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Abstract. We show a new and constructive proof of the two-squares
theorem, based on a somewhat unusual, but very effective, way of rewrit-
ing the so-called extended Euclid’s algorithm. Rather than simply verify-
ing the result —as it is usually done in the mathematical community —
we use Euclid’s algorithm as an interface to investigate which numbers
can be written as sums of two positive squares. The precise formula-
tion of the problem as an algorithmic problem is the key, since it allows
us to use algorithmic techniques and to avoid guessing. The notion of
invariance, in particular, plays a central role in our development: it is
used initially to observe that Euclid’s algorithm can actually be used
to represent a given number as a sum of two positive squares, and then
it is used throughout the argument to prove other relevant properties.
We also show how the use of program inversion techniques can make
mathematical arguments more precise.
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1 Introduction

Which numbers can be written as sums of two squares? According to Dickson [1,
p. 225], this classic question in number theory was first discussed by Diophantus,
but it is usually associated with Fermat, who stated in 1659 that he possessed
an irrefutable proof that every prime of the form 4k + 1 can be written as the
sum of two squares. (He first communicated the result to Mersenne, in a letter
dated December 25, 1640; for this reason, this result is sometimes called Fermat’s
Christmas Theorem. Incidentally, Dickson names this result after Albert Girard,
who, in 1632, was the first to state it. We follow Dickson’s convention and we
also refer to the two-squares theorem as Girard’s result.) However, as with many
other of his results, Fermat did not record his proof. The first recorded proof of
Girard’s result is due to Euler who proved it in 1749, “after he had struggled,
off and on, for seven years to find a proof” [2, p.69]. Euler communicated his
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five-step argument in a letter to Goldbach dated 6 May 1747, but the fifth step
was only made precise in a second letter written in 1749. In 1801, Gauss proved
for the first time that such prime numbers are uniquely represented as the sum
of two positive integers [3, Art. 182].

This classic theorem attracted the attention of many mathematicians. Since
Euler’s proof by the method of infinite descent, Lagrange proved it using quadratic
forms (subsequently, Gauss simplified Lagrange’s proof in [3, Art. 182]); Dedekind
used Gaussian integers; Serret and Hermite used continued fractions [4, 5; Brill-
hart improved Hermite’s argument using Euclid’s algorithm [6]; Smith used con-
tinuants [7]; more recently, Zagier [8] published a one-sentence proof based on an
involution of a particular finite set (see also [9, chapter 4] and [10] for a detailed
explanation of the proof); and Wagon [11] gave a self-contained proof based on
Euclid’s algorithm and on [6].

Like Brillhart and Wagon, we present a proof that is also based on Euclid’s
algorithm, but, rather than simply verifying Girard’s result, we use the algo-
rithm as an interface to investigate which numbers can be written as sums of
two positive squares’. The precise formulation of the problem as an algorithmic
problem is the key, since it allows us to use algorithmic techniques and to avoid
guessing. The notion of invariance, in particular, plays a central role in our de-
velopment: it is used initially to observe that Euclid’s algorithm can actually be
used to represent a given number as a sum of two positive squares, and then it is
used throughout the argument to prove other relevant properties. We also show
how the use of program inversion techniques can make mathematical arguments
more precise. As we will see, the end result is also more general than the one
conjectured by Girard.

In the next section we show how we can use our formulation of Euclid’s
algorithm to prove the theorem. At the end of the section, we describe how the
argument and the paper are organised.

2 Euclid’s Algorithm

We start with a somewhat unusual, but very effective, way of rewriting Euclid’s
algorithm when the goal is to establish the theorem that the greatest common
divisor of two numbers is a linear combination of the numbers. (This is sometimes
called the extended Euclid’s algorithm. See [12] for a derivation of the algorithm
and [13] for another problem whose solution is based on the algorithm. Also, we
use “V” to denote “greatest common divisor”. We prefer to use an infix notation
whenever —as in this case — the operator is symmetric and associative.)

The algorithm is expressed in matrix terms. The input to the algorithm is
a vector (m n) of strictly positive integers. The vector (z y) is initialised to
(m m) and, on termination, its value is the vector (mVn m¥Vn). (This is a

! Every square number m? can be written as m?+0%. However, this type of solution is
not considered in this paper, since our formulation of Euclid’s algorithm deals only
with positive numbers. Therefore, our construction aims to express a number as the
sum of two positive squares.



consequence of the invariant (x y) = (mVn m¥Vn). We omit this invariant in
the comments below to simplify the presentation.) In addition to computing
the greatest common divisor, it also computes a matrix C. An invariant of the
algorithm is that the vector (z y) equals (m n) x C. In words, (z y) is a “linear
combination” of (m n). Specifically, I, A, and B are 2x2 matrices; I is the

identity matrix (0 1) A is the matrix (711 2), and B is the matrix ((1) _11).
The assignment (z y) := (x y)XA is equivalent to z,y := x—y,y, as can be
easily checked.

{0<m A O<n }

(zy),C = (mn),1;

{ Invariant: (zy) = (mn)xC }

do y<z — (xy),C := (zy)xA, K CxA

0O z<y — (ry),C = (zy)xB,CxB

od
{ (xy) = (mVn mVn) = (mn)xC }

The verification of the supplied invariant is a simple consequence of the asso-
ciativity of matrix multiplication. Also, note that the algorithm constructs two
linear combinations of m and n equal to their greatest common divisor.

A key insight in our development is that matrices A and B are invertible,
which allows us to rewrite the invariant as (z y) x C~! = (m n), where the ma-
trix C ™! is a finite product of the matrices A~ and B™!, which are, respectively,
(1 (1)) and ( o 1) In fact, we can change the above algorlthm to compute the
matrix C~! instead; renaming C~ Lto D, A! to L, and B~! to R, we rewrite

it as follows:

{0<m A O<n }

(zy),D = (mmn),L;

{ Invariant: (zy)xD = (mn) }

do y<z — (zy),D := (xy)xL ', LxD
O z<y — (zy),D := (zy)xR' RxD

od
{ (xy) = (MVn mVn) A (mVn mVn)xD = (mn) }

It is this form of the algorithm that is the starting point for our investigation.
Note that if D= (‘2 Z), the invariant is equivalent to

(mn) = (zy)xD = (rxat+yxc rxb+yxd) ,



which means that if, at any point in the execution of the algorithm, (z y) equals
(a ¢), we can conclude that m is a sum of two positive squares, that is:

(mn) = (ac)xD = (axa+cxe axb+cexd)

Symmetrically, if, at any point in the execution of the algorithm, (x y) equals
(b d), we can conclude that n is a sum of two positive squares.

It may help to visualise an execution trace of the algorithm. Table 1 depicts
the execution trace when the arguments are m =17 and n = 4. Each row of the
table shows the state-space and the value of the invariant after each iteration of
the algorithm. The first two columns show the values of the variables (x y) and
D, respectively. The third column shows how the invariant is satisfied, according
to the values of the first two columns. The first row corresponds to the initial
state and the last row corresponds to the final state.

(z y)| D, the same as (¢ Z) Invariant: (m n) = (zxa +yxc zxXb+yxd)
(17 4)|() 9) =1 (17 4) = (17x1 +4x0 17x0+4x1)
(13 4)|(; 9) =L (17 4) = (13x1 +4x1 13x0+4x1)
945 9)=LL (17 4) = (9x1 +4x2 9x0+4x1)
(54)((5 V) =LLL (17 4) = (5x1 4 4x3 5x044x1)
(14)|(; J) =LLLL (17 4) = (1x1+4x4 1x0+4x1)
(13)({(7 }) =RLLLL (17 4) = (1x5+3x4 1x1+43x1)
(12)|(7 ) =RRLLLL (17 4) = (1x9+2x4 1x2+2x1)
(1 1) (%) =RRRLLLL (17 4) = (1x13 +1x4 1x3 +1x1)

Table 1. Execution trace of Euclid’s algorithm for arguments m =17 and n =4

As we can see in table 1, there is a point at which x =a=1 and y=c=4; it
follows directly from the invariant that 17 can be expressed as the sum of two
positive squares (17 = 12+42).

One question that now arises is what is so special about the numbers 17 and
4 that made the vectors (z y) and (a ¢) to be equal. (Had we used as arguments
the numbers 17 and 5, for example, z would never equal a.) Put more generally,
how can we characterise the arguments that make the vectors (z y) and (a ¢)
to be equal at some point in the execution of the algorithm?

A closer inspection of the values shown in table 1 can help us answering the
general question. If we ignore the first row, we see that the sequence of successive
values of the vector (z y) is the reverse of the sequence of successive values of
(a ¢). Also, because the length of these sequences is the same and odd, there
is a middle point at which (z y)=(a ¢). So, one way of proving that at some
point in the execution of the algorithm the vectors (x y) and (a ¢) are equal is



to prove that the sequences of successive values of the vectors (z y) and (a ¢),
with the exception of the initial values, are reverses of each other and that both
sequences have odd length. (In the example above, the length is 7.)

Taking this analysis into account, the question can be reformulated as: for
which arguments m and n does Euclid’s algorithm produce odd-length sequences
of successive values of the vectors (z y) and (a c) that are reverse of each other?

Our answer to this question is divided in three parts. First, in section 3, we
invert Euclid’s algorithm to prove that the operations performed on the vector
(z y) are the same as those performed on the vector (a ¢) when running the
algorithm backwards. Second, in section 4, we determine necessary and sufficient
conditions on the arguments m and n to make the initial value of the vector (x y)
equal the final value of the vector (a ¢). These two parts together characterise the
arguments for which the sequences of vectors are each other’s reverses. Finally,
in section 5, we show that if the sequences are the reverses of each other, they
must have odd length.

Note that our investigation aims at expressing the argument m as a sum of
two positive squares— that is why we focus on vectors (x y) and (a ¢). This
means that, given a value m, we want to characterise which values n can be
chosen to be passed along with m as arguments of the algorithm (we perform
this characterisation in section 4).

For brevity, and whenever the context is unambiguous, we shall refer to “the
sequences” to mean “the sequences of successive values of the vectors (z y)
and (a ¢)” and to “the sequences are reversed” to mean “the sequences are the

reverses of each other”. Also, we assume throughout that D= (‘cl Z).

3 Inverting Euclid’s Algorithm

Inverting an algorithm S consists in finding another algorithm, usually denoted
by S~!, that when composed with S leaves the program state unchanged. In
other words, executing S~—! after S amounts to doing nothing, that is, if we
provide to S~! some output of S, it will compute a corresponding input to S.

Some statements are easy to invert. The inverse of skip, for example, is skip
itself. Also, the inverse of z := x—y is x := z+y. However, other statements are
difficult or impossible to invert. For example, we cannot invert z := 1 without
knowing the value of = before the assignment; we can only invert it if we know
the precondition. The inverse of

{z=0} 2:=1
is

{z=1} 2z :=0 .
Note that the assertion becomes an assignment and the assignment becomes an
assertion. This simple example shows that we may be able to compute inverses
only when the precondition is given. Therefore, we define the inverse of a state-

ment with respect to a precondition. That is, S™1 is the (right) inverse of S with
respect to R, if for every @



{RAQ} S;57H {Q} .

An important aspect of the above characterisation is that it distributes through
program constructs. This allows us to reduce the inversion of a program into the
inversion of its components. For example, the inverse of a sequence of commands
is the reverse of the sequence of inverses of the individual commands:

(So3S1i--+38n)™H = Syt -uST Sy
Also, if ¢y and ¢ are constants, the inverse of
(1) vi=c; S {v=c}
is

vi=ec ;3 ST {v=c¢}

In (1), variable v is initialised to a value ¢, S is executed, and upon termination
v has the final value ¢;. The inverse assigns c¢; to v, undoes what S did, and
terminates with v = ¢g. Note, again, how the assignment and the assertion switch
places. Since Euclid’s algorithm is an instance of (1) — instantiate v with the
variables (z y) and D, and consider S to be the loop —its inverse is:

(x y) = (mVn mVn) ;

initialise D such that (mVn m¥Vn)xD = (m n);
S—l

{(xy) = mn) A D=1} .

That is, provided that we initialise (z y) to (mVn m¥Vn) and the matrix D
in a way that satisfies (mVn m¥Vn) x D = (m n), undoing S terminates in a
state where (z y) and D equal their initial values in Euclid’s algorithm. But we
still have to guarantee that there is only one way of initialising D. This is indeed
the case, since

(mVn m¥Vn)xD = (m n)

(11)xD = (m/(mVn) n/(mVn)),

where (m/(mVn) n/(mVn)) can be seen as a positive rational number in so-
called lowest-form representation. We know from [12] (see also [13]) that there
is a bijection between finite products of the matrices L and R and the positive
rationals. Therefore, D (which is a finite product of Ls and Rs) is uniquely
defined (more specifically, it represents the path from the origin to the rational

m/(mVn) . . . .
Now, since the alternative statement in the loop of Euclid’s algorithm is

deterministic (y < x and x < y are mutually exclusive), we can use the inversion
rule for deterministic alternative statements together with the inversion rule for
iterative statements. Suppose we have the following loop

in the Stern-Eisenstein tree of rationals).



{ GovGy }

do Go — Sp{Cy}
O G — S{C}
od

{ CovCr } .

Execution of the loop must begin with one of the guards true, so the disjunction
of the guards has been placed before the statement. Execution terminates with
either Cy or C1 true, depending on which command is executed, so Cy V C7 is the
postcondition. Also, to invert this loop we must know whether to perform the
inverse of Sy or to perform the inverse of S;. Therefore, Cy and C; cannot be true
at the same time (i.e., =(Cy A C1)). For symmetry, we also require =(Go A G1).

Because the loop ends in a state satisfying Cy V C1, its inverse must begin in a
state satisfying Cy V Cy. Also, execution of G;— 57 { C; } means that beginning
with G true, S7 is executed, and (' is established. The inverse must express
that beginning with C; true, S; is undone, and G is established:

Ci—S;7H{G}

Note how, when inverting a guarded command with a postcondition, the guard
and postcondition switch places. Continuing to read backwards yields the inverse
of the loop:

{ CovC; }

do C; — S7'{G:}
0 Co — S5 {Go}
od

{ GovGy }

We now have to insert appropriate assertions in Euclid’s algorithm so that the
rules presented above can be used. Recall that, as explained in section 2, we want
to ignore the initial values (in effect, this corresponds to ignoring the first row
of table 1). This motivates moving the first step out of the loop body. Assuming
that n < m, we can rewrite the algorithm as follows (note the new annotations

and recall that D= (‘; g)):
{0<n<m}
(x y),D := (m—n n),L;
{ Invariant: (zy)xD = (mn) }
{y<zvze<y }
doy<z — (zy),D := (zy)xL™' ,LxD {a<c}
O z<y — (ry),D = (zy) xR, RxD {c<a}



od
{ a<ecVe<a }
{ (zy) = (MVn mVn) A (m¥Vn mVn)xD = (mn) }

From this point on, whenever we refer to Euclid’s algorithm, the intended refer-
ence is to this algorithm. The removal of the first step out of the loop body forces
n <m and 1 <m, but it allows us to include assertions after each assignment,
making the inversion of the loop body a straightforward application of the rules
mentioned above. (The new assertions after the assignments follow from the facts
that premultiplying a matrix by L corresponds to adding the first row to the
second, and premultiplying a matrix by R corresponds to adding the second row
to the first.) Because the assignments in the loop body are easily inverted, the
inverse of Fuclid’s algorithm becomes:

{0<n<m}

(x y) = (mVn mVn);

initialise D such that (mVn m¥Vn)xD = (m n);
{ Invariant: (zy)xD = (mmn) }

{ a<cVe<a }

), (xy)xL,L7'xD {y<z}

do a<e — ( D
),D = (zy) xR, R !'xD {z<y}

Ty
O c<a — (zy
od
{y<zVvze<y }
{ @y) = (m=n W)AD=L }
Comparing the two algorithms, we see that the assignments to (z y) and to (a ¢)
are interchanged: in the original algorithm we have
y<z — (zy) = (z—y y)
Oz<y — (zy) = (@ y-a),
and in the inverted algorithm we have
a<c — (ac):=(a c—a)
O c<a — (ac):=(a—c 0
(We leave the reader to check the matrix arithmetic.) In other words, the inverse
of Euclid’s algorithm is Euclid’s algorithm itself, but on different variables: the
inverted version computes the greatest common divisor using the variables a and
c. This means that to make the sequences of successive values of the vectors (z y)

and (a c) the reverse of each other, we only need to guarantee that the initial
value of (z y) in the non-inverted algorithm is the same as the initial value of



(a ¢) in the inverted one. In other words, we need to guarantee that in Euclid’s
algorithm, the initial value of (z y) is the same as the final value of (a ¢).

The initial assignments of the inverted algorithm may seem strange at first
sight, but the important fact to retain is that if we compose both algorithms,
the program state remains unchanged. The inversion of the algorithm serves
only as a formal proof that the process applied to (z y) in one direction is the
same as the one applied to (a ¢) in the opposite direction. In the remainder
of our investigation, we base our discussion on Euclid’s algorithm, i.e., on the
non-inverted version.

For more details on the inversion rules shown in this section, we recommend
the expositions in [14, chapter 21] and [15, chapter 11]. As far as we know,
the technique of program inversion first appeared in [16, pp. 351-354] and, since
then, it has been mentioned and used in many places (see, for example, [17-20]).

4 Reversed Sequences of Vectors

Given the result of the previous section, saying that the sequences of vectors
(x y) and (a c) are reversed is equivalent to saying that the initial value of (a c)
is equal to the final value of (xz y) and the initial value of (z ) is equal to the
final value of (a ¢).

Looking at the algorithm, we see that the initial value of (a ¢) is (1 1) and
the final value of (z y) is (mVn m¥Vn). So, for the sequences to be reversed,
mVn has to be 1, i.e., m and n have to be co-prime. We thus assume henceforth
that mVn =1.

Also, the initial value of (z y) is (m—n n). So, because mVn =1, we have
the following equality:

“The sequences are reversed”

“The final value of (a ¢) is (m—n n)”

We can rewrite this equality in terms of matrix D:

“The sequences are reversed”

“The final value of D is ("L;" 2) for some b and d”

Now, because D is the product of matrices whose determinant equals 1, its
determinant also equals 1; this allows us to calculate b and d:

detD =1
= { D has the shape (7”_" Z) }

n

(m—n)xd—nxb =1
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= { arithmetic }
mxd—nx(d+b) =1
= { we have assumed that mVn =1, so, on termination,
the invariant states that (1 1) xD = (m n);
this means that n =b+d }

mxd=n>+1
= { O0<m }
de n2+1
m

The value of b is simply n—d, since on termination we have n=b+d (it follows
from the invariant). Because D is a matrix of integer values, d has to be an
integer, and so, a necessary condition is that m\(n?+1), that is, n? = —1 (mod
m). (We write m\n to denote that m is a divisor of n. Although the notation m|n
is more common, we prefer to use an asymmetric symbol such as the backward
slash to denote an asymmetric relation. Moreover, as the authors of [21, p.102]
point out, vertical bars are overused and m\n gives an impression that m is the
denominator of an implied ratio. Also, a2 (mod m) means that m\(a—b) and
we read it as “a and b are congruent modulo m”.) We can thus conclude that

2 ~

n —1 (mod m) < “The sequences are reversed”

A question that now arises is whether n? 2 —1 (mod m) is a sufficient condition
for the sequences to be reversed. That is, can we prove

m—n n—("2+1)/m

(2) “The final value of D is ( n ("2+1)/m

>” < n?2—1 (mod m)?

Using the assumption that D = (‘j Z), we can simplify (2) to:

(3) “The final value of cis n” <« n? =2 —1 (mod m)

since ¢ uniquely determines all the other entries (recall that m = a+c, n =0b+d
and det.D=1). To prove (3), we first show that n=c¢ (mod m) follows from
n?= —1 (mod m) and then we use the range of n and ¢ to conclude that n = c.
The following lemma is used to prove that n=c¢ (mod m).

Lemma 1. For all integers m, n, and c, the following holds:

2 ~

n=c¢(modm) < n° = —1 (mod m) A nxec 2 —1 (mod m)

Proof Using the fact that, for all integers a, b, and ¢, the following law on
congruences holds

(4) a—c = b—d (mod m) < a =2 b (mod m)Ac=>2d (mod m) |,

we can prove the lemma as follows:
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o~

nZc (mod m)
= {  arithmetic }
n—c=0 (mod m)
<= { mVn=1 and Euclid’s lemma, see below for details }
nx(n—c) =0 (mod m)
= { arithmetic }
n? —nxc = 0 (mod m)
= { n?=—-1 (mod m) and nxc=—1 (mod m) and (4) }
true .
In the second step we can safely assume that mVn = 1, since it follows from the
congruence n? = —1 (mod m) . A short proof of this fact is:
n?=—1 (mod m)
= {  definition }
(3g:: n?+1=gxm)
= {  arithmetic }
(Fg:: 1 = gxm —nxn)
= {  (mVn)\(gxm —nxn), so (mVn)\1;
division is anti-symmetric }

mVn=1 .
Also, Euclid’s lemma states that for all integers a, b, and c:

a\¢ < a\bxc A aVb=1

O

Now, if, on termination, we have that nxc 2 —1 (mod m), we can use lemma
1 to conclude that, on termination, we also have that n2c (mod m) follows from
n?= —1 (mod m). Recall that an invariant of the algorithm is

(xy)xD = (mn) = (zxa+yxc zxb+yxd)
Because the determinant of D equals 1, the inverse of D is (fic j’), making
the following property also invariant:
(5) (zy) = (mn)xD™' = (mxd—nxc axn—bxm)

It follows that on termination, when (z y) = (1 1), we have that nxc== —1 (mod
m), as the following calculation shows:
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nxc™—1 (mod m)
{  definition }
m\(nxc+1)
{  division properties }
mxd = nxc+1
{ arithmetic }
mxd—nxc =1
{ invariant (5), (x y) =(1 1) on termination }
true .

22_1

By lemma 1, we deduce that on termination n=c (mod m) follows from n*
(mod m). Finally, because 0 < a and m = a+c we have that 0 < ¢ < m; this allows
us to conclude that n=c:

nZc (mod m)
{  definition }
m\(n—c)
{ 0<n<mand 0 <c<m imply that —m <n—c<m;
the only multiple of m in that range is 0}
n—c=0
{  arithmetic }

n=c .

The conclusion is that n? = —1 (mod m) is also a sufficient condition for the
sequences to be reversed, leading to the equality:

“The sequences are reversed”

n?2=—1 (mod m) .

To summarise, in the following algorithm

{0<n<m}
(xy),D := (m—-n n),L;
{ Invariant: (mn) = (x y)xD = (zxa+yxc xxb+yxd)

A (mn)xD™ !t = (zy) = (mxd—nxc axn—bxm) }
doy<z — (zy),D := (zy)xL™' ,LxD {a<c}
O z<y — (ry),D = (zy) xR, RxD {c<a}
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od
{ @y =11 A (mn) = (11)xD }

the sequences of vectors (x y) and (a c) are reverses of each other exactly when
n?2= —1 (mod m).

5 Length of the Sequence of Vectors

We now have to prove that the final value of matrix D is decomposed into an
odd-length product of the matrices L and R. However, because D is initially L
and because it is iteratively premultiplied, D = M xL for some M. So we can
alternatively prove that M is decomposed into an even-length product of the
matrices L and R. Observing that

m—(2xn — (n2+1)/m) n_(n2+1)/m>

_ -1 _
M=DxL = < 1)) oy,

we see that M has the top-right and bottom-left corners equal, which means
that M =M” (M equals the transpose of M). We also know that R =L” and
L=R".

There are also two functions from finite products of L and R to naturals,
#L and #R, that give, respectively, the number of Ls and the number of Rs
in the decomposition of their argument?. Now, a fundamental property is that
#L.M = #R.M”, whenever M is a product of Ls and Rs. This fundamental
property means that the number of Ls in the decomposition of M equals the
numbers of Rs in the decomposition of M”, which is easy to see because R = LT
and L=R”. Using these observations, a simple calculation showing that the
length of M is an even number is:

length.M
= { M is a product of Ls and Rs }
#LM +#R.M

{ #LM=#RM" }

#RM' + #R.M
= { M'=M }
2x #RM .

Hence, the length of M is an even number. Subsequently, the length of the final
value of D is odd.

2 Note that, given that we can easily provide algorithms that compute them, functions
length, #L, and #R are well-defined. As proved in [13] and [12], there is a bijection
between finite products of matrices L and R, and binary strings made of the symbols
L and R; defining these functions in the realm of strings is easy.
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6 Sum of two positive squares

In the above sections we have proved the following theorem:

Theorem 1. A number m at least 2 can be written as the sum of two positive
squares if there is a number n such that 0 <n <m and n?~—1 (mod m).
O
The argument we provide is constructive because we show how to use Euclid’s

algorithm to represent a number as the sum of two positive squares. Indeed we
can extend Euclid’s algorithm so that it expresses a given number m as the sum
of two positive squares:

{1<m A (3n :0<n<m: n?=-1 (mod m)) }

e Find a number n such that 0<n <m and n?>2=—1 (mod m);

{ 0<n<m A n?22-1 (mod m) }

(J? y)aD = (m—n Tl),L ;

{ Invariant: (z y)xD = (m n) = (xxa+yxc xxb+yxd) }

do (@ y)#(ac) —

y<z —

zy),D (z y)x L™, LxD
Oz<y — (zy),D := (xy)XRfl,RxD
od

{ (x y)=(a c) N m=a*+y? =a’+c* }

Theorem 1 is more general than Girard’s result: while Girard’s theorem is only
on odd prime numbers, theorem 1 concerns all positive integers at least 2. As
an example, we can say that the number 10 is expressible as the sum of two
positive squares, since 3222—1 (mod 10) (and, in fact, we have that 10 = 32+12).
Moreover, given the following lemma (see [9, p. 17, Lemma 1]), Girard’s result
is an immediate corollary of theorem 1.

2~y

Lemma 2. For primes p = 4k + 1 the equation s*~—1 (mod p) has two
solutions s€{1.. p—1}, for p =2 there is only one such solution, while for primes
of the form p = 4k + 3 there is no solution.

O

Although we believe that theorem 1 may be known by some number-theorists,
we have not found it in the literature.

Please note that developing an algorithm to find a number n such that
0<n < m and n?= —1 (mod m) is beyond the scope of this paper. For more
details on this topic, we recommend [11] and [22], where the authors discuss
different algorithms that can be used to find such a number n.

Finally, the algorithm shown above can be generalised. In a recent private
communication, Wagon told us that the method of using Euclid’s algorithm to
write a number as a sum of two squares (or, more generally, as a? + gxc?) is
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known as the Smith-Cornacchia algorithm (he referred us to [22] and [23]). Also,
in [24], Hardy, Muskat, and Williams show a more general algorithm for solving
m = fxa?+ gxc? in coprime integers a and c. The algorithm presented in this
paper treats the case f =¢g=1. At the moment, we do not know how to adapt
it to solve the more general problem. Recall that we have started our argument
by observing that if, at any point in the execution of the algorithm, (x y) equals
(a ¢), it follows from the invariant

(mn) = (ry)xD = (rxa+yxc zxb+yxd)

that m can be written as a sum of two positive squares. To solve the general
problem, we have to investigate when it is possible to have, at any point in the
execution of the algorithm, a\z and c\y. If this happens, that is, if there are two
integers f and g such that x = fxa and y = gxc, it follows from the invariant
that m = fxa?+ gxc:

(mn) = (fxa gxc)xD = (fxa>+gxc® fxaxb+ gxexd)

7 Discussion

This paper shows a new and constructive proof of the two-squares theorem
based on a somewhat unusual, but very effective, way of rewriting the so-called
extended Euclid’s algorithm. As mentioned in the introduction, the use of Eu-
clid’s algorithm to prove the theorem is not new: Brillhart [6] and Wagon [11]
have used it to verify the theorem. Effectively, given the close relationship be-
tween Euclid’s algorithm and continued fractions, we can say that Serret [5] and
Hermite [4] were the first to provide the germ of the essential idea presented here
(in fact, Brillhart’s note is described as an improvement on Hermite's method:
in using Euclid’s algorithm, Brillhart avoids the calculation of the convergents
arising in the continued fractions).

The novel contribution of this paper is the use of the algorithm to investigate
which numbers can be written as the sum of two positive squares. The precise
formulation of the problem as an algorithmic problem is the key, since it allows us
to use algorithmic techniques and to avoid guessing. The notion of invariance, in
particular, plays a central role in our development: it is used initially to observe
that Euclid’s algorithm can actually be used to represent a given number as
a sum of two positive squares, and then it is used throughout the argument to
prove relevant properties. Also, section 3 is an example of how the use of program
inversion can make our arguments more precise.

We conclude by mentioning that this paper is part of a larger endeavour
which aims at reinvigorating mathematics education by exploiting mathematics’
algorithmic nature [13,12, 25]. In our view, the combination of practicality with
mathematical elegance that arises from an adequate focus on the algorithmic
content of mathematics can enrich and improve, not only mathematics education,
but also the process of constructing computer programs. Moreover, the emphasis
on investigation and construction rather than verification brings tremendous
benefits. As Leibniz once put it:
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Nothing is more important than to see the sources of invention which
are, in my opinion, more interesting than the inventions themselves.
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