
1

Lecture 10

JavaScript:

DOM and Dynamic HTML

Boriana Koleva

Room: C54

Email: bnk@cs.nott.ac.uk

Overview

 The Document Object Model (DOM)

 Element Access in JavaScript

 Events and Event Handling
• Handling events from Body Elements

• Handling events from Button Elements

• Handling events from Text Box and Password
Elements

 Dynamic HTML
• Element positioning and moving

• Changing Colours and Fonts

• Dynamic Content

• Reacting to a Mouse Click

JavaScript Execution Environment

 The Window object provides the largest enclosing
referencing environment for scripts

 Implicitly defined Window properties:
• document - a reference to the Document object

that the window displays
• frames - an array of references to the frames of

the document

 Every Document object has:
• forms - an array of references to the forms of the

document
• Each forms object has an elements array, which has

references to the form’s elements

• Document also has property arrays for anchors,
links, & images

The Document Object Model

 DOM 0 is supported by all JavaScript-enabled
browsers (no written specification)

 DOM 1 was released in 1998

 DOM 2 issued in 2000

• Nearly completely supported by NS7

• IE6’s support is lacking some important things

 DOM 3 is the latest W3C specification

 The DOM is an abstract model that defines
the interface between HTML documents and
application programs—an API

The Document Object Model

 A language that supports the DOM must have a

binding to the DOM constructs

 In the JavaScript binding, HTML elements are

represented as objects and element attributes

are represented as properties

 e.g., <input type = "text" name = "address">

• would be represented as an object with two
properties, type and name, with the values

"text" and "address"

DOM Structure

 Documents in the DOM have a tree like structure
<html>
<head> <title> A simple document </title>

</head>

<body>

<table>

<tr>
<th>Breakfast</th>

<td>0</td>

<td>1</td>

</tr>

<tr>
<th>Lunch</th>

<td>1</td>

<td>0</td>

</tr>

</table>
</body>

</html>

2

Element Access in JavaScript

 There are several ways to do it

1. DOM address

• Example (a document with just one form and one

widget):

<form action = "">

<input type = "button" name = "pushMe">

</form>

• document.forms[0].elements[0]

• Problem: document changes

Element Access in JavaScript

2. Element names

• requires the element and all of its ancestors
(except body) to have name attributes

• Example:
<form name = "myForm" action = "">

<input type = "button" name = "pushMe">

</form>

• document.myForm.pushMe

Element Access in JavaScript

3. getElementById Method (defined in DOM 1)

• Example:

<form action = "">

<input type = "button" id = "pushMe">

</form>

• document.getElementById("pushMe")

 Form elements often have ids and names both

set to the same value

Element Access in JavaScript

 Checkboxes and radio button have an implicit
array, which has their name

<form id = "toppingGroup">

<input type = "checkbox" name = "toppings"

value = "olives" />

...

<input type = "checkbox" name = "toppings"

value = "tomatoes" />

</form>

...

var numChecked = 0;

var dom = document.getElementById("toppingGroup");

for (index = 0; index < dom.toppings.length; index++)

if (dom.toppings[index].checked]

numChecked++;

Events and Event Handling

 An event is a notification that something
specific has occurred, either with the browser
or an action of the browser user

 An event handler is a script that is implicitly
executed in response to the appearance of an
event

 The process of connecting an event handler
to an event is called registration

 Don’t use document.write in an event
handler, because the output may go on top of
the display

Events and their Tag Attributes

Event Tag Attribute

blur onblur

change onchange

click onclick

focus onfocus

load onload

mousedown onmousedown

mousemove onmousemove

mouseout onmouseout

mouseover onmouseover

mouseup onmouseup

select onselect

submit onsubmit

unload onunload

3

Events, Attributes and Tags

 The same attribute can appear in several

different tags

• e.g., The onclick attribute can be in <a>

and <input>

 A text element gets focus in three ways:

1. When the user puts the mouse cursor over it

and presses the left button

2. When the user tabs to the element

3. By executing the focus method

Registration of Event Handler

 By assigning the event handler script to

an event tag attribute

<input type “button” name = “myButton”

onclick = "alert('Mouse click!');“ />

<input type “button” name = “myButton”

onclick = "myHandler();" />

Handling Events from Body

Elements

 Events most often created by body elements

are load and unload

 Example:

• the load event - triggered when the loading of

a document is completed

http://www.cs.nott.ac.uk/~bnk/WPS/load.html

Handling Events from Button

Elements

 Plain Buttons – use the onclick property

 Radio Buttons

• Example 1:

http://www.cs.nott.ac.uk/~bnk/WPS/radio_click.html

• The handler is registered in the markup, so the particular
button that was clicked can be sent to the handler as a
parameter

• Exampe 2:

http://www.cs.nott.ac.uk/~bnk/WPS/radio_click2.html

• The handler is registered by assigning it to a property of the
JavaScript objects associated with the HTML elements

• This registration must follow both the handler function and
the HTML form

Handling Events from Textbox

and Password Elements

 Checking Form Input

• A good use of JavaScript, because it finds errors in

form input before it is sent to the server for processing

 Things that must be done:

1. Detect the error and produce an alert message

2. Put the element in focus (the focus function) - puts the

cursor in the element

3. Select the element (the select function) - highlights the

text in the element

 To keep the form active after the event handler is
finished, the handler must return false

http://www.cs.nott.ac.uk/~bnk/WPS/load.html
http://www.cs.nott.ac.uk/~bnk/WPS/radio_click.html
http://www.cs.nott.ac.uk/~bnk/WPS/radio_click2.html

4

Handling Events from Textbox

and Password Elements

 Example 1 – comparing passwords

• The form just has two password input boxes and

Reset and Submit buttons

• The event handler is triggered by the Submit button

http://www.cs.nott.ac.uk/~bnk/WPS/pswd_chk.html

 Example 2 – checking the format of a name

and phone number

• The event handler will be triggered by the change

event of the text boxes for the name and phone

number

http://www.cs.nott.ac.uk/~bnk/WPS/validator.html

Dynamic HTML

 An HTML document whose tag attributes, tag

contents, or element style properties can be

changed after the document has been and is

still being displayed by a browser

 Such changes are made with an embedded

script (JavaScript) that accesses the elements

of the document as objects in the associated

DOM structure

Element Positioning

 The position of any element is dictated by the three
style properties: position, left, and top

• The three possible values of position are absolute,

relative, and static

<p style = "position: absolute; left: 50px;

top: 100px;">

 If position is set to either absolute or relative,

the element can be moved after it is displayed

• Just change the top and left property values with a script

http://www.cs.nott.ac.uk/~bnk/WPS/mover.html

Changing Colours and Fonts

 Colour example:

http://www.cs.nott.ac.uk/~bnk/WPS/dynColors.html

• The actual parameter this.value works because
at the time of the call, this is a reference to the
text box (the element in which the call is made)

• So, this.value is the name of the new colour

 Changing fonts example

http://www.cs.nott.ac.uk/~bnk/WPS/dynLink.html

• We can change the font properties of a link by
using the mouseover and mouseout events to
trigger a script that makes the changes

Dynamic Content

 The content of an HTML element is
addressed with the value property of

its associated JavaScript object

http://www.cs.nott.ac.uk/~bnk/WPS/dynValue.html

Reacting to a Mouse Click

 A mouse click can be used to trigger an

action, no matter where the mouse cursor is in

the display

http://www.cs.nott.ac.uk/~bnk/WPS/anywhere.html

• Uses event handlers for onmousedown and

onmouseup to change the visibility attribute of

the message

http://www.cs.nott.ac.uk/~bnk/WPS/pswd_chk.html
http://www.cs.nott.ac.uk/~bnk/WPS/validator.html
http://www.cs.nott.ac.uk/~bnk/WPS/mover.html
http://www.cs.nott.ac.uk/~bnk/WPS/dynColors.html
http://www.cs.nott.ac.uk/~bnk/WPS/dynLink.html
http://www.cs.nott.ac.uk/~bnk/WPS/dynValue.html
http://www.cs.nott.ac.uk/~bnk/WPS/anywhere.html

5

Summary

 The Document Object Model (DOM)

 Element Access in JavaScript

 Events and Event Handling
• Handling events from Body Elements

• Handling events from Button Elements

• Handling events from Text Box and Password
Elements

 Dynamic HTML
• Element positioning and moving

• Changing Colours and Fonts

• Dynamic Content

• Reacting to a Mouse Click

