
1

Lecture 16

Introduction to XML

Boriana Koleva

Room: C54

Email: bnk@cs.nott.ac.uk

Overview

 Introduction

 The Syntax of XML

 XML Document Structure

 Document Type Definitions

Introduction

 SGML is a meta-markup language

• Developed in the early 1980s; ISO standard in 1986

 HTML was developed using SGML in the early
1990s - specifically for Web documents

 Two problems with HTML:

1. Fixed set of tags and attributes

• User cannot define new tags or attributes

• So, the given tags must fit every kind of document,
and the tags cannot connote any particular meaning

2. There are no restrictions on arrangement or order of
tag appearance in a document

Introduction

 One solution to the first of these problems:

• Let each group of users define their own tags

(with implied meanings)

• (i.e., design their own “HTML”s using SGML)

 Problem with using SGML:

• It’s too large and complex to use, and it is very

difficult to build a parser for it

 A better solution: Define a lite version of SGML

XML

 XML is not a replacement for HTML
• HTML is a markup language used to describe the

layout of any kind of information

• XML is a meta-markup language that can be used to
define markup languages that can define the meaning
of specific kinds of information

 XML is a very simple and universal way of storing
and transferring data of any kind

 XML does not predefine any tags

 XML has no hidden specifications

 All docs described with an XML-derived markup
language can be parsed with a single parser

XML

 We will refer to an XML-based markup
language as a tag set
• Strictly speaking, a tag set is an XML

application, but that terminology can be
confusing

 An XML processor is a program that parses
XML documents and provides the parts to an
application

 Documents that use an XML-based markup
language are XML documents

2

The Syntax of XML

 The syntax of XML is in two distinct levels:

1. The general low-level rules that apply to all

XML documents

2. For a particular XML tag set, either a document

type definition (DTD) or an XML schema

General XML Syntax

 XML documents consist of:

1. Data elements

2. Markup declarations

• instructions for the XML parser

3. Processing instructions

• for the application program that is processing
the data in the document

 All XML documents begin with an XML
declaration:

<?xml version = "1.0" encoding = "utf-8"?>

 XML comments are just like HTML comments

General XML Syntax

 XML names:

• Must begin with a letter or an underscore

• They can include digits, hyphens, and periods

• There is no length limitation

• They are case sensitive (unlike HTML names)

 Syntax rules for XML: same as those of XHTML

• Every XML document defines a single root element,
whose opening tag must appear as the first line of the
document

 An XML document that follows all of these rules is
well formed

Simple XML example

<?xml version = "1.0">

<ad>

<year> 1960 </year>

<make> Cessna </make>

<model> Centurian </model>

<color> Yellow with white trim </color>

<location>

<city> Gulfport </city>

<state> Mississippi </state>

</location>

</ad>

XML Attributes

 XML document design – add a new attribute

to an element or a nested element?

• In XML, you often define a new nested tag to

provide more info about the content of a tag

• Nested tags are better than attributes, because

attributes cannot describe structure and the

structural complexity may grow

• However, attributes should always be used to

identify numbers or names of elements (like
HTML id and name attributes)

Attribute Example
<!-- A tag with one attribute -->

<patient name = "Maggie Dee Magpie">

...

</patient>

<!-- A tag with one nested tag -->

<patient>

<name> Maggie Dee Magpie </name>

...

</patient>

<!-- A tag with one nested tag, which contains three nested tags -->

<patient>

<name>

<first> Maggie </first>

<middle> Dee </middle>

<last> Magpie </last>

</name>

...

</patient>

3

XML Document Structure

 An XML document often uses two auxiliary files:

• One to specify the structural syntactic rule

• One to provide a style specification

 An XML document has a single root element,

but often consists of one or more entities

 An XML document has one document entity

• All other entities are referenced in the document

entity

XML Document Structure

 Reasons for entity structure:

1. Makes large documents easier to manage

2. Repeated entities need not be literally

repeated

3. Binary entities can only be referenced in the

document entities (XML is all text!)

XML Entities

 When the XML parser encounters a reference

to a non-binary entity, the entity is merged in

 Entity names:

• No length limitation

• Must begin with a letter, a dash, or a colon

• Can include letters, digits, periods, dashes,

underscores, or colons

 A reference to an entity has the form:

&entity_name;

XML Entities

 One common use of entities is for special
characters that may be used for markup
delimiters

 These are predefined (as in HTML):

< <

> >

& &

" "

' '

 The user-defined entities can be defined only
in DTDs

Document Type Definitions (DTDs)

 A DTD is a set of structural rules called
declarations
• These rules specify a set of elements, along

with how and where they can appear in a
document

 Purpose: provide a standard form for a
collection of XML documents and define a
markup language for them

 Not all XML documents have or need a DTD

 The DTD for a document can be internal or
external

Document Type Definitions (DTDs)

 All of the declarations of a DTD are enclosed
in the block of a DOCTYPE markup declaration

 DTD declarations have the form:

<!keyword … >

 There are four possible declaration keywords:

• ELEMENT – to define tags

• ATTLIST – to define tag attributes

• ENTITY – to define entities

• NOTATION – to define data type notations

4

Declaring Elements

 An element declaration specifies the name of an

element, and the element’s structure

 If the element is a leaf node of the document tree,

its structure is in terms of characters

 If it is an internal node, its structure is a list of

children elements (either leaf or internal nodes)

 General form:

<!ELEMENT element_name (list of child names)>

 E.g.:

<!ELEMENT memo (from, to, date, re, body)>

Declaring Elements

 Child elements can have modifiers

<!ELEMENT person (parent+, age, spouse?, sibling*)>

 Choices
• <!ELEMENT animal (cat | dog)>

• animal element contains either a cat child or a

dog child

Declaring Elements

 Parentheses
• either a choice or a sequence can be enclosed

in parentheses to describe a content model

<!ELEMENT circle (centre,

(radius |diameter))>

 Leaf nodes specify data types, most often
PCDATA (parsable character data)

• Data type could also be EMPTY (no content)
and ANY (can have any content)

• Example of a leaf declaration:

<!ELEMENT name (#PCDATA)>

Declaring Attributes

 General form:

<!ATTLIST el_name at_name at_type [default]>

 There are ten different attribute types

• CDATA – any string of characters

• ENUMERATION – list of all possible values for the

attribute separated by vertical bars

<!ATTLIST date month (January | February | March

| April | May | June| July | August |

September | October | November | December)

#REQUIRED>

Declaring Attributes

 Default values:

Declaring Attributes

 Attribute specifications in a DTD:

<!ATTLIST car doors CDATA "4">

<!ATTLIST car engine_type CDATA #REQUIRED>

<!ATTLIST car price CDATA #IMPLIED>

<!ATTLIST car make CDATA #FIXED "Ford">

 An XML element that is valid for above DTD

<car doors = "2" engine_type = "V8">

...

</car>

5

Declaring Entities

 A general entity can be referenced anywhere in the

content of an XML document

 General form of declaration:

<!ENTITY [%] entity_name "entity_value">

e.g. <!ENTITY jfk "John Fitzgerald Kennedy">

A reference: &jfk;

 If the entity value is longer than a line, define it in a

separate file (an external text entity)

<!ENTITY entity_name SYSTEM "file_location">

A Sample DTD

 Example DTD

• http://www.crg.cs.nott.ac.uk/~bnk/Teaching/WPS

/planes.dtd

 An XML document valid for planes.dtd

• http://www.crg.cs.nott.ac.uk/~bnk/Teaching/WPS

/planes.xml

DTDs

 XML Parsers

• Always check for well formedness

• Some check for validity, relative to a given DTD

• Called validating XML parsers

 You can download a validating XML parser from:

http://xml.apache.org/xerces-j/index.html

 Internal DTDs
<!DOCTYPE root_name [

…

]>

 External DTDs

<!DOCTYPE XML_doc_root_name SYSTEM

“DTD_file_name”>

Summary

 Introduction

 The Syntax of XML

 XML Document Structure

 Document Type Definitions

• Declaring elements

• Declaring attributes

• Declaring entities

http://www.crg.cs.nott.ac.uk/~bnk/Teaching/WPS/planes.dtd
http://www.crg.cs.nott.ac.uk/~bnk/Teaching/WPS/planes.dtd
http://www.crg.cs.nott.ac.uk/~bnk/Teaching/WPS/planes.xml
http://www.crg.cs.nott.ac.uk/~bnk/Teaching/WPS/planes.xml
http://xml.apache.org/xerces-j/index.html
http://xml.apache.org/xerces-j/index.html
http://xml.apache.org/xerces-j/index.html

