R\R

⇐ { fa
tors }

R ◦R
∪
◦R ⊆ R .

Thus, by anti-symmetry, (iii) follows from (i). But

R> ◦R\R = R
∪
◦R

⇒ { Leibniz }

R ◦R> ◦R\R = R ◦R
∪
◦R

= { domains }

R ◦R\R = R ◦R
∪
◦R

= { 
an
ellation }

R = R ◦R
∪
◦R .

That is, (iii) implies (ii) whi
h, as we have already shown, is equivalent to (i). We


on
lude, by mutual impli
ation, that (iii) and (i) are equivalent.

A similar proof establishes the equivalen
e of (i) and (iv). On
e again we begin by

observing a property that holds for all R , namely

R
∪

◦R ⊇ R≻ .(51)

We have:

R
∪
◦R

⊇ { (50) }

R> ◦R\R

⊇ { R\\R = R\R∩ (R\R)∪ }

R> ◦R\\R

= { de�nition: (28) }

R≻ .

We now prove that the opposite in
lusion follows from (i).

R
∪
◦R ⊆ R≻
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= { de�nition: (28) }

R
∪
◦R ⊆ R> ◦R\\R

⇐ { R> ◦R
∪ = R∪

and monotoni
ity }

R
∪
◦R ⊆ R\\R

= { R
∪
◦R is symmetri
, R\\R = R\R∩ (R\R)∪ }

R
∪
◦R ⊆ R\R

⇐ { fa
tors }

R ◦R
∪
◦R ⊆ R .

Thus, by anti-symmetry, (iv) follows from (i). But

R≻ = R
∪
◦R

⇒ { Leibniz }

R ◦R≻ = R ◦R
∪
◦R

= { per domains }

R = R ◦R
∪
◦R .

The equivalen
e of (i), (v) and (vi) is symmetri
al.

The proof that (v) is equivalent to (48) is straightforward:

R = R∩ (R\R/R)∪

= { de�nition of in�mum }

R ⊆ (R\R/R)∪

= { 
onverse and fa
tors }

R ◦R
∪
◦R ⊆ R .

✷

The equivalen
e of 49(i) and 49(ii) is well-known and due to Riguet [Rig48℄; the

equivalen
e of 49(i), (iv) and (vi) is due to Voermans [Voe99℄. The equivalen
e of 49(i),

(iii) and (v) is formally stronger: a 
onsequen
e is that, if R is difun
tional,

R≻ = R> ◦R\R ∧ R≺ = R/R ◦R< .(52)

(Cf. (28).) These formulae are exploited in se
tion 12.4. De�nition (48) is the most

useful when it is required to establish that a parti
ular relation is difun
tional, whereas

properties 49(ii)-(vii) are more useful when it is required to exploit the fa
t that a

parti
ular relation is difun
tional.
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The 
ombination of theorem 49 (in parti
ular 49(ii) and 49(iv) with lemma 38 allows

one to prove that a per is a symmetri
 difun
tion. (We leave the easy 
al
ulation to

the reader.) This property is sometimes used to spe
ialise properties of difun
tions to

properties of pers.

3.5 Provisional Orderings

There are various well-known notions of ordering: preorder, partial and linear (aka total)

ordering. For our purposes all of these are too stri
t. So, in this se
tion, we introdu
e the

notion of a \provisional ordering". The adje
tive \provisional" has been 
hosen be
ause

the notion \provides" just what we need.

The standard de�nition of an ordering is an anti-symmetri
 preorder whereby a pre-

order is required to be re
exive and transitive. It is the re
exivity requirement that is

too stri
t for our purposes. So, with the intention of weakening the standard de�nition

of a preorder to requiring re
exivity of a relation over some superset of its left and right

domains, we propose the following de�nition.

Definition 53 Suppose T is a homogeneous relation. Then T is said to be a provi-

sional preorder if

T< ⊆ T ∧ T> ⊆ T ∧ T ◦T ⊆T .

✷

Fig. 2 depi
ts a provisional preorder on a set of eight elements as a dire
ted graph.

The blue squares should be ignored for the moment. (See the dis
ussion following lemma

59.) Note that the relation depi
ted is not a preorder be
ause it is not re
exive: the

top-right node depi
ts an element that is not in the left or right domain of the relation.

An immediate 
onsequen
e of the de�nition is that the left and right domains of a

provisional preorder must be equal:

Lemma 54 If T is a provisional preorder then

T< = T> .

Proof Suppose T is a provisional preorder. Then

T> ⊆ T<

= { domains }

(T>)< ⊆ T<

⇐ { monotoni
ity }
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Figure 2: A Provisional Preorder

T> ⊆ T

= { assumption: T> ⊆ T }

true .

That is, T> ⊆ T<
. Dually, T< ⊆ T>

. Thus, by anti-symmetry, T< = T>
.

✷

A trivial property that is nevertheless used frequently:

Lemma 55 T is a provisional preorder equivales T
∪

is a provisional preorder.

Proof Immediate from the de�nition and properties of 
onverse.

✷

A preorder is a provisional preorder with left (equally right) domain equal to the

identity relation. In other words, a preorder is a total provisional preorder. It is easy

to show that, for any relation R , the relations R\R and R/R are preorders. It is also

easy to show that R is a preorder if and only if R=R\R (or equivalently if and only if

R=R/R ). These properties generalise to provisional preorders.

Lemma 56 For all relations R , the relations R> ◦R\R and R/R ◦R<
are provisional

preorders.

Proof The proof is very straightforward. First,

(R> ◦R\R)<
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= { I⊆R\R , so (R\R)<= I ; domains }

(R>)<

= { R>
is a 
ore
exive }

R>

⊆ { I⊆R\R , monotoni
ity }

R> ◦R\R .

Se
ond,

(R> ◦R\R)>

= { domains }

(R ◦R\R)>

= { 
an
ellation }

R>

⊆ { I⊆R\R , monotoni
ity }

R> ◦R\R .

Third,

R> ◦R\R ◦R> ◦R\R

⊆ { R>⊆ I , monotoni
ity }

R> ◦R\R ◦R\R

⊆ { R\R ◦R\R ⊆ R\R

(easy use of de�nition of fa
tors and 
an
ellation) }

R> ◦R\R .

Comparing the above properties with de�nition 53, we have shown that R> ◦R\R is a

provisional preorder. The dual property, R/R ◦R<
is a provisional preorder, is obtained

by the instantiation R :=R∪

and appli
ation of distributivity properties of 
onverse.

✷

Lemma 57 T is a provisional preorder equivales

T = T< ◦T\T = T/T ◦T> = T< ◦T\T/T ◦T> .
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Proof Follows-from is a straightforward 
onsequen
e of the fa
t that T\T is a preorder

for arbitrary T .

Impli
ation is also straightforward. Assume that T is a provisional preorder. The

proof of the leftmost equality is by mutual in
lusion. First

T ⊆ T< ◦T\T

⇐ { T = T< ◦T and monotoni
ity }

T ⊆ T\T

= { fa
tors }

T ◦T ⊆ T

= { assumption: T is transitive }

true .

For the opposite in
lusion we have

T< ◦ T\T ⊆ T

⇐ { assumption: T<⊆ T , monotoni
ity }

T ◦T\T ⊆ T

= { 
an
ellation }

true .

Thus T = T< ◦T\T by anti-symmetry. That T = T/T ◦T>
follows from lemma 55 and the

properties of 
onverse. Finally,

T

= { T = T ◦T>
and T = T< ◦T\T (proved above) }

T< ◦ T\T ◦T>

= { T = T/T ◦T>
(proved above) }

T< ◦ T\(T/T ◦ T>) ◦ T>

= { [ R\(S ◦R>) ◦R> = R\S ◦R> ] with R,S :=T,T }

T< ◦ T\T/T ◦ T> .

✷

Lemma 57 is sometimes used in a form where the domains are repla
ed by per do-

mains.
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Lemma 58 Suppose T is a provisional preorder. Then

T = T≺ ◦T\T = T/T ◦T≻ = T≺ ◦T\T/T ◦T≻ .

Proof Immediate from lemma 57 and the per domain equations, for all R ,

R = R≺ ◦R = R≺ ◦R< ◦R = R ◦R≻ = R ◦R> ◦R≻ .

For example,

T

= { [ R = R≺ ◦R ] with R :=T }

T≺ ◦T

= { lemma 57 }

T≺ ◦T< ◦T\T

= { [ R≺ ◦R< = R≺ ] with R :=T }

T≺ ◦T\T .

✷

Lemma 59 Suppose T is a provisional preorder. Then

T≺ = T ∩ T
∪

= T≻ .

Hen
e T ∩ T∪

is a per.

Proof We exploit lemma 57:

T≻

= { de�nition: (28) and (24), lemma 34 }

T> ◦ (T\T ∩ (T\T)∪) ◦ T>

= { distributivity ( T>
is 
ore
exive) }

T> ◦ T\T ◦T> ∩ (T∪)< ◦ T
∪

/ T
∪

◦ (T∪)<

= { lemma 54

(twi
e, on
e with T :=T∪

using lemma 55) }

T< ◦ T\T ◦T> ∩ (T∪)< ◦ T
∪

/ T
∪

◦ (T∪)>

= { lemma 57 }

T ◦T> ∩ (T∪)< ◦T
∪

= { domains }

T ∩T∪

.



29

The dual property T≺ = T ∩T∪

is immediate from the properties of 
onverse.

✷

Referring ba
k to �g. 2, the blue squares depi
t the equivalen
e 
lasses of the sym-

metri
 
losure of a provisional preorder. As remarked earlier, the depi
ted relation is not

a preorder; 
orrespondingly, the blue squares depi
t a truly partial equivalen
e relation.

We assume the reader is familiar with the notions of an ordering and a linear (or total)

ordering. We now extend these notions to provisional orderings. (The at-most relation

on the integers is both anti-symmetri
 and linear. The at-most relation restri
ted to some

arbitrary subset of the integers is an example of a linear provisional ordering a

ording

to the de�nition below.)

Definition 60 Suppose T is a homogeneous relation of type A∼A , for some A .

Then T is said to be provisionally anti-symmetri
 if

T ∩T
∪

⊆ IA .

Also, T is said to be a provisional ordering if T is provisionally anti-symmetri
 and T

is a provisional preorder. Finally, T is said to be a linear provisional ordering if T is

a provisional ordering and

T ∪T
∪

= (T ∩ T
∪

)◦⊤⊤◦(T ∩T
∪

) .

✷

De�nition 60 weakens the equality in the standard notion of anti-symmetry to an

in
lusion. The standard de�nition of a partial ordering |an anti-symmetri
 preorder|

is weakened a

ordingly (as mentioned earlier, in order to \provide" for our needs).

The following lemma anti
ipates the use of provisional preorders/orderings in exam-

ples presented later.

Lemma 61 Suppose T is a provisional ordering. Then

T< = T ∩T
∪

= T> .

Proof For the �rst equality, we have

T ∩T∪ ⊆ T<

= { I is unit of 
omposition, de�nition of T< }

(T ∩T∪)◦I ⊆ I∩ T ◦⊤⊤

= { assumption: T ∩T∪ ⊆ I ; in�mum and monotoni
ity }

true .

Also,
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T< ⊆ T ∩T∪

= { in�mum }

T< ⊆ T ∧ T< ⊆ T
∪

= { T is a provisional preorder, so T<⊆ T ; (T<)∪= T< }

true .

The se
ond equality is obtained by instantiating T to T
∪

.

✷

4 Squares and Rectangles

We now introdu
e the notions of a \re
tangle" and a \square"; re
tangles are typi-


ally heterogeneous whilst squares are, by de�nition, homogeneous relations. Squares

are re
tangles; properties of squares are typi
ally obtained by spe
ialising properties of

re
tangles. (For example, lemma 66 shows that the interse
tion of two re
tangles is a

re
tangle by giving an expli
it 
onstru
tion; the same 
onstru
tion applies to squares

from whi
h it is easily shown that the interse
tion of two squares is a square.)

Definition 62 (Rectangle and Square) A relation R is a re
tangle i� R=R◦⊤⊤◦R .

A relation R is a square i� R is a symmetri
 re
tangle.

✷

More generally, we have:

Lemma 63 For all relations R and S , R◦⊤⊤◦S is a re
tangle. It follows that R◦T ◦S

is a re
tangle if T is a re
tangle.

Proof Be
ause the proof is based on the 
one rule, a 
ase analysis is ne
essary. In the


ase that either R or S is the empty relation, the lemma 
learly holds (be
ause R◦⊤⊤◦S

is the empty relation, and the empty relation is a re
tangle). Suppose now that both R

and S are non-empty. Then

R◦⊤⊤◦S◦⊤⊤◦R◦⊤⊤◦S

= { 
one rule: (4) (applied twi
e), assumption: R 6=⊥⊥ and S 6=⊥⊥ }

R◦⊤⊤◦S .

If T is a re
tangle, R◦T ◦S=R◦T ◦⊤⊤◦T ◦S ; thus R◦T ◦S is a re
tangle.

✷

Lemma 64 A re
tangle is a difun
tion and a square is a per.
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Proof Suppose R is a re
tangle. Then

R ◦R
∪
◦R

= { de�nition 62 (applied to outer terms) }

R ◦⊤⊤ ◦R ◦R
∪
◦R ◦⊤⊤ ◦R

⊆ { ⊤⊤ is greatest relation, monotoni
ity }

R◦⊤⊤◦R

= { de�nition 62 }

R .

That is, R ◦R∪
◦R ⊆ R . Thus, by de�nition, R is a difun
tion.

A similar 
al
ulation shows that a square is a per.

✷

4.1 Inclusion and Intersection

Using 
olloquial terminology, the left and right domain of a re
tangle are the \sides" of

the re
tangle. In general, a re
tangle is de�ned by its two sides. More pre
isely:

Lemma 65 Suppose R and S are re
tangles of the same type. Then

R⊆S ≡ R< ⊆ S< ∧ R> ⊆ S> .

It follows that

R=S ≡ R< = S< ∧ R> = S> .

Proof By mutual impli
ation:

R⊆S

⇒ { monotoni
ity }

R< ⊆ S< ∧ R> ⊆ S>

⇒ { monotoni
ity }

R< ◦⊤⊤ ◦R> ⊆ S< ◦⊤⊤ ◦S>

= { domains }

R◦⊤⊤◦R ⊆ S◦⊤⊤◦S

= { assumption: R and S are re
tangles, de�nition 62 }

R⊆S .
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The se
ond property follows straightforwardly from the anti-symmetry of the subset

relation.

✷

Lemma 66 The interse
tion of two re
tangles is a re
tangle. Spe
i�
ally, for all

re
tangles R and S ,

R∩S = (R<∩S<)◦⊤⊤◦(R>∩S>) .

Proof We have, for all R , S , T and U ,

R◦⊤⊤◦S ∩ T ◦⊤⊤◦U

= { property of 
onditionals }

R◦⊤⊤ ∩ ⊤⊤◦S ∩ T ◦⊤⊤ ∩ ⊤⊤◦U

= { property of 
onditionals }

(R∩T)◦⊤⊤ ∩ ⊤⊤◦(S∩U)

= { property of 
onditionals }

(R∩T)◦⊤⊤◦(S∩U) .

(The properties of 
onditionals used above are not shown in this paper but easily proven.

Hint: use the modularity rule (2).) Also, for all R and S , R◦⊤⊤◦S = R< ◦⊤⊤ ◦S>
. So

R∩S

= { assumption: R and S are re
tangles }

R◦⊤⊤◦R ∩ S◦⊤⊤◦S

= { [ R◦⊤⊤◦S = R< ◦⊤⊤ ◦S> ] with R,S :=R,R and R,S :=S,S }

R< ◦⊤⊤ ◦R> ∩ S< ◦⊤⊤ ◦S>

= { above with R,S,T ,U := R< , R> , S< , S> }

(R<∩S<)◦⊤⊤◦(R>∩S>) .

✷

5 Isomorphic Relations

Definition 67 Suppose R and S are two relations (not ne
essarily of the same type).

Then we say that R and S are isomorphi
 and write R∼=S i�
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〈∃φ,ψ

: φ ◦φ
∪ = R< ∧ φ

∪
◦φ = S< ∧ ψ ◦ψ

∪ = R> ∧ ψ
∪
◦ψ = S>

: R = φ ◦S ◦ψ
∪

〉 .

✷

The relation between R and S in de�nition 67 
an be strengthened to the 
onjun
tion

R = φ ◦S ◦ψ
∪

∧ φ
∪

◦R ◦ψ = S .(68)

Alternatively, the leftmost 
onjun
t 
an be repla
ed by the rightmost 
onjun
t. This is

a 
onsequen
e of the following lemma.

Lemma 69 For all φ , ψ , R and S ,

(R = φ ◦S ◦ψ
∪ ≡ φ

∪
◦R ◦ψ = S)

⇐ φ ◦φ
∪ = R< ∧ φ

∪
◦φ = S< ∧ ψ ◦ψ

∪ = R> ∧ ψ
∪
◦ψ = S> .

Proof The proof is by mutual impli
ation.

R = φ ◦S ◦ψ
∪

⇒ { Leibniz }

φ
∪
◦R ◦ψ = φ

∪
◦φ ◦S ◦ψ

∪
◦ψ

= { assume: φ
∪
◦φ = S<

and ψ
∪
◦ψ = S>

, domains }

φ
∪
◦R ◦ψ = S

⇒ { Leibniz }

φ ◦φ
∪
◦R ◦ψ ◦ψ

∪ = φ ◦S ◦ψ
∪

= { ssume: φ ◦φ
∪ = R<

and ψ ◦ψ
∪ = R>

, domains }

R = φ ◦S ◦ψ
∪

.

✷

We often 
hoose one or other of the 
onjun
ts in (68), whi
hever being most 
onve-

nient at the time.

Lemma 70 The relation

∼= is re
exive, transitive and symmetri
. That is,

∼= is an

equivalen
e relation.
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Proof This is very straightforward. The details are left to the reader.

✷

The task of proving that two relations are isomorphi
 involves 
onstru
ting φ and

ψ that satisfy the 
onditions of the existential quanti�
ation in de�nition 67; we 
all the


onstru
ted values witnesses to the isomorphism.

Note that the requirement on φ in de�nition 67 is that it is both fun
tional and

inje
tive; thus it is required to \witness" a (1{1) 
orresponden
e between the points in

the left domain of R and the points in the left domain of S . Similarly, the requirement on

ψ is that it \witnesses" a (1{1) 
orresponden
e between the points in the right domain

of R and the points in the right domain of S . Formally, R<
and S<

are isomorphi
 as

\witnessed" by φ and R>
and S>

are isomorphi
 as \witnessed" by ψ :

Lemma 71 Suppose R and S are relations su
h that R∼=S . Then R<∼=S<
and

R>∼=S>
. Spe
i�
ally, if φ and ψ witness the isomorphism R∼=S ,

R< = φ ◦S< ◦φ
∪

∧ R> = ψ ◦S> ◦ψ
∪

.

Proof Suppose φ and ψ are su
h that

φ ◦φ
∪

= R< ∧ φ
∪

◦φ = S< ∧ ψ ◦ψ
∪

= R> ∧ ψ
∪

◦ψ = S> .

Then

R<

= { R<
is a 
ore
exive }

R< ◦R<

= { assumption }

φ ◦φ
∪
◦φ ◦φ

∪

= { assumption }

φ ◦S< ◦φ
∪

.

That is R< = φ ◦S< ◦φ
∪

. Similarly, R> = ψ ◦S> ◦ψ
∪

. But also (be
ause the domain

operators are 
losure operators),

φ ◦φ
∪

= (R<)< ∧ φ
∪

◦φ = (S<)< ∧ ψ ◦ψ
∪

= (R>)> ∧ ψ
∪

◦ψ = (S>)> .

Applying de�nition 67 with R,S,φ,ψ := R< , S< ,φ ,φ and R,S,φ,ψ := R> , S> ,ψ ,ψ , the

lemma is proved.

✷

The property of the left and right domains stated in lemma 71 is also valid for the

left and right per domains:
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Lemma 72 Suppose R and S are relations su
h that R∼=S . Then R≺∼=S≺
and

R≻∼=S≻
. Spe
i�
ally, if φ and ψ witness the isomorphism R∼=S ,

R≺ = φ ◦S≺ ◦φ
∪

∧ R≻ = ψ ◦S≻ ◦ψ
∪

.

Proof Suppose φ and ψ witness the isomorphism R∼=S . Then

R> ◦R\R ◦R>

= { assumption: ψ ◦ψ
∪ = R> }

ψ ◦ψ
∪
◦R\R ◦ψ ◦ψ

∪

= { (47) with f,g :=φ,ψ }

ψ ◦ψ> ◦ (φ∪
◦R ◦ψ)\(φ∪

◦R ◦ψ) ◦ψ> ◦ψ
∪

= { domains, assumption S = φ∪
◦R ◦ψ }

ψ ◦S\S ◦ψ
∪

.

So

R≻

= { de�nition: (28) }

R> ◦R\R ◦R> ∩ (R> ◦R\R ◦R>)∪

= { above }

ψ ◦S\S ◦ψ
∪ ∩ (ψ ◦S\S ◦ψ

∪)∪

= { assumption: ψ>=S>
, domains }

ψ ◦S> ◦S\S ◦S> ◦ψ
∪ ∩ (ψ ◦S> ◦S\S ◦S> ◦ψ

∪)∪

= { distributivity (ψ is a bije
tion) }

ψ ◦ (S> ◦S\S ◦S> ∩ (S> ◦S\S ◦S>)∪) ◦ψ∪

= { de�nition }

ψ ◦S≻ ◦ψ
∪

.

We have thus 
al
ulated that the the pair (ψ,ψ) is a 
andidate witness of the iso-

morphism R≻∼=S≻
. It remains to 
he
k the domain requirements in de�nition 67.

By assumption, ψ ◦ψ
∪ = R>

and ψ
∪
◦ψ = S>

. Moreover, for arbitrary relation R ,

(R≻)> = (R≻)< = R>
; so ψ ◦ψ

∪ = (R≻)> and ψ
∪
◦ψ = (S≻)> . Applying de�nition 67 with

R,S,φ,ψ := R≻ , S≻ ,ψ ,ψ , we have proved that R≻∼=S≻
.

The proof that R≺∼=S≺
is symmetri
al.
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A quite di�erent proof of lemma 72 is as follows. (It is always reasssuring to have

di�erent proofs.)

Alternative proof

**** Ed. Ik ben niet overtuigd dat dit bewijs beter is want er zitten twee konijntjes

in: eerst (ψ,ψ) als witness kiezen en tweede de transitivity stap (zie beneden). Het

nadeel van mijn bewijs is dat we eigens
happen zoals (47) moeten opnemen in het stuk.

Voorlopig laat ik allebei blijven staan. ****

Suppose φ and ψ witness the isomorphism R∼=S . We show that the pair (ψ,ψ) wit-

nesses the isomorphism R≻∼=S≻
. As above, ψ ◦ψ∪ = R>

, ψ∪
◦ψ = S>

, ψ ◦ψ∪ = (R≻)>

and ψ
∪
◦ψ = (S≻)> . So it remains to show that R≻ = ψ ◦S≻ ◦ψ

∪

. Now

R≻ = ψ ◦S≻ ◦ψ
∪

⇐ { transitivity }

R≻ = R≻ ◦ψ ◦S≻ ◦ψ
∪ = ψ ◦S≻ ◦ψ

∪

.

The 
al
ulation thus splits into two steps: the proof of the leftmost equality and the

proof of the rightmost equality. The leftmost equality pro
eeds as follows.

R≻ = R≻ ◦ψ ◦S≻ ◦ψ
∪

= { (31), ψ ◦S≻ ◦ψ
∪

is a per (see below) }

R = R ◦ψ ◦S≻ ◦ψ
∪

.

Continuing with the right hand side:

R ◦ψ ◦S≻ ◦ψ
∪

= { R = φ ◦S ◦ψ
∪

}

φ ◦S ◦ψ
∪
◦ψ ◦S≻ ◦ψ

∪

= { ψ
∪
◦ψ = S>

, domains: (18) and (33) }

φ ◦S ◦ψ
∪

= { see lemma 70 }

R .

Combining the two 
al
ulations, we have established that

R≻ = R≻ ◦ψ ◦S≻ ◦ψ
∪

.

Now, for the rightmost equality, we have:
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R≻ ◦ψ ◦S≻ ◦ψ
∪ = ψ ◦S≻ ◦ψ

∪

= { (R≻)< = R>
, domains }

R> ◦R≻ ◦ψ ◦S≻ ◦ψ
∪ = ψ ◦S≻ ◦ψ

∪

= { R> = ψ ◦ψ
∪

}

ψ ◦ψ
∪
◦R≻ ◦ψ ◦S≻ ◦ψ

∪ = ψ ◦S≻ ◦ψ
∪

⇐ { Leibniz }

ψ
∪
◦R≻ ◦ψ ◦S≻ = S≻

= { 
onverse (noting that R≻
and S≻

are symmetri
) }

S≻ ◦ψ
∪
◦R≻ ◦ψ = S≻

= { (31), ψ
∪
◦R≻ ◦ψ is a per (see below) }

S ◦ψ
∪
◦R≻ ◦ψ = S

= { as above, with R,S,ψ := S ,R ,ψ∪

}

true .

Note that the usage of (31) relies on the fa
t that both ψ ◦S≻ ◦ψ
∪

and ψ
∪
◦R≻ ◦ψ are

pers. The straightforward proof is omitted.

✷

Lemma 73 A relation R is isomorphi
 to a 
ore
exive i� R is a bije
tion.

Proof The proof is by mutual impli
ation. Suppose �rst that R is a bije
tion. That

is,

R ◦R
∪

= R< ∧ R
∪

◦R = R> .

We prove that R is isomorphi
 to R<
. (Symmetri
ally, R is isomorphi
 to R>

.) For the

witnesses we take R<
and R . Instantiating de�nition 67, we have to verify that

R< ◦ (R<)
∪

= R< ∧ (R<)
∪

◦R< = R< ∧ R ◦R
∪

= (R<)> ∧ R
∪

◦R = R>

and

R< = R< ◦R ◦R
∪

.

The veri�
ation is a straightforward appli
ation of properties of the left domain operator.

Now suppose that 
ore
exive p is isomorphi
 to R . Suppose the witnesses are φ

and ψ . That is,

φ ◦φ
∪

= p ∧ φ
∪

◦φ = R< ∧ ψ
∪

◦ψ = R>
(74)
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and

p = φ ◦R ◦ψ
∪

.(75)

Then

R<

= { φ∪
◦φ = R< = R< ◦R< }

φ
∪
◦φ ◦φ

∪
◦φ

= { φ ◦φ
∪ = p = p ◦p

∪

}

φ
∪
◦p ◦p

∪
◦φ

= { (75) }

φ
∪
◦φ ◦R ◦ψ

∪
◦ (φ ◦R ◦ψ

∪)∪ ◦φ

= { 
onverse }

φ
∪
◦φ ◦R ◦ψ

∪
◦ψ ◦R

∪
◦φ

∪
◦φ

= { (74) }

R< ◦R ◦R> ◦R
∪
◦R<

= { domains }

R ◦R
∪

.

We 
on
lude that R< = R ◦R
∪

. Symmetri
ally, R> = R∪
◦R . That is, R is a bije
tion.

✷

Theorem 76 Suppose P is a per. Then,

P< = P ⇐ P< ∼= P .

In parti
ular, for all R ,

R< = R≺ ⇐ R< ∼= R≺ .

Symmetri
ally, for all R ,

R> = R≻ ⇐ R> ∼= R≻ .

Proof This is an instan
e of lemma 73. Spe
i�
ally, assuming that P< ∼= P , we may

apply the instantiation p,R := P< , P in lemma 73 to dedu
e that P is a bije
tion. That

is, P ◦P
∪ = P<

. But P is a per (i.e. P = P ◦P
∪

). So we 
on
lude that

P=P< .
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That, for all R , R<=R≺
if R< ∼= R≺

now follows by making the instantiation P :=R≺
and

using the fa
t that (R≺)<=R<
. The symmetri
 property of the right domain operators

follows by making the instantiation P :=R≻
and using the fa
t that (R≻)<=R>

.

✷

6 Indexes and Core Relations

This se
tion introdu
es the notions of \index" and \
ore" of a relation. An \index" is a

spe
ial 
ase of a \
ore" of a relation but, in general, it is more useful. The properties of

both notions are explored in depth.

6.1 Indexes

Re
all �g. 1. We said that the middle and rightmost �gures depi
t \
ore relations". The

property that is 
ommon to both is 
aptured by the following de�nition.

Definition 77 (Core Relation) A relation R is a 
ore relation i� R<=R≺
and

R>=R≻
.

✷

The rightmost �gure of �g. 1 is what we 
all an \index" of the relation depi
ted by

the leftmost �gure. The de�nition of an \index" of a relation is as follows.

Definition 78 (Index) An index of a relation R is a relation J that has the following

properties:

(a) J⊆R ,

(b) R≺ ◦ J ◦R≻ = R ,

(c) J< ◦R≺ ◦ J< = J< ,

(d) J> ◦R≻ ◦ J> = J> .

✷

Note parti
ularly requirement 78(a). A 
onsequen
e of this requirement is that an

index of a relation has the same type as the relation. This means that the relation

depi
ted by the middle �gure of �g. 1 is not an index of the relation depi
ted by the

leftmost �gure be
ause the relations have di�erent types.

An obvious property is that a 
ore relation is an index of itself:

Theorem 79 Suppose R is a 
ore relation. Then R is an index of R .
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Proof Straightforward appli
ation of de�nitions 77 and 78 together with the properties

of (
ore
exive and per) domains.

✷

In general, the existen
e of an index of an arbitrary relation is not derivable in

systems that axiomatise point-free relation algebra. In se
tion 7.2 we add a limited form

of the axiom of 
hoi
e that guarantees the existen
e of indexes of arbitrary pers; we

also show that this then guarantees the existen
e of indexes for arbitrary relations. For

the moment, we establish a number of properties of indexes assuming they exist. For

example, we show that all indexes of a given relation are isomorphi
: see theorem 89.

Lemma 80 If J is an index of the relation R then

J≺ ⊆ R≺ ∧ J≻ ⊆ R≻ .

It follows that

J< = J≺ ∧ J> = J≻ .

That is, an index is a 
ore relation.

Proof We �rst prove that J≺ ⊆ R≺
.

R≺

= { de�nition }

R//R ◦ R<

⊇ { 78(a) and monotoni
ity }

R//R ◦ J<

⊇ { see below }

J≺ .

The last step in the above 
al
ulation pro
eeds as follows.

J≺ ⊆ R//R ◦ J<

⇐ { (J≺)> = J< (so J≺ = J≺ ◦ J< ) and J< ◦ J< = J<

monotoni
ity }

J≺ ⊆ R//R

= { de�nition of R//R }

J≺ ⊆ R/R ∩ (R/R)∪
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= { J≺ = (J≺)∪ }

J≺ ⊆ R/R

= { shunting }

J≺ ◦R ⊆ R .

We 
ontinue with the lefthand side of the above in
lusion.

J≺ ◦R

= { 78(b) }

J≺ ◦R≺ ◦ J ◦R≻

= { (J≺)>= J< and domains }

J≺ ◦ J< ◦R≺ ◦ J< ◦ J ◦R≻

= { 78(
) }

J≺ ◦ J< ◦ J ◦R≻

= { (
orefexive and per) domains }

J ◦R≻

⊆ { 78(a) }

R ◦R≻

= { per domains }

R .

We 
on
lude that J≺ ⊆ R≺
. The equation J≺= J< uses anti-symmetry.

J≺

⊇ { per domains }

J<

= { 78(
) }

J< ◦R≺ ◦ J<

⊇ { J≺ ⊆ R≺
(see above), 
omposition of 
ore
exives is idempotent }

J< .

The other two properties are symmetri
al.

✷

An immediate 
orollary of lemma 80 is the following theorem.
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Theorem 81 If J is an index (of some relation) then J is an index of J .

Proof Suppose J is an index of R . Then we have to prove the properties 78(a), (b),

(
) and (d) with R := J. These are the properties:

(e) J⊆ J ,

(f) J≺ ◦ J ◦ J≻ = J ,

(g) J< ◦ J≺ ◦ J< = J< ,

(h) J> ◦ J≻ ◦ J> = J> .

Properties (e) and (f) are true of all relations J . Properties (g) and (h) follow from

lemma 80 and the fa
t that 
omposition of 
ore
exives is idempotent.

✷

The indexes of a relation are uniquely de�ned by their left and right domains. See


orollary 83, whi
h is an immediate 
onsequen
e of the following lemma.

Lemma 82 Suppose J is an index of the relation R . Then

J = J< ◦R ◦ J> .

Proof

J

= { domains }

J< ◦ J ◦ J>

= { 78(
) and (d) }

J< ◦R≺ ◦ J< ◦ J ◦ J> ◦R≻ ◦ J>

= { domains }

J< ◦R≺ ◦ J ◦R≻ ◦ J>

= { 78(b) }

J< ◦R ◦ J> .

✷

Corollary 83 Suppose J and K are both indexes of the relation R . Then

J=K ≡ J<=K< ∧ J>=K> .
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Proof Impli
ation is an immediate 
onsequen
e of Leibniz's rule. For the \if" part, we

assume that J<=K<
and J>=K>

. Then

J

= { J is an index of R , lemma 82 }

J< ◦R ◦ J>

= { assumption: J<=K< ∧ J>=K> }

K< ◦R ◦K>

= { K is an index of R , lemma 82 with J :=K }

K .

✷

The following lemma be
omes relevant when we study indexes of difun
tions. (See

se
tion 7.1.)

Lemma 84 Suppose J is an index of R . Then

R ◦ J
∪

◦R = R ◦R
∪

◦R .

Proof

R ◦ J
∪
◦R

= { per domains }

R ◦R≻ ◦ J
∪
◦R≺ ◦R

= { 78(b) and 
onverse }

R ◦R
∪
◦R .

✷

We now formulate a 
ouple of lemmas that lead to lemma 87 whi
h, in turn, leads to

theorem 88.

Lemma 85 Suppose J is an index of R . Then R≺ ◦ J< ◦R≺
and R≻ ◦ J> ◦R≻

are pers.

Proof We prove that

R≺ ◦ J< ◦R≺ = R≺ ◦ J< ◦R≺ ◦ (R≺ ◦ J< ◦R≺)
∪

.

We have:
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R≺ ◦ J< ◦R≺ ◦ (R≺ ◦ J< ◦R≺)∪

= { R≺
is a per, J< is a 
ore
exive, 
onverse }

R≺ ◦ J< ◦R≺ ◦ J< ◦R≺

= { 78(
) }

R≺ ◦ J< ◦R≺ .

✷

Lemma 86 Suppose J is an index of R . Then

(R≺ ◦ J< ◦R≺)< = R< .

Symmetri
ally,

(R≻ ◦ J> ◦R≻)> = R> .

Proof

(R≺ ◦ J< ◦R≺)<

= { domains, (R≺)< = R< }

(R≺ ◦ J< ◦R<)<

= { by 78(a), J<⊆R<
, domains }

(R≺ ◦ J)<

= { by 78(a), J>⊆R>
, domains }

(R≺ ◦ J ◦R>)<

= { domains, (R≻)< = R> }

(R≺ ◦ J ◦R≻)<

= { 78(b) }

R< .

✷

Lemma 87 Suppose J is an index of R . Then

(a) R≺ ◦ J< ◦R≺ = R≺ ,

(b) R≻ ◦ J> ◦R≻ = R≻ .

Proof
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R≺

= { R≺
is a per }

R≺ ◦R≺ ◦R≺

⊇ { R≺⊇R< }

R≺ ◦R< ◦R≺

⊇ { J is an index of R ; de�nition 78(a) and monotoni
ity }

R≺ ◦ J< ◦R≺

= { R≺
is a per }

R≺ ◦ J< ◦R≺ ◦R≺

⊇ { lemma 85: R≺ ◦ J< ◦R≺
is a per }

(R≺ ◦ J< ◦R≺)< ◦ R≺

= { lemma 86 }

R< ◦ R≺

= { (R≺)< = R< }

R≺ .

By anti-symmetry of the subset relation we have proved (a). Property (b) is symmetri
al.

✷

Theorem 88 Suppose J is an index of R . Then J< is an index of R≺
and J> is an

index of R≻
.

Proof We prove that J< is an index of R≺
. That J> is an index of R≻

is symmetri
al.

Instantiating de�nition 78 with R,J := R≺ , J< , our task is to prove the four properties:

(a) J< ⊆ R≺ ,

(b) (R≺)≺ ◦ (J<)< ◦ (R≻)≺ = R≺ ,

(c) (J<)< ◦ (R≺)≺ ◦ (J<)< = (J<)< ,

(d) (J<)> ◦ (R≺)≻ ◦ (J<)> = (J<)> .

The proof of property (a) is straightforward:
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J< ⊆ R≺

⇐ { R<⊆R≺
, transitivity }

J< ⊆ R<

⇐ { monotoni
ity }

J⊆R

= { J is an index of R , 78(a) }

true .

Property (b) simpli�es using the fa
t that (R≺)≺=R≺
, (R≻)≺=R≻

and J<=(J<)< to:

(b’) R≺ ◦ J< ◦R≻ = R≺ ,

This is the �rst of the two properties proved in lemma 87. Using the fa
t that (R≺)≺=R≺

and J<=(J<)< , property (
) is the same as property (
) of de�nition 78; similarly, using

the fa
t that R≺=(R≺)≻ , and J<=(J<)> , property (d) is also the same as property (
)

of de�nition 78.

✷

We show later that the 
onverse of theorem 88 is a pres
ription for 
onstru
ting an

index of an arbitrary relation. See theorem 107.

Theorem 89 If R and S are isomorphi
 relations then indexes of R and S are also

isomorphi
. In parti
ular, indexes of a relation R are isomorphi
.

Proof Suppose φ and ψ witness the isomorphism R∼=S and J is an index of R and

K is an index of S . We verify that λ and ρ de�ned by

λ = J< ◦R≺ ◦φ ◦S≺ ◦K< ∧ ρ = J> ◦R≻ ◦ψ ◦S≻ ◦K>

witness the isomorphism J∼=K .

The task is to verify that

J< = λ ◦λ
∪

∧ λ
∪

◦λ = K< ∧ ρ ◦ρ
∪

= J> ∧ ρ
∪

◦ρ = K>

and

J = λ ◦K ◦ρ
∪

.

The four domain properties are all essentially the same so we only verify the �rst 
on-

jun
t:
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λ ◦λ
∪

= { de�nition, 
onverse }

J< ◦R≺ ◦φ ◦S≺ ◦K< ◦S≺ ◦φ
∪
◦R≺ ◦ J<

= { K is an index of S , lemma 85 with J,R :=K,S }

J< ◦R≺ ◦φ ◦S≺ ◦φ
∪
◦R≺ ◦ J<

= { theorem 89 }

J< ◦R≺ ◦R≺ ◦R≺ ◦ J<

= { R≺
is a per, J is an index of R , de�nition 78(
) }

J< .

Finally,

λ ◦K ◦ρ
∪

= { de�nition, 
onverse }

J< ◦R≺ ◦φ ◦S≺ ◦K< ◦K ◦K> ◦S≻ ◦ψ
∪
◦R≻ ◦ J>

= { domains }

J< ◦R≺ ◦φ ◦S≺ ◦K ◦S≻ ◦ψ∪
◦R≻ ◦ J>

= { K is an index of S , de�nition 78(b) }

J< ◦R≺ ◦φ ◦S ◦ψ
∪
◦R≻ ◦ J>

= { R = φ ◦S ◦ψ
∪

}

J< ◦R≺ ◦R ◦R≻ ◦ J>

= { per domains }

J< ◦R ◦ J>

= { J is an index of R , de�nition 78(b) }

J .

That the indexes of a relation R are isomorphi
 follows be
ause R is isomorphi
 to itself

(with witnesses R<
and R>

), i.e. the isomorphism relation is re
exive.

✷

The 
onstru
tion of the witnesses λ and ρ looks very mu
h like the proverbial

rabbit out of a hat! In fa
t, they were 
al
ulated using the type judgements formulated

in Voermans' thesis [Voe99℄. We hope at a later date to exploit Voermans' 
al
ulus in

order to make the pro
ess of 
onstru
ting witnesses mu
h more methodi
al.
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6.2 Core Relations

Indexes are a spe
ial 
ase of what we 
all \
ore" relations. (Re
all de�nition 77.) This

se
tion is about the properties of a \
ore" of a given relation R .

Definition 90 (Core) Suppose R is an arbitrary relation and suppose C is a relation

su
h that

C = λ ◦R ◦ρ
∪

for some relations λ and ρ satisfying

R≺ = λ
∪

◦λ ∧ λ< = λ ◦λ
∪

∧ R≻ = ρ
∪

◦ρ ∧ ρ< = ρ ◦ρ
∪

.

Then C is said to be a 
ore of R as witnessed by λ and ρ .

✷

The existen
e of a 
ore of a given relation R has a 
onstru
tive element: it is ne
essary

to 
onstru
t the \witnesses" λ and ρ . In general, given a per P , a fun
tional relation f

with the property that P equals f
∪
◦ f is 
alled a \splitting" of P . Constru
ting a 
ore of

relation R thus involves \splitting " the pers R≺
and R≻

into fun
tional relations λ and

ρ . As with indexes, the existen
e of 
ores is not derivable in point-free relation algebra.

However, just as for indexes, all 
ores of a given relation are isomorphi
 in the sense of

de�nition 67: see theorem 93. See se
tion 8 for further dis
ussion of the 
onstru
tion of


ores of pers.

Immediately obvious is that an index of a relation is a 
ore of the relation:

Theorem 91 Suppose R is an arbitrary relation and suppose J is an index of R .

Then J is a 
ore of R as witnessed by J< ◦R≺
and J> ◦R≻

.

Proof First,

J

= { lemma 82 }

J< ◦R ◦ J>

= { per domains }

J< ◦R≺ ◦R ◦R≻ ◦ J>

= { 
onverse, domains }

(J< ◦R≺) ◦R ◦ (J> ◦R≻)∪ .

This establishes the required property of C in de�nition 90, with C := J . (The paren-

theses in the last line of the 
al
ulation indi
ate the de�nitions of the splittings λ and

ρ .) Se
ond,
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(J< ◦R≺)∪ ◦ J< ◦R≺

= { 
onverse, (R≺)∪ =R≺
and (J<)∪ ◦ J< = J< }

R≺ ◦ J< ◦R≻

= { lemma 87 }

R≺ .

Third,

J< ◦R≺ ◦ (J< ◦R≺)∪

= { 
onverse, (J<)∪ = J< and R≺ ◦ (R≺)∪ = R≺ }

J< ◦R≺ ◦ J<

= { J is an index of R , de�nition 78(
) }

J<

= { theorem 88; in parti
ular, J<⊆R< }

(J< ◦R<)<

= { (R≺)<=R<
, domains }

(J< ◦R≺)< .

This establishes the required properties of λ in de�nition 90 (with λ := J< ◦R≺
). The

properties of ρ in de�nition 90 (with ρ := J> ◦R≻
) are established similarly.

✷

Fig. 3 illustrates theorem 91 applied to the relation introdu
ed in �g. 1. The index

J is depi
ted by the green edges in the lower bipartite graph. The de
omposition of the

relation in the de�nition of a 
ore is illustrated by the row of bipartite graphs at the

top; the relations depi
ted are, in order, λ
∪

, λ , R , ρ and ρ
∪

. The 
omposition of the

middle three �gures is the index J .

A number of properties of indexes are derived from the fa
t that indexes are 
ores.

The remainder of this se
tion 
atalogues su
h properties.

The name \
ore" in de�nition 90 anti
ipates theorem 96 where we show that the

relation C is a 
ore relation as de�ned by de�nition 77. Some preliminary lemmas are

needed �rst.

Lemma 92 Suppose R , C , λ and ρ are as in de�nition 90. Then

R = λ
∪

◦C ◦ρ .

Proof
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Figure 3: De
omposition of a Relation into a Core and Witnesses

R

= { per domains: (33) }

R≺ ◦R ◦R≻

= { R≺ = λ∪
◦λ and R≻ = ρ∪

◦ρ }

λ
∪
◦λ ◦R ◦ρ

∪
◦ρ

= { de�nition 90 }

λ
∪
◦C ◦ρ .

✷

Lemma 92 has the 
orollary that 
ores of a given relation are isomorphi
:

Theorem 93 Suppose S0 and S1 are both 
ores of R . Then S0∼=S1 .

Proof Suppose, for i= 0 and i=1 , Si = λi ◦R ◦ρ
∪

i where R≺ = λ
∪

i
◦λi and R≻ = ρ

∪

i
◦ρi .

(That is, S0 and S1 are both 
ores of R .) Then

S0

= { assumption }

λ0 ◦R ◦ρ
∪

0

= { lemma 92 }

λ0 ◦λ
∪

1
◦S1 ◦ρ1 ◦ρ

∪

0 .
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Applying de�nition 67 with f,g := λ0 ◦λ
∪

1 , ρ1 ◦ρ
∪

0 in 
ombination with theorem 116, we


on
lude that S0∼=S1 .

✷

For later use, we 
al
ulate the left and right domains of the 
ore of a relation.

Lemma 94 Suppose R , λ , ρ and C are as in de�nition 90. Then

R< = λ> ∧ C< = λ< ∧ R> = ρ> ∧ C> = ρ< .

Proof We prove the middle two equations. First,

R>

= { (36) }

(R≻)<

= { de�nition 90 }

(ρ∪
◦ρ)<

= { domains }

ρ> .

The dual equation, R< = λ>
, is proved similarly. Se
ond,

C<

= { de�nition 90 }

(λ ◦R ◦ρ
∪)<

= { R> = ρ>
(just proved) }

(λ ◦R ◦R>)<

= { domains }

(λ ◦R<)<

= { R< = λ>
(see above) }

λ< .

The �nal equation is also proved similarly.

✷

Lemma 95 Suppose R , λ , ρ and C are as in de�nition 90. Suppose also that J is

an index of R . Then C∼= J as witnessed by λ ◦ J< and ρ ◦ J> .

Proof We 
onstru
t the witnesses as follows.
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C

= { de�nition 90 }

λ ◦R ◦ρ
∪

= { J is an index of R , de�nition 78(b) }

λ ◦R≺ ◦ J ◦R≻ ◦ρ
∪

= { de�nition 90 }

λ ◦λ
∪
◦λ ◦ J ◦ρ

∪
◦ρ ◦ρ

∪

= { λ and ρ are fun
tional,

so λ< = λ ◦λ
∪

and ρ< = ρ ◦ρ
∪

}

λ ◦ J ◦ρ
∪

= { domains }

λ ◦ J< ◦ J ◦ (ρ ◦ J>)∪ .

Comparing the last line with the de�nition of an isomorphism of relations (de�nition 67

with the instantiation R,S,φ,ψ := C , J , λ ◦ J< , ρ ◦ J> ), we postulate λ ◦ J< and ρ ◦ J> as

witnesses to the isomorphism.

It remains to show that λ ◦ J< and ρ ◦ J> are bije
tions on the appropriate domains.

First,

(ρ ◦ J>)∪ ◦ρ ◦ J>

= { 
onverse }

J> ◦ρ
∪
◦ρ ◦ J>

= { de�nition 90 }

J> ◦R≻ ◦ J>

= { J is an index of R , de�nition 78(d) }

J> .

Symmetri
ally,

(λ ◦ J<)
∪

◦λ ◦ J< = J< .

Finally,

(ρ ◦ J>)<

= { ρ is fun
tional, and ρ
∪
◦ρ = R≻

,
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i.e. ρ = ρ ◦ρ
∪
◦ρ = ρ ◦R≻ }

(ρ ◦R≻ ◦ J>)<

= { J>⊆R>
and R>=(R≻)> }

(ρ ◦R≻ ◦ J> ◦ (R≻)>)<

= { domains, R≻=(R≻)∪ }

(ρ ◦ R≻ ◦ J> ◦R≻)<

= { domains }

(ρ ◦ (R≻ ◦ J> ◦R≻)<)<

= { lemmas 85 and 86(b) }

(ρ ◦ R>)<

= { (36) and domains }

(ρ ◦ R≻)<

= { ρ = ρ ◦R≻
(see �rst step) }

ρ<

= { lemma 94 }

C> .

Symmetri
ally, (λ ◦ J<)<=C<
.

Putting all the 
al
ulations together, we 
on
lude that λ ◦ J< and ρ ◦ J> are bije
tions;

the left domain of λ ◦ J< is C<
and its right domain is J< ; the left domain of ρ ◦ J> is

C>
and its right domain is J> .

✷

We now prove the theorem alluded to by the nomen
lature of de�nition 90, namely

any 
ore of a given relation R is a 
ore relation in the sense of de�nition 77.

Theorem 96 Suppose C is a 
ore of R . Then, if R has an index,

C≻ = C>
, and(97)

C≺ = C< .(98)

That is, if R has an index, any 
ore C of R is a 
ore relation. (See de�nition 77.)

Proof Assume that J is an index of R . The proof is a 
ombination of several pre
eding

lemmas and theorems.
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C≺ = C<

⇐ { theorem 76 }

C≺ ∼= C<

⇐ { Leibniz }

J≺= J< ∧ C≺ ∼= J≺ ∧ J< ∼= C<

⇐ { index J is a 
ore relation (lemma 80) }

C≺ ∼= J≺ ∧ J< ∼= C<

⇐ { lemmas 72 and 71 }

C ∼= J

= { lemma 95 }

true .

✷

Note Theorem 96 assumes that relation R has an index J . Likewise, a 
orollary

of lemma 95 is that, assuming relation R has an index, all 
ores of R are isomorphi
.

As mentioned earlier, it 
an be proven that all 
ores of R are isomorphi
 without the

assumption that R has an index. Similarly, theorem 96 
an be proved without this

assumption but the proof is quite long and 
omplex. See [Ba
21℄ for full details.

We argue later that this assumption has no pra
ti
al signi�
an
e: in se
tion 7.3 we

show that every relation R has an index if both its per domains have an index. This

means that, for a given R , it is ne
essary to 
al
ulate indi
es of R≺
and R≻

; however,

in pra
ti
e, this is not an issue. End of Note

7 Indexes of Difunctions and Pers

7.1 Indexes of Difunctions

We now spe
ialise the notion of index to difun
tions.

Lemma 99 Suppose J is an index of relation R and J is difun
tional. Then R is

difun
tional.

Proof

R ◦R
∪
◦R

= { J is an index of R , lemma 84 }

R ◦ J
∪
◦R
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= { J is an index of R , 78(b) }

R≺ ◦ J ◦R≻ ◦ J
∪
◦R≺ ◦ J ◦R≻

= { domains }

R≺ ◦ J ◦ J> ◦R≻ ◦ J> ◦ J
∪
◦ J< ◦R≺ ◦ J< ◦ J ◦R≻

= { J is an index of R , 78(d) and (
) }

R≺ ◦ J ◦ J> ◦ J
∪
◦ J< ◦ J ◦R≻

= { domains and J is difun
tional (i.e. J = J ◦ J∪ ◦ J ) }

R≺ ◦ J ◦R≻

= { 78(b) }

R .

✷

The property that R is a difun
tion is equivalent to R≺ = R ◦R
∪

(and symmetri
ally

to R≻ = R∪
◦R ). Also, sin
e R = R ◦R

∪
◦R , the right side of lemma 84 simpli�es to R .

In this way, the de�nition of an index of a difun
tion 
an be restated as follows.

Definition 100 (Difunction Index) An index of a difun
tion R is a relation J that

has the following properties:

(a) J⊆R ,

(b) R ◦ J
∪
◦R = R .

(c) J< ◦R ◦R
∪
◦ J< = J< ,

(d) J> ◦R∪
◦R ◦ J> = J> .

✷

Lemma 101 An index J of a difun
tion R is a bije
tion between J< and J> .

Proof

J<

= { 100(
) }

J< ◦R
∪
◦R ◦ J<

⊇ { 100(a) }

J< ◦ J
∪
◦ J ◦ J<
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= { domains }

J
∪
◦ J

⊇ { domains }

J< .

Thus, by anti-symmetry,

J< = J
∪

◦ J .

Symmetri
ally, J> = J ◦ J
∪

. That is, J is a bije
tion.

✷

Corollary 102 formulates a method to determine whether a relation is a difun
tion:


ompute an index of the relation and then determine whether it is a difun
tion. By 78(a),

the se
ond step in this pro
ess will be no less eÆ
ient than determining difun
tionality

dire
tly and, in many 
ases, may be substantially more eÆ
ient. (There is, however, no

guarantee of improved eÆ
ien
y sin
e the inequality in 78(a) may be an equality.)

Corollary 102 Suppose J is an index of relation R . Then R is a difun
tion i� J is

a difun
tion.

Proof Lemma 99 establishes \if". Lemma 101 establishes \only if" (sin
e a bije
tion

is a difun
tion).

✷

7.2 Indexes of Pers

That every difun
tion has an index is a desirable property but it is not provable in

standard axiomati
 formulations of relation algebra. Rather than postulate its truth, we

shall postulate that all pers have an index, and then show that a 
onsequen
e of the

postulate is that all difun
tions have an index.

A relation R is a per i� R=R≺=R≻
. Using this property, the de�nition of index 
an

be simpli�ed for pers. Spe
i�
ally, an index J of per R has the following properties.

(Cf. de�nition 78.)

(a) J⊆R ,

(b) R◦J◦R = R ,

(c) J< ◦R ◦ J< = J< ,

(d) J> ◦R ◦ J> = J> ,
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Lemmas 103 and 104 prepare the way for de�nition 105.

Lemma 103 If a per has an index, then it has an index that is a 
ore
exive.

Proof Suppose R is a per and J is an index of R . The lemma is proved if we show

that J< is an index of R . We thus have to prove that

(e) J<⊆R ,

(f) R ◦ J< ◦R = R ,

(g) (J<)< ◦R ◦ (J<)< = (J<)< ,

(h) (J>)> ◦R ◦ (J>)> = (J>)> ,

assuming the properties (a), (b), (
) and (d) above.

Of the four properties, only (f) is non-trivial. (Properties (g) and (h) follow be
ause

J<=(J<)< and J>=(J>)> . Property (e) follows be
ause, sin
e R is a per, R<⊆R .)

Property (f) is proved as follows.

R ◦ J< ◦R

= { by lemma 101, J ◦ J
∪ = J< }

R ◦ J ◦ J
∪
◦R

= { domains }

R ◦ J ◦ J> ◦ J
∪
◦R

= { (d) }

R ◦ J ◦ J> ◦R ◦ J> ◦ J∪ ◦R

= { domains }

R ◦ J ◦R ◦ J
∪
◦R

= { (b) }

R ◦ J
∪
◦R

= { R is a per, so R=R∪

; 
onverse }

(R◦J◦R)∪

= { R is a per, so R=R∪

; (b) and 
onverse }

R .

✷
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Lemma 104 For all pers R , if R has an index then there is a relation J su
h that

(a) J⊆R< ,

(b) J◦R◦J = J ,

(c) R◦J◦R = R .

Conversely, for all pers R , if relation J satis�es the properties (a), (b) and (
) above,

then J is an index of R .

Proof First, suppose R is a per that has an index. By lemma 103, R has a 
ore
exive

index. Let J be su
h a 
ore
exive index of R . We must show that properties (a), (b)

and (
) hold. We have

J⊆R<

⇐ { 78(a) and monotoni
ity }

J= J<

= { J is a 
ore
exive }

true .

This proves (a). Now for (b):

J◦R◦J

= { J is a 
ore
exive, so J= J< ,

R is a per, so R=R≺ }

J< ◦R≺ ◦ J<

= { 78(
) }

J<

= { J is a 
ore
exive, so J= J< }

J .

Finally, (
):

R◦J◦R

= { R is a per, so R=R≺ }

R≺ ◦ J ◦R≺

= { 78(b) }

R .
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For the 
onverse, assume R is a per and J satisi�es the properties (a), (b) and (
) above.

We have to 
he
k the four properties listed in de�nition 78. First, 78(a):

J

⊆ { assumption: (a) above }

R<

⊆ { R is per }

R .

The properties 78(b), (
) and (d) follow be
ause J= J<= J> and R=R≺=R≻
.

✷

As a 
onsequen
e of lemma 104, we postulate the following de�nition of an index of

a per.

Definition 105 (Index of a Per) Suppose P is a per. Then a (
ore
exive) index

of P is a relation J su
h that

(a) J⊆P< ,

(b) J◦P◦J = J ,

(c) P◦J◦P = P .

✷

We also postulate that every per has a 
ore
exive index. We 
all this the axiom of


hoi
e.

Axiom 106 (Axiom of Choice) Every per has a 
ore
exive index.

✷

7.3 From Pers To Relations

It is a desirable property that every relation has an index. However, as mentioned earlier,

this 
an't be proved in standard relation algebra. It 
an be proved if we assume that

every per has an index. The 
onstru
tion is suggested by theorem 88.

Theorem 107 Suppose J and K are (
ore
exive) indi
es of R≺
and R≻

, respe
tively.

Then J◦R◦K is an index of R .

Proof For 
onvenien
e, we list the properties of J and K. These are obtained by

instantiating de�nition 105 with J,R := J , R≺
and J,R := K ,R≻

. (Domain properties

have been used to simplify (a) and (d).)
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(a) J⊆R< ,

(b) J ◦R≺ ◦ J = J ,

(c) R≺◦ J ◦R≺ = R≺ ,

(d) K⊆R> ,

(e) K ◦R≻ ◦K = K ,

(f) R≻◦K ◦R≻ = R≻ .

We have to prove the four properties 78(a)-(d) with the instantiation J,R := J◦R◦K ,R .

By (a), J= J∪ = J<= J> . Similarly for K . The proof obligations are thus:

(g) J◦R◦K ⊆ R ,

(h) R≺ ◦ J ◦R ◦K ◦R≻ = R .

(i) (J◦R◦K)< ◦R≺ ◦ (J◦R◦K)< = (J◦R◦K)< ,

(j) (J◦R◦K)> ◦R≻ ◦ (J◦R◦K)> = (J◦R◦K)> ,

Property (g) is an easy 
ombination of (a) and (d). For (h) we have:

R≺ ◦ J ◦R ◦K ◦R≻

= { per domains }

R≺ ◦ J ◦R≺ ◦R ◦R≻ ◦K ◦R≻

= { (b) and (f) }

R≺ ◦R ◦R≻

= { per domains }

R .

For (i), we have

(J◦R◦K)> ◦R≻ ◦ (J◦R◦K)>

= { (J◦R◦K)> ⊆ K> = K ,


omposition of 
ore
exives is interse
tion }

(J◦R◦K)> ◦K ◦R≻ ◦K ◦ (J◦R◦K)>

= { (e) }
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(J◦R◦K)> ◦K ◦ (J◦R◦K)>

= { (J◦R◦K)> ⊆ K> = K


omposition of 
ore
exives is interse
tion }

(J◦R◦K)> .

The proof is (j) is symmetri
al.

✷

Theorem 107 shows how to 
onstru
t an index of a relation R from indexes J and

K of its left and right per domains. In 
ombination with lemma 82 and 
orollary 83, the


onstru
tion is unique. Spe
i�
ally, the steps are, �rst to 
hoose from ea
h equivalen
e


lass of R≺
and ea
h equivalen
e 
lass of R≻

a single representative. The 
olle
tion of

su
h representatives de�nes the 
ore
exives J and K . Then the index is de�ned to be

J◦R◦K .

8 Characterisations of Pers and Difunctions

This se
tion is about 
hara
terising pers and difun
tions in terms of fun
tional relations.

Although the 
hara
terisations are well known, they are not derivable in point-free rela-

tion algebra. We show that they are derivable using our axiom of 
hoi
e.

8.1 Characterisation of Pers

A well-known property is that a relation R is a per i�

〈

∃f : f ◦ f
∪

= f< : R = f
∪

◦ f
〉

.(108)

This property is said to be a 
hara
teristi
 property of pers. Perhaps surprisingly, it is

not derivable in systems that axiomatise point-free relation algebra. Freyd and

�

S�
edrov

[Fv90, 1.281℄ 
all the fun
tional f witnessing the existential quanti�
ation a \splitting

2

"

of R. Typi
ally, the existen
e of \splittings" is either postulated as an axiom (eg. Winter

[Win04℄) or by adding axioms formulating relations as a so-
alled \power allegory" [Fv90,

2.422℄, or by adding the so-
alled \all-or-nothing" axiom [Ba
21℄. (See se
tion 9.6 for

dis
ussion of \all or nothing".) The existen
e of \splittings" is a 
onsequen
e of our

axiom of 
hoi
e:

Theorem 109 If per P has a 
ore
exive index J , then

P = (J◦P)
∪

◦ (J◦P) ∧ J = (J◦P) ◦ (J◦P)
∪

.

2

Freyd and

�

S�
edrov de�ne a \splitting" in the more general 
ontext of a 
ategory rather than an

allegory; the notion is appli
able to \idempotents" whi
h are also more general than pers.
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Thus, assuming the axiom of 
hoi
e, for all relations R ,

per.R ≡
〈

∃f : f ◦ f
∪

= f< : R = f
∪

◦ f
〉

.

Proof The proof is very straightforward. We have

(J◦P)∪ ◦ (J◦P)

= { distributivity }

P
∪
◦ J ◦ J ◦P

= { J is 
ore
exive, so J◦J= J ; P=P∪

}

P◦J◦P

= { J is an index of P , de�nition 105(
) }

P

and

(J◦P) ◦ (J◦P)∪

= { distributivity }

J ◦P ◦P
∪
◦ J

= { P is a per, so by lemma 38(ii), P = P∪
◦P }

J◦P◦J

= { J is an index of P , de�nition 105(b) }

J .

This proves the �rst property. It also establishes that (assuming the axiom of 
hoi
e),

for all R ,

per.R ⇒
〈

∃f : f ◦ f
∪

= f< : R = f
∪

◦ f
〉

.

(The witness is J◦R .) The 
onverse is obvious be
ause, for all f su
h that f ◦ f
∪ = f< ,

f
∪
◦ f ◦ (f∪ ◦ f)∪

= { 
onverse }

f
∪
◦ f ◦ f

∪
◦ f

= { assumption: f ◦ f
∪ = f< }

f
∪
◦ f< ◦ f
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= { domains }

f
∪
◦ f .

That is, by lemma 38(ii),

〈

∀f : f ◦ f
∪

= f< : per.(f
∪

◦ f)
〉

and hen
e

per.R ⇐
〈

∃f : f ◦ f
∪

= f< : R = f
∪

◦ f
〉

.

The equivalen
e follows by mutual impli
ation.

✷

8.2 Characterisation of Difunctions

A se
ond so-
alled \
hara
teristi
" property is that a relation R is a difun
tional i�

〈

∃ f,g : f ◦ f
∪

= f< = g ◦g
∪

= g< : R = f
∪

◦g
〉

.

Like the 
hara
teristi
 property of pers, it is not derivable in systems that axiomatise

point-free relation algebra. However, it is a 
orollary of theorem 109 as we now show.

The basis for the 
onstru
tion is the 
onstru
tion of a per from a difun
tional relation:

Lemma 110 For all relations R , R ◦R
∪

is a per if R is difun
tional.

Proof Suppose R is difun
tional. We exploit lemma 38 :

R ◦R
∪

is a per

= { lemma 38(ii) with R := R ◦R
∪

and 
onverse }

R ◦R
∪ = R ◦R

∪
◦R ◦R

∪

⇐ { Leibniz }

R = R ◦R
∪
◦R

= { theorem 49 }

R is difun
tional.

✷

Theorem 111 Assuming the axiom of 
hoi
e (axiom 106), for all relations R ,

difunction.R ≡
〈

∃ f,g : f ◦ f
∪

= f< = g ◦g
∪

= g< : R = f
∪

◦g
〉

.
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Proof The proof is by mutual impli
ation. First assume that R = f∪ ◦g where

f ◦ f
∪

= f< = g ◦g
∪

= g< .

Then

R ◦R
∪
◦R

= { assumption: R = f∪ ◦g and 
onverse }

f
∪
◦g ◦g

∪
◦ f ◦ f

∪
◦g

= { f ◦ f
∪ = f< = g ◦g

∪ = g< }

f∪ ◦g< ◦g< ◦g

= { domains }

f
∪
◦g

= { assumption: R = f∪ ◦g }

R .

Applying lemma 38, we 
on
lude that R is difun
tional.

Suppose now that R is difun
tional. (We owe the following 
onstru
tion to Winter

[Win04℄.) Exploiting lemma 110 
ombined with theorem 109,

〈

∃f : f ◦ f
∪

= f< : R ◦R
∪

= f
∪

◦ f
〉

.(112)

Suppose therefore that f ◦ f
∪ = f< and R ◦R

∪ = f∪ ◦ f . De�ne the relation g by

g = f◦R .(113)

Then

g ◦g
∪

= { (113) and 
onverse }

f ◦R ◦R
∪
◦ f

∪

= { (112) }

f ◦ f
∪
◦ f ◦ f

∪

= { (112) }

f< ◦ f<

= { f< is a 
ore
exive }

f< .
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It follows that g< = g ◦g
∪

. Thus

f ◦ f
∪

= f< = g< = g ◦g
∪

.(114)

Moreover,

f
∪
◦g

= { (113) }

f
∪
◦ f ◦R

= { R ◦R
∪ = f∪ ◦ f }

R ◦R
∪
◦R

= { R is difun
tional: theorem 49 }

R .

Combined with (114), we have thus shown that

〈

∃ f,g : f ◦ f
∪

= f< = g ◦g
∪

= g< : R = f
∪

◦g
〉

.(115)

✷

8.3 Unicity of Characterisations

The 
hara
terisation of a per in the form f
∪
◦ f where f is a fun
tional relation is not

unique. (There are typi
ally many representatives one 
an 
hoose for ea
h equivalen
e


lass; so there are very many distin
t indexes of a per.) The 
hara
terisation is sometimes

des
ribed as being \essentially" unique or sometimes as unique \up to isomorphism".

This is made pre
ise by theorem 116:

Theorem 116 Suppose R is a per and suppose f and g are fun
tional relations su
h

that R = f
∪
◦ f = g

∪
◦g . Then f∼=g .

Proof We have

f ◦g
∪
◦ (f ◦g∪)∪

= { 
onverse }

f ◦g
∪
◦g ◦ f

∪

= { assumption: f
∪
◦ f = g

∪
◦g }

f ◦ f
∪
◦ f ◦ f

∪

= { assumption: f is fun
tional, i.e. f ◦ f
∪ = f< }

f< .
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That is,

f ◦g
∪

◦ (f ◦g
∪

)
∪

= f< .(117)

Similarly,

(f ◦g
∪

)
∪

◦ f ◦g
∪

= g< .(118)

Also,

g>

= { domains }

(g∪
◦g)>

= { assumption: f
∪
◦ f = g

∪
◦g }

(f∪ ◦ f)>

= { domains }

f> .

That is,

f> = g> .(119)

Hen
e,

f

= { domains }

f< ◦ f

= { (117) }

f ◦g
∪
◦ (f ◦g∪)∪ ◦ f

= { properties of 
onverse }

f ◦g∪
◦g ◦ f∪ ◦ f

= { assumption: f
∪
◦ f = g

∪
◦g }

f ◦g
∪
◦g ◦g

∪
◦g

= { assumption: g is fun
tional, i.e. g ◦g
∪ = g< }

f ◦g
∪
◦g .
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Applying de�nition 67 with R,S,φ,ψ := f , g , f ◦g
∪

, g>
, we 
on
lude that f ∼= g . (Prop-

erties (117) and (118) are the required properties of φ ; property (119) together with

straightforward properties of the right-domain operator establish the required properties

of ψ .)

✷

It is important to note that theorem 116 assumes that there is at least one 
hara
ter-

isation of per R by a fun
tional relation; it thus establishes that there is at most one

su
h 
hara
terisation (\up to isomorphism").

Uniqueness \up to isomorphism" is a 
ommon phenomenon. The 
hara
terisation of

difun
tional relations is another example:

Theorem 120 Suppose f and g are relations su
h that

f ◦ f
∪

= f< = g ◦g
∪

= g< .

Suppose also that h and k are relations su
h that

h ◦h
∪

= h< = k ◦k
∪

= k< .

Suppose further that

f
∪

◦g = h
∪

◦k .

Then

f∼=h ∧ g∼=k .

Proof Our task is to 
onstru
t witnesses φ and ψ satisfying de�nition 67 (with

R,S := f,h and R,S :=g,k ). De�ne φ by φ = f ◦h∪

. We prove that

φ ◦φ
∪

= f< ∧ φ
∪

◦φ = h< .(121)

(In words, φ is a bije
tion with left domain the 
ommon left domain of f and g , and

right domain the 
ommon left domain of h and k .) The proof is as follows.

φ ◦φ
∪

= { de�nition, 
onverse }

f ◦h
∪
◦h ◦ f

∪

= { assumption: h< = k ◦k
∪

}

f ◦h
∪
◦k ◦k

∪
◦h ◦ f

∪

= { assumption: f
∪
◦g = h

∪
◦k }

f ◦ f
∪
◦g ◦g

∪
◦ f ◦ f

∪

= { assumption: f ◦ f
∪ = f< = g ◦g

∪

}

f<
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and

φ
∪
◦φ

= { de�nition, 
onverse }

h ◦ f
∪
◦ f ◦h

∪

= { assumption: f< = g ◦g
∪

}

h ◦ f
∪
◦g ◦g

∪
◦ f ◦h

∪

= { assumption: f
∪
◦g = h

∪
◦k (used twi
e) }

h ◦h
∪
◦k ◦k

∪
◦h ◦h

∪

= { assumption: h ◦h
∪ = h< = k ◦k

∪

}

h< .

We now prove that f=φ◦h .

φ◦h

= { de�nition }

f ◦h
∪
◦h

= { assumption: h< = k ◦k
∪

}

f ◦h
∪
◦k ◦k

∪
◦h

= { assumption: f
∪
◦g = h

∪
◦k (used twi
e) }

f ◦ f∪ ◦g ◦g∪
◦ f

= { assumption: f ◦ f
∪ = f< = g ◦g

∪

}

f .

It follows that

f = φ ◦h ◦h> ∧ h> = f> .(122)

The 
ombination of (121) and (122) (together with straightforward properties of h>
)

establishes that φ and h>
witness the isomorphism f∼=h . The property g∼=k is

proved similarly.

✷
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Part II

Pointwise Reasoning

9 Enabling Pointwise Reasoning

In this se
tion, our goal is to 
apture the notion that a relation is a set with elements

pairs of points.

In traditional pointwise reasoning about relations, a basi
 assumption is that a type

is a set that forms a 
omplete, universally distributive latti
e under the subset ordering;

the type of a (binary) relation is a set of pairs. The set of relations of a given type thus

forms a powerset of a set of pairs.

In se
tion 9.1, we re
all a general theorem on the stru
ture of powersets. Brie
y,

theorem 125 states that a set is isomorphi
 to the powerset of its \atoms" i� it is \satu-

rated". The se
tion de�nes these 
on
epts; the 
on
epts then form the ba
kbone of later

se
tions where we spe
ialise the theorem to relations.

One (of several) me
hanisms for introdu
ing pointwise reasoning within the frame-

work of point-free relation algebra involves the introdu
tion of the so-
alled \all-or-

nothing rule" whi
h was postulated as an axiom by Gl�u
k [Gl�u17℄. This rule is 
ombined

with 
ompleteness and \extensionality" axioms whi
h state that, for ea
h type A , the


ore
exives of type A form a 
omplete, saturated latti
e. This was the approa
h taken in

[BDGv22, Ba
22℄ where pointwise reasoning was used to formulate and prove properties

of graphs. Theorem 148 establishes that the all-or-nothing rule is a 
onsequen
e of our

axiom of 
hoi
e (axiom 106: every per has an index). Together with the \extensionality"

axiom, this enables the appli
ation of theorem 125 to establish that the type A∼B is

isomorphi
 to the powerset 2A×B (the set of subsets of the 
artesian produ
t A×B ). See

theorems 148 and 149 in se
tion 9.6.

Se
tion 9.2 introdu
es \points" and states the extensionality axiom that we assume.

A number of se
tions are then ne
essary in order to establish theorem 149. Se
tion

9.3 introdu
es \parti
les" and \pairs"; it is then shown that parti
les are points whilst

se
tion 9.4 shows that |assuming the axiom of 
hoi
e| points are parti
les. (For this

reason, the terminology \parti
le" is temporary.) Se
tion 9.5 shows that proper atoms

(of a given type) are \pairs". These are the ingredients for deriving the \all-or-nothing"

rule in se
tion 9.6. Se
tion 9.6 also shows that the point-free de�nition of a \pair" in

se
tion 9.3 does 
orrespond to what one normally understand to be a pair of points. The

se
tion 
on
ludes with theorem 149.
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9.1 Powersets

As mentioned above, this se
tion de�nes \atoms" and \saturated" in the 
ontext of a

partially ordered set. We then state a fundamental theorem relating these 
on
epts to

powersets.

The de�nition of an atom is the following.

Definition 123 (Atom and Atomicity) Suppose A is a set partially ordered by the

relation ⊑ . Then, the element p is an atom i�

〈∀q :: q⊑p ≡ q=p ∨ q=⊥⊥〉 .

Note that ⊥⊥ is an atom a

ording to this de�nition. If p is an atom that is di�erent

from ⊥⊥ we say that it is a proper atom. A latti
e is said to be atomi
 if

〈∀q :: q 6=⊥⊥ ≡ 〈∃a : atom.a∧a 6=⊥⊥ : a⊑q〉〉 .

In words, a latti
e is atomi
 if every proper element in
ludes a proper atom.

✷

The de�nition of saturated is as follows.

Definition 124 (Saturated) A 
omplete latti
e (ordered by ⊑ ) is saturated i�

〈∀p :: p = 〈⊔a : atom.a ∧ a⊑p : a〉〉 .
✷

The set of subsets of a type is a powerset i� the latti
e is saturated, as formulated in

the following theorem.

Theorem 125 Suppose A is a 
omplete, universally distributive latti
e. Then the

following statements are equivalent.

(a) A is saturated,

(b) A is atomi
 and 
omplemented,

(c) A is isomorphi
 to the powerset of its atoms.

✷

(See [ABH

+
92, theorem 6.43℄ for the proof of theorem 125.)

We use theorem 125 in two ways. Firstly, for all types A , we simply postulate that

the set of 
ore
exives of type A is isomorphi
 to a powerset under the ⊆ ordering:

the atoms are the \points" introdu
ed in se
tion 9.2. Se
ond, we use this postulate

together with our axiom of 
hoi
e to show that, for all types A and B , the type A∼B

of (heterogeneous) relations is also isomorphi
 to a powerset under the ⊆ ordering: the

atoms are \pairs" introdu
ed in se
tion 9.3. The proof that \pairs" are indeed atoms is

the subje
t of se
tion 9.5. A prelude to this is theorem 139, proved in se
tions 9.3 and

9.4, is that \points" are a spe
ial 
ase of \pairs".
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9.2 Points

We begin by postulating that ea
h type A is a set of \points". We also postulate that

the set of 
ore
exives of type A forms a 
omplete, universally distributive latti
e under

the subset ordering. Finally, we postulate that the latti
e is saturated. With theorem

125 in mind, we de�ne \points" to be the proper atoms of the latti
e:

Definition 126 (Point) A homogeneous relation a of type A is a point i� it has

the following three properties.

(a) a 6=⊥⊥ ,

(b) a⊆ I , and

(c) 〈∀b : b 6=⊥⊥ ∧ b⊆a : b=a〉 .

In words, a point is proper, 
ore
exive and an atom.

✷

If A is a type, we use a , a ′
et
. to denote \points" of type A . Similarly for

\points" of type B . \Points" represent elements of the appropriate type.

For points a and a ′
of the same type,

a=a ′ ∨ a◦a ′=⊥⊥ .(127)

The proof is straightforward. Suppose a and a ′
are points. Then

a=a◦a ′

⇐ { a is an atom, de�nition 123 }

a◦a ′ 6=⊥⊥ ∧ a◦a ′⊆a

⇐ { a ′⊆ I }

a◦a ′ 6=⊥⊥ .

Inter
hanging a and a ′
,

a ′=a◦a ′
⇐ a ′

◦a 6=⊥⊥ .

But, sin
e 
omposition of 
ore
exives is symmetri
, a◦a ′=a ′
◦a . We 
on
lude that

a=a◦a ′=a ′
⇐ a◦a ′ 6=⊥⊥ .

This is equivalent to (127).

In point-free relation algebra, subsets of a type are modelled by 
ore
exives of that

type. In order to model the property that the 
ore
exives of a given type form a latti
e

that is isomorphi
 to the set of subsets of the type we need to add to our axiom system

a saturation property, viz.:
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Definition 128 (Saturation) Suppose A is a type. The latti
e of 
ore
exives of

type A is said to be saturated i�

〈∀p :: p⊆ IA ≡ p = 〈∪a : point.a ∧ a⊆p : a〉〉 .(129)

✷

The axiom that we 
all \extensionality" is then:

Axiom 130 (Extensionality) For ea
h type A , the points of type A form a 
om-

plete, universally distributive, saturated latti
e under the subset ordering.

✷

Applying theorem 125, a 
onsequen
e of axiom 130 is that the 
ore
exives of type A

form a latti
e that is isomorphi
 to the powerset 2A . In this sense, the 
ore
exives in

point-free relation algebra represent sets of points in traditional pointwise formulations

of relation algebra.

We now want to show how to formulate the property that the set of relations of type

A∼B is isomorphi
 to the powerset 2A×B , i.e. relations in point-free relation algebra

represent pairs (a, b) of points a and b of type A and B , respe
tively.

9.3 Pairs and Particles

We now turn our attention to the latti
e of relations of a given type. We begin with

a point-free de�nition of a \pair". In subse
tion 9.6, we show that de�nition 131 does

indeed 
apture the notion of a \pair of points" whereby the points are the \parti
les"

also introdu
ed in the de�nition.

Definition 131 (Pair) A relation Z is a pair i� it has the following properties:

(a) Z 6=⊥⊥ ,

(b) Z = Z◦⊤⊤◦Z ,

(c) Z< = Z ◦Z
∪

,

(d) Z> = Z
∪
◦Z .

We 
all a relation a parti
le if it is a pair and it is symmetri
.

✷

In words, a pair Z is a non-empty \re
tangle" (properties 131(a) and 131(b)) that is

a \bije
tion" on its left domain and right domains (properties 131(
) and 131(d)).

(De�nition 131 was introdu
ed in [Voe99℄ but using the terminology \singleton" in-

stead of \pair", and \singleton square" instead of \parti
le".)
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Our goal is to prove that the points are exa
tly the parti
les. This se
tion is about

showing that a parti
le is a point. See 
orollary 136.

One task is to show that parti
les are atoms. The more general property, whi
h we

need in later se
tions, is that pairs are atoms.

Lemma 132 A pair is an atom.

Proof Suppose Z is a pair and suppose Y is su
h that Y⊆Z . By the de�nition

of atom, de�nition 123, we must show that Y=⊥⊥ ∨ Y=Z . Equivalently, assuming

Y 6=⊥⊥ , we must show that Y=Z . This is done as follows.

Y

= { assumption: Y⊆Z . So, by monotoni
ity, Y<⊆Z<
and Y>⊆Z>

;

domains }

Z< ◦Y ◦Z>

= { Z is a pair, so Z< = Z ◦Z
∪ = (Z◦⊤⊤◦Z) ◦Z∪

similarly for Z> }

Z ◦⊤⊤ ◦Z ◦Z
∪
◦Y ◦Z

∪
◦Z ◦⊤⊤ ◦Z

= { domains }

Z ◦⊤⊤ ◦Z< ◦Y ◦Z> ◦⊤⊤ ◦Z

= { Z< ◦Y ◦Z> = Y (see �rst step above) }

Z◦⊤⊤◦Y◦⊤⊤◦Z

= { assumption: Y 6=⊥⊥ , 
one rule: (4) }

Z◦⊤⊤◦Z

= { Z is a pair }

Z .

✷

Sin
e a parti
le is, by de�nition, a pair, we have:

Corollary 133 A parti
le is an atom.

✷

Lemma 134 A parti
le is 
ore
exive.

Proof Suppose Z is square and a pair. Then
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Z

= { assumption: Z is a pair, so Z=Z◦⊤⊤◦Z ;

[ ⊤⊤◦Z = ⊤⊤ ◦Z< ◦Z = ⊤⊤ ◦Z
∪
◦Z ] }

Z ◦⊤⊤ ◦Z
∪
◦Z

= { assumption: Z is a square, so Z = Z ◦⊤⊤ ◦Z
∪ = Z∪

}

Z
∪
◦Z

= { assumption: Z is a pair, so Z> = Z∪
◦Z }

Z> .

That is, Z equals Z>
whi
h is 
ore
exive.

✷

Corollary 135 (Particle) A relation Z is a parti
le i� it has the following three

properties.

(a) Z 6=⊥⊥ ,

(b) Z⊆ I , and

(c) Z = Z◦⊤⊤◦Z .

In words, a parti
le is a proper, 
ore
exive re
tangle.

Proof \Only-if" is the 
ombination of the de�nition of a parti
le and lemma 134. \If"

is a straightforward 
onsequen
e of the properties of domains and 
ore
exives.

✷

Corollary 136 A parti
le is proper, 
ore
exive and an atom. That is, a parti
le is a

point.

Proof This is a 
ombination of lemmas 132 and 134.

✷

9.4 Points are Particles

We now prove the 
onverse of 
orollary 136. We use the assumption that every per has

a 
ore
exive index: the axiom of 
hoi
e (axiom 106).

Lemma 137 Assuming axiom 106, a point is a parti
le.



75

Proof Suppose that a is a point. Comparing the de�nition of a point, de�nition

126, with the de�ning properties of a parti
le, 
orollary 136, it suÆ
es to prove that

a=a◦⊤⊤◦a . Clearly a◦⊤⊤◦a is a per. (The simple proof uses the fa
t that a=a∪

,

be
ause a is 
ore
exive, and ⊤⊤◦a◦⊤⊤=⊤⊤ be
ause a 6=⊥⊥ .) So, by the axiom of


hoi
e, a◦⊤⊤◦a has an index J , say. We show that J is a parti
le and J=a .

To show that J is a parti
le, we must establish the three properties listed in 
orollary

135 with the instantiation Z := J . Part (a) is proved as follows.

J=⊥⊥

⇒ { ⊥⊥ is zero of 
omposition }

a◦⊤⊤◦a◦J◦a◦⊤⊤◦a = ⊥⊥

= { J is an index of per a◦⊤⊤◦a , de�nition 105(
) }

a◦⊤⊤◦a = ⊥⊥

⇒ { a◦a◦a⊆a◦⊤⊤◦a and a◦a◦a=a (be
ause a⊆ I ) }

a⊆⊥⊥

= { [ R⊆⊥⊥ ≡ R=⊥⊥ ] with R :=a }

a=⊥⊥

= { assumption: a is proper, i.e. a 6=⊥⊥ }

false .

We 
on
lude that J 6=⊥⊥ . The next step is to show that J=a .

J=a

⇐ { assumption: a is an atom }

J=⊥⊥ ∨ J⊆a

= { J 6=⊥⊥ (see above) }

J⊆a

= { assumption: a⊆ I , so a=(a◦⊤⊤◦a)< }

J ⊆ (a◦⊤⊤◦a)<

= { assumption: J is an index of a◦⊤⊤◦a

de�nition 105(a) }

true .

Property (b) of 
orollary 135 immediately follows be
ause a is 
ore
exive. We now show

that J= J◦⊤⊤◦J .
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J◦⊤⊤◦J

= { J=a (proved above) and a⊆ I }

J◦a◦⊤⊤◦a◦J

= { assumption: J is an index of a◦⊤⊤◦a

de�nition 105(
) with P :=a◦⊤⊤◦a }

J .

We 
on
lude that J=a= J◦⊤⊤◦J . Thus a=a◦⊤⊤◦a as required.

✷

Relations of the form R◦b◦S , where b is a point, play an important role later when

we 
onsider \polar 
overings". Su
h relations are always re
tangles:

Lemma 138 If R has type A∼B , S has type B∼C , and b is a point of type B , the

relation R◦b◦S is a re
tangle.

Proof Immediate 
onsequen
e of lemma 63 sin
e, by lemma 137, b is a re
tangle if b

is a point.

✷

Combining 
orollary 136 with lemma 137, we 
on
lude:

Theorem 139 A relation is a point i� it is a parti
le.

✷

9.5 Proper Atoms are Pairs

The goal of this se
tion is to show that a proper atom is a pair. Aiming to exploit the

equivalen
e of points and parti
les, we begin with lemmas on the left and right domains

of a proper atom.

Lemma 140 Suppose R is a proper atom. Then R<
and R>

are proper atoms

3

.

Proof First, that R<
and R>

are both proper is immediate from (22).

To show that R<
is an atom we have to show that, for all p ,

p⊆R< ∧ p 6=⊥⊥ ≡ p=R< .

We do this by mutual impli
ation. First, the follows-from:

3

Note: stri
tly we should detail the latti
e under 
onsideration here. However, it is easy to show that

a 
ore
exive being an atom in the latti
e of 
ore
exives is equivalent to its being an atom in the latti
e of

relations. This justi�es the omission.
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p⊆R< ∧ p 6=⊥⊥ ⇐ p=R<

= { predi
ate 
al
ulus }

(p⊆R< ⇐ p=R<) ∧ (p 6=⊥⊥ ⇐ p=R<)

⇐ { left 
onjun
t: anti-symmetry, right 
onjun
t: Leibniz }

true ∧ R< 6= ⊥⊥

⇐ { R<
is proper (see above) }

true .

Now we prove the 
onverse. Assume p⊆R<
and p 6=⊥⊥ . Then

p=R<

= { anti-symmetry and assumption: p⊆R< }

R< ⊆ p

⇐ { assumption: p⊆R<
and R<⊆ I , so p=p<

; (p◦R)<⊆p< }

R< = (p◦R)<

⇐ { Leibniz }

R = p◦R

= { p◦R 6= ⊥⊥ (see below for proof)

R is an atom, de�nition 123 (appropriately instantiated) }

p◦R ⊆ R

= { assumption: p⊆R<
and R<⊆ I , monotoni
ity }

true .

In order to verify the penultimate step in the above 
al
ulation, we show that p◦R=⊥⊥ ⇒ false

under the assumption that p⊆R<
and p 6=⊥⊥ .

p◦R=⊥⊥

= { 
one rule: (4) }

⊤⊤◦p◦R◦⊤⊤ = ⊥⊥

= { domains: (dual of) theorem 23(a) }

⊤⊤ ◦p ◦R< ◦⊤⊤ = ⊥⊥

⇒ { assumption: p⊆R<
, 
omposition of 
ore
exives is interse
tion }

⊤⊤◦p◦⊤⊤ = ⊥⊥
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= { assumption: p 6=⊥⊥ , 
one rule: (4) }

false .

✷

Corollary 141 If R is a proper atom, R<
and R>

are parti
les.

Proof By lemma 140 and de�nition 126 of a point, if R is a proper atom, R<
and R>

are points. Thus, by lemma 137, R<
and R>

are parti
les.

✷

We now aim to verify properties 131(b), (
) and (d) of a pair, with Z instantiated

to proper atom R . Property 131(b) is the following lemma.

Lemma 142 A proper atom is a re
tangle.

Proof Suppose R is a proper atom. Then

R ◦⊤⊤ ◦R

= { domains }

R< ◦ ⊤⊤ ◦ R>

= { R 6=⊥⊥ , 
one rule: (4) }

R< ◦ ⊤⊤ ◦ R ◦ ⊤⊤ ◦ R>

= { domains }

R< ◦ ⊤⊤ ◦ R< ◦ R ◦ R> ◦ ⊤⊤ ◦ R>

= { by 
orollary 141, R<
and R>

are parti
les


orollary 135(
) with Z :=R<
and Z :=R> }

R< ◦ R ◦ R>

= { domains }

R .

That is, R ◦⊤⊤ ◦R = R . Thus, by de�nition, R is a re
tangle.

✷

Properties 131(
) and (d) require a proper atom to be a bije
tion. Aiming to apply

lemma 101, we introdu
e an obvious property of re
tangles.

Lemma 143 A re
tangle is a difun
tion.

Proof Suppose R is a re
tangle. Then
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R ◦R
∪
◦R ⊆ R

= { R is a re
tangle, so R=R◦⊤⊤◦R }

R ◦R
∪
◦R ⊆ R ◦⊤⊤ ◦R

⇐ { monotoni
ity }

R
∪ ⊆ ⊤⊤

= { [R⊆⊤⊤ ] with R :=R∪

}

true .

✷

Now we have all the ingredients for our goal.

Lemma 144 Suppose R is a proper atom. Then, assuming axiom 106, R is a pair.

Proof Suppose R is a proper atom. We have to verify properties 131(b), (
) and (d)

(with Z :=R ) of a pair.

Property 131(b) is lemma 142. Properties 131(
) and (d) assert that R is a bije
tion.

To prove this, let J be an index of R . (This is where axiom 106 is assumed.) Then

J=R

= { R is an atom }

J 6=⊥⊥ ∧ J⊆R

= { J is an index of R , de�nition 78 }

true .

That is, J=R . But R is a re
tangle and thus a difun
tion. So, applying lemma 101, J

|and thus R| is a bije
tion, as required.

✷

To 
on
lude this se
tion and se
tions 9.3 and 9.4, we have:

Theorem 145 Assuming axiom 106, for all types A and B , and all relations R of

type A∼B , R is a proper atom i� R is a pair.

Proof This is a 
ombination of lemmas 132 and 144.

✷

9.6 Pairs of Points and the All-or-Nothing Rule

The �nal step is to show that we 
an derive the \all-or-nothing" rule.
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Lemma 146 If Z is a pair then Z<
and Z>

are parti
les.

Proof Suppose Z is a pair. We begin by showing that its left and right domains are

also pairs.

Properties 131(a), (
) and (d) |with Z :=Z<
and Z :=Z>

| are properties of the

domain operators . This leaves 131(b). For the instan
e Z :=Z<
, we have:

Z< ◦⊤⊤ ◦Z<

= { domains (spe
i�
ally

[ Z< ◦⊤⊤ = Z◦⊤⊤ ] and [ ⊤⊤ ◦Z
∪ = ⊤⊤ ◦Z< = ⊤⊤ ◦Z ◦Z

∪

] ) }

Z ◦⊤⊤ ◦Z ◦Z
∪

= { assumption: Z is a pair, so Z◦⊤⊤◦Z=Z }

Z ◦Z
∪

= { assumption: Z is a pair, so Z ◦Z
∪ = Z< }

Z< .

The proof that Z>
is a pair is symmetri
al.

It now follows immediately that Z<
and Z>

are squares: a square is a symmetri


re
tangle, and both are re
tangles (see above); also, both are 
ore
exives, and 
ore
exives

are symmetri
.

✷

The following theorem is [Voe99, lemma 4.41(d)℄.

Theorem 147 For all Z ,

pair.Z ≡ 〈∃a,b : point.a∧point.b : Z=a◦⊤⊤◦b〉 .

Proof By mutual impli
ation. First,

pair.Z

⇒ { lemma 146;

de�nition 131(b) and [ Z◦⊤⊤◦Z = Z< ◦⊤⊤ ◦Z> ] }

particle . Z< ∧ particle . Z> ∧ Z = Z< ◦⊤⊤ ◦Z>

⇒ { 
orollary 136 }

point . Z< ∧ point . Z> ∧ Z = Z< ◦⊤⊤ ◦Z>

⇒ { a,b := Z< , Z> }

〈∃a,b : point.a∧point.b : Z=a◦⊤⊤◦b〉 .
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For the 
onverse, assume that a and b are points. We have to prove that a◦⊤⊤◦b is a

pair. Applying de�nition 131, this means 
he
king four properties:

(a) a◦⊤⊤◦b 6= ⊥⊥ ,

(b) a◦⊤⊤◦b = a◦⊤⊤◦b◦⊤⊤◦a◦⊤⊤◦b ,

(c) (a◦⊤⊤◦b)< = (a◦⊤⊤◦b) ◦ (a◦⊤⊤◦b)∪ ,

(d) (a◦⊤⊤◦b)> = (a◦⊤⊤◦b)∪ ◦ (a◦⊤⊤◦b) .

Properties (a) and (b) are instan
es of the 
one rule together with the assumption that

a and b are proper. We prove (
) as follows.

(a◦⊤⊤◦b) ◦ (a◦⊤⊤◦b)∪

= { 
onverse }

a ◦⊤⊤ ◦b ◦b
∪
◦⊤⊤ ◦a

= { assumption: b is a point, 
one rule: (4) }

a◦⊤⊤◦a

= { assumption: a is a point;

so, by 
orollary 137, a is a pair;

de�nition 131(b) with Z :=a }

a

= { a◦⊤⊤◦b is a non-empty re
tangle }

(a◦⊤⊤◦b)< .

Property (d) is proved symmetri
ally.

✷

We 
on
lude with the theorem that Gl�u
k's \all-or-nothing" axiom [Gl�u17℄ is a 
on-

sequen
e of our axiom of 
hoi
e.

Theorem 148 (All or Nothing)

〈∀a,b,R : point.a∧point.b : a◦R◦b=⊥⊥ ∨ a◦R◦b=a◦⊤⊤◦b〉 .

Proof Suppose a and b are points. By theorem 147, a◦⊤⊤◦b is a pair. So, by lemma

132, a◦⊤⊤◦b is an atom. Applying the de�nition of an atom, we have, for all R ,
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true

= { monotoni
ity, R⊆⊤⊤ }

a◦R◦b ⊆ a◦⊤⊤◦b

= { a◦⊤⊤◦b is an atom, de�nition 123 }

a◦R◦b=⊥⊥ ∨ a◦R◦b=a◦⊤⊤◦b .

✷

The signi�
an
e of the all-or-nothing rule is that, together with theorem 125, it follows

that the latti
e of relations of type A∼B is isomorphi
 to the powerset 2A×B .

Theorem 149 Suppose, for types A and B , the latti
es of 
ore
exives of types A

and B are both 
omplete, universally distributive and extensional. Then the latti
e of

relations of type A∼B is saturated; the atoms are elements of the form a◦⊤⊤◦b where a

and b are atoms of the poset of 
ore
exives (of types A and B , respe
tively). It follows

that, if the latti
e of relations of type A∼B is 
omplete and universally distributive, it

is isomorphi
 to the powerset of the set of elements of the form a◦⊤⊤◦b where a and b

are points of types A and B , respe
tively.

Proof By theorems 147 and 145, a◦⊤⊤◦b is an atom . It suÆ
es to prove that the

latti
e of relations of type A∼B is saturated. This is easy: for all R of type A∼B ,

R

= { I is unit of 
omposition,

latti
es of 
ore
exives of types A and B are extensional }

〈∪a :point.a :a〉 ◦R ◦ 〈∪b :point.b :b〉

= { distributivity of 
omposition over ∪ }

〈∪a,b : point.a∧point.b : a◦R◦b〉

= { all-or-nothing rule: theorem 148, ⊥⊥ is zero of supremum }

〈∪a,b : point.a ∧ point.b ∧ a◦R◦b 6=⊥⊥ : a◦⊤⊤◦b〉 .

That the latti
e of relations is a powerset follows from theorem 125. By theorem 147,

every pair is a relation of the form a◦⊤⊤◦b ; also, by lemma 132, a◦⊤⊤◦b is an atom.

✷

Hen
eforth, we assume that, for ea
h type A , the latti
e of 
ore
exives of type A

is 
omplete, universally distributive and saturated (in other words, we postulate axiom

130). That is, re
alling theorem 125, we assume that the 
ore
exives of a given type form

a powerset. We also assume that, for ea
h pair of types A and B , the latti
e of relations
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of type A∼B is 
omplete and universally distributive. Theorem 149 then states that

|with the additional postulate of our axiom of 
hoi
e (axiom 106)| , for ea
h pair of

types A and B , the latti
e of relations of type A∼B is a powerset with atoms of the form

a◦⊤⊤◦b where a and b are points of type A and B , respe
tively. Standard properties

of powersets |the properties of set union, interse
tion and 
omplementation| will be

assumed, sometimes without spe
i�
 mention and sometimes with the hint \set theory".

Summarising theorem 149, the saturation property is that

〈∀R :: R = 〈∪a,b : a◦⊤⊤◦b⊆R : a◦⊤⊤◦b〉〉 .(150)

Combining theorem 149 with theorem 125, we get the irredu
ibility property: if R is a

fun
tion with range relations of type A∼B and sour
e K , then, for all points a and b

of appropriate type,

a◦⊤⊤◦b ⊆ ∪R ≡ 〈∃k : k∈K : a◦⊤⊤◦b⊆R.k〉 .(151)

Theorem 149 assumes that the latti
es of 
ore
exives (of appropriate type) are exten-

sional. Conversely, if we assume that, for all types A and B , the latti
e of relations of

type A∼B is extensional then so is the latti
e of 
ore
exives of type A , for all A . This

is theorem 154. First, we need a lemma.

Lemma 152 The identity relation IA of type A satis�es, for all points a and a ′
of

type A ,

a◦⊤⊤◦a ′ ⊆ IA ≡ a=a ′ .(153)

Proof The proof is by mutual impli
ation. First,

a=a ′

⇒ { Leibniz }

a◦⊤⊤◦a ′ = a◦⊤⊤◦a

⇒ { a point is a parti
le (lemma 137)

131(b) (with Z :=a ) }

a◦⊤⊤◦a ′ = a

⇒ { de�nition a point (de�nition 126) }

a◦⊤⊤◦a ′ ⊆ IA .

For the 
onverse, we �rst prove that, for arbitrary points a and a ′
, a◦⊤⊤◦a ′ 6=⊥⊥ .
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a◦⊤⊤◦a ′ 6=⊥⊥

= { 
one rule: (4) with R :=a◦⊤⊤◦a ′ }

⊤⊤◦a◦⊤⊤◦a ′
◦⊤⊤ = ⊤⊤

= { 
one rule: (4) (with R :=a and R :=a ′
), a 6=⊥⊥ and a ′ 6=⊥⊥ }

true .

So

a◦⊤⊤◦a ′ ⊆ IA

⇒ { monotoni
ity }

a◦a ◦⊤⊤ ◦a ′
◦a ′ ⊆ a◦IA◦a ′

= { a◦a=a , a ′
◦a ′=a ′

, IA is identity of 
omposition }

a◦⊤⊤◦a ′ ⊆ a◦a ′

= { 
omposition of 
ore
exives is interse
tion }

a◦⊤⊤◦a ′ ⊆ a ∧ a◦⊤⊤◦a ′ ⊆ a ′

= { a◦⊤⊤◦a ′ 6=⊥⊥ (proved above), a and a ′
are atoms }

a◦⊤⊤◦a ′ = a ∧ a◦⊤⊤◦a ′ = a ′

⇒ { transitivity }

a=a ′ .

✷

Theorem 154 Suppose, for all types A and B , the latti
e of relations of type A∼B

is extensional, whereby the atoms are elements of the form a◦⊤⊤◦b where a and b are

atoms of the poset of 
ore
exives (of types A and B , respe
tively). Then, for all A ,

the latti
e of 
ore
exives of type A is extensional.

Proof By assumption, for all A , the latti
e of relations of type A∼A is 
omplete and

universally distributive. It follows straightforwardly that the latti
e of relations of type

A∼A bounded above by any �xed relation is also 
omplete and universally distributive.

In parti
ular, the 
ore
exives (whi
h are bounded above by IA ) form a 
omplete and

universally distributive latti
e. It suÆ
es thus to prove that the latti
e of 
ore
exives of

type A is saturated. That is, we have to prove that, for all 
ore
exives p of type A ,

p = 〈∪a : a⊆p : a〉

where dummy a ranges over points of type A . This we do as follows.
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〈∪a : a⊆p : a〉

= { (153) with a,a ′ :=a,a }

〈∪a : a◦⊤⊤◦a⊆p : a◦⊤⊤◦a〉

= { one-point rule }

〈∪a,b : a=b ∧ a◦⊤⊤◦b⊆p : a◦⊤⊤◦b〉

= { p is 
ore
exive, i.e. p⊆ IA

a◦⊤⊤◦b⊆ IA ⇒ { (153) with a,a ′ :=a,b} a=b }

〈∪a,b : a◦⊤⊤◦b⊆p : a◦⊤⊤◦b〉

= { assumption: latti
e A∼A is saturated }

p .

✷

Combining theorems 149 and 154, we get:

Corollary 155 Suppose, for all types A and B , the latti
e of relations of type A∼B

is 
omplete and universally distributive. Then for all types A and B , the latti
e of

relations of type A∼B is extensional i� for all types A , the latti
e of 
ore
exives of

type A is extensional.

✷

Although the saturation property allows us to identify atoms of the form a◦⊤⊤◦b

with elements (a, b) of the set A×B , it does not establish that the operators of relation

algebra (
onverse, 
omposition et
.) 
orrespond to their standard set-theoreti
 interpre-

tations. This is straightforward. For example, for 
omposition we have, for all R and

S ,

R◦S

= { saturation: (150) }

〈∪a,b : a◦⊤⊤◦b⊆R : a◦⊤⊤◦b〉 ◦ 〈∪b ′,c : b ′
◦⊤⊤◦c⊆S : b ′

◦⊤⊤◦c〉

= { distributivity }

〈∪a,b,b ′,c : a◦⊤⊤◦b⊆R ∧ b ′
◦⊤⊤◦c⊆S : a◦⊤⊤◦b◦b ′

◦⊤⊤◦c〉

= { b and b ′
are points, so b◦b ′ 6=⊥⊥ ≡ b ′=b


ase analysis on b ′=b ∨ b ′ 6=b , one-point rule }

〈∪a,b,c : a◦⊤⊤◦b⊆R ∧ b◦⊤⊤◦c ⊆ S : a◦⊤⊤◦b◦b◦⊤⊤◦c〉

= { b ranges over points, so b◦b=b 6=⊥⊥ , 
one rule: (4) }
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〈∪a,b,c : a◦⊤⊤◦b⊆R ∧ b◦⊤⊤◦c ⊆ S : a◦⊤⊤◦c〉

= { range disjun
tion }

〈∪a,c : 〈∃b :: a◦⊤⊤◦b⊆R ∧ b◦⊤⊤◦c⊆S〉 : a◦⊤⊤◦c〉 .

Comparing the �rst and last lines of this 
al
ulation (and interpreting a◦⊤⊤◦b⊆R as

(a, b)∈R and b◦⊤⊤◦c⊆S as (b, c)∈S ) we re
ognise the standard set-theoreti
 de�nition

of R◦S .

The important step to note in the above 
al
ulation is the use of the distributivity

of 
omposition over union. The validity of su
h universal distributivity | both from

the left and from the right| is a 
onsequen
e of the Galois 
onne
tions (5) and (6)

de�ning fa
tors. A similar step needed in the 
al
ulation for 
onverse relies on the fa
t

that 
onverse is the upper and lower adjoint of itself.

We 
on
lude this se
tion with a brief 
omparison of extensionality as formulated here

with the notion of extensionality formulated by Voermans [Voe99℄.

Voermans [Voe99, se
tion 4.5℄ postulated that the latti
e of binary relations of a

given type is saturated by relations of the form X◦⊤⊤◦Y where X and Y are parti
les.

Relations of this form are then shown to model pairs (x, y) in standard set-theoreti
 pre-

sentations of relation algebra. Here, we have postulated that ea
h type A forms a latti
e

that is saturated by points : see axiom 130; this postulate is 
ombined with our axiom

of 
hoi
e: all pers have an index. Then pairs in standard set-theoreti
 presentations

of relation algebra are modelled by relations of the form a◦⊤⊤◦b , where a and b are

points. Be
ause parti
les are points (
orollary 136), the saturation property postulated

by Voermans is formally stronger than axiom 130. As a 
onsequen
e, it be
omes slightly

harder to establish that, for example, the 
omposition of two relations does indeed 
orre-

spond to the set-theoreti
 notion of 
omposition. (See [Voe99, se
tion 4.5℄ for details of

what is involved.) More importantly, the 
ombination of axioms 106 and 130 fa
ilitates

a better separation of 
on
erns: axiom 106 provides a powerful extension of point-free

reasoning, whilst axiom 130 �lls the gap where pointwise reasoning is unavoidable.

10 Pointwise Interpretations

We have now shown that, with the addition of axioms on the 
ompleteness and universal

distributivity of the relations of a given type together with the axiom of 
hoi
e, axiom

106, the type A∼B (for ea
h type A and B ) is isomorphi
 to the powerset 2A×B .

The proper atoms are events of the form a◦⊤⊤◦b where a and b are points; su
h an

event models the pair (a, b) in 
onventional pointwise formulations of relation algebra.

Spe
�
ally, the property

a◦⊤⊤◦b ⊆ R
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models the property (a, b)∈R in 
onventional formulations, whilst

a◦R◦b=⊥⊥

models the 
onverse property (a, b) 6∈R .

A major bene�t of enabling pointwise reasoning in this way is that we 
an derive

pointwise interpretations of the operators in the 
al
ulus in a pre
ise and 
on
ise fashion.

This se
tion is about the pointwise interpretations of some of the less familiar operators.

The properties presented are needed in later se
tions.

Lemma 156 gives pointwise interpretations of the fa
tor operators.

Lemma 156 For all relations R of type A∼C and S of type B∼C (for some A , B

and C ) and all points a and b ,

a◦⊤⊤◦b ⊆ R/S ≡ (b◦S)> ⊆ (a◦R)> .

Dually, for all relations R of type C∼A and S of type C∼B , and all points a and b ,

a◦⊤⊤◦b ⊆ R\S ≡ (R◦a)< ⊆ (S◦b)< .

Proof By mutual impli
ation:

a◦⊤⊤◦b ⊆ R/S

= { de�nition of fa
tor }

a◦⊤⊤◦b◦S ⊆ R

⇒ { a and b are points, monotoni
ity and domains }

(b◦S)> ⊆ (a◦R)>

⇒ { monotoni
ity }

a ◦⊤⊤ ◦ (b◦S)> ⊆ a ◦⊤⊤ ◦ (a◦R)>

= { domains }

a◦⊤⊤◦b◦S ⊆ a◦⊤⊤◦a◦R

= { a is a point (so a◦⊤⊤◦a=a ) }

a◦⊤⊤◦b◦S ⊆ a◦R

⇒ { a is a 
ore
exive }

a◦⊤⊤◦b◦S ⊆ R

= { de�nition of fa
tor }

a◦⊤⊤◦b ⊆ R/S .
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The se
ond equivalen
e is proved similarly.

a◦⊤⊤◦b ⊆ R\S

= { de�nition of fa
tor }

R◦a◦⊤⊤◦b ⊆ S

⇒ { monotoni
ity and 
ore
exives }

(R◦a)< ⊆ (S◦b)<

⇒ { (as in above 
al
ulation) }

a◦⊤⊤◦b ⊆ R\S .

✷

For relations R and S with the same sour
e, the relation R/S∩ (S/R)∪ is the \sym-

metri
 left division" of R and S . Dually, for relations R and S with the same target,

the relation R\S∩ (S\R)∪ is their \symmetri
 right division". The following 
orollary of

lemma 156 gives a pointwise interpretation of these \division" operators.

Corollary 157 For all relations R and S with the same sour
e, and all points a and

b (of appropriate type),

a◦⊤⊤◦b ⊆ R/S∩ (S/R)
∪

≡ (a◦R)> = (b◦S)> .

Dually, for all relations R and S with the same target, and all points a and b (of

appropriate type),

a◦⊤⊤◦b ⊆ R\S∩ (S\R)
∪

≡ (R◦a)< = (S◦b)< .

Proof Straightforward appli
ation of lemma 156 and anti-symmetry:

a◦⊤⊤◦b ⊆ R/S∩ (S/R)∪

= { in�ma and 
onverse }

a◦⊤⊤◦b ⊆ R/S ∧ b◦⊤⊤◦a ⊆ S/R

= { lemma 156 }

(b◦S)> ⊆ (a◦R)> ∧ (a◦R)> ⊆ (b◦S)>

= { anti-symmetry }

(a◦R)> = (b◦S)> .

✷

The pointwise interpretations of the left and right per domains are given by the

following lemma.
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Lemma 158 For all relations R of type A∼B and all points a and a ′
of type A ,

a◦⊤⊤◦a ′ ⊆ R≺ ≡ a⊆R< ∧ (a◦R)> = (a ′
◦R)> ∧ a ′⊆R< .

Dually, for all relations R of type A∼B and all points b and b ′
of type B ,

b◦⊤⊤◦b ′ ⊆ R≻ ≡ b⊆R> ∧ (R◦b)< = (R◦b ′)< ∧ b ′⊆R> .

Proof Assume that b and b ′
are points. Then

b◦⊤⊤◦b ′ ⊆ R≻

= { de�nition (28) and lemma 34 }

b◦⊤⊤◦b ′ ⊆ R> ◦R\\R ◦R>

= { domains (using mutual impli
ation) }

b⊆R> ∧ b◦⊤⊤◦b ′ ⊆ R\\R ∧ b ′⊆R>

= { 
orollary 157, with R,S :=R,R }

b⊆R> ∧ (R◦b)< = (R◦b ′)< ∧ b ′⊆R> .

The dual property follows from the distributivity properties of 
onverse.

✷
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Part III

Applications

11 Coverings

This se
tion is motivated by Riguet's study of so-
alled \relations de Ferrers" [Rig51℄

(whi
h we 
all \stair
ase relations" [Ba
21℄). A 
entral element in Riguet's study was a

theorem 
hara
terising su
h relations as the \r�eunion" of \re
tangles" that have a very

spe
ial property. We abstra
t the notion of a \polar 
overing" of a relation and we prove

the theorem that every relation has a polar 
overing. See de�nition 163 and theorem

166. In anti
ipation of se
tion 12, we also de�ne the notion of a \non-redundant" polar


overing. For �nite relations, it is straightforward to show that a non-redundant polar


overing 
an always be 
onstru
ted from a given polar 
overing of the relation. The

algorithm may, however, not be pra
ti
al; moreover, there are in�nite relations that do

not have a non-redundant polar 
overing. (The less-than relation on real numbers is an

example.)

11.1 Completely Disjoint Rectangles

Definition 159 (Indexed Bag/Set) Suppose R is a fun
tion with sour
e K . Then

R is said to be a bag indexed by K . The values R.k , where k ranges over K , are said

to be the elements of R . In the 
ase that R is inje
tive, it is said to be an indexed

set.

✷

The distin
tion between \bag" and \set" in de�nition 159 emphasises the fa
t that

the same element may o

ur repeatedly in an indexed bag whereas ea
h element o

urs

exa
tly on
e in an indexed set. That is, an indexed set R has the property that, for all

j and k in K ,

R.j = R.k ≡ j=k .

We normally apply de�nition 159 to bags/sets of re
tangles. Spe
i�
ally, suppose A , B

and K are types and R is a fun
tion with sour
e K and target re
tangles of type A∼B .

Then R is said to be an indexed bag of re
tangles ; it is an indexed set of re
tangles

if it is inje
tive.

Two relations R and S are disjoint if R∩S=⊥⊥ . One 
an show that, for all re
tan-

gles R and S ,

R∩S=⊥⊥ ≡ R<∩S< = ⊥⊥ ∨ R>∩S> = ⊥⊥ .
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(This is a 
onsequen
e of lemma 66.) The de�nition of \
ompletely" disjoint strengthens

the disjun
tion to a 
onjun
tion. Note that we don't use 
ontinued equality be
ause the

symbol \⊥⊥ " is overloaded.

Definition 160 (Completely Disjoint) Two re
tangles R and S are said to be


ompletely disjoint i�

R<∩S< = ⊥⊥ ∧ R>∩S> = ⊥⊥ .

Suppose R is an indexed bag of re
tangles. Then R is said to be a 
ompletely disjoint

bag of re
tangles i�, for all j and k in the index set of R ,

R.j 6=R.k ≡ (R.j)<∩ (R.k)< = ⊥⊥ ∧ (R.j)>∩ (R.k)> = ⊥⊥ .

R is said to be a 
ompletely disjoint set of re
tangles i� in addition it is inje
tive. That

is, R is a 
ompletely disjoint set of re
tangles i�, for all j and k in the index set of

R ,

j 6=k ≡ (R.j)<∩ (R.k)< = ⊥⊥ ∧ (R.j)>∩ (R.k)> = ⊥⊥ .

✷

We give several 
onstru
tions of bags/sets of re
tangles. When we do so, the ver-

i�
ation that the bags/sets are 
ompletely disjoint is a
hieved by mutual impli
ation.

The \if" part is established by proving its 
ontrapositive. That is, the proof obligation

be
omes to show that, for all indi
es j and k ,

R.j=R.k ⇒ (R.j)<∩ (R.k)< 6= ⊥⊥ ∧ (R.j)>∩ (R.k)> 6= ⊥⊥

whi
h simpli�es to, for all j ,

R.j 6=⊥⊥ .

(The same simpli�
ation is valid whether the 
onstru
tion yields a bag or a set.) Thus

the �rst step is to show that the 
onstru
tion yields non-empty elements. The \only-if"

part is to show that, for all indi
es j and k ,

R.j 6=R.k ⇒ (R.j)<∩ (R.k)< = ⊥⊥ ∧ (R.j)>∩ (R.k)> = ⊥⊥ .

For this part, the following lemma is exploited.

Lemma 161 For all relations R and S ,

R<∩S< = ⊥⊥ ≡ R
∪

◦S = ⊥⊥ .

Symmetri
ally,

R>∩S> = ⊥⊥ ≡ R ◦S
∪

= ⊥⊥ .
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Proof First note that

R<∩S< = ⊥⊥ ≡ R< ◦S< = ⊥⊥

sin
e the interse
tion of 
ore
exives is the same as their 
omposition. Then

R< ◦S< = ⊥⊥

⇒ { ⊥⊥ is zero of 
omposition }

R
∪
◦R< ◦S< ◦S = ⊥⊥

= { domains: (18) }

R
∪
◦S = ⊥⊥

⇒ { ⊥⊥ is zero of 
omposition }

R ◦R
∪
◦S ◦S

∪ = ⊥⊥

⇒ { monotoni
ity, [ R=⊥⊥≡R⊆⊥⊥ ] (applied twi
e) }

(I ∩ R ◦R
∪) ◦ (I ∩ S ◦S

∪) = ⊥⊥

= { domains: de�nition 15 }

R< ◦S< = ⊥⊥ .

The lemma follows by mutual impli
ation.

✷

The foregoing dis
ussion is formalised in the following lemma.

Lemma 162 Suppose R is an indexed bag of re
tangles. Then R is 
ompletely

disjoint i�

〈∀j :: R.j 6=⊥⊥〉

∧ 〈∀ j,k :: R.j 6=R.k ⇒ (R.j)∪ ◦R.k = ⊥⊥ ∧ R.j ◦ (R.k)∪ = ⊥⊥〉 .

Also, R is 
ompletely disjoint and inje
tive |i.e. an indexed set| i�

〈∀j :: R.j 6=⊥⊥〉

∧ 〈∀ j,k :: j 6=k ⇒ (R.j)∪ ◦R.k = ⊥⊥ ∧ R.j ◦ (R.k)∪ = ⊥⊥〉 .

Proof

R is 
ompletely disjoint

= { de�nition 160 }

〈∀ j,k :: R.j 6=R.k ≡ (R.j)<∩ (R.k)< = ⊥⊥ ∧ (R.j)>∩ (R.k)> = ⊥⊥〉
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= { mutual impli
ation }

〈∀ j,k :: R.j 6=R.k ⇐ (R.j)<∩ (R.k)< = ⊥⊥ ∧ (R.j)>∩ (R.k)> = ⊥⊥〉

∧ 〈∀ j,k :: R.j 6=R.k ⇒ (R.j)<∩ (R.k)< = ⊥⊥ ∧ (R.j)>∩ (R.k)> = ⊥⊥〉

= { 
ontrapositive; lemma 161 }

〈∀ j,k :: R.j=R.k ⇒ (R.j)<∩ (R.k)< 6= ⊥⊥ ∨ (R.j)>∩ (R.k)> 6= ⊥⊥〉

∧ 〈∀ j,k :: R.j 6=R.k ⇒ R.j ◦ (R.k)∪ = ⊥⊥ ∧ (R.j)∪ ◦R.k = ⊥⊥〉

= { Leibniz, re
exivity of equality, idempoten
e of interse
tion }

〈∀j :: (R.j)< 6=⊥⊥ ∨ (R.j)> 6=⊥⊥〉

∧ 〈∀ j,k :: R.j 6=R.k ⇒ R.j ◦ (R.k)∪ = ⊥⊥ ∧ (R.j)∪ ◦R.k = ⊥⊥〉

= { domains

( [ (R<=⊥⊥)= (R=⊥⊥)= (R>=⊥⊥) ] with R :=R.j )) }

〈∀j :: R.j 6=⊥⊥〉

∧ 〈∀ j,k :: R.j 6=R.k ⇒ R.j ◦ (R.k)∪ = ⊥⊥ ∧ (R.j)∪ ◦R.k = ⊥⊥〉 .

Inje
tivity of R is the property that 〈∀ j,k :: R.j=R.k ≡ j=k〉 . The 
hara
terisation

of 
ompletely disjoint and inje
tive thus follows by the use of Leibniz's rule.

✷

11.2 Polar Coverings

Definition 163 (Polar Covering) Suppose R is an indexed bag of re
tangles. (See

de�nition 159.) Then R is said to be polar if, for all elements U and V of R ,

U< ⊆ V< ≡ U> ⊇ V> .

Also, R is said to be linear if, for all elements U and V of R ,

U< ⊆ V< ∨ V< ⊆ U< .

(Equivalently,

U> ⊆ V> ∨ V> ⊆ U>
.)

A relation R is 
overed by R if R=∪R . The 
overing R is non-redundant if there

is a total fun
tion D from indi
es of R to a set of 
ompletely disjoint subre
tangles of

∪R that \de�nes" the elements of R . To be pre
ise, the 
overing R is non-redundant

if there is a fun
tion D with the same sour
e as R su
h that
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〈∀k :: rectangle.(D.k) ∧ D.k⊆R.k〉

∧ 〈∀ j,k :: D.j 6=D.k ≡ (D.j)<∩ (D.k)< = ⊥⊥ ∧ (D.j)>∩ (D.k)> = ⊥⊥〉

∧ 〈∀ j,k :: D.j=D.k ≡ R.j=R.k〉 .

In su
h a 
ase, we 
all the indexed bag D a de�niens of R .

✷

Lemma 164 Suppose R is an indexed bag of re
tangles and suppose R is polar.

Then, for all elements U and V of R ,

U=V ≡ U<=V< .

Proof

U=V

= { U and V are re
tangles: lemma 65 }

U<=V< ∧ U>=V>

= { anti-symmetry }

U<⊆V< ∧ U<⊇V< ∧ U>⊆V> ∧ U>⊇V>

= { R is polar: de�nition 163 }

U<⊆V< ∧ U>⊆V>

= { anti-symmetry }

U<=V< .

✷

Definition 165 Suppose R is a polar 
overing of relation R . The polar ordering of

the elements of R , denoted hen
eforth by the symbol ⊑ , is de�ned by, for all indi
es j

and k of R ,

R.j ⊑ R.k ≡ (R.j)< ⊆ (R.k)< .

Equivalently,

R.j ⊑ R.k ≡ (R.k)> ⊆ (R.j)> .

✷
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As suggested by the notation, the relation ⊑ is a provisional ordering on the elements

of any indexed bag of relations; it is anti-symmetri
 whenever R is an indexed bag of

polar re
tangles by virtue of lemma 65 and de�nition 163 of \polar".

De�nition 163 de�nes a bag of re
tangles rather than a set of re
tangles. (Re
all that

a set is an inje
tive bag: see de�nition 159.) Generally it is easier to 
onstru
t a bag

rather than a set of polar re
tangles that 
over a given relation. Nevertheless, sets are

more desirable than bags. Our theory of indexes of a relation provides the me
hanism

to 
onstru
t sets rather than bags. See theorem 166. Note that a de�niens D of an

indexed set R is also a set (be
ause R.j=R.k equivales j=k ).

The adje
tive \polar" alludes to the property that the left and right domains of a


overing are \polar" opposites: the larger the one, the smaller the other. The notion was

introdu
ed by Riguet [Rig51℄ in the 
ontext of a theorem on \relations de Ferrers". More

pre
isely, Riguet introdu
ed the notion of a linear polar 
overing. For further details of

Riguet's theorem see the se
tion on stair
ase relations in [Ba
21℄.

In the 
ase of the empty relation, ⊥⊥ , there are two distin
t polar 
overings a

ording

to our de�nition. One is the empty fun
tion (the unique fun
tion with sour
e the empty

set) and the se
ond is the 
onstan
t fun
tion with sour
e the unit type that returns

⊥⊥ . The former is the preferred 
overing be
ause it means that, for all relations R , all

elements of a polar 
overing of R are proper (di�erent from ⊥⊥ ). We 
all su
h polar


overings proper 
overings and, from now on, make the assumption that all 
overings

are proper.

Theorem 166 Suppose R is a relation of type A∼B and suppose J is a (
ore
exive)

index of R≻
. De�ne the fun
tion R by

R = 〈b : b⊆ J : R ◦b ◦R\R〉 .

Then R is an inje
tive, polar 
overing of R . (Note: the sour
e of the fun
tion R is the

subset of B 
orresponding to the points given by the range restri
tion on the dummy

b .)

Proof The elements of R are obviously re
tangles be
ause its index set is a set of

points. (See lemma 138.) The \polar" property is established as follows. For all b , b ′

su
h that b⊆R>
and b ′⊆R>

,

(R ◦b ′
◦R\R)> ⊆ (R ◦b ◦R\R)>

= { assumption: b⊆R>
and b ′⊆R>

, domains }

(b ′
◦R\R)> ⊆ (b ◦R\R)>

= { lemma 156 with R,a,a ′ := R\R ,b , b ′ }

b◦⊤⊤◦b ′ ⊆ (R\R)/(R\R)
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= { (13) }

b◦⊤⊤◦b ′ ⊆ R\R

= { lemma 156 }

(R◦b)< ⊆ (R◦b ′)<

= { I⊆R\R , domains }

(R ◦b ◦R\R)< ⊆ (R ◦b ′
◦R\R)< .

The property R=∪R is established as follows.

∪R

= { de�nition of R and saturation axiom (129) }

R ◦ J ◦R\R

= { R = R ◦R≻
and J = J ◦R>

(sin
e J is a 
ore
exive index R ) }

R ◦R≻ ◦ J ◦R> ◦R\R

= { lemma 37 }

R ◦R≻ ◦ J ◦R≻ ◦R\R

= { J is an index R , de�nition 78(d) }

R ◦R≻ ◦R\R

= { R = R ◦R≻ }

R ◦R\R

= { 
an
ellation: (11) }

R .

This 
ompletes the proof that R=∪R . The �nal task is to show that the fun
tion R

is inje
tive. To this end, suppose b and b ′
are points su
h that b⊆ J and b ′⊆ J . We

have to show that

b=b ′
⇐ R ◦b ◦R\R = R ◦b ′

◦R\R .

We have

R ◦b ◦R\R = R ◦b ′
◦R\R

= { R is a polar 
overing (proved above), lemma 164 }

(R ◦b ◦R\R)< = (R ◦b ′
◦R\R)<
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= { (R\R)< = I , domains }

(R◦b)< = (R◦b ′)<

= { b⊆ J⊆R≻
and b ′⊆ J⊆R≻

, lemma 158 }

b◦⊤⊤◦b ′ ⊆ J◦⊤⊤◦J ∩ R≻

= { theorem 23(b), J is a 
ore
exive, so J<= J= J> }

b◦⊤⊤◦b ′ ⊆ J ◦R≻ ◦ J

= { J is a (
ore
exive) index of R≻
, de�nition 105(b) with P :=R≻ }

b◦⊤⊤◦b ′ ⊆ J

= { b and b ′
are points, J is a 
ore
exive, (153) with a,a ′ :=b,b ′ }

b=b ′ .

✷

Example 167 The less-than relation on real numbers has a polar 
overing. Spe
if-

i
ally, suppose x is a real number. Let lt.x denote (the 
ore
exive representing)

{y :y∈IR :y<x} and al.x denote (the 
ore
exive representing) {y :y∈IR :x≤y} . The-

orem 166 predi
ts that

〈x : x∈IR : lt.x ◦⊤⊤ ◦al.x〉

is a polar 
overing of the less-than relation. (The only non-trivial part is to 
he
k that

the at-most relation ≤ equals <\< .)

This 
overing is, of 
ourse, not unique. More signi�
antly, it is not non-redundant

sin
e

〈

∀u,v : u<x≤ v : x 6= 1
2
(u+x) ∧ u< 1

2
(u+x)≤ v

〉

.

For any real number x , it is possible to remove the re
tangle de�ned by x without

a�e
ting the supremum.

✷

Given the straightforwardness of theorem 166, it is inevitable that our fo
us is not on

the polarity of 
overings but on the existen
e of non-redundant 
overings. The adje
tive

\non-redundant" is meant to express the property that removal of any element from a


overing R will have the e�e
t of stri
tly redu
ing ∪R . Example 167 demonstrates

that the less-than relation on real numbers has a polar 
overing but, as we shall see,

the less-than relation on real numbers is an example of a relation for whi
h there is no

non-redundant 
overing.
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The notation \D " in de�nition 163 is 
hosen primarily to express the property that

D.k uniquely \de�nes" (or \identi�es") R.k . Conveniently, it also expresses the prop-

erty that the relation 
overed by a de�niens (the relation ∪D ) is always difun
tional:

see lemma 169.

A polar 
overing is not obviously redundant in the sense that, for all elements U

and V of R ,

U⊆V ≡ U=V .

(The easy proof is left to the reader.) That is, it is not possible to identify two elements

U and V su
h that U is a proper subset of V and, thus, U 
an be removed from R

without a�e
ting ∪R . Example 167 shows that the less-than relation on real numbers

has a polar 
overing that has non-obvious redundan
ies. Example 168 is an example of a

�nite relation for whi
h the polar 
overing 
onstru
ted by theorem 166 has a non-obvious

redundan
y.

Example 168 Fig. 4 shows a relation R of type {A,B,C}∼{α,β,γ,δ} . The four re-

lations depi
ted in �g. 5 are re
tangles of type {A,B,C}∼{α,β,γ,δ} (as indi
ated by the

surrounding re
tangular boxes); for greater 
larity only edges 
onne
ting nodes in their

left and right domains have been displayed.

A B C

α β γ

δ

Figure 4: A Relation of Type {A,B,C}∼{α,β,γ,δ}

These four re
tangles are the elements of the polar 
overing 
onstru
ted by theorem

166. The (re
exive-transitive redu
tion of the) ordering on the elements of the 
overing

is depi
ted by arrowed brown lines. Take 
are to note how the depi
ted edges 
orrespond

to the ordering of the left domains of the re
tangles:

{B}⊆ {A,B} ∧ {B}⊆ {B,C} ∧ {A,B}⊆ {A,B,C} ∧ {B,C}⊆ {A,B,C} ,

and to the \polar" ordering of their right domains:

{α,β,γ,δ}⊇ {α,δ} ∧ {α,β,γ,δ}⊇ {β,δ} ∧ {α,δ}⊇ {δ} ∧ {β,δ}⊇ {δ} .

The top re
tangle is redundant (but not \obviously" so). By removing this re
tangle,

one obtains a non-redundant polar 
overing: this is the polar 
overing that is the dual of
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A B C

δ

B

δ

α

A

γ

B C

δ

B

β

δ

γα

Figure 5: Polar Covering



100

the 
overing detailed in theorem 166 (thus indexed by {A,B,C} rather than {α,β,γ,δ} ).

The de�niens of this 
overing is depi
ted by the bold green edges in �g. 5.

The red and blue squares surrounding instan
es of the elements of {A,B,C} and

{α,β,γ,δ} should be ignored for the moment. We return to this example later;

✷

11.3 A Definiens is a Difunction

Cru
ial to establishing non-redundan
y of a 
overing is the 
onstru
tion of a de�niens.

Those familiar with the theory of difun
tions will immediately re
ognise that a de�niens

of a 
overing is ne
essarily a difun
tion (be
ause a relation is a difun
tion i� it is the

union of a set of 
ompletely disjoint re
tangles). Be
ause we don't need the full theory

here, we present just the relevant property and its proof:

Lemma 169 Suppose D is a fun
tion su
h that

〈∀k :: rectangle.(D.k)〉

∧ 〈∀ j,k :: D.j 6=D.k ≡ (D.j)<∩ (D.k)< = ⊥⊥ ∧ (D.j)>∩ (D.k)> = ⊥⊥〉 .

Then ∪D is a difun
tion.

Proof Re
alling lemma 64 (every re
tangle is a difun
tion), we know that

〈

∀k :: D.k ◦ (D.k)
∪

◦D.k ⊆ D.k
〉

.(170)

Aiming to exploit this property, we 
al
ulate:

(∪D)∪ ◦∪D

= { distributivity }

〈∪ j,k :: (D.j)∪ ◦D.k〉

= { range disjun
tion: D.j=D.k ∨ D.j 6=D.k }

〈∪ j,k : D.j=D.k : (D.j)∪ ◦D.k〉 ∪ 〈∪ j,k : D.j 6=D.k : (D.j)∪ ◦D.k〉

= { D is, by de�nition, a 
ompletely disjoint bag re
tangles

lemma 162 }

〈∪ j,k : D.j=D.k : (D.j)∪ ◦D.k〉

= { Leibniz, nesting }

〈∪k :: 〈∪j : D.j=D.k : (D.k)∪ ◦D.k〉〉

⊆ { by re
exivity of the subset relation,
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〈∀j : D.j=D.k : (D.k)∪ ◦D.k ⊆ (D.k)∪ ◦D.k〉

monotoni
ity, de�nition of supremum }

〈∪k :: (D.k)∪ ◦D.k〉 .

Thus,

∪D ◦ (∪D)∪ ◦∪D

⊆ { above, monotoni
ity, distributivity }

〈∪ j,k :: D.j ◦ (D.k)∪ ◦D.k〉

⊆ { similar 
al
ulation to that above }

〈∪k :: D.k ◦ (D.k)∪ ◦D.k〉

⊆ { (170) }

〈∪k ::D.k〉

= { de�nition }

∪D .

It follows, by de�nition of a difun
tion, that ∪D is a difun
tion.

✷

12 The Diagonal

This se
tion anti
ipates the study of blo
k-ordered relations in se
tion 13. We introdu
e

the notion of the \diagonal" of a relation in se
tion 12.1 and formulate some basi


properties in se
tion 12.2.

In se
tion 11.2, we introdu
ed the notion of a polar 
overing of a relation. Theorem

166 shows how to 
onstru
t a polar 
overing for any given relation but example 167

demonstrates that the 
onstru
tion does not always produ
e a non-redundant 
overing.

In se
tion 12.4, we explore 
onditions under whi
h the diagonal of the relation guarantees

the non-redundan
y of the 
overing.

12.1 Definition and Examples

Straightforwardly from the de�nition of fa
tors, properties of 
onverse and set interse
-

tion,

R is difun
tional ≡ R = R∩ (R\R/R)
∪

.(171)

More generally, we have:
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Lemma 172 For all R , R∩ (R\R/R)∪ is difun
tional.

Proof Let S denote R∩ (R\R/R)∪ . We have to prove that S is difun
tional. That is,

by de�nition,

S ◦S
∪

◦S ⊆ S .

Sin
e the right side is an interse
tion, this is equivalent to

S ◦S
∪

◦S ⊆ R ∧ S ◦S
∪

◦S ⊆ (R\R/R)
∪

.

The �rst is (almost) trivial:

S ◦S
∪
◦S

⊆ { S⊆R , S⊆ (R\R/R)∪ ,


onverse, monotoni
ity }

R ◦R\R/R ◦R

⊆ { 
an
ellation }

R .

In the above 
al
ulation, the tri
k was to repla
e the outer o

urren
es of S on the

left side by R and the middle o

urren
e by (R\R/R)∪ . The repla
ement is done the

opposite way around in the se
ond 
al
ulation.

S ◦S
∪
◦S ⊆ (R\R/R)∪

⇐ { S⊆ (R\R/R)∪ , S⊆R , monotoni
ity and transitivity }

(R\R/R)∪ ◦R
∪
◦ (R\R/R)∪ ⊆ (R\R/R)∪

= { 
onverse }

R\R/R ◦R ◦R\R/R ⊆ R\R/R

= { Galois 
onne
tion }

R ◦R\R/R ◦R ◦R\R/R ◦R ⊆ R

= { 
an
ellation, monotoni
ity and transitivity }

true .

✷

We 
all the relation R∩ (R\R/R)∪ the diagonal of R ; Riguet [Rig51℄ 
alls it the

\di��eren
e" of the relation. (Riguet's de�nition does not use fa
tors but is equivalent.)
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Definition 173 (Diagonal) The diagonal of relation R is the relation R∩ (R\R/R)∪ .

For brevity, R∩ (R\R/R)∪ will be denoted by ∆R .

✷

Many readers will be familiar with the de
omposition of a preorder into a partial

ordering on a set of equivalen
e 
lasses. The diagonal of a preorder T is the equivalen
e

relation T ∩T∪

. More generally:

Example 174 The diagonal of a provisional preorder T is T ∩ T∪

. This is be
ause,

for an arbitrary relation T ,

T ∩ (T\T/T)
∪

= T ∩ T< ◦ (T\T/T)
∪

◦T> .

But, if T is a provisional preorder,

T< ◦ (T\T/T)
∪

◦T> = T
∪

.

(See lemmas 54 and 57.)

✷

Example 175 A parti
ular instan
e of example 174 is if G is the edge relation of a

�nite graph. Then ∆(G∗) is G∗∩ (G∪)∗ , the relation that holds between nodes a and b

if there is a path from a to b and a path from b to a in the graph. Thus ∆(G∗) is the

equivalen
e relation that holds between nodes that are in the same strongly 
onne
ted


omponent of G.

✷

Example 176 In this example, we 
onsider three versions of the less-than relation: the

homogeneous less-than relation on integers, whi
h we denote by <ZZ , the homogeneous

less-than relation on real numbers, whi
h we denote by <IR , and the heterogeneous less-

than relation on integers and real numbers, whi
h we denote by ZZ<IR . Spe
i�
ally, the

relation ZZ<IR relates integer m to real number x when m<x (using the 
onventional

over-loaded notation). We also subs
ript the at-most symbol ≤ in the same way in order

to indi
ate the type of the relation in question.

The diagonal of the less-than relation on integers is the prede
essor relation (i.e. it

relates integer m to integer n exa
tly when n=m+1 ). This is be
ause <ZZ\<ZZ = ≤ZZ ,

and ≤ZZ/<ZZ relates integer m to integer n exa
tly when m≤ZZn+1 (where the sub-

s
ript ZZ indi
ates the type of the ordering). The diagonal is thus fun
tional and inje
-

tive.

The diagonal of the less-than relation on real numbers is the empty relation. This

is be
ause <IR\<IR = ≤IR , ≤IR/<IR = ≤IR and <IR∩≥IR=⊥⊥IR . (Again, the subs
ript

indi
ates the type of the ordering.)
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The diagonal of the heterogeneous less-than relation ZZ<IR relates integer m to real

number x when m<x≤m+1 . This is equivalent to ⌈x⌉=m+1 . The diagonal is thus a

difun
tional relation 
hara
terised by |in the sense of theorem 111| the 
eiling fun
tion

〈x :: ⌈x⌉〉 and the su

essor fun
tion 〈m :: m+1〉 .

We leave the reader to 
he
k the details of this example. See also examples 167 and

217.

✷

The following example introdu
es a general me
hanism for 
onstru
ting illustrative

examples of the 
on
epts introdu
ed later. The example exploits the observation that

∆R is inje
tive if the preorder R\R is anti-symmetri
; that is, ∆R is inje
tive if R\R

is a partial ordering. (Equivalently, ∆R is fun
tional if R/R is a partial ordering.) We

leave the straightforward proof to the reader.

Example 177 Suppose X is a �nite type. We use dummy x to range over elements

of type X . Let S denote a subset of 2X . Let in denote the membership relation of

type X∼S . That is, if S is a subset of S , x◦⊤⊤◦S⊆ in exa
tly when x is an element

of the set S . The relation in\in is the subset relation of type S∼S .

(Conventionally, in is denoted by the symbol \∈ " and one writes x∈S instead of

x◦⊤⊤◦S⊆ in . Also, the relation in\in is 
onventionally denoted by the symbol \⊆ ". That

is, if S and S ′
are both elements of S , S◦⊤⊤◦S ′⊆ in\in exa
tly when S⊆S ′

. Were we

to adopt 
onventional pra
ti
e, the overloading of the notation that o

urs is likely to


ause 
onfusion, so we 
hoose to avoid it.)

The relation in\in is anti-symmetri
. As a 
onsequen
e, ∆in is inje
tive. (Equiva-

lently, (∆in)∪ is fun
tional.) Spe
i�
ally, for all x of type X and S of type S ,

x◦⊤⊤◦S ⊆ ∆in ≡ x◦⊤⊤◦S⊆ in ∧ 〈∀S ′ : x◦⊤⊤◦S ′⊆ in : S◦⊤⊤◦S ′⊆ in\in〉 ,

where dummy S ′
ranges over elements of S . Using 
onventional notation, the right side

of this equation is re
ognised as the de�nition of a minimum, and one might write

x [[∆in]] S ≡ S 〈MINS ′ :x∈S ′ :S ′〉

where the venturi tube \ " indi
ates an equality assuming the well-de�nedness of the

expression on its right side.

Fig. 6 shows a parti
ular instan
e. The set X is the set of numbers from 0 to 3 .

The set S is a subset of 2{0,1,2,3} ; the 
hosen subset and the relation in\in for this 
hoi
e

are depi
ted by the dire
ted graph forming the 
entral portion of �g. 6. The relation ∆in

of type X ∼S is depi
ted by the undire
ted graph whereby the atoms of the relation

are depi
ted as re
tangles. Note that the numbers 0 and 3 are not related by ∆in to

any of the elements of S .

✷
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1 2{0,1} {0,2}

{0,1,3} {0,2,3}

Figure 6: Diagonal of an Instan
e of the Membership Relation

12.2 Basic Properties

Primarily for notational 
onvenien
e, we note a simple property of the diagonal:

Lemma 178

(∆R)
∪

= ∆(R
∪

) .

Proof

(∆R)∪

= { de�nition and distributivity }

R
∪∩R\R/R

= { fa
tors }

R
∪∩ (R∪

\R
∪

/R
∪)∪

= { de�nition }

∆(R∪) .

✷

A 
onsequen
e of lemma 178 is that we 
an write ∆R
∪

without ambiguity. This we

do from now on.

Very straightforwardly, the relation R ◦R
∪

is a per if R is difun
tional. For a difun
-

tional relation R , the relation R ◦R
∪

is the left per domain of R . (Symmetri
ally, R
∪
◦R

is the right per domain of R . See theorem 49, parts (iv) and (vi).) Thus ∆R ◦ (∆R)∪

is the left per domain of the diagonal of R . The following lemma is the basis of the


onstru
tion, in 
ertain 
ases, of an e
onomi
 representation of the diagonal of R and,

hen
e, of R itself.
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Lemma 179 For all relations R ,

(∆R)≺ = (∆R)< ◦R≺ = R≺ ◦ (∆R)< .

Dually,

(∆R)≻ = R≻ ◦ (∆R)> = (∆R)> ◦R≻ .

Proof We prove the �rst equation by mutual in
lusion. First,

(∆R)≺ ⊆ (∆R)< ◦R≺

= { ∆R is difun
tional, theorem 49; de�nition: (28) }

∆R ◦∆R
∪ ⊆ (∆R)< ◦R//R

⇐ { domains and monotoni
ity }

∆R ◦∆R
∪ ⊆ R//R

= { de�nition of R//R , 
onverse and fa
tors }

∆R ◦∆R
∪
◦R ⊆ R

= { ∆R⊆R ; ∆R∪⊆R\R/R and 
an
ellation }

true .

Se
ond,

(∆R)< ◦R≺ ⊆ (∆R)≺

= { ∆R is difun
tional, theorem 49 }

(∆R)< ◦R≺ ⊆ ∆R ◦∆R
∪

⇐ { domains and de�nition: (28) }

∆R ◦∆R
∪
◦R//R ⊆ ∆R ◦∆R

∪

⇐ { monotoni
ity and 
onverse }

R//R ◦∆R ⊆ ∆R

= { de�nition of diagonal }

R//R ◦∆R ⊆ R ∧ R//R ◦∆R ⊆ (R\R/R)∪

⇐ { ∆R⊆R ; 
onverse }

R//R ◦R ⊆ R ∧ ∆R
∪
◦R//R ⊆ R\R/R

= { 
an
ellation; fa
tors }

true ∧ R ◦∆R
∪
◦R//R ◦R ⊆ R
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⇐ { 
an
ellation and ∆R
∪ ⊆R\R/R }

R ◦R\R/R ◦R ⊆ R

= { 
an
ellation }

true .

The remaining three equalities are simple 
onsequen
es of the properties of 
onverse,

pers and 
ore
exives.

✷

The following 
orollary of lemma 179 proves to be 
ru
ial later:

Lemma 180 For all relations R ,

(∆R)≺ = R≺ ≡ (∆R)< = R< .

Dually,

(∆R)≻ = R≻ ≡ (∆R)> = R> .

Proof The proof is by mutual impli
ation:

(∆R)< = R<

⇒ { lemma 179 and Leibniz }

(∆R)≺ = R< ◦R≺

= { dual of (36) }

(∆R)≺ = R≺

⇒ { Leibniz }

((∆R)≺)< = (R≺)<

= { dual of (36) with R :=∆R and R :=R }

(∆R)< = R< .

✷

12.3 Reduction to the Core

In this se
tion our goal is to prove that if J is an index of relation R then ∆J is an

index of ∆R . Instantiating de�nition 100 with J,R :=∆J,∆R the properties we have to

prove are as follows.

(a) ∆J⊆∆R ,
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(b) ∆R ◦∆J
∪
◦∆R = ∆R .

(c) (∆J)< ◦∆R ◦∆R
∪
◦ (∆J)< = (∆J)< ,

(d) (∆J)> ◦∆R
∪
◦∆R ◦ (∆J)> = (∆J)> .

Of these, the hardest to prove is (b). For properties (a), (
) and (d), all we need is

that J is an arbitrary index of R . For property (b), we use the fa
t that an index of

an arbitrary relation R is de�ned to be J◦R◦K where J is an index of R≺
and K is an

index of R≻
.

We begin with the easier properties.

Lemma 181 Suppose J is an index of R . Then

∆J⊆∆R .

Proof

∆J⊆∆R

= { de�nition 173 }

J∩ (J\J/J)∪ ⊆ R∩ (R\R/R)∪

= { domains }

J ∩ J< ◦ (J\J/J)∪ ◦ J> ⊆ R∩ (R\R/R)∪

⇐ { J is an index of R , so J⊆R ; monotoni
ity }

J< ◦ (J\J/J)∪ ◦ J> ⊆ (R\R/R)∪

= { 
onverse }

J> ◦ J\J/J ◦ J< ⊆ R\R/R

= { fa
tors }

R ◦ J> ◦ J\J/J ◦ J< ◦R ⊆ R

= { J is an index of R , de�nition 78(b); per domains }

R≺ ◦ J ◦R≻ ◦ J> ◦ J\J/J ◦ J< ◦R≺ ◦ J ◦R≻ ⊆ R≺ ◦R ◦R≻

⇐ { monotoni
ity }

J ◦R≻ ◦ J> ◦ J\J/J ◦ J< ◦R≺ ◦ J ⊆ R .

Continuing with the left side of the in
lusion:
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J ◦R≻ ◦ J> ◦ J\J/J ◦ J< ◦R≺ ◦ J

= { domains }

J ◦ J> ◦R≻ ◦ J> ◦ J\J/J ◦ J< ◦R≺ ◦ J< ◦ J

= { J is an index of R ; de�nition 78(
) and (d) }

J ◦ J> ◦ J\J/J ◦ J< ◦ J

⊆ { domains and 
an
ellation }

J

⊆ { J is an index of R ; de�nition 78(a) }

R .

✷

Lemma 182 Suppose J is an index of R . Then

(∆J)< ◦ ∆R ◦ ∆R
∪

◦ (∆J)< = (∆J)< .

Dually,

(∆J)> ◦ ∆R
∪

◦ ∆R ◦ (∆J)> = (∆J)> .

Proof

(∆J)< ◦ ∆R ◦ ∆R
∪

◦ (∆J)<

= { ∆R is a difun
tion, theorem 49 }

(∆J)< ◦ (∆R)≺ ◦ (∆J)<

= { lemma 179 (and symmetry) }

(∆J)< ◦ (∆R)< ◦R≺ ◦ (∆R)< ◦ (∆J)<

= { by lemma 181 and monotoni
ity, (∆J)<⊆ (∆R)< }

(∆J)< ◦R≺ ◦ (∆J)<

= { (∆J)<⊆ J< (sin
e ∆J⊆ J ) }

(∆J)< ◦ J< ◦R≺ ◦ J< ◦ (∆J)<

= { J is an index of R , de�nition 78(
) }

(∆J)< ◦ J< ◦ (∆J)<

= { (∆J)<⊆ J< (sin
e ∆J⊆ J ) }

(∆J)< .
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✷

In order to prove (b), we prove a more general theorem on 
ores. First, a lemma:

Lemma 183 Suppose R , C , λ and ρ are as in de�nition 90. Then

R> ◦R\R/R ◦R< = ρ
∪

◦C\C/C ◦λ .

Proof

R> ◦R\R/R ◦R<

= { (36) }

(R≻)> ◦R\R/R ◦ (R≺)<

= { R≺ = λ
∪
◦λ , R≻ = ρ

∪
◦ρ , and domains }

ρ> ◦R\R/R ◦λ>

= { lemma 92 }

ρ> ◦ (λ∪
◦C ◦ρ)\(λ∪

◦C ◦ρ)/(λ∪
◦C ◦ρ) ◦λ>

= { lemma 44 with f,g,U,V,W :=ρ,λ,C,C,C }

ρ
∪
◦ (λ< ◦C)\C/(C ◦ρ<) ◦λ

= { C = λ ◦R ◦ρ
∪

; so λ< ◦C = C = C ◦ρ< }

ρ
∪
◦C\C/C ◦λ .

✷

Theorem 184 Suppose R , C , λ and ρ are as in de�nition 90. Then

∆R = λ
∪

◦∆C ◦ρ ∧ ∆C = λ ◦∆R ◦ρ
∪

.

In words, if λ and ρ witness that C is a 
ore of R , then λ and ρ witness that ∆C is

a 
ore of ∆R .

Proof

∆R

= { de�nition }

R∩ (R\R/R)∪

= { domains and 
onverse }

R ∩ (R> ◦R\R/R ◦R<)∪
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= { lemma 183 }

R ∩ (ρ∪
◦C\C/C ◦λ)∪

= { lemma 92 }

λ
∪
◦C ◦ρ ∩ (ρ∪

◦C\C/C ◦λ)∪

= { distributivity of 
onverse and fun
tional relations }

λ
∪
◦ (C∩ (C\C/C)∪) ◦ρ

= { de�nition 173 }

λ
∪
◦∆C ◦ρ .

Hen
e

λ ◦∆R ◦ρ
∪

= { above }

λ ◦λ
∪
◦∆C ◦ρ ◦ρ

∪

= { λ and ρ are fun
tional }

λ< ◦∆C ◦ρ<

= { ∆C⊆C ; so (∆C)< ⊆ C<
and (∆C)> ⊆ C>

lemma 94 and domains }

∆C .

✷

We are now in a position to prove the �nal property (b) above.

Lemma 185 Suppose J is an index of R . Then

∆R ◦∆J
∪
◦∆R = ∆R .

Proof We begin by noting that theorem 184 applies with C instantiated to J and λ

and ρ de�ned by λ = J< ◦R≺
and ρ = J> ◦R≻

. This is be
ause J is a 
ore of R : see

theorem 91. So

∆R ◦∆J
∪
◦∆R

= { theorem 184 with C,λ,ρ := J , J< ◦R≺ , J> ◦R≻ }

∆R ◦ (λ ◦ ∆R ◦ ρ
∪)∪ ◦ ∆R

= { 
onverse }

∆R ◦ ρ ◦ ∆R
∪

◦ λ
∪

◦ ∆R
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= { de�nition of ρ and λ , (J< ◦R≺)∪ = R≺ ◦ J< }

∆R ◦ J> ◦R≻ ◦ ∆R
∪

◦ R≺ ◦ J< ◦ ∆R

= { per domains }

∆R ◦ (∆R)≻ ◦ J> ◦R≻ ◦ ∆R
∪

◦ R≺ ◦ J< ◦ (∆R)≺ ◦ ∆R

= { lemma 179 }

∆R ◦ (∆R)> ◦R≻ ◦ J> ◦R≻ ◦ ∆R
∪

◦ R≺ ◦ J< ◦R≺ ◦ (∆R)< ◦ ∆R

= { lemma 87 }

∆R ◦ (∆R)> ◦R≻ ◦ ∆R
∪

◦ R≺ ◦ (∆R)< ◦ ∆R

= { lemma 179 }

∆R ◦ (∆R)≻ ◦ ∆R
∪

◦ (∆R)≺ ◦ ∆R

= { per domains }

∆R ◦ ∆R
∪

◦ ∆R

= { ∆R is difun
tional, theorem 49 }

∆R .

✷

Putting all the lemmas together, we have:

Theorem 186 Suppose J is an index of R . Then ∆J is an index of ∆R .

Proof Lemmas 181, 182 and 185 
ombined with de�nition 100 (instantiated with

J,R :=∆J,∆R ).

✷

We 
on
lude with a beautiful theorem.

Theorem 187 Suppose J is an index of R . Then

∆J = J< ◦∆R ◦ J> ∧ ∆R = R≺ ◦∆J ◦R≻ .

Proof We �rst prove, by mutual impli
ation, that the two equations are equivalent.

Assume that

∆R = R≺ ◦∆J ◦R≻ .

Then,

J< ◦∆R ◦ J>

= { assumption }
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J< ◦R≺ ◦∆J ◦R≻ ◦ J>

= { ∆J⊆ J , so (∆J)<⊆ J< and (∆J)>⊆ J> ; domains }

J< ◦R≺ ◦ J< ◦∆J ◦ J> ◦R≻ ◦ J>

= { J is an index of R , de�nition 78(
) and (d) }

J< ◦∆J ◦ J>

= { reverse of middle step }

∆J .

Conversely, assume

∆J = J< ◦∆R ◦ J> .

Then,

R≺ ◦∆J ◦R≻

= { assumption }

R≺ ◦ J< ◦∆R ◦ J> ◦R≻

= { lemma 179 }

R≺ ◦ J< ◦ (∆R)< ◦R≺ ◦∆R ◦R≻ ◦ (∆R)> ◦ J> ◦R≻

= { lemma 181 and domains }

R≺ ◦ J< ◦R≺ ◦∆R ◦R≻ ◦ J> ◦R≻

= { de�nition 78(
) and 78(d) }

R≺ ◦∆R ◦R≻

= { lemma 179 and domains }

∆R .

Combining the two 
al
ulations, the two equations are equivalent and, therefore, it suf-

�
es to prove just one of them

4

. We prove the se
ond by mutual in
lusion:

∆R

= { ∆R is difun
tional }

∆R ◦∆R
∪
◦∆R

4

It is not ne
essary to prove the equivalen
e of the two statements in order to prove the theorem; we


ould have omitted the se
ond 
al
ulation. But some redundan
y in proofs enhan
es their reliability.
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= { lemma 185, 
onverse }

∆R ◦∆R
∪
◦∆J ◦∆R

∪
◦∆R

= { ∆R is difun
tional, theorem 49(iv) and (vi) }

(∆R)≺ ◦∆J ◦ (∆R)≻

= { lemma 179 }

(∆R)< ◦R≺ ◦∆J ◦R≻ ◦ (∆R)>

⊆ { domains are 
ore
exive }

R≺ ◦∆J ◦R≻

⊆ { lemma 181 and monotoni
ity }

R≺ ◦∆R ◦R≻

= { lemma 179, domains }

∆R .

✷

12.4 Non-Redundant Polar Coverings

We have shown in theorem 166 how to 
onstru
t an inje
tive polar 
overing of a given

relation R . Now we 
onsider 
ir
umstan
es in whi
h the 
overing is non-redundant. In

the 
ase that R is difun
tional, it is straightforward to show that the 
overing 
onstru
ted

in theorem 166 is non-redundant and is its own de�niens. (We omit the proof be
ause

it is a spe
ial 
ase of theorem 188.) This suggests that, in general, a 
overing of the

diagonal of a relation R 
an be used as the de�niens of a 
overing of R . This, however,

is not the 
ase: see example 195. It is true so long as the diagonal is suÆ
iently large.

Spe
i�
ally:

Theorem 188 Suppose R is a relation and suppose (∆R)>=R>
. Suppose J is an

index of R≻
. Then the fun
tion D de�ned by

D = 〈b : b⊆ J : ∆R ◦b ◦∆R\∆R〉

is an inje
tive, polar 
overing of ∆R . Moreover, if (∆R)>=R>
, for all points b and b ′

su
h that b⊆ J and b ′⊆ J ,

b 6= b ′ ≡ (∆R ◦b ◦∆R\∆R)< ◦ (∆R ◦b ′
◦∆R\∆R)< = ⊥⊥

and

b 6= b ′ ≡ (∆R ◦b ◦∆R\∆R)> ◦ (∆R ◦b ′
◦∆R\∆R)> = ⊥⊥ .
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It follows that, if (∆R)>=R>
, D is a 
ompletely disjoint, inje
tive, polar 
overing of

∆R .

Proof That D is an inje
tive 
overing of ∆R is an appli
ation of theorem 166 with

R :=∆R : it suÆ
es to note that the assumption (∆R)>=R>
is equivalent to the assump-

tion (∆R)≻=R≻
, by lemma 180, and so J is an index of (∆R)≻ .

We use lemma 162 to show that D is 
ompletely disjoint. First, the elements are

non-empty be
ause D is a polar 
overing. That is,

〈∀b : b⊆ J : ∆R ◦b ◦∆R\∆R 6= ⊥⊥〉 .(189)

For the se
ond proof obligation (see lemma 162), assume that b 6= b ′
. We begin by

noting that we 
an exploit (52) to rewrite the de�nition of D . Spe
i�
ally,

∆R ◦b ◦∆R\∆R

= { b⊆ J⊆ (∆R)> }

∆R ◦b ◦ (∆R)> ◦∆R\∆R

= { ∆R is difun
tional, (52) }

∆R ◦b ◦ (∆R)≻ .

That is,

D = 〈b : b⊆ J : ∆R ◦b ◦ (∆R)≻〉 .(190)

We use this de�ntion of D to prove that its elements are 
ompletely disjoint. First, the

left domains. We have, for all points b and b ′
su
h that b⊆ J and b ′⊆ J ,

∆R ◦b ◦ (∆R)≻ ◦ (∆R ◦b ′
◦ (∆R)≻)∪

= { 
onverse, (∆R)≻ is a per, b ′
is 
ore
exive }

∆R ◦b ◦ (∆R)≻ ◦b ′
◦∆R

∪

= { b⊆ J and b ′⊆ J , b , b ′
and J are 
ore
exive }

∆R ◦b ◦ J ◦ (∆R)≻ ◦ J ◦b ′
◦∆R

∪

= { J is an index of (∆R)≻ , lemma 104 with R :=(∆R)≻ }

∆R ◦b ◦ J ◦b ′
◦∆R

∪

= { b⊆ J and b ′⊆ J , b , b ′
and J are 
ore
exive }

∆R ◦b ◦b ′
◦∆R

∪

= { assumption: b 6= b ′
, (127) }

⊥⊥ .



116

That is,

〈

∀b,b ′ : b⊆ J ∧ b 6=b ′ : (∆R ◦b ◦ (∆R)≻) ◦ (∆R ◦b ′
◦ (∆R)≻)

∪

= ⊥⊥
〉

.(191)

The 
al
ulation for the right domains is similar. We have:

(∆R ◦b ◦ (∆R)≻)∪ ◦ (∆R ◦b ′
◦ (∆R)≻)

= { 
onverse }

(∆R)≻ ◦b ◦∆R
∪
◦∆R ◦b ′

◦ (∆R)≻

= { theorem 49 }

(∆R)≻ ◦b ◦ (∆R)≻ ◦b ′
◦ (∆R)≻

= { b ◦ (∆R)≻ ◦b ′ = b ◦b ′
(see last 
al
ulation) }

(∆R)≻ ◦b ◦b ′
◦ (∆R)≻

= { assumption: b 6=b ′
, (127) }

⊥⊥ .

That is, applying lemma 161,

〈

∀b,b ′ : b⊆ J ∧ b 6=b ′ : (∆R ◦b ◦ (∆R)≻)
∪

◦ (∆R ◦b ′
◦ (∆R)≻) = ⊥⊥

〉

.(192)

The 
ombination of (189), (191) and (192) together with lemma 162 establishes that the

elements of D are 
ompletely disjoint.

✷

It is now easy to see that D is a de�niens of the inje
tive polar 
overing of R de�ned

in theorem 166:

Theorem 193 Suppose R is a relation su
h that (∆R)>=R>
. Suppose also that J is

a 
ore
exive index of R≻
. Then the indexed bag R of re
tangles de�ned by

R = 〈b : b⊆ J : R ◦b ◦R\R〉

is a non-redundant, inje
tive, polar 
overing of R . (In parti
ular, R is an indexed set.)

A de�niens of the 
overing is the indexed set D de�ned by

D = 〈b : b⊆ J : ∆R ◦b ◦∆R\∆R〉 .

Moreover, by theorem 188, D is a 
overing of ∆R .

Proof Theorem 166 shows that R is an inje
tive, polar 
overing of R. It remains to

show that it is non-redundant as witnessed by the fun
tion D .

We must �rst prove that, for all points b su
h that b⊆ J , D.b⊆R.b . To this end,

we use (190) as de�nition of D . Assume b is a point su
h that b⊆ J . Then
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D.b⊆R.b

= { (190) and de�nition of R }

∆R ◦b ◦ (∆R)≻ ⊆ R ◦b ◦R\R

⇐ { ∆R⊆R , monotoni
ity }

(∆R)≻⊆R\R

= { fa
tors }

R ◦ (∆R)≻ ⊆ R

= { assumption: (∆R)>=R>
; so, by lemma 180, (∆R)≻=R≻ }

R ◦R≻ ⊆ R

= { per domains }

true .

That the elements of D form a 
ompletely disjoint set of re
tangles was shown in theorem

188. It remains to show that D \de�nes" R . We have, for all points b and b ′
su
h

that b⊆ J and b ′⊆ J ,

R.b = R.b ′

= { R is inje
tive (theorem 166) }

b = b ′

= { D is inje
tive (theorem 188) }

D.b = D.b ′ .

✷

Example 194

Fig. 7 pi
tures a small example of the theorems in this se
tion. Fig. 7(a) depi
ts a

(
ore) relation R of type {α,β,γ}∼{A,B} ; other parts of the �gure depi
t the result of

applying di�erent fun
tions to the relation R . (Heterogeneous relations are depi
ted

as bipartite graphs whereas homogeneous relations are depi
ted as dire
ted graphs.)

Spe
i�
ally, these are as follows.

(a) R , (b) ∆R ,

(
) R\R , (d) R/R ,

(e) R ◦A ◦R\R , (f) R ◦B ◦R\R ,
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α β γ

BA

α γ

BA

βα β γ

BA

α β γ

BA

α β γ

BA

A B α β γ

α β γ

BA

α β γ

BA

α β γ

BA

(a) (b)

(e) (f)

(g) (h)

(i) (j) (k)

(c) (d)

α β γ

BA

Figure 7: A Small Example
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(g) ∆R ◦A ◦R≻
, (h) ∆R ◦B ◦R≻

,

(i) R/R ◦α ◦R , (j) R/R ◦β ◦R , (k) R/R ◦γ ◦R .

We have 
hosen to depi
t the relation as a graph (rather than a boolean matrix)

be
ause |for very small examples su
h as this| it is mu
h easier for a human being to

perform the ne
essary 
al
ulations by manipulating the graphs. For example, 
omputing

the 
omposition of two relations is exe
uted by 
hasing edges.

The example has been 
hosen deliberately to illustrate a number of aspe
ts simulta-

neously. Note parti
ularly that, for the relation depi
ted, (∆R)>=R>
but (∆R)< 6=R<

.

This means that theorem 193 is appli
able but its dual is not.

Considering the appli
ation of theorem 166, note that the 
ombination of �gs. 7(e)

and 7(f) 
overs the relation R ; also the relation depi
ted by 7(g) uniquely identi�es

the re
tangle R ◦A ◦R\R shown in �g. 7(e) whilst 7(h) uniquely identi�es the re
tangle

R ◦A ◦R\R shown in �g. 7(f). In 
ontrast, �gs. 7(i), (j) and (k) depi
t the relations

R/R ◦α ◦R , R/R ◦β ◦R and R/R ◦γ ◦R but none of these is identi�ed by any subre
tangle:

the re
tangles depi
ted by �gs. 7(i) and (k) are disjoint but both have a non-empty

interse
tion with the re
tangle depi
ted by �g. 7(j).

✷

Example 194 is an example of a relation R su
h that (∆R)>=R>
but (∆R)< 6=R<

. It

is thus the 
ase that, for this example,

R = 〈∪b : b⊆ (∆R)> : R ◦b ◦R\R〉 .

(Note the range restri
tion on the dummy b .) Curiously, in spite of the fa
t that

(∆R)< 6=R<
, it is also the 
ase that

R = 〈∪a : a⊆ (∆R)< : R/R ◦a ◦R〉 .

(Again, note the range restri
tion on the dummy a . To 
he
k the validity of the equation,

it suÆ
es to observe that the relation R is the union of the relations depi
ted by �gs. 7(i)

and (k).) This is also a non-redundant polar 
overing of R . One might thus 
onje
ture

that, in all 
ases, the diagonal ∆R is the key to �nding a non-redundant polar 
overing

of a given relation R . However, this is not always the 
ase, as eviden
ed by the following

example.

Example 195

The top diagram of �g. 8 pi
tures a relation R of type {A,B,C}∼{α,β,γ} su
h that

∆R is the empty relation. The example is a simpli�
ation of the example on p.161 of

[KGJ00℄.
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γ

B C
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β

A

γ

B C

(a)  Relation 

(b) Non−redundant covering

α β

A

(c) A Definiens

B

α β

A

γ

C

Figure 8: Empty Diagonal and Non-Redundant Covering

The three 
omponents of the polar 
overing predi
ted by theorem 166 are depi
ted

in the se
ond row. (The index set of the 
overing is {α,β,γ} .) Note that the 
overing

is non-redundant: the third row pi
tures a fun
tion that satis�es the de�nition of a

de�niens of the 
overing. This 
ontradi
ts [KGJ00, theorem 1,p.159℄: ea
h of the edges

in this third row is what [KGJ00℄ 
alls an \isolated point" in a \maximal re
tangle" but

none is a \point" in the diagonal.

✷

13 Block-Ordered Relations

In general, dividing a subset of a set A into blo
ks is formulated by spe
ifying a fun
-

tional relation f , say, with sour
e

5

the set A ; elements a0 and a1 are in the same

blo
k equivales f.a0 and f.a1 are both de�ned and f.a0= f.a1 . In mathemati
al ter-

minology, a fun
tional relation f de�nes the partial equivalen
e relation f
∪
◦ f and the

\blo
ks" are the equivalen
e 
lasses of f
∪
◦ f . (Partiality means that some elements may

not be in an equivalen
e 
lass.)

5

In the terminology we use, a relation of type A∼B has target A and sour
e B .
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Given fun
tional relations f and g with sour
es A and B , respe
tively, and equal

left domains, relation R of type A∼B is said to be blo
k-stru
tured by f and g if there

is a relation S su
h that R = f∪ ◦S ◦g . Informally, whether or not a and b are related

by R depends entirely on the \blo
k" (f.a , g.b) to whi
h they belong. Note that it is

not required that f and g be total fun
tions: it suÆ
es that f>=R<
and g>=R>

. The

type of S is C∼C where C in
ludes {a: a ◦ f> = a: f.a} (equally {b: b ◦ f> = b: g.b} ).

Definition 196 (Block-Ordered Relation) Suppose T is a relation of type C∼C ,

f is a relation of type C∼A and g is a relation of type C∼B . Suppose further that T

is a provisional ordering, i.e. that

T ∩T
∪

⊆ I ∧ T = (T ∩T
∪

) ◦T ◦ (T ∩ T
∪

) ∧ T ◦T ⊆ T .(197)

Suppose also that f and g are fun
tional and onto the domain of T . That is, suppose

f ◦ f
∪

= f< = T ∩T
∪

= g< = g ◦g
∪

.(198)

Then we say that the relation f
∪
◦ T ◦g is a blo
k-ordered relation. A relation R of

type A∼B is said to be blo
k-ordered by f , g and T if R = f∪ ◦T ◦g and f
∪
◦T ◦g is

a blo
k-ordered relation.

✷

The ar
hetypi
al example of a blo
k-ordered relation is a preorder. Informally, if R

is a preorder, its symmetri
 
losure R∩R∪

is an equivalen
e relation, and the relation

R de�nes a partial ordering on the equivalen
e 
lasses. Equivalently, if a representative

element is 
hosen for ea
h equivalen
e 
lass, the relation R is a partial ordering on the

representatives. Theorem 201 makes this pre
ise.

Assume that T is a provisional preorder. That is, by de�nition 53 and lemma 57,

T< = T> ∧ T< ⊆ T ∧ T> ⊆ T ∧ T ◦T ⊆ T .(199)

Also, by lemma 59,

T ∩T
∪

= T≺ = T≻ .(200)

Theorem 201 Suppose T is a provisional preorder and suppose J is a (
ore
exive)

index of T≺
. Then J◦T ◦J is an index of T and is a provisional ordering. Hen
e, T is a

blo
k-ordered relation.

Proof That J◦T ◦J is an index of T is the 
ombination of (200) and theorem 107. So,

it remains to show that J◦T ◦J is a provisional ordering. That is, we must show that

J◦T ◦J ∩ (J◦T ◦J)∪ ⊆ I .
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J◦T ◦J ∩ (J◦T ◦J)∪

= { J is 
ore
exive, distributivity }

J◦(T ∩T∪)◦J

⊆ { (200) }

J ◦T≺ ◦ J

= { J is an index of T≺
, de�nition 105(b) with P :=T≺ }

J

⊆ { J is 
ore
exive }

I .

✷

Identifying a blo
k-ordering of a relation |if it exists| is important for eÆ
ien
y.

Although a relation is de�ned to be a set of pairs, relations |even relations on �nite

sets| are rarely stored as su
h; instead some base set of pairs is stored and an algo-

rithm used to generate, on demand, additional information about the relation. This is

parti
ularly so of ordering relations. For example, a test m<n on integers m and n

in a 
omputer program is never implemented as a table lookup; instead an algorithm

is used to infer from the basi
 relations 0<1 together with the internal representation

of m and n what the value of the test is. In the 
ase of blo
k-stru
tured relations,

fun
tional relations f and g de�ne partial equivalen
e relations f
∪
◦ f and g

∪
◦g on

their respe
tive sour
es. (The relations f
∪
◦ f and g

∪
◦g are partial be
ause f and g are

not required to be total.) Combining the fun
tional relations with an ordering relation

on their (
ommon) target is an e�e
tive way of implementing a relation (assuming the

ordering relation is also implemented e�e
tively).

Example 202 Suppose G is the edge relation of a �nite graph. The relation G∗
is, of


ourse, a preorder and so is blo
k-ordered. The blo
k-ordering of G∗
given by theorem

201 is, however, not very useful. For pra
ti
al purposes a blo
k-ordering 
onstru
ted

from G (rather than G∗
) is preferable. Here we outline how this is done.

Re
all from example 175, that the diagonal ∆(G∗) is the relation G∗∩ (G∪)∗ and that

this is an equivalen
e relation on the nodes of G , whereby the equivalen
e 
lasses are

the strongly 
onne
ted 
omponents of G . Let N denote the nodes of G and C denote

the set of strongly 
onne
ted 
omponents of G. By theorem 109, there is a fun
tion sc

of type C←N su
h that

G∗∩ (G
∪

)∗ = sc
∪

◦ sc .(203)

The relation A de�ned by

sc ◦G ◦ sc
∪

∩ ¬IC
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is a homogeneous relation on the strongly 
onne
ted 
omponents of G , i.e. a relation of

type C∼C . Informally, it is a graph obtained from the graph G by 
oales
ing the nodes

in a strongly 
onne
ted 
omponent of G into a single node whilst retaining the edges

of G that 
onne
t nodes in distin
t strongly 
onne
ted 
omponents

6

. A fundamental

theorem is that

G∗ = sc
∪

◦A∗
◦ sc .(204)

Moreover, A is a
y
li
. That is,

IC ∩ A+ = ⊥⊥ .(205)

(See [BDGv22, Ba
22℄ for the details of the proof of (204) and (205). In fa
t the theorem

is valid for all relations G ; �niteness is not required.)

The relation A∗
is, of 
ourse, transitive. It is also re
exive; 
ombined with its

a
y
li
ity, it follows that

A∗∩ (A∗)
∪

= IC .(206)

That is, A∗
is a (total) provisional ordering on C. The 
on
lusion is that G∗

is blo
k-

ordered by sc , sc and A∗
.

Informally, a �nite graph 
an always be de
omposed into its strongly 
onne
ted 
om-

ponents together with an a
y
li
 graph 
onne
ting the 
omponents.

Although the informal interpretation of this theorem is well-known, the formal proof

is non-trivial. Although not formulated in the same way, it is essentially the \transitive

redu
tion" of an arbitrary (not ne
essarily a
y
li
) graph formulated by Aho, Garey and

Ullman [AGU72, Theorem 2℄.

The de
omposition (204) is (impli
itly) exploited when 
omputing the inverse A−1

of a real matrix A in order to minimise storage requirements: using an elimination te
h-

nique, a so-
alled \produ
t form" is 
omputed for ea
h strongly 
onne
ted 
omponent,

whilst the pro
ess of \forward substitution" is applied to the a
y
li
-graph stru
ture.

✷

It is important to note the very stri
t requirement (198) on the fun
tionals f and g .

Were this requirement to be omitted (retaining only that f and g are fun
tional relations

into |not onto| the domain of T ), there would be no guarantee of non-redundan
y.

As we shall see, our de�nition of blo
k-ordering does guarantee the existen
e of a non-

redundant polar 
overing (theorem 228) but not vi
e-versa (
orollary 231). This suggests

that the requirement may be too strong.

Theorem 207 makes pre
ise the statement that blo
k orderings |where they exist|

are unique \up to isomorphism".

6

Although we don't go into details, for any fun
tion f of appropriate type, the graph f ◦G ◦ f
∪

is

\pathwise homomorphi
" [M
N67℄ to G .
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Theorem 207 Suppose T is a provisional ordering. That is, suppose

T ∩T
∪

⊆ I ∧ T = (T ∩T
∪

) ◦T ◦ (T ∩ T
∪

) ∧ T ◦T ⊆ T .

Suppose also that f and g are fun
tional and onto the domain of T . That is, suppose

f ◦ f
∪

= f< = T ∩T
∪

= g< = g ◦g
∪

.

Suppose further

7

that S , h and k satisfy the same properties as T , f and g (respe
-

tively) and that

f
∪

◦T ◦g = h
∪

◦S ◦k .(208)

Then

f>=h> ∧ g>=k> ,(209)

f
∪

◦g = h
∪

◦k ,(210)

f
∪

◦T
∪

◦g = h
∪

◦S
∪

◦k , and(211)

f ◦h
∪

= g ◦k
∪

.(212)

Also, letting φ denote f ◦h
∪

(equally, by (212), g ◦k
∪

),

φ ◦φ
∪

= T ∩ T
∪

∧ φ
∪

◦φ = S∩S
∪

∧ φ◦T =S◦φ .(213)

In words, φ is an order isomorphism of the domains of T and S .

Proof In 
ombination with the assumption (208), properties (209), (211) and (210) are

immediate from (222), (223) and (224), respe
tively.

Proof of (212) is a step on the way to proving (213). From symmetry 
onsiderations,

it is an obvious �rst step.

f ◦h
∪

= { assumption: k ◦k
∪ = h< }

f ◦h
∪
◦k ◦k

∪

= { (210) }

f ◦ f
∪
◦g ◦k

∪

= { assumption: f ◦ f
∪ = g< }

g ◦k
∪

.

7

The types of T and S may be di�erent. The types of f and h , and of g and k will then also be

di�erent. As in lemma 221, the requirement is that the types are 
ompatible with the type restri
tions on

the operators in all assumed properties. The symbol \ I " in (213) is overloaded: if the type of T is A∼A

and the type of S is B∼B , φ ◦φ
∪

has type A∼A and φ
∪

◦φ has type B∼B .
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Now,

φ ◦φ
∪

= { de�nition of φ , 
onverse }

f ◦h
∪
◦h ◦ f

∪

= { (212) }

g ◦k∪
◦h ◦ f∪

= { (210) and 
onverse }

g ◦g
∪
◦ f ◦ f

∪

= { assumption: f ◦ f
∪ = T ∩T∪ = g ◦g

∪

}

T ∩T∪

.

Symmetri
ally, φ
∪
◦φ = T ∩ T∪

. Finally,

T ◦φ

= { de�nition of φ }

T ◦ f ◦h
∪

= { assumptions: f ◦ f
∪ = T ∩ T∪ = g ◦g

∪

T = (T ∩T∪) ◦T ◦ (T ∩ T∪) }

f ◦ f
∪
◦T ◦g ◦g

∪
◦ f ◦h

∪

= { assumption: f
∪
◦T ◦g = h

∪
◦S ◦k , (210) and 
onverse }

f ◦h
∪
◦S ◦k ◦k

∪
◦h ◦h

∪

= { assumption: h ◦h
∪ = S∩S∪ = k ◦k

∪

}

f ◦h
∪
◦S

= { de�nition of φ }

φ◦S .

✷

13.1 Pair Algebras and Galois Connections

In order to �nd lots of examples of blo
k-ordered relations one need look no further than

the theory of Galois 
onne
tions (whi
h are, of 
ourse, ubiquitous). In this se
tion, we

brie
y review the notion of a \pair algebra" |due to Hartmanis and Stearns [HS64,

HS66℄| and its relation to Galois 
onne
tions.
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Hartmanis and Stearns studied a parti
ular pra
ti
al problem: the so-
alled \state

assignment problem". This is the problem of how to en
ode the states and inputs of a

sequential ma
hine in su
h a way that state transitions 
an be implemented e
onomi
ally

using logi
 
ir
uits. However, as they made 
lear in the prefa
e of their book [HS66℄,

their 
ontribution was to \information s
ien
e" in general:

It should be stressed, however, that although many stru
ture theory results

des
ribe possible physi
al realizations of ma
hines, the theory itself is in-

dependent of the parti
ular physi
al 
omponents of te
hnology used in the

realization.

. . .

The mathemati
al foundations of this stru
ture theory rest on an algebraiza-

tion of the 
on
ept of \information" in a ma
hine and supply the algebrai


formalism ne
essary to study problems about the 
ow of this information.

Hartmanis and Stearns limited their analysis to �nite, 
omplete posets, and their

analysis was less general than is possible. This work was extended in [Ba
98℄ to non-

�nite posets and the 
urrent se
tion is a short extra
t.

A Galois 
onne
tion involves two posets (A,⊑) and (B ,� ) and two fun
tions,

F∈A←B and G∈B←A . These four 
omponents together form a Galois 
onne
tion

i� for all b∈B and a∈A

F.b⊑a ≡ b�G.a .(214)

We refer to F as the lower adjoint and to G as the upper adjoint.

A Galois 
onne
tion is thus a 
onne
tion between two fun
tions between posets.

Typi
al a

ounts of the properties of Galois 
onne
tions (for e.g. [GHK

+
80℄) fo
us on

the properties of these fun
tions. For example, given a fun
tion F , one may ask whether

F is a lower adjoint in a Galois 
onne
tion. The question posed by Hartmanis and Stearns

was, however, rather di�erent.

To motivate their question, note that the statement F.b⊑a de�nes a relation be-

tween B and A . So too does b�G.a . The existen
e of a Galois 
onne
tion states

that these two relations are equal. A natural question is therefore: under whi
h 
ondi-

tions does an arbitrary (binary) relation between two posets de�ne a Galois 
onne
tion

between the sets?

Exploring the question in more detail leads to two separate questions. The �rst is:

suppose R is a relation between posets (A,⊑) and (B ,� ). What is a ne
essary and

suÆ
ient 
ondition that there exist a fun
tion F su
h that

(a, b)∈R ≡ F.b⊑a ?
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The se
ond is the dual of the �rst: given relation R , what is a ne
essary and suÆ
ient


ondition that there exist a fun
tion G su
h that

(a, b)∈R ≡ b�G.a ?

The 
onjun
tion of these two 
onditions is a ne
essary and suÆ
ient 
ondition for a

relation R to de�ne a Galois 
onne
tion. Su
h a relation is 
alled a pair algebra .

Example 215 It is easy to demonstrate that the two questions are separate. To

this end, �g. 9 depi
ts two posets and a relation between them. The posets are {α,β}

and {A,B} ; both are ordered lexi
ographi
ally: the re
exive-transitive redu
tion of the

lexi
ographi
 ordering is depi
ted by the dire
ted edges. The relation of type {α,β}∼{A,B}

is depi
ted by the undire
ted edges.

α

β

A

B

Figure 9: A Relation on Two Posets

Let the relation be denoted by R . De�ne the fun
tion F of type {α,β}← {A,B} by

F.B=α and F.A=β . Then it is easy to 
he
k that. for a∈{α,β} and b∈{A,B} ,

(a, b)∈R ≡ F.b⊑a .

(There are just four 
ases to be 
onsidered.) On the other hand, there is no fun
tion G

of type {A,B}← {α,β} su
h that

(a, b)∈R ≡ b�G.a .

To 
he
k that this is indeed the 
ase, it suÆ
es to 
he
k that the assignment G.A=α

is invalid (be
ause α⊑α but (α,A) 6∈R ) and the assignment G.A=β is also invalid

(be
ause α⊑β but (α,A) 6∈R ).

✷

Example 216 A less arti�
ial, general way to demonstrate that the two questions

are separate is to 
onsider the membership relation. Spe
i�
ally, suppose S is a set.

Then the membership relation, denoted as usual by the |overloaded| symbol \∈ ", is
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a heterogeneous relation of type S ∼2S (where 2S denotes the type of subsets of S ).

Now, for all x of type S and X of type 2S ,

x∈X ≡ {x}⊆X .

The right side of this equation has the form F.b⊑a where F is the fun
tion that maps

an element into a singleton set and the ordering is the subset ordering. Also, its left side

has the form (a, b)∈R , where the relation R is the membership relation and a and

b are x and X , respe
tively. (This is where the overloading of notation 
an be
ome


onfusing, for whi
h our apologies!) It is, however, not possible to express x∈X in the

form x�G.X (ex
ept in the trivial 
ases where S has 
ardinality at most one). We

leave the proof to the reader.

✷

Example 217 An example of a Galois 
onne
tion is the de�nition of the 
eiling

fun
tion on real numbers: for all real numbers x , ⌈x⌉ is an integer su
h that, for all

integers m ,

x≤m ≡ ⌈x⌉≤m .

To properly �t the de�nition of a Galois 
onne
tion, it is ne
essary to make expli
it

the impli
it 
oer
ion from integers to real numbers in the left side of this equation.

Spe
i�
ally, we have, for all real numbers x and integers m ,

x ≤IR real.m ≡ ⌈x⌉ ≤ZZ m

where real denotes the fun
tion that \
oer
es" an integer to a real, and ≤IR and ≤ZZ

denote the (homogeneous) at-most relations on, respe
tively, real numbers and integers.

If, however, we 
onsider the symbol \≤ " on the left side of the equation to denote the

heterogeneous at-most relation of type IR∼ZZ , the fa
t that

x≤m ≡ ⌈x⌉ ≤ZZ m

gives a representation of the (heterogeneous) \≤ " relation of type IR∼ZZ as a blo
k-

ordered relation: referring to de�nition 196, the provisional ordering is ≤ZZ , f is the


eiling fun
tion and g is the identity fun
tion.

More interesting is if we take the 
ontrapositive. We have, for all real numbers x and

integers m ,

m<x ≡ m≤⌈x⌉−1 .

On the right of this equation is the (homogeneous) at-most relation on integers. On the

left is the (heterogeneous) less-than relation of type ZZ∼ IR . The equation demonstrates
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that this relation is blo
k-ordered; the \blo
ks" of real numbers being all the numbers

that have the same 
eiling. (The fun
tional f is the identity fun
tion, the fun
tional g

maps real number x to ⌈x⌉−1 and the provisional ordering is the ordering ≤ZZ .) The

example is interesting be
ause the (homogeneous) less-than relation on real numbers is

not blo
k-ordered. This is be
ause its diagonal is empty. See [Ba
21℄ for details.

✷

Returning to the dis
ussion immediately pre
eding example 215, the two separate

questions are ea
h of interest in their own right: a positive answer to either question

may predi
t that a given relation has a blo
k-ordering of a spe
i�
 form: in the 
ase

of the �rst question, where the fun
tional g in de�nition 196 is the identity fun
tion,

and, in the 
ase of the se
ond question, where the fun
tional f in de�nition 196 is the

identity fun
tion. In both 
ases, a further step is to 
he
k the requirement on f and g :

in the �rst 
ase, one has to 
he
k that the fun
tion F is surje
tive and in the se
ond 
ase

that the fun
tion G is surje
tive. (A Galois 
onne
tion is said to be \perfe
t" if both F

and G are surje
tive.) For example, the fa
t that

x≤m ≡ x ≤IR real.m

does not de�ne a blo
k-ordering be
ause the fun
tion real is not surje
tive.

The relevant theory predi
ting exa
tly when the �rst of the two questions has a

positive answer is as follows. Suppose (B,⊑) is a 
omplete poset. Let ⊓ denote the

in�mum operator for B and suppose p is a predi
ate on B . Then we de�ne inf-

preserving by

p is inf-preserving ≡ 〈∀g :: p.(⊓g) ≡ 〈∀x :: p.(g.x)〉〉 .(218)

So, for a given a , the predi
ate 〈b:: (a, b)∈R〉 is inf-preserving equivales

〈∀g :: (a , ⊓g)∈R ≡ 〈∀x :: (a , g.x)∈R〉〉 .

Then we have:

Theorem 219 Suppose A is a set and (B,⊑) is a 
omplete poset. Suppose R⊆A×B

is a relation between the two sets. De�ne F by

F.a = 〈⊓b : (a, b)∈R : b〉 .(220)

Then the following two statements are equivalent.

� 〈∀a,b : a∈A∧b∈B : (a, b)∈R ≡ F.a⊑b〉 .

� For all a , the predi
ate 〈b:: (a, b)∈R〉 is inf-preserving.
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✷

The answer to the se
ond question is, of 
ourse, obtained by formulating the dual of

theorem 219.

In general, for most relations o

urring in pra
ti
al information systems the answer

to the pair-algebra questions will be negative: the required inf- and sup-preserving prop-

erties just do not hold. However, a 
ommon way to de�ne a pair algebra is to extend a

given relation to a relation between sets in su
h a way that the in�mum and supremum

preserving properties are automati
ally satis�ed. Hartmanis and Stearns' [HS64, HS66℄

solution to the state assignment problem was to 
onsider the latti
e of partitions of a

given set; in so-
alled \
on
ept analysis", the te
hnique is to extend a given relation to

a relation between re
tangles.

An important property of Galois 
onne
tions is the (well-known) theorem we 
all the

\unity of opposites": if F and G are the adjoint fun
tions in a Galois 
onne
tion of the

posets (A,⊑) and (B,� ), then there is an isomorphism between the posets (F.B , ⊑)

and (G.A ,� ). ( F.B denotes the \image" of the fun
tion F , and similarly for G.A .)

Knowledge of the unity-of-opposites theorem suggests theorem 207, whi
h expresses an

isomorphism between di�erent representations of blo
k-ordered relations.

13.2 Analogie Frappante

In this se
tion, we relate blo
k-orderings to diagonals. The main results are theorems 228

and 235. We have named theorem 235 the \analogie frappante" be
ause it generalises

Riguet's \analogie frappante" 
onne
ting \relation de Ferrers" to diagonals.

Lemma 221 Suppose T is a provisional ordering of type C∼C . That is, suppose

T ∩T
∪

⊆ IC ∧ T = (T ∩ T
∪

) ◦ T ◦ (T ∩T
∪

) ∧ T ◦T ⊆T .

Suppose also that f and g are fun
tional and onto the domain of T . That is, suppose8

that

f ◦ f
∪

= f< = T ∩T
∪

= g< = g ◦g
∪

.

Let R denote f
∪
◦T ◦g . Then

R< = f> ∧ R>=g> ,(222)

f
∪

◦T
∪

◦g = R< ◦ (R\R/R)
∪

◦R>
, and(223)

8

The ordering T must be homogeneous but f and g may be heterogeneous and of di�erent type, so

long as both have target C .
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f
∪

◦g = ∆R ,(224)

R< = (∆R)< ∧ R> = (∆R)> ,(225)

R≺ = ∆R ◦∆R
∪

= f
∪

◦ f ∧ R≻ = ∆R
∪

◦∆R = g
∪

◦g .(226)

Proof Property (222) is a straightforward appli
ation of domain 
al
ulus:

R>

= { de�nition: R = f∪ ◦ T ◦g }

(f∪ ◦T ◦g)>

= { domains (spe
i�
ally, [ (U◦V)>=(U> ◦V)> ] and [ (U∪)>=U< ] ) }

(f< ◦T ◦g)>

= { assumption: T = f< ◦T ◦g<
(so T = f< ◦T ) }

(T ◦g)>

= { domains (spe
i�
ally, [ (U◦V)>=(U> ◦V)> ] ) }

(T> ◦g)>

= { lemma 61 and assumption: T ∩T∪ = g< }

g> .

By a symmetri
 argument, (f∪ ◦T ◦g)< = f> .

Now we 
onsider (223). The raison d'être of (223) is that it expresses the left side as a

fun
tion of f
∪
◦T ◦g . In a pointwise 
al
ulation a natural step is to use indire
t ordering.

In a point-free 
al
ulation, this 
orresponds to using fa
tors. That is, we exploit lemma

58:

f
∪
◦T

∪
◦g

= { assumption: T is a provisional ordering

lemmas 55, 59 and 58 }

f
∪

◦ (T ∩ T∪) ◦ T
∪

\ T
∪

/ T
∪

◦ (T ∩T∪) ◦ g

= { assumption: f< = T ∩T∪ = g< }

f
∪

◦ T
∪

\ T
∪

/ T
∪

◦ g

= { lemma 44 and assumption: T = f< ◦T ◦g< }

f> ◦ (g∪
◦ T

∪
◦ f) \ (g∪

◦ T
∪
◦ f) / (g∪

◦T
∪
◦ f) ◦ g>

= { (222) and de�nition of R }
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R< ◦ R
∪

\R
∪

/R
∪

◦ R>

= { fa
tors }

R< ◦ (R\R/R)∪ ◦R> .

Note the use of lemma 44. The dis
overy of this lemma is driven by the goal of the


al
ulation.

The pointwise interpretation of f∪ ◦g is a relation expressing equality between values

of f and g . This suggests that, in order to prove (224), we begin by exploiting the

anti-symmetry of T :

f
∪
◦g

= { f< = T ∩ T∪ = g<
and domains }

f
∪
◦ (T ∩ T∪) ◦g

= { distributivity (valid be
ause f and g are fun
tional) }

f
∪
◦T ◦g ∩ f

∪
◦T

∪
◦g

= { de�nition of R and (223) }

f∪ ◦T ◦g ∩ f> ◦ ((f∪ ◦T ◦g) \ (f∪ ◦T ◦g) / (f∪ ◦T ◦g))∪ ◦g>

= { (227) (see below) }

f> ◦ f
∪
◦T ◦g ◦g> ∩ ((f∪ ◦T ◦g) \ (f∪ ◦T ◦g) / (f∪ ◦ T ◦g))∪

= { domains (spe
i�
ally, f> ◦ f
∪ = f∪ and g ◦g> = g ) }

f
∪
◦T ◦g ∩ ((f∪ ◦T ◦g) \ (f∪ ◦T ◦g) / (f∪ ◦ T ◦g))∪

= { de�nition of R and ∆R }

∆R .

A 
ru
ial step in the above 
al
ulation is the use of the property

U ∩ p◦V◦q = p◦(U∩V)◦q = p◦U◦q ∩ V(227)

for all relations U and V and 
ore
exive relations p and q . This is a frequently used

property of domain restri
tion.

The remaining equations (225) and (226) are straightforward. First

(∆R)<

= { (224) }

(f∪ ◦g)<
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= { domains and assumption: f< = g< }

f>

= { assumption: f< = T ∩ T∪

}

((T ∩T∪) ◦ f)>

= { domains and 
onverse }

(f∪ ◦ (T ∩ T∪))<

= { lemma 61 and domains }

(f∪ ◦T)<

= { domains and assumption: g< = T ∩T∪

and lemma 61 }

(f∪ ◦T ◦g)< .

That is (∆R)< = R<
. The dual equation (∆R)> = R>

is immediate from the fa
t that

(∆R)∪=∆(R∪) and properties of the domain operators. For the per domains, we have:

R≺

= { R< = (∆R)< and R> = (∆R)> (above); lemma 180 }

(∆R)≺

= { ∆R is difun
tional, theorem 49 (with R :=∆R ) }

∆R ◦∆R
∪

= { lemma 221 and de�nition of ∆R }

f
∪
◦g ◦ (f∪ ◦g)∪

= { 
onverse and f< = g< = g ◦g
∪

}

f
∪
◦ f .

Again, the dual equation is immediate.

✷

Theorem 228 Suppose R = f∪ ◦T ◦g where f , g and T have the properties stated

in de�nition 196. Then the fun
tion R de�ned by

R =
〈

c : c ⊆ T ∩T
∪

: f
∪

◦T ◦ c ◦T ◦g
〉

(229)

is a non-redundant, inje
tive, polar 
overing of R , and the fun
tion D de�ned by

D =
〈

c : c ⊆ T ∩ T
∪

: f
∪

◦ c ◦g
〉

(230)
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is a de�niens of R su
h that ∪D=∆R . That is, a blo
k-ordered relation has a non-

redundant, inje
tive, polar 
overing su
h that the de�niens of the 
overing is a 
overing

of the diagonal of R .

Proof The theorem is a 
onsequen
e of lemma 221, theorem 193 and theorem 188.

Spe
i�
ally, lemma 221 (in parti
ular (226) and (225)) states that the 
onditions required

to apply theorem 193 are met with ρ instantiated to g . Thus,

R =
〈

c : c⊆g< : R ◦g
∪

◦ c ◦g ◦R\R
〉

is a non-redundant, inje
tive polar 
overing of R . The de�nition of R is simpli�ed as

follows. First,

g ◦R\R

= { R = f∪ ◦T ◦g }

g ◦ (f∪ ◦T ◦g)\(f∪ ◦ T ◦g)

= { lemma 45 with R,S,f,g := T , T ◦g , f , g }

g ◦g
∪
◦T\(T ◦g)

= { g ◦g
∪ = g< }

g< ◦T\(T ◦g) .

So, for all c su
h that c⊆g<
,

R ◦g
∪
◦ c ◦g ◦R\R

= { R 
overs R , so (R ◦g
∪
◦ c ◦g ◦R\R)>⊆R>

; R>=g>

(in preparation for lemma 43) }

R ◦g
∪
◦ c ◦g ◦R\R ◦g>

= { R = f∪ ◦T ◦g and g ◦R\R = g< ◦T\(T ◦g) (see above) }

f
∪
◦T ◦g ◦g

∪
◦ c ◦g< ◦T\(T ◦g) ◦g>

= { g ◦g
∪ = g<

, assumption: c⊆g<
, lemma 43 with R,f :=T,g }

f
∪
◦T ◦ c ◦T\T ◦g

= { T is a provisional ordering, T ∩T∪ = g<
,

lemma 57 }

f
∪
◦T ◦ c ◦T ◦g .
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Sin
e g< = T ∩T∪

by assumption, we have established (229).

Theorem 193 de�nes the de�niens of the 
overing as the indexed set D where

D =
〈

c : c⊆g< : ∆R ◦g
∪

◦ c ◦g ◦R≻

〉

.

But, for all c su
h that c⊆g<
,

∆R ◦g
∪
◦ c ◦g ◦R≻

= { (226) and (224) }

f
∪
◦g ◦g

∪
◦ c ◦g ◦g

∪
◦g

= { g ◦g
∪ = g<

, assumption: c⊆g< }

f
∪
◦ c ◦g .

Using the assumption that g< = T ∩T∪

on
e again, we have established (230). That

∪D = f∪ ◦g = ∆R follows from f
∪
◦g = ∆R and the saturation axiom.

✷

Lemma 221 has as immediate 
orollary that the 
onverse of theorem 228 is invalid.

Corollary 231 There are relations that have a non-redundant polar 
overing but are

not blo
k-ordered.

Proof Examples 194 and 195 are both examples of �nite relations that have non-

redundant polar 
overings. Example 194 has the property that (∆R)< 6=R<
; however,

(∆R)>=R>
. Example 195 has an empty diagonal; that is, (∆R)< 6=R<

(and (∆R)> 6=R>
).

So by (the 
onverse of) lemma 221 (spe
i�
ally, (225)), neither relation is blo
k-ordered.

✷

We now prove the 
onverse of lemma 221.

Lemma 232 A relation R is blo
k-ordered if R< = (∆R)< and R> = (∆R)> .

Proof Suppose R< = (∆R)< and R> = (∆R)> . Our task is to 
onstru
t relations f , g

and T su
h that

R = f
∪

◦ T ◦g ,

T ∩T
∪

⊆ I ∧ T = (T ∩T
∪

) ◦T ◦ (T ∩ T
∪

) ∧ T ◦T ⊆ T and

f ◦ f
∪

= f< = T ∩T
∪

= g< = g ◦g
∪

.

Sin
e ∆R is difun
tional, theorem 111 is the obvious pla
e to start. Applying the

theorem, we 
an 
onstru
t f and g su
h that ∆R = f∪ ◦g and

∆R = f
∪

◦g ∧ f ◦ f
∪

= f< = g ◦g
∪

= g< .
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Using standard properties of the domain operators together with the assumption that

R< = (∆R)< and R> = (∆R)> , it follows that

R< = f> ∧ R> = g> .

It remains to 
onstru
t the provisional ordering T . The appropriate 
onstru
tion is

suggested by lemma 221, in parti
ular (223). Spe
i�
ally, we de�ne T by the equation

T = g ◦R\R/R ◦ f
∪

.(233)

The proof that R = f∪ ◦T ◦g is by mutual in
lusion. First note that

f
∪

◦T ◦g = ∆R ◦R\R/R ◦∆R(234)

sin
e

f∪ ◦T ◦g

= { (233) }

f
∪
◦g ◦R\R/R ◦ f

∪
◦g

= { ∆R = f∪ ◦g }

∆R ◦R\R/R ◦∆R .

So

f
∪
◦T ◦g

⊆ { (234) and ∆R⊆R }

R ◦R\R/R ◦R

⊆ { 
an
ellation }

R .

Also,

R ⊆ f
∪
◦T ◦g

= { (234) }

R ⊆ ∆R ◦R\R/R ◦∆R

= { per domains: (33) }

R≺ ◦R ◦R≻ ⊆ ∆R ◦R\R/R ◦∆R

= { assumption: R< = (∆R)< and R> = (∆R)> , lemma 180 }
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(∆R)≺ ◦R ◦ (∆R)≻ ⊆ ∆R ◦R\R/R ◦∆R

= { ∆R is difun
tional, theorem 49 (with R :=∆R ) }

∆R ◦∆R
∪
◦R ◦∆R

∪
◦∆R ⊆ ∆R ◦R\R/R ◦∆R

⇐ { monotoni
ity }

∆R
∪
◦R ◦∆R

∪ ⊆ R\R/R

⇐ { ∆R
∪⊆R\R/R , monotoni
ity }

R\R/R ◦R ◦R\R/R ⊆ R\R/R

= { fa
tors }

R ◦R\R/R ◦R ◦R\R/R ◦R ⊆ R

= { 
an
ellation }

true .

Combining the two in
lusions we 
on
lude that indeed R = f∪ ◦ T ◦g .

We now establish the requirements on T . First,

T ∩T∪

= { de�nition and 
onverse }

g ◦R\R/R ◦ f
∪ ∩ f ◦ (R\R/R)∪ ◦g

∪

⊆ { modular law }

f ◦ (f∪ ◦g ◦R\R/R ◦ f
∪
◦g ∩ (R\R/R)∪) ◦g∪

= { ∆R = f∪ ◦g }

f ◦ (∆R ◦R\R/R ◦∆R ∩ (R\R/R)∪) ◦g∪

⊆ { ∆R⊆R , monotoni
ity and 
an
ellation }

f ◦ (R ∩ (R\R/R)∪) ◦g∪

= { ∆R = R ∩ (R\R/R)∪ }

f ◦∆R ◦g
∪

= { ∆R = f∪ ◦g }

f ◦ f
∪
◦g ◦g

∪

= { f ◦ f
∪ = f< = g ◦g

∪ = g< }

f< .

Thus T ∩ T∪ ⊆ f< . So T ∩T∪ ⊆ I . Now
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f< ⊆ T ∩T∪

= { in�ma and f< is 
ore
exive }

f< ⊆ T

⇐ { domains }

f ◦ f
∪ ⊆ T

⇐ { de�nition of T and monotoni
ity }

f ⊆ g ◦R\R/R

⇐ { f< = g ◦g
∪

, domains and monotoni
ity }

g
∪
◦ f ⊆ R\R/R

= { f
∪
◦g = ∆R }

∆R
∪ ⊆ R\R/R

= { ∆R = R ∩ (R\R/R)∪ , 
onverse }

true .

So, by anti-symmetry we have established that T ∩T∪ = f< . Sin
e also f<=g<
, we


on
lude from the de�nition of T and properties of domains that

T = (T ∩ T
∪

) ◦T ◦ (T ∩T
∪

) .

The �nal task is to show that T is transitive:

T ◦T

= { de�nition }

g ◦R\R/R ◦ f
∪
◦g ◦R\R/R ◦ f

∪

= { ∆R = f∪ ◦g }

g ◦R\R/R ◦∆R ◦R\R/R ◦ f
∪

⊆ { ∆R⊆R }

g ◦R\R/R ◦R ◦R\R/R ◦ f∪

⊆ { fa
tors }

g ◦R\R/R ◦ f
∪

= { de�nition }

T .
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✷

It is interesting to re
e
t on the proof of lemma 232. The hardest part is to �nd

appropriate de�nitions of f , g and T su
h that R = f∪ ◦ T ◦g . The key to 
onstru
ting

f and g is Riguet's \analogie frappante" [Rig51℄ whereby he introdu
ed the \di��eren
e"

|the diagonal ∆R| of the relation R . Expressing the diagonal in terms of fa
tors as

we have done makes many parts of the 
al
ulations very straightforward. One mu
h less

straightforward step is the use of lemma 180 in the proof that R ⊆ f
∪
◦T ◦g . Note how


al
ulational needs drive the sear
h for the lemma: in order to simplify the in
lusion it

is ne
essary to expose the term R\R/R on the right side, and that is pre
isely what the

lemma enables.

We 
on
lude with the theorem that we 
all the \analogie frappante". It is not the

theorem that Riguet presented but we have 
hosen to give it this name in order to

re
ognise Riguet's 
ontribution.

Theorem 235 (Analogie Frappante) A relation R is blo
k-ordered if and only if

R< = (∆R)< and R> = (∆R)> .

Proof Lemma 221 establishes \only-if" and lemma 232 establishes \if".

✷

Example 236 Re
all that example 194 is of a relation R su
h that R< = (∆R)<

but R> 6= (∆R)> . Be
ause of the simpli
ity of the example, it is possible to 
he
k,

by exhausting all possible assignments to f and g , that the relation is not blo
k-

ordered. For suppose, on the 
ontrary, that R = f∪ ◦T ◦g , where f , T and g satisfy

the 
onditions for a blo
k-ordering. Then it must be the 
ase that g.A 6=g.B (sin
e

(R◦A)< 6=(R◦B)< ). But also it must be the 
ase that f.α , f.β and f.γ are distin
t (be-


ause, eg., (α◦R)> 6=(β◦R)> ). This has the 
onsequen
e that f< 6=g<
. But, by de�ning

f.α=x , f.β=y , f.γ= z , g.A=x , g.B= z and y⊑x and y⊑ z , it is the 
ase that

R = f∪ ◦⊑ ◦g . We say that the relation has an \imperfe
t" blo
k-ordering.

✷

Example 237 A generi
 way to 
onstru
t examples of relations that are not blo
k-

ordered is to exploit example 177. In order to avoid unne
essary repetition, we refer the

reader to that example for the de�nition of the relation in given a �nite set X and a

set S of subsets of X .

(Example 236 is a slightly disguised instan
e of the generi
 
onstru
tion: the nodes

A and B 
an be identi�ed with, respe
tively, {α,β} and {β,γ} .)

Re
all that the diagonal ∆in of type X∼S is inje
tive. It follows that the size of

(∆in)< is at most the size of S . If, however, the set S has X as one of its elements, the
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size of in<
equals the size of X . Theorem 235 thus predi
ts that, if X is an element of

S , a ne
essary 
ondition for in to be blo
k-ordered is that the sizes of X and S must

be equal; 
onversely, if X is an element of S , in is not blo
k-ordered if the sizes of X

and S are di�erent.

Fig. 6 (example 177) shows that, even if the sizes of X and S are equal, the relation

in may not be blo
k-ordered: as remarked then, for the 
hoi
e of S shown in �g. 6, in<

and (∆in)< are di�erent sin
e 0 and 3 are elements of the former but not the latter.

It is straightforward to 
onstru
t instan
es of X and S su
h that the relation in is

blo
k-ordered. It suÆ
es to ensure that three 
onditions are satis�ed: X is an element of

S , the sizes of X and S are equal, and, for ea
h x in X , the set of sets represented by

(x◦in)> is totally ordered. Fig. 10 is one su
h. Referring to de�nition 196, the fun
tional

f is ∆in
∪

(depi
ted by re
tangles) and the fun
tional g is IS ; the ordering relation is

the subset relation in\in (depi
ted by the dire
ted graph).

{0,1,2,3,4}

{0,1}

{0}

{3,4}1

2

0

4

{3} 3

Figure 10: A Blo
k-Ordered Membership Relation

✷

The following theorem is a 
orollary of theorem 184. In 
ombination with theorem

235 it states that a relation is blo
k-ordered i� its 
ore is blo
k-ordered. Testing whether

or not a given relation is blo
k-ordered 
an thus be de
omposed into 
omputing the 
ore

of the relation and then testing whether or not that is blo
k-ordered.

Theorem 238 Suppose R is an arbitrary relation and suppose C is a 
ore of R as

witnessed by λ and ρ . Then

R< = (∆R)< ≡ C< = (∆C)< .

Dually,

R> = (∆R)> ≡ C> = (∆C)> .
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Proof Suppose R , C , λ and ρ are as in de�nition 90. Then

C< = (∆C)<

= { de�nition 90 and theorem 184 }

(λ ◦R ◦ρ
∪)< = (λ ◦∆R ◦ρ

∪)<

⇒ { Leibniz }

(λ∪
◦ (λ ◦R ◦ρ

∪)<)< = (λ∪
◦ (λ ◦∆R ◦ρ

∪)<)<

= { domains }

(λ∪
◦λ ◦R ◦ρ

∪)< = (λ∪
◦λ ◦∆R ◦ρ

∪)<

= { λ
∪
◦λ ◦R = R≺ ◦R = R ,

(ρ∪)< = (ρ∪
◦ρ)< = (R≻)< = R>

, and domains }

R< = (λ∪
◦λ ◦∆R ◦ρ

∪)<

= { (ρ∪)< = (ρ∪
◦ρ)< and domains }

R< = (λ∪
◦λ ◦∆R ◦ρ

∪
◦ρ)<

= { theorem 184 }

R< = (λ∪
◦∆C ◦ρ)<

= { theorem 184 }

R< = (∆R)< .

Similarly,

R< = (∆R)<

= { de�nition 90, theorem 184 and Leibniz }

(λ∪
◦C ◦ρ)< = (λ∪

◦∆C ◦ρ)<

⇒ { Leibniz and domains }

(λ ◦λ
∪
◦C ◦ρ)< = (λ ◦λ

∪
◦∆C ◦ρ)<

= { ρ< = (ρ ◦ρ
∪)< and domains }

(λ ◦λ
∪
◦C ◦ρ ◦ρ

∪)< = (λ ◦λ
∪
◦∆C ◦ρ ◦ρ

∪)<

= { theorem 184 (applied twi
e) }

C< = (∆C)< .

The property

R< = (∆R)< ≡ C< = (∆C)<
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follows by mutual impli
ation. The dual follows by instantiating R to R
∪

and applying

the properties of 
onverse.

✷

By 
ombining the de�nition of blo
k-ordering with theorem 184, it is immediately


lear that R is blo
k-ordered if its 
ore C is a provisional ordering. In general, a 
ore

of a blo
k-ordered relation will not be a provisional ordering. This is be
ause the types

of the targets of the 
omponents λ and ρ in the de�nition of a 
ore are not required

to be the same; on the other hand, orderings are required to be homogeneous relations.

However by 
arefully restri
ting the 
hoi
e of 
ore, it is possible to 
onstru
t a 
ore that

is indeed a provisional ordering.

Theorem 239 Suppose R is an arbitrary relation. Then if R is blo
k-ordered it has

a 
ore that is a provisional ordering.

Proof Suppose R is blo
k-ordered. That is, suppose that f , g and T are relations

su
h that T is a provisional ordering,

R = f
∪

◦ T ◦g

and

f ◦ f
∪

= f< = T ∩T
∪

= g< = g ◦g
∪

.

Then, by lemma 221, R≺ = f∪ ◦ f and , R≻ = g∪
◦g . Thus f and g satisfy the 
onditions

for witnessing a 
ore C of R . (Cf. de�nition 90 with λ,ρ := f,g .) Consequently,

C

= { de�nition 90 }

f ◦R ◦g
∪

= { R = f∪ ◦T ◦g }

f ◦ f
∪
◦T ◦g ◦g

∪

= { f ◦ f
∪ = f< = T ∩T∪ = g< = g ◦g

∪

}

(T ∩T∪) ◦T ◦ (T ∩ T∪)

= { T is a provisional ordering, lemma 61 and domains }

T .

We 
on
lude that C is the provisional ordering T .

✷

Combining theorem 239 with theorem 93, we 
on
lude that any 
ore of a blo
k-

ordered relation is isomorphi
 to a provisional ordering. Loosely speaking, blo
k-ordered

relations are provisional orderings up to isomorphism and redu
tion to the 
ore.
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Example 240 From the Galois 
onne
tion, for all reals x and integers m ,

⌈x⌉≤m ≡ x≤m

de�ning the 
eiling fun
tion, we dedu
e that the heterogeneous relation IR≤ZZ has 
ore

the provisional ordering ≤ZZ . This is be
ause the 
eiling fun
tion is surje
tive. Its 
ore

in not the ordering ≤IR be
ause the 
oer
ion real from integers to reals is not surje
tive.

(See also example 217.)

On the other hand, if a Galois 
onne
tion

F.b⊑a ≡ b�G.a

of posets (A,⊑) and (B ,� ) is \perfe
t" (i.e. both F and G are surje
tive), both the

orderings ⊑ and � are 
ores of the de�ned heterogeneous relation. That the orderings

are isomorphi
 is an instan
e of the unity-of-opposites theorem [Ba
02℄.

✷
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14 Conclusion

A major advantage of point-free relation algebra is the 
ombination of 
on
ision with pre-


ision. But there are numerous 
ir
umstan
es where pointwise reasoning is unavoidable.

Unbridled use of pointwise reasoning is, in our view, unwel
ome be
ause of the potential

la
k of 
on
ision, with the danger of an a

ompanying loss of pre
ision. In this paper,

we have shown how the pointwise reasoning that is ne
essary to formulate the properties

of polar 
overings of a relation and of blo
k-ordered relations 
an be 
ondu
ted in a way

that avoids su
h dangers. Doing so has led to the introdu
tion of the 
on
epts of an in-

dex and a 
ore of a relation whi
h we believe may have important pra
ti
al appli
ations

when dealing with very large volumes of data. Our de�nitions of indexes and 
ores of a

(heterogeneous) relation are point-free.

The primary 
ontribution of the paper has been to show how the addition of a simple

axiom to relation algebra |essentially, it is possible to 
hoose a representative element of

every equivalen
e 
lass of a partial equivalen
e relation| has far-rea
hing 
onsequen
es

in enabling pointwise reasoning, whilst not sa
ri�
ing the 
ombination of 
on
ision and

pre
ision. Some may 
riti
ise the axiom for being non-
onstru
tive, but the 
riti
ism

has little pra
ti
al relevan
e. For �nite pers, it is straightforward to 
onstru
t an index

and, indeed, in pra
ti
e this is done as a matter of 
ourse. For example, the two-phase

algorithm attributed to R.Kosaraju and M.Sharir by Aho, Hop
roft and Ullman [AHU82℄

for 
onstru
ting the strongly 
onne
ted 
omponents of a graph 
omputes a representative

element (
alled a \delegate" in [Ba
19℄) of ea
h 
omponent in the se
ond phase.

One fo
us of this investigation has been on showing that the so-
alled \all-or-nothing"

rule introdu
ed by Gl�u
k [Gl�u17℄ is a 
onsequen
e of our axiom. There are other ways

of fa
ilitating pointwise reasoning in relation algebra. Bird and De Moor [BdM97℄ argue

that the introdu
tion of \tabulations" and a \unit" (as formulated by Freyd and

�

S�
edrov

[Fv90℄) \makes it possible to mimi
 pointwise proofs in a 
ategori
al setting". But Bird

and De Moor do not give any pra
ti
al appli
ation of tabulations

9

. Separately from

tabulations, Bird and De Moor [BdM97, se
tion 4.6, p.103℄ introdu
e so-
alled \power

allegories". This involves the introdu
tion of \power-obje
ts", the \power transpose"

of a relation, and a \membership relation". Subsequently, they do make signi�
ant

pra
ti
al use of these notions in their derivation of algorithms. However, as we have

shown elsewhere [BDGv22, Ba
22℄, these notions 
an be derived from the all-or-nothing

rule.

In fa
t, the only pra
ti
al appli
ation of pointwise reasoning in this paper is in se
tion

9

Indeed, their only use of tabulations is in an erroneous proof. [BdM97, theorem 5.1℄ asserts that (in

a tabular allegory) a fun
tor is a relator i� it preserves 
onverse. However, the penultimate step in the

\proof" asserts that appli
ation of a fun
tor to a \simple" relation preserves the \simple" property. A

traditional pointwise argument makes 
lear that the step has no justi�
ation.
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11 on 
overings of a relation. In this 
ase, points are unavoidable be
ause they de�ne

the individual re
tangles in the 
overing. In 
ontrast, our investigation of the diagonal

of a relation and blo
k-ordered relations, and the formulation of the analogie frappante


onne
ting the two, is entirely point-free. At the same time, we make extensive use of our

(point-free) formulation of indexes and 
ores in order to signi�
antly improve previous


al
ulations of the same results [Ba
21℄.

As shown elsewhere, the dire
t use of pointwise reasoning (as formulated here) does


ombine 
on
ision with pre
ision in an elegant way in the 
onstru
tion of the 
hara
-

terisations of pers and difun
tions. (See se
tion 8.) Spe
i�
ally, [BO22℄ 
ompares the

expli
it use of points with the use of the power transpose of a relation. This paper o�ers

an alternative third way. We leave the reader to make the judgement on whi
h method

is to be preferred.

Finally, a few words on notation. The very ri
h algebrai
 properties of the 
onverse

of a relation mean that many notions and properties 
ome in pairs, ea
h element of the

pair being the dual mirror-image of the other. For example, we have de�ned both the

left domain and right domain of a relation. Some authors emphasise su
h mirroring by

their 
hoi
e of notation. Freyd and

�

S�
edrov [Fv90℄, for example, denote the sour
e and

target of a relation R by ✷R and R✷ , respe
tively.

A 
onsequen
e of this is that it is possible to get away with de�ning just one of a

pair of operators, leaving its mirror image to have an \obvious" de�nition in terms of

relational 
onverse. Doing this systemati
ally would mean introdu
ing the notation R<

for the left domain of relation R and then using the notation (R∪)< to denote the right

domain of R . Similarly, one might introdu
e just the left fa
tor R/S and then write

(S∪

/R
∪)∪ for the right fa
tor R\S . This is, of 
ourse, very undesirable be
ause then the

asso
iativity of the operators (the rule that R\(S/T) and (R\S)/T are equal, whi
h we

exploit by using the notation R\S/T ) be
omes the very 
umbersome

((S/T)
∪

/R
∪

)
∪

= (S
∪

/R
∪

)
∪

/ T .

Even worse is when a symmetri
 notation is used for an operator that has both left

and right variants | as is done by both Freyd and

�

S�
edrov [Fv90℄ and S
hmidt and

Str�ohlein [SS93, p.80℄ in the 
ase of the so-
alled \symmetri
 division/quotient" of a

relation. By writing

R
S
(or R÷S ), the reader may be misled into supposing that either

the operator has no mirror image or that the mirror image is

S
R
(or S÷R ). The main

drawba
k, however, is that the notation gives |literally and �guratively| a one-sided

view of relation algebra that inhibits progress. The notions of \index" and \
ore" of a

relation are, so far as we know, novel; the insight leading to their introdu
tion is the

simple formula

R = R≺ ◦R ◦R≻
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ombined with well-known properties of (partial) equivalen
e relations. It is, in our view,

a striking example of the sort of insight that is obs
ured using Freyd and

�

S�
edrov's or

S
hmidt and Str�ohlein's notation.
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