
1

Lecture 4

Web browsers, servers and

HTTP

Boriana Koleva

Room: C54

Email: bnk@cs.nott.ac.uk

Overview

 Client-server paradigm

 Web browsers

 Web servers

 URLs

 MIME

 HTTP

 „Warriors of the net‟ video

The client server paradigm

 A widely used form of communication

 Server application waits passively for
contact from clients

 A server provides a specific service

 Client application actively initiates contact
with the server

 Information can flow in both directions

 Typical situation is many clients interacting
with each server

Web Browsers

 Browsers are clients

• always initiate, servers react

 Allow user to browse resources available on
server

• either existing or dynamically built documents

 Mosaic - NCSA (Univ. of Illinois), in early 1993

• First to use a GUI, led to explosion of Web use

• Initially for X-Windows, under UNIX, but was
ported to other platforms by late 1993

 Current common browsers

• Firefox, Internet Explorer, Google Chrome, Safari

Web Servers

 Provide responses to browser requests

 All communications between browsers and
servers use Hypertext Transfer Protocol
(HTTP)

 Web servers run as background processes in
the operating system

• Monitor a communications port on the host,
accepting HTTP messages when they appear

 Common servers

• Apache, Internet Information Server (IIS),
Google Web Server

Uniform Resource Locators (URLs)

 Standard way of specifying entities on networks

 First part - protocol
• terminated by colon (:)

• common protocols are http, ftp, mailto, telnet,

• i.e.: http: ftp: mailto: telnet:

 Second part - varies according to protocol
• mailto - e-mail address e.g.:

• mailto: David.Brailsford@nottingham.ac.uk

• resource-oriented protocols (http, ftp etc)
• Host name + domain names (preceded by //)

• may optionally include username, password and port

• Pathname (usually related to the path of a file on the server)

• i.e. //fully-qualified-domain-name/path-to-document

 Optional third parts
• Query string (preceded by ?)

• Fragment identifier (preceded by #)

2

Example URLs

 mailto:steve.benford@nottingham.ac.uk

 http://www.crg.cs.nott.ac.uk/~bnk/index.html

 http://www.nottingham.ac.uk:80/

 http://acomputer.cs.nott.ac.uk:8799/

 http://uname:pword@acomputer.cs.nott.ac.uk/private/secret.html

 http://acomputer.cs.nott.ac.uk/dbase?stuff

 http://acomputer.cs.nott.ac.uk/myfile.html#third

 ftp://uname:pword@acomputer.cs.nott.ac.uk/

 ftp://acomputer.cs.nott.ac.uk/

General Server Characteristics

 Web servers have two main directories:

• 1. Server root (server system software)

• 2. Document root (servable documents)
• This will map to the URL of the full domain name, e.g.:

http://www.cs.nott.ac.uk/

• User document root directory
• Directories of a standard name in the users home

directory

• Usually this is called public_html

• The URL is then mapped as ~username e.g.:

http://www.cs.nott.ac.uk/~bnk/

General Server Characteristics

 Document root is accessed indirectly by clients

• Its actual location is set by the server

configuration file

• Requests are mapped to the actual location
• E.g. doc root is topdocs and stored in /admin/web

• Site is http://www.flowers.com

• When there is a request for
http://www.flowers.com/bulbs/tulips.html

• Server searches for file with address

/admin/web/topdocs/bulbs/tulips.html

Additional Server Features

 Virtual document trees

• Part of servable document collection
stored outside the document root

 Virtual hosting

• Support for more than one site on a
computer

 Proxy servers

• Serve documents that are in the
document root of other machines

Multipurpose Internet Mail

Extensions (MIME)

 Originally developed for email

 Used to specify document types
transmitted over the Web

• MIME type attached by the server to the
beginning of the document

 Type specifications

• Form: type/subtype

• Examples: text/plain, text/html,
image/gif, image/jpeg

MIME

 Server gets type from the requested file
name‟s suffix (.html implies text/html)

 Browser gets the type explicitly from the
server

 Experimental types

• Subtype begins with x-

• e.g. video/x-msvideo

• Experimental types require the server to send
a helper application or plug-in so the browser
can deal with the file

3

World Wide Web Overview

HTTP Server

Apache

MS IIS

Client

Netscape Navigator

MS Internet Explorer
HTTP request

(URL)

HTTP response
(HTML data)

Design Paradigm of the WWW

 WWW is a global hypertext system

 The page is the basic unit of the WWW

 Each page has a unique identifier – the URL

 Pages may contain links to data of any type

 Some data (e.g. images) may be interpreted

by the browser and displayed “inline”

 Pages may contain links to other URLs

The HTTP Protocol

 Invented by Tim Berners-Lee in 1990

 RFC 1945 (1996) - HTTP/1.0

 RFC 2068 (1997) - HTTP/1.1

 RFC 2616 (1999) - HTTP/1.1

• (update to 2068)

Features of HTTP

 Application level, client-server protocol
• Primarily for distributed hypermedia systems

• Flexible - thus has many other uses - e.g.:
• Nameservers

• Distributed & collaborative document management systems

 HTTP is small and fast
• Minimal performance overhead

• Easy to implement

 HTTP is a stateless protocol
• Each request is an independent transaction - unrelated to any

previous requests (unlike session-based protocols, e.g. FTP)

• Advantage
• Simplifies server design - information about previous transactions

does not need to be stored

• Disadvantage
• More information must be included in each request

HTTP Operation

 On the Internet HTTP usually uses TCP/IP
connections

 TCP Port 80 is the default (though others can
be specified)

 HTTP uses a Request/Response paradigm

• Client establishes a connection to the server,
and sends it a request

• Server responds to the request by generating a
response (which may or may not contain
content)

HTTP Request

 Delivered from a client to a server containing instructions
for the server

 Contains

• the method to be applied to the data resource

• the identifier of the resource

• the protocol version in use

 Most commonly used methods:

• GET - Fetch a document

• HEAD - Fetch just the header of the document

• POST - Execute the document, using the data in body

• PUT - Store a new document on the server

• DELETE - Remove a document from the server

4

Request message

METHOD /path-to-resource HTTP/version-number

Header-Name-1: value

Header-Name-2: value

[optional request body]

General request message structure

GET /index.html HTTP/1.1

Host: www.cs.nott.ac.uk

Accept: text/*

User-Agent: Mozilla/2.02Gold (WinNT; I)

Example

telnet HTTP request

 A browsers is not necessary to

communicate with a web server

> telnet blanca.uccs.edu http

GET /respond.html HTTP/1.1

Host: blanca.uccs.edu

HTTP Response

 Message generated by a server after
receiving and interpreting a request

 Responses contain:

• Status line with the protocol version, a
status code, and a “reason phrase”

• Response-Header (containing
information about the server)

• Entity Header (meta-information)

• Entity Body (data)

Response message

HTTP/version-number status-code message

Response-Header-Name-1: value

Response-Header-Name-2: value
Entity-Header-Name-1: value
Entity-Header-Name-2: value

[optional entity body]

General response message structure

HTTP/1.1 200 OK

Server: Apache (Red-Hat/Linux)

Content-Type: text/html

Content-Length: 9934

<HTML>

<HEAD>

<TITLE>School of Computer Science</TITLE>

…

Example

Some HTTP Status Codes

 200 : OK

 201 : Created

 202 : Accepted

 204 : No Content

 301 : Moved Permanently

 302 : Moved Temporarily

 400 : Bad Request

 401 : Unauthorized

 403 : Forbidden

 404 : Not Found

 500 : Internal Server Error

 503 : Service Unavailable

Summary

 Client-server paradigm

 Web browsers

 Web servers

 URLs

 MIME types

 HTTP protocol

• Requests and responses

