
1

Lecture 19

Web Application Frameworks

Boriana Koleva

Room: C54

Email: bnk@cs.nott.ac.uk

Overview

 Web applications overview

 Introduction to Model-View-Controller (MVC)

 Overview of web application frameworks

 Introduction to TurboGears

• video20 Minutes Wiki20 Minutes Wiki

WPS so far

 Technologies:

• HTML

• CSS

• JavaScript

• DOM, Dynamic 

HTML

• PHP

• XML

 May seem 

complicated already

 But still not everything 

(not by far!)

 How to possibly get it 

all under one hood?

Webapps summary

 Accessed with a Web Browser (client)

 Over a network

 Code is mainly run on server

 Exception: JavaScript (also: Java applets, Flash,..)

 Data is mainly stored on server

 Webapps can be updated easily…

..without updating the clients!

General 3 tiered structure

 First tier: client side code (web-

browser), e.g. (X)HTML, JavaScript, 

Java applets, Flash

 Second tier: server side code, e.g. 

C/C++, Perl, PHP, Java, Ruby, Python

 Third tier: server side database
 Architectural Pattern from Smalltalk (1979)

 Decouples data and presentation

 Eases the development

Model View Controller



2

 First thought (ok, but not far enough):

• Tier 1: View (Client)

• Tier 2: Controller (Server)

• Tier 3: Model (Database)

Database

ClientServer

 Presentation:
• View is the user interface (e.g. button)

• Controller is the code (e.g. callback for button)

 Data:
• Model is the database

Database

Presentation

Data

Example Control Flow in MVC

 User interacts with the VIEW UI

 CONTROLLER handles the user input 

(often a callback function attached to UI

elements)

 CONTROLLER updates the MODEL

 VIEW uses MODEL to generate new UI

 UI waits for user interaction

MVC – general example

Web application framework

 Software framework that is designed to 

support the development of dynamic websites

 Aims to alleviate the overhead associated with 

common activities

• libraries for database access 

• templating 

• session management

• code reuse

Web App Framework 

Architecture

 Most frameworks follow the Model View 

Controller (MVC) architectural pattern

 Most MVC frameworks follow a push-based 

architecture

• use actions that do the required processing, 

and then "push" the data to the view layer to 

render the results

 Alternative pull-based architecture

• start with the view layer, which can then "pull" 

results from multiple controllers as needed



3

Popular web application 

frameworks 

 http://en.wikipedia.org/wiki/Ruby_on_rails (Ruby) 

• http://www.rubyonrails.org/screencasts

 http://en.wikipedia.org/wiki/Cake_php (PHP) 

• http://cakephp.org/screencasts

 http://en.wikipedia.org/wiki/Turbogears (Python) 

• http://showmedo.com/videos/series?name=TurboGears20MinWiki

 http://en.wikipedia.org/wiki/Django_%28web_framework%29 (Python) 

• http://www.throwingbeans.org/django_screencasts.html

 http://en.wikipedia.org/wiki/Google_App_Engine (Python, Django) 

• http://www.youtube.com/watch?v=3Ztr-HhWX1c

Introduction to TurboGears

(1.x series)

JavaScript Library

XHTML template engine

Easy to use Python webserver

ORM Database Interface

(e.g. for MySQL, SQLite, etc.) 

VIEW

CONTROLLER

MODEL

Let‘s get started by 

watching a video 

(20 Minutes Wiki)

http://files.turbogears.org/video/20MinuteWiki2nd.mov

So what was that?

 Created skeleton files with startup script

 Defined Data-Model
• created database tables from model

• created seeding data in toolbox webapp

 Wrote View template in XHTML

 Wrote Controller code in Python
• Index, edit, save

 At this point he had a working system
• Several iterations to add all features

 Finally wrote AJAX code (Javascript) in 
template

Benefits

 Local development

• No need to upload to server

 Quick turn around times

• No need to compile

• As CherryPy watches the file-system 
and reloads when sources are changed

 Database query and update was easy

• No need to hand-write SQL

• But could be done, if necessary

Summary

 Web applications

• Client, Server, Database

• Easy to maintain, harder to write

 Model – View – Controller

• Eases web application development

 TurboGears

• MVC WebApp Framework written in 

Python

• www.turbogears.org

http://en.wikipedia.org/wiki/Ruby_on_rails
http://www.rubyonrails.org/screencasts
http://en.wikipedia.org/wiki/Cake_php
http://cakephp.org/screencasts
http://en.wikipedia.org/wiki/Turbogears
http://showmedo.com/videos/series?name=TurboGears20MinWiki
http://en.wikipedia.org/wiki/Django_%28web_framework%29
http://www.throwingbeans.org/django_screencasts.html
http://en.wikipedia.org/wiki/Google_App_Engine
http://www.youtube.com/watch?v=3Ztr-HhWX1c
http://www.youtube.com/watch?v=3Ztr-HhWX1c
http://www.youtube.com/watch?v=3Ztr-HhWX1c
http://files.turbogears.org/video/20MinuteWiki2nd.mov

