
1

Lecture 19

Web Application Frameworks

Boriana Koleva

Room: C54

Email: bnk@cs.nott.ac.uk

Overview

 Web applications overview

 Introduction to Model-View-Controller (MVC)

 Overview of web application frameworks

 Introduction to TurboGears

• video20 Minutes Wiki20 Minutes Wiki

WPS so far

 Technologies:

• HTML

• CSS

• JavaScript

• DOM, Dynamic 

HTML

• PHP

• XML

 May seem 

complicated already

 But still not everything 

(not by far!)

 How to possibly get it 

all under one hood?

Webapps summary

 Accessed with a Web Browser (client)

 Over a network

 Code is mainly run on server

 Exception: JavaScript (also: Java applets, Flash,..)

 Data is mainly stored on server

 Webapps can be updated easily…

..without updating the clients!

General 3 tiered structure

 First tier: client side code (web-

browser), e.g. (X)HTML, JavaScript, 

Java applets, Flash

 Second tier: server side code, e.g. 

C/C++, Perl, PHP, Java, Ruby, Python

 Third tier: server side database
 Architectural Pattern from Smalltalk (1979)

 Decouples data and presentation

 Eases the development

Model View Controller



2

 First thought (ok, but not far enough):

• Tier 1: View (Client)

• Tier 2: Controller (Server)

• Tier 3: Model (Database)

Database

ClientServer

 Presentation:
• View is the user interface (e.g. button)

• Controller is the code (e.g. callback for button)

 Data:
• Model is the database

Database

Presentation

Data

Example Control Flow in MVC

 User interacts with the VIEW UI

 CONTROLLER handles the user input 

(often a callback function attached to UI

elements)

 CONTROLLER updates the MODEL

 VIEW uses MODEL to generate new UI

 UI waits for user interaction

MVC – general example

Web application framework

 Software framework that is designed to 

support the development of dynamic websites

 Aims to alleviate the overhead associated with 

common activities

• libraries for database access 

• templating 

• session management

• code reuse

Web App Framework 

Architecture

 Most frameworks follow the Model View 

Controller (MVC) architectural pattern

 Most MVC frameworks follow a push-based 

architecture

• use actions that do the required processing, 

and then "push" the data to the view layer to 

render the results

 Alternative pull-based architecture

• start with the view layer, which can then "pull" 

results from multiple controllers as needed



3

Popular web application 

frameworks 

 http://en.wikipedia.org/wiki/Ruby_on_rails (Ruby) 

• http://www.rubyonrails.org/screencasts

 http://en.wikipedia.org/wiki/Cake_php (PHP) 

• http://cakephp.org/screencasts

 http://en.wikipedia.org/wiki/Turbogears (Python) 

• http://showmedo.com/videos/series?name=TurboGears20MinWiki

 http://en.wikipedia.org/wiki/Django_%28web_framework%29 (Python) 

• http://www.throwingbeans.org/django_screencasts.html

 http://en.wikipedia.org/wiki/Google_App_Engine (Python, Django) 

• http://www.youtube.com/watch?v=3Ztr-HhWX1c

Introduction to TurboGears

(1.x series)

JavaScript Library

XHTML template engine

Easy to use Python webserver

ORM Database Interface

(e.g. for MySQL, SQLite, etc.) 

VIEW

CONTROLLER

MODEL

Let‘s get started by 

watching a video 

(20 Minutes Wiki)

http://files.turbogears.org/video/20MinuteWiki2nd.mov

So what was that?

 Created skeleton files with startup script

 Defined Data-Model
• created database tables from model

• created seeding data in toolbox webapp

 Wrote View template in XHTML

 Wrote Controller code in Python
• Index, edit, save

 At this point he had a working system
• Several iterations to add all features

 Finally wrote AJAX code (Javascript) in 
template

Benefits

 Local development

• No need to upload to server

 Quick turn around times

• No need to compile

• As CherryPy watches the file-system 
and reloads when sources are changed

 Database query and update was easy

• No need to hand-write SQL

• But could be done, if necessary

Summary

 Web applications

• Client, Server, Database

• Easy to maintain, harder to write

 Model – View – Controller

• Eases web application development

 TurboGears

• MVC WebApp Framework written in 

Python

• www.turbogears.org

http://en.wikipedia.org/wiki/Ruby_on_rails
http://www.rubyonrails.org/screencasts
http://en.wikipedia.org/wiki/Cake_php
http://cakephp.org/screencasts
http://en.wikipedia.org/wiki/Turbogears
http://showmedo.com/videos/series?name=TurboGears20MinWiki
http://en.wikipedia.org/wiki/Django_%28web_framework%29
http://www.throwingbeans.org/django_screencasts.html
http://en.wikipedia.org/wiki/Google_App_Engine
http://www.youtube.com/watch?v=3Ztr-HhWX1c
http://www.youtube.com/watch?v=3Ztr-HhWX1c
http://www.youtube.com/watch?v=3Ztr-HhWX1c
http://files.turbogears.org/video/20MinuteWiki2nd.mov

