
1

Lecture 4

Web browsers, servers and

HTTP

Boriana Koleva

Room: C54

Email: bnk@cs.nott.ac.uk

Overview

 Client-server paradigm

 Web browsers

 Web servers

 URLs

 MIME

 HTTP

 „Warriors of the net‟ video

The client server paradigm

 A widely used form of communication

 Server application waits passively for
contact from clients

 A server provides a specific service

 Client application actively initiates contact
with the server

 Information can flow in both directions

 Typical situation is many clients interacting
with each server

Web Browsers

 Browsers are clients

• always initiate, servers react

 Allow user to browse resources available on
server

• either existing or dynamically built documents

 Mosaic - NCSA (Univ. of Illinois), in early 1993

• First to use a GUI, led to explosion of Web use

• Initially for X-Windows, under UNIX, but was
ported to other platforms by late 1993

 Current common browsers

• Firefox, Internet Explorer, Google Chrome, Safari

Web Servers

 Provide responses to browser requests

 All communications between browsers and
servers use Hypertext Transfer Protocol
(HTTP)

 Web servers run as background processes in
the operating system

• Monitor a communications port on the host,
accepting HTTP messages when they appear

 Common servers

• Apache, Internet Information Server (IIS),
Google Web Server

Uniform Resource Locators (URLs)

 Standard way of specifying entities on networks

 First part - protocol
• terminated by colon (:)

• common protocols are http, ftp, mailto, telnet,

• i.e.: http: ftp: mailto: telnet:

 Second part - varies according to protocol
• mailto - e-mail address e.g.:

• mailto: David.Brailsford@nottingham.ac.uk

• resource-oriented protocols (http, ftp etc)
• Host name + domain names (preceded by //)

• may optionally include username, password and port

• Pathname (usually related to the path of a file on the server)

• i.e. //fully-qualified-domain-name/path-to-document

 Optional third parts
• Query string (preceded by ?)

• Fragment identifier (preceded by #)

2

Example URLs

 mailto:steve.benford@nottingham.ac.uk

 http://www.crg.cs.nott.ac.uk/~bnk/index.html

 http://www.nottingham.ac.uk:80/

 http://acomputer.cs.nott.ac.uk:8799/

 http://uname:pword@acomputer.cs.nott.ac.uk/private/secret.html

 http://acomputer.cs.nott.ac.uk/dbase?stuff

 http://acomputer.cs.nott.ac.uk/myfile.html#third

 ftp://uname:pword@acomputer.cs.nott.ac.uk/

 ftp://acomputer.cs.nott.ac.uk/

General Server Characteristics

 Web servers have two main directories:

• 1. Server root (server system software)

• 2. Document root (servable documents)
• This will map to the URL of the full domain name, e.g.:

http://www.cs.nott.ac.uk/

• User document root directory
• Directories of a standard name in the users home

directory

• Usually this is called public_html

• The URL is then mapped as ~username e.g.:

http://www.cs.nott.ac.uk/~bnk/

General Server Characteristics

 Document root is accessed indirectly by clients

• Its actual location is set by the server

configuration file

• Requests are mapped to the actual location
• E.g. doc root is topdocs and stored in /admin/web

• Site is http://www.flowers.com

• When there is a request for
http://www.flowers.com/bulbs/tulips.html

• Server searches for file with address

/admin/web/topdocs/bulbs/tulips.html

Additional Server Features

 Virtual document trees

• Part of servable document collection
stored outside the document root

 Virtual hosting

• Support for more than one site on a
computer

 Proxy servers

• Serve documents that are in the
document root of other machines

Multipurpose Internet Mail

Extensions (MIME)

 Originally developed for email

 Used to specify document types
transmitted over the Web

• MIME type attached by the server to the
beginning of the document

 Type specifications

• Form: type/subtype

• Examples: text/plain, text/html,
image/gif, image/jpeg

MIME

 Server gets type from the requested file
name‟s suffix (.html implies text/html)

 Browser gets the type explicitly from the
server

 Experimental types

• Subtype begins with x-

• e.g. video/x-msvideo

• Experimental types require the server to send
a helper application or plug-in so the browser
can deal with the file

3

World Wide Web Overview

HTTP Server

Apache

MS IIS

Client

Netscape Navigator

MS Internet Explorer
HTTP request

(URL)

HTTP response
(HTML data)

Design Paradigm of the WWW

 WWW is a global hypertext system

 The page is the basic unit of the WWW

 Each page has a unique identifier – the URL

 Pages may contain links to data of any type

 Some data (e.g. images) may be interpreted

by the browser and displayed “inline”

 Pages may contain links to other URLs

The HTTP Protocol

 Invented by Tim Berners-Lee in 1990

 RFC 1945 (1996) - HTTP/1.0

 RFC 2068 (1997) - HTTP/1.1

 RFC 2616 (1999) - HTTP/1.1

• (update to 2068)

Features of HTTP

 Application level, client-server protocol
• Primarily for distributed hypermedia systems

• Flexible - thus has many other uses - e.g.:
• Nameservers

• Distributed & collaborative document management systems

 HTTP is small and fast
• Minimal performance overhead

• Easy to implement

 HTTP is a stateless protocol
• Each request is an independent transaction - unrelated to any

previous requests (unlike session-based protocols, e.g. FTP)

• Advantage
• Simplifies server design - information about previous transactions

does not need to be stored

• Disadvantage
• More information must be included in each request

HTTP Operation

 On the Internet HTTP usually uses TCP/IP
connections

 TCP Port 80 is the default (though others can
be specified)

 HTTP uses a Request/Response paradigm

• Client establishes a connection to the server,
and sends it a request

• Server responds to the request by generating a
response (which may or may not contain
content)

HTTP Request

 Delivered from a client to a server containing instructions
for the server

 Contains

• the method to be applied to the data resource

• the identifier of the resource

• the protocol version in use

 Most commonly used methods:

• GET - Fetch a document

• HEAD - Fetch just the header of the document

• POST - Execute the document, using the data in body

• PUT - Store a new document on the server

• DELETE - Remove a document from the server

4

Request message

METHOD /path-to-resource HTTP/version-number

Header-Name-1: value

Header-Name-2: value

[optional request body]

General request message structure

GET /index.html HTTP/1.1

Host: www.cs.nott.ac.uk

Accept: text/*

User-Agent: Mozilla/2.02Gold (WinNT; I)

Example

telnet HTTP request

 A browsers is not necessary to

communicate with a web server

> telnet blanca.uccs.edu http

GET /respond.html HTTP/1.1

Host: blanca.uccs.edu

HTTP Response

 Message generated by a server after
receiving and interpreting a request

 Responses contain:

• Status line with the protocol version, a
status code, and a “reason phrase”

• Response-Header (containing
information about the server)

• Entity Header (meta-information)

• Entity Body (data)

Response message

HTTP/version-number status-code message

Response-Header-Name-1: value

Response-Header-Name-2: value
Entity-Header-Name-1: value
Entity-Header-Name-2: value

[optional entity body]

General response message structure

HTTP/1.1 200 OK

Server: Apache (Red-Hat/Linux)

Content-Type: text/html

Content-Length: 9934

<HTML>

<HEAD>

<TITLE>School of Computer Science</TITLE>

…

Example

Some HTTP Status Codes

 200 : OK

 201 : Created

 202 : Accepted

 204 : No Content

 301 : Moved Permanently

 302 : Moved Temporarily

 400 : Bad Request

 401 : Unauthorized

 403 : Forbidden

 404 : Not Found

 500 : Internal Server Error

 503 : Service Unavailable

Summary

 Client-server paradigm

 Web browsers

 Web servers

 URLs

 MIME types

 HTTP protocol

• Requests and responses

